1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Scope.WriteableScope;
  41 import com.sun.tools.javac.code.Source.Feature;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  45 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  46 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  47 import com.sun.tools.javac.comp.Check.CheckContext;
  48 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  49 import com.sun.tools.javac.jvm.*;
  50 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  51 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  52 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  53 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  54 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  55 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  56 import com.sun.tools.javac.tree.*;
  57 import com.sun.tools.javac.tree.JCTree.*;
  58 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  59 import com.sun.tools.javac.util.*;
  60 import com.sun.tools.javac.util.DefinedBy.Api;
  61 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  62 import com.sun.tools.javac.util.JCDiagnostic.Error;
  63 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  64 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  65 import com.sun.tools.javac.util.List;
  66 
  67 import static com.sun.tools.javac.code.Flags.*;
  68 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  69 import static com.sun.tools.javac.code.Flags.BLOCK;
  70 import static com.sun.tools.javac.code.Kinds.*;
  71 import static com.sun.tools.javac.code.Kinds.Kind.*;
  72 import static com.sun.tools.javac.code.TypeTag.*;
  73 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  74 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  75 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  76 
  77 /** This is the main context-dependent analysis phase in GJC. It
  78  *  encompasses name resolution, type checking and constant folding as
  79  *  subtasks. Some subtasks involve auxiliary classes.
  80  *  @see Check
  81  *  @see Resolve
  82  *  @see ConstFold
  83  *  @see Infer
  84  *
  85  *  <p><b>This is NOT part of any supported API.
  86  *  If you write code that depends on this, you do so at your own risk.
  87  *  This code and its internal interfaces are subject to change or
  88  *  deletion without notice.</b>
  89  */
  90 public class Attr extends JCTree.Visitor {
  91     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  92 
  93     final Names names;
  94     final Log log;
  95     final Symtab syms;
  96     final Resolve rs;
  97     final Operators operators;
  98     final Infer infer;
  99     final Analyzer analyzer;
 100     final DeferredAttr deferredAttr;
 101     final Check chk;
 102     final Flow flow;
 103     final MemberEnter memberEnter;
 104     final TypeEnter typeEnter;
 105     final TreeMaker make;
 106     final ConstFold cfolder;
 107     final Enter enter;
 108     final Target target;
 109     final Types types;
 110     final JCDiagnostic.Factory diags;
 111     final TypeAnnotations typeAnnotations;
 112     final DeferredLintHandler deferredLintHandler;
 113     final TypeEnvs typeEnvs;
 114     final Dependencies dependencies;
 115     final Annotate annotate;
 116     final ArgumentAttr argumentAttr;
 117 
 118     public static Attr instance(Context context) {
 119         Attr instance = context.get(attrKey);
 120         if (instance == null)
 121             instance = new Attr(context);
 122         return instance;
 123     }
 124 
 125     protected Attr(Context context) {
 126         context.put(attrKey, this);
 127 
 128         names = Names.instance(context);
 129         log = Log.instance(context);
 130         syms = Symtab.instance(context);
 131         rs = Resolve.instance(context);
 132         operators = Operators.instance(context);
 133         chk = Check.instance(context);
 134         flow = Flow.instance(context);
 135         memberEnter = MemberEnter.instance(context);
 136         typeEnter = TypeEnter.instance(context);
 137         make = TreeMaker.instance(context);
 138         enter = Enter.instance(context);
 139         infer = Infer.instance(context);
 140         analyzer = Analyzer.instance(context);
 141         deferredAttr = DeferredAttr.instance(context);
 142         cfolder = ConstFold.instance(context);
 143         target = Target.instance(context);
 144         types = Types.instance(context);
 145         diags = JCDiagnostic.Factory.instance(context);
 146         annotate = Annotate.instance(context);
 147         typeAnnotations = TypeAnnotations.instance(context);
 148         deferredLintHandler = DeferredLintHandler.instance(context);
 149         typeEnvs = TypeEnvs.instance(context);
 150         dependencies = Dependencies.instance(context);
 151         argumentAttr = ArgumentAttr.instance(context);
 152 
 153         Options options = Options.instance(context);
 154 
 155         Source source = Source.instance(context);
 156         allowStringsInSwitch = Feature.STRINGS_IN_SWITCH.allowedInSource(source);
 157         allowPoly = Feature.POLY.allowedInSource(source);
 158         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
 159         allowLambda = Feature.LAMBDA.allowedInSource(source);
 160         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
 161         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
 162         sourceName = source.name;
 163         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 164 
 165         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 166         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 167         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 168         methodAttrInfo = new MethodAttrInfo();
 169         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 170         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 171         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 172     }
 173 
 174     /** Switch: support target-typing inference
 175      */
 176     boolean allowPoly;
 177 
 178     /** Switch: support type annotations.
 179      */
 180     boolean allowTypeAnnos;
 181 
 182     /** Switch: support lambda expressions ?
 183      */
 184     boolean allowLambda;
 185 
 186     /** Switch: support default methods ?
 187      */
 188     boolean allowDefaultMethods;
 189 
 190     /** Switch: static interface methods enabled?
 191      */
 192     boolean allowStaticInterfaceMethods;
 193 
 194     /**
 195      * Switch: warn about use of variable before declaration?
 196      * RFE: 6425594
 197      */
 198     boolean useBeforeDeclarationWarning;
 199 
 200     /**
 201      * Switch: allow strings in switch?
 202      */
 203     boolean allowStringsInSwitch;
 204 
 205     /**
 206      * Switch: name of source level; used for error reporting.
 207      */
 208     String sourceName;
 209 
 210     /** Check kind and type of given tree against protokind and prototype.
 211      *  If check succeeds, store type in tree and return it.
 212      *  If check fails, store errType in tree and return it.
 213      *  No checks are performed if the prototype is a method type.
 214      *  It is not necessary in this case since we know that kind and type
 215      *  are correct.
 216      *
 217      *  @param tree     The tree whose kind and type is checked
 218      *  @param found    The computed type of the tree
 219      *  @param ownkind  The computed kind of the tree
 220      *  @param resultInfo  The expected result of the tree
 221      */
 222     Type check(final JCTree tree,
 223                final Type found,
 224                final KindSelector ownkind,
 225                final ResultInfo resultInfo) {
 226         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 227         Type owntype;
 228         boolean shouldCheck = !found.hasTag(ERROR) &&
 229                 !resultInfo.pt.hasTag(METHOD) &&
 230                 !resultInfo.pt.hasTag(FORALL);
 231         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 232             log.error(tree.pos(),
 233                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 234                                             ownkind.kindNames()));
 235             owntype = types.createErrorType(found);
 236         } else if (allowPoly && inferenceContext.free(found)) {
 237             //delay the check if there are inference variables in the found type
 238             //this means we are dealing with a partially inferred poly expression
 239             owntype = shouldCheck ? resultInfo.pt : found;
 240             if (resultInfo.checkMode.installPostInferenceHook()) {
 241                 inferenceContext.addFreeTypeListener(List.of(found),
 242                         instantiatedContext -> {
 243                             ResultInfo pendingResult =
 244                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 245                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 246                         });
 247             }
 248         } else {
 249             owntype = shouldCheck ?
 250             resultInfo.check(tree, found) :
 251             found;
 252         }
 253         if (resultInfo.checkMode.updateTreeType()) {
 254             tree.type = owntype;
 255         }
 256         return owntype;
 257     }
 258 
 259     /** Is given blank final variable assignable, i.e. in a scope where it
 260      *  may be assigned to even though it is final?
 261      *  @param v      The blank final variable.
 262      *  @param env    The current environment.
 263      */
 264     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 265         Symbol owner = env.info.scope.owner;
 266            // owner refers to the innermost variable, method or
 267            // initializer block declaration at this point.
 268         return
 269             v.owner == owner
 270             ||
 271             ((owner.name == names.init ||    // i.e. we are in a constructor
 272               owner.kind == VAR ||           // i.e. we are in a variable initializer
 273               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 274              &&
 275              v.owner == owner.owner
 276              &&
 277              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 278     }
 279 
 280     /** Check that variable can be assigned to.
 281      *  @param pos    The current source code position.
 282      *  @param v      The assigned variable
 283      *  @param base   If the variable is referred to in a Select, the part
 284      *                to the left of the `.', null otherwise.
 285      *  @param env    The current environment.
 286      */
 287     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 288         if (v.name == names._this) {
 289             log.error(pos, Errors.CantAssignValToThis);
 290         } else if ((v.flags() & FINAL) != 0 &&
 291             ((v.flags() & HASINIT) != 0
 292              ||
 293              !((base == null ||
 294                TreeInfo.isThisQualifier(base)) &&
 295                isAssignableAsBlankFinal(v, env)))) {
 296             if (v.isResourceVariable()) { //TWR resource
 297                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 298             } else {
 299                 log.error(pos, Errors.CantAssignValToFinalVar(v));
 300             }
 301         }
 302     }
 303 
 304     /** Does tree represent a static reference to an identifier?
 305      *  It is assumed that tree is either a SELECT or an IDENT.
 306      *  We have to weed out selects from non-type names here.
 307      *  @param tree    The candidate tree.
 308      */
 309     boolean isStaticReference(JCTree tree) {
 310         if (tree.hasTag(SELECT)) {
 311             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 312             if (lsym == null || lsym.kind != TYP) {
 313                 return false;
 314             }
 315         }
 316         return true;
 317     }
 318 
 319     /** Is this symbol a type?
 320      */
 321     static boolean isType(Symbol sym) {
 322         return sym != null && sym.kind == TYP;
 323     }
 324 
 325     /** The current `this' symbol.
 326      *  @param env    The current environment.
 327      */
 328     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 329         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 330     }
 331 
 332     /** Attribute a parsed identifier.
 333      * @param tree Parsed identifier name
 334      * @param topLevel The toplevel to use
 335      */
 336     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 337         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 338         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 339                                            syms.errSymbol.name,
 340                                            null, null, null, null);
 341         localEnv.enclClass.sym = syms.errSymbol;
 342         return attribIdent(tree, localEnv);
 343     }
 344 
 345     /** Attribute a parsed identifier.
 346      * @param tree Parsed identifier name
 347      * @param env The env to use
 348      */
 349     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 350         return tree.accept(identAttributer, env);
 351     }
 352     // where
 353         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 354         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 355             @Override @DefinedBy(Api.COMPILER_TREE)
 356             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 357                 Symbol site = visit(node.getExpression(), env);
 358                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 359                     return site;
 360                 Name name = (Name)node.getIdentifier();
 361                 if (site.kind == PCK) {
 362                     env.toplevel.packge = (PackageSymbol)site;
 363                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 364                             KindSelector.TYP_PCK);
 365                 } else {
 366                     env.enclClass.sym = (ClassSymbol)site;
 367                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 368                 }
 369             }
 370 
 371             @Override @DefinedBy(Api.COMPILER_TREE)
 372             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 373                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 374             }
 375         }
 376 
 377     public Type coerce(Type etype, Type ttype) {
 378         return cfolder.coerce(etype, ttype);
 379     }
 380 
 381     public Type attribType(JCTree node, TypeSymbol sym) {
 382         Env<AttrContext> env = typeEnvs.get(sym);
 383         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 384         return attribTree(node, localEnv, unknownTypeInfo);
 385     }
 386 
 387     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 388         // Attribute qualifying package or class.
 389         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 390         return attribTree(s.selected, env,
 391                           new ResultInfo(tree.staticImport ?
 392                                          KindSelector.TYP : KindSelector.TYP_PCK,
 393                        Type.noType));
 394     }
 395 
 396     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 397         breakTree = tree;
 398         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 399         try {
 400             attribExpr(expr, env);
 401         } catch (BreakAttr b) {
 402             return b.env;
 403         } catch (AssertionError ae) {
 404             if (ae.getCause() instanceof BreakAttr) {
 405                 return ((BreakAttr)(ae.getCause())).env;
 406             } else {
 407                 throw ae;
 408             }
 409         } finally {
 410             breakTree = null;
 411             log.useSource(prev);
 412         }
 413         return env;
 414     }
 415 
 416     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 417         breakTree = tree;
 418         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 419         try {
 420             attribStat(stmt, env);
 421         } catch (BreakAttr b) {
 422             return b.env;
 423         } catch (AssertionError ae) {
 424             if (ae.getCause() instanceof BreakAttr) {
 425                 return ((BreakAttr)(ae.getCause())).env;
 426             } else {
 427                 throw ae;
 428             }
 429         } finally {
 430             breakTree = null;
 431             log.useSource(prev);
 432         }
 433         return env;
 434     }
 435 
 436     private JCTree breakTree = null;
 437 
 438     private static class BreakAttr extends RuntimeException {
 439         static final long serialVersionUID = -6924771130405446405L;
 440         private Env<AttrContext> env;
 441         private BreakAttr(Env<AttrContext> env) {
 442             this.env = env;
 443         }
 444     }
 445 
 446     /**
 447      * Mode controlling behavior of Attr.Check
 448      */
 449     enum CheckMode {
 450 
 451         NORMAL,
 452 
 453         /**
 454          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 455          * that the captured var cache in {@code InferenceContext} will be used in read-only
 456          * mode when performing inference checks.
 457          */
 458         NO_TREE_UPDATE {
 459             @Override
 460             public boolean updateTreeType() {
 461                 return false;
 462             }
 463         },
 464         /**
 465          * Mode signalling that caller will manage free types in tree decorations.
 466          */
 467         NO_INFERENCE_HOOK {
 468             @Override
 469             public boolean installPostInferenceHook() {
 470                 return false;
 471             }
 472         };
 473 
 474         public boolean updateTreeType() {
 475             return true;
 476         }
 477         public boolean installPostInferenceHook() {
 478             return true;
 479         }
 480     }
 481 
 482 
 483     class ResultInfo {
 484         final KindSelector pkind;
 485         final Type pt;
 486         final CheckContext checkContext;
 487         final CheckMode checkMode;
 488 
 489         ResultInfo(KindSelector pkind, Type pt) {
 490             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 491         }
 492 
 493         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 494             this(pkind, pt, chk.basicHandler, checkMode);
 495         }
 496 
 497         protected ResultInfo(KindSelector pkind,
 498                              Type pt, CheckContext checkContext) {
 499             this(pkind, pt, checkContext, CheckMode.NORMAL);
 500         }
 501 
 502         protected ResultInfo(KindSelector pkind,
 503                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 504             this.pkind = pkind;
 505             this.pt = pt;
 506             this.checkContext = checkContext;
 507             this.checkMode = checkMode;
 508         }
 509 
 510         /**
 511          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
 512          * @param tree The tree to be type-checked.
 513          * @return true if {@ArgumentAttr} should be used.
 514          */
 515         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 516 
 517         protected Type check(final DiagnosticPosition pos, final Type found) {
 518             return chk.checkType(pos, found, pt, checkContext);
 519         }
 520 
 521         protected ResultInfo dup(Type newPt) {
 522             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 523         }
 524 
 525         protected ResultInfo dup(CheckContext newContext) {
 526             return new ResultInfo(pkind, pt, newContext, checkMode);
 527         }
 528 
 529         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 530             return new ResultInfo(pkind, newPt, newContext, checkMode);
 531         }
 532 
 533         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 534             return new ResultInfo(pkind, newPt, newContext, newMode);
 535         }
 536 
 537         protected ResultInfo dup(CheckMode newMode) {
 538             return new ResultInfo(pkind, pt, checkContext, newMode);
 539         }
 540 
 541         @Override
 542         public String toString() {
 543             if (pt != null) {
 544                 return pt.toString();
 545             } else {
 546                 return "";
 547             }
 548         }
 549     }
 550 
 551     class MethodAttrInfo extends ResultInfo {
 552         public MethodAttrInfo() {
 553             this(chk.basicHandler);
 554         }
 555 
 556         public MethodAttrInfo(CheckContext checkContext) {
 557             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 558         }
 559 
 560         @Override
 561         protected boolean needsArgumentAttr(JCTree tree) {
 562             return true;
 563         }
 564 
 565         protected ResultInfo dup(Type newPt) {
 566             throw new IllegalStateException();
 567         }
 568 
 569         protected ResultInfo dup(CheckContext newContext) {
 570             return new MethodAttrInfo(newContext);
 571         }
 572 
 573         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 574             throw new IllegalStateException();
 575         }
 576 
 577         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 578             throw new IllegalStateException();
 579         }
 580 
 581         protected ResultInfo dup(CheckMode newMode) {
 582             throw new IllegalStateException();
 583         }
 584     }
 585 
 586     class RecoveryInfo extends ResultInfo {
 587 
 588         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 589             this(deferredAttrContext, Type.recoveryType);
 590         }
 591 
 592         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 593             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 594                 @Override
 595                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 596                     return deferredAttrContext;
 597                 }
 598                 @Override
 599                 public boolean compatible(Type found, Type req, Warner warn) {
 600                     return true;
 601                 }
 602                 @Override
 603                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 604                     if (pt == Type.recoveryType) {
 605                         chk.basicHandler.report(pos, details);
 606                     }
 607                 }
 608             });
 609         }
 610     }
 611 
 612     final ResultInfo statInfo;
 613     final ResultInfo varAssignmentInfo;
 614     final ResultInfo methodAttrInfo;
 615     final ResultInfo unknownExprInfo;
 616     final ResultInfo unknownTypeInfo;
 617     final ResultInfo unknownTypeExprInfo;
 618     final ResultInfo recoveryInfo;
 619 
 620     Type pt() {
 621         return resultInfo.pt;
 622     }
 623 
 624     KindSelector pkind() {
 625         return resultInfo.pkind;
 626     }
 627 
 628 /* ************************************************************************
 629  * Visitor methods
 630  *************************************************************************/
 631 
 632     /** Visitor argument: the current environment.
 633      */
 634     Env<AttrContext> env;
 635 
 636     /** Visitor argument: the currently expected attribution result.
 637      */
 638     ResultInfo resultInfo;
 639 
 640     /** Visitor result: the computed type.
 641      */
 642     Type result;
 643 
 644     /** Visitor method: attribute a tree, catching any completion failure
 645      *  exceptions. Return the tree's type.
 646      *
 647      *  @param tree    The tree to be visited.
 648      *  @param env     The environment visitor argument.
 649      *  @param resultInfo   The result info visitor argument.
 650      */
 651     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 652         Env<AttrContext> prevEnv = this.env;
 653         ResultInfo prevResult = this.resultInfo;
 654         try {
 655             this.env = env;
 656             this.resultInfo = resultInfo;
 657             if (resultInfo.needsArgumentAttr(tree)) {
 658                 result = argumentAttr.attribArg(tree, env);
 659             } else {
 660                 tree.accept(this);
 661             }
 662             if (tree == breakTree &&
 663                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 664                 breakTreeFound(copyEnv(env));
 665             }
 666             return result;
 667         } catch (CompletionFailure ex) {
 668             tree.type = syms.errType;
 669             return chk.completionError(tree.pos(), ex);
 670         } finally {
 671             this.env = prevEnv;
 672             this.resultInfo = prevResult;
 673         }
 674     }
 675 
 676     protected void breakTreeFound(Env<AttrContext> env) {
 677         throw new BreakAttr(env);
 678     }
 679 
 680     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 681         Env<AttrContext> newEnv =
 682                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 683         if (newEnv.outer != null) {
 684             newEnv.outer = copyEnv(newEnv.outer);
 685         }
 686         return newEnv;
 687     }
 688 
 689     WriteableScope copyScope(WriteableScope sc) {
 690         WriteableScope newScope = WriteableScope.create(sc.owner);
 691         List<Symbol> elemsList = List.nil();
 692         for (Symbol sym : sc.getSymbols()) {
 693             elemsList = elemsList.prepend(sym);
 694         }
 695         for (Symbol s : elemsList) {
 696             newScope.enter(s);
 697         }
 698         return newScope;
 699     }
 700 
 701     /** Derived visitor method: attribute an expression tree.
 702      */
 703     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 704         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 705     }
 706 
 707     /** Derived visitor method: attribute an expression tree with
 708      *  no constraints on the computed type.
 709      */
 710     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 711         return attribTree(tree, env, unknownExprInfo);
 712     }
 713 
 714     /** Derived visitor method: attribute a type tree.
 715      */
 716     public Type attribType(JCTree tree, Env<AttrContext> env) {
 717         Type result = attribType(tree, env, Type.noType);
 718         return result;
 719     }
 720 
 721     /** Derived visitor method: attribute a type tree.
 722      */
 723     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 724         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 725         return result;
 726     }
 727 
 728     /** Derived visitor method: attribute a statement or definition tree.
 729      */
 730     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 731         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 732         try {
 733             return attribTree(tree, env, statInfo);
 734         } finally {
 735             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 736         }
 737     }
 738 
 739     /** Attribute a list of expressions, returning a list of types.
 740      */
 741     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 742         ListBuffer<Type> ts = new ListBuffer<>();
 743         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 744             ts.append(attribExpr(l.head, env, pt));
 745         return ts.toList();
 746     }
 747 
 748     /** Attribute a list of statements, returning nothing.
 749      */
 750     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 751         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 752             attribStat(l.head, env);
 753     }
 754 
 755     /** Attribute the arguments in a method call, returning the method kind.
 756      */
 757     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 758         KindSelector kind = initialKind;
 759         for (JCExpression arg : trees) {
 760             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 761             if (argtype.hasTag(DEFERRED)) {
 762                 kind = KindSelector.of(KindSelector.POLY, kind);
 763             }
 764             argtypes.append(argtype);
 765         }
 766         return kind;
 767     }
 768 
 769     /** Attribute a type argument list, returning a list of types.
 770      *  Caller is responsible for calling checkRefTypes.
 771      */
 772     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 773         ListBuffer<Type> argtypes = new ListBuffer<>();
 774         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 775             argtypes.append(attribType(l.head, env));
 776         return argtypes.toList();
 777     }
 778 
 779     /** Attribute a type argument list, returning a list of types.
 780      *  Check that all the types are references.
 781      */
 782     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 783         List<Type> types = attribAnyTypes(trees, env);
 784         return chk.checkRefTypes(trees, types);
 785     }
 786 
 787     /**
 788      * Attribute type variables (of generic classes or methods).
 789      * Compound types are attributed later in attribBounds.
 790      * @param typarams the type variables to enter
 791      * @param env      the current environment
 792      */
 793     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 794         for (JCTypeParameter tvar : typarams) {
 795             TypeVar a = (TypeVar)tvar.type;
 796             a.tsym.flags_field |= UNATTRIBUTED;
 797             a.bound = Type.noType;
 798             if (!tvar.bounds.isEmpty()) {
 799                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 800                 for (JCExpression bound : tvar.bounds.tail)
 801                     bounds = bounds.prepend(attribType(bound, env));
 802                 types.setBounds(a, bounds.reverse());
 803             } else {
 804                 // if no bounds are given, assume a single bound of
 805                 // java.lang.Object.
 806                 types.setBounds(a, List.of(syms.objectType));
 807             }
 808             a.tsym.flags_field &= ~UNATTRIBUTED;
 809         }
 810         for (JCTypeParameter tvar : typarams) {
 811             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 812         }
 813     }
 814 
 815     /**
 816      * Attribute the type references in a list of annotations.
 817      */
 818     void attribAnnotationTypes(List<JCAnnotation> annotations,
 819                                Env<AttrContext> env) {
 820         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 821             JCAnnotation a = al.head;
 822             attribType(a.annotationType, env);
 823         }
 824     }
 825 
 826     /**
 827      * Attribute a "lazy constant value".
 828      *  @param env         The env for the const value
 829      *  @param variable    The initializer for the const value
 830      *  @param type        The expected type, or null
 831      *  @see VarSymbol#setLazyConstValue
 832      */
 833     public Object attribLazyConstantValue(Env<AttrContext> env,
 834                                       JCVariableDecl variable,
 835                                       Type type) {
 836 
 837         DiagnosticPosition prevLintPos
 838                 = deferredLintHandler.setPos(variable.pos());
 839 
 840         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 841         try {
 842             Type itype = attribExpr(variable.init, env, type);
 843             if (variable.isImplicitlyTyped()) {
 844                 //fixup local variable type
 845                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
 846             }
 847             if (itype.constValue() != null) {
 848                 return coerce(itype, type).constValue();
 849             } else {
 850                 return null;
 851             }
 852         } finally {
 853             log.useSource(prevSource);
 854             deferredLintHandler.setPos(prevLintPos);
 855         }
 856     }
 857 
 858     /** Attribute type reference in an `extends' or `implements' clause.
 859      *  Supertypes of anonymous inner classes are usually already attributed.
 860      *
 861      *  @param tree              The tree making up the type reference.
 862      *  @param env               The environment current at the reference.
 863      *  @param classExpected     true if only a class is expected here.
 864      *  @param interfaceExpected true if only an interface is expected here.
 865      */
 866     Type attribBase(JCTree tree,
 867                     Env<AttrContext> env,
 868                     boolean classExpected,
 869                     boolean interfaceExpected,
 870                     boolean checkExtensible) {
 871         Type t = tree.type != null ?
 872             tree.type :
 873             attribType(tree, env);
 874         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 875     }
 876     Type checkBase(Type t,
 877                    JCTree tree,
 878                    Env<AttrContext> env,
 879                    boolean classExpected,
 880                    boolean interfaceExpected,
 881                    boolean checkExtensible) {
 882         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 883                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 884         if (t.tsym.isAnonymous()) {
 885             log.error(pos, Errors.CantInheritFromAnon);
 886             return types.createErrorType(t);
 887         }
 888         if (t.isErroneous())
 889             return t;
 890         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 891             // check that type variable is already visible
 892             if (t.getUpperBound() == null) {
 893                 log.error(pos, Errors.IllegalForwardRef);
 894                 return types.createErrorType(t);
 895             }
 896         } else {
 897             t = chk.checkClassType(pos, t, checkExtensible);
 898         }
 899         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 900             log.error(pos, Errors.IntfExpectedHere);
 901             // return errType is necessary since otherwise there might
 902             // be undetected cycles which cause attribution to loop
 903             return types.createErrorType(t);
 904         } else if (checkExtensible &&
 905                    classExpected &&
 906                    (t.tsym.flags() & INTERFACE) != 0) {
 907             log.error(pos, Errors.NoIntfExpectedHere);
 908             return types.createErrorType(t);
 909         }
 910         if (checkExtensible &&
 911             ((t.tsym.flags() & FINAL) != 0)) {
 912             log.error(pos,
 913                       Errors.CantInheritFromFinal(t.tsym));
 914         }
 915         chk.checkNonCyclic(pos, t);
 916         return t;
 917     }
 918 
 919     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 920         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 921         id.type = env.info.scope.owner.enclClass().type;
 922         id.sym = env.info.scope.owner.enclClass();
 923         return id.type;
 924     }
 925 
 926     public void visitClassDef(JCClassDecl tree) {
 927         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 928                 Optional.ofNullable(env.info.isSpeculative ?
 929                         argumentAttr.withLocalCacheContext() : null);
 930         try {
 931             // Local and anonymous classes have not been entered yet, so we need to
 932             // do it now.
 933             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 934                 enter.classEnter(tree, env);
 935             } else {
 936                 // If this class declaration is part of a class level annotation,
 937                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 938                 // order to simplify later steps and allow for sensible error
 939                 // messages.
 940                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 941                     enter.classEnter(tree, env);
 942             }
 943 
 944             ClassSymbol c = tree.sym;
 945             if (c == null) {
 946                 // exit in case something drastic went wrong during enter.
 947                 result = null;
 948             } else {
 949                 // make sure class has been completed:
 950                 c.complete();
 951 
 952                 // If this class appears as an anonymous class
 953                 // in a superclass constructor call
 954                 // disable implicit outer instance from being passed.
 955                 // (This would be an illegal access to "this before super").
 956                 if (env.info.isSelfCall &&
 957                         env.tree.hasTag(NEWCLASS)) {
 958                     c.flags_field |= NOOUTERTHIS;
 959                 }
 960                 attribClass(tree.pos(), c);
 961                 result = tree.type = c.type;
 962             }
 963         } finally {
 964             localCacheContext.ifPresent(LocalCacheContext::leave);
 965         }
 966     }
 967 
 968     public void visitMethodDef(JCMethodDecl tree) {
 969         MethodSymbol m = tree.sym;
 970         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 971 
 972         Lint lint = env.info.lint.augment(m);
 973         Lint prevLint = chk.setLint(lint);
 974         MethodSymbol prevMethod = chk.setMethod(m);
 975         try {
 976             deferredLintHandler.flush(tree.pos());
 977             chk.checkDeprecatedAnnotation(tree.pos(), m);
 978 
 979 
 980             // Create a new environment with local scope
 981             // for attributing the method.
 982             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 983             localEnv.info.lint = lint;
 984 
 985             attribStats(tree.typarams, localEnv);
 986 
 987             // If we override any other methods, check that we do so properly.
 988             // JLS ???
 989             if (m.isStatic()) {
 990                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 991             } else {
 992                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 993             }
 994             chk.checkOverride(env, tree, m);
 995 
 996             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 997                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
 998             }
 999 
1000             // Enter all type parameters into the local method scope.
1001             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1002                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1003 
1004             ClassSymbol owner = env.enclClass.sym;
1005             if ((owner.flags() & ANNOTATION) != 0 &&
1006                     (tree.params.nonEmpty() ||
1007                     tree.recvparam != null))
1008                 log.error(tree.params.nonEmpty() ?
1009                         tree.params.head.pos() :
1010                         tree.recvparam.pos(),
1011                         Errors.IntfAnnotationMembersCantHaveParams);
1012 
1013             // Attribute all value parameters.
1014             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1015                 attribStat(l.head, localEnv);
1016             }
1017 
1018             chk.checkVarargsMethodDecl(localEnv, tree);
1019 
1020             // Check that type parameters are well-formed.
1021             chk.validate(tree.typarams, localEnv);
1022 
1023             // Check that result type is well-formed.
1024             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1025                 chk.validate(tree.restype, localEnv);
1026 
1027             // Check that receiver type is well-formed.
1028             if (tree.recvparam != null) {
1029                 // Use a new environment to check the receiver parameter.
1030                 // Otherwise I get "might not have been initialized" errors.
1031                 // Is there a better way?
1032                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1033                 attribType(tree.recvparam, newEnv);
1034                 chk.validate(tree.recvparam, newEnv);
1035             }
1036 
1037             // annotation method checks
1038             if ((owner.flags() & ANNOTATION) != 0) {
1039                 // annotation method cannot have throws clause
1040                 if (tree.thrown.nonEmpty()) {
1041                     log.error(tree.thrown.head.pos(),
1042                               Errors.ThrowsNotAllowedInIntfAnnotation);
1043                 }
1044                 // annotation method cannot declare type-parameters
1045                 if (tree.typarams.nonEmpty()) {
1046                     log.error(tree.typarams.head.pos(),
1047                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1048                 }
1049                 // validate annotation method's return type (could be an annotation type)
1050                 chk.validateAnnotationType(tree.restype);
1051                 // ensure that annotation method does not clash with members of Object/Annotation
1052                 chk.validateAnnotationMethod(tree.pos(), m);
1053             }
1054 
1055             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1056                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1057 
1058             if (tree.body == null) {
1059                 // Empty bodies are only allowed for
1060                 // abstract, native, or interface methods, or for methods
1061                 // in a retrofit signature class.
1062                 if (tree.defaultValue != null) {
1063                     if ((owner.flags() & ANNOTATION) == 0)
1064                         log.error(tree.pos(),
1065                                   Errors.DefaultAllowedInIntfAnnotationMember);
1066                 }
1067                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1068                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1069             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1070                 if ((owner.flags() & INTERFACE) != 0) {
1071                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1072                 } else {
1073                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1074                 }
1075             } else if ((tree.mods.flags & NATIVE) != 0) {
1076                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1077             } else {
1078                 // Add an implicit super() call unless an explicit call to
1079                 // super(...) or this(...) is given
1080                 // or we are compiling class java.lang.Object.
1081                 if (tree.name == names.init && owner.type != syms.objectType) {
1082                     JCBlock body = tree.body;
1083                     if (body.stats.isEmpty() ||
1084                             !TreeInfo.isSelfCall(body.stats.head)) {
1085                         body.stats = body.stats.
1086                                 prepend(typeEnter.SuperCall(make.at(body.pos),
1087                                         List.nil(),
1088                                         List.nil(),
1089                                         false));
1090                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1091                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1092                             TreeInfo.isSuperCall(body.stats.head)) {
1093                         // enum constructors are not allowed to call super
1094                         // directly, so make sure there aren't any super calls
1095                         // in enum constructors, except in the compiler
1096                         // generated one.
1097                         log.error(tree.body.stats.head.pos(),
1098                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1099                     }
1100                 }
1101 
1102                 // Attribute all type annotations in the body
1103                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1104                 annotate.flush();
1105 
1106                 // Attribute method body.
1107                 attribStat(tree.body, localEnv);
1108             }
1109 
1110             localEnv.info.scope.leave();
1111             result = tree.type = m.type;
1112         } finally {
1113             chk.setLint(prevLint);
1114             chk.setMethod(prevMethod);
1115         }
1116     }
1117 
1118     public void visitVarDef(JCVariableDecl tree) {
1119         // Local variables have not been entered yet, so we need to do it now:
1120         if (env.info.scope.owner.kind == MTH) {
1121             if (tree.sym != null) {
1122                 // parameters have already been entered
1123                 env.info.scope.enter(tree.sym);
1124             } else {
1125                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1126                     if (tree.init == null) {
1127                         //cannot use 'var' without initializer
1128                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1129                         tree.vartype = make.Erroneous();
1130                     } else {
1131                         Fragment msg = canInferLocalVarType(tree);
1132                         if (msg != null) {
1133                             //cannot use 'var' with initializer which require an explicit target
1134                             //(e.g. lambda, method reference, array initializer).
1135                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1136                             tree.vartype = make.Erroneous();
1137                         }
1138                     }
1139                 }
1140                 try {
1141                     annotate.blockAnnotations();
1142                     memberEnter.memberEnter(tree, env);
1143                 } finally {
1144                     annotate.unblockAnnotations();
1145                 }
1146             }
1147         } else {
1148             if (tree.init != null) {
1149                 // Field initializer expression need to be entered.
1150                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1151                 annotate.flush();
1152             }
1153         }
1154 
1155         VarSymbol v = tree.sym;
1156         Lint lint = env.info.lint.augment(v);
1157         Lint prevLint = chk.setLint(lint);
1158 
1159         // Check that the variable's declared type is well-formed.
1160         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1161                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1162                 (tree.sym.flags() & PARAMETER) != 0;
1163         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1164 
1165         try {
1166             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1167             deferredLintHandler.flush(tree.pos());
1168             chk.checkDeprecatedAnnotation(tree.pos(), v);
1169 
1170             if (tree.init != null) {
1171                 if ((v.flags_field & FINAL) == 0 ||
1172                     !memberEnter.needsLazyConstValue(tree.init)) {
1173                     // Not a compile-time constant
1174                     // Attribute initializer in a new environment
1175                     // with the declared variable as owner.
1176                     // Check that initializer conforms to variable's declared type.
1177                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1178                     initEnv.info.lint = lint;
1179                     // In order to catch self-references, we set the variable's
1180                     // declaration position to maximal possible value, effectively
1181                     // marking the variable as undefined.
1182                     initEnv.info.enclVar = v;
1183                     attribExpr(tree.init, initEnv, v.type);
1184                     if (tree.isImplicitlyTyped()) {
1185                         //fixup local variable type
1186                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1187                     }
1188                 }
1189                 if (tree.isImplicitlyTyped()) {
1190                     setSyntheticVariableType(tree, v.type);
1191                 }
1192             }
1193             result = tree.type = v.type;
1194         }
1195         finally {
1196             chk.setLint(prevLint);
1197         }
1198     }
1199 
1200     Fragment canInferLocalVarType(JCVariableDecl tree) {
1201         LocalInitScanner lis = new LocalInitScanner();
1202         lis.scan(tree.init);
1203         return lis.badInferenceMsg;
1204     }
1205 
1206     static class LocalInitScanner extends TreeScanner {
1207         Fragment badInferenceMsg = null;
1208         boolean needsTarget = true;
1209 
1210         @Override
1211         public void visitNewArray(JCNewArray tree) {
1212             if (tree.elemtype == null && needsTarget) {
1213                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1214             }
1215         }
1216 
1217         @Override
1218         public void visitLambda(JCLambda tree) {
1219             if (needsTarget) {
1220                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1221             }
1222         }
1223 
1224         @Override
1225         public void visitTypeCast(JCTypeCast tree) {
1226             boolean prevNeedsTarget = needsTarget;
1227             try {
1228                 needsTarget = false;
1229                 super.visitTypeCast(tree);
1230             } finally {
1231                 needsTarget = prevNeedsTarget;
1232             }
1233         }
1234 
1235         @Override
1236         public void visitReference(JCMemberReference tree) {
1237             if (needsTarget) {
1238                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1239             }
1240         }
1241 
1242         @Override
1243         public void visitNewClass(JCNewClass tree) {
1244             boolean prevNeedsTarget = needsTarget;
1245             try {
1246                 needsTarget = false;
1247                 super.visitNewClass(tree);
1248             } finally {
1249                 needsTarget = prevNeedsTarget;
1250             }
1251         }
1252 
1253         @Override
1254         public void visitApply(JCMethodInvocation tree) {
1255             boolean prevNeedsTarget = needsTarget;
1256             try {
1257                 needsTarget = false;
1258                 super.visitApply(tree);
1259             } finally {
1260                 needsTarget = prevNeedsTarget;
1261             }
1262         }
1263     }
1264 
1265     public void visitSkip(JCSkip tree) {
1266         result = null;
1267     }
1268 
1269     public void visitBlock(JCBlock tree) {
1270         if (env.info.scope.owner.kind == TYP) {
1271             // Block is a static or instance initializer;
1272             // let the owner of the environment be a freshly
1273             // created BLOCK-method.
1274             Symbol fakeOwner =
1275                 new MethodSymbol(tree.flags | BLOCK |
1276                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1277                     env.info.scope.owner);
1278             final Env<AttrContext> localEnv =
1279                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1280 
1281             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1282             // Attribute all type annotations in the block
1283             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1284             annotate.flush();
1285             attribStats(tree.stats, localEnv);
1286 
1287             {
1288                 // Store init and clinit type annotations with the ClassSymbol
1289                 // to allow output in Gen.normalizeDefs.
1290                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1291                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1292                 if ((tree.flags & STATIC) != 0) {
1293                     cs.appendClassInitTypeAttributes(tas);
1294                 } else {
1295                     cs.appendInitTypeAttributes(tas);
1296                 }
1297             }
1298         } else {
1299             // Create a new local environment with a local scope.
1300             Env<AttrContext> localEnv =
1301                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1302             try {
1303                 attribStats(tree.stats, localEnv);
1304             } finally {
1305                 localEnv.info.scope.leave();
1306             }
1307         }
1308         result = null;
1309     }
1310 
1311     public void visitDoLoop(JCDoWhileLoop tree) {
1312         attribStat(tree.body, env.dup(tree));
1313         attribExpr(tree.cond, env, syms.booleanType);
1314         result = null;
1315     }
1316 
1317     public void visitWhileLoop(JCWhileLoop tree) {
1318         attribExpr(tree.cond, env, syms.booleanType);
1319         attribStat(tree.body, env.dup(tree));
1320         result = null;
1321     }
1322 
1323     public void visitForLoop(JCForLoop tree) {
1324         Env<AttrContext> loopEnv =
1325             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1326         try {
1327             attribStats(tree.init, loopEnv);
1328             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1329             loopEnv.tree = tree; // before, we were not in loop!
1330             attribStats(tree.step, loopEnv);
1331             attribStat(tree.body, loopEnv);
1332             result = null;
1333         }
1334         finally {
1335             loopEnv.info.scope.leave();
1336         }
1337     }
1338 
1339     public void visitForeachLoop(JCEnhancedForLoop tree) {
1340         Env<AttrContext> loopEnv =
1341             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1342         try {
1343             //the Formal Parameter of a for-each loop is not in the scope when
1344             //attributing the for-each expression; we mimick this by attributing
1345             //the for-each expression first (against original scope).
1346             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1347             chk.checkNonVoid(tree.pos(), exprType);
1348             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1349             if (elemtype == null) {
1350                 // or perhaps expr implements Iterable<T>?
1351                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1352                 if (base == null) {
1353                     log.error(tree.expr.pos(),
1354                               Errors.ForeachNotApplicableToType(exprType,
1355                                                                 Fragments.TypeReqArrayOrIterable));
1356                     elemtype = types.createErrorType(exprType);
1357                 } else {
1358                     List<Type> iterableParams = base.allparams();
1359                     elemtype = iterableParams.isEmpty()
1360                         ? syms.objectType
1361                         : types.wildUpperBound(iterableParams.head);
1362                 }
1363             }
1364             if (tree.var.isImplicitlyTyped()) {
1365                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1366                 setSyntheticVariableType(tree.var, inferredType);
1367             }
1368             attribStat(tree.var, loopEnv);
1369             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1370             loopEnv.tree = tree; // before, we were not in loop!
1371             attribStat(tree.body, loopEnv);
1372             result = null;
1373         }
1374         finally {
1375             loopEnv.info.scope.leave();
1376         }
1377     }
1378 
1379     public void visitLabelled(JCLabeledStatement tree) {
1380         // Check that label is not used in an enclosing statement
1381         Env<AttrContext> env1 = env;
1382         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1383             if (env1.tree.hasTag(LABELLED) &&
1384                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1385                 log.error(tree.pos(),
1386                           Errors.LabelAlreadyInUse(tree.label));
1387                 break;
1388             }
1389             env1 = env1.next;
1390         }
1391 
1392         attribStat(tree.body, env.dup(tree));
1393         result = null;
1394     }
1395 
1396     public void visitSwitch(JCSwitch tree) {
1397         Type seltype = attribExpr(tree.selector, env);
1398 
1399         Env<AttrContext> switchEnv =
1400             env.dup(tree, env.info.dup(env.info.scope.dup()));
1401 
1402         try {
1403 
1404             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1405             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1406             if (stringSwitch && !allowStringsInSwitch) {
1407                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), Feature.STRINGS_IN_SWITCH.error(sourceName));
1408             }
1409             if (!enumSwitch && !stringSwitch)
1410                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1411 
1412             // Attribute all cases and
1413             // check that there are no duplicate case labels or default clauses.
1414             Set<Object> labels = new HashSet<>(); // The set of case labels.
1415             boolean hasDefault = false;      // Is there a default label?
1416             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1417                 JCCase c = l.head;
1418                 if (c.pat != null) {
1419                     if (enumSwitch) {
1420                         Symbol sym = enumConstant(c.pat, seltype);
1421                         if (sym == null) {
1422                             log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1423                         } else if (!labels.add(sym)) {
1424                             log.error(c.pos(), Errors.DuplicateCaseLabel);
1425                         }
1426                     } else {
1427                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1428                         if (!pattype.hasTag(ERROR)) {
1429                             if (pattype.constValue() == null) {
1430                                 log.error(c.pat.pos(),
1431                                           (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1432                             } else if (!labels.add(pattype.constValue())) {
1433                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1434                             }
1435                         }
1436                     }
1437                 } else if (hasDefault) {
1438                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1439                 } else {
1440                     hasDefault = true;
1441                 }
1442                 Env<AttrContext> caseEnv =
1443                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1444                 try {
1445                     attribStats(c.stats, caseEnv);
1446                 } finally {
1447                     caseEnv.info.scope.leave();
1448                     addVars(c.stats, switchEnv.info.scope);
1449                 }
1450             }
1451 
1452             result = null;
1453         }
1454         finally {
1455             switchEnv.info.scope.leave();
1456         }
1457     }
1458     // where
1459         /** Add any variables defined in stats to the switch scope. */
1460         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1461             for (;stats.nonEmpty(); stats = stats.tail) {
1462                 JCTree stat = stats.head;
1463                 if (stat.hasTag(VARDEF))
1464                     switchScope.enter(((JCVariableDecl) stat).sym);
1465             }
1466         }
1467     // where
1468     /** Return the selected enumeration constant symbol, or null. */
1469     private Symbol enumConstant(JCTree tree, Type enumType) {
1470         if (tree.hasTag(IDENT)) {
1471             JCIdent ident = (JCIdent)tree;
1472             Name name = ident.name;
1473             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1474                 if (sym.kind == VAR) {
1475                     Symbol s = ident.sym = sym;
1476                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1477                     ident.type = s.type;
1478                     return ((s.flags_field & Flags.ENUM) == 0)
1479                         ? null : s;
1480                 }
1481             }
1482         }
1483         return null;
1484     }
1485 
1486     public void visitSynchronized(JCSynchronized tree) {
1487         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1488         attribStat(tree.body, env);
1489         result = null;
1490     }
1491 
1492     public void visitTry(JCTry tree) {
1493         // Create a new local environment with a local
1494         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1495         try {
1496             boolean isTryWithResource = tree.resources.nonEmpty();
1497             // Create a nested environment for attributing the try block if needed
1498             Env<AttrContext> tryEnv = isTryWithResource ?
1499                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1500                 localEnv;
1501             try {
1502                 // Attribute resource declarations
1503                 for (JCTree resource : tree.resources) {
1504                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1505                         @Override
1506                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1507                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1508                         }
1509                     };
1510                     ResultInfo twrResult =
1511                         new ResultInfo(KindSelector.VAR,
1512                                        syms.autoCloseableType,
1513                                        twrContext);
1514                     if (resource.hasTag(VARDEF)) {
1515                         attribStat(resource, tryEnv);
1516                         twrResult.check(resource, resource.type);
1517 
1518                         //check that resource type cannot throw InterruptedException
1519                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1520 
1521                         VarSymbol var = ((JCVariableDecl) resource).sym;
1522                         var.setData(ElementKind.RESOURCE_VARIABLE);
1523                     } else {
1524                         attribTree(resource, tryEnv, twrResult);
1525                     }
1526                 }
1527                 // Attribute body
1528                 attribStat(tree.body, tryEnv);
1529             } finally {
1530                 if (isTryWithResource)
1531                     tryEnv.info.scope.leave();
1532             }
1533 
1534             // Attribute catch clauses
1535             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1536                 JCCatch c = l.head;
1537                 Env<AttrContext> catchEnv =
1538                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1539                 try {
1540                     Type ctype = attribStat(c.param, catchEnv);
1541                     if (TreeInfo.isMultiCatch(c)) {
1542                         //multi-catch parameter is implicitly marked as final
1543                         c.param.sym.flags_field |= FINAL | UNION;
1544                     }
1545                     if (c.param.sym.kind == VAR) {
1546                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1547                     }
1548                     chk.checkType(c.param.vartype.pos(),
1549                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1550                                   syms.throwableType);
1551                     attribStat(c.body, catchEnv);
1552                 } finally {
1553                     catchEnv.info.scope.leave();
1554                 }
1555             }
1556 
1557             // Attribute finalizer
1558             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1559             result = null;
1560         }
1561         finally {
1562             localEnv.info.scope.leave();
1563         }
1564     }
1565 
1566     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1567         if (!resource.isErroneous() &&
1568             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1569             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1570             Symbol close = syms.noSymbol;
1571             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1572             try {
1573                 close = rs.resolveQualifiedMethod(pos,
1574                         env,
1575                         types.skipTypeVars(resource, false),
1576                         names.close,
1577                         List.nil(),
1578                         List.nil());
1579             }
1580             finally {
1581                 log.popDiagnosticHandler(discardHandler);
1582             }
1583             if (close.kind == MTH &&
1584                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1585                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1586                     env.info.lint.isEnabled(LintCategory.TRY)) {
1587                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1588             }
1589         }
1590     }
1591 
1592     public void visitConditional(JCConditional tree) {
1593         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1594 
1595         tree.polyKind = (!allowPoly ||
1596                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1597                 isBooleanOrNumeric(env, tree)) ?
1598                 PolyKind.STANDALONE : PolyKind.POLY;
1599 
1600         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1601             //this means we are returning a poly conditional from void-compatible lambda expression
1602             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1603             result = tree.type = types.createErrorType(resultInfo.pt);
1604             return;
1605         }
1606 
1607         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1608                 unknownExprInfo :
1609                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1610 
1611         Type truetype = attribTree(tree.truepart, env, condInfo);
1612         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1613 
1614         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1615         if (condtype.constValue() != null &&
1616                 truetype.constValue() != null &&
1617                 falsetype.constValue() != null &&
1618                 !owntype.hasTag(NONE)) {
1619             //constant folding
1620             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1621         }
1622         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1623     }
1624     //where
1625         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1626             switch (tree.getTag()) {
1627                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1628                               ((JCLiteral)tree).typetag == BOOLEAN ||
1629                               ((JCLiteral)tree).typetag == BOT;
1630                 case LAMBDA: case REFERENCE: return false;
1631                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1632                 case CONDEXPR:
1633                     JCConditional condTree = (JCConditional)tree;
1634                     return isBooleanOrNumeric(env, condTree.truepart) &&
1635                             isBooleanOrNumeric(env, condTree.falsepart);
1636                 case APPLY:
1637                     JCMethodInvocation speculativeMethodTree =
1638                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1639                                     tree, env, unknownExprInfo,
1640                                     argumentAttr.withLocalCacheContext());
1641                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1642                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1643                             env.enclClass.type :
1644                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1645                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1646                     return primitiveOrBoxed(owntype);
1647                 case NEWCLASS:
1648                     JCExpression className =
1649                             removeClassParams.translate(((JCNewClass)tree).clazz);
1650                     JCExpression speculativeNewClassTree =
1651                             (JCExpression)deferredAttr.attribSpeculative(
1652                                     className, env, unknownTypeInfo,
1653                                     argumentAttr.withLocalCacheContext());
1654                     return primitiveOrBoxed(speculativeNewClassTree.type);
1655                 default:
1656                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1657                             argumentAttr.withLocalCacheContext()).type;
1658                     return primitiveOrBoxed(speculativeType);
1659             }
1660         }
1661         //where
1662             boolean primitiveOrBoxed(Type t) {
1663                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1664             }
1665 
1666             TreeTranslator removeClassParams = new TreeTranslator() {
1667                 @Override
1668                 public void visitTypeApply(JCTypeApply tree) {
1669                     result = translate(tree.clazz);
1670                 }
1671             };
1672 
1673         CheckContext conditionalContext(CheckContext checkContext) {
1674             return new Check.NestedCheckContext(checkContext) {
1675                 //this will use enclosing check context to check compatibility of
1676                 //subexpression against target type; if we are in a method check context,
1677                 //depending on whether boxing is allowed, we could have incompatibilities
1678                 @Override
1679                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1680                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1681                 }
1682             };
1683         }
1684 
1685         /** Compute the type of a conditional expression, after
1686          *  checking that it exists.  See JLS 15.25. Does not take into
1687          *  account the special case where condition and both arms
1688          *  are constants.
1689          *
1690          *  @param pos      The source position to be used for error
1691          *                  diagnostics.
1692          *  @param thentype The type of the expression's then-part.
1693          *  @param elsetype The type of the expression's else-part.
1694          */
1695         Type condType(DiagnosticPosition pos,
1696                                Type thentype, Type elsetype) {
1697             // If same type, that is the result
1698             if (types.isSameType(thentype, elsetype))
1699                 return thentype.baseType();
1700 
1701             Type thenUnboxed = (thentype.isPrimitive())
1702                 ? thentype : types.unboxedType(thentype);
1703             Type elseUnboxed = (elsetype.isPrimitive())
1704                 ? elsetype : types.unboxedType(elsetype);
1705 
1706             // Otherwise, if both arms can be converted to a numeric
1707             // type, return the least numeric type that fits both arms
1708             // (i.e. return larger of the two, or return int if one
1709             // arm is short, the other is char).
1710             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1711                 // If one arm has an integer subrange type (i.e., byte,
1712                 // short, or char), and the other is an integer constant
1713                 // that fits into the subrange, return the subrange type.
1714                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1715                     elseUnboxed.hasTag(INT) &&
1716                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1717                     return thenUnboxed.baseType();
1718                 }
1719                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1720                     thenUnboxed.hasTag(INT) &&
1721                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1722                     return elseUnboxed.baseType();
1723                 }
1724 
1725                 for (TypeTag tag : primitiveTags) {
1726                     Type candidate = syms.typeOfTag[tag.ordinal()];
1727                     if (types.isSubtype(thenUnboxed, candidate) &&
1728                         types.isSubtype(elseUnboxed, candidate)) {
1729                         return candidate;
1730                     }
1731                 }
1732             }
1733 
1734             // Those were all the cases that could result in a primitive
1735             if (thentype.isPrimitive())
1736                 thentype = types.boxedClass(thentype).type;
1737             if (elsetype.isPrimitive())
1738                 elsetype = types.boxedClass(elsetype).type;
1739 
1740             if (types.isSubtype(thentype, elsetype))
1741                 return elsetype.baseType();
1742             if (types.isSubtype(elsetype, thentype))
1743                 return thentype.baseType();
1744 
1745             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1746                 log.error(pos,
1747                           Errors.NeitherConditionalSubtype(thentype,
1748                                                            elsetype));
1749                 return thentype.baseType();
1750             }
1751 
1752             // both are known to be reference types.  The result is
1753             // lub(thentype,elsetype). This cannot fail, as it will
1754             // always be possible to infer "Object" if nothing better.
1755             return types.lub(thentype.baseType(), elsetype.baseType());
1756         }
1757 
1758     final static TypeTag[] primitiveTags = new TypeTag[]{
1759         BYTE,
1760         CHAR,
1761         SHORT,
1762         INT,
1763         LONG,
1764         FLOAT,
1765         DOUBLE,
1766         BOOLEAN,
1767     };
1768 
1769     public void visitIf(JCIf tree) {
1770         attribExpr(tree.cond, env, syms.booleanType);
1771         attribStat(tree.thenpart, env);
1772         if (tree.elsepart != null)
1773             attribStat(tree.elsepart, env);
1774         chk.checkEmptyIf(tree);
1775         result = null;
1776     }
1777 
1778     public void visitExec(JCExpressionStatement tree) {
1779         //a fresh environment is required for 292 inference to work properly ---
1780         //see Infer.instantiatePolymorphicSignatureInstance()
1781         Env<AttrContext> localEnv = env.dup(tree);
1782         attribExpr(tree.expr, localEnv);
1783         result = null;
1784     }
1785 
1786     public void visitBreak(JCBreak tree) {
1787         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1788         result = null;
1789     }
1790 
1791     public void visitContinue(JCContinue tree) {
1792         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1793         result = null;
1794     }
1795     //where
1796         /** Return the target of a break or continue statement, if it exists,
1797          *  report an error if not.
1798          *  Note: The target of a labelled break or continue is the
1799          *  (non-labelled) statement tree referred to by the label,
1800          *  not the tree representing the labelled statement itself.
1801          *
1802          *  @param pos     The position to be used for error diagnostics
1803          *  @param tag     The tag of the jump statement. This is either
1804          *                 Tree.BREAK or Tree.CONTINUE.
1805          *  @param label   The label of the jump statement, or null if no
1806          *                 label is given.
1807          *  @param env     The environment current at the jump statement.
1808          */
1809         private JCTree findJumpTarget(DiagnosticPosition pos,
1810                                     JCTree.Tag tag,
1811                                     Name label,
1812                                     Env<AttrContext> env) {
1813             // Search environments outwards from the point of jump.
1814             Env<AttrContext> env1 = env;
1815             LOOP:
1816             while (env1 != null) {
1817                 switch (env1.tree.getTag()) {
1818                     case LABELLED:
1819                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1820                         if (label == labelled.label) {
1821                             // If jump is a continue, check that target is a loop.
1822                             if (tag == CONTINUE) {
1823                                 if (!labelled.body.hasTag(DOLOOP) &&
1824                                         !labelled.body.hasTag(WHILELOOP) &&
1825                                         !labelled.body.hasTag(FORLOOP) &&
1826                                         !labelled.body.hasTag(FOREACHLOOP))
1827                                     log.error(pos, Errors.NotLoopLabel(label));
1828                                 // Found labelled statement target, now go inwards
1829                                 // to next non-labelled tree.
1830                                 return TreeInfo.referencedStatement(labelled);
1831                             } else {
1832                                 return labelled;
1833                             }
1834                         }
1835                         break;
1836                     case DOLOOP:
1837                     case WHILELOOP:
1838                     case FORLOOP:
1839                     case FOREACHLOOP:
1840                         if (label == null) return env1.tree;
1841                         break;
1842                     case SWITCH:
1843                         if (label == null && tag == BREAK) return env1.tree;
1844                         break;
1845                     case LAMBDA:
1846                     case METHODDEF:
1847                     case CLASSDEF:
1848                         break LOOP;
1849                     default:
1850                 }
1851                 env1 = env1.next;
1852             }
1853             if (label != null)
1854                 log.error(pos, Errors.UndefLabel(label));
1855             else if (tag == CONTINUE)
1856                 log.error(pos, Errors.ContOutsideLoop);
1857             else
1858                 log.error(pos, Errors.BreakOutsideSwitchLoop);
1859             return null;
1860         }
1861 
1862     public void visitReturn(JCReturn tree) {
1863         // Check that there is an enclosing method which is
1864         // nested within than the enclosing class.
1865         if (env.info.returnResult == null) {
1866             log.error(tree.pos(), Errors.RetOutsideMeth);
1867         } else {
1868             // Attribute return expression, if it exists, and check that
1869             // it conforms to result type of enclosing method.
1870             if (tree.expr != null) {
1871                 if (env.info.returnResult.pt.hasTag(VOID)) {
1872                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1873                               diags.fragment(Fragments.UnexpectedRetVal));
1874                 }
1875                 attribTree(tree.expr, env, env.info.returnResult);
1876             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1877                     !env.info.returnResult.pt.hasTag(NONE)) {
1878                 env.info.returnResult.checkContext.report(tree.pos(),
1879                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1880             }
1881         }
1882         result = null;
1883     }
1884 
1885     public void visitThrow(JCThrow tree) {
1886         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1887         if (allowPoly) {
1888             chk.checkType(tree, owntype, syms.throwableType);
1889         }
1890         result = null;
1891     }
1892 
1893     public void visitAssert(JCAssert tree) {
1894         attribExpr(tree.cond, env, syms.booleanType);
1895         if (tree.detail != null) {
1896             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1897         }
1898         result = null;
1899     }
1900 
1901      /** Visitor method for method invocations.
1902      *  NOTE: The method part of an application will have in its type field
1903      *        the return type of the method, not the method's type itself!
1904      */
1905     public void visitApply(JCMethodInvocation tree) {
1906         // The local environment of a method application is
1907         // a new environment nested in the current one.
1908         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1909 
1910         // The types of the actual method arguments.
1911         List<Type> argtypes;
1912 
1913         // The types of the actual method type arguments.
1914         List<Type> typeargtypes = null;
1915 
1916         Name methName = TreeInfo.name(tree.meth);
1917 
1918         boolean isConstructorCall =
1919             methName == names._this || methName == names._super;
1920 
1921         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1922         if (isConstructorCall) {
1923             // We are seeing a ...this(...) or ...super(...) call.
1924             // Check that this is the first statement in a constructor.
1925             if (checkFirstConstructorStat(tree, env)) {
1926 
1927                 // Record the fact
1928                 // that this is a constructor call (using isSelfCall).
1929                 localEnv.info.isSelfCall = true;
1930 
1931                 // Attribute arguments, yielding list of argument types.
1932                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1933                 argtypes = argtypesBuf.toList();
1934                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1935 
1936                 // Variable `site' points to the class in which the called
1937                 // constructor is defined.
1938                 Type site = env.enclClass.sym.type;
1939                 if (methName == names._super) {
1940                     if (site == syms.objectType) {
1941                         log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1942                         site = types.createErrorType(syms.objectType);
1943                     } else {
1944                         site = types.supertype(site);
1945                     }
1946                 }
1947 
1948                 if (site.hasTag(CLASS)) {
1949                     Type encl = site.getEnclosingType();
1950                     while (encl != null && encl.hasTag(TYPEVAR))
1951                         encl = encl.getUpperBound();
1952                     if (encl.hasTag(CLASS)) {
1953                         // we are calling a nested class
1954 
1955                         if (tree.meth.hasTag(SELECT)) {
1956                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1957 
1958                             // We are seeing a prefixed call, of the form
1959                             //     <expr>.super(...).
1960                             // Check that the prefix expression conforms
1961                             // to the outer instance type of the class.
1962                             chk.checkRefType(qualifier.pos(),
1963                                              attribExpr(qualifier, localEnv,
1964                                                         encl));
1965                         } else if (methName == names._super) {
1966                             // qualifier omitted; check for existence
1967                             // of an appropriate implicit qualifier.
1968                             rs.resolveImplicitThis(tree.meth.pos(),
1969                                                    localEnv, site, true);
1970                         }
1971                     } else if (tree.meth.hasTag(SELECT)) {
1972                         log.error(tree.meth.pos(),
1973                                   Errors.IllegalQualNotIcls(site.tsym));
1974                     }
1975 
1976                     // if we're calling a java.lang.Enum constructor,
1977                     // prefix the implicit String and int parameters
1978                     if (site.tsym == syms.enumSym)
1979                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1980 
1981                     // Resolve the called constructor under the assumption
1982                     // that we are referring to a superclass instance of the
1983                     // current instance (JLS ???).
1984                     boolean selectSuperPrev = localEnv.info.selectSuper;
1985                     localEnv.info.selectSuper = true;
1986                     localEnv.info.pendingResolutionPhase = null;
1987                     Symbol sym = rs.resolveConstructor(
1988                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1989                     localEnv.info.selectSuper = selectSuperPrev;
1990 
1991                     // Set method symbol to resolved constructor...
1992                     TreeInfo.setSymbol(tree.meth, sym);
1993 
1994                     // ...and check that it is legal in the current context.
1995                     // (this will also set the tree's type)
1996                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1997                     checkId(tree.meth, site, sym, localEnv,
1998                             new ResultInfo(kind, mpt));
1999                 }
2000                 // Otherwise, `site' is an error type and we do nothing
2001             }
2002             result = tree.type = syms.voidType;
2003         } else {
2004             // Otherwise, we are seeing a regular method call.
2005             // Attribute the arguments, yielding list of argument types, ...
2006             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2007             argtypes = argtypesBuf.toList();
2008             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2009 
2010             // ... and attribute the method using as a prototype a methodtype
2011             // whose formal argument types is exactly the list of actual
2012             // arguments (this will also set the method symbol).
2013             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2014             localEnv.info.pendingResolutionPhase = null;
2015             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2016 
2017             // Compute the result type.
2018             Type restype = mtype.getReturnType();
2019             if (restype.hasTag(WILDCARD))
2020                 throw new AssertionError(mtype);
2021 
2022             Type qualifier = (tree.meth.hasTag(SELECT))
2023                     ? ((JCFieldAccess) tree.meth).selected.type
2024                     : env.enclClass.sym.type;
2025             Symbol msym = TreeInfo.symbol(tree.meth);
2026             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2027 
2028             chk.checkRefTypes(tree.typeargs, typeargtypes);
2029 
2030             // Check that value of resulting type is admissible in the
2031             // current context.  Also, capture the return type
2032             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2033             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2034         }
2035         chk.validate(tree.typeargs, localEnv);
2036     }
2037     //where
2038         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2039             if (msym != null &&
2040                     msym.owner == syms.objectType.tsym &&
2041                     methodName == names.getClass &&
2042                     argtypes.isEmpty()) {
2043                 // as a special case, x.getClass() has type Class<? extends |X|>
2044                 return new ClassType(restype.getEnclosingType(),
2045                         List.of(new WildcardType(types.erasure(qualifierType),
2046                                 BoundKind.EXTENDS,
2047                                 syms.boundClass)),
2048                         restype.tsym,
2049                         restype.getMetadata());
2050             } else if (msym != null &&
2051                     msym.owner == syms.arrayClass &&
2052                     methodName == names.clone &&
2053                     types.isArray(qualifierType)) {
2054                 // as a special case, array.clone() has a result that is
2055                 // the same as static type of the array being cloned
2056                 return qualifierType;
2057             } else {
2058                 return restype;
2059             }
2060         }
2061 
2062         /** Check that given application node appears as first statement
2063          *  in a constructor call.
2064          *  @param tree   The application node
2065          *  @param env    The environment current at the application.
2066          */
2067         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
2068             JCMethodDecl enclMethod = env.enclMethod;
2069             if (enclMethod != null && enclMethod.name == names.init) {
2070                 JCBlock body = enclMethod.body;
2071                 if (body.stats.head.hasTag(EXEC) &&
2072                     ((JCExpressionStatement) body.stats.head).expr == tree)
2073                     return true;
2074             }
2075             log.error(tree.pos(),
2076                       Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2077             return false;
2078         }
2079 
2080         /** Obtain a method type with given argument types.
2081          */
2082         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2083             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2084             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2085         }
2086 
2087     public void visitNewClass(final JCNewClass tree) {
2088         Type owntype = types.createErrorType(tree.type);
2089 
2090         // The local environment of a class creation is
2091         // a new environment nested in the current one.
2092         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2093 
2094         // The anonymous inner class definition of the new expression,
2095         // if one is defined by it.
2096         JCClassDecl cdef = tree.def;
2097 
2098         // If enclosing class is given, attribute it, and
2099         // complete class name to be fully qualified
2100         JCExpression clazz = tree.clazz; // Class field following new
2101         JCExpression clazzid;            // Identifier in class field
2102         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2103         annoclazzid = null;
2104 
2105         if (clazz.hasTag(TYPEAPPLY)) {
2106             clazzid = ((JCTypeApply) clazz).clazz;
2107             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2108                 annoclazzid = (JCAnnotatedType) clazzid;
2109                 clazzid = annoclazzid.underlyingType;
2110             }
2111         } else {
2112             if (clazz.hasTag(ANNOTATED_TYPE)) {
2113                 annoclazzid = (JCAnnotatedType) clazz;
2114                 clazzid = annoclazzid.underlyingType;
2115             } else {
2116                 clazzid = clazz;
2117             }
2118         }
2119 
2120         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2121 
2122         if (tree.encl != null) {
2123             // We are seeing a qualified new, of the form
2124             //    <expr>.new C <...> (...) ...
2125             // In this case, we let clazz stand for the name of the
2126             // allocated class C prefixed with the type of the qualifier
2127             // expression, so that we can
2128             // resolve it with standard techniques later. I.e., if
2129             // <expr> has type T, then <expr>.new C <...> (...)
2130             // yields a clazz T.C.
2131             Type encltype = chk.checkRefType(tree.encl.pos(),
2132                                              attribExpr(tree.encl, env));
2133             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2134             // from expr to the combined type, or not? Yes, do this.
2135             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2136                                                  ((JCIdent) clazzid).name);
2137 
2138             EndPosTable endPosTable = this.env.toplevel.endPositions;
2139             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2140             if (clazz.hasTag(ANNOTATED_TYPE)) {
2141                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2142                 List<JCAnnotation> annos = annoType.annotations;
2143 
2144                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2145                     clazzid1 = make.at(tree.pos).
2146                         TypeApply(clazzid1,
2147                                   ((JCTypeApply) clazz).arguments);
2148                 }
2149 
2150                 clazzid1 = make.at(tree.pos).
2151                     AnnotatedType(annos, clazzid1);
2152             } else if (clazz.hasTag(TYPEAPPLY)) {
2153                 clazzid1 = make.at(tree.pos).
2154                     TypeApply(clazzid1,
2155                               ((JCTypeApply) clazz).arguments);
2156             }
2157 
2158             clazz = clazzid1;
2159         }
2160 
2161         // Attribute clazz expression and store
2162         // symbol + type back into the attributed tree.
2163         Type clazztype;
2164 
2165         try {
2166             env.info.isNewClass = true;
2167             clazztype = TreeInfo.isEnumInit(env.tree) ?
2168                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2169                 attribType(clazz, env);
2170         } finally {
2171             env.info.isNewClass = false;
2172         }
2173 
2174         clazztype = chk.checkDiamond(tree, clazztype);
2175         chk.validate(clazz, localEnv);
2176         if (tree.encl != null) {
2177             // We have to work in this case to store
2178             // symbol + type back into the attributed tree.
2179             tree.clazz.type = clazztype;
2180             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2181             clazzid.type = ((JCIdent) clazzid).sym.type;
2182             if (annoclazzid != null) {
2183                 annoclazzid.type = clazzid.type;
2184             }
2185             if (!clazztype.isErroneous()) {
2186                 if (cdef != null && clazztype.tsym.isInterface()) {
2187                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2188                 } else if (clazztype.tsym.isStatic()) {
2189                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2190                 }
2191             }
2192         } else if (!clazztype.tsym.isInterface() &&
2193                    clazztype.getEnclosingType().hasTag(CLASS)) {
2194             // Check for the existence of an apropos outer instance
2195             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2196         }
2197 
2198         // Attribute constructor arguments.
2199         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2200         final KindSelector pkind =
2201             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2202         List<Type> argtypes = argtypesBuf.toList();
2203         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2204 
2205         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2206             // Enums may not be instantiated except implicitly
2207             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2208                 (!env.tree.hasTag(VARDEF) ||
2209                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2210                  ((JCVariableDecl) env.tree).init != tree))
2211                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2212 
2213             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2214                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2215             boolean skipNonDiamondPath = false;
2216             // Check that class is not abstract
2217             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2218                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2219                 log.error(tree.pos(),
2220                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2221                 skipNonDiamondPath = true;
2222             } else if (cdef != null && clazztype.tsym.isInterface()) {
2223                 // Check that no constructor arguments are given to
2224                 // anonymous classes implementing an interface
2225                 if (!argtypes.isEmpty())
2226                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2227 
2228                 if (!typeargtypes.isEmpty())
2229                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2230 
2231                 // Error recovery: pretend no arguments were supplied.
2232                 argtypes = List.nil();
2233                 typeargtypes = List.nil();
2234                 skipNonDiamondPath = true;
2235             }
2236             if (TreeInfo.isDiamond(tree)) {
2237                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2238                             clazztype.tsym.type.getTypeArguments(),
2239                                                clazztype.tsym,
2240                                                clazztype.getMetadata());
2241 
2242                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2243                 diamondEnv.info.selectSuper = cdef != null;
2244                 diamondEnv.info.pendingResolutionPhase = null;
2245 
2246                 //if the type of the instance creation expression is a class type
2247                 //apply method resolution inference (JLS 15.12.2.7). The return type
2248                 //of the resolved constructor will be a partially instantiated type
2249                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2250                             diamondEnv,
2251                             site,
2252                             argtypes,
2253                             typeargtypes);
2254                 tree.constructor = constructor.baseSymbol();
2255 
2256                 final TypeSymbol csym = clazztype.tsym;
2257                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2258                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2259                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2260                 constructorType = checkId(tree, site,
2261                         constructor,
2262                         diamondEnv,
2263                         diamondResult);
2264 
2265                 tree.clazz.type = types.createErrorType(clazztype);
2266                 if (!constructorType.isErroneous()) {
2267                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2268                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2269                 }
2270                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2271             }
2272 
2273             // Resolve the called constructor under the assumption
2274             // that we are referring to a superclass instance of the
2275             // current instance (JLS ???).
2276             else if (!skipNonDiamondPath) {
2277                 //the following code alters some of the fields in the current
2278                 //AttrContext - hence, the current context must be dup'ed in
2279                 //order to avoid downstream failures
2280                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2281                 rsEnv.info.selectSuper = cdef != null;
2282                 rsEnv.info.pendingResolutionPhase = null;
2283                 tree.constructor = rs.resolveConstructor(
2284                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2285                 if (cdef == null) { //do not check twice!
2286                     tree.constructorType = checkId(tree,
2287                             clazztype,
2288                             tree.constructor,
2289                             rsEnv,
2290                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2291                     if (rsEnv.info.lastResolveVarargs())
2292                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2293                 }
2294             }
2295 
2296             if (cdef != null) {
2297                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2298                 return;
2299             }
2300 
2301             if (tree.constructor != null && tree.constructor.kind == MTH)
2302                 owntype = clazztype;
2303         }
2304         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2305         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2306         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2307             //we need to wait for inference to finish and then replace inference vars in the constructor type
2308             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2309                     instantiatedContext -> {
2310                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2311                     });
2312         }
2313         chk.validate(tree.typeargs, localEnv);
2314     }
2315 
2316         // where
2317         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2318                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2319                                                    List<Type> argtypes, List<Type> typeargtypes,
2320                                                    KindSelector pkind) {
2321             // We are seeing an anonymous class instance creation.
2322             // In this case, the class instance creation
2323             // expression
2324             //
2325             //    E.new <typeargs1>C<typargs2>(args) { ... }
2326             //
2327             // is represented internally as
2328             //
2329             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2330             //
2331             // This expression is then *transformed* as follows:
2332             //
2333             // (1) add an extends or implements clause
2334             // (2) add a constructor.
2335             //
2336             // For instance, if C is a class, and ET is the type of E,
2337             // the expression
2338             //
2339             //    E.new <typeargs1>C<typargs2>(args) { ... }
2340             //
2341             // is translated to (where X is a fresh name and typarams is the
2342             // parameter list of the super constructor):
2343             //
2344             //   new <typeargs1>X(<*nullchk*>E, args) where
2345             //     X extends C<typargs2> {
2346             //       <typarams> X(ET e, args) {
2347             //         e.<typeargs1>super(args)
2348             //       }
2349             //       ...
2350             //     }
2351             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2352             final boolean isDiamond = TreeInfo.isDiamond(tree);
2353             if (isDiamond
2354                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2355                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2356                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2357                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2358                         instantiatedContext -> {
2359                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2360                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2361                             ResultInfo prevResult = this.resultInfo;
2362                             try {
2363                                 this.resultInfo = resultInfoForClassDefinition;
2364                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2365                                                             localEnv, argtypes, typeargtypes, pkind);
2366                             } finally {
2367                                 this.resultInfo = prevResult;
2368                             }
2369                         });
2370             } else {
2371                 if (isDiamond && clazztype.hasTag(CLASS)) {
2372                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2373                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2374                         // One or more types inferred in the previous steps is non-denotable.
2375                         Fragment fragment = Diamond(clazztype.tsym);
2376                         log.error(tree.clazz.pos(),
2377                                 Errors.CantApplyDiamond1(
2378                                         fragment,
2379                                         invalidDiamondArgs.size() > 1 ?
2380                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2381                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2382                     }
2383                     // For <>(){}, inferred types must also be accessible.
2384                     for (Type t : clazztype.getTypeArguments()) {
2385                         rs.checkAccessibleType(env, t);
2386                     }
2387                 }
2388 
2389                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2390                 // false for isInterface call even when the original type is an interface.
2391                 boolean implementing = clazztype.tsym.isInterface() ||
2392                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2393                         clazztype.getOriginalType().tsym.isInterface();
2394 
2395                 if (implementing) {
2396                     cdef.implementing = List.of(clazz);
2397                 } else {
2398                     cdef.extending = clazz;
2399                 }
2400 
2401                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2402                     isSerializable(clazztype)) {
2403                     localEnv.info.isSerializable = true;
2404                 }
2405 
2406                 attribStat(cdef, localEnv);
2407 
2408                 List<Type> finalargtypes;
2409                 // If an outer instance is given,
2410                 // prefix it to the constructor arguments
2411                 // and delete it from the new expression
2412                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2413                     finalargtypes = argtypes.prepend(tree.encl.type);
2414                 } else {
2415                     finalargtypes = argtypes;
2416                 }
2417 
2418                 // Reassign clazztype and recompute constructor. As this necessarily involves
2419                 // another attribution pass for deferred types in the case of <>, replicate
2420                 // them. Original arguments have right decorations already.
2421                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2422                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2423                 }
2424 
2425                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2426                                                     : cdef.sym.type;
2427                 Symbol sym = tree.constructor = rs.resolveConstructor(
2428                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2429                 Assert.check(!sym.kind.isResolutionError());
2430                 tree.constructor = sym;
2431                 tree.constructorType = checkId(tree,
2432                         clazztype,
2433                         tree.constructor,
2434                         localEnv,
2435                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2436             }
2437             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2438                                 clazztype : types.createErrorType(tree.type);
2439             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2440             chk.validate(tree.typeargs, localEnv);
2441         }
2442 
2443         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2444             return new Check.NestedCheckContext(checkContext) {
2445                 @Override
2446                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2447                     enclosingContext.report(clazz.clazz,
2448                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2449                 }
2450             };
2451         }
2452 
2453     /** Make an attributed null check tree.
2454      */
2455     public JCExpression makeNullCheck(JCExpression arg) {
2456         // optimization: new Outer() can never be null; skip null check
2457         if (arg.getTag() == NEWCLASS)
2458             return arg;
2459         // optimization: X.this is never null; skip null check
2460         Name name = TreeInfo.name(arg);
2461         if (name == names._this || name == names._super) return arg;
2462 
2463         JCTree.Tag optag = NULLCHK;
2464         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2465         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2466         tree.type = arg.type;
2467         return tree;
2468     }
2469 
2470     public void visitNewArray(JCNewArray tree) {
2471         Type owntype = types.createErrorType(tree.type);
2472         Env<AttrContext> localEnv = env.dup(tree);
2473         Type elemtype;
2474         if (tree.elemtype != null) {
2475             elemtype = attribType(tree.elemtype, localEnv);
2476             chk.validate(tree.elemtype, localEnv);
2477             owntype = elemtype;
2478             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2479                 attribExpr(l.head, localEnv, syms.intType);
2480                 owntype = new ArrayType(owntype, syms.arrayClass);
2481             }
2482         } else {
2483             // we are seeing an untyped aggregate { ... }
2484             // this is allowed only if the prototype is an array
2485             if (pt().hasTag(ARRAY)) {
2486                 elemtype = types.elemtype(pt());
2487             } else {
2488                 if (!pt().hasTag(ERROR) &&
2489                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2490                     log.error(tree.pos(),
2491                               Errors.IllegalInitializerForType(pt()));
2492                 }
2493                 elemtype = types.createErrorType(pt());
2494             }
2495         }
2496         if (tree.elems != null) {
2497             attribExprs(tree.elems, localEnv, elemtype);
2498             owntype = new ArrayType(elemtype, syms.arrayClass);
2499         }
2500         if (!types.isReifiable(elemtype))
2501             log.error(tree.pos(), Errors.GenericArrayCreation);
2502         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2503     }
2504 
2505     /*
2506      * A lambda expression can only be attributed when a target-type is available.
2507      * In addition, if the target-type is that of a functional interface whose
2508      * descriptor contains inference variables in argument position the lambda expression
2509      * is 'stuck' (see DeferredAttr).
2510      */
2511     @Override
2512     public void visitLambda(final JCLambda that) {
2513         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2514             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2515                 //lambda only allowed in assignment or method invocation/cast context
2516                 log.error(that.pos(), Errors.UnexpectedLambda);
2517             }
2518             resultInfo = recoveryInfo;
2519         }
2520         //create an environment for attribution of the lambda expression
2521         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2522         boolean needsRecovery =
2523                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2524         try {
2525             if (needsRecovery && isSerializable(pt())) {
2526                 localEnv.info.isSerializable = true;
2527                 localEnv.info.isLambda = true;
2528             }
2529             List<Type> explicitParamTypes = null;
2530             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2531                 //attribute lambda parameters
2532                 attribStats(that.params, localEnv);
2533                 explicitParamTypes = TreeInfo.types(that.params);
2534             }
2535 
2536             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2537             Type currentTarget = targetInfo.target;
2538             Type lambdaType = targetInfo.descriptor;
2539 
2540             if (currentTarget.isErroneous()) {
2541                 result = that.type = currentTarget;
2542                 return;
2543             }
2544 
2545             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2546 
2547             if (lambdaType.hasTag(FORALL)) {
2548                 //lambda expression target desc cannot be a generic method
2549                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2550                                                                     kindName(currentTarget.tsym),
2551                                                                     currentTarget.tsym);
2552                 resultInfo.checkContext.report(that, diags.fragment(msg));
2553                 result = that.type = types.createErrorType(pt());
2554                 return;
2555             }
2556 
2557             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2558                 //add param type info in the AST
2559                 List<Type> actuals = lambdaType.getParameterTypes();
2560                 List<JCVariableDecl> params = that.params;
2561 
2562                 boolean arityMismatch = false;
2563 
2564                 while (params.nonEmpty()) {
2565                     if (actuals.isEmpty()) {
2566                         //not enough actuals to perform lambda parameter inference
2567                         arityMismatch = true;
2568                     }
2569                     //reset previously set info
2570                     Type argType = arityMismatch ?
2571                             syms.errType :
2572                             actuals.head;
2573                     if (params.head.isImplicitlyTyped()) {
2574                         setSyntheticVariableType(params.head, argType);
2575                     }
2576                     params.head.sym = null;
2577                     actuals = actuals.isEmpty() ?
2578                             actuals :
2579                             actuals.tail;
2580                     params = params.tail;
2581                 }
2582 
2583                 //attribute lambda parameters
2584                 attribStats(that.params, localEnv);
2585 
2586                 if (arityMismatch) {
2587                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2588                         result = that.type = types.createErrorType(currentTarget);
2589                         return;
2590                 }
2591             }
2592 
2593             //from this point on, no recovery is needed; if we are in assignment context
2594             //we will be able to attribute the whole lambda body, regardless of errors;
2595             //if we are in a 'check' method context, and the lambda is not compatible
2596             //with the target-type, it will be recovered anyway in Attr.checkId
2597             needsRecovery = false;
2598 
2599             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2600                     lambdaBodyResult(that, lambdaType, resultInfo);
2601 
2602             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2603                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2604             } else {
2605                 JCBlock body = (JCBlock)that.body;
2606                 if (body == breakTree &&
2607                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2608                     breakTreeFound(copyEnv(localEnv));
2609                 }
2610                 attribStats(body.stats, localEnv);
2611             }
2612 
2613             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2614 
2615             boolean isSpeculativeRound =
2616                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2617 
2618             preFlow(that);
2619             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2620 
2621             that.type = currentTarget; //avoids recovery at this stage
2622             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2623 
2624             if (!isSpeculativeRound) {
2625                 //add thrown types as bounds to the thrown types free variables if needed:
2626                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2627                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2628                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
2629                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
2630                     }
2631                 }
2632 
2633                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2634             }
2635             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2636         } catch (Types.FunctionDescriptorLookupError ex) {
2637             JCDiagnostic cause = ex.getDiagnostic();
2638             resultInfo.checkContext.report(that, cause);
2639             result = that.type = types.createErrorType(pt());
2640             return;
2641         } catch (Throwable t) {
2642             //when an unexpected exception happens, avoid attempts to attribute the same tree again
2643             //as that would likely cause the same exception again.
2644             needsRecovery = false;
2645             throw t;
2646         } finally {
2647             localEnv.info.scope.leave();
2648             if (needsRecovery) {
2649                 attribTree(that, env, recoveryInfo);
2650             }
2651         }
2652     }
2653     //where
2654         class TargetInfo {
2655             Type target;
2656             Type descriptor;
2657 
2658             public TargetInfo(Type target, Type descriptor) {
2659                 this.target = target;
2660                 this.descriptor = descriptor;
2661             }
2662         }
2663 
2664         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2665             Type lambdaType;
2666             Type currentTarget = resultInfo.pt;
2667             if (resultInfo.pt != Type.recoveryType) {
2668                 /* We need to adjust the target. If the target is an
2669                  * intersection type, for example: SAM & I1 & I2 ...
2670                  * the target will be updated to SAM
2671                  */
2672                 currentTarget = targetChecker.visit(currentTarget, that);
2673                 if (!currentTarget.isIntersection()) {
2674                     if (explicitParamTypes != null) {
2675                         currentTarget = infer.instantiateFunctionalInterface(that,
2676                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
2677                     }
2678                     currentTarget = types.removeWildcards(currentTarget);
2679                     lambdaType = types.findDescriptorType(currentTarget);
2680                 } else {
2681                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
2682                     ListBuffer<Type> components = new ListBuffer<>();
2683                     for (Type bound : ict.getExplicitComponents()) {
2684                         if (explicitParamTypes != null) {
2685                             try {
2686                                 bound = infer.instantiateFunctionalInterface(that,
2687                                         bound, explicitParamTypes, resultInfo.checkContext);
2688                             } catch (FunctionDescriptorLookupError t) {
2689                                 // do nothing
2690                             }
2691                         }
2692                         bound = types.removeWildcards(bound);
2693                         components.add(bound);
2694                     }
2695                     currentTarget = types.makeIntersectionType(components.toList());
2696                     currentTarget.tsym.flags_field |= INTERFACE;
2697                     lambdaType = types.findDescriptorType(currentTarget);
2698                 }
2699 
2700             } else {
2701                 currentTarget = Type.recoveryType;
2702                 lambdaType = fallbackDescriptorType(that);
2703             }
2704             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2705                 //lambda expression target desc cannot be a generic method
2706                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2707                                                                     kindName(currentTarget.tsym),
2708                                                                     currentTarget.tsym);
2709                 resultInfo.checkContext.report(that, diags.fragment(msg));
2710                 currentTarget = types.createErrorType(pt());
2711             }
2712             return new TargetInfo(currentTarget, lambdaType);
2713         }
2714 
2715         void preFlow(JCLambda tree) {
2716             new PostAttrAnalyzer() {
2717                 @Override
2718                 public void scan(JCTree tree) {
2719                     if (tree == null ||
2720                             (tree.type != null &&
2721                             tree.type == Type.stuckType)) {
2722                         //don't touch stuck expressions!
2723                         return;
2724                     }
2725                     super.scan(tree);
2726                 }
2727             }.scan(tree);
2728         }
2729 
2730         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2731 
2732             @Override
2733             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2734                 return t.isIntersection() ?
2735                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2736             }
2737 
2738             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2739                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
2740                 return ict;
2741             }
2742 
2743             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
2744                 ListBuffer<Type> targs = new ListBuffer<>();
2745                 ListBuffer<Type> supertypes = new ListBuffer<>();
2746                 for (Type i : ict.interfaces_field) {
2747                     if (i.isParameterized()) {
2748                         targs.appendList(i.tsym.type.allparams());
2749                     }
2750                     supertypes.append(i.tsym.type);
2751                 }
2752                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2753                 notionalIntf.allparams_field = targs.toList();
2754                 notionalIntf.tsym.flags_field |= INTERFACE;
2755                 return notionalIntf.tsym;
2756             }
2757         };
2758 
2759         private Type fallbackDescriptorType(JCExpression tree) {
2760             switch (tree.getTag()) {
2761                 case LAMBDA:
2762                     JCLambda lambda = (JCLambda)tree;
2763                     List<Type> argtypes = List.nil();
2764                     for (JCVariableDecl param : lambda.params) {
2765                         argtypes = param.vartype != null ?
2766                                 argtypes.append(param.vartype.type) :
2767                                 argtypes.append(syms.errType);
2768                     }
2769                     return new MethodType(argtypes, Type.recoveryType,
2770                             List.of(syms.throwableType), syms.methodClass);
2771                 case REFERENCE:
2772                     return new MethodType(List.nil(), Type.recoveryType,
2773                             List.of(syms.throwableType), syms.methodClass);
2774                 default:
2775                     Assert.error("Cannot get here!");
2776             }
2777             return null;
2778         }
2779 
2780         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2781                 final InferenceContext inferenceContext, final Type... ts) {
2782             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2783         }
2784 
2785         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2786                 final InferenceContext inferenceContext, final List<Type> ts) {
2787             if (inferenceContext.free(ts)) {
2788                 inferenceContext.addFreeTypeListener(ts,
2789                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2790             } else {
2791                 for (Type t : ts) {
2792                     rs.checkAccessibleType(env, t);
2793                 }
2794             }
2795         }
2796 
2797         /**
2798          * Lambda/method reference have a special check context that ensures
2799          * that i.e. a lambda return type is compatible with the expected
2800          * type according to both the inherited context and the assignment
2801          * context.
2802          */
2803         class FunctionalReturnContext extends Check.NestedCheckContext {
2804 
2805             FunctionalReturnContext(CheckContext enclosingContext) {
2806                 super(enclosingContext);
2807             }
2808 
2809             @Override
2810             public boolean compatible(Type found, Type req, Warner warn) {
2811                 //return type must be compatible in both current context and assignment context
2812                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2813             }
2814 
2815             @Override
2816             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2817                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2818             }
2819         }
2820 
2821         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2822 
2823             JCExpression expr;
2824             boolean expStmtExpected;
2825 
2826             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2827                 super(enclosingContext);
2828                 this.expr = expr;
2829             }
2830 
2831             @Override
2832             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2833                 if (expStmtExpected) {
2834                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2835                 } else {
2836                     super.report(pos, details);
2837                 }
2838             }
2839 
2840             @Override
2841             public boolean compatible(Type found, Type req, Warner warn) {
2842                 //a void return is compatible with an expression statement lambda
2843                 if (req.hasTag(VOID)) {
2844                     expStmtExpected = true;
2845                     return TreeInfo.isExpressionStatement(expr);
2846                 } else {
2847                     return super.compatible(found, req, warn);
2848                 }
2849             }
2850         }
2851 
2852         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2853             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2854                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2855                     new FunctionalReturnContext(resultInfo.checkContext);
2856 
2857             return descriptor.getReturnType() == Type.recoveryType ?
2858                     recoveryInfo :
2859                     new ResultInfo(KindSelector.VAL,
2860                             descriptor.getReturnType(), funcContext);
2861         }
2862 
2863         /**
2864         * Lambda compatibility. Check that given return types, thrown types, parameter types
2865         * are compatible with the expected functional interface descriptor. This means that:
2866         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2867         * types must be compatible with the return type of the expected descriptor.
2868         */
2869         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2870             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2871 
2872             //return values have already been checked - but if lambda has no return
2873             //values, we must ensure that void/value compatibility is correct;
2874             //this amounts at checking that, if a lambda body can complete normally,
2875             //the descriptor's return type must be void
2876             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2877                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2878                 Fragment msg =
2879                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2880                 checkContext.report(tree,
2881                                     diags.fragment(msg));
2882             }
2883 
2884             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2885             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2886                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2887             }
2888         }
2889 
2890         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2891          * static field and that lambda has type annotations, these annotations will
2892          * also be stored at these fake clinit methods.
2893          *
2894          * LambdaToMethod also use fake clinit methods so they can be reused.
2895          * Also as LTM is a phase subsequent to attribution, the methods from
2896          * clinits can be safely removed by LTM to save memory.
2897          */
2898         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2899 
2900         public MethodSymbol removeClinit(ClassSymbol sym) {
2901             return clinits.remove(sym);
2902         }
2903 
2904         /* This method returns an environment to be used to attribute a lambda
2905          * expression.
2906          *
2907          * The owner of this environment is a method symbol. If the current owner
2908          * is not a method, for example if the lambda is used to initialize
2909          * a field, then if the field is:
2910          *
2911          * - an instance field, we use the first constructor.
2912          * - a static field, we create a fake clinit method.
2913          */
2914         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2915             Env<AttrContext> lambdaEnv;
2916             Symbol owner = env.info.scope.owner;
2917             if (owner.kind == VAR && owner.owner.kind == TYP) {
2918                 //field initializer
2919                 ClassSymbol enclClass = owner.enclClass();
2920                 Symbol newScopeOwner = env.info.scope.owner;
2921                 /* if the field isn't static, then we can get the first constructor
2922                  * and use it as the owner of the environment. This is what
2923                  * LTM code is doing to look for type annotations so we are fine.
2924                  */
2925                 if ((owner.flags() & STATIC) == 0) {
2926                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2927                         newScopeOwner = s;
2928                         break;
2929                     }
2930                 } else {
2931                     /* if the field is static then we need to create a fake clinit
2932                      * method, this method can later be reused by LTM.
2933                      */
2934                     MethodSymbol clinit = clinits.get(enclClass);
2935                     if (clinit == null) {
2936                         Type clinitType = new MethodType(List.nil(),
2937                                 syms.voidType, List.nil(), syms.methodClass);
2938                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2939                                 names.clinit, clinitType, enclClass);
2940                         clinit.params = List.nil();
2941                         clinits.put(enclClass, clinit);
2942                     }
2943                     newScopeOwner = clinit;
2944                 }
2945                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2946             } else {
2947                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2948             }
2949             return lambdaEnv;
2950         }
2951 
2952     @Override
2953     public void visitReference(final JCMemberReference that) {
2954         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2955             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2956                 //method reference only allowed in assignment or method invocation/cast context
2957                 log.error(that.pos(), Errors.UnexpectedMref);
2958             }
2959             result = that.type = types.createErrorType(pt());
2960             return;
2961         }
2962         final Env<AttrContext> localEnv = env.dup(that);
2963         try {
2964             //attribute member reference qualifier - if this is a constructor
2965             //reference, the expected kind must be a type
2966             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2967 
2968             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2969                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2970                 if (!exprType.isErroneous() &&
2971                     exprType.isRaw() &&
2972                     that.typeargs != null) {
2973                     log.error(that.expr.pos(),
2974                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
2975                                                  Fragments.MrefInferAndExplicitParams));
2976                     exprType = types.createErrorType(exprType);
2977                 }
2978             }
2979 
2980             if (exprType.isErroneous()) {
2981                 //if the qualifier expression contains problems,
2982                 //give up attribution of method reference
2983                 result = that.type = exprType;
2984                 return;
2985             }
2986 
2987             if (TreeInfo.isStaticSelector(that.expr, names)) {
2988                 //if the qualifier is a type, validate it; raw warning check is
2989                 //omitted as we don't know at this stage as to whether this is a
2990                 //raw selector (because of inference)
2991                 chk.validate(that.expr, env, false);
2992             } else {
2993                 Symbol lhsSym = TreeInfo.symbol(that.expr);
2994                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2995             }
2996             //attrib type-arguments
2997             List<Type> typeargtypes = List.nil();
2998             if (that.typeargs != null) {
2999                 typeargtypes = attribTypes(that.typeargs, localEnv);
3000             }
3001 
3002             boolean isTargetSerializable =
3003                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3004                     isSerializable(pt());
3005             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3006             Type currentTarget = targetInfo.target;
3007             Type desc = targetInfo.descriptor;
3008 
3009             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3010             List<Type> argtypes = desc.getParameterTypes();
3011             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3012 
3013             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3014                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3015             }
3016 
3017             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3018             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3019             try {
3020                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3021                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3022                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3023             } finally {
3024                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3025             }
3026 
3027             Symbol refSym = refResult.fst;
3028             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3029 
3030             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3031              *  JDK-8075541
3032              */
3033             if (refSym.kind != MTH) {
3034                 boolean targetError;
3035                 switch (refSym.kind) {
3036                     case ABSENT_MTH:
3037                     case MISSING_ENCL:
3038                         targetError = false;
3039                         break;
3040                     case WRONG_MTH:
3041                     case WRONG_MTHS:
3042                     case AMBIGUOUS:
3043                     case HIDDEN:
3044                     case STATICERR:
3045                         targetError = true;
3046                         break;
3047                     default:
3048                         Assert.error("unexpected result kind " + refSym.kind);
3049                         targetError = false;
3050                 }
3051 
3052                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3053                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3054                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3055 
3056                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3057                         targetError ?
3058                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3059                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3060 
3061                 if (targetError && currentTarget == Type.recoveryType) {
3062                     //a target error doesn't make sense during recovery stage
3063                     //as we don't know what actual parameter types are
3064                     result = that.type = currentTarget;
3065                     return;
3066                 } else {
3067                     if (targetError) {
3068                         resultInfo.checkContext.report(that, diag);
3069                     } else {
3070                         log.report(diag);
3071                     }
3072                     result = that.type = types.createErrorType(currentTarget);
3073                     return;
3074                 }
3075             }
3076 
3077             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3078             that.kind = lookupHelper.referenceKind(that.sym);
3079             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3080 
3081             if (desc.getReturnType() == Type.recoveryType) {
3082                 // stop here
3083                 result = that.type = currentTarget;
3084                 return;
3085             }
3086 
3087             if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3088                 Type enclosingType = exprType.getEnclosingType();
3089                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3090                     // Check for the existence of an apropriate outer instance
3091                     rs.resolveImplicitThis(that.pos(), env, exprType);
3092                 }
3093             }
3094 
3095             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3096 
3097                 if (that.getMode() == ReferenceMode.INVOKE &&
3098                         TreeInfo.isStaticSelector(that.expr, names) &&
3099                         that.kind.isUnbound() &&
3100                         lookupHelper.site.isRaw()) {
3101                     chk.checkRaw(that.expr, localEnv);
3102                 }
3103 
3104                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3105                         exprType.getTypeArguments().nonEmpty()) {
3106                     //static ref with class type-args
3107                     log.error(that.expr.pos(),
3108                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3109                                                  Fragments.StaticMrefWithTargs));
3110                     result = that.type = types.createErrorType(currentTarget);
3111                     return;
3112                 }
3113 
3114                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3115                     // Check that super-qualified symbols are not abstract (JLS)
3116                     rs.checkNonAbstract(that.pos(), that.sym);
3117                 }
3118 
3119                 if (isTargetSerializable) {
3120                     chk.checkAccessFromSerializableElement(that, true);
3121                 }
3122             }
3123 
3124             ResultInfo checkInfo =
3125                     resultInfo.dup(newMethodTemplate(
3126                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3127                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3128                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3129 
3130             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3131 
3132             if (that.kind.isUnbound() &&
3133                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3134                 //re-generate inference constraints for unbound receiver
3135                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3136                     //cannot happen as this has already been checked - we just need
3137                     //to regenerate the inference constraints, as that has been lost
3138                     //as a result of the call to inferenceContext.save()
3139                     Assert.error("Can't get here");
3140                 }
3141             }
3142 
3143             if (!refType.isErroneous()) {
3144                 refType = types.createMethodTypeWithReturn(refType,
3145                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3146             }
3147 
3148             //go ahead with standard method reference compatibility check - note that param check
3149             //is a no-op (as this has been taken care during method applicability)
3150             boolean isSpeculativeRound =
3151                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3152 
3153             that.type = currentTarget; //avoids recovery at this stage
3154             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3155             if (!isSpeculativeRound) {
3156                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3157             }
3158             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3159         } catch (Types.FunctionDescriptorLookupError ex) {
3160             JCDiagnostic cause = ex.getDiagnostic();
3161             resultInfo.checkContext.report(that, cause);
3162             result = that.type = types.createErrorType(pt());
3163             return;
3164         }
3165     }
3166     //where
3167         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3168             //if this is a constructor reference, the expected kind must be a type
3169             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3170                                   KindSelector.VAL_TYP : KindSelector.TYP,
3171                                   Type.noType);
3172         }
3173 
3174 
3175     @SuppressWarnings("fallthrough")
3176     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3177         InferenceContext inferenceContext = checkContext.inferenceContext();
3178         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3179 
3180         Type resType;
3181         switch (tree.getMode()) {
3182             case NEW:
3183                 if (!tree.expr.type.isRaw()) {
3184                     resType = tree.expr.type;
3185                     break;
3186                 }
3187             default:
3188                 resType = refType.getReturnType();
3189         }
3190 
3191         Type incompatibleReturnType = resType;
3192 
3193         if (returnType.hasTag(VOID)) {
3194             incompatibleReturnType = null;
3195         }
3196 
3197         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3198             if (resType.isErroneous() ||
3199                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3200                             checkContext.checkWarner(tree, resType, returnType))) {
3201                 incompatibleReturnType = null;
3202             }
3203         }
3204 
3205         if (incompatibleReturnType != null) {
3206             Fragment msg =
3207                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3208             checkContext.report(tree, diags.fragment(msg));
3209         } else {
3210             if (inferenceContext.free(refType)) {
3211                 // we need to wait for inference to finish and then replace inference vars in the referent type
3212                 inferenceContext.addFreeTypeListener(List.of(refType),
3213                         instantiatedContext -> {
3214                             tree.referentType = instantiatedContext.asInstType(refType);
3215                         });
3216             } else {
3217                 tree.referentType = refType;
3218             }
3219         }
3220 
3221         if (!speculativeAttr) {
3222             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3223                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3224             }
3225         }
3226     }
3227 
3228     boolean checkExConstraints(
3229             List<Type> thrownByFuncExpr,
3230             List<Type> thrownAtFuncType,
3231             InferenceContext inferenceContext) {
3232         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3233          *  are not proper types
3234          */
3235         List<Type> nonProperList = thrownAtFuncType.stream()
3236                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3237         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3238 
3239         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3240          *  in the throws clause of the invocation type of the method reference's compile-time
3241          *  declaration
3242          */
3243         List<Type> checkedList = thrownByFuncExpr.stream()
3244                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3245 
3246         /** If n = 0 (the function type's throws clause consists only of proper types), then
3247          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3248          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3249          *  reduces to true
3250          */
3251         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3252         for (Type checked : checkedList) {
3253             boolean isSubtype = false;
3254             for (Type proper : properList) {
3255                 if (types.isSubtype(checked, proper)) {
3256                     isSubtype = true;
3257                     break;
3258                 }
3259             }
3260             if (!isSubtype) {
3261                 uncaughtByProperTypes.add(checked);
3262             }
3263         }
3264 
3265         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3266             return false;
3267         }
3268 
3269         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3270          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3271          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3272          */
3273         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3274         uncaughtByProperTypes.forEach(checkedEx -> {
3275             nonProperAsUndet.forEach(nonProper -> {
3276                 types.isSubtype(checkedEx, nonProper);
3277             });
3278         });
3279 
3280         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3281          */
3282         nonProperAsUndet.stream()
3283                 .filter(t -> t.hasTag(UNDETVAR))
3284                 .forEach(t -> ((UndetVar)t).setThrow());
3285         return true;
3286     }
3287 
3288     /**
3289      * Set functional type info on the underlying AST. Note: as the target descriptor
3290      * might contain inference variables, we might need to register an hook in the
3291      * current inference context.
3292      */
3293     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3294             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3295         if (checkContext.inferenceContext().free(descriptorType)) {
3296             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3297                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3298                     inferenceContext.asInstType(primaryTarget), checkContext));
3299         } else {
3300             if (pt.hasTag(CLASS)) {
3301                 fExpr.target = primaryTarget;
3302             }
3303             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3304                     pt != Type.recoveryType) {
3305                 //check that functional interface class is well-formed
3306                 try {
3307                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3308                      * when it's executed post-inference. See the listener code
3309                      * above.
3310                      */
3311                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3312                             names.empty, fExpr.target, ABSTRACT);
3313                     if (csym != null) {
3314                         chk.checkImplementations(env.tree, csym, csym);
3315                         try {
3316                             //perform an additional functional interface check on the synthetic class,
3317                             //as there may be spurious errors for raw targets - because of existing issues
3318                             //with membership and inheritance (see JDK-8074570).
3319                             csym.flags_field |= INTERFACE;
3320                             types.findDescriptorType(csym.type);
3321                         } catch (FunctionDescriptorLookupError err) {
3322                             resultInfo.checkContext.report(fExpr,
3323                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3324                         }
3325                     }
3326                 } catch (Types.FunctionDescriptorLookupError ex) {
3327                     JCDiagnostic cause = ex.getDiagnostic();
3328                     resultInfo.checkContext.report(env.tree, cause);
3329                 }
3330             }
3331         }
3332     }
3333 
3334     public void visitParens(JCParens tree) {
3335         Type owntype = attribTree(tree.expr, env, resultInfo);
3336         result = check(tree, owntype, pkind(), resultInfo);
3337         Symbol sym = TreeInfo.symbol(tree);
3338         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3339             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3340     }
3341 
3342     public void visitAssign(JCAssign tree) {
3343         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3344         Type capturedType = capture(owntype);
3345         attribExpr(tree.rhs, env, owntype);
3346         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3347     }
3348 
3349     public void visitAssignop(JCAssignOp tree) {
3350         // Attribute arguments.
3351         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3352         Type operand = attribExpr(tree.rhs, env);
3353         // Find operator.
3354         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3355         if (operator != operators.noOpSymbol &&
3356                 !owntype.isErroneous() &&
3357                 !operand.isErroneous()) {
3358             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3359             chk.checkCastable(tree.rhs.pos(),
3360                               operator.type.getReturnType(),
3361                               owntype);
3362         }
3363         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3364     }
3365 
3366     public void visitUnary(JCUnary tree) {
3367         // Attribute arguments.
3368         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3369             ? attribTree(tree.arg, env, varAssignmentInfo)
3370             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3371 
3372         // Find operator.
3373         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3374         Type owntype = types.createErrorType(tree.type);
3375         if (operator != operators.noOpSymbol &&
3376                 !argtype.isErroneous()) {
3377             owntype = (tree.getTag().isIncOrDecUnaryOp())
3378                 ? tree.arg.type
3379                 : operator.type.getReturnType();
3380             int opc = ((OperatorSymbol)operator).opcode;
3381 
3382             // If the argument is constant, fold it.
3383             if (argtype.constValue() != null) {
3384                 Type ctype = cfolder.fold1(opc, argtype);
3385                 if (ctype != null) {
3386                     owntype = cfolder.coerce(ctype, owntype);
3387                 }
3388             }
3389         }
3390         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3391     }
3392 
3393     public void visitBinary(JCBinary tree) {
3394         // Attribute arguments.
3395         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3396         Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3397         // Find operator.
3398         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3399         Type owntype = types.createErrorType(tree.type);
3400         if (operator != operators.noOpSymbol &&
3401                 !left.isErroneous() &&
3402                 !right.isErroneous()) {
3403             owntype = operator.type.getReturnType();
3404             int opc = ((OperatorSymbol)operator).opcode;
3405             // If both arguments are constants, fold them.
3406             if (left.constValue() != null && right.constValue() != null) {
3407                 Type ctype = cfolder.fold2(opc, left, right);
3408                 if (ctype != null) {
3409                     owntype = cfolder.coerce(ctype, owntype);
3410                 }
3411             }
3412 
3413             // Check that argument types of a reference ==, != are
3414             // castable to each other, (JLS 15.21).  Note: unboxing
3415             // comparisons will not have an acmp* opc at this point.
3416             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3417                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3418                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3419                 }
3420             }
3421 
3422             chk.checkDivZero(tree.rhs.pos(), operator, right);
3423         }
3424         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3425     }
3426 
3427     public void visitTypeCast(final JCTypeCast tree) {
3428         Type clazztype = attribType(tree.clazz, env);
3429         chk.validate(tree.clazz, env, false);
3430         //a fresh environment is required for 292 inference to work properly ---
3431         //see Infer.instantiatePolymorphicSignatureInstance()
3432         Env<AttrContext> localEnv = env.dup(tree);
3433         //should we propagate the target type?
3434         final ResultInfo castInfo;
3435         JCExpression expr = TreeInfo.skipParens(tree.expr);
3436         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3437         if (isPoly) {
3438             //expression is a poly - we need to propagate target type info
3439             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3440                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3441                 @Override
3442                 public boolean compatible(Type found, Type req, Warner warn) {
3443                     return types.isCastable(found, req, warn);
3444                 }
3445             });
3446         } else {
3447             //standalone cast - target-type info is not propagated
3448             castInfo = unknownExprInfo;
3449         }
3450         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3451         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3452         if (exprtype.constValue() != null)
3453             owntype = cfolder.coerce(exprtype, owntype);
3454         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3455         if (!isPoly)
3456             chk.checkRedundantCast(localEnv, tree);
3457     }
3458 
3459     public void visitTypeTest(JCInstanceOf tree) {
3460         Type exprtype = chk.checkNullOrRefType(
3461                 tree.expr.pos(), attribExpr(tree.expr, env));
3462         Type clazztype = attribType(tree.clazz, env);
3463         if (!clazztype.hasTag(TYPEVAR)) {
3464             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3465         }
3466         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3467             log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3468             clazztype = types.createErrorType(clazztype);
3469         }
3470         chk.validate(tree.clazz, env, false);
3471         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3472         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3473     }
3474 
3475     public void visitIndexed(JCArrayAccess tree) {
3476         Type owntype = types.createErrorType(tree.type);
3477         Type atype = attribExpr(tree.indexed, env);
3478         attribExpr(tree.index, env, syms.intType);
3479         if (types.isArray(atype))
3480             owntype = types.elemtype(atype);
3481         else if (!atype.hasTag(ERROR))
3482             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3483         if (!pkind().contains(KindSelector.VAL))
3484             owntype = capture(owntype);
3485         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3486     }
3487 
3488     public void visitIdent(JCIdent tree) {
3489         Symbol sym;
3490 
3491         // Find symbol
3492         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3493             // If we are looking for a method, the prototype `pt' will be a
3494             // method type with the type of the call's arguments as parameters.
3495             env.info.pendingResolutionPhase = null;
3496             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3497         } else if (tree.sym != null && tree.sym.kind != VAR) {
3498             sym = tree.sym;
3499         } else {
3500             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3501         }
3502         tree.sym = sym;
3503 
3504         // (1) Also find the environment current for the class where
3505         //     sym is defined (`symEnv').
3506         // Only for pre-tiger versions (1.4 and earlier):
3507         // (2) Also determine whether we access symbol out of an anonymous
3508         //     class in a this or super call.  This is illegal for instance
3509         //     members since such classes don't carry a this$n link.
3510         //     (`noOuterThisPath').
3511         Env<AttrContext> symEnv = env;
3512         boolean noOuterThisPath = false;
3513         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3514             sym.kind.matches(KindSelector.VAL_MTH) &&
3515             sym.owner.kind == TYP &&
3516             tree.name != names._this && tree.name != names._super) {
3517 
3518             // Find environment in which identifier is defined.
3519             while (symEnv.outer != null &&
3520                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3521                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3522                     noOuterThisPath = false;
3523                 symEnv = symEnv.outer;
3524             }
3525         }
3526 
3527         // If symbol is a variable, ...
3528         if (sym.kind == VAR) {
3529             VarSymbol v = (VarSymbol)sym;
3530 
3531             // ..., evaluate its initializer, if it has one, and check for
3532             // illegal forward reference.
3533             checkInit(tree, env, v, false);
3534 
3535             // If we are expecting a variable (as opposed to a value), check
3536             // that the variable is assignable in the current environment.
3537             if (KindSelector.ASG.subset(pkind()))
3538                 checkAssignable(tree.pos(), v, null, env);
3539         }
3540 
3541         // In a constructor body,
3542         // if symbol is a field or instance method, check that it is
3543         // not accessed before the supertype constructor is called.
3544         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3545             sym.kind.matches(KindSelector.VAL_MTH) &&
3546             sym.owner.kind == TYP &&
3547             (sym.flags() & STATIC) == 0) {
3548             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3549                                           sym : thisSym(tree.pos(), env));
3550         }
3551         Env<AttrContext> env1 = env;
3552         if (sym.kind != ERR && sym.kind != TYP &&
3553             sym.owner != null && sym.owner != env1.enclClass.sym) {
3554             // If the found symbol is inaccessible, then it is
3555             // accessed through an enclosing instance.  Locate this
3556             // enclosing instance:
3557             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3558                 env1 = env1.outer;
3559         }
3560 
3561         if (env.info.isSerializable) {
3562             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3563         }
3564 
3565         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3566     }
3567 
3568     public void visitSelect(JCFieldAccess tree) {
3569         // Determine the expected kind of the qualifier expression.
3570         KindSelector skind = KindSelector.NIL;
3571         if (tree.name == names._this || tree.name == names._super ||
3572                 tree.name == names._class)
3573         {
3574             skind = KindSelector.TYP;
3575         } else {
3576             if (pkind().contains(KindSelector.PCK))
3577                 skind = KindSelector.of(skind, KindSelector.PCK);
3578             if (pkind().contains(KindSelector.TYP))
3579                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3580             if (pkind().contains(KindSelector.VAL_MTH))
3581                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3582         }
3583 
3584         // Attribute the qualifier expression, and determine its symbol (if any).
3585         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3586         if (!pkind().contains(KindSelector.TYP_PCK))
3587             site = capture(site); // Capture field access
3588 
3589         // don't allow T.class T[].class, etc
3590         if (skind == KindSelector.TYP) {
3591             Type elt = site;
3592             while (elt.hasTag(ARRAY))
3593                 elt = ((ArrayType)elt).elemtype;
3594             if (elt.hasTag(TYPEVAR)) {
3595                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3596                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3597                 tree.sym = tree.type.tsym;
3598                 return ;
3599             }
3600         }
3601 
3602         // If qualifier symbol is a type or `super', assert `selectSuper'
3603         // for the selection. This is relevant for determining whether
3604         // protected symbols are accessible.
3605         Symbol sitesym = TreeInfo.symbol(tree.selected);
3606         boolean selectSuperPrev = env.info.selectSuper;
3607         env.info.selectSuper =
3608             sitesym != null &&
3609             sitesym.name == names._super;
3610 
3611         // Determine the symbol represented by the selection.
3612         env.info.pendingResolutionPhase = null;
3613         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3614         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3615             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3616             sym = syms.errSymbol;
3617         }
3618         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3619             site = capture(site);
3620             sym = selectSym(tree, sitesym, site, env, resultInfo);
3621         }
3622         boolean varArgs = env.info.lastResolveVarargs();
3623         tree.sym = sym;
3624 
3625         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3626             site = types.skipTypeVars(site, true);
3627         }
3628 
3629         // If that symbol is a variable, ...
3630         if (sym.kind == VAR) {
3631             VarSymbol v = (VarSymbol)sym;
3632 
3633             // ..., evaluate its initializer, if it has one, and check for
3634             // illegal forward reference.
3635             checkInit(tree, env, v, true);
3636 
3637             // If we are expecting a variable (as opposed to a value), check
3638             // that the variable is assignable in the current environment.
3639             if (KindSelector.ASG.subset(pkind()))
3640                 checkAssignable(tree.pos(), v, tree.selected, env);
3641         }
3642 
3643         if (sitesym != null &&
3644                 sitesym.kind == VAR &&
3645                 ((VarSymbol)sitesym).isResourceVariable() &&
3646                 sym.kind == MTH &&
3647                 sym.name.equals(names.close) &&
3648                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3649                 env.info.lint.isEnabled(LintCategory.TRY)) {
3650             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3651         }
3652 
3653         // Disallow selecting a type from an expression
3654         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3655             tree.type = check(tree.selected, pt(),
3656                               sitesym == null ?
3657                                       KindSelector.VAL : sitesym.kind.toSelector(),
3658                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3659         }
3660 
3661         if (isType(sitesym)) {
3662             if (sym.name == names._this) {
3663                 // If `C' is the currently compiled class, check that
3664                 // C.this' does not appear in a call to a super(...)
3665                 if (env.info.isSelfCall &&
3666                     site.tsym == env.enclClass.sym) {
3667                     chk.earlyRefError(tree.pos(), sym);
3668                 }
3669             } else {
3670                 // Check if type-qualified fields or methods are static (JLS)
3671                 if ((sym.flags() & STATIC) == 0 &&
3672                     sym.name != names._super &&
3673                     (sym.kind == VAR || sym.kind == MTH)) {
3674                     rs.accessBase(rs.new StaticError(sym),
3675                               tree.pos(), site, sym.name, true);
3676                 }
3677             }
3678             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3679                     sym.isStatic() && sym.kind == MTH) {
3680                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
3681             }
3682         } else if (sym.kind != ERR &&
3683                    (sym.flags() & STATIC) != 0 &&
3684                    sym.name != names._class) {
3685             // If the qualified item is not a type and the selected item is static, report
3686             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3687             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
3688         }
3689 
3690         // If we are selecting an instance member via a `super', ...
3691         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3692 
3693             // Check that super-qualified symbols are not abstract (JLS)
3694             rs.checkNonAbstract(tree.pos(), sym);
3695 
3696             if (site.isRaw()) {
3697                 // Determine argument types for site.
3698                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3699                 if (site1 != null) site = site1;
3700             }
3701         }
3702 
3703         if (env.info.isSerializable) {
3704             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3705         }
3706 
3707         env.info.selectSuper = selectSuperPrev;
3708         result = checkId(tree, site, sym, env, resultInfo);
3709     }
3710     //where
3711         /** Determine symbol referenced by a Select expression,
3712          *
3713          *  @param tree   The select tree.
3714          *  @param site   The type of the selected expression,
3715          *  @param env    The current environment.
3716          *  @param resultInfo The current result.
3717          */
3718         private Symbol selectSym(JCFieldAccess tree,
3719                                  Symbol location,
3720                                  Type site,
3721                                  Env<AttrContext> env,
3722                                  ResultInfo resultInfo) {
3723             DiagnosticPosition pos = tree.pos();
3724             Name name = tree.name;
3725             switch (site.getTag()) {
3726             case PACKAGE:
3727                 return rs.accessBase(
3728                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3729                     pos, location, site, name, true);
3730             case ARRAY:
3731             case CLASS:
3732                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3733                     return rs.resolveQualifiedMethod(
3734                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3735                 } else if (name == names._this || name == names._super) {
3736                     return rs.resolveSelf(pos, env, site.tsym, name);
3737                 } else if (name == names._class) {
3738                     // In this case, we have already made sure in
3739                     // visitSelect that qualifier expression is a type.
3740                     return syms.getClassField(site, types);
3741                 } else {
3742                     // We are seeing a plain identifier as selector.
3743                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3744                         sym = rs.accessBase(sym, pos, location, site, name, true);
3745                     return sym;
3746                 }
3747             case WILDCARD:
3748                 throw new AssertionError(tree);
3749             case TYPEVAR:
3750                 // Normally, site.getUpperBound() shouldn't be null.
3751                 // It should only happen during memberEnter/attribBase
3752                 // when determining the super type which *must* beac
3753                 // done before attributing the type variables.  In
3754                 // other words, we are seeing this illegal program:
3755                 // class B<T> extends A<T.foo> {}
3756                 Symbol sym = (site.getUpperBound() != null)
3757                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3758                     : null;
3759                 if (sym == null) {
3760                     log.error(pos, Errors.TypeVarCantBeDeref);
3761                     return syms.errSymbol;
3762                 } else {
3763                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3764                         rs.new AccessError(env, site, sym) :
3765                                 sym;
3766                     rs.accessBase(sym2, pos, location, site, name, true);
3767                     return sym;
3768                 }
3769             case ERROR:
3770                 // preserve identifier names through errors
3771                 return types.createErrorType(name, site.tsym, site).tsym;
3772             default:
3773                 // The qualifier expression is of a primitive type -- only
3774                 // .class is allowed for these.
3775                 if (name == names._class) {
3776                     // In this case, we have already made sure in Select that
3777                     // qualifier expression is a type.
3778                     return syms.getClassField(site, types);
3779                 } else {
3780                     log.error(pos, Errors.CantDeref(site));
3781                     return syms.errSymbol;
3782                 }
3783             }
3784         }
3785 
3786         /** Determine type of identifier or select expression and check that
3787          *  (1) the referenced symbol is not deprecated
3788          *  (2) the symbol's type is safe (@see checkSafe)
3789          *  (3) if symbol is a variable, check that its type and kind are
3790          *      compatible with the prototype and protokind.
3791          *  (4) if symbol is an instance field of a raw type,
3792          *      which is being assigned to, issue an unchecked warning if its
3793          *      type changes under erasure.
3794          *  (5) if symbol is an instance method of a raw type, issue an
3795          *      unchecked warning if its argument types change under erasure.
3796          *  If checks succeed:
3797          *    If symbol is a constant, return its constant type
3798          *    else if symbol is a method, return its result type
3799          *    otherwise return its type.
3800          *  Otherwise return errType.
3801          *
3802          *  @param tree       The syntax tree representing the identifier
3803          *  @param site       If this is a select, the type of the selected
3804          *                    expression, otherwise the type of the current class.
3805          *  @param sym        The symbol representing the identifier.
3806          *  @param env        The current environment.
3807          *  @param resultInfo    The expected result
3808          */
3809         Type checkId(JCTree tree,
3810                      Type site,
3811                      Symbol sym,
3812                      Env<AttrContext> env,
3813                      ResultInfo resultInfo) {
3814             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3815                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
3816                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3817         }
3818 
3819         Type checkMethodIdInternal(JCTree tree,
3820                      Type site,
3821                      Symbol sym,
3822                      Env<AttrContext> env,
3823                      ResultInfo resultInfo) {
3824             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3825                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3826                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3827                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3828                 return owntype;
3829             } else {
3830                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3831             }
3832         }
3833 
3834         Type checkIdInternal(JCTree tree,
3835                      Type site,
3836                      Symbol sym,
3837                      Type pt,
3838                      Env<AttrContext> env,
3839                      ResultInfo resultInfo) {
3840             if (pt.isErroneous()) {
3841                 return types.createErrorType(site);
3842             }
3843             Type owntype; // The computed type of this identifier occurrence.
3844             switch (sym.kind) {
3845             case TYP:
3846                 // For types, the computed type equals the symbol's type,
3847                 // except for two situations:
3848                 owntype = sym.type;
3849                 if (owntype.hasTag(CLASS)) {
3850                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3851                     Type ownOuter = owntype.getEnclosingType();
3852 
3853                     // (a) If the symbol's type is parameterized, erase it
3854                     // because no type parameters were given.
3855                     // We recover generic outer type later in visitTypeApply.
3856                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3857                         owntype = types.erasure(owntype);
3858                     }
3859 
3860                     // (b) If the symbol's type is an inner class, then
3861                     // we have to interpret its outer type as a superclass
3862                     // of the site type. Example:
3863                     //
3864                     // class Tree<A> { class Visitor { ... } }
3865                     // class PointTree extends Tree<Point> { ... }
3866                     // ...PointTree.Visitor...
3867                     //
3868                     // Then the type of the last expression above is
3869                     // Tree<Point>.Visitor.
3870                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3871                         Type normOuter = site;
3872                         if (normOuter.hasTag(CLASS)) {
3873                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3874                         }
3875                         if (normOuter == null) // perhaps from an import
3876                             normOuter = types.erasure(ownOuter);
3877                         if (normOuter != ownOuter)
3878                             owntype = new ClassType(
3879                                 normOuter, List.nil(), owntype.tsym,
3880                                 owntype.getMetadata());
3881                     }
3882                 }
3883                 break;
3884             case VAR:
3885                 VarSymbol v = (VarSymbol)sym;
3886 
3887                 if (env.info.enclVar != null
3888                         && v.type.hasTag(NONE)) {
3889                     //self reference to implicitly typed variable declaration
3890                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
3891                     return v.type = types.createErrorType(v.type);
3892                 }
3893 
3894                 // Test (4): if symbol is an instance field of a raw type,
3895                 // which is being assigned to, issue an unchecked warning if
3896                 // its type changes under erasure.
3897                 if (KindSelector.ASG.subset(pkind()) &&
3898                     v.owner.kind == TYP &&
3899                     (v.flags() & STATIC) == 0 &&
3900                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3901                     Type s = types.asOuterSuper(site, v.owner);
3902                     if (s != null &&
3903                         s.isRaw() &&
3904                         !types.isSameType(v.type, v.erasure(types))) {
3905                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
3906                     }
3907                 }
3908                 // The computed type of a variable is the type of the
3909                 // variable symbol, taken as a member of the site type.
3910                 owntype = (sym.owner.kind == TYP &&
3911                            sym.name != names._this && sym.name != names._super)
3912                     ? types.memberType(site, sym)
3913                     : sym.type;
3914 
3915                 // If the variable is a constant, record constant value in
3916                 // computed type.
3917                 if (v.getConstValue() != null && isStaticReference(tree))
3918                     owntype = owntype.constType(v.getConstValue());
3919 
3920                 if (resultInfo.pkind == KindSelector.VAL) {
3921                     owntype = capture(owntype); // capture "names as expressions"
3922                 }
3923                 break;
3924             case MTH: {
3925                 owntype = checkMethod(site, sym,
3926                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3927                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3928                         resultInfo.pt.getTypeArguments());
3929                 break;
3930             }
3931             case PCK: case ERR:
3932                 owntype = sym.type;
3933                 break;
3934             default:
3935                 throw new AssertionError("unexpected kind: " + sym.kind +
3936                                          " in tree " + tree);
3937             }
3938 
3939             // Emit a `deprecation' warning if symbol is deprecated.
3940             // (for constructors (but not for constructor references), the error
3941             // was given when the constructor was resolved)
3942 
3943             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3944                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3945                 chk.checkSunAPI(tree.pos(), sym);
3946                 chk.checkProfile(tree.pos(), sym);
3947             }
3948 
3949             // If symbol is a variable, check that its type and
3950             // kind are compatible with the prototype and protokind.
3951             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3952         }
3953 
3954         /** Check that variable is initialized and evaluate the variable's
3955          *  initializer, if not yet done. Also check that variable is not
3956          *  referenced before it is defined.
3957          *  @param tree    The tree making up the variable reference.
3958          *  @param env     The current environment.
3959          *  @param v       The variable's symbol.
3960          */
3961         private void checkInit(JCTree tree,
3962                                Env<AttrContext> env,
3963                                VarSymbol v,
3964                                boolean onlyWarning) {
3965             // A forward reference is diagnosed if the declaration position
3966             // of the variable is greater than the current tree position
3967             // and the tree and variable definition occur in the same class
3968             // definition.  Note that writes don't count as references.
3969             // This check applies only to class and instance
3970             // variables.  Local variables follow different scope rules,
3971             // and are subject to definite assignment checking.
3972             Env<AttrContext> initEnv = enclosingInitEnv(env);
3973             if (initEnv != null &&
3974                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3975                 v.owner.kind == TYP &&
3976                 v.owner == env.info.scope.owner.enclClass() &&
3977                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3978                 (!env.tree.hasTag(ASSIGN) ||
3979                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3980                 if (!onlyWarning || isStaticEnumField(v)) {
3981                     Error errkey = (initEnv.info.enclVar == v) ?
3982                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
3983                     log.error(tree.pos(), errkey);
3984                 } else if (useBeforeDeclarationWarning) {
3985                     Warning warnkey = (initEnv.info.enclVar == v) ?
3986                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
3987                     log.warning(tree.pos(), warnkey);
3988                 }
3989             }
3990 
3991             v.getConstValue(); // ensure initializer is evaluated
3992 
3993             checkEnumInitializer(tree, env, v);
3994         }
3995 
3996         /**
3997          * Returns the enclosing init environment associated with this env (if any). An init env
3998          * can be either a field declaration env or a static/instance initializer env.
3999          */
4000         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4001             while (true) {
4002                 switch (env.tree.getTag()) {
4003                     case VARDEF:
4004                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4005                         if (vdecl.sym.owner.kind == TYP) {
4006                             //field
4007                             return env;
4008                         }
4009                         break;
4010                     case BLOCK:
4011                         if (env.next.tree.hasTag(CLASSDEF)) {
4012                             //instance/static initializer
4013                             return env;
4014                         }
4015                         break;
4016                     case METHODDEF:
4017                     case CLASSDEF:
4018                     case TOPLEVEL:
4019                         return null;
4020                 }
4021                 Assert.checkNonNull(env.next);
4022                 env = env.next;
4023             }
4024         }
4025 
4026         /**
4027          * Check for illegal references to static members of enum.  In
4028          * an enum type, constructors and initializers may not
4029          * reference its static members unless they are constant.
4030          *
4031          * @param tree    The tree making up the variable reference.
4032          * @param env     The current environment.
4033          * @param v       The variable's symbol.
4034          * @jls  section 8.9 Enums
4035          */
4036         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4037             // JLS:
4038             //
4039             // "It is a compile-time error to reference a static field
4040             // of an enum type that is not a compile-time constant
4041             // (15.28) from constructors, instance initializer blocks,
4042             // or instance variable initializer expressions of that
4043             // type. It is a compile-time error for the constructors,
4044             // instance initializer blocks, or instance variable
4045             // initializer expressions of an enum constant e to refer
4046             // to itself or to an enum constant of the same type that
4047             // is declared to the right of e."
4048             if (isStaticEnumField(v)) {
4049                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4050 
4051                 if (enclClass == null || enclClass.owner == null)
4052                     return;
4053 
4054                 // See if the enclosing class is the enum (or a
4055                 // subclass thereof) declaring v.  If not, this
4056                 // reference is OK.
4057                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4058                     return;
4059 
4060                 // If the reference isn't from an initializer, then
4061                 // the reference is OK.
4062                 if (!Resolve.isInitializer(env))
4063                     return;
4064 
4065                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4066             }
4067         }
4068 
4069         /** Is the given symbol a static, non-constant field of an Enum?
4070          *  Note: enum literals should not be regarded as such
4071          */
4072         private boolean isStaticEnumField(VarSymbol v) {
4073             return Flags.isEnum(v.owner) &&
4074                    Flags.isStatic(v) &&
4075                    !Flags.isConstant(v) &&
4076                    v.name != names._class;
4077         }
4078 
4079     /**
4080      * Check that method arguments conform to its instantiation.
4081      **/
4082     public Type checkMethod(Type site,
4083                             final Symbol sym,
4084                             ResultInfo resultInfo,
4085                             Env<AttrContext> env,
4086                             final List<JCExpression> argtrees,
4087                             List<Type> argtypes,
4088                             List<Type> typeargtypes) {
4089         // Test (5): if symbol is an instance method of a raw type, issue
4090         // an unchecked warning if its argument types change under erasure.
4091         if ((sym.flags() & STATIC) == 0 &&
4092             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4093             Type s = types.asOuterSuper(site, sym.owner);
4094             if (s != null && s.isRaw() &&
4095                 !types.isSameTypes(sym.type.getParameterTypes(),
4096                                    sym.erasure(types).getParameterTypes())) {
4097                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4098             }
4099         }
4100 
4101         if (env.info.defaultSuperCallSite != null) {
4102             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4103                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4104                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4105                 List<MethodSymbol> icand_sup =
4106                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4107                 if (icand_sup.nonEmpty() &&
4108                         icand_sup.head != sym &&
4109                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4110                     log.error(env.tree.pos(),
4111                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4112                     break;
4113                 }
4114             }
4115             env.info.defaultSuperCallSite = null;
4116         }
4117 
4118         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4119             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4120             if (app.meth.hasTag(SELECT) &&
4121                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4122                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4123             }
4124         }
4125 
4126         // Compute the identifier's instantiated type.
4127         // For methods, we need to compute the instance type by
4128         // Resolve.instantiate from the symbol's type as well as
4129         // any type arguments and value arguments.
4130         Warner noteWarner = new Warner();
4131         try {
4132             Type owntype = rs.checkMethod(
4133                     env,
4134                     site,
4135                     sym,
4136                     resultInfo,
4137                     argtypes,
4138                     typeargtypes,
4139                     noteWarner);
4140 
4141             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4142                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4143 
4144             argtypes = argtypes.map(checkDeferredMap);
4145 
4146             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4147                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4148                         sym.name,
4149                         rs.methodArguments(sym.type.getParameterTypes()),
4150                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4151                         kindName(sym.location()),
4152                         sym.location()));
4153                 if (resultInfo.pt != Infer.anyPoly ||
4154                         !owntype.hasTag(METHOD) ||
4155                         !owntype.isPartial()) {
4156                     //if this is not a partially inferred method type, erase return type. Otherwise,
4157                     //erasure is carried out in PartiallyInferredMethodType.check().
4158                     owntype = new MethodType(owntype.getParameterTypes(),
4159                             types.erasure(owntype.getReturnType()),
4160                             types.erasure(owntype.getThrownTypes()),
4161                             syms.methodClass);
4162                 }
4163             }
4164 
4165             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4166                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4167                  PolyKind.POLY : PolyKind.STANDALONE;
4168             TreeInfo.setPolyKind(env.tree, pkind);
4169 
4170             return (resultInfo.pt == Infer.anyPoly) ?
4171                     owntype :
4172                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4173                             resultInfo.checkContext.inferenceContext());
4174         } catch (Infer.InferenceException ex) {
4175             //invalid target type - propagate exception outwards or report error
4176             //depending on the current check context
4177             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4178             return types.createErrorType(site);
4179         } catch (Resolve.InapplicableMethodException ex) {
4180             final JCDiagnostic diag = ex.getDiagnostic();
4181             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4182                 @Override
4183                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4184                     return new Pair<>(sym, diag);
4185                 }
4186             };
4187             List<Type> argtypes2 = argtypes.map(
4188                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4189             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4190                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4191             log.report(errDiag);
4192             return types.createErrorType(site);
4193         }
4194     }
4195 
4196     public void visitLiteral(JCLiteral tree) {
4197         result = check(tree, litType(tree.typetag).constType(tree.value),
4198                 KindSelector.VAL, resultInfo);
4199     }
4200     //where
4201     /** Return the type of a literal with given type tag.
4202      */
4203     Type litType(TypeTag tag) {
4204         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4205     }
4206 
4207     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4208         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4209     }
4210 
4211     public void visitTypeArray(JCArrayTypeTree tree) {
4212         Type etype = attribType(tree.elemtype, env);
4213         Type type = new ArrayType(etype, syms.arrayClass);
4214         result = check(tree, type, KindSelector.TYP, resultInfo);
4215     }
4216 
4217     /** Visitor method for parameterized types.
4218      *  Bound checking is left until later, since types are attributed
4219      *  before supertype structure is completely known
4220      */
4221     public void visitTypeApply(JCTypeApply tree) {
4222         Type owntype = types.createErrorType(tree.type);
4223 
4224         // Attribute functor part of application and make sure it's a class.
4225         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4226 
4227         // Attribute type parameters
4228         List<Type> actuals = attribTypes(tree.arguments, env);
4229 
4230         if (clazztype.hasTag(CLASS)) {
4231             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4232             if (actuals.isEmpty()) //diamond
4233                 actuals = formals;
4234 
4235             if (actuals.length() == formals.length()) {
4236                 List<Type> a = actuals;
4237                 List<Type> f = formals;
4238                 while (a.nonEmpty()) {
4239                     a.head = a.head.withTypeVar(f.head);
4240                     a = a.tail;
4241                     f = f.tail;
4242                 }
4243                 // Compute the proper generic outer
4244                 Type clazzOuter = clazztype.getEnclosingType();
4245                 if (clazzOuter.hasTag(CLASS)) {
4246                     Type site;
4247                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4248                     if (clazz.hasTag(IDENT)) {
4249                         site = env.enclClass.sym.type;
4250                     } else if (clazz.hasTag(SELECT)) {
4251                         site = ((JCFieldAccess) clazz).selected.type;
4252                     } else throw new AssertionError(""+tree);
4253                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4254                         if (site.hasTag(CLASS))
4255                             site = types.asOuterSuper(site, clazzOuter.tsym);
4256                         if (site == null)
4257                             site = types.erasure(clazzOuter);
4258                         clazzOuter = site;
4259                     }
4260                 }
4261                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4262                                         clazztype.getMetadata());
4263             } else {
4264                 if (formals.length() != 0) {
4265                     log.error(tree.pos(),
4266                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4267                 } else {
4268                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4269                 }
4270                 owntype = types.createErrorType(tree.type);
4271             }
4272         }
4273         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4274     }
4275 
4276     public void visitTypeUnion(JCTypeUnion tree) {
4277         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4278         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4279         for (JCExpression typeTree : tree.alternatives) {
4280             Type ctype = attribType(typeTree, env);
4281             ctype = chk.checkType(typeTree.pos(),
4282                           chk.checkClassType(typeTree.pos(), ctype),
4283                           syms.throwableType);
4284             if (!ctype.isErroneous()) {
4285                 //check that alternatives of a union type are pairwise
4286                 //unrelated w.r.t. subtyping
4287                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4288                     for (Type t : multicatchTypes) {
4289                         boolean sub = types.isSubtype(ctype, t);
4290                         boolean sup = types.isSubtype(t, ctype);
4291                         if (sub || sup) {
4292                             //assume 'a' <: 'b'
4293                             Type a = sub ? ctype : t;
4294                             Type b = sub ? t : ctype;
4295                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4296                         }
4297                     }
4298                 }
4299                 multicatchTypes.append(ctype);
4300                 if (all_multicatchTypes != null)
4301                     all_multicatchTypes.append(ctype);
4302             } else {
4303                 if (all_multicatchTypes == null) {
4304                     all_multicatchTypes = new ListBuffer<>();
4305                     all_multicatchTypes.appendList(multicatchTypes);
4306                 }
4307                 all_multicatchTypes.append(ctype);
4308             }
4309         }
4310         Type t = check(tree, types.lub(multicatchTypes.toList()),
4311                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4312         if (t.hasTag(CLASS)) {
4313             List<Type> alternatives =
4314                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4315             t = new UnionClassType((ClassType) t, alternatives);
4316         }
4317         tree.type = result = t;
4318     }
4319 
4320     public void visitTypeIntersection(JCTypeIntersection tree) {
4321         attribTypes(tree.bounds, env);
4322         tree.type = result = checkIntersection(tree, tree.bounds);
4323     }
4324 
4325     public void visitTypeParameter(JCTypeParameter tree) {
4326         TypeVar typeVar = (TypeVar) tree.type;
4327 
4328         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4329             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4330         }
4331 
4332         if (!typeVar.bound.isErroneous()) {
4333             //fixup type-parameter bound computed in 'attribTypeVariables'
4334             typeVar.bound = checkIntersection(tree, tree.bounds);
4335         }
4336     }
4337 
4338     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4339         Set<Type> boundSet = new HashSet<>();
4340         if (bounds.nonEmpty()) {
4341             // accept class or interface or typevar as first bound.
4342             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4343             boundSet.add(types.erasure(bounds.head.type));
4344             if (bounds.head.type.isErroneous()) {
4345                 return bounds.head.type;
4346             }
4347             else if (bounds.head.type.hasTag(TYPEVAR)) {
4348                 // if first bound was a typevar, do not accept further bounds.
4349                 if (bounds.tail.nonEmpty()) {
4350                     log.error(bounds.tail.head.pos(),
4351                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4352                     return bounds.head.type;
4353                 }
4354             } else {
4355                 // if first bound was a class or interface, accept only interfaces
4356                 // as further bounds.
4357                 for (JCExpression bound : bounds.tail) {
4358                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4359                     if (bound.type.isErroneous()) {
4360                         bounds = List.of(bound);
4361                     }
4362                     else if (bound.type.hasTag(CLASS)) {
4363                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4364                     }
4365                 }
4366             }
4367         }
4368 
4369         if (bounds.length() == 0) {
4370             return syms.objectType;
4371         } else if (bounds.length() == 1) {
4372             return bounds.head.type;
4373         } else {
4374             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4375             // ... the variable's bound is a class type flagged COMPOUND
4376             // (see comment for TypeVar.bound).
4377             // In this case, generate a class tree that represents the
4378             // bound class, ...
4379             JCExpression extending;
4380             List<JCExpression> implementing;
4381             if (!bounds.head.type.isInterface()) {
4382                 extending = bounds.head;
4383                 implementing = bounds.tail;
4384             } else {
4385                 extending = null;
4386                 implementing = bounds;
4387             }
4388             JCClassDecl cd = make.at(tree).ClassDef(
4389                 make.Modifiers(PUBLIC | ABSTRACT),
4390                 names.empty, List.nil(),
4391                 extending, implementing, List.nil());
4392 
4393             ClassSymbol c = (ClassSymbol)owntype.tsym;
4394             Assert.check((c.flags() & COMPOUND) != 0);
4395             cd.sym = c;
4396             c.sourcefile = env.toplevel.sourcefile;
4397 
4398             // ... and attribute the bound class
4399             c.flags_field |= UNATTRIBUTED;
4400             Env<AttrContext> cenv = enter.classEnv(cd, env);
4401             typeEnvs.put(c, cenv);
4402             attribClass(c);
4403             return owntype;
4404         }
4405     }
4406 
4407     public void visitWildcard(JCWildcard tree) {
4408         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4409         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4410             ? syms.objectType
4411             : attribType(tree.inner, env);
4412         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4413                                               tree.kind.kind,
4414                                               syms.boundClass),
4415                 KindSelector.TYP, resultInfo);
4416     }
4417 
4418     public void visitAnnotation(JCAnnotation tree) {
4419         Assert.error("should be handled in annotate");
4420     }
4421 
4422     public void visitAnnotatedType(JCAnnotatedType tree) {
4423         attribAnnotationTypes(tree.annotations, env);
4424         Type underlyingType = attribType(tree.underlyingType, env);
4425         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4426 
4427         if (!env.info.isNewClass)
4428             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4429         result = tree.type = annotatedType;
4430     }
4431 
4432     public void visitErroneous(JCErroneous tree) {
4433         if (tree.errs != null)
4434             for (JCTree err : tree.errs)
4435                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4436         result = tree.type = syms.errType;
4437     }
4438 
4439     /** Default visitor method for all other trees.
4440      */
4441     public void visitTree(JCTree tree) {
4442         throw new AssertionError();
4443     }
4444 
4445     /**
4446      * Attribute an env for either a top level tree or class or module declaration.
4447      */
4448     public void attrib(Env<AttrContext> env) {
4449         switch (env.tree.getTag()) {
4450             case MODULEDEF:
4451                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4452                 break;
4453             case TOPLEVEL:
4454                 attribTopLevel(env);
4455                 break;
4456             case PACKAGEDEF:
4457                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4458                 break;
4459             default:
4460                 attribClass(env.tree.pos(), env.enclClass.sym);
4461         }
4462     }
4463 
4464     /**
4465      * Attribute a top level tree. These trees are encountered when the
4466      * package declaration has annotations.
4467      */
4468     public void attribTopLevel(Env<AttrContext> env) {
4469         JCCompilationUnit toplevel = env.toplevel;
4470         try {
4471             annotate.flush();
4472         } catch (CompletionFailure ex) {
4473             chk.completionError(toplevel.pos(), ex);
4474         }
4475     }
4476 
4477     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4478         try {
4479             annotate.flush();
4480             attribPackage(p);
4481         } catch (CompletionFailure ex) {
4482             chk.completionError(pos, ex);
4483         }
4484     }
4485 
4486     void attribPackage(PackageSymbol p) {
4487         Env<AttrContext> env = typeEnvs.get(p);
4488         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4489     }
4490 
4491     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4492         try {
4493             annotate.flush();
4494             attribModule(m);
4495         } catch (CompletionFailure ex) {
4496             chk.completionError(pos, ex);
4497         }
4498     }
4499 
4500     void attribModule(ModuleSymbol m) {
4501         // Get environment current at the point of module definition.
4502         Env<AttrContext> env = enter.typeEnvs.get(m);
4503         attribStat(env.tree, env);
4504     }
4505 
4506     /** Main method: attribute class definition associated with given class symbol.
4507      *  reporting completion failures at the given position.
4508      *  @param pos The source position at which completion errors are to be
4509      *             reported.
4510      *  @param c   The class symbol whose definition will be attributed.
4511      */
4512     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4513         try {
4514             annotate.flush();
4515             attribClass(c);
4516         } catch (CompletionFailure ex) {
4517             chk.completionError(pos, ex);
4518         }
4519     }
4520 
4521     /** Attribute class definition associated with given class symbol.
4522      *  @param c   The class symbol whose definition will be attributed.
4523      */
4524     void attribClass(ClassSymbol c) throws CompletionFailure {
4525         if (c.type.hasTag(ERROR)) return;
4526 
4527         // Check for cycles in the inheritance graph, which can arise from
4528         // ill-formed class files.
4529         chk.checkNonCyclic(null, c.type);
4530 
4531         Type st = types.supertype(c.type);
4532         if ((c.flags_field & Flags.COMPOUND) == 0) {
4533             // First, attribute superclass.
4534             if (st.hasTag(CLASS))
4535                 attribClass((ClassSymbol)st.tsym);
4536 
4537             // Next attribute owner, if it is a class.
4538             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4539                 attribClass((ClassSymbol)c.owner);
4540         }
4541 
4542         // The previous operations might have attributed the current class
4543         // if there was a cycle. So we test first whether the class is still
4544         // UNATTRIBUTED.
4545         if ((c.flags_field & UNATTRIBUTED) != 0) {
4546             c.flags_field &= ~UNATTRIBUTED;
4547 
4548             // Get environment current at the point of class definition.
4549             Env<AttrContext> env = typeEnvs.get(c);
4550 
4551             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4552             // because the annotations were not available at the time the env was created. Therefore,
4553             // we look up the environment chain for the first enclosing environment for which the
4554             // lint value is set. Typically, this is the parent env, but might be further if there
4555             // are any envs created as a result of TypeParameter nodes.
4556             Env<AttrContext> lintEnv = env;
4557             while (lintEnv.info.lint == null)
4558                 lintEnv = lintEnv.next;
4559 
4560             // Having found the enclosing lint value, we can initialize the lint value for this class
4561             env.info.lint = lintEnv.info.lint.augment(c);
4562 
4563             Lint prevLint = chk.setLint(env.info.lint);
4564             JavaFileObject prev = log.useSource(c.sourcefile);
4565             ResultInfo prevReturnRes = env.info.returnResult;
4566 
4567             try {
4568                 deferredLintHandler.flush(env.tree);
4569                 env.info.returnResult = null;
4570                 // java.lang.Enum may not be subclassed by a non-enum
4571                 if (st.tsym == syms.enumSym &&
4572                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4573                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4574 
4575                 // Enums may not be extended by source-level classes
4576                 if (st.tsym != null &&
4577                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4578                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4579                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4580                 }
4581 
4582                 if (isSerializable(c.type)) {
4583                     env.info.isSerializable = true;
4584                 }
4585 
4586                 attribClassBody(env, c);
4587 
4588                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4589                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4590                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4591                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4592             } finally {
4593                 env.info.returnResult = prevReturnRes;
4594                 log.useSource(prev);
4595                 chk.setLint(prevLint);
4596             }
4597 
4598         }
4599     }
4600 
4601     public void visitImport(JCImport tree) {
4602         // nothing to do
4603     }
4604 
4605     public void visitModuleDef(JCModuleDecl tree) {
4606         tree.sym.completeUsesProvides();
4607         ModuleSymbol msym = tree.sym;
4608         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4609         Lint prevLint = chk.setLint(lint);
4610         chk.checkModuleName(tree);
4611         chk.checkDeprecatedAnnotation(tree, msym);
4612 
4613         try {
4614             deferredLintHandler.flush(tree.pos());
4615         } finally {
4616             chk.setLint(prevLint);
4617         }
4618     }
4619 
4620     /** Finish the attribution of a class. */
4621     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4622         JCClassDecl tree = (JCClassDecl)env.tree;
4623         Assert.check(c == tree.sym);
4624 
4625         // Validate type parameters, supertype and interfaces.
4626         attribStats(tree.typarams, env);
4627         if (!c.isAnonymous()) {
4628             //already checked if anonymous
4629             chk.validate(tree.typarams, env);
4630             chk.validate(tree.extending, env);
4631             chk.validate(tree.implementing, env);
4632         }
4633 
4634         c.markAbstractIfNeeded(types);
4635 
4636         // If this is a non-abstract class, check that it has no abstract
4637         // methods or unimplemented methods of an implemented interface.
4638         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4639             chk.checkAllDefined(tree.pos(), c);
4640         }
4641 
4642         if ((c.flags() & ANNOTATION) != 0) {
4643             if (tree.implementing.nonEmpty())
4644                 log.error(tree.implementing.head.pos(),
4645                           Errors.CantExtendIntfAnnotation);
4646             if (tree.typarams.nonEmpty()) {
4647                 log.error(tree.typarams.head.pos(),
4648                           Errors.IntfAnnotationCantHaveTypeParams(c));
4649             }
4650 
4651             // If this annotation type has a @Repeatable, validate
4652             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4653             // If this annotation type has a @Repeatable, validate
4654             if (repeatable != null) {
4655                 // get diagnostic position for error reporting
4656                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4657                 Assert.checkNonNull(cbPos);
4658 
4659                 chk.validateRepeatable(c, repeatable, cbPos);
4660             }
4661         } else {
4662             // Check that all extended classes and interfaces
4663             // are compatible (i.e. no two define methods with same arguments
4664             // yet different return types).  (JLS 8.4.6.3)
4665             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4666             if (allowDefaultMethods) {
4667                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4668             }
4669         }
4670 
4671         // Check that class does not import the same parameterized interface
4672         // with two different argument lists.
4673         chk.checkClassBounds(tree.pos(), c.type);
4674 
4675         tree.type = c.type;
4676 
4677         for (List<JCTypeParameter> l = tree.typarams;
4678              l.nonEmpty(); l = l.tail) {
4679              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4680         }
4681 
4682         // Check that a generic class doesn't extend Throwable
4683         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4684             log.error(tree.extending.pos(), Errors.GenericThrowable);
4685 
4686         // Check that all methods which implement some
4687         // method conform to the method they implement.
4688         chk.checkImplementations(tree);
4689 
4690         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4691         checkAutoCloseable(tree.pos(), env, c.type);
4692 
4693         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4694             // Attribute declaration
4695             attribStat(l.head, env);
4696             // Check that declarations in inner classes are not static (JLS 8.1.2)
4697             // Make an exception for static constants.
4698             if (c.owner.kind != PCK &&
4699                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4700                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4701                 Symbol sym = null;
4702                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4703                 if (sym == null ||
4704                     sym.kind != VAR ||
4705                     ((VarSymbol) sym).getConstValue() == null)
4706                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4707             }
4708         }
4709 
4710         // Check for cycles among non-initial constructors.
4711         chk.checkCyclicConstructors(tree);
4712 
4713         // Check for cycles among annotation elements.
4714         chk.checkNonCyclicElements(tree);
4715 
4716         // Check for proper use of serialVersionUID
4717         if (env.info.lint.isEnabled(LintCategory.SERIAL)
4718                 && isSerializable(c.type)
4719                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
4720                 && !c.isAnonymous()) {
4721             checkSerialVersionUID(tree, c);
4722         }
4723         if (allowTypeAnnos) {
4724             // Correctly organize the postions of the type annotations
4725             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4726 
4727             // Check type annotations applicability rules
4728             validateTypeAnnotations(tree, false);
4729         }
4730     }
4731         // where
4732         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4733         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4734             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4735                 if (types.isSameType(al.head.annotationType.type, t))
4736                     return al.head.pos();
4737             }
4738 
4739             return null;
4740         }
4741 
4742         /** check if a type is a subtype of Serializable, if that is available. */
4743         boolean isSerializable(Type t) {
4744             try {
4745                 syms.serializableType.complete();
4746             }
4747             catch (CompletionFailure e) {
4748                 return false;
4749             }
4750             return types.isSubtype(t, syms.serializableType);
4751         }
4752 
4753         /** Check that an appropriate serialVersionUID member is defined. */
4754         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4755 
4756             // check for presence of serialVersionUID
4757             VarSymbol svuid = null;
4758             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4759                 if (sym.kind == VAR) {
4760                     svuid = (VarSymbol)sym;
4761                     break;
4762                 }
4763             }
4764 
4765             if (svuid == null) {
4766                 log.warning(LintCategory.SERIAL,
4767                         tree.pos(), Warnings.MissingSVUID(c));
4768                 return;
4769             }
4770 
4771             // check that it is static final
4772             if ((svuid.flags() & (STATIC | FINAL)) !=
4773                 (STATIC | FINAL))
4774                 log.warning(LintCategory.SERIAL,
4775                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4776 
4777             // check that it is long
4778             else if (!svuid.type.hasTag(LONG))
4779                 log.warning(LintCategory.SERIAL,
4780                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4781 
4782             // check constant
4783             else if (svuid.getConstValue() == null)
4784                 log.warning(LintCategory.SERIAL,
4785                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4786         }
4787 
4788     private Type capture(Type type) {
4789         return types.capture(type);
4790     }
4791 
4792     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
4793         if (type.isErroneous()) {
4794             tree.vartype = make.at(Position.NOPOS).Erroneous();
4795         } else {
4796             tree.vartype = make.at(Position.NOPOS).Type(type);
4797         }
4798     }
4799 
4800     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4801         tree.accept(new TypeAnnotationsValidator(sigOnly));
4802     }
4803     //where
4804     private final class TypeAnnotationsValidator extends TreeScanner {
4805 
4806         private final boolean sigOnly;
4807         public TypeAnnotationsValidator(boolean sigOnly) {
4808             this.sigOnly = sigOnly;
4809         }
4810 
4811         public void visitAnnotation(JCAnnotation tree) {
4812             chk.validateTypeAnnotation(tree, false);
4813             super.visitAnnotation(tree);
4814         }
4815         public void visitAnnotatedType(JCAnnotatedType tree) {
4816             if (!tree.underlyingType.type.isErroneous()) {
4817                 super.visitAnnotatedType(tree);
4818             }
4819         }
4820         public void visitTypeParameter(JCTypeParameter tree) {
4821             chk.validateTypeAnnotations(tree.annotations, true);
4822             scan(tree.bounds);
4823             // Don't call super.
4824             // This is needed because above we call validateTypeAnnotation with
4825             // false, which would forbid annotations on type parameters.
4826             // super.visitTypeParameter(tree);
4827         }
4828         public void visitMethodDef(JCMethodDecl tree) {
4829             if (tree.recvparam != null &&
4830                     !tree.recvparam.vartype.type.isErroneous()) {
4831                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4832                         tree.recvparam.vartype.type.tsym);
4833             }
4834             if (tree.restype != null && tree.restype.type != null) {
4835                 validateAnnotatedType(tree.restype, tree.restype.type);
4836             }
4837             if (sigOnly) {
4838                 scan(tree.mods);
4839                 scan(tree.restype);
4840                 scan(tree.typarams);
4841                 scan(tree.recvparam);
4842                 scan(tree.params);
4843                 scan(tree.thrown);
4844             } else {
4845                 scan(tree.defaultValue);
4846                 scan(tree.body);
4847             }
4848         }
4849         public void visitVarDef(final JCVariableDecl tree) {
4850             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4851             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
4852                 validateAnnotatedType(tree.vartype, tree.sym.type);
4853             scan(tree.mods);
4854             scan(tree.vartype);
4855             if (!sigOnly) {
4856                 scan(tree.init);
4857             }
4858         }
4859         public void visitTypeCast(JCTypeCast tree) {
4860             if (tree.clazz != null && tree.clazz.type != null)
4861                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4862             super.visitTypeCast(tree);
4863         }
4864         public void visitTypeTest(JCInstanceOf tree) {
4865             if (tree.clazz != null && tree.clazz.type != null)
4866                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4867             super.visitTypeTest(tree);
4868         }
4869         public void visitNewClass(JCNewClass tree) {
4870             if (tree.clazz != null && tree.clazz.type != null) {
4871                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4872                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4873                             tree.clazz.type.tsym);
4874                 }
4875                 if (tree.def != null) {
4876                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4877                 }
4878 
4879                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4880             }
4881             super.visitNewClass(tree);
4882         }
4883         public void visitNewArray(JCNewArray tree) {
4884             if (tree.elemtype != null && tree.elemtype.type != null) {
4885                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4886                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4887                             tree.elemtype.type.tsym);
4888                 }
4889                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4890             }
4891             super.visitNewArray(tree);
4892         }
4893         public void visitClassDef(JCClassDecl tree) {
4894             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4895             if (sigOnly) {
4896                 scan(tree.mods);
4897                 scan(tree.typarams);
4898                 scan(tree.extending);
4899                 scan(tree.implementing);
4900             }
4901             for (JCTree member : tree.defs) {
4902                 if (member.hasTag(Tag.CLASSDEF)) {
4903                     continue;
4904                 }
4905                 scan(member);
4906             }
4907         }
4908         public void visitBlock(JCBlock tree) {
4909             if (!sigOnly) {
4910                 scan(tree.stats);
4911             }
4912         }
4913 
4914         /* I would want to model this after
4915          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4916          * and override visitSelect and visitTypeApply.
4917          * However, we only set the annotated type in the top-level type
4918          * of the symbol.
4919          * Therefore, we need to override each individual location where a type
4920          * can occur.
4921          */
4922         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4923             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4924 
4925             if (type.isPrimitiveOrVoid()) {
4926                 return;
4927             }
4928 
4929             JCTree enclTr = errtree;
4930             Type enclTy = type;
4931 
4932             boolean repeat = true;
4933             while (repeat) {
4934                 if (enclTr.hasTag(TYPEAPPLY)) {
4935                     List<Type> tyargs = enclTy.getTypeArguments();
4936                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4937                     if (trargs.length() > 0) {
4938                         // Nothing to do for diamonds
4939                         if (tyargs.length() == trargs.length()) {
4940                             for (int i = 0; i < tyargs.length(); ++i) {
4941                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4942                             }
4943                         }
4944                         // If the lengths don't match, it's either a diamond
4945                         // or some nested type that redundantly provides
4946                         // type arguments in the tree.
4947                     }
4948 
4949                     // Look at the clazz part of a generic type
4950                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4951                 }
4952 
4953                 if (enclTr.hasTag(SELECT)) {
4954                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4955                     if (enclTy != null &&
4956                             !enclTy.hasTag(NONE)) {
4957                         enclTy = enclTy.getEnclosingType();
4958                     }
4959                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4960                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4961                     if (enclTy == null || enclTy.hasTag(NONE)) {
4962                         if (at.getAnnotations().size() == 1) {
4963                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4964                         } else {
4965                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4966                             for (JCAnnotation an : at.getAnnotations()) {
4967                                 comps.add(an.attribute);
4968                             }
4969                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4970                         }
4971                         repeat = false;
4972                     }
4973                     enclTr = at.underlyingType;
4974                     // enclTy doesn't need to be changed
4975                 } else if (enclTr.hasTag(IDENT)) {
4976                     repeat = false;
4977                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4978                     JCWildcard wc = (JCWildcard) enclTr;
4979                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
4980                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4981                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
4982                     } else {
4983                         // Nothing to do for UNBOUND
4984                     }
4985                     repeat = false;
4986                 } else if (enclTr.hasTag(TYPEARRAY)) {
4987                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4988                     validateAnnotatedType(art.getType(), art.elemtype.type);
4989                     repeat = false;
4990                 } else if (enclTr.hasTag(TYPEUNION)) {
4991                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4992                     for (JCTree t : ut.getTypeAlternatives()) {
4993                         validateAnnotatedType(t, t.type);
4994                     }
4995                     repeat = false;
4996                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4997                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4998                     for (JCTree t : it.getBounds()) {
4999                         validateAnnotatedType(t, t.type);
5000                     }
5001                     repeat = false;
5002                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5003                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5004                     repeat = false;
5005                 } else {
5006                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5007                             " within: "+ errtree + " with kind: " + errtree.getKind());
5008                 }
5009             }
5010         }
5011 
5012         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5013                 Symbol sym) {
5014             // Ensure that no declaration annotations are present.
5015             // Note that a tree type might be an AnnotatedType with
5016             // empty annotations, if only declaration annotations were given.
5017             // This method will raise an error for such a type.
5018             for (JCAnnotation ai : annotations) {
5019                 if (!ai.type.isErroneous() &&
5020                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5021                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5022                 }
5023             }
5024         }
5025     }
5026 
5027     // <editor-fold desc="post-attribution visitor">
5028 
5029     /**
5030      * Handle missing types/symbols in an AST. This routine is useful when
5031      * the compiler has encountered some errors (which might have ended up
5032      * terminating attribution abruptly); if the compiler is used in fail-over
5033      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5034      * prevents NPE to be progagated during subsequent compilation steps.
5035      */
5036     public void postAttr(JCTree tree) {
5037         new PostAttrAnalyzer().scan(tree);
5038     }
5039 
5040     class PostAttrAnalyzer extends TreeScanner {
5041 
5042         private void initTypeIfNeeded(JCTree that) {
5043             if (that.type == null) {
5044                 if (that.hasTag(METHODDEF)) {
5045                     that.type = dummyMethodType((JCMethodDecl)that);
5046                 } else {
5047                     that.type = syms.unknownType;
5048                 }
5049             }
5050         }
5051 
5052         /* Construct a dummy method type. If we have a method declaration,
5053          * and the declared return type is void, then use that return type
5054          * instead of UNKNOWN to avoid spurious error messages in lambda
5055          * bodies (see:JDK-8041704).
5056          */
5057         private Type dummyMethodType(JCMethodDecl md) {
5058             Type restype = syms.unknownType;
5059             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5060                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5061                 if (prim.typetag == VOID)
5062                     restype = syms.voidType;
5063             }
5064             return new MethodType(List.nil(), restype,
5065                                   List.nil(), syms.methodClass);
5066         }
5067         private Type dummyMethodType() {
5068             return dummyMethodType(null);
5069         }
5070 
5071         @Override
5072         public void scan(JCTree tree) {
5073             if (tree == null) return;
5074             if (tree instanceof JCExpression) {
5075                 initTypeIfNeeded(tree);
5076             }
5077             super.scan(tree);
5078         }
5079 
5080         @Override
5081         public void visitIdent(JCIdent that) {
5082             if (that.sym == null) {
5083                 that.sym = syms.unknownSymbol;
5084             }
5085         }
5086 
5087         @Override
5088         public void visitSelect(JCFieldAccess that) {
5089             if (that.sym == null) {
5090                 that.sym = syms.unknownSymbol;
5091             }
5092             super.visitSelect(that);
5093         }
5094 
5095         @Override
5096         public void visitClassDef(JCClassDecl that) {
5097             initTypeIfNeeded(that);
5098             if (that.sym == null) {
5099                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5100             }
5101             super.visitClassDef(that);
5102         }
5103 
5104         @Override
5105         public void visitMethodDef(JCMethodDecl that) {
5106             initTypeIfNeeded(that);
5107             if (that.sym == null) {
5108                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5109             }
5110             super.visitMethodDef(that);
5111         }
5112 
5113         @Override
5114         public void visitVarDef(JCVariableDecl that) {
5115             initTypeIfNeeded(that);
5116             if (that.sym == null) {
5117                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5118                 that.sym.adr = 0;
5119             }
5120             if (that.vartype == null) {
5121                 that.vartype = make.at(Position.NOPOS).Erroneous();
5122             }
5123             super.visitVarDef(that);
5124         }
5125 
5126         @Override
5127         public void visitNewClass(JCNewClass that) {
5128             if (that.constructor == null) {
5129                 that.constructor = new MethodSymbol(0, names.init,
5130                         dummyMethodType(), syms.noSymbol);
5131             }
5132             if (that.constructorType == null) {
5133                 that.constructorType = syms.unknownType;
5134             }
5135             super.visitNewClass(that);
5136         }
5137 
5138         @Override
5139         public void visitAssignop(JCAssignOp that) {
5140             if (that.operator == null) {
5141                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5142                         -1, syms.noSymbol);
5143             }
5144             super.visitAssignop(that);
5145         }
5146 
5147         @Override
5148         public void visitBinary(JCBinary that) {
5149             if (that.operator == null) {
5150                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5151                         -1, syms.noSymbol);
5152             }
5153             super.visitBinary(that);
5154         }
5155 
5156         @Override
5157         public void visitUnary(JCUnary that) {
5158             if (that.operator == null) {
5159                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5160                         -1, syms.noSymbol);
5161             }
5162             super.visitUnary(that);
5163         }
5164 
5165         @Override
5166         public void visitLambda(JCLambda that) {
5167             super.visitLambda(that);
5168             if (that.target == null) {
5169                 that.target = syms.unknownType;
5170             }
5171         }
5172 
5173         @Override
5174         public void visitReference(JCMemberReference that) {
5175             super.visitReference(that);
5176             if (that.sym == null) {
5177                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5178                         syms.noSymbol);
5179             }
5180             if (that.target == null) {
5181                 that.target = syms.unknownType;
5182             }
5183         }
5184     }
5185     // </editor-fold>
5186 
5187     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5188         new TreeScanner() {
5189             Symbol packge = pkg;
5190             @Override
5191             public void visitIdent(JCIdent that) {
5192                 that.sym = packge;
5193             }
5194 
5195             @Override
5196             public void visitSelect(JCFieldAccess that) {
5197                 that.sym = packge;
5198                 packge = packge.owner;
5199                 super.visitSelect(that);
5200             }
5201         }.scan(pid);
5202     }
5203 
5204 }