1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Scope.WriteableScope;
  41 import com.sun.tools.javac.code.Source.Feature;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  45 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  46 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  47 import com.sun.tools.javac.comp.Check.CheckContext;
  48 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  49 import com.sun.tools.javac.jvm.*;
  50 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  51 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  52 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  53 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  54 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  55 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  56 import com.sun.tools.javac.tree.*;
  57 import com.sun.tools.javac.tree.JCTree.*;
  58 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  59 import com.sun.tools.javac.util.*;
  60 import com.sun.tools.javac.util.DefinedBy.Api;
  61 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  62 import com.sun.tools.javac.util.JCDiagnostic.Error;
  63 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  64 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  65 import com.sun.tools.javac.util.List;
  66 
  67 import static com.sun.tools.javac.code.Flags.*;
  68 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  69 import static com.sun.tools.javac.code.Flags.BLOCK;
  70 import static com.sun.tools.javac.code.Kinds.*;
  71 import static com.sun.tools.javac.code.Kinds.Kind.*;
  72 import static com.sun.tools.javac.code.TypeTag.*;
  73 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  74 import com.sun.tools.javac.comp.Analyzer.AnalyzerMode;
  75 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  76 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  77 
  78 /** This is the main context-dependent analysis phase in GJC. It
  79  *  encompasses name resolution, type checking and constant folding as
  80  *  subtasks. Some subtasks involve auxiliary classes.
  81  *  @see Check
  82  *  @see Resolve
  83  *  @see ConstFold
  84  *  @see Infer
  85  *
  86  *  <p><b>This is NOT part of any supported API.
  87  *  If you write code that depends on this, you do so at your own risk.
  88  *  This code and its internal interfaces are subject to change or
  89  *  deletion without notice.</b>
  90  */
  91 public class Attr extends JCTree.Visitor {
  92     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  93 
  94     final Names names;
  95     final Log log;
  96     final Symtab syms;
  97     final Resolve rs;
  98     final Operators operators;
  99     final Infer infer;
 100     final Analyzer analyzer;
 101     final DeferredAttr deferredAttr;
 102     final Check chk;
 103     final Flow flow;
 104     final MemberEnter memberEnter;
 105     final TypeEnter typeEnter;
 106     final TreeMaker make;
 107     final ConstFold cfolder;
 108     final Enter enter;
 109     final Target target;
 110     final Types types;
 111     final JCDiagnostic.Factory diags;
 112     final TypeAnnotations typeAnnotations;
 113     final DeferredLintHandler deferredLintHandler;
 114     final TypeEnvs typeEnvs;
 115     final Dependencies dependencies;
 116     final Annotate annotate;
 117     final ArgumentAttr argumentAttr;
 118 
 119     public static Attr instance(Context context) {
 120         Attr instance = context.get(attrKey);
 121         if (instance == null)
 122             instance = new Attr(context);
 123         return instance;
 124     }
 125 
 126     protected Attr(Context context) {
 127         context.put(attrKey, this);
 128 
 129         names = Names.instance(context);
 130         log = Log.instance(context);
 131         syms = Symtab.instance(context);
 132         rs = Resolve.instance(context);
 133         operators = Operators.instance(context);
 134         chk = Check.instance(context);
 135         flow = Flow.instance(context);
 136         memberEnter = MemberEnter.instance(context);
 137         typeEnter = TypeEnter.instance(context);
 138         make = TreeMaker.instance(context);
 139         enter = Enter.instance(context);
 140         infer = Infer.instance(context);
 141         analyzer = Analyzer.instance(context);
 142         deferredAttr = DeferredAttr.instance(context);
 143         cfolder = ConstFold.instance(context);
 144         target = Target.instance(context);
 145         types = Types.instance(context);
 146         diags = JCDiagnostic.Factory.instance(context);
 147         annotate = Annotate.instance(context);
 148         typeAnnotations = TypeAnnotations.instance(context);
 149         deferredLintHandler = DeferredLintHandler.instance(context);
 150         typeEnvs = TypeEnvs.instance(context);
 151         dependencies = Dependencies.instance(context);
 152         argumentAttr = ArgumentAttr.instance(context);
 153 
 154         Options options = Options.instance(context);
 155 
 156         Source source = Source.instance(context);
 157         allowStringsInSwitch = Feature.STRINGS_IN_SWITCH.allowedInSource(source);
 158         allowPoly = Feature.POLY.allowedInSource(source);
 159         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
 160         allowLambda = Feature.LAMBDA.allowedInSource(source);
 161         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
 162         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
 163         sourceName = source.name;
 164         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 165 
 166         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 167         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 168         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 169         methodAttrInfo = new MethodAttrInfo();
 170         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 171         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 172         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 173     }
 174 
 175     /** Switch: support target-typing inference
 176      */
 177     boolean allowPoly;
 178 
 179     /** Switch: support type annotations.
 180      */
 181     boolean allowTypeAnnos;
 182 
 183     /** Switch: support lambda expressions ?
 184      */
 185     boolean allowLambda;
 186 
 187     /** Switch: support default methods ?
 188      */
 189     boolean allowDefaultMethods;
 190 
 191     /** Switch: static interface methods enabled?
 192      */
 193     boolean allowStaticInterfaceMethods;
 194 
 195     /**
 196      * Switch: warn about use of variable before declaration?
 197      * RFE: 6425594
 198      */
 199     boolean useBeforeDeclarationWarning;
 200 
 201     /**
 202      * Switch: allow strings in switch?
 203      */
 204     boolean allowStringsInSwitch;
 205 
 206     /**
 207      * Switch: name of source level; used for error reporting.
 208      */
 209     String sourceName;
 210 
 211     /** Check kind and type of given tree against protokind and prototype.
 212      *  If check succeeds, store type in tree and return it.
 213      *  If check fails, store errType in tree and return it.
 214      *  No checks are performed if the prototype is a method type.
 215      *  It is not necessary in this case since we know that kind and type
 216      *  are correct.
 217      *
 218      *  @param tree     The tree whose kind and type is checked
 219      *  @param found    The computed type of the tree
 220      *  @param ownkind  The computed kind of the tree
 221      *  @param resultInfo  The expected result of the tree
 222      */
 223     Type check(final JCTree tree,
 224                final Type found,
 225                final KindSelector ownkind,
 226                final ResultInfo resultInfo) {
 227         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 228         Type owntype;
 229         boolean shouldCheck = !found.hasTag(ERROR) &&
 230                 !resultInfo.pt.hasTag(METHOD) &&
 231                 !resultInfo.pt.hasTag(FORALL);
 232         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 233             log.error(tree.pos(),
 234                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 235                                             ownkind.kindNames()));
 236             owntype = types.createErrorType(found);
 237         } else if (allowPoly && inferenceContext.free(found)) {
 238             //delay the check if there are inference variables in the found type
 239             //this means we are dealing with a partially inferred poly expression
 240             owntype = shouldCheck ? resultInfo.pt : found;
 241             if (resultInfo.checkMode.installPostInferenceHook()) {
 242                 inferenceContext.addFreeTypeListener(List.of(found),
 243                         instantiatedContext -> {
 244                             ResultInfo pendingResult =
 245                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 246                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 247                         });
 248             }
 249         } else {
 250             owntype = shouldCheck ?
 251             resultInfo.check(tree, found) :
 252             found;
 253         }
 254         if (resultInfo.checkMode.updateTreeType()) {
 255             tree.type = owntype;
 256         }
 257         return owntype;
 258     }
 259 
 260     /** Is given blank final variable assignable, i.e. in a scope where it
 261      *  may be assigned to even though it is final?
 262      *  @param v      The blank final variable.
 263      *  @param env    The current environment.
 264      */
 265     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 266         Symbol owner = env.info.scope.owner;
 267            // owner refers to the innermost variable, method or
 268            // initializer block declaration at this point.
 269         return
 270             v.owner == owner
 271             ||
 272             ((owner.name == names.init ||    // i.e. we are in a constructor
 273               owner.kind == VAR ||           // i.e. we are in a variable initializer
 274               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 275              &&
 276              v.owner == owner.owner
 277              &&
 278              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 279     }
 280 
 281     /** Check that variable can be assigned to.
 282      *  @param pos    The current source code position.
 283      *  @param v      The assigned variable
 284      *  @param base   If the variable is referred to in a Select, the part
 285      *                to the left of the `.', null otherwise.
 286      *  @param env    The current environment.
 287      */
 288     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 289         if (v.name == names._this) {
 290             log.error(pos, Errors.CantAssignValToThis);
 291         } else if ((v.flags() & FINAL) != 0 &&
 292             ((v.flags() & HASINIT) != 0
 293              ||
 294              !((base == null ||
 295                TreeInfo.isThisQualifier(base)) &&
 296                isAssignableAsBlankFinal(v, env)))) {
 297             if (v.isResourceVariable()) { //TWR resource
 298                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 299             } else {
 300                 log.error(pos, Errors.CantAssignValToFinalVar(v));
 301             }
 302         }
 303     }
 304 
 305     /** Does tree represent a static reference to an identifier?
 306      *  It is assumed that tree is either a SELECT or an IDENT.
 307      *  We have to weed out selects from non-type names here.
 308      *  @param tree    The candidate tree.
 309      */
 310     boolean isStaticReference(JCTree tree) {
 311         if (tree.hasTag(SELECT)) {
 312             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 313             if (lsym == null || lsym.kind != TYP) {
 314                 return false;
 315             }
 316         }
 317         return true;
 318     }
 319 
 320     /** Is this symbol a type?
 321      */
 322     static boolean isType(Symbol sym) {
 323         return sym != null && sym.kind == TYP;
 324     }
 325 
 326     /** The current `this' symbol.
 327      *  @param env    The current environment.
 328      */
 329     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 330         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 331     }
 332 
 333     /** Attribute a parsed identifier.
 334      * @param tree Parsed identifier name
 335      * @param topLevel The toplevel to use
 336      */
 337     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 338         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 339         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 340                                            syms.errSymbol.name,
 341                                            null, null, null, null);
 342         localEnv.enclClass.sym = syms.errSymbol;
 343         return attribIdent(tree, localEnv);
 344     }
 345 
 346     /** Attribute a parsed identifier.
 347      * @param tree Parsed identifier name
 348      * @param env The env to use
 349      */
 350     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 351         return tree.accept(identAttributer, env);
 352     }
 353     // where
 354         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 355         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 356             @Override @DefinedBy(Api.COMPILER_TREE)
 357             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 358                 Symbol site = visit(node.getExpression(), env);
 359                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 360                     return site;
 361                 Name name = (Name)node.getIdentifier();
 362                 if (site.kind == PCK) {
 363                     env.toplevel.packge = (PackageSymbol)site;
 364                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 365                             KindSelector.TYP_PCK);
 366                 } else {
 367                     env.enclClass.sym = (ClassSymbol)site;
 368                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 369                 }
 370             }
 371 
 372             @Override @DefinedBy(Api.COMPILER_TREE)
 373             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 374                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 375             }
 376         }
 377 
 378     public Type coerce(Type etype, Type ttype) {
 379         return cfolder.coerce(etype, ttype);
 380     }
 381 
 382     public Type attribType(JCTree node, TypeSymbol sym) {
 383         Env<AttrContext> env = typeEnvs.get(sym);
 384         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 385         return attribTree(node, localEnv, unknownTypeInfo);
 386     }
 387 
 388     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 389         // Attribute qualifying package or class.
 390         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 391         return attribTree(s.selected, env,
 392                           new ResultInfo(tree.staticImport ?
 393                                          KindSelector.TYP : KindSelector.TYP_PCK,
 394                        Type.noType));
 395     }
 396 
 397     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 398         breakTree = tree;
 399         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 400         EnumSet<AnalyzerMode> analyzerModes = EnumSet.copyOf(analyzer.analyzerModes);
 401         try {
 402             analyzer.analyzerModes.clear();
 403             attribExpr(expr, env);
 404         } catch (BreakAttr b) {
 405             return b.env;
 406         } catch (AssertionError ae) {
 407             if (ae.getCause() instanceof BreakAttr) {
 408                 return ((BreakAttr)(ae.getCause())).env;
 409             } else {
 410                 throw ae;
 411             }
 412         } finally {
 413             breakTree = null;
 414             log.useSource(prev);
 415             analyzer.analyzerModes.addAll(analyzerModes);
 416         }
 417         return env;
 418     }
 419 
 420     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 421         breakTree = tree;
 422         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 423         EnumSet<AnalyzerMode> analyzerModes = EnumSet.copyOf(analyzer.analyzerModes);
 424         try {
 425             analyzer.analyzerModes.clear();
 426             attribStat(stmt, env);
 427         } catch (BreakAttr b) {
 428             return b.env;
 429         } catch (AssertionError ae) {
 430             if (ae.getCause() instanceof BreakAttr) {
 431                 return ((BreakAttr)(ae.getCause())).env;
 432             } else {
 433                 throw ae;
 434             }
 435         } finally {
 436             breakTree = null;
 437             log.useSource(prev);
 438             analyzer.analyzerModes.addAll(analyzerModes);
 439         }
 440         return env;
 441     }
 442 
 443     private JCTree breakTree = null;
 444 
 445     private static class BreakAttr extends RuntimeException {
 446         static final long serialVersionUID = -6924771130405446405L;
 447         private Env<AttrContext> env;
 448         private BreakAttr(Env<AttrContext> env) {
 449             this.env = env;
 450         }
 451     }
 452 
 453     /**
 454      * Mode controlling behavior of Attr.Check
 455      */
 456     enum CheckMode {
 457 
 458         NORMAL,
 459 
 460         /**
 461          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 462          * that the captured var cache in {@code InferenceContext} will be used in read-only
 463          * mode when performing inference checks.
 464          */
 465         NO_TREE_UPDATE {
 466             @Override
 467             public boolean updateTreeType() {
 468                 return false;
 469             }
 470         },
 471         /**
 472          * Mode signalling that caller will manage free types in tree decorations.
 473          */
 474         NO_INFERENCE_HOOK {
 475             @Override
 476             public boolean installPostInferenceHook() {
 477                 return false;
 478             }
 479         };
 480 
 481         public boolean updateTreeType() {
 482             return true;
 483         }
 484         public boolean installPostInferenceHook() {
 485             return true;
 486         }
 487     }
 488 
 489 
 490     class ResultInfo {
 491         final KindSelector pkind;
 492         final Type pt;
 493         final CheckContext checkContext;
 494         final CheckMode checkMode;
 495 
 496         ResultInfo(KindSelector pkind, Type pt) {
 497             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 498         }
 499 
 500         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 501             this(pkind, pt, chk.basicHandler, checkMode);
 502         }
 503 
 504         protected ResultInfo(KindSelector pkind,
 505                              Type pt, CheckContext checkContext) {
 506             this(pkind, pt, checkContext, CheckMode.NORMAL);
 507         }
 508 
 509         protected ResultInfo(KindSelector pkind,
 510                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 511             this.pkind = pkind;
 512             this.pt = pt;
 513             this.checkContext = checkContext;
 514             this.checkMode = checkMode;
 515         }
 516 
 517         /**
 518          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
 519          * @param tree The tree to be type-checked.
 520          * @return true if {@ArgumentAttr} should be used.
 521          */
 522         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 523 
 524         protected Type check(final DiagnosticPosition pos, final Type found) {
 525             return chk.checkType(pos, found, pt, checkContext);
 526         }
 527 
 528         protected ResultInfo dup(Type newPt) {
 529             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 530         }
 531 
 532         protected ResultInfo dup(CheckContext newContext) {
 533             return new ResultInfo(pkind, pt, newContext, checkMode);
 534         }
 535 
 536         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 537             return new ResultInfo(pkind, newPt, newContext, checkMode);
 538         }
 539 
 540         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 541             return new ResultInfo(pkind, newPt, newContext, newMode);
 542         }
 543 
 544         protected ResultInfo dup(CheckMode newMode) {
 545             return new ResultInfo(pkind, pt, checkContext, newMode);
 546         }
 547 
 548         @Override
 549         public String toString() {
 550             if (pt != null) {
 551                 return pt.toString();
 552             } else {
 553                 return "";
 554             }
 555         }
 556     }
 557 
 558     class MethodAttrInfo extends ResultInfo {
 559         public MethodAttrInfo() {
 560             this(chk.basicHandler);
 561         }
 562 
 563         public MethodAttrInfo(CheckContext checkContext) {
 564             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 565         }
 566 
 567         @Override
 568         protected boolean needsArgumentAttr(JCTree tree) {
 569             return true;
 570         }
 571 
 572         protected ResultInfo dup(Type newPt) {
 573             throw new IllegalStateException();
 574         }
 575 
 576         protected ResultInfo dup(CheckContext newContext) {
 577             return new MethodAttrInfo(newContext);
 578         }
 579 
 580         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 581             throw new IllegalStateException();
 582         }
 583 
 584         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 585             throw new IllegalStateException();
 586         }
 587 
 588         protected ResultInfo dup(CheckMode newMode) {
 589             throw new IllegalStateException();
 590         }
 591     }
 592 
 593     class RecoveryInfo extends ResultInfo {
 594 
 595         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 596             this(deferredAttrContext, Type.recoveryType);
 597         }
 598 
 599         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 600             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 601                 @Override
 602                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 603                     return deferredAttrContext;
 604                 }
 605                 @Override
 606                 public boolean compatible(Type found, Type req, Warner warn) {
 607                     return true;
 608                 }
 609                 @Override
 610                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 611                     if (pt == Type.recoveryType) {
 612                         chk.basicHandler.report(pos, details);
 613                     }
 614                 }
 615             });
 616         }
 617     }
 618 
 619     final ResultInfo statInfo;
 620     final ResultInfo varAssignmentInfo;
 621     final ResultInfo methodAttrInfo;
 622     final ResultInfo unknownExprInfo;
 623     final ResultInfo unknownTypeInfo;
 624     final ResultInfo unknownTypeExprInfo;
 625     final ResultInfo recoveryInfo;
 626 
 627     Type pt() {
 628         return resultInfo.pt;
 629     }
 630 
 631     KindSelector pkind() {
 632         return resultInfo.pkind;
 633     }
 634 
 635 /* ************************************************************************
 636  * Visitor methods
 637  *************************************************************************/
 638 
 639     /** Visitor argument: the current environment.
 640      */
 641     Env<AttrContext> env;
 642 
 643     /** Visitor argument: the currently expected attribution result.
 644      */
 645     ResultInfo resultInfo;
 646 
 647     /** Visitor result: the computed type.
 648      */
 649     Type result;
 650 
 651     /** Visitor method: attribute a tree, catching any completion failure
 652      *  exceptions. Return the tree's type.
 653      *
 654      *  @param tree    The tree to be visited.
 655      *  @param env     The environment visitor argument.
 656      *  @param resultInfo   The result info visitor argument.
 657      */
 658     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 659         Env<AttrContext> prevEnv = this.env;
 660         ResultInfo prevResult = this.resultInfo;
 661         try {
 662             this.env = env;
 663             this.resultInfo = resultInfo;
 664             if (resultInfo.needsArgumentAttr(tree)) {
 665                 result = argumentAttr.attribArg(tree, env);
 666             } else {
 667                 tree.accept(this);
 668             }
 669             if (tree == breakTree &&
 670                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 671                 breakTreeFound(copyEnv(env));
 672             }
 673             return result;
 674         } catch (CompletionFailure ex) {
 675             tree.type = syms.errType;
 676             return chk.completionError(tree.pos(), ex);
 677         } finally {
 678             this.env = prevEnv;
 679             this.resultInfo = prevResult;
 680         }
 681     }
 682 
 683     protected void breakTreeFound(Env<AttrContext> env) {
 684         throw new BreakAttr(env);
 685     }
 686 
 687     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 688         Env<AttrContext> newEnv =
 689                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 690         if (newEnv.outer != null) {
 691             newEnv.outer = copyEnv(newEnv.outer);
 692         }
 693         return newEnv;
 694     }
 695 
 696     WriteableScope copyScope(WriteableScope sc) {
 697         WriteableScope newScope = WriteableScope.create(sc.owner);
 698         List<Symbol> elemsList = List.nil();
 699         for (Symbol sym : sc.getSymbols()) {
 700             elemsList = elemsList.prepend(sym);
 701         }
 702         for (Symbol s : elemsList) {
 703             newScope.enter(s);
 704         }
 705         return newScope;
 706     }
 707 
 708     /** Derived visitor method: attribute an expression tree.
 709      */
 710     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 711         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 712     }
 713 
 714     /** Derived visitor method: attribute an expression tree with
 715      *  no constraints on the computed type.
 716      */
 717     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 718         return attribTree(tree, env, unknownExprInfo);
 719     }
 720 
 721     /** Derived visitor method: attribute a type tree.
 722      */
 723     public Type attribType(JCTree tree, Env<AttrContext> env) {
 724         Type result = attribType(tree, env, Type.noType);
 725         return result;
 726     }
 727 
 728     /** Derived visitor method: attribute a type tree.
 729      */
 730     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 731         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 732         return result;
 733     }
 734 
 735     /** Derived visitor method: attribute a statement or definition tree.
 736      */
 737     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 738         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 739         try {
 740             return attribTree(tree, env, statInfo);
 741         } finally {
 742             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 743         }
 744     }
 745 
 746     /** Attribute a list of expressions, returning a list of types.
 747      */
 748     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 749         ListBuffer<Type> ts = new ListBuffer<>();
 750         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 751             ts.append(attribExpr(l.head, env, pt));
 752         return ts.toList();
 753     }
 754 
 755     /** Attribute a list of statements, returning nothing.
 756      */
 757     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 758         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 759             attribStat(l.head, env);
 760     }
 761 
 762     /** Attribute the arguments in a method call, returning the method kind.
 763      */
 764     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 765         KindSelector kind = initialKind;
 766         for (JCExpression arg : trees) {
 767             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 768             if (argtype.hasTag(DEFERRED)) {
 769                 kind = KindSelector.of(KindSelector.POLY, kind);
 770             }
 771             argtypes.append(argtype);
 772         }
 773         return kind;
 774     }
 775 
 776     /** Attribute a type argument list, returning a list of types.
 777      *  Caller is responsible for calling checkRefTypes.
 778      */
 779     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 780         ListBuffer<Type> argtypes = new ListBuffer<>();
 781         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 782             argtypes.append(attribType(l.head, env));
 783         return argtypes.toList();
 784     }
 785 
 786     /** Attribute a type argument list, returning a list of types.
 787      *  Check that all the types are references.
 788      */
 789     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 790         List<Type> types = attribAnyTypes(trees, env);
 791         return chk.checkRefTypes(trees, types);
 792     }
 793 
 794     /**
 795      * Attribute type variables (of generic classes or methods).
 796      * Compound types are attributed later in attribBounds.
 797      * @param typarams the type variables to enter
 798      * @param env      the current environment
 799      */
 800     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 801         for (JCTypeParameter tvar : typarams) {
 802             TypeVar a = (TypeVar)tvar.type;
 803             a.tsym.flags_field |= UNATTRIBUTED;
 804             a.bound = Type.noType;
 805             if (!tvar.bounds.isEmpty()) {
 806                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 807                 for (JCExpression bound : tvar.bounds.tail)
 808                     bounds = bounds.prepend(attribType(bound, env));
 809                 types.setBounds(a, bounds.reverse());
 810             } else {
 811                 // if no bounds are given, assume a single bound of
 812                 // java.lang.Object.
 813                 types.setBounds(a, List.of(syms.objectType));
 814             }
 815             a.tsym.flags_field &= ~UNATTRIBUTED;
 816         }
 817         for (JCTypeParameter tvar : typarams) {
 818             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 819         }
 820     }
 821 
 822     /**
 823      * Attribute the type references in a list of annotations.
 824      */
 825     void attribAnnotationTypes(List<JCAnnotation> annotations,
 826                                Env<AttrContext> env) {
 827         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 828             JCAnnotation a = al.head;
 829             attribType(a.annotationType, env);
 830         }
 831     }
 832 
 833     /**
 834      * Attribute a "lazy constant value".
 835      *  @param env         The env for the const value
 836      *  @param variable    The initializer for the const value
 837      *  @param type        The expected type, or null
 838      *  @see VarSymbol#setLazyConstValue
 839      */
 840     public Object attribLazyConstantValue(Env<AttrContext> env,
 841                                       JCVariableDecl variable,
 842                                       Type type) {
 843 
 844         DiagnosticPosition prevLintPos
 845                 = deferredLintHandler.setPos(variable.pos());
 846 
 847         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 848         try {
 849             Type itype = attribExpr(variable.init, env, type);
 850             if (variable.isImplicitlyTyped()) {
 851                 //fixup local variable type
 852                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
 853             }
 854             if (itype.constValue() != null) {
 855                 return coerce(itype, type).constValue();
 856             } else {
 857                 return null;
 858             }
 859         } finally {
 860             log.useSource(prevSource);
 861             deferredLintHandler.setPos(prevLintPos);
 862         }
 863     }
 864 
 865     /** Attribute type reference in an `extends' or `implements' clause.
 866      *  Supertypes of anonymous inner classes are usually already attributed.
 867      *
 868      *  @param tree              The tree making up the type reference.
 869      *  @param env               The environment current at the reference.
 870      *  @param classExpected     true if only a class is expected here.
 871      *  @param interfaceExpected true if only an interface is expected here.
 872      */
 873     Type attribBase(JCTree tree,
 874                     Env<AttrContext> env,
 875                     boolean classExpected,
 876                     boolean interfaceExpected,
 877                     boolean checkExtensible) {
 878         Type t = tree.type != null ?
 879             tree.type :
 880             attribType(tree, env);
 881         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 882     }
 883     Type checkBase(Type t,
 884                    JCTree tree,
 885                    Env<AttrContext> env,
 886                    boolean classExpected,
 887                    boolean interfaceExpected,
 888                    boolean checkExtensible) {
 889         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 890                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 891         if (t.tsym.isAnonymous()) {
 892             log.error(pos, Errors.CantInheritFromAnon);
 893             return types.createErrorType(t);
 894         }
 895         if (t.isErroneous())
 896             return t;
 897         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 898             // check that type variable is already visible
 899             if (t.getUpperBound() == null) {
 900                 log.error(pos, Errors.IllegalForwardRef);
 901                 return types.createErrorType(t);
 902             }
 903         } else {
 904             t = chk.checkClassType(pos, t, checkExtensible);
 905         }
 906         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 907             log.error(pos, Errors.IntfExpectedHere);
 908             // return errType is necessary since otherwise there might
 909             // be undetected cycles which cause attribution to loop
 910             return types.createErrorType(t);
 911         } else if (checkExtensible &&
 912                    classExpected &&
 913                    (t.tsym.flags() & INTERFACE) != 0) {
 914             log.error(pos, Errors.NoIntfExpectedHere);
 915             return types.createErrorType(t);
 916         }
 917         if (checkExtensible &&
 918             ((t.tsym.flags() & FINAL) != 0)) {
 919             log.error(pos,
 920                       Errors.CantInheritFromFinal(t.tsym));
 921         }
 922         chk.checkNonCyclic(pos, t);
 923         return t;
 924     }
 925 
 926     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 927         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 928         id.type = env.info.scope.owner.enclClass().type;
 929         id.sym = env.info.scope.owner.enclClass();
 930         return id.type;
 931     }
 932 
 933     public void visitClassDef(JCClassDecl tree) {
 934         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 935                 Optional.ofNullable(env.info.isSpeculative ?
 936                         argumentAttr.withLocalCacheContext() : null);
 937         try {
 938             // Local and anonymous classes have not been entered yet, so we need to
 939             // do it now.
 940             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 941                 enter.classEnter(tree, env);
 942             } else {
 943                 // If this class declaration is part of a class level annotation,
 944                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 945                 // order to simplify later steps and allow for sensible error
 946                 // messages.
 947                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 948                     enter.classEnter(tree, env);
 949             }
 950 
 951             ClassSymbol c = tree.sym;
 952             if (c == null) {
 953                 // exit in case something drastic went wrong during enter.
 954                 result = null;
 955             } else {
 956                 // make sure class has been completed:
 957                 c.complete();
 958 
 959                 // If this class appears as an anonymous class
 960                 // in a superclass constructor call
 961                 // disable implicit outer instance from being passed.
 962                 // (This would be an illegal access to "this before super").
 963                 if (env.info.isSelfCall &&
 964                         env.tree.hasTag(NEWCLASS)) {
 965                     c.flags_field |= NOOUTERTHIS;
 966                 }
 967                 attribClass(tree.pos(), c);
 968                 result = tree.type = c.type;
 969             }
 970         } finally {
 971             localCacheContext.ifPresent(LocalCacheContext::leave);
 972         }
 973     }
 974 
 975     public void visitMethodDef(JCMethodDecl tree) {
 976         MethodSymbol m = tree.sym;
 977         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 978 
 979         Lint lint = env.info.lint.augment(m);
 980         Lint prevLint = chk.setLint(lint);
 981         MethodSymbol prevMethod = chk.setMethod(m);
 982         try {
 983             deferredLintHandler.flush(tree.pos());
 984             chk.checkDeprecatedAnnotation(tree.pos(), m);
 985 
 986 
 987             // Create a new environment with local scope
 988             // for attributing the method.
 989             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 990             localEnv.info.lint = lint;
 991 
 992             attribStats(tree.typarams, localEnv);
 993 
 994             // If we override any other methods, check that we do so properly.
 995             // JLS ???
 996             if (m.isStatic()) {
 997                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 998             } else {
 999                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1000             }
1001             chk.checkOverride(env, tree, m);
1002 
1003             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1004                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1005             }
1006 
1007             // Enter all type parameters into the local method scope.
1008             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1009                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1010 
1011             ClassSymbol owner = env.enclClass.sym;
1012             if ((owner.flags() & ANNOTATION) != 0 &&
1013                     (tree.params.nonEmpty() ||
1014                     tree.recvparam != null))
1015                 log.error(tree.params.nonEmpty() ?
1016                         tree.params.head.pos() :
1017                         tree.recvparam.pos(),
1018                         Errors.IntfAnnotationMembersCantHaveParams);
1019 
1020             // Attribute all value parameters.
1021             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1022                 attribStat(l.head, localEnv);
1023             }
1024 
1025             chk.checkVarargsMethodDecl(localEnv, tree);
1026 
1027             // Check that type parameters are well-formed.
1028             chk.validate(tree.typarams, localEnv);
1029 
1030             // Check that result type is well-formed.
1031             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1032                 chk.validate(tree.restype, localEnv);
1033 
1034             // Check that receiver type is well-formed.
1035             if (tree.recvparam != null) {
1036                 // Use a new environment to check the receiver parameter.
1037                 // Otherwise I get "might not have been initialized" errors.
1038                 // Is there a better way?
1039                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1040                 attribType(tree.recvparam, newEnv);
1041                 chk.validate(tree.recvparam, newEnv);
1042             }
1043 
1044             // annotation method checks
1045             if ((owner.flags() & ANNOTATION) != 0) {
1046                 // annotation method cannot have throws clause
1047                 if (tree.thrown.nonEmpty()) {
1048                     log.error(tree.thrown.head.pos(),
1049                               Errors.ThrowsNotAllowedInIntfAnnotation);
1050                 }
1051                 // annotation method cannot declare type-parameters
1052                 if (tree.typarams.nonEmpty()) {
1053                     log.error(tree.typarams.head.pos(),
1054                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1055                 }
1056                 // validate annotation method's return type (could be an annotation type)
1057                 chk.validateAnnotationType(tree.restype);
1058                 // ensure that annotation method does not clash with members of Object/Annotation
1059                 chk.validateAnnotationMethod(tree.pos(), m);
1060             }
1061 
1062             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1063                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1064 
1065             if (tree.body == null) {
1066                 // Empty bodies are only allowed for
1067                 // abstract, native, or interface methods, or for methods
1068                 // in a retrofit signature class.
1069                 if (tree.defaultValue != null) {
1070                     if ((owner.flags() & ANNOTATION) == 0)
1071                         log.error(tree.pos(),
1072                                   Errors.DefaultAllowedInIntfAnnotationMember);
1073                 }
1074                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1075                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1076             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1077                 if ((owner.flags() & INTERFACE) != 0) {
1078                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1079                 } else {
1080                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1081                 }
1082             } else if ((tree.mods.flags & NATIVE) != 0) {
1083                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1084             } else {
1085                 // Add an implicit super() call unless an explicit call to
1086                 // super(...) or this(...) is given
1087                 // or we are compiling class java.lang.Object.
1088                 if (tree.name == names.init && owner.type != syms.objectType) {
1089                     JCBlock body = tree.body;
1090                     if (body.stats.isEmpty() ||
1091                             !TreeInfo.isSelfCall(body.stats.head)) {
1092                         body.stats = body.stats.
1093                                 prepend(typeEnter.SuperCall(make.at(body.pos),
1094                                         List.nil(),
1095                                         List.nil(),
1096                                         false));
1097                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1098                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1099                             TreeInfo.isSuperCall(body.stats.head)) {
1100                         // enum constructors are not allowed to call super
1101                         // directly, so make sure there aren't any super calls
1102                         // in enum constructors, except in the compiler
1103                         // generated one.
1104                         log.error(tree.body.stats.head.pos(),
1105                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1106                     }
1107                 }
1108 
1109                 // Attribute all type annotations in the body
1110                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1111                 annotate.flush();
1112 
1113                 // Attribute method body.
1114                 attribStat(tree.body, localEnv);
1115             }
1116 
1117             localEnv.info.scope.leave();
1118             result = tree.type = m.type;
1119         } finally {
1120             chk.setLint(prevLint);
1121             chk.setMethod(prevMethod);
1122         }
1123     }
1124 
1125     public void visitVarDef(JCVariableDecl tree) {
1126         // Local variables have not been entered yet, so we need to do it now:
1127         if (env.info.scope.owner.kind == MTH) {
1128             if (tree.sym != null) {
1129                 // parameters have already been entered
1130                 env.info.scope.enter(tree.sym);
1131             } else {
1132                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1133                     if (tree.init == null) {
1134                         //cannot use 'var' without initializer
1135                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1136                         tree.vartype = make.Erroneous();
1137                     } else {
1138                         Fragment msg = canInferLocalVarType(tree);
1139                         if (msg != null) {
1140                             //cannot use 'var' with initializer which require an explicit target
1141                             //(e.g. lambda, method reference, array initializer).
1142                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1143                             tree.vartype = make.Erroneous();
1144                         }
1145                     }
1146                 }
1147                 try {
1148                     annotate.blockAnnotations();
1149                     memberEnter.memberEnter(tree, env);
1150                 } finally {
1151                     annotate.unblockAnnotations();
1152                 }
1153             }
1154         } else {
1155             if (tree.init != null) {
1156                 // Field initializer expression need to be entered.
1157                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1158                 annotate.flush();
1159             }
1160         }
1161 
1162         VarSymbol v = tree.sym;
1163         Lint lint = env.info.lint.augment(v);
1164         Lint prevLint = chk.setLint(lint);
1165 
1166         // Check that the variable's declared type is well-formed.
1167         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1168                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1169                 (tree.sym.flags() & PARAMETER) != 0;
1170         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1171 
1172         try {
1173             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1174             deferredLintHandler.flush(tree.pos());
1175             chk.checkDeprecatedAnnotation(tree.pos(), v);
1176 
1177             if (tree.init != null) {
1178                 if ((v.flags_field & FINAL) == 0 ||
1179                     !memberEnter.needsLazyConstValue(tree.init)) {
1180                     // Not a compile-time constant
1181                     // Attribute initializer in a new environment
1182                     // with the declared variable as owner.
1183                     // Check that initializer conforms to variable's declared type.
1184                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1185                     initEnv.info.lint = lint;
1186                     // In order to catch self-references, we set the variable's
1187                     // declaration position to maximal possible value, effectively
1188                     // marking the variable as undefined.
1189                     initEnv.info.enclVar = v;
1190                     attribExpr(tree.init, initEnv, v.type);
1191                     if (tree.isImplicitlyTyped()) {
1192                         //fixup local variable type
1193                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1194                     }
1195                 }
1196                 if (tree.isImplicitlyTyped()) {
1197                     setSyntheticVariableType(tree, v.type);
1198                 }
1199             }
1200             result = tree.type = v.type;
1201         }
1202         finally {
1203             chk.setLint(prevLint);
1204         }
1205     }
1206 
1207     Fragment canInferLocalVarType(JCVariableDecl tree) {
1208         LocalInitScanner lis = new LocalInitScanner();
1209         lis.scan(tree.init);
1210         return lis.badInferenceMsg;
1211     }
1212 
1213     static class LocalInitScanner extends TreeScanner {
1214         Fragment badInferenceMsg = null;
1215         boolean needsTarget = true;
1216 
1217         @Override
1218         public void visitNewArray(JCNewArray tree) {
1219             if (tree.elemtype == null && needsTarget) {
1220                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1221             }
1222         }
1223 
1224         @Override
1225         public void visitLambda(JCLambda tree) {
1226             if (needsTarget) {
1227                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1228             }
1229         }
1230 
1231         @Override
1232         public void visitTypeCast(JCTypeCast tree) {
1233             boolean prevNeedsTarget = needsTarget;
1234             try {
1235                 needsTarget = false;
1236                 super.visitTypeCast(tree);
1237             } finally {
1238                 needsTarget = prevNeedsTarget;
1239             }
1240         }
1241 
1242         @Override
1243         public void visitReference(JCMemberReference tree) {
1244             if (needsTarget) {
1245                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1246             }
1247         }
1248 
1249         @Override
1250         public void visitNewClass(JCNewClass tree) {
1251             boolean prevNeedsTarget = needsTarget;
1252             try {
1253                 needsTarget = false;
1254                 super.visitNewClass(tree);
1255             } finally {
1256                 needsTarget = prevNeedsTarget;
1257             }
1258         }
1259 
1260         @Override
1261         public void visitApply(JCMethodInvocation tree) {
1262             boolean prevNeedsTarget = needsTarget;
1263             try {
1264                 needsTarget = false;
1265                 super.visitApply(tree);
1266             } finally {
1267                 needsTarget = prevNeedsTarget;
1268             }
1269         }
1270     }
1271 
1272     public void visitSkip(JCSkip tree) {
1273         result = null;
1274     }
1275 
1276     public void visitBlock(JCBlock tree) {
1277         if (env.info.scope.owner.kind == TYP) {
1278             // Block is a static or instance initializer;
1279             // let the owner of the environment be a freshly
1280             // created BLOCK-method.
1281             Symbol fakeOwner =
1282                 new MethodSymbol(tree.flags | BLOCK |
1283                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1284                     env.info.scope.owner);
1285             final Env<AttrContext> localEnv =
1286                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1287 
1288             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1289             // Attribute all type annotations in the block
1290             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1291             annotate.flush();
1292             attribStats(tree.stats, localEnv);
1293 
1294             {
1295                 // Store init and clinit type annotations with the ClassSymbol
1296                 // to allow output in Gen.normalizeDefs.
1297                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1298                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1299                 if ((tree.flags & STATIC) != 0) {
1300                     cs.appendClassInitTypeAttributes(tas);
1301                 } else {
1302                     cs.appendInitTypeAttributes(tas);
1303                 }
1304             }
1305         } else {
1306             // Create a new local environment with a local scope.
1307             Env<AttrContext> localEnv =
1308                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1309             try {
1310                 attribStats(tree.stats, localEnv);
1311             } finally {
1312                 localEnv.info.scope.leave();
1313             }
1314         }
1315         result = null;
1316     }
1317 
1318     public void visitDoLoop(JCDoWhileLoop tree) {
1319         attribStat(tree.body, env.dup(tree));
1320         attribExpr(tree.cond, env, syms.booleanType);
1321         result = null;
1322     }
1323 
1324     public void visitWhileLoop(JCWhileLoop tree) {
1325         attribExpr(tree.cond, env, syms.booleanType);
1326         attribStat(tree.body, env.dup(tree));
1327         result = null;
1328     }
1329 
1330     public void visitForLoop(JCForLoop tree) {
1331         Env<AttrContext> loopEnv =
1332             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1333         try {
1334             attribStats(tree.init, loopEnv);
1335             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1336             loopEnv.tree = tree; // before, we were not in loop!
1337             attribStats(tree.step, loopEnv);
1338             attribStat(tree.body, loopEnv);
1339             result = null;
1340         }
1341         finally {
1342             loopEnv.info.scope.leave();
1343         }
1344     }
1345 
1346     public void visitForeachLoop(JCEnhancedForLoop tree) {
1347         Env<AttrContext> loopEnv =
1348             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1349         try {
1350             //the Formal Parameter of a for-each loop is not in the scope when
1351             //attributing the for-each expression; we mimick this by attributing
1352             //the for-each expression first (against original scope).
1353             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1354             chk.checkNonVoid(tree.pos(), exprType);
1355             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1356             if (elemtype == null) {
1357                 // or perhaps expr implements Iterable<T>?
1358                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1359                 if (base == null) {
1360                     log.error(tree.expr.pos(),
1361                               Errors.ForeachNotApplicableToType(exprType,
1362                                                                 Fragments.TypeReqArrayOrIterable));
1363                     elemtype = types.createErrorType(exprType);
1364                 } else {
1365                     List<Type> iterableParams = base.allparams();
1366                     elemtype = iterableParams.isEmpty()
1367                         ? syms.objectType
1368                         : types.wildUpperBound(iterableParams.head);
1369                 }
1370             }
1371             if (tree.var.isImplicitlyTyped()) {
1372                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1373                 setSyntheticVariableType(tree.var, inferredType);
1374             }
1375             attribStat(tree.var, loopEnv);
1376             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1377             loopEnv.tree = tree; // before, we were not in loop!
1378             attribStat(tree.body, loopEnv);
1379             result = null;
1380         }
1381         finally {
1382             loopEnv.info.scope.leave();
1383         }
1384     }
1385 
1386     public void visitLabelled(JCLabeledStatement tree) {
1387         // Check that label is not used in an enclosing statement
1388         Env<AttrContext> env1 = env;
1389         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1390             if (env1.tree.hasTag(LABELLED) &&
1391                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1392                 log.error(tree.pos(),
1393                           Errors.LabelAlreadyInUse(tree.label));
1394                 break;
1395             }
1396             env1 = env1.next;
1397         }
1398 
1399         attribStat(tree.body, env.dup(tree));
1400         result = null;
1401     }
1402 
1403     public void visitSwitch(JCSwitch tree) {
1404         Type seltype = attribExpr(tree.selector, env);
1405 
1406         Env<AttrContext> switchEnv =
1407             env.dup(tree, env.info.dup(env.info.scope.dup()));
1408 
1409         try {
1410 
1411             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1412             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1413             if (stringSwitch && !allowStringsInSwitch) {
1414                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), Feature.STRINGS_IN_SWITCH.error(sourceName));
1415             }
1416             if (!enumSwitch && !stringSwitch)
1417                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1418 
1419             // Attribute all cases and
1420             // check that there are no duplicate case labels or default clauses.
1421             Set<Object> labels = new HashSet<>(); // The set of case labels.
1422             boolean hasDefault = false;      // Is there a default label?
1423             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1424                 JCCase c = l.head;
1425                 if (c.pat != null) {
1426                     if (enumSwitch) {
1427                         Symbol sym = enumConstant(c.pat, seltype);
1428                         if (sym == null) {
1429                             log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1430                         } else if (!labels.add(sym)) {
1431                             log.error(c.pos(), Errors.DuplicateCaseLabel);
1432                         }
1433                     } else {
1434                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1435                         if (!pattype.hasTag(ERROR)) {
1436                             if (pattype.constValue() == null) {
1437                                 log.error(c.pat.pos(),
1438                                           (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1439                             } else if (!labels.add(pattype.constValue())) {
1440                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1441                             }
1442                         }
1443                     }
1444                 } else if (hasDefault) {
1445                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1446                 } else {
1447                     hasDefault = true;
1448                 }
1449                 Env<AttrContext> caseEnv =
1450                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1451                 try {
1452                     attribStats(c.stats, caseEnv);
1453                 } finally {
1454                     caseEnv.info.scope.leave();
1455                     addVars(c.stats, switchEnv.info.scope);
1456                 }
1457             }
1458 
1459             result = null;
1460         }
1461         finally {
1462             switchEnv.info.scope.leave();
1463         }
1464     }
1465     // where
1466         /** Add any variables defined in stats to the switch scope. */
1467         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1468             for (;stats.nonEmpty(); stats = stats.tail) {
1469                 JCTree stat = stats.head;
1470                 if (stat.hasTag(VARDEF))
1471                     switchScope.enter(((JCVariableDecl) stat).sym);
1472             }
1473         }
1474     // where
1475     /** Return the selected enumeration constant symbol, or null. */
1476     private Symbol enumConstant(JCTree tree, Type enumType) {
1477         if (tree.hasTag(IDENT)) {
1478             JCIdent ident = (JCIdent)tree;
1479             Name name = ident.name;
1480             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1481                 if (sym.kind == VAR) {
1482                     Symbol s = ident.sym = sym;
1483                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1484                     ident.type = s.type;
1485                     return ((s.flags_field & Flags.ENUM) == 0)
1486                         ? null : s;
1487                 }
1488             }
1489         }
1490         return null;
1491     }
1492 
1493     public void visitSynchronized(JCSynchronized tree) {
1494         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1495         attribStat(tree.body, env);
1496         result = null;
1497     }
1498 
1499     public void visitTry(JCTry tree) {
1500         // Create a new local environment with a local
1501         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1502         try {
1503             boolean isTryWithResource = tree.resources.nonEmpty();
1504             // Create a nested environment for attributing the try block if needed
1505             Env<AttrContext> tryEnv = isTryWithResource ?
1506                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1507                 localEnv;
1508             try {
1509                 // Attribute resource declarations
1510                 for (JCTree resource : tree.resources) {
1511                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1512                         @Override
1513                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1514                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1515                         }
1516                     };
1517                     ResultInfo twrResult =
1518                         new ResultInfo(KindSelector.VAR,
1519                                        syms.autoCloseableType,
1520                                        twrContext);
1521                     if (resource.hasTag(VARDEF)) {
1522                         attribStat(resource, tryEnv);
1523                         twrResult.check(resource, resource.type);
1524 
1525                         //check that resource type cannot throw InterruptedException
1526                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1527 
1528                         VarSymbol var = ((JCVariableDecl) resource).sym;
1529                         var.setData(ElementKind.RESOURCE_VARIABLE);
1530                     } else {
1531                         attribTree(resource, tryEnv, twrResult);
1532                     }
1533                 }
1534                 // Attribute body
1535                 attribStat(tree.body, tryEnv);
1536             } finally {
1537                 if (isTryWithResource)
1538                     tryEnv.info.scope.leave();
1539             }
1540 
1541             // Attribute catch clauses
1542             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1543                 JCCatch c = l.head;
1544                 Env<AttrContext> catchEnv =
1545                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1546                 try {
1547                     Type ctype = attribStat(c.param, catchEnv);
1548                     if (TreeInfo.isMultiCatch(c)) {
1549                         //multi-catch parameter is implicitly marked as final
1550                         c.param.sym.flags_field |= FINAL | UNION;
1551                     }
1552                     if (c.param.sym.kind == VAR) {
1553                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1554                     }
1555                     chk.checkType(c.param.vartype.pos(),
1556                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1557                                   syms.throwableType);
1558                     attribStat(c.body, catchEnv);
1559                 } finally {
1560                     catchEnv.info.scope.leave();
1561                 }
1562             }
1563 
1564             // Attribute finalizer
1565             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1566             result = null;
1567         }
1568         finally {
1569             localEnv.info.scope.leave();
1570         }
1571     }
1572 
1573     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1574         if (!resource.isErroneous() &&
1575             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1576             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1577             Symbol close = syms.noSymbol;
1578             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1579             try {
1580                 close = rs.resolveQualifiedMethod(pos,
1581                         env,
1582                         types.skipTypeVars(resource, false),
1583                         names.close,
1584                         List.nil(),
1585                         List.nil());
1586             }
1587             finally {
1588                 log.popDiagnosticHandler(discardHandler);
1589             }
1590             if (close.kind == MTH &&
1591                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1592                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1593                     env.info.lint.isEnabled(LintCategory.TRY)) {
1594                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1595             }
1596         }
1597     }
1598 
1599     public void visitConditional(JCConditional tree) {
1600         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1601 
1602         tree.polyKind = (!allowPoly ||
1603                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1604                 isBooleanOrNumeric(env, tree)) ?
1605                 PolyKind.STANDALONE : PolyKind.POLY;
1606 
1607         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1608             //this means we are returning a poly conditional from void-compatible lambda expression
1609             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1610             result = tree.type = types.createErrorType(resultInfo.pt);
1611             return;
1612         }
1613 
1614         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1615                 unknownExprInfo :
1616                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1617 
1618         Type truetype = attribTree(tree.truepart, env, condInfo);
1619         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1620 
1621         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1622         if (condtype.constValue() != null &&
1623                 truetype.constValue() != null &&
1624                 falsetype.constValue() != null &&
1625                 !owntype.hasTag(NONE)) {
1626             //constant folding
1627             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1628         }
1629         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1630     }
1631     //where
1632         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1633             switch (tree.getTag()) {
1634                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1635                               ((JCLiteral)tree).typetag == BOOLEAN ||
1636                               ((JCLiteral)tree).typetag == BOT;
1637                 case LAMBDA: case REFERENCE: return false;
1638                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1639                 case CONDEXPR:
1640                     JCConditional condTree = (JCConditional)tree;
1641                     return isBooleanOrNumeric(env, condTree.truepart) &&
1642                             isBooleanOrNumeric(env, condTree.falsepart);
1643                 case APPLY:
1644                     JCMethodInvocation speculativeMethodTree =
1645                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1646                                     tree, env, unknownExprInfo,
1647                                     argumentAttr.withLocalCacheContext());
1648                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1649                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1650                             env.enclClass.type :
1651                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1652                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1653                     return primitiveOrBoxed(owntype);
1654                 case NEWCLASS:
1655                     JCExpression className =
1656                             removeClassParams.translate(((JCNewClass)tree).clazz);
1657                     JCExpression speculativeNewClassTree =
1658                             (JCExpression)deferredAttr.attribSpeculative(
1659                                     className, env, unknownTypeInfo,
1660                                     argumentAttr.withLocalCacheContext());
1661                     return primitiveOrBoxed(speculativeNewClassTree.type);
1662                 default:
1663                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1664                             argumentAttr.withLocalCacheContext()).type;
1665                     return primitiveOrBoxed(speculativeType);
1666             }
1667         }
1668         //where
1669             boolean primitiveOrBoxed(Type t) {
1670                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1671             }
1672 
1673             TreeTranslator removeClassParams = new TreeTranslator() {
1674                 @Override
1675                 public void visitTypeApply(JCTypeApply tree) {
1676                     result = translate(tree.clazz);
1677                 }
1678             };
1679 
1680         CheckContext conditionalContext(CheckContext checkContext) {
1681             return new Check.NestedCheckContext(checkContext) {
1682                 //this will use enclosing check context to check compatibility of
1683                 //subexpression against target type; if we are in a method check context,
1684                 //depending on whether boxing is allowed, we could have incompatibilities
1685                 @Override
1686                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1687                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1688                 }
1689             };
1690         }
1691 
1692         /** Compute the type of a conditional expression, after
1693          *  checking that it exists.  See JLS 15.25. Does not take into
1694          *  account the special case where condition and both arms
1695          *  are constants.
1696          *
1697          *  @param pos      The source position to be used for error
1698          *                  diagnostics.
1699          *  @param thentype The type of the expression's then-part.
1700          *  @param elsetype The type of the expression's else-part.
1701          */
1702         Type condType(DiagnosticPosition pos,
1703                                Type thentype, Type elsetype) {
1704             // If same type, that is the result
1705             if (types.isSameType(thentype, elsetype))
1706                 return thentype.baseType();
1707 
1708             Type thenUnboxed = (thentype.isPrimitive())
1709                 ? thentype : types.unboxedType(thentype);
1710             Type elseUnboxed = (elsetype.isPrimitive())
1711                 ? elsetype : types.unboxedType(elsetype);
1712 
1713             // Otherwise, if both arms can be converted to a numeric
1714             // type, return the least numeric type that fits both arms
1715             // (i.e. return larger of the two, or return int if one
1716             // arm is short, the other is char).
1717             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1718                 // If one arm has an integer subrange type (i.e., byte,
1719                 // short, or char), and the other is an integer constant
1720                 // that fits into the subrange, return the subrange type.
1721                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1722                     elseUnboxed.hasTag(INT) &&
1723                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1724                     return thenUnboxed.baseType();
1725                 }
1726                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1727                     thenUnboxed.hasTag(INT) &&
1728                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1729                     return elseUnboxed.baseType();
1730                 }
1731 
1732                 for (TypeTag tag : primitiveTags) {
1733                     Type candidate = syms.typeOfTag[tag.ordinal()];
1734                     if (types.isSubtype(thenUnboxed, candidate) &&
1735                         types.isSubtype(elseUnboxed, candidate)) {
1736                         return candidate;
1737                     }
1738                 }
1739             }
1740 
1741             // Those were all the cases that could result in a primitive
1742             if (thentype.isPrimitive())
1743                 thentype = types.boxedClass(thentype).type;
1744             if (elsetype.isPrimitive())
1745                 elsetype = types.boxedClass(elsetype).type;
1746 
1747             if (types.isSubtype(thentype, elsetype))
1748                 return elsetype.baseType();
1749             if (types.isSubtype(elsetype, thentype))
1750                 return thentype.baseType();
1751 
1752             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1753                 log.error(pos,
1754                           Errors.NeitherConditionalSubtype(thentype,
1755                                                            elsetype));
1756                 return thentype.baseType();
1757             }
1758 
1759             // both are known to be reference types.  The result is
1760             // lub(thentype,elsetype). This cannot fail, as it will
1761             // always be possible to infer "Object" if nothing better.
1762             return types.lub(thentype.baseType(), elsetype.baseType());
1763         }
1764 
1765     final static TypeTag[] primitiveTags = new TypeTag[]{
1766         BYTE,
1767         CHAR,
1768         SHORT,
1769         INT,
1770         LONG,
1771         FLOAT,
1772         DOUBLE,
1773         BOOLEAN,
1774     };
1775 
1776     public void visitIf(JCIf tree) {
1777         attribExpr(tree.cond, env, syms.booleanType);
1778         attribStat(tree.thenpart, env);
1779         if (tree.elsepart != null)
1780             attribStat(tree.elsepart, env);
1781         chk.checkEmptyIf(tree);
1782         result = null;
1783     }
1784 
1785     public void visitExec(JCExpressionStatement tree) {
1786         //a fresh environment is required for 292 inference to work properly ---
1787         //see Infer.instantiatePolymorphicSignatureInstance()
1788         Env<AttrContext> localEnv = env.dup(tree);
1789         attribExpr(tree.expr, localEnv);
1790         result = null;
1791     }
1792 
1793     public void visitBreak(JCBreak tree) {
1794         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1795         result = null;
1796     }
1797 
1798     public void visitContinue(JCContinue tree) {
1799         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1800         result = null;
1801     }
1802     //where
1803         /** Return the target of a break or continue statement, if it exists,
1804          *  report an error if not.
1805          *  Note: The target of a labelled break or continue is the
1806          *  (non-labelled) statement tree referred to by the label,
1807          *  not the tree representing the labelled statement itself.
1808          *
1809          *  @param pos     The position to be used for error diagnostics
1810          *  @param tag     The tag of the jump statement. This is either
1811          *                 Tree.BREAK or Tree.CONTINUE.
1812          *  @param label   The label of the jump statement, or null if no
1813          *                 label is given.
1814          *  @param env     The environment current at the jump statement.
1815          */
1816         private JCTree findJumpTarget(DiagnosticPosition pos,
1817                                     JCTree.Tag tag,
1818                                     Name label,
1819                                     Env<AttrContext> env) {
1820             // Search environments outwards from the point of jump.
1821             Env<AttrContext> env1 = env;
1822             LOOP:
1823             while (env1 != null) {
1824                 switch (env1.tree.getTag()) {
1825                     case LABELLED:
1826                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1827                         if (label == labelled.label) {
1828                             // If jump is a continue, check that target is a loop.
1829                             if (tag == CONTINUE) {
1830                                 if (!labelled.body.hasTag(DOLOOP) &&
1831                                         !labelled.body.hasTag(WHILELOOP) &&
1832                                         !labelled.body.hasTag(FORLOOP) &&
1833                                         !labelled.body.hasTag(FOREACHLOOP))
1834                                     log.error(pos, Errors.NotLoopLabel(label));
1835                                 // Found labelled statement target, now go inwards
1836                                 // to next non-labelled tree.
1837                                 return TreeInfo.referencedStatement(labelled);
1838                             } else {
1839                                 return labelled;
1840                             }
1841                         }
1842                         break;
1843                     case DOLOOP:
1844                     case WHILELOOP:
1845                     case FORLOOP:
1846                     case FOREACHLOOP:
1847                         if (label == null) return env1.tree;
1848                         break;
1849                     case SWITCH:
1850                         if (label == null && tag == BREAK) return env1.tree;
1851                         break;
1852                     case LAMBDA:
1853                     case METHODDEF:
1854                     case CLASSDEF:
1855                         break LOOP;
1856                     default:
1857                 }
1858                 env1 = env1.next;
1859             }
1860             if (label != null)
1861                 log.error(pos, Errors.UndefLabel(label));
1862             else if (tag == CONTINUE)
1863                 log.error(pos, Errors.ContOutsideLoop);
1864             else
1865                 log.error(pos, Errors.BreakOutsideSwitchLoop);
1866             return null;
1867         }
1868 
1869     public void visitReturn(JCReturn tree) {
1870         // Check that there is an enclosing method which is
1871         // nested within than the enclosing class.
1872         if (env.info.returnResult == null) {
1873             log.error(tree.pos(), Errors.RetOutsideMeth);
1874         } else {
1875             // Attribute return expression, if it exists, and check that
1876             // it conforms to result type of enclosing method.
1877             if (tree.expr != null) {
1878                 if (env.info.returnResult.pt.hasTag(VOID)) {
1879                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1880                               diags.fragment(Fragments.UnexpectedRetVal));
1881                 }
1882                 attribTree(tree.expr, env, env.info.returnResult);
1883             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1884                     !env.info.returnResult.pt.hasTag(NONE)) {
1885                 env.info.returnResult.checkContext.report(tree.pos(),
1886                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1887             }
1888         }
1889         result = null;
1890     }
1891 
1892     public void visitThrow(JCThrow tree) {
1893         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1894         if (allowPoly) {
1895             chk.checkType(tree, owntype, syms.throwableType);
1896         }
1897         result = null;
1898     }
1899 
1900     public void visitAssert(JCAssert tree) {
1901         attribExpr(tree.cond, env, syms.booleanType);
1902         if (tree.detail != null) {
1903             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1904         }
1905         result = null;
1906     }
1907 
1908      /** Visitor method for method invocations.
1909      *  NOTE: The method part of an application will have in its type field
1910      *        the return type of the method, not the method's type itself!
1911      */
1912     public void visitApply(JCMethodInvocation tree) {
1913         // The local environment of a method application is
1914         // a new environment nested in the current one.
1915         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1916 
1917         // The types of the actual method arguments.
1918         List<Type> argtypes;
1919 
1920         // The types of the actual method type arguments.
1921         List<Type> typeargtypes = null;
1922 
1923         Name methName = TreeInfo.name(tree.meth);
1924 
1925         boolean isConstructorCall =
1926             methName == names._this || methName == names._super;
1927 
1928         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1929         if (isConstructorCall) {
1930             // We are seeing a ...this(...) or ...super(...) call.
1931             // Check that this is the first statement in a constructor.
1932             if (checkFirstConstructorStat(tree, env)) {
1933 
1934                 // Record the fact
1935                 // that this is a constructor call (using isSelfCall).
1936                 localEnv.info.isSelfCall = true;
1937 
1938                 // Attribute arguments, yielding list of argument types.
1939                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1940                 argtypes = argtypesBuf.toList();
1941                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1942 
1943                 // Variable `site' points to the class in which the called
1944                 // constructor is defined.
1945                 Type site = env.enclClass.sym.type;
1946                 if (methName == names._super) {
1947                     if (site == syms.objectType) {
1948                         log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1949                         site = types.createErrorType(syms.objectType);
1950                     } else {
1951                         site = types.supertype(site);
1952                     }
1953                 }
1954 
1955                 if (site.hasTag(CLASS)) {
1956                     Type encl = site.getEnclosingType();
1957                     while (encl != null && encl.hasTag(TYPEVAR))
1958                         encl = encl.getUpperBound();
1959                     if (encl.hasTag(CLASS)) {
1960                         // we are calling a nested class
1961 
1962                         if (tree.meth.hasTag(SELECT)) {
1963                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1964 
1965                             // We are seeing a prefixed call, of the form
1966                             //     <expr>.super(...).
1967                             // Check that the prefix expression conforms
1968                             // to the outer instance type of the class.
1969                             chk.checkRefType(qualifier.pos(),
1970                                              attribExpr(qualifier, localEnv,
1971                                                         encl));
1972                         } else if (methName == names._super) {
1973                             // qualifier omitted; check for existence
1974                             // of an appropriate implicit qualifier.
1975                             rs.resolveImplicitThis(tree.meth.pos(),
1976                                                    localEnv, site, true);
1977                         }
1978                     } else if (tree.meth.hasTag(SELECT)) {
1979                         log.error(tree.meth.pos(),
1980                                   Errors.IllegalQualNotIcls(site.tsym));
1981                     }
1982 
1983                     // if we're calling a java.lang.Enum constructor,
1984                     // prefix the implicit String and int parameters
1985                     if (site.tsym == syms.enumSym)
1986                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1987 
1988                     // Resolve the called constructor under the assumption
1989                     // that we are referring to a superclass instance of the
1990                     // current instance (JLS ???).
1991                     boolean selectSuperPrev = localEnv.info.selectSuper;
1992                     localEnv.info.selectSuper = true;
1993                     localEnv.info.pendingResolutionPhase = null;
1994                     Symbol sym = rs.resolveConstructor(
1995                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1996                     localEnv.info.selectSuper = selectSuperPrev;
1997 
1998                     // Set method symbol to resolved constructor...
1999                     TreeInfo.setSymbol(tree.meth, sym);
2000 
2001                     // ...and check that it is legal in the current context.
2002                     // (this will also set the tree's type)
2003                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2004                     checkId(tree.meth, site, sym, localEnv,
2005                             new ResultInfo(kind, mpt));
2006                 }
2007                 // Otherwise, `site' is an error type and we do nothing
2008             }
2009             result = tree.type = syms.voidType;
2010         } else {
2011             // Otherwise, we are seeing a regular method call.
2012             // Attribute the arguments, yielding list of argument types, ...
2013             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2014             argtypes = argtypesBuf.toList();
2015             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2016 
2017             // ... and attribute the method using as a prototype a methodtype
2018             // whose formal argument types is exactly the list of actual
2019             // arguments (this will also set the method symbol).
2020             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2021             localEnv.info.pendingResolutionPhase = null;
2022             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2023 
2024             // Compute the result type.
2025             Type restype = mtype.getReturnType();
2026             if (restype.hasTag(WILDCARD))
2027                 throw new AssertionError(mtype);
2028 
2029             Type qualifier = (tree.meth.hasTag(SELECT))
2030                     ? ((JCFieldAccess) tree.meth).selected.type
2031                     : env.enclClass.sym.type;
2032             Symbol msym = TreeInfo.symbol(tree.meth);
2033             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2034 
2035             chk.checkRefTypes(tree.typeargs, typeargtypes);
2036 
2037             // Check that value of resulting type is admissible in the
2038             // current context.  Also, capture the return type
2039             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2040             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2041         }
2042         chk.validate(tree.typeargs, localEnv);
2043     }
2044     //where
2045         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2046             if (msym != null &&
2047                     msym.owner == syms.objectType.tsym &&
2048                     methodName == names.getClass &&
2049                     argtypes.isEmpty()) {
2050                 // as a special case, x.getClass() has type Class<? extends |X|>
2051                 return new ClassType(restype.getEnclosingType(),
2052                         List.of(new WildcardType(types.erasure(qualifierType),
2053                                 BoundKind.EXTENDS,
2054                                 syms.boundClass)),
2055                         restype.tsym,
2056                         restype.getMetadata());
2057             } else if (msym != null &&
2058                     msym.owner == syms.arrayClass &&
2059                     methodName == names.clone &&
2060                     types.isArray(qualifierType)) {
2061                 // as a special case, array.clone() has a result that is
2062                 // the same as static type of the array being cloned
2063                 return qualifierType;
2064             } else {
2065                 return restype;
2066             }
2067         }
2068 
2069         /** Check that given application node appears as first statement
2070          *  in a constructor call.
2071          *  @param tree   The application node
2072          *  @param env    The environment current at the application.
2073          */
2074         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
2075             JCMethodDecl enclMethod = env.enclMethod;
2076             if (enclMethod != null && enclMethod.name == names.init) {
2077                 JCBlock body = enclMethod.body;
2078                 if (body.stats.head.hasTag(EXEC) &&
2079                     ((JCExpressionStatement) body.stats.head).expr == tree)
2080                     return true;
2081             }
2082             log.error(tree.pos(),
2083                       Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2084             return false;
2085         }
2086 
2087         /** Obtain a method type with given argument types.
2088          */
2089         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2090             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2091             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2092         }
2093 
2094     public void visitNewClass(final JCNewClass tree) {
2095         Type owntype = types.createErrorType(tree.type);
2096 
2097         // The local environment of a class creation is
2098         // a new environment nested in the current one.
2099         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2100 
2101         // The anonymous inner class definition of the new expression,
2102         // if one is defined by it.
2103         JCClassDecl cdef = tree.def;
2104 
2105         // If enclosing class is given, attribute it, and
2106         // complete class name to be fully qualified
2107         JCExpression clazz = tree.clazz; // Class field following new
2108         JCExpression clazzid;            // Identifier in class field
2109         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2110         annoclazzid = null;
2111 
2112         if (clazz.hasTag(TYPEAPPLY)) {
2113             clazzid = ((JCTypeApply) clazz).clazz;
2114             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2115                 annoclazzid = (JCAnnotatedType) clazzid;
2116                 clazzid = annoclazzid.underlyingType;
2117             }
2118         } else {
2119             if (clazz.hasTag(ANNOTATED_TYPE)) {
2120                 annoclazzid = (JCAnnotatedType) clazz;
2121                 clazzid = annoclazzid.underlyingType;
2122             } else {
2123                 clazzid = clazz;
2124             }
2125         }
2126 
2127         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2128 
2129         if (tree.encl != null) {
2130             // We are seeing a qualified new, of the form
2131             //    <expr>.new C <...> (...) ...
2132             // In this case, we let clazz stand for the name of the
2133             // allocated class C prefixed with the type of the qualifier
2134             // expression, so that we can
2135             // resolve it with standard techniques later. I.e., if
2136             // <expr> has type T, then <expr>.new C <...> (...)
2137             // yields a clazz T.C.
2138             Type encltype = chk.checkRefType(tree.encl.pos(),
2139                                              attribExpr(tree.encl, env));
2140             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2141             // from expr to the combined type, or not? Yes, do this.
2142             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2143                                                  ((JCIdent) clazzid).name);
2144 
2145             EndPosTable endPosTable = this.env.toplevel.endPositions;
2146             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2147             if (clazz.hasTag(ANNOTATED_TYPE)) {
2148                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2149                 List<JCAnnotation> annos = annoType.annotations;
2150 
2151                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2152                     clazzid1 = make.at(tree.pos).
2153                         TypeApply(clazzid1,
2154                                   ((JCTypeApply) clazz).arguments);
2155                 }
2156 
2157                 clazzid1 = make.at(tree.pos).
2158                     AnnotatedType(annos, clazzid1);
2159             } else if (clazz.hasTag(TYPEAPPLY)) {
2160                 clazzid1 = make.at(tree.pos).
2161                     TypeApply(clazzid1,
2162                               ((JCTypeApply) clazz).arguments);
2163             }
2164 
2165             clazz = clazzid1;
2166         }
2167 
2168         // Attribute clazz expression and store
2169         // symbol + type back into the attributed tree.
2170         Type clazztype;
2171 
2172         try {
2173             env.info.isNewClass = true;
2174             clazztype = TreeInfo.isEnumInit(env.tree) ?
2175                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2176                 attribType(clazz, env);
2177         } finally {
2178             env.info.isNewClass = false;
2179         }
2180 
2181         clazztype = chk.checkDiamond(tree, clazztype);
2182         chk.validate(clazz, localEnv);
2183         if (tree.encl != null) {
2184             // We have to work in this case to store
2185             // symbol + type back into the attributed tree.
2186             tree.clazz.type = clazztype;
2187             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2188             clazzid.type = ((JCIdent) clazzid).sym.type;
2189             if (annoclazzid != null) {
2190                 annoclazzid.type = clazzid.type;
2191             }
2192             if (!clazztype.isErroneous()) {
2193                 if (cdef != null && clazztype.tsym.isInterface()) {
2194                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2195                 } else if (clazztype.tsym.isStatic()) {
2196                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2197                 }
2198             }
2199         } else if (!clazztype.tsym.isInterface() &&
2200                    clazztype.getEnclosingType().hasTag(CLASS)) {
2201             // Check for the existence of an apropos outer instance
2202             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2203         }
2204 
2205         // Attribute constructor arguments.
2206         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2207         final KindSelector pkind =
2208             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2209         List<Type> argtypes = argtypesBuf.toList();
2210         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2211 
2212         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2213             // Enums may not be instantiated except implicitly
2214             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2215                 (!env.tree.hasTag(VARDEF) ||
2216                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2217                  ((JCVariableDecl) env.tree).init != tree))
2218                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2219 
2220             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2221                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2222             boolean skipNonDiamondPath = false;
2223             // Check that class is not abstract
2224             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2225                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2226                 log.error(tree.pos(),
2227                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2228                 skipNonDiamondPath = true;
2229             } else if (cdef != null && clazztype.tsym.isInterface()) {
2230                 // Check that no constructor arguments are given to
2231                 // anonymous classes implementing an interface
2232                 if (!argtypes.isEmpty())
2233                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2234 
2235                 if (!typeargtypes.isEmpty())
2236                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2237 
2238                 // Error recovery: pretend no arguments were supplied.
2239                 argtypes = List.nil();
2240                 typeargtypes = List.nil();
2241                 skipNonDiamondPath = true;
2242             }
2243             if (TreeInfo.isDiamond(tree)) {
2244                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2245                             clazztype.tsym.type.getTypeArguments(),
2246                                                clazztype.tsym,
2247                                                clazztype.getMetadata());
2248 
2249                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2250                 diamondEnv.info.selectSuper = cdef != null;
2251                 diamondEnv.info.pendingResolutionPhase = null;
2252 
2253                 //if the type of the instance creation expression is a class type
2254                 //apply method resolution inference (JLS 15.12.2.7). The return type
2255                 //of the resolved constructor will be a partially instantiated type
2256                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2257                             diamondEnv,
2258                             site,
2259                             argtypes,
2260                             typeargtypes);
2261                 tree.constructor = constructor.baseSymbol();
2262 
2263                 final TypeSymbol csym = clazztype.tsym;
2264                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2265                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2266                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2267                 constructorType = checkId(tree, site,
2268                         constructor,
2269                         diamondEnv,
2270                         diamondResult);
2271 
2272                 tree.clazz.type = types.createErrorType(clazztype);
2273                 if (!constructorType.isErroneous()) {
2274                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2275                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2276                 }
2277                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2278             }
2279 
2280             // Resolve the called constructor under the assumption
2281             // that we are referring to a superclass instance of the
2282             // current instance (JLS ???).
2283             else if (!skipNonDiamondPath) {
2284                 //the following code alters some of the fields in the current
2285                 //AttrContext - hence, the current context must be dup'ed in
2286                 //order to avoid downstream failures
2287                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2288                 rsEnv.info.selectSuper = cdef != null;
2289                 rsEnv.info.pendingResolutionPhase = null;
2290                 tree.constructor = rs.resolveConstructor(
2291                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2292                 if (cdef == null) { //do not check twice!
2293                     tree.constructorType = checkId(tree,
2294                             clazztype,
2295                             tree.constructor,
2296                             rsEnv,
2297                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2298                     if (rsEnv.info.lastResolveVarargs())
2299                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2300                 }
2301             }
2302 
2303             if (cdef != null) {
2304                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2305                 return;
2306             }
2307 
2308             if (tree.constructor != null && tree.constructor.kind == MTH)
2309                 owntype = clazztype;
2310         }
2311         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2312         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2313         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2314             //we need to wait for inference to finish and then replace inference vars in the constructor type
2315             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2316                     instantiatedContext -> {
2317                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2318                     });
2319         }
2320         chk.validate(tree.typeargs, localEnv);
2321     }
2322 
2323         // where
2324         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2325                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2326                                                    List<Type> argtypes, List<Type> typeargtypes,
2327                                                    KindSelector pkind) {
2328             // We are seeing an anonymous class instance creation.
2329             // In this case, the class instance creation
2330             // expression
2331             //
2332             //    E.new <typeargs1>C<typargs2>(args) { ... }
2333             //
2334             // is represented internally as
2335             //
2336             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2337             //
2338             // This expression is then *transformed* as follows:
2339             //
2340             // (1) add an extends or implements clause
2341             // (2) add a constructor.
2342             //
2343             // For instance, if C is a class, and ET is the type of E,
2344             // the expression
2345             //
2346             //    E.new <typeargs1>C<typargs2>(args) { ... }
2347             //
2348             // is translated to (where X is a fresh name and typarams is the
2349             // parameter list of the super constructor):
2350             //
2351             //   new <typeargs1>X(<*nullchk*>E, args) where
2352             //     X extends C<typargs2> {
2353             //       <typarams> X(ET e, args) {
2354             //         e.<typeargs1>super(args)
2355             //       }
2356             //       ...
2357             //     }
2358             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2359             final boolean isDiamond = TreeInfo.isDiamond(tree);
2360             if (isDiamond
2361                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2362                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2363                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2364                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2365                         instantiatedContext -> {
2366                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2367                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2368                             ResultInfo prevResult = this.resultInfo;
2369                             try {
2370                                 this.resultInfo = resultInfoForClassDefinition;
2371                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2372                                                             localEnv, argtypes, typeargtypes, pkind);
2373                             } finally {
2374                                 this.resultInfo = prevResult;
2375                             }
2376                         });
2377             } else {
2378                 if (isDiamond && clazztype.hasTag(CLASS)) {
2379                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2380                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2381                         // One or more types inferred in the previous steps is non-denotable.
2382                         Fragment fragment = Diamond(clazztype.tsym);
2383                         log.error(tree.clazz.pos(),
2384                                 Errors.CantApplyDiamond1(
2385                                         fragment,
2386                                         invalidDiamondArgs.size() > 1 ?
2387                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2388                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2389                     }
2390                     // For <>(){}, inferred types must also be accessible.
2391                     for (Type t : clazztype.getTypeArguments()) {
2392                         rs.checkAccessibleType(env, t);
2393                     }
2394                 }
2395 
2396                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2397                 // false for isInterface call even when the original type is an interface.
2398                 boolean implementing = clazztype.tsym.isInterface() ||
2399                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2400                         clazztype.getOriginalType().tsym.isInterface();
2401 
2402                 if (implementing) {
2403                     cdef.implementing = List.of(clazz);
2404                 } else {
2405                     cdef.extending = clazz;
2406                 }
2407 
2408                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2409                     isSerializable(clazztype)) {
2410                     localEnv.info.isSerializable = true;
2411                 }
2412 
2413                 attribStat(cdef, localEnv);
2414 
2415                 List<Type> finalargtypes;
2416                 // If an outer instance is given,
2417                 // prefix it to the constructor arguments
2418                 // and delete it from the new expression
2419                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2420                     finalargtypes = argtypes.prepend(tree.encl.type);
2421                 } else {
2422                     finalargtypes = argtypes;
2423                 }
2424 
2425                 // Reassign clazztype and recompute constructor. As this necessarily involves
2426                 // another attribution pass for deferred types in the case of <>, replicate
2427                 // them. Original arguments have right decorations already.
2428                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2429                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2430                 }
2431 
2432                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2433                                                     : cdef.sym.type;
2434                 Symbol sym = tree.constructor = rs.resolveConstructor(
2435                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2436                 Assert.check(!sym.kind.isResolutionError());
2437                 tree.constructor = sym;
2438                 tree.constructorType = checkId(tree,
2439                         clazztype,
2440                         tree.constructor,
2441                         localEnv,
2442                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2443             }
2444             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2445                                 clazztype : types.createErrorType(tree.type);
2446             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2447             chk.validate(tree.typeargs, localEnv);
2448         }
2449 
2450         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2451             return new Check.NestedCheckContext(checkContext) {
2452                 @Override
2453                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2454                     enclosingContext.report(clazz.clazz,
2455                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2456                 }
2457             };
2458         }
2459 
2460     /** Make an attributed null check tree.
2461      */
2462     public JCExpression makeNullCheck(JCExpression arg) {
2463         // optimization: new Outer() can never be null; skip null check
2464         if (arg.getTag() == NEWCLASS)
2465             return arg;
2466         // optimization: X.this is never null; skip null check
2467         Name name = TreeInfo.name(arg);
2468         if (name == names._this || name == names._super) return arg;
2469 
2470         JCTree.Tag optag = NULLCHK;
2471         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2472         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2473         tree.type = arg.type;
2474         return tree;
2475     }
2476 
2477     public void visitNewArray(JCNewArray tree) {
2478         Type owntype = types.createErrorType(tree.type);
2479         Env<AttrContext> localEnv = env.dup(tree);
2480         Type elemtype;
2481         if (tree.elemtype != null) {
2482             elemtype = attribType(tree.elemtype, localEnv);
2483             chk.validate(tree.elemtype, localEnv);
2484             owntype = elemtype;
2485             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2486                 attribExpr(l.head, localEnv, syms.intType);
2487                 owntype = new ArrayType(owntype, syms.arrayClass);
2488             }
2489         } else {
2490             // we are seeing an untyped aggregate { ... }
2491             // this is allowed only if the prototype is an array
2492             if (pt().hasTag(ARRAY)) {
2493                 elemtype = types.elemtype(pt());
2494             } else {
2495                 if (!pt().hasTag(ERROR) &&
2496                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2497                     log.error(tree.pos(),
2498                               Errors.IllegalInitializerForType(pt()));
2499                 }
2500                 elemtype = types.createErrorType(pt());
2501             }
2502         }
2503         if (tree.elems != null) {
2504             attribExprs(tree.elems, localEnv, elemtype);
2505             owntype = new ArrayType(elemtype, syms.arrayClass);
2506         }
2507         if (!types.isReifiable(elemtype))
2508             log.error(tree.pos(), Errors.GenericArrayCreation);
2509         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2510     }
2511 
2512     /*
2513      * A lambda expression can only be attributed when a target-type is available.
2514      * In addition, if the target-type is that of a functional interface whose
2515      * descriptor contains inference variables in argument position the lambda expression
2516      * is 'stuck' (see DeferredAttr).
2517      */
2518     @Override
2519     public void visitLambda(final JCLambda that) {
2520         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2521             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2522                 //lambda only allowed in assignment or method invocation/cast context
2523                 log.error(that.pos(), Errors.UnexpectedLambda);
2524             }
2525             resultInfo = recoveryInfo;
2526         }
2527         //create an environment for attribution of the lambda expression
2528         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2529         boolean needsRecovery =
2530                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2531         try {
2532             if (needsRecovery && isSerializable(pt())) {
2533                 localEnv.info.isSerializable = true;
2534                 localEnv.info.isLambda = true;
2535             }
2536             List<Type> explicitParamTypes = null;
2537             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2538                 //attribute lambda parameters
2539                 attribStats(that.params, localEnv);
2540                 explicitParamTypes = TreeInfo.types(that.params);
2541             }
2542 
2543             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2544             Type currentTarget = targetInfo.target;
2545             Type lambdaType = targetInfo.descriptor;
2546 
2547             if (currentTarget.isErroneous()) {
2548                 result = that.type = currentTarget;
2549                 return;
2550             }
2551 
2552             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2553 
2554             if (lambdaType.hasTag(FORALL)) {
2555                 //lambda expression target desc cannot be a generic method
2556                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2557                                                                     kindName(currentTarget.tsym),
2558                                                                     currentTarget.tsym);
2559                 resultInfo.checkContext.report(that, diags.fragment(msg));
2560                 result = that.type = types.createErrorType(pt());
2561                 return;
2562             }
2563 
2564             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2565                 //add param type info in the AST
2566                 List<Type> actuals = lambdaType.getParameterTypes();
2567                 List<JCVariableDecl> params = that.params;
2568 
2569                 boolean arityMismatch = false;
2570 
2571                 while (params.nonEmpty()) {
2572                     if (actuals.isEmpty()) {
2573                         //not enough actuals to perform lambda parameter inference
2574                         arityMismatch = true;
2575                     }
2576                     //reset previously set info
2577                     Type argType = arityMismatch ?
2578                             syms.errType :
2579                             actuals.head;
2580                     if (params.head.isImplicitlyTyped()) {
2581                         setSyntheticVariableType(params.head, argType);
2582                     }
2583                     params.head.sym = null;
2584                     actuals = actuals.isEmpty() ?
2585                             actuals :
2586                             actuals.tail;
2587                     params = params.tail;
2588                 }
2589 
2590                 //attribute lambda parameters
2591                 attribStats(that.params, localEnv);
2592 
2593                 if (arityMismatch) {
2594                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2595                         result = that.type = types.createErrorType(currentTarget);
2596                         return;
2597                 }
2598             }
2599 
2600             //from this point on, no recovery is needed; if we are in assignment context
2601             //we will be able to attribute the whole lambda body, regardless of errors;
2602             //if we are in a 'check' method context, and the lambda is not compatible
2603             //with the target-type, it will be recovered anyway in Attr.checkId
2604             needsRecovery = false;
2605 
2606             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2607                     lambdaBodyResult(that, lambdaType, resultInfo);
2608 
2609             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2610                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2611             } else {
2612                 JCBlock body = (JCBlock)that.body;
2613                 if (body == breakTree &&
2614                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2615                     breakTreeFound(copyEnv(localEnv));
2616                 }
2617                 attribStats(body.stats, localEnv);
2618             }
2619 
2620             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2621 
2622             boolean isSpeculativeRound =
2623                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2624 
2625             preFlow(that);
2626             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2627 
2628             that.type = currentTarget; //avoids recovery at this stage
2629             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2630 
2631             if (!isSpeculativeRound) {
2632                 //add thrown types as bounds to the thrown types free variables if needed:
2633                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2634                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2635                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
2636                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
2637                     }
2638                 }
2639 
2640                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2641             }
2642             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2643         } catch (Types.FunctionDescriptorLookupError ex) {
2644             JCDiagnostic cause = ex.getDiagnostic();
2645             resultInfo.checkContext.report(that, cause);
2646             result = that.type = types.createErrorType(pt());
2647             return;
2648         } catch (Throwable t) {
2649             //when an unexpected exception happens, avoid attempts to attribute the same tree again
2650             //as that would likely cause the same exception again.
2651             needsRecovery = false;
2652             throw t;
2653         } finally {
2654             localEnv.info.scope.leave();
2655             if (needsRecovery) {
2656                 attribTree(that, env, recoveryInfo);
2657             }
2658         }
2659     }
2660     //where
2661         class TargetInfo {
2662             Type target;
2663             Type descriptor;
2664 
2665             public TargetInfo(Type target, Type descriptor) {
2666                 this.target = target;
2667                 this.descriptor = descriptor;
2668             }
2669         }
2670 
2671         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2672             Type lambdaType;
2673             Type currentTarget = resultInfo.pt;
2674             if (resultInfo.pt != Type.recoveryType) {
2675                 /* We need to adjust the target. If the target is an
2676                  * intersection type, for example: SAM & I1 & I2 ...
2677                  * the target will be updated to SAM
2678                  */
2679                 currentTarget = targetChecker.visit(currentTarget, that);
2680                 if (!currentTarget.isIntersection()) {
2681                     if (explicitParamTypes != null) {
2682                         currentTarget = infer.instantiateFunctionalInterface(that,
2683                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
2684                     }
2685                     currentTarget = types.removeWildcards(currentTarget);
2686                     lambdaType = types.findDescriptorType(currentTarget);
2687                 } else {
2688                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
2689                     ListBuffer<Type> components = new ListBuffer<>();
2690                     for (Type bound : ict.getExplicitComponents()) {
2691                         if (explicitParamTypes != null) {
2692                             try {
2693                                 bound = infer.instantiateFunctionalInterface(that,
2694                                         bound, explicitParamTypes, resultInfo.checkContext);
2695                             } catch (FunctionDescriptorLookupError t) {
2696                                 // do nothing
2697                             }
2698                         }
2699                         bound = types.removeWildcards(bound);
2700                         components.add(bound);
2701                     }
2702                     currentTarget = types.makeIntersectionType(components.toList());
2703                     currentTarget.tsym.flags_field |= INTERFACE;
2704                     lambdaType = types.findDescriptorType(currentTarget);
2705                 }
2706 
2707             } else {
2708                 currentTarget = Type.recoveryType;
2709                 lambdaType = fallbackDescriptorType(that);
2710             }
2711             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2712                 //lambda expression target desc cannot be a generic method
2713                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2714                                                                     kindName(currentTarget.tsym),
2715                                                                     currentTarget.tsym);
2716                 resultInfo.checkContext.report(that, diags.fragment(msg));
2717                 currentTarget = types.createErrorType(pt());
2718             }
2719             return new TargetInfo(currentTarget, lambdaType);
2720         }
2721 
2722         void preFlow(JCLambda tree) {
2723             new PostAttrAnalyzer() {
2724                 @Override
2725                 public void scan(JCTree tree) {
2726                     if (tree == null ||
2727                             (tree.type != null &&
2728                             tree.type == Type.stuckType)) {
2729                         //don't touch stuck expressions!
2730                         return;
2731                     }
2732                     super.scan(tree);
2733                 }
2734             }.scan(tree);
2735         }
2736 
2737         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2738 
2739             @Override
2740             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2741                 return t.isIntersection() ?
2742                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2743             }
2744 
2745             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2746                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
2747                 return ict;
2748             }
2749 
2750             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
2751                 ListBuffer<Type> targs = new ListBuffer<>();
2752                 ListBuffer<Type> supertypes = new ListBuffer<>();
2753                 for (Type i : ict.interfaces_field) {
2754                     if (i.isParameterized()) {
2755                         targs.appendList(i.tsym.type.allparams());
2756                     }
2757                     supertypes.append(i.tsym.type);
2758                 }
2759                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2760                 notionalIntf.allparams_field = targs.toList();
2761                 notionalIntf.tsym.flags_field |= INTERFACE;
2762                 return notionalIntf.tsym;
2763             }
2764         };
2765 
2766         private Type fallbackDescriptorType(JCExpression tree) {
2767             switch (tree.getTag()) {
2768                 case LAMBDA:
2769                     JCLambda lambda = (JCLambda)tree;
2770                     List<Type> argtypes = List.nil();
2771                     for (JCVariableDecl param : lambda.params) {
2772                         argtypes = param.vartype != null && param.vartype.type != null ?
2773                                 argtypes.append(param.vartype.type) :
2774                                 argtypes.append(syms.errType);
2775                     }
2776                     return new MethodType(argtypes, Type.recoveryType,
2777                             List.of(syms.throwableType), syms.methodClass);
2778                 case REFERENCE:
2779                     return new MethodType(List.nil(), Type.recoveryType,
2780                             List.of(syms.throwableType), syms.methodClass);
2781                 default:
2782                     Assert.error("Cannot get here!");
2783             }
2784             return null;
2785         }
2786 
2787         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2788                 final InferenceContext inferenceContext, final Type... ts) {
2789             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2790         }
2791 
2792         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2793                 final InferenceContext inferenceContext, final List<Type> ts) {
2794             if (inferenceContext.free(ts)) {
2795                 inferenceContext.addFreeTypeListener(ts,
2796                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2797             } else {
2798                 for (Type t : ts) {
2799                     rs.checkAccessibleType(env, t);
2800                 }
2801             }
2802         }
2803 
2804         /**
2805          * Lambda/method reference have a special check context that ensures
2806          * that i.e. a lambda return type is compatible with the expected
2807          * type according to both the inherited context and the assignment
2808          * context.
2809          */
2810         class FunctionalReturnContext extends Check.NestedCheckContext {
2811 
2812             FunctionalReturnContext(CheckContext enclosingContext) {
2813                 super(enclosingContext);
2814             }
2815 
2816             @Override
2817             public boolean compatible(Type found, Type req, Warner warn) {
2818                 //return type must be compatible in both current context and assignment context
2819                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2820             }
2821 
2822             @Override
2823             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2824                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2825             }
2826         }
2827 
2828         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2829 
2830             JCExpression expr;
2831             boolean expStmtExpected;
2832 
2833             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2834                 super(enclosingContext);
2835                 this.expr = expr;
2836             }
2837 
2838             @Override
2839             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2840                 if (expStmtExpected) {
2841                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2842                 } else {
2843                     super.report(pos, details);
2844                 }
2845             }
2846 
2847             @Override
2848             public boolean compatible(Type found, Type req, Warner warn) {
2849                 //a void return is compatible with an expression statement lambda
2850                 if (req.hasTag(VOID)) {
2851                     expStmtExpected = true;
2852                     return TreeInfo.isExpressionStatement(expr);
2853                 } else {
2854                     return super.compatible(found, req, warn);
2855                 }
2856             }
2857         }
2858 
2859         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2860             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2861                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2862                     new FunctionalReturnContext(resultInfo.checkContext);
2863 
2864             return descriptor.getReturnType() == Type.recoveryType ?
2865                     recoveryInfo :
2866                     new ResultInfo(KindSelector.VAL,
2867                             descriptor.getReturnType(), funcContext);
2868         }
2869 
2870         /**
2871         * Lambda compatibility. Check that given return types, thrown types, parameter types
2872         * are compatible with the expected functional interface descriptor. This means that:
2873         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2874         * types must be compatible with the return type of the expected descriptor.
2875         */
2876         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2877             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2878 
2879             //return values have already been checked - but if lambda has no return
2880             //values, we must ensure that void/value compatibility is correct;
2881             //this amounts at checking that, if a lambda body can complete normally,
2882             //the descriptor's return type must be void
2883             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2884                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2885                 Fragment msg =
2886                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2887                 checkContext.report(tree,
2888                                     diags.fragment(msg));
2889             }
2890 
2891             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2892             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2893                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2894             }
2895         }
2896 
2897         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2898          * static field and that lambda has type annotations, these annotations will
2899          * also be stored at these fake clinit methods.
2900          *
2901          * LambdaToMethod also use fake clinit methods so they can be reused.
2902          * Also as LTM is a phase subsequent to attribution, the methods from
2903          * clinits can be safely removed by LTM to save memory.
2904          */
2905         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2906 
2907         public MethodSymbol removeClinit(ClassSymbol sym) {
2908             return clinits.remove(sym);
2909         }
2910 
2911         /* This method returns an environment to be used to attribute a lambda
2912          * expression.
2913          *
2914          * The owner of this environment is a method symbol. If the current owner
2915          * is not a method, for example if the lambda is used to initialize
2916          * a field, then if the field is:
2917          *
2918          * - an instance field, we use the first constructor.
2919          * - a static field, we create a fake clinit method.
2920          */
2921         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2922             Env<AttrContext> lambdaEnv;
2923             Symbol owner = env.info.scope.owner;
2924             if (owner.kind == VAR && owner.owner.kind == TYP) {
2925                 //field initializer
2926                 ClassSymbol enclClass = owner.enclClass();
2927                 Symbol newScopeOwner = env.info.scope.owner;
2928                 /* if the field isn't static, then we can get the first constructor
2929                  * and use it as the owner of the environment. This is what
2930                  * LTM code is doing to look for type annotations so we are fine.
2931                  */
2932                 if ((owner.flags() & STATIC) == 0) {
2933                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2934                         newScopeOwner = s;
2935                         break;
2936                     }
2937                 } else {
2938                     /* if the field is static then we need to create a fake clinit
2939                      * method, this method can later be reused by LTM.
2940                      */
2941                     MethodSymbol clinit = clinits.get(enclClass);
2942                     if (clinit == null) {
2943                         Type clinitType = new MethodType(List.nil(),
2944                                 syms.voidType, List.nil(), syms.methodClass);
2945                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2946                                 names.clinit, clinitType, enclClass);
2947                         clinit.params = List.nil();
2948                         clinits.put(enclClass, clinit);
2949                     }
2950                     newScopeOwner = clinit;
2951                 }
2952                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2953             } else {
2954                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2955             }
2956             return lambdaEnv;
2957         }
2958 
2959     @Override
2960     public void visitReference(final JCMemberReference that) {
2961         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2962             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2963                 //method reference only allowed in assignment or method invocation/cast context
2964                 log.error(that.pos(), Errors.UnexpectedMref);
2965             }
2966             result = that.type = types.createErrorType(pt());
2967             return;
2968         }
2969         final Env<AttrContext> localEnv = env.dup(that);
2970         try {
2971             //attribute member reference qualifier - if this is a constructor
2972             //reference, the expected kind must be a type
2973             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2974 
2975             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2976                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2977                 if (!exprType.isErroneous() &&
2978                     exprType.isRaw() &&
2979                     that.typeargs != null) {
2980                     log.error(that.expr.pos(),
2981                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
2982                                                  Fragments.MrefInferAndExplicitParams));
2983                     exprType = types.createErrorType(exprType);
2984                 }
2985             }
2986 
2987             if (exprType.isErroneous()) {
2988                 //if the qualifier expression contains problems,
2989                 //give up attribution of method reference
2990                 result = that.type = exprType;
2991                 return;
2992             }
2993 
2994             if (TreeInfo.isStaticSelector(that.expr, names)) {
2995                 //if the qualifier is a type, validate it; raw warning check is
2996                 //omitted as we don't know at this stage as to whether this is a
2997                 //raw selector (because of inference)
2998                 chk.validate(that.expr, env, false);
2999             } else {
3000                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3001                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3002             }
3003             //attrib type-arguments
3004             List<Type> typeargtypes = List.nil();
3005             if (that.typeargs != null) {
3006                 typeargtypes = attribTypes(that.typeargs, localEnv);
3007             }
3008 
3009             boolean isTargetSerializable =
3010                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3011                     isSerializable(pt());
3012             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3013             Type currentTarget = targetInfo.target;
3014             Type desc = targetInfo.descriptor;
3015 
3016             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3017             List<Type> argtypes = desc.getParameterTypes();
3018             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3019 
3020             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3021                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3022             }
3023 
3024             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3025             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3026             try {
3027                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3028                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3029                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3030             } finally {
3031                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3032             }
3033 
3034             Symbol refSym = refResult.fst;
3035             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3036 
3037             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3038              *  JDK-8075541
3039              */
3040             if (refSym.kind != MTH) {
3041                 boolean targetError;
3042                 switch (refSym.kind) {
3043                     case ABSENT_MTH:
3044                     case MISSING_ENCL:
3045                         targetError = false;
3046                         break;
3047                     case WRONG_MTH:
3048                     case WRONG_MTHS:
3049                     case AMBIGUOUS:
3050                     case HIDDEN:
3051                     case STATICERR:
3052                         targetError = true;
3053                         break;
3054                     default:
3055                         Assert.error("unexpected result kind " + refSym.kind);
3056                         targetError = false;
3057                 }
3058 
3059                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3060                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3061                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3062 
3063                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3064                         targetError ?
3065                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3066                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3067 
3068                 if (targetError && currentTarget == Type.recoveryType) {
3069                     //a target error doesn't make sense during recovery stage
3070                     //as we don't know what actual parameter types are
3071                     result = that.type = currentTarget;
3072                     return;
3073                 } else {
3074                     if (targetError) {
3075                         resultInfo.checkContext.report(that, diag);
3076                     } else {
3077                         log.report(diag);
3078                     }
3079                     result = that.type = types.createErrorType(currentTarget);
3080                     return;
3081                 }
3082             }
3083 
3084             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3085             that.kind = lookupHelper.referenceKind(that.sym);
3086             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3087 
3088             if (desc.getReturnType() == Type.recoveryType) {
3089                 // stop here
3090                 result = that.type = currentTarget;
3091                 return;
3092             }
3093 
3094             if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3095                 Type enclosingType = exprType.getEnclosingType();
3096                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3097                     // Check for the existence of an apropriate outer instance
3098                     rs.resolveImplicitThis(that.pos(), env, exprType);
3099                 }
3100             }
3101 
3102             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3103 
3104                 if (that.getMode() == ReferenceMode.INVOKE &&
3105                         TreeInfo.isStaticSelector(that.expr, names) &&
3106                         that.kind.isUnbound() &&
3107                         lookupHelper.site.isRaw()) {
3108                     chk.checkRaw(that.expr, localEnv);
3109                 }
3110 
3111                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3112                         exprType.getTypeArguments().nonEmpty()) {
3113                     //static ref with class type-args
3114                     log.error(that.expr.pos(),
3115                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3116                                                  Fragments.StaticMrefWithTargs));
3117                     result = that.type = types.createErrorType(currentTarget);
3118                     return;
3119                 }
3120 
3121                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3122                     // Check that super-qualified symbols are not abstract (JLS)
3123                     rs.checkNonAbstract(that.pos(), that.sym);
3124                 }
3125 
3126                 if (isTargetSerializable) {
3127                     chk.checkAccessFromSerializableElement(that, true);
3128                 }
3129             }
3130 
3131             ResultInfo checkInfo =
3132                     resultInfo.dup(newMethodTemplate(
3133                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3134                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3135                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3136 
3137             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3138 
3139             if (that.kind.isUnbound() &&
3140                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3141                 //re-generate inference constraints for unbound receiver
3142                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3143                     //cannot happen as this has already been checked - we just need
3144                     //to regenerate the inference constraints, as that has been lost
3145                     //as a result of the call to inferenceContext.save()
3146                     Assert.error("Can't get here");
3147                 }
3148             }
3149 
3150             if (!refType.isErroneous()) {
3151                 refType = types.createMethodTypeWithReturn(refType,
3152                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3153             }
3154 
3155             //go ahead with standard method reference compatibility check - note that param check
3156             //is a no-op (as this has been taken care during method applicability)
3157             boolean isSpeculativeRound =
3158                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3159 
3160             that.type = currentTarget; //avoids recovery at this stage
3161             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3162             if (!isSpeculativeRound) {
3163                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3164             }
3165             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3166         } catch (Types.FunctionDescriptorLookupError ex) {
3167             JCDiagnostic cause = ex.getDiagnostic();
3168             resultInfo.checkContext.report(that, cause);
3169             result = that.type = types.createErrorType(pt());
3170             return;
3171         }
3172     }
3173     //where
3174         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3175             //if this is a constructor reference, the expected kind must be a type
3176             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3177                                   KindSelector.VAL_TYP : KindSelector.TYP,
3178                                   Type.noType);
3179         }
3180 
3181 
3182     @SuppressWarnings("fallthrough")
3183     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3184         InferenceContext inferenceContext = checkContext.inferenceContext();
3185         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3186 
3187         Type resType;
3188         switch (tree.getMode()) {
3189             case NEW:
3190                 if (!tree.expr.type.isRaw()) {
3191                     resType = tree.expr.type;
3192                     break;
3193                 }
3194             default:
3195                 resType = refType.getReturnType();
3196         }
3197 
3198         Type incompatibleReturnType = resType;
3199 
3200         if (returnType.hasTag(VOID)) {
3201             incompatibleReturnType = null;
3202         }
3203 
3204         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3205             if (resType.isErroneous() ||
3206                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3207                             checkContext.checkWarner(tree, resType, returnType))) {
3208                 incompatibleReturnType = null;
3209             }
3210         }
3211 
3212         if (incompatibleReturnType != null) {
3213             Fragment msg =
3214                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3215             checkContext.report(tree, diags.fragment(msg));
3216         } else {
3217             if (inferenceContext.free(refType)) {
3218                 // we need to wait for inference to finish and then replace inference vars in the referent type
3219                 inferenceContext.addFreeTypeListener(List.of(refType),
3220                         instantiatedContext -> {
3221                             tree.referentType = instantiatedContext.asInstType(refType);
3222                         });
3223             } else {
3224                 tree.referentType = refType;
3225             }
3226         }
3227 
3228         if (!speculativeAttr) {
3229             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3230                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3231             }
3232         }
3233     }
3234 
3235     boolean checkExConstraints(
3236             List<Type> thrownByFuncExpr,
3237             List<Type> thrownAtFuncType,
3238             InferenceContext inferenceContext) {
3239         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3240          *  are not proper types
3241          */
3242         List<Type> nonProperList = thrownAtFuncType.stream()
3243                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3244         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3245 
3246         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3247          *  in the throws clause of the invocation type of the method reference's compile-time
3248          *  declaration
3249          */
3250         List<Type> checkedList = thrownByFuncExpr.stream()
3251                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3252 
3253         /** If n = 0 (the function type's throws clause consists only of proper types), then
3254          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3255          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3256          *  reduces to true
3257          */
3258         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3259         for (Type checked : checkedList) {
3260             boolean isSubtype = false;
3261             for (Type proper : properList) {
3262                 if (types.isSubtype(checked, proper)) {
3263                     isSubtype = true;
3264                     break;
3265                 }
3266             }
3267             if (!isSubtype) {
3268                 uncaughtByProperTypes.add(checked);
3269             }
3270         }
3271 
3272         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3273             return false;
3274         }
3275 
3276         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3277          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3278          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3279          */
3280         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3281         uncaughtByProperTypes.forEach(checkedEx -> {
3282             nonProperAsUndet.forEach(nonProper -> {
3283                 types.isSubtype(checkedEx, nonProper);
3284             });
3285         });
3286 
3287         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3288          */
3289         nonProperAsUndet.stream()
3290                 .filter(t -> t.hasTag(UNDETVAR))
3291                 .forEach(t -> ((UndetVar)t).setThrow());
3292         return true;
3293     }
3294 
3295     /**
3296      * Set functional type info on the underlying AST. Note: as the target descriptor
3297      * might contain inference variables, we might need to register an hook in the
3298      * current inference context.
3299      */
3300     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3301             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3302         if (checkContext.inferenceContext().free(descriptorType)) {
3303             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3304                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3305                     inferenceContext.asInstType(primaryTarget), checkContext));
3306         } else {
3307             if (pt.hasTag(CLASS)) {
3308                 fExpr.target = primaryTarget;
3309             }
3310             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3311                     pt != Type.recoveryType) {
3312                 //check that functional interface class is well-formed
3313                 try {
3314                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3315                      * when it's executed post-inference. See the listener code
3316                      * above.
3317                      */
3318                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3319                             names.empty, fExpr.target, ABSTRACT);
3320                     if (csym != null) {
3321                         chk.checkImplementations(env.tree, csym, csym);
3322                         try {
3323                             //perform an additional functional interface check on the synthetic class,
3324                             //as there may be spurious errors for raw targets - because of existing issues
3325                             //with membership and inheritance (see JDK-8074570).
3326                             csym.flags_field |= INTERFACE;
3327                             types.findDescriptorType(csym.type);
3328                         } catch (FunctionDescriptorLookupError err) {
3329                             resultInfo.checkContext.report(fExpr,
3330                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3331                         }
3332                     }
3333                 } catch (Types.FunctionDescriptorLookupError ex) {
3334                     JCDiagnostic cause = ex.getDiagnostic();
3335                     resultInfo.checkContext.report(env.tree, cause);
3336                 }
3337             }
3338         }
3339     }
3340 
3341     public void visitParens(JCParens tree) {
3342         Type owntype = attribTree(tree.expr, env, resultInfo);
3343         result = check(tree, owntype, pkind(), resultInfo);
3344         Symbol sym = TreeInfo.symbol(tree);
3345         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3346             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3347     }
3348 
3349     public void visitAssign(JCAssign tree) {
3350         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3351         Type capturedType = capture(owntype);
3352         attribExpr(tree.rhs, env, owntype);
3353         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3354     }
3355 
3356     public void visitAssignop(JCAssignOp tree) {
3357         // Attribute arguments.
3358         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3359         Type operand = attribExpr(tree.rhs, env);
3360         // Find operator.
3361         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3362         if (operator != operators.noOpSymbol &&
3363                 !owntype.isErroneous() &&
3364                 !operand.isErroneous()) {
3365             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3366             chk.checkCastable(tree.rhs.pos(),
3367                               operator.type.getReturnType(),
3368                               owntype);
3369         }
3370         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3371     }
3372 
3373     public void visitUnary(JCUnary tree) {
3374         // Attribute arguments.
3375         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3376             ? attribTree(tree.arg, env, varAssignmentInfo)
3377             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3378 
3379         // Find operator.
3380         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3381         Type owntype = types.createErrorType(tree.type);
3382         if (operator != operators.noOpSymbol &&
3383                 !argtype.isErroneous()) {
3384             owntype = (tree.getTag().isIncOrDecUnaryOp())
3385                 ? tree.arg.type
3386                 : operator.type.getReturnType();
3387             int opc = ((OperatorSymbol)operator).opcode;
3388 
3389             // If the argument is constant, fold it.
3390             if (argtype.constValue() != null) {
3391                 Type ctype = cfolder.fold1(opc, argtype);
3392                 if (ctype != null) {
3393                     owntype = cfolder.coerce(ctype, owntype);
3394                 }
3395             }
3396         }
3397         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3398     }
3399 
3400     public void visitBinary(JCBinary tree) {
3401         // Attribute arguments.
3402         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3403         Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3404         // Find operator.
3405         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3406         Type owntype = types.createErrorType(tree.type);
3407         if (operator != operators.noOpSymbol &&
3408                 !left.isErroneous() &&
3409                 !right.isErroneous()) {
3410             owntype = operator.type.getReturnType();
3411             int opc = ((OperatorSymbol)operator).opcode;
3412             // If both arguments are constants, fold them.
3413             if (left.constValue() != null && right.constValue() != null) {
3414                 Type ctype = cfolder.fold2(opc, left, right);
3415                 if (ctype != null) {
3416                     owntype = cfolder.coerce(ctype, owntype);
3417                 }
3418             }
3419 
3420             // Check that argument types of a reference ==, != are
3421             // castable to each other, (JLS 15.21).  Note: unboxing
3422             // comparisons will not have an acmp* opc at this point.
3423             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3424                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3425                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3426                 }
3427             }
3428 
3429             chk.checkDivZero(tree.rhs.pos(), operator, right);
3430         }
3431         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3432     }
3433 
3434     public void visitTypeCast(final JCTypeCast tree) {
3435         Type clazztype = attribType(tree.clazz, env);
3436         chk.validate(tree.clazz, env, false);
3437         //a fresh environment is required for 292 inference to work properly ---
3438         //see Infer.instantiatePolymorphicSignatureInstance()
3439         Env<AttrContext> localEnv = env.dup(tree);
3440         //should we propagate the target type?
3441         final ResultInfo castInfo;
3442         JCExpression expr = TreeInfo.skipParens(tree.expr);
3443         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3444         if (isPoly) {
3445             //expression is a poly - we need to propagate target type info
3446             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3447                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3448                 @Override
3449                 public boolean compatible(Type found, Type req, Warner warn) {
3450                     return types.isCastable(found, req, warn);
3451                 }
3452             });
3453         } else {
3454             //standalone cast - target-type info is not propagated
3455             castInfo = unknownExprInfo;
3456         }
3457         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3458         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3459         if (exprtype.constValue() != null)
3460             owntype = cfolder.coerce(exprtype, owntype);
3461         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3462         if (!isPoly)
3463             chk.checkRedundantCast(localEnv, tree);
3464     }
3465 
3466     public void visitTypeTest(JCInstanceOf tree) {
3467         Type exprtype = chk.checkNullOrRefType(
3468                 tree.expr.pos(), attribExpr(tree.expr, env));
3469         Type clazztype = attribType(tree.clazz, env);
3470         if (!clazztype.hasTag(TYPEVAR)) {
3471             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3472         }
3473         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3474             log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3475             clazztype = types.createErrorType(clazztype);
3476         }
3477         chk.validate(tree.clazz, env, false);
3478         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3479         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3480     }
3481 
3482     public void visitIndexed(JCArrayAccess tree) {
3483         Type owntype = types.createErrorType(tree.type);
3484         Type atype = attribExpr(tree.indexed, env);
3485         attribExpr(tree.index, env, syms.intType);
3486         if (types.isArray(atype))
3487             owntype = types.elemtype(atype);
3488         else if (!atype.hasTag(ERROR))
3489             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3490         if (!pkind().contains(KindSelector.VAL))
3491             owntype = capture(owntype);
3492         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3493     }
3494 
3495     public void visitIdent(JCIdent tree) {
3496         Symbol sym;
3497 
3498         // Find symbol
3499         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3500             // If we are looking for a method, the prototype `pt' will be a
3501             // method type with the type of the call's arguments as parameters.
3502             env.info.pendingResolutionPhase = null;
3503             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3504         } else if (tree.sym != null && tree.sym.kind != VAR) {
3505             sym = tree.sym;
3506         } else {
3507             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3508         }
3509         tree.sym = sym;
3510 
3511         // (1) Also find the environment current for the class where
3512         //     sym is defined (`symEnv').
3513         // Only for pre-tiger versions (1.4 and earlier):
3514         // (2) Also determine whether we access symbol out of an anonymous
3515         //     class in a this or super call.  This is illegal for instance
3516         //     members since such classes don't carry a this$n link.
3517         //     (`noOuterThisPath').
3518         Env<AttrContext> symEnv = env;
3519         boolean noOuterThisPath = false;
3520         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3521             sym.kind.matches(KindSelector.VAL_MTH) &&
3522             sym.owner.kind == TYP &&
3523             tree.name != names._this && tree.name != names._super) {
3524 
3525             // Find environment in which identifier is defined.
3526             while (symEnv.outer != null &&
3527                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3528                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3529                     noOuterThisPath = false;
3530                 symEnv = symEnv.outer;
3531             }
3532         }
3533 
3534         // If symbol is a variable, ...
3535         if (sym.kind == VAR) {
3536             VarSymbol v = (VarSymbol)sym;
3537 
3538             // ..., evaluate its initializer, if it has one, and check for
3539             // illegal forward reference.
3540             checkInit(tree, env, v, false);
3541 
3542             // If we are expecting a variable (as opposed to a value), check
3543             // that the variable is assignable in the current environment.
3544             if (KindSelector.ASG.subset(pkind()))
3545                 checkAssignable(tree.pos(), v, null, env);
3546         }
3547 
3548         // In a constructor body,
3549         // if symbol is a field or instance method, check that it is
3550         // not accessed before the supertype constructor is called.
3551         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3552             sym.kind.matches(KindSelector.VAL_MTH) &&
3553             sym.owner.kind == TYP &&
3554             (sym.flags() & STATIC) == 0) {
3555             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3556                                           sym : thisSym(tree.pos(), env));
3557         }
3558         Env<AttrContext> env1 = env;
3559         if (sym.kind != ERR && sym.kind != TYP &&
3560             sym.owner != null && sym.owner != env1.enclClass.sym) {
3561             // If the found symbol is inaccessible, then it is
3562             // accessed through an enclosing instance.  Locate this
3563             // enclosing instance:
3564             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3565                 env1 = env1.outer;
3566         }
3567 
3568         if (env.info.isSerializable) {
3569             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3570         }
3571 
3572         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3573     }
3574 
3575     public void visitSelect(JCFieldAccess tree) {
3576         // Determine the expected kind of the qualifier expression.
3577         KindSelector skind = KindSelector.NIL;
3578         if (tree.name == names._this || tree.name == names._super ||
3579                 tree.name == names._class)
3580         {
3581             skind = KindSelector.TYP;
3582         } else {
3583             if (pkind().contains(KindSelector.PCK))
3584                 skind = KindSelector.of(skind, KindSelector.PCK);
3585             if (pkind().contains(KindSelector.TYP))
3586                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3587             if (pkind().contains(KindSelector.VAL_MTH))
3588                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3589         }
3590 
3591         // Attribute the qualifier expression, and determine its symbol (if any).
3592         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3593         if (!pkind().contains(KindSelector.TYP_PCK))
3594             site = capture(site); // Capture field access
3595 
3596         // don't allow T.class T[].class, etc
3597         if (skind == KindSelector.TYP) {
3598             Type elt = site;
3599             while (elt.hasTag(ARRAY))
3600                 elt = ((ArrayType)elt).elemtype;
3601             if (elt.hasTag(TYPEVAR)) {
3602                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3603                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3604                 tree.sym = tree.type.tsym;
3605                 return ;
3606             }
3607         }
3608 
3609         // If qualifier symbol is a type or `super', assert `selectSuper'
3610         // for the selection. This is relevant for determining whether
3611         // protected symbols are accessible.
3612         Symbol sitesym = TreeInfo.symbol(tree.selected);
3613         boolean selectSuperPrev = env.info.selectSuper;
3614         env.info.selectSuper =
3615             sitesym != null &&
3616             sitesym.name == names._super;
3617 
3618         // Determine the symbol represented by the selection.
3619         env.info.pendingResolutionPhase = null;
3620         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3621         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3622             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3623             sym = syms.errSymbol;
3624         }
3625         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3626             site = capture(site);
3627             sym = selectSym(tree, sitesym, site, env, resultInfo);
3628         }
3629         boolean varArgs = env.info.lastResolveVarargs();
3630         tree.sym = sym;
3631 
3632         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3633             site = types.skipTypeVars(site, true);
3634         }
3635 
3636         // If that symbol is a variable, ...
3637         if (sym.kind == VAR) {
3638             VarSymbol v = (VarSymbol)sym;
3639 
3640             // ..., evaluate its initializer, if it has one, and check for
3641             // illegal forward reference.
3642             checkInit(tree, env, v, true);
3643 
3644             // If we are expecting a variable (as opposed to a value), check
3645             // that the variable is assignable in the current environment.
3646             if (KindSelector.ASG.subset(pkind()))
3647                 checkAssignable(tree.pos(), v, tree.selected, env);
3648         }
3649 
3650         if (sitesym != null &&
3651                 sitesym.kind == VAR &&
3652                 ((VarSymbol)sitesym).isResourceVariable() &&
3653                 sym.kind == MTH &&
3654                 sym.name.equals(names.close) &&
3655                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3656                 env.info.lint.isEnabled(LintCategory.TRY)) {
3657             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3658         }
3659 
3660         // Disallow selecting a type from an expression
3661         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3662             tree.type = check(tree.selected, pt(),
3663                               sitesym == null ?
3664                                       KindSelector.VAL : sitesym.kind.toSelector(),
3665                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3666         }
3667 
3668         if (isType(sitesym)) {
3669             if (sym.name == names._this) {
3670                 // If `C' is the currently compiled class, check that
3671                 // C.this' does not appear in a call to a super(...)
3672                 if (env.info.isSelfCall &&
3673                     site.tsym == env.enclClass.sym) {
3674                     chk.earlyRefError(tree.pos(), sym);
3675                 }
3676             } else {
3677                 // Check if type-qualified fields or methods are static (JLS)
3678                 if ((sym.flags() & STATIC) == 0 &&
3679                     sym.name != names._super &&
3680                     (sym.kind == VAR || sym.kind == MTH)) {
3681                     rs.accessBase(rs.new StaticError(sym),
3682                               tree.pos(), site, sym.name, true);
3683                 }
3684             }
3685             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3686                     sym.isStatic() && sym.kind == MTH) {
3687                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
3688             }
3689         } else if (sym.kind != ERR &&
3690                    (sym.flags() & STATIC) != 0 &&
3691                    sym.name != names._class) {
3692             // If the qualified item is not a type and the selected item is static, report
3693             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3694             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
3695         }
3696 
3697         // If we are selecting an instance member via a `super', ...
3698         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3699 
3700             // Check that super-qualified symbols are not abstract (JLS)
3701             rs.checkNonAbstract(tree.pos(), sym);
3702 
3703             if (site.isRaw()) {
3704                 // Determine argument types for site.
3705                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3706                 if (site1 != null) site = site1;
3707             }
3708         }
3709 
3710         if (env.info.isSerializable) {
3711             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3712         }
3713 
3714         env.info.selectSuper = selectSuperPrev;
3715         result = checkId(tree, site, sym, env, resultInfo);
3716     }
3717     //where
3718         /** Determine symbol referenced by a Select expression,
3719          *
3720          *  @param tree   The select tree.
3721          *  @param site   The type of the selected expression,
3722          *  @param env    The current environment.
3723          *  @param resultInfo The current result.
3724          */
3725         private Symbol selectSym(JCFieldAccess tree,
3726                                  Symbol location,
3727                                  Type site,
3728                                  Env<AttrContext> env,
3729                                  ResultInfo resultInfo) {
3730             DiagnosticPosition pos = tree.pos();
3731             Name name = tree.name;
3732             switch (site.getTag()) {
3733             case PACKAGE:
3734                 return rs.accessBase(
3735                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3736                     pos, location, site, name, true);
3737             case ARRAY:
3738             case CLASS:
3739                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3740                     return rs.resolveQualifiedMethod(
3741                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3742                 } else if (name == names._this || name == names._super) {
3743                     return rs.resolveSelf(pos, env, site.tsym, name);
3744                 } else if (name == names._class) {
3745                     // In this case, we have already made sure in
3746                     // visitSelect that qualifier expression is a type.
3747                     return syms.getClassField(site, types);
3748                 } else {
3749                     // We are seeing a plain identifier as selector.
3750                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3751                         sym = rs.accessBase(sym, pos, location, site, name, true);
3752                     return sym;
3753                 }
3754             case WILDCARD:
3755                 throw new AssertionError(tree);
3756             case TYPEVAR:
3757                 // Normally, site.getUpperBound() shouldn't be null.
3758                 // It should only happen during memberEnter/attribBase
3759                 // when determining the super type which *must* beac
3760                 // done before attributing the type variables.  In
3761                 // other words, we are seeing this illegal program:
3762                 // class B<T> extends A<T.foo> {}
3763                 Symbol sym = (site.getUpperBound() != null)
3764                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3765                     : null;
3766                 if (sym == null) {
3767                     log.error(pos, Errors.TypeVarCantBeDeref);
3768                     return syms.errSymbol;
3769                 } else {
3770                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3771                         rs.new AccessError(env, site, sym) :
3772                                 sym;
3773                     rs.accessBase(sym2, pos, location, site, name, true);
3774                     return sym;
3775                 }
3776             case ERROR:
3777                 // preserve identifier names through errors
3778                 return types.createErrorType(name, site.tsym, site).tsym;
3779             default:
3780                 // The qualifier expression is of a primitive type -- only
3781                 // .class is allowed for these.
3782                 if (name == names._class) {
3783                     // In this case, we have already made sure in Select that
3784                     // qualifier expression is a type.
3785                     return syms.getClassField(site, types);
3786                 } else {
3787                     log.error(pos, Errors.CantDeref(site));
3788                     return syms.errSymbol;
3789                 }
3790             }
3791         }
3792 
3793         /** Determine type of identifier or select expression and check that
3794          *  (1) the referenced symbol is not deprecated
3795          *  (2) the symbol's type is safe (@see checkSafe)
3796          *  (3) if symbol is a variable, check that its type and kind are
3797          *      compatible with the prototype and protokind.
3798          *  (4) if symbol is an instance field of a raw type,
3799          *      which is being assigned to, issue an unchecked warning if its
3800          *      type changes under erasure.
3801          *  (5) if symbol is an instance method of a raw type, issue an
3802          *      unchecked warning if its argument types change under erasure.
3803          *  If checks succeed:
3804          *    If symbol is a constant, return its constant type
3805          *    else if symbol is a method, return its result type
3806          *    otherwise return its type.
3807          *  Otherwise return errType.
3808          *
3809          *  @param tree       The syntax tree representing the identifier
3810          *  @param site       If this is a select, the type of the selected
3811          *                    expression, otherwise the type of the current class.
3812          *  @param sym        The symbol representing the identifier.
3813          *  @param env        The current environment.
3814          *  @param resultInfo    The expected result
3815          */
3816         Type checkId(JCTree tree,
3817                      Type site,
3818                      Symbol sym,
3819                      Env<AttrContext> env,
3820                      ResultInfo resultInfo) {
3821             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3822                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
3823                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3824         }
3825 
3826         Type checkMethodIdInternal(JCTree tree,
3827                      Type site,
3828                      Symbol sym,
3829                      Env<AttrContext> env,
3830                      ResultInfo resultInfo) {
3831             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3832                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3833                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3834                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3835                 return owntype;
3836             } else {
3837                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3838             }
3839         }
3840 
3841         Type checkIdInternal(JCTree tree,
3842                      Type site,
3843                      Symbol sym,
3844                      Type pt,
3845                      Env<AttrContext> env,
3846                      ResultInfo resultInfo) {
3847             if (pt.isErroneous()) {
3848                 return types.createErrorType(site);
3849             }
3850             Type owntype; // The computed type of this identifier occurrence.
3851             switch (sym.kind) {
3852             case TYP:
3853                 // For types, the computed type equals the symbol's type,
3854                 // except for two situations:
3855                 owntype = sym.type;
3856                 if (owntype.hasTag(CLASS)) {
3857                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3858                     Type ownOuter = owntype.getEnclosingType();
3859 
3860                     // (a) If the symbol's type is parameterized, erase it
3861                     // because no type parameters were given.
3862                     // We recover generic outer type later in visitTypeApply.
3863                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3864                         owntype = types.erasure(owntype);
3865                     }
3866 
3867                     // (b) If the symbol's type is an inner class, then
3868                     // we have to interpret its outer type as a superclass
3869                     // of the site type. Example:
3870                     //
3871                     // class Tree<A> { class Visitor { ... } }
3872                     // class PointTree extends Tree<Point> { ... }
3873                     // ...PointTree.Visitor...
3874                     //
3875                     // Then the type of the last expression above is
3876                     // Tree<Point>.Visitor.
3877                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3878                         Type normOuter = site;
3879                         if (normOuter.hasTag(CLASS)) {
3880                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3881                         }
3882                         if (normOuter == null) // perhaps from an import
3883                             normOuter = types.erasure(ownOuter);
3884                         if (normOuter != ownOuter)
3885                             owntype = new ClassType(
3886                                 normOuter, List.nil(), owntype.tsym,
3887                                 owntype.getMetadata());
3888                     }
3889                 }
3890                 break;
3891             case VAR:
3892                 VarSymbol v = (VarSymbol)sym;
3893 
3894                 if (env.info.enclVar != null
3895                         && v.type.hasTag(NONE)) {
3896                     //self reference to implicitly typed variable declaration
3897                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
3898                     return v.type = types.createErrorType(v.type);
3899                 }
3900 
3901                 // Test (4): if symbol is an instance field of a raw type,
3902                 // which is being assigned to, issue an unchecked warning if
3903                 // its type changes under erasure.
3904                 if (KindSelector.ASG.subset(pkind()) &&
3905                     v.owner.kind == TYP &&
3906                     (v.flags() & STATIC) == 0 &&
3907                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3908                     Type s = types.asOuterSuper(site, v.owner);
3909                     if (s != null &&
3910                         s.isRaw() &&
3911                         !types.isSameType(v.type, v.erasure(types))) {
3912                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
3913                     }
3914                 }
3915                 // The computed type of a variable is the type of the
3916                 // variable symbol, taken as a member of the site type.
3917                 owntype = (sym.owner.kind == TYP &&
3918                            sym.name != names._this && sym.name != names._super)
3919                     ? types.memberType(site, sym)
3920                     : sym.type;
3921 
3922                 // If the variable is a constant, record constant value in
3923                 // computed type.
3924                 if (v.getConstValue() != null && isStaticReference(tree))
3925                     owntype = owntype.constType(v.getConstValue());
3926 
3927                 if (resultInfo.pkind == KindSelector.VAL) {
3928                     owntype = capture(owntype); // capture "names as expressions"
3929                 }
3930                 break;
3931             case MTH: {
3932                 owntype = checkMethod(site, sym,
3933                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3934                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3935                         resultInfo.pt.getTypeArguments());
3936                 break;
3937             }
3938             case PCK: case ERR:
3939                 owntype = sym.type;
3940                 break;
3941             default:
3942                 throw new AssertionError("unexpected kind: " + sym.kind +
3943                                          " in tree " + tree);
3944             }
3945 
3946             // Emit a `deprecation' warning if symbol is deprecated.
3947             // (for constructors (but not for constructor references), the error
3948             // was given when the constructor was resolved)
3949 
3950             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3951                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3952                 chk.checkSunAPI(tree.pos(), sym);
3953                 chk.checkProfile(tree.pos(), sym);
3954             }
3955 
3956             // If symbol is a variable, check that its type and
3957             // kind are compatible with the prototype and protokind.
3958             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3959         }
3960 
3961         /** Check that variable is initialized and evaluate the variable's
3962          *  initializer, if not yet done. Also check that variable is not
3963          *  referenced before it is defined.
3964          *  @param tree    The tree making up the variable reference.
3965          *  @param env     The current environment.
3966          *  @param v       The variable's symbol.
3967          */
3968         private void checkInit(JCTree tree,
3969                                Env<AttrContext> env,
3970                                VarSymbol v,
3971                                boolean onlyWarning) {
3972             // A forward reference is diagnosed if the declaration position
3973             // of the variable is greater than the current tree position
3974             // and the tree and variable definition occur in the same class
3975             // definition.  Note that writes don't count as references.
3976             // This check applies only to class and instance
3977             // variables.  Local variables follow different scope rules,
3978             // and are subject to definite assignment checking.
3979             Env<AttrContext> initEnv = enclosingInitEnv(env);
3980             if (initEnv != null &&
3981                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3982                 v.owner.kind == TYP &&
3983                 v.owner == env.info.scope.owner.enclClass() &&
3984                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3985                 (!env.tree.hasTag(ASSIGN) ||
3986                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3987                 if (!onlyWarning || isStaticEnumField(v)) {
3988                     Error errkey = (initEnv.info.enclVar == v) ?
3989                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
3990                     log.error(tree.pos(), errkey);
3991                 } else if (useBeforeDeclarationWarning) {
3992                     Warning warnkey = (initEnv.info.enclVar == v) ?
3993                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
3994                     log.warning(tree.pos(), warnkey);
3995                 }
3996             }
3997 
3998             v.getConstValue(); // ensure initializer is evaluated
3999 
4000             checkEnumInitializer(tree, env, v);
4001         }
4002 
4003         /**
4004          * Returns the enclosing init environment associated with this env (if any). An init env
4005          * can be either a field declaration env or a static/instance initializer env.
4006          */
4007         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4008             while (true) {
4009                 switch (env.tree.getTag()) {
4010                     case VARDEF:
4011                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4012                         if (vdecl.sym.owner.kind == TYP) {
4013                             //field
4014                             return env;
4015                         }
4016                         break;
4017                     case BLOCK:
4018                         if (env.next.tree.hasTag(CLASSDEF)) {
4019                             //instance/static initializer
4020                             return env;
4021                         }
4022                         break;
4023                     case METHODDEF:
4024                     case CLASSDEF:
4025                     case TOPLEVEL:
4026                         return null;
4027                 }
4028                 Assert.checkNonNull(env.next);
4029                 env = env.next;
4030             }
4031         }
4032 
4033         /**
4034          * Check for illegal references to static members of enum.  In
4035          * an enum type, constructors and initializers may not
4036          * reference its static members unless they are constant.
4037          *
4038          * @param tree    The tree making up the variable reference.
4039          * @param env     The current environment.
4040          * @param v       The variable's symbol.
4041          * @jls  section 8.9 Enums
4042          */
4043         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4044             // JLS:
4045             //
4046             // "It is a compile-time error to reference a static field
4047             // of an enum type that is not a compile-time constant
4048             // (15.28) from constructors, instance initializer blocks,
4049             // or instance variable initializer expressions of that
4050             // type. It is a compile-time error for the constructors,
4051             // instance initializer blocks, or instance variable
4052             // initializer expressions of an enum constant e to refer
4053             // to itself or to an enum constant of the same type that
4054             // is declared to the right of e."
4055             if (isStaticEnumField(v)) {
4056                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4057 
4058                 if (enclClass == null || enclClass.owner == null)
4059                     return;
4060 
4061                 // See if the enclosing class is the enum (or a
4062                 // subclass thereof) declaring v.  If not, this
4063                 // reference is OK.
4064                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4065                     return;
4066 
4067                 // If the reference isn't from an initializer, then
4068                 // the reference is OK.
4069                 if (!Resolve.isInitializer(env))
4070                     return;
4071 
4072                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4073             }
4074         }
4075 
4076         /** Is the given symbol a static, non-constant field of an Enum?
4077          *  Note: enum literals should not be regarded as such
4078          */
4079         private boolean isStaticEnumField(VarSymbol v) {
4080             return Flags.isEnum(v.owner) &&
4081                    Flags.isStatic(v) &&
4082                    !Flags.isConstant(v) &&
4083                    v.name != names._class;
4084         }
4085 
4086     /**
4087      * Check that method arguments conform to its instantiation.
4088      **/
4089     public Type checkMethod(Type site,
4090                             final Symbol sym,
4091                             ResultInfo resultInfo,
4092                             Env<AttrContext> env,
4093                             final List<JCExpression> argtrees,
4094                             List<Type> argtypes,
4095                             List<Type> typeargtypes) {
4096         // Test (5): if symbol is an instance method of a raw type, issue
4097         // an unchecked warning if its argument types change under erasure.
4098         if ((sym.flags() & STATIC) == 0 &&
4099             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4100             Type s = types.asOuterSuper(site, sym.owner);
4101             if (s != null && s.isRaw() &&
4102                 !types.isSameTypes(sym.type.getParameterTypes(),
4103                                    sym.erasure(types).getParameterTypes())) {
4104                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4105             }
4106         }
4107 
4108         if (env.info.defaultSuperCallSite != null) {
4109             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4110                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4111                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4112                 List<MethodSymbol> icand_sup =
4113                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4114                 if (icand_sup.nonEmpty() &&
4115                         icand_sup.head != sym &&
4116                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4117                     log.error(env.tree.pos(),
4118                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4119                     break;
4120                 }
4121             }
4122             env.info.defaultSuperCallSite = null;
4123         }
4124 
4125         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4126             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4127             if (app.meth.hasTag(SELECT) &&
4128                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4129                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4130             }
4131         }
4132 
4133         // Compute the identifier's instantiated type.
4134         // For methods, we need to compute the instance type by
4135         // Resolve.instantiate from the symbol's type as well as
4136         // any type arguments and value arguments.
4137         Warner noteWarner = new Warner();
4138         try {
4139             Type owntype = rs.checkMethod(
4140                     env,
4141                     site,
4142                     sym,
4143                     resultInfo,
4144                     argtypes,
4145                     typeargtypes,
4146                     noteWarner);
4147 
4148             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4149                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4150 
4151             argtypes = argtypes.map(checkDeferredMap);
4152 
4153             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4154                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4155                         sym.name,
4156                         rs.methodArguments(sym.type.getParameterTypes()),
4157                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4158                         kindName(sym.location()),
4159                         sym.location()));
4160                 if (resultInfo.pt != Infer.anyPoly ||
4161                         !owntype.hasTag(METHOD) ||
4162                         !owntype.isPartial()) {
4163                     //if this is not a partially inferred method type, erase return type. Otherwise,
4164                     //erasure is carried out in PartiallyInferredMethodType.check().
4165                     owntype = new MethodType(owntype.getParameterTypes(),
4166                             types.erasure(owntype.getReturnType()),
4167                             types.erasure(owntype.getThrownTypes()),
4168                             syms.methodClass);
4169                 }
4170             }
4171 
4172             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4173                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4174                  PolyKind.POLY : PolyKind.STANDALONE;
4175             TreeInfo.setPolyKind(env.tree, pkind);
4176 
4177             return (resultInfo.pt == Infer.anyPoly) ?
4178                     owntype :
4179                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4180                             resultInfo.checkContext.inferenceContext());
4181         } catch (Infer.InferenceException ex) {
4182             //invalid target type - propagate exception outwards or report error
4183             //depending on the current check context
4184             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4185             return types.createErrorType(site);
4186         } catch (Resolve.InapplicableMethodException ex) {
4187             final JCDiagnostic diag = ex.getDiagnostic();
4188             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4189                 @Override
4190                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4191                     return new Pair<>(sym, diag);
4192                 }
4193             };
4194             List<Type> argtypes2 = argtypes.map(
4195                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4196             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4197                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4198             log.report(errDiag);
4199             return types.createErrorType(site);
4200         }
4201     }
4202 
4203     public void visitLiteral(JCLiteral tree) {
4204         result = check(tree, litType(tree.typetag).constType(tree.value),
4205                 KindSelector.VAL, resultInfo);
4206     }
4207     //where
4208     /** Return the type of a literal with given type tag.
4209      */
4210     Type litType(TypeTag tag) {
4211         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4212     }
4213 
4214     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4215         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4216     }
4217 
4218     public void visitTypeArray(JCArrayTypeTree tree) {
4219         Type etype = attribType(tree.elemtype, env);
4220         Type type = new ArrayType(etype, syms.arrayClass);
4221         result = check(tree, type, KindSelector.TYP, resultInfo);
4222     }
4223 
4224     /** Visitor method for parameterized types.
4225      *  Bound checking is left until later, since types are attributed
4226      *  before supertype structure is completely known
4227      */
4228     public void visitTypeApply(JCTypeApply tree) {
4229         Type owntype = types.createErrorType(tree.type);
4230 
4231         // Attribute functor part of application and make sure it's a class.
4232         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4233 
4234         // Attribute type parameters
4235         List<Type> actuals = attribTypes(tree.arguments, env);
4236 
4237         if (clazztype.hasTag(CLASS)) {
4238             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4239             if (actuals.isEmpty()) //diamond
4240                 actuals = formals;
4241 
4242             if (actuals.length() == formals.length()) {
4243                 List<Type> a = actuals;
4244                 List<Type> f = formals;
4245                 while (a.nonEmpty()) {
4246                     a.head = a.head.withTypeVar(f.head);
4247                     a = a.tail;
4248                     f = f.tail;
4249                 }
4250                 // Compute the proper generic outer
4251                 Type clazzOuter = clazztype.getEnclosingType();
4252                 if (clazzOuter.hasTag(CLASS)) {
4253                     Type site;
4254                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4255                     if (clazz.hasTag(IDENT)) {
4256                         site = env.enclClass.sym.type;
4257                     } else if (clazz.hasTag(SELECT)) {
4258                         site = ((JCFieldAccess) clazz).selected.type;
4259                     } else throw new AssertionError(""+tree);
4260                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4261                         if (site.hasTag(CLASS))
4262                             site = types.asOuterSuper(site, clazzOuter.tsym);
4263                         if (site == null)
4264                             site = types.erasure(clazzOuter);
4265                         clazzOuter = site;
4266                     }
4267                 }
4268                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4269                                         clazztype.getMetadata());
4270             } else {
4271                 if (formals.length() != 0) {
4272                     log.error(tree.pos(),
4273                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4274                 } else {
4275                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4276                 }
4277                 owntype = types.createErrorType(tree.type);
4278             }
4279         }
4280         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4281     }
4282 
4283     public void visitTypeUnion(JCTypeUnion tree) {
4284         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4285         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4286         for (JCExpression typeTree : tree.alternatives) {
4287             Type ctype = attribType(typeTree, env);
4288             ctype = chk.checkType(typeTree.pos(),
4289                           chk.checkClassType(typeTree.pos(), ctype),
4290                           syms.throwableType);
4291             if (!ctype.isErroneous()) {
4292                 //check that alternatives of a union type are pairwise
4293                 //unrelated w.r.t. subtyping
4294                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4295                     for (Type t : multicatchTypes) {
4296                         boolean sub = types.isSubtype(ctype, t);
4297                         boolean sup = types.isSubtype(t, ctype);
4298                         if (sub || sup) {
4299                             //assume 'a' <: 'b'
4300                             Type a = sub ? ctype : t;
4301                             Type b = sub ? t : ctype;
4302                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4303                         }
4304                     }
4305                 }
4306                 multicatchTypes.append(ctype);
4307                 if (all_multicatchTypes != null)
4308                     all_multicatchTypes.append(ctype);
4309             } else {
4310                 if (all_multicatchTypes == null) {
4311                     all_multicatchTypes = new ListBuffer<>();
4312                     all_multicatchTypes.appendList(multicatchTypes);
4313                 }
4314                 all_multicatchTypes.append(ctype);
4315             }
4316         }
4317         Type t = check(tree, types.lub(multicatchTypes.toList()),
4318                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4319         if (t.hasTag(CLASS)) {
4320             List<Type> alternatives =
4321                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4322             t = new UnionClassType((ClassType) t, alternatives);
4323         }
4324         tree.type = result = t;
4325     }
4326 
4327     public void visitTypeIntersection(JCTypeIntersection tree) {
4328         attribTypes(tree.bounds, env);
4329         tree.type = result = checkIntersection(tree, tree.bounds);
4330     }
4331 
4332     public void visitTypeParameter(JCTypeParameter tree) {
4333         TypeVar typeVar = (TypeVar) tree.type;
4334 
4335         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4336             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4337         }
4338 
4339         if (!typeVar.bound.isErroneous()) {
4340             //fixup type-parameter bound computed in 'attribTypeVariables'
4341             typeVar.bound = checkIntersection(tree, tree.bounds);
4342         }
4343     }
4344 
4345     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4346         Set<Type> boundSet = new HashSet<>();
4347         if (bounds.nonEmpty()) {
4348             // accept class or interface or typevar as first bound.
4349             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4350             boundSet.add(types.erasure(bounds.head.type));
4351             if (bounds.head.type.isErroneous()) {
4352                 return bounds.head.type;
4353             }
4354             else if (bounds.head.type.hasTag(TYPEVAR)) {
4355                 // if first bound was a typevar, do not accept further bounds.
4356                 if (bounds.tail.nonEmpty()) {
4357                     log.error(bounds.tail.head.pos(),
4358                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4359                     return bounds.head.type;
4360                 }
4361             } else {
4362                 // if first bound was a class or interface, accept only interfaces
4363                 // as further bounds.
4364                 for (JCExpression bound : bounds.tail) {
4365                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4366                     if (bound.type.isErroneous()) {
4367                         bounds = List.of(bound);
4368                     }
4369                     else if (bound.type.hasTag(CLASS)) {
4370                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4371                     }
4372                 }
4373             }
4374         }
4375 
4376         if (bounds.length() == 0) {
4377             return syms.objectType;
4378         } else if (bounds.length() == 1) {
4379             return bounds.head.type;
4380         } else {
4381             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4382             // ... the variable's bound is a class type flagged COMPOUND
4383             // (see comment for TypeVar.bound).
4384             // In this case, generate a class tree that represents the
4385             // bound class, ...
4386             JCExpression extending;
4387             List<JCExpression> implementing;
4388             if (!bounds.head.type.isInterface()) {
4389                 extending = bounds.head;
4390                 implementing = bounds.tail;
4391             } else {
4392                 extending = null;
4393                 implementing = bounds;
4394             }
4395             JCClassDecl cd = make.at(tree).ClassDef(
4396                 make.Modifiers(PUBLIC | ABSTRACT),
4397                 names.empty, List.nil(),
4398                 extending, implementing, List.nil());
4399 
4400             ClassSymbol c = (ClassSymbol)owntype.tsym;
4401             Assert.check((c.flags() & COMPOUND) != 0);
4402             cd.sym = c;
4403             c.sourcefile = env.toplevel.sourcefile;
4404 
4405             // ... and attribute the bound class
4406             c.flags_field |= UNATTRIBUTED;
4407             Env<AttrContext> cenv = enter.classEnv(cd, env);
4408             typeEnvs.put(c, cenv);
4409             attribClass(c);
4410             return owntype;
4411         }
4412     }
4413 
4414     public void visitWildcard(JCWildcard tree) {
4415         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4416         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4417             ? syms.objectType
4418             : attribType(tree.inner, env);
4419         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4420                                               tree.kind.kind,
4421                                               syms.boundClass),
4422                 KindSelector.TYP, resultInfo);
4423     }
4424 
4425     public void visitAnnotation(JCAnnotation tree) {
4426         Assert.error("should be handled in annotate");
4427     }
4428 
4429     public void visitAnnotatedType(JCAnnotatedType tree) {
4430         attribAnnotationTypes(tree.annotations, env);
4431         Type underlyingType = attribType(tree.underlyingType, env);
4432         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4433 
4434         if (!env.info.isNewClass)
4435             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4436         result = tree.type = annotatedType;
4437     }
4438 
4439     public void visitErroneous(JCErroneous tree) {
4440         if (tree.errs != null)
4441             for (JCTree err : tree.errs)
4442                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4443         result = tree.type = syms.errType;
4444     }
4445 
4446     /** Default visitor method for all other trees.
4447      */
4448     public void visitTree(JCTree tree) {
4449         throw new AssertionError();
4450     }
4451 
4452     /**
4453      * Attribute an env for either a top level tree or class or module declaration.
4454      */
4455     public void attrib(Env<AttrContext> env) {
4456         switch (env.tree.getTag()) {
4457             case MODULEDEF:
4458                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4459                 break;
4460             case TOPLEVEL:
4461                 attribTopLevel(env);
4462                 break;
4463             case PACKAGEDEF:
4464                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4465                 break;
4466             default:
4467                 attribClass(env.tree.pos(), env.enclClass.sym);
4468         }
4469     }
4470 
4471     /**
4472      * Attribute a top level tree. These trees are encountered when the
4473      * package declaration has annotations.
4474      */
4475     public void attribTopLevel(Env<AttrContext> env) {
4476         JCCompilationUnit toplevel = env.toplevel;
4477         try {
4478             annotate.flush();
4479         } catch (CompletionFailure ex) {
4480             chk.completionError(toplevel.pos(), ex);
4481         }
4482     }
4483 
4484     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4485         try {
4486             annotate.flush();
4487             attribPackage(p);
4488         } catch (CompletionFailure ex) {
4489             chk.completionError(pos, ex);
4490         }
4491     }
4492 
4493     void attribPackage(PackageSymbol p) {
4494         Env<AttrContext> env = typeEnvs.get(p);
4495         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4496     }
4497 
4498     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4499         try {
4500             annotate.flush();
4501             attribModule(m);
4502         } catch (CompletionFailure ex) {
4503             chk.completionError(pos, ex);
4504         }
4505     }
4506 
4507     void attribModule(ModuleSymbol m) {
4508         // Get environment current at the point of module definition.
4509         Env<AttrContext> env = enter.typeEnvs.get(m);
4510         attribStat(env.tree, env);
4511     }
4512 
4513     /** Main method: attribute class definition associated with given class symbol.
4514      *  reporting completion failures at the given position.
4515      *  @param pos The source position at which completion errors are to be
4516      *             reported.
4517      *  @param c   The class symbol whose definition will be attributed.
4518      */
4519     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4520         try {
4521             annotate.flush();
4522             attribClass(c);
4523         } catch (CompletionFailure ex) {
4524             chk.completionError(pos, ex);
4525         }
4526     }
4527 
4528     /** Attribute class definition associated with given class symbol.
4529      *  @param c   The class symbol whose definition will be attributed.
4530      */
4531     void attribClass(ClassSymbol c) throws CompletionFailure {
4532         if (c.type.hasTag(ERROR)) return;
4533 
4534         // Check for cycles in the inheritance graph, which can arise from
4535         // ill-formed class files.
4536         chk.checkNonCyclic(null, c.type);
4537 
4538         Type st = types.supertype(c.type);
4539         if ((c.flags_field & Flags.COMPOUND) == 0) {
4540             // First, attribute superclass.
4541             if (st.hasTag(CLASS))
4542                 attribClass((ClassSymbol)st.tsym);
4543 
4544             // Next attribute owner, if it is a class.
4545             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4546                 attribClass((ClassSymbol)c.owner);
4547         }
4548 
4549         // The previous operations might have attributed the current class
4550         // if there was a cycle. So we test first whether the class is still
4551         // UNATTRIBUTED.
4552         if ((c.flags_field & UNATTRIBUTED) != 0) {
4553             c.flags_field &= ~UNATTRIBUTED;
4554 
4555             // Get environment current at the point of class definition.
4556             Env<AttrContext> env = typeEnvs.get(c);
4557 
4558             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4559             // because the annotations were not available at the time the env was created. Therefore,
4560             // we look up the environment chain for the first enclosing environment for which the
4561             // lint value is set. Typically, this is the parent env, but might be further if there
4562             // are any envs created as a result of TypeParameter nodes.
4563             Env<AttrContext> lintEnv = env;
4564             while (lintEnv.info.lint == null)
4565                 lintEnv = lintEnv.next;
4566 
4567             // Having found the enclosing lint value, we can initialize the lint value for this class
4568             env.info.lint = lintEnv.info.lint.augment(c);
4569 
4570             Lint prevLint = chk.setLint(env.info.lint);
4571             JavaFileObject prev = log.useSource(c.sourcefile);
4572             ResultInfo prevReturnRes = env.info.returnResult;
4573 
4574             try {
4575                 deferredLintHandler.flush(env.tree);
4576                 env.info.returnResult = null;
4577                 // java.lang.Enum may not be subclassed by a non-enum
4578                 if (st.tsym == syms.enumSym &&
4579                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4580                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4581 
4582                 // Enums may not be extended by source-level classes
4583                 if (st.tsym != null &&
4584                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4585                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4586                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4587                 }
4588 
4589                 if (isSerializable(c.type)) {
4590                     env.info.isSerializable = true;
4591                 }
4592 
4593                 attribClassBody(env, c);
4594 
4595                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4596                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4597                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4598                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4599             } finally {
4600                 env.info.returnResult = prevReturnRes;
4601                 log.useSource(prev);
4602                 chk.setLint(prevLint);
4603             }
4604 
4605         }
4606     }
4607 
4608     public void visitImport(JCImport tree) {
4609         // nothing to do
4610     }
4611 
4612     public void visitModuleDef(JCModuleDecl tree) {
4613         tree.sym.completeUsesProvides();
4614         ModuleSymbol msym = tree.sym;
4615         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4616         Lint prevLint = chk.setLint(lint);
4617         chk.checkModuleName(tree);
4618         chk.checkDeprecatedAnnotation(tree, msym);
4619 
4620         try {
4621             deferredLintHandler.flush(tree.pos());
4622         } finally {
4623             chk.setLint(prevLint);
4624         }
4625     }
4626 
4627     /** Finish the attribution of a class. */
4628     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4629         JCClassDecl tree = (JCClassDecl)env.tree;
4630         Assert.check(c == tree.sym);
4631 
4632         // Validate type parameters, supertype and interfaces.
4633         attribStats(tree.typarams, env);
4634         if (!c.isAnonymous()) {
4635             //already checked if anonymous
4636             chk.validate(tree.typarams, env);
4637             chk.validate(tree.extending, env);
4638             chk.validate(tree.implementing, env);
4639         }
4640 
4641         c.markAbstractIfNeeded(types);
4642 
4643         // If this is a non-abstract class, check that it has no abstract
4644         // methods or unimplemented methods of an implemented interface.
4645         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4646             chk.checkAllDefined(tree.pos(), c);
4647         }
4648 
4649         if ((c.flags() & ANNOTATION) != 0) {
4650             if (tree.implementing.nonEmpty())
4651                 log.error(tree.implementing.head.pos(),
4652                           Errors.CantExtendIntfAnnotation);
4653             if (tree.typarams.nonEmpty()) {
4654                 log.error(tree.typarams.head.pos(),
4655                           Errors.IntfAnnotationCantHaveTypeParams(c));
4656             }
4657 
4658             // If this annotation type has a @Repeatable, validate
4659             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4660             // If this annotation type has a @Repeatable, validate
4661             if (repeatable != null) {
4662                 // get diagnostic position for error reporting
4663                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4664                 Assert.checkNonNull(cbPos);
4665 
4666                 chk.validateRepeatable(c, repeatable, cbPos);
4667             }
4668         } else {
4669             // Check that all extended classes and interfaces
4670             // are compatible (i.e. no two define methods with same arguments
4671             // yet different return types).  (JLS 8.4.6.3)
4672             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4673             if (allowDefaultMethods) {
4674                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4675             }
4676         }
4677 
4678         // Check that class does not import the same parameterized interface
4679         // with two different argument lists.
4680         chk.checkClassBounds(tree.pos(), c.type);
4681 
4682         tree.type = c.type;
4683 
4684         for (List<JCTypeParameter> l = tree.typarams;
4685              l.nonEmpty(); l = l.tail) {
4686              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4687         }
4688 
4689         // Check that a generic class doesn't extend Throwable
4690         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4691             log.error(tree.extending.pos(), Errors.GenericThrowable);
4692 
4693         // Check that all methods which implement some
4694         // method conform to the method they implement.
4695         chk.checkImplementations(tree);
4696 
4697         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4698         checkAutoCloseable(tree.pos(), env, c.type);
4699 
4700         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4701             // Attribute declaration
4702             attribStat(l.head, env);
4703             // Check that declarations in inner classes are not static (JLS 8.1.2)
4704             // Make an exception for static constants.
4705             if (c.owner.kind != PCK &&
4706                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4707                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4708                 Symbol sym = null;
4709                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4710                 if (sym == null ||
4711                     sym.kind != VAR ||
4712                     ((VarSymbol) sym).getConstValue() == null)
4713                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4714             }
4715         }
4716 
4717         // Check for cycles among non-initial constructors.
4718         chk.checkCyclicConstructors(tree);
4719 
4720         // Check for cycles among annotation elements.
4721         chk.checkNonCyclicElements(tree);
4722 
4723         // Check for proper use of serialVersionUID
4724         if (env.info.lint.isEnabled(LintCategory.SERIAL)
4725                 && isSerializable(c.type)
4726                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
4727                 && !c.isAnonymous()) {
4728             checkSerialVersionUID(tree, c);
4729         }
4730         if (allowTypeAnnos) {
4731             // Correctly organize the postions of the type annotations
4732             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4733 
4734             // Check type annotations applicability rules
4735             validateTypeAnnotations(tree, false);
4736         }
4737     }
4738         // where
4739         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4740         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4741             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4742                 if (types.isSameType(al.head.annotationType.type, t))
4743                     return al.head.pos();
4744             }
4745 
4746             return null;
4747         }
4748 
4749         /** check if a type is a subtype of Serializable, if that is available. */
4750         boolean isSerializable(Type t) {
4751             try {
4752                 syms.serializableType.complete();
4753             }
4754             catch (CompletionFailure e) {
4755                 return false;
4756             }
4757             return types.isSubtype(t, syms.serializableType);
4758         }
4759 
4760         /** Check that an appropriate serialVersionUID member is defined. */
4761         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4762 
4763             // check for presence of serialVersionUID
4764             VarSymbol svuid = null;
4765             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4766                 if (sym.kind == VAR) {
4767                     svuid = (VarSymbol)sym;
4768                     break;
4769                 }
4770             }
4771 
4772             if (svuid == null) {
4773                 log.warning(LintCategory.SERIAL,
4774                         tree.pos(), Warnings.MissingSVUID(c));
4775                 return;
4776             }
4777 
4778             // check that it is static final
4779             if ((svuid.flags() & (STATIC | FINAL)) !=
4780                 (STATIC | FINAL))
4781                 log.warning(LintCategory.SERIAL,
4782                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4783 
4784             // check that it is long
4785             else if (!svuid.type.hasTag(LONG))
4786                 log.warning(LintCategory.SERIAL,
4787                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4788 
4789             // check constant
4790             else if (svuid.getConstValue() == null)
4791                 log.warning(LintCategory.SERIAL,
4792                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4793         }
4794 
4795     private Type capture(Type type) {
4796         return types.capture(type);
4797     }
4798 
4799     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
4800         if (type.isErroneous()) {
4801             tree.vartype = make.at(Position.NOPOS).Erroneous();
4802         } else {
4803             tree.vartype = make.at(Position.NOPOS).Type(type);
4804         }
4805     }
4806 
4807     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4808         tree.accept(new TypeAnnotationsValidator(sigOnly));
4809     }
4810     //where
4811     private final class TypeAnnotationsValidator extends TreeScanner {
4812 
4813         private final boolean sigOnly;
4814         public TypeAnnotationsValidator(boolean sigOnly) {
4815             this.sigOnly = sigOnly;
4816         }
4817 
4818         public void visitAnnotation(JCAnnotation tree) {
4819             chk.validateTypeAnnotation(tree, false);
4820             super.visitAnnotation(tree);
4821         }
4822         public void visitAnnotatedType(JCAnnotatedType tree) {
4823             if (!tree.underlyingType.type.isErroneous()) {
4824                 super.visitAnnotatedType(tree);
4825             }
4826         }
4827         public void visitTypeParameter(JCTypeParameter tree) {
4828             chk.validateTypeAnnotations(tree.annotations, true);
4829             scan(tree.bounds);
4830             // Don't call super.
4831             // This is needed because above we call validateTypeAnnotation with
4832             // false, which would forbid annotations on type parameters.
4833             // super.visitTypeParameter(tree);
4834         }
4835         public void visitMethodDef(JCMethodDecl tree) {
4836             if (tree.recvparam != null &&
4837                     !tree.recvparam.vartype.type.isErroneous()) {
4838                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4839                         tree.recvparam.vartype.type.tsym);
4840             }
4841             if (tree.restype != null && tree.restype.type != null) {
4842                 validateAnnotatedType(tree.restype, tree.restype.type);
4843             }
4844             if (sigOnly) {
4845                 scan(tree.mods);
4846                 scan(tree.restype);
4847                 scan(tree.typarams);
4848                 scan(tree.recvparam);
4849                 scan(tree.params);
4850                 scan(tree.thrown);
4851             } else {
4852                 scan(tree.defaultValue);
4853                 scan(tree.body);
4854             }
4855         }
4856         public void visitVarDef(final JCVariableDecl tree) {
4857             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4858             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
4859                 validateAnnotatedType(tree.vartype, tree.sym.type);
4860             scan(tree.mods);
4861             scan(tree.vartype);
4862             if (!sigOnly) {
4863                 scan(tree.init);
4864             }
4865         }
4866         public void visitTypeCast(JCTypeCast tree) {
4867             if (tree.clazz != null && tree.clazz.type != null)
4868                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4869             super.visitTypeCast(tree);
4870         }
4871         public void visitTypeTest(JCInstanceOf tree) {
4872             if (tree.clazz != null && tree.clazz.type != null)
4873                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4874             super.visitTypeTest(tree);
4875         }
4876         public void visitNewClass(JCNewClass tree) {
4877             if (tree.clazz != null && tree.clazz.type != null) {
4878                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4879                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4880                             tree.clazz.type.tsym);
4881                 }
4882                 if (tree.def != null) {
4883                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4884                 }
4885 
4886                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4887             }
4888             super.visitNewClass(tree);
4889         }
4890         public void visitNewArray(JCNewArray tree) {
4891             if (tree.elemtype != null && tree.elemtype.type != null) {
4892                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4893                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4894                             tree.elemtype.type.tsym);
4895                 }
4896                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4897             }
4898             super.visitNewArray(tree);
4899         }
4900         public void visitClassDef(JCClassDecl tree) {
4901             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4902             if (sigOnly) {
4903                 scan(tree.mods);
4904                 scan(tree.typarams);
4905                 scan(tree.extending);
4906                 scan(tree.implementing);
4907             }
4908             for (JCTree member : tree.defs) {
4909                 if (member.hasTag(Tag.CLASSDEF)) {
4910                     continue;
4911                 }
4912                 scan(member);
4913             }
4914         }
4915         public void visitBlock(JCBlock tree) {
4916             if (!sigOnly) {
4917                 scan(tree.stats);
4918             }
4919         }
4920 
4921         /* I would want to model this after
4922          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4923          * and override visitSelect and visitTypeApply.
4924          * However, we only set the annotated type in the top-level type
4925          * of the symbol.
4926          * Therefore, we need to override each individual location where a type
4927          * can occur.
4928          */
4929         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4930             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4931 
4932             if (type.isPrimitiveOrVoid()) {
4933                 return;
4934             }
4935 
4936             JCTree enclTr = errtree;
4937             Type enclTy = type;
4938 
4939             boolean repeat = true;
4940             while (repeat) {
4941                 if (enclTr.hasTag(TYPEAPPLY)) {
4942                     List<Type> tyargs = enclTy.getTypeArguments();
4943                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4944                     if (trargs.length() > 0) {
4945                         // Nothing to do for diamonds
4946                         if (tyargs.length() == trargs.length()) {
4947                             for (int i = 0; i < tyargs.length(); ++i) {
4948                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4949                             }
4950                         }
4951                         // If the lengths don't match, it's either a diamond
4952                         // or some nested type that redundantly provides
4953                         // type arguments in the tree.
4954                     }
4955 
4956                     // Look at the clazz part of a generic type
4957                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4958                 }
4959 
4960                 if (enclTr.hasTag(SELECT)) {
4961                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4962                     if (enclTy != null &&
4963                             !enclTy.hasTag(NONE)) {
4964                         enclTy = enclTy.getEnclosingType();
4965                     }
4966                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4967                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4968                     if (enclTy == null || enclTy.hasTag(NONE)) {
4969                         if (at.getAnnotations().size() == 1) {
4970                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4971                         } else {
4972                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4973                             for (JCAnnotation an : at.getAnnotations()) {
4974                                 comps.add(an.attribute);
4975                             }
4976                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4977                         }
4978                         repeat = false;
4979                     }
4980                     enclTr = at.underlyingType;
4981                     // enclTy doesn't need to be changed
4982                 } else if (enclTr.hasTag(IDENT)) {
4983                     repeat = false;
4984                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4985                     JCWildcard wc = (JCWildcard) enclTr;
4986                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
4987                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4988                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
4989                     } else {
4990                         // Nothing to do for UNBOUND
4991                     }
4992                     repeat = false;
4993                 } else if (enclTr.hasTag(TYPEARRAY)) {
4994                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4995                     validateAnnotatedType(art.getType(), art.elemtype.type);
4996                     repeat = false;
4997                 } else if (enclTr.hasTag(TYPEUNION)) {
4998                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4999                     for (JCTree t : ut.getTypeAlternatives()) {
5000                         validateAnnotatedType(t, t.type);
5001                     }
5002                     repeat = false;
5003                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5004                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5005                     for (JCTree t : it.getBounds()) {
5006                         validateAnnotatedType(t, t.type);
5007                     }
5008                     repeat = false;
5009                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5010                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5011                     repeat = false;
5012                 } else {
5013                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5014                             " within: "+ errtree + " with kind: " + errtree.getKind());
5015                 }
5016             }
5017         }
5018 
5019         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5020                 Symbol sym) {
5021             // Ensure that no declaration annotations are present.
5022             // Note that a tree type might be an AnnotatedType with
5023             // empty annotations, if only declaration annotations were given.
5024             // This method will raise an error for such a type.
5025             for (JCAnnotation ai : annotations) {
5026                 if (!ai.type.isErroneous() &&
5027                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5028                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5029                 }
5030             }
5031         }
5032     }
5033 
5034     // <editor-fold desc="post-attribution visitor">
5035 
5036     /**
5037      * Handle missing types/symbols in an AST. This routine is useful when
5038      * the compiler has encountered some errors (which might have ended up
5039      * terminating attribution abruptly); if the compiler is used in fail-over
5040      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5041      * prevents NPE to be progagated during subsequent compilation steps.
5042      */
5043     public void postAttr(JCTree tree) {
5044         new PostAttrAnalyzer().scan(tree);
5045     }
5046 
5047     class PostAttrAnalyzer extends TreeScanner {
5048 
5049         private void initTypeIfNeeded(JCTree that) {
5050             if (that.type == null) {
5051                 if (that.hasTag(METHODDEF)) {
5052                     that.type = dummyMethodType((JCMethodDecl)that);
5053                 } else {
5054                     that.type = syms.unknownType;
5055                 }
5056             }
5057         }
5058 
5059         /* Construct a dummy method type. If we have a method declaration,
5060          * and the declared return type is void, then use that return type
5061          * instead of UNKNOWN to avoid spurious error messages in lambda
5062          * bodies (see:JDK-8041704).
5063          */
5064         private Type dummyMethodType(JCMethodDecl md) {
5065             Type restype = syms.unknownType;
5066             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5067                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5068                 if (prim.typetag == VOID)
5069                     restype = syms.voidType;
5070             }
5071             return new MethodType(List.nil(), restype,
5072                                   List.nil(), syms.methodClass);
5073         }
5074         private Type dummyMethodType() {
5075             return dummyMethodType(null);
5076         }
5077 
5078         @Override
5079         public void scan(JCTree tree) {
5080             if (tree == null) return;
5081             if (tree instanceof JCExpression) {
5082                 initTypeIfNeeded(tree);
5083             }
5084             super.scan(tree);
5085         }
5086 
5087         @Override
5088         public void visitIdent(JCIdent that) {
5089             if (that.sym == null) {
5090                 that.sym = syms.unknownSymbol;
5091             }
5092         }
5093 
5094         @Override
5095         public void visitSelect(JCFieldAccess that) {
5096             if (that.sym == null) {
5097                 that.sym = syms.unknownSymbol;
5098             }
5099             super.visitSelect(that);
5100         }
5101 
5102         @Override
5103         public void visitClassDef(JCClassDecl that) {
5104             initTypeIfNeeded(that);
5105             if (that.sym == null) {
5106                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5107             }
5108             super.visitClassDef(that);
5109         }
5110 
5111         @Override
5112         public void visitMethodDef(JCMethodDecl that) {
5113             initTypeIfNeeded(that);
5114             if (that.sym == null) {
5115                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5116             }
5117             super.visitMethodDef(that);
5118         }
5119 
5120         @Override
5121         public void visitVarDef(JCVariableDecl that) {
5122             initTypeIfNeeded(that);
5123             if (that.sym == null) {
5124                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5125                 that.sym.adr = 0;
5126             }
5127             if (that.vartype == null) {
5128                 that.vartype = make.at(Position.NOPOS).Erroneous();
5129             }
5130             super.visitVarDef(that);
5131         }
5132 
5133         @Override
5134         public void visitNewClass(JCNewClass that) {
5135             if (that.constructor == null) {
5136                 that.constructor = new MethodSymbol(0, names.init,
5137                         dummyMethodType(), syms.noSymbol);
5138             }
5139             if (that.constructorType == null) {
5140                 that.constructorType = syms.unknownType;
5141             }
5142             super.visitNewClass(that);
5143         }
5144 
5145         @Override
5146         public void visitAssignop(JCAssignOp that) {
5147             if (that.operator == null) {
5148                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5149                         -1, syms.noSymbol);
5150             }
5151             super.visitAssignop(that);
5152         }
5153 
5154         @Override
5155         public void visitBinary(JCBinary that) {
5156             if (that.operator == null) {
5157                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5158                         -1, syms.noSymbol);
5159             }
5160             super.visitBinary(that);
5161         }
5162 
5163         @Override
5164         public void visitUnary(JCUnary that) {
5165             if (that.operator == null) {
5166                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5167                         -1, syms.noSymbol);
5168             }
5169             super.visitUnary(that);
5170         }
5171 
5172         @Override
5173         public void visitLambda(JCLambda that) {
5174             super.visitLambda(that);
5175             if (that.target == null) {
5176                 that.target = syms.unknownType;
5177             }
5178         }
5179 
5180         @Override
5181         public void visitReference(JCMemberReference that) {
5182             super.visitReference(that);
5183             if (that.sym == null) {
5184                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5185                         syms.noSymbol);
5186             }
5187             if (that.target == null) {
5188                 that.target = syms.unknownType;
5189             }
5190         }
5191     }
5192     // </editor-fold>
5193 
5194     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5195         new TreeScanner() {
5196             Symbol packge = pkg;
5197             @Override
5198             public void visitIdent(JCIdent that) {
5199                 that.sym = packge;
5200             }
5201 
5202             @Override
5203             public void visitSelect(JCFieldAccess that) {
5204                 that.sym = packge;
5205                 packge = packge.owner;
5206                 super.visitSelect(that);
5207             }
5208         }.scan(pid);
5209     }
5210 
5211 }