1 /*
   2  * Copyright (c) 2004, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/adaptiveSizePolicy.hpp"
  27 #include "gc/shared/collectorPolicy.hpp"
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/workgroup.hpp"
  30 #include "logging/log.hpp"
  31 #include "runtime/timer.hpp"
  32 #include "utilities/ostream.hpp"
  33 elapsedTimer AdaptiveSizePolicy::_minor_timer;
  34 elapsedTimer AdaptiveSizePolicy::_major_timer;
  35 bool AdaptiveSizePolicy::_debug_perturbation = false;
  36 
  37 // The throughput goal is implemented as
  38 //      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
  39 // gc_cost_ratio is the ratio
  40 //      application cost / gc cost
  41 // For example a gc_cost_ratio of 4 translates into a
  42 // throughput goal of .80
  43 
  44 AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
  45                                        size_t init_promo_size,
  46                                        size_t init_survivor_size,
  47                                        double gc_pause_goal_sec,
  48                                        uint gc_cost_ratio) :
  49     _eden_size(init_eden_size),
  50     _promo_size(init_promo_size),
  51     _survivor_size(init_survivor_size),
  52     _gc_pause_goal_sec(gc_pause_goal_sec),
  53     _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
  54     _gc_overhead_limit_exceeded(false),
  55     _print_gc_overhead_limit_would_be_exceeded(false),
  56     _gc_overhead_limit_count(0),
  57     _latest_minor_mutator_interval_seconds(0),
  58     _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
  59     _young_gen_change_for_minor_throughput(0),
  60     _old_gen_change_for_major_throughput(0) {
  61   assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
  62     "No opportunity to clear SoftReferences before GC overhead limit");
  63   _avg_minor_pause    =
  64     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
  65   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
  66   _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
  67   _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
  68 
  69   _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
  70   _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
  71   _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
  72 
  73   _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
  74                                                   SurvivorPadding);
  75   _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
  76                                                   AdaptiveSizePolicyWeight,
  77                                                   SurvivorPadding);
  78 
  79   _minor_pause_old_estimator =
  80     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  81   _minor_pause_young_estimator =
  82     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  83   _minor_collection_estimator =
  84     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  85   _major_collection_estimator =
  86     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  87 
  88   // Start the timers
  89   _minor_timer.start();
  90 
  91   _young_gen_policy_is_ready = false;
  92 }
  93 
  94 //  If the number of GC threads was set on the command line,
  95 // use it.
  96 //  Else
  97 //    Calculate the number of GC threads based on the number of Java threads.
  98 //    Calculate the number of GC threads based on the size of the heap.
  99 //    Use the larger.
 100 
 101 uint AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
 102                                                      const uintx min_workers,
 103                                                      uintx active_workers,
 104                                                      uintx application_workers) {
 105   // If the user has specifically set the number of
 106   // GC threads, use them.
 107 
 108   // If the user has turned off using a dynamic number of GC threads
 109   // or the users has requested a specific number, set the active
 110   // number of workers to all the workers.
 111 
 112   uintx new_active_workers = total_workers;
 113   uintx prev_active_workers = active_workers;
 114   uintx active_workers_by_JT = 0;
 115   uintx active_workers_by_heap_size = 0;
 116 
 117   // Always use at least min_workers but use up to
 118   // GCThreadsPerJavaThreads * application threads.
 119   active_workers_by_JT =
 120     MAX2((uintx) GCWorkersPerJavaThread * application_workers,
 121          min_workers);
 122 
 123   // Choose a number of GC threads based on the current size
 124   // of the heap.  This may be complicated because the size of
 125   // the heap depends on factors such as the throughput goal.
 126   // Still a large heap should be collected by more GC threads.
 127   active_workers_by_heap_size =
 128       MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);
 129 
 130   uintx max_active_workers =
 131     MAX2(active_workers_by_JT, active_workers_by_heap_size);
 132 
 133   // Limit the number of workers to the the number created,
 134   // (workers()).
 135   new_active_workers = MIN2(max_active_workers,
 136                                 (uintx) total_workers);
 137 
 138   // Increase GC workers instantly but decrease them more
 139   // slowly.
 140   if (new_active_workers < prev_active_workers) {
 141     new_active_workers =
 142       MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
 143   }
 144 
 145   // Check once more that the number of workers is within the limits.
 146   assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
 147   assert(new_active_workers >= min_workers, "Minimum workers not observed");
 148   assert(new_active_workers <= total_workers, "Total workers not observed");
 149 
 150   if (ForceDynamicNumberOfGCThreads) {
 151     // Assume this is debugging and jiggle the number of GC threads.
 152     if (new_active_workers == prev_active_workers) {
 153       if (new_active_workers < total_workers) {
 154         new_active_workers++;
 155       } else if (new_active_workers > min_workers) {
 156         new_active_workers--;
 157       }
 158     }
 159     if (new_active_workers == total_workers) {
 160       if (_debug_perturbation) {
 161         new_active_workers =  min_workers;
 162       }
 163       _debug_perturbation = !_debug_perturbation;
 164     }
 165     assert((new_active_workers <= ParallelGCThreads) &&
 166            (new_active_workers >= min_workers),
 167       "Jiggled active workers too much");
 168   }
 169 
 170    log_trace(gc, task)("GCTaskManager::calc_default_active_workers() : "
 171      "active_workers(): " UINTX_FORMAT "  new_active_workers: " UINTX_FORMAT "  "
 172      "prev_active_workers: " UINTX_FORMAT "\n"
 173      " active_workers_by_JT: " UINTX_FORMAT "  active_workers_by_heap_size: " UINTX_FORMAT,
 174      active_workers, new_active_workers, prev_active_workers,
 175      active_workers_by_JT, active_workers_by_heap_size);
 176   assert(new_active_workers > 0, "Always need at least 1");
 177   return new_active_workers;
 178 }
 179 
 180 uint AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
 181                                              uintx active_workers,
 182                                              uintx application_workers) {
 183   // If the user has specifically set the number of
 184   // GC threads, use them.
 185 
 186   // If the user has turned off using a dynamic number of GC threads
 187   // or the users has requested a specific number, set the active
 188   // number of workers to all the workers.
 189 
 190   uint new_active_workers;
 191   if (!UseDynamicNumberOfGCThreads ||
 192      (!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
 193     new_active_workers = total_workers;
 194   } else {
 195     uintx min_workers = (total_workers == 1) ? 1 : 2;
 196     new_active_workers = calc_default_active_workers(total_workers,
 197                                                      min_workers,
 198                                                      active_workers,
 199                                                      application_workers);
 200   }
 201   assert(new_active_workers > 0, "Always need at least 1");
 202   return new_active_workers;
 203 }
 204 
 205 uint AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
 206                                                   uintx active_workers,
 207                                                   uintx application_workers) {
 208   if (!UseDynamicNumberOfGCThreads ||
 209      (!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
 210     return ConcGCThreads;
 211   } else {
 212     uint no_of_gc_threads = calc_default_active_workers(total_workers,
 213                                                         1, /* Minimum number of workers */
 214                                                         active_workers,
 215                                                         application_workers);
 216     return no_of_gc_threads;
 217   }
 218 }
 219 
 220 bool AdaptiveSizePolicy::tenuring_threshold_change() const {
 221   return decrement_tenuring_threshold_for_gc_cost() ||
 222          increment_tenuring_threshold_for_gc_cost() ||
 223          decrement_tenuring_threshold_for_survivor_limit();
 224 }
 225 
 226 void AdaptiveSizePolicy::minor_collection_begin() {
 227   // Update the interval time
 228   _minor_timer.stop();
 229   // Save most recent collection time
 230   _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
 231   _minor_timer.reset();
 232   _minor_timer.start();
 233 }
 234 
 235 void AdaptiveSizePolicy::update_minor_pause_young_estimator(
 236     double minor_pause_in_ms) {
 237   double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
 238   _minor_pause_young_estimator->update(eden_size_in_mbytes,
 239     minor_pause_in_ms);
 240 }
 241 
 242 void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
 243   // Update the pause time.
 244   _minor_timer.stop();
 245 
 246   if (!GCCause::is_user_requested_gc(gc_cause) ||
 247       UseAdaptiveSizePolicyWithSystemGC) {
 248     double minor_pause_in_seconds = _minor_timer.seconds();
 249     double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
 250 
 251     // Sample for performance counter
 252     _avg_minor_pause->sample(minor_pause_in_seconds);
 253 
 254     // Cost of collection (unit-less)
 255     double collection_cost = 0.0;
 256     if ((_latest_minor_mutator_interval_seconds > 0.0) &&
 257         (minor_pause_in_seconds > 0.0)) {
 258       double interval_in_seconds =
 259         _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
 260       collection_cost =
 261         minor_pause_in_seconds / interval_in_seconds;
 262       _avg_minor_gc_cost->sample(collection_cost);
 263       // Sample for performance counter
 264       _avg_minor_interval->sample(interval_in_seconds);
 265     }
 266 
 267     // The policy does not have enough data until at least some
 268     // young collections have been done.
 269     _young_gen_policy_is_ready =
 270       (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
 271 
 272     // Calculate variables used to estimate pause time vs. gen sizes
 273     double eden_size_in_mbytes = ((double)_eden_size) / ((double)M);
 274     update_minor_pause_young_estimator(minor_pause_in_ms);
 275     update_minor_pause_old_estimator(minor_pause_in_ms);
 276 
 277     log_trace(gc, ergo)("AdaptiveSizePolicy::minor_collection_end: minor gc cost: %f  average: %f",
 278                         collection_cost, _avg_minor_gc_cost->average());
 279     log_trace(gc, ergo)("  minor pause: %f minor period %f",
 280                         minor_pause_in_ms, _latest_minor_mutator_interval_seconds * MILLIUNITS);
 281 
 282     // Calculate variable used to estimate collection cost vs. gen sizes
 283     assert(collection_cost >= 0.0, "Expected to be non-negative");
 284     _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
 285   }
 286 
 287   // Interval times use this timer to measure the mutator time.
 288   // Reset the timer after the GC pause.
 289   _minor_timer.reset();
 290   _minor_timer.start();
 291 }
 292 
 293 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, uint percent_change) {
 294   size_t eden_heap_delta;
 295   eden_heap_delta = cur_eden / 100 * percent_change;
 296   return eden_heap_delta;
 297 }
 298 
 299 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
 300   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
 301 }
 302 
 303 size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
 304   size_t eden_heap_delta = eden_increment(cur_eden) /
 305     AdaptiveSizeDecrementScaleFactor;
 306   return eden_heap_delta;
 307 }
 308 
 309 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, uint percent_change) {
 310   size_t promo_heap_delta;
 311   promo_heap_delta = cur_promo / 100 * percent_change;
 312   return promo_heap_delta;
 313 }
 314 
 315 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
 316   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
 317 }
 318 
 319 size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
 320   size_t promo_heap_delta = promo_increment(cur_promo);
 321   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
 322   return promo_heap_delta;
 323 }
 324 
 325 double AdaptiveSizePolicy::time_since_major_gc() const {
 326   _major_timer.stop();
 327   double result = _major_timer.seconds();
 328   _major_timer.start();
 329   return result;
 330 }
 331 
 332 // Linear decay of major gc cost
 333 double AdaptiveSizePolicy::decaying_major_gc_cost() const {
 334   double major_interval = major_gc_interval_average_for_decay();
 335   double major_gc_cost_average = major_gc_cost();
 336   double decayed_major_gc_cost = major_gc_cost_average;
 337   if(time_since_major_gc() > 0.0) {
 338     decayed_major_gc_cost = major_gc_cost() *
 339       (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
 340       / time_since_major_gc();
 341   }
 342 
 343   // The decayed cost should always be smaller than the
 344   // average cost but the vagaries of finite arithmetic could
 345   // produce a larger value in decayed_major_gc_cost so protect
 346   // against that.
 347   return MIN2(major_gc_cost_average, decayed_major_gc_cost);
 348 }
 349 
 350 // Use a value of the major gc cost that has been decayed
 351 // by the factor
 352 //
 353 //      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
 354 //        time-since-last-major-gc
 355 //
 356 // if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
 357 // is less than time-since-last-major-gc.
 358 //
 359 // In cases where there are initial major gc's that
 360 // are of a relatively high cost but no later major
 361 // gc's, the total gc cost can remain high because
 362 // the major gc cost remains unchanged (since there are no major
 363 // gc's).  In such a situation the value of the unchanging
 364 // major gc cost can keep the mutator throughput below
 365 // the goal when in fact the major gc cost is becoming diminishingly
 366 // small.  Use the decaying gc cost only to decide whether to
 367 // adjust for throughput.  Using it also to determine the adjustment
 368 // to be made for throughput also seems reasonable but there is
 369 // no test case to use to decide if it is the right thing to do
 370 // don't do it yet.
 371 
 372 double AdaptiveSizePolicy::decaying_gc_cost() const {
 373   double decayed_major_gc_cost = major_gc_cost();
 374   double avg_major_interval = major_gc_interval_average_for_decay();
 375   if (UseAdaptiveSizeDecayMajorGCCost &&
 376       (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
 377       (avg_major_interval > 0.00)) {
 378     double time_since_last_major_gc = time_since_major_gc();
 379 
 380     // Decay the major gc cost?
 381     if (time_since_last_major_gc >
 382         ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
 383 
 384       // Decay using the time-since-last-major-gc
 385       decayed_major_gc_cost = decaying_major_gc_cost();
 386       log_trace(gc, ergo)("decaying_gc_cost: major interval average: %f  time since last major gc: %f",
 387                     avg_major_interval, time_since_last_major_gc);
 388       log_trace(gc, ergo)("  major gc cost: %f  decayed major gc cost: %f",
 389                     major_gc_cost(), decayed_major_gc_cost);
 390     }
 391   }
 392   double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
 393   return result;
 394 }
 395 
 396 
 397 void AdaptiveSizePolicy::clear_generation_free_space_flags() {
 398   set_change_young_gen_for_min_pauses(0);
 399   set_change_old_gen_for_maj_pauses(0);
 400 
 401   set_change_old_gen_for_throughput(0);
 402   set_change_young_gen_for_throughput(0);
 403   set_decrease_for_footprint(0);
 404   set_decide_at_full_gc(0);
 405 }
 406 
 407 void AdaptiveSizePolicy::check_gc_overhead_limit(
 408                                           size_t young_live,
 409                                           size_t eden_live,
 410                                           size_t max_old_gen_size,
 411                                           size_t max_eden_size,
 412                                           bool   is_full_gc,
 413                                           GCCause::Cause gc_cause,
 414                                           CollectorPolicy* collector_policy) {
 415 
 416   // Ignore explicit GC's.  Exiting here does not set the flag and
 417   // does not reset the count.  Updating of the averages for system
 418   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
 419   if (GCCause::is_user_requested_gc(gc_cause) ||
 420       GCCause::is_serviceability_requested_gc(gc_cause)) {
 421     return;
 422   }
 423   // eden_limit is the upper limit on the size of eden based on
 424   // the maximum size of the young generation and the sizes
 425   // of the survivor space.
 426   // The question being asked is whether the gc costs are high
 427   // and the space being recovered by a collection is low.
 428   // free_in_young_gen is the free space in the young generation
 429   // after a collection and promo_live is the free space in the old
 430   // generation after a collection.
 431   //
 432   // Use the minimum of the current value of the live in the
 433   // young gen or the average of the live in the young gen.
 434   // If the current value drops quickly, that should be taken
 435   // into account (i.e., don't trigger if the amount of free
 436   // space has suddenly jumped up).  If the current is much
 437   // higher than the average, use the average since it represents
 438   // the longer term behavior.
 439   const size_t live_in_eden =
 440     MIN2(eden_live, (size_t) avg_eden_live()->average());
 441   const size_t free_in_eden = max_eden_size > live_in_eden ?
 442     max_eden_size - live_in_eden : 0;
 443   const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
 444   const size_t total_free_limit = free_in_old_gen + free_in_eden;
 445   const size_t total_mem = max_old_gen_size + max_eden_size;
 446   const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
 447   const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
 448   const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
 449   const double gc_cost_limit = GCTimeLimit/100.0;
 450   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
 451   // But don't force a promo size below the current promo size. Otherwise,
 452   // the promo size will shrink for no good reason.
 453   promo_limit = MAX2(promo_limit, _promo_size);
 454 
 455 
 456   log_trace(gc, ergo)(
 457         "PSAdaptiveSizePolicy::check_gc_overhead_limit:"
 458         " promo_limit: " SIZE_FORMAT
 459         " max_eden_size: " SIZE_FORMAT
 460         " total_free_limit: " SIZE_FORMAT
 461         " max_old_gen_size: " SIZE_FORMAT
 462         " max_eden_size: " SIZE_FORMAT
 463         " mem_free_limit: " SIZE_FORMAT,
 464         promo_limit, max_eden_size, total_free_limit,
 465         max_old_gen_size, max_eden_size,
 466         (size_t) mem_free_limit);
 467 
 468   bool print_gc_overhead_limit_would_be_exceeded = false;
 469   if (is_full_gc) {
 470     if (gc_cost() > gc_cost_limit &&
 471       free_in_old_gen < (size_t) mem_free_old_limit &&
 472       free_in_eden < (size_t) mem_free_eden_limit) {
 473       // Collections, on average, are taking too much time, and
 474       //      gc_cost() > gc_cost_limit
 475       // we have too little space available after a full gc.
 476       //      total_free_limit < mem_free_limit
 477       // where
 478       //   total_free_limit is the free space available in
 479       //     both generations
 480       //   total_mem is the total space available for allocation
 481       //     in both generations (survivor spaces are not included
 482       //     just as they are not included in eden_limit).
 483       //   mem_free_limit is a fraction of total_mem judged to be an
 484       //     acceptable amount that is still unused.
 485       // The heap can ask for the value of this variable when deciding
 486       // whether to thrown an OutOfMemory error.
 487       // Note that the gc time limit test only works for the collections
 488       // of the young gen + tenured gen and not for collections of the
 489       // permanent gen.  That is because the calculation of the space
 490       // freed by the collection is the free space in the young gen +
 491       // tenured gen.
 492       // At this point the GC overhead limit is being exceeded.
 493       inc_gc_overhead_limit_count();
 494       if (UseGCOverheadLimit) {
 495         if (gc_overhead_limit_count() >=
 496             AdaptiveSizePolicyGCTimeLimitThreshold){
 497           // All conditions have been met for throwing an out-of-memory
 498           set_gc_overhead_limit_exceeded(true);
 499           // Avoid consecutive OOM due to the gc time limit by resetting
 500           // the counter.
 501           reset_gc_overhead_limit_count();
 502         } else {
 503           // The required consecutive collections which exceed the
 504           // GC time limit may or may not have been reached. We
 505           // are approaching that condition and so as not to
 506           // throw an out-of-memory before all SoftRef's have been
 507           // cleared, set _should_clear_all_soft_refs in CollectorPolicy.
 508           // The clearing will be done on the next GC.
 509           bool near_limit = gc_overhead_limit_near();
 510           if (near_limit) {
 511             collector_policy->set_should_clear_all_soft_refs(true);
 512             log_trace(gc, ergo)("Nearing GC overhead limit, will be clearing all SoftReference");
 513           }
 514         }
 515       }
 516       // Set this even when the overhead limit will not
 517       // cause an out-of-memory.  Diagnostic message indicating
 518       // that the overhead limit is being exceeded is sometimes
 519       // printed.
 520       print_gc_overhead_limit_would_be_exceeded = true;
 521 
 522     } else {
 523       // Did not exceed overhead limits
 524       reset_gc_overhead_limit_count();
 525     }
 526   }
 527 
 528   if (UseGCOverheadLimit) {
 529     if (gc_overhead_limit_exceeded()) {
 530       log_trace(gc, ergo)("GC is exceeding overhead limit of " UINTX_FORMAT "%%", GCTimeLimit);
 531       reset_gc_overhead_limit_count();
 532     } else if (print_gc_overhead_limit_would_be_exceeded) {
 533       assert(gc_overhead_limit_count() > 0, "Should not be printing");
 534       log_trace(gc, ergo)("GC would exceed overhead limit of " UINTX_FORMAT "%% %d consecutive time(s)",
 535                           GCTimeLimit, gc_overhead_limit_count());
 536     }
 537   }
 538 }
 539 // Printing
 540 
 541 bool AdaptiveSizePolicy::print() const {
 542   assert(UseAdaptiveSizePolicy, "UseAdaptiveSizePolicy need to be enabled.");
 543 
 544   if (!log_is_enabled(Debug, gc, ergo)) {
 545     return false;
 546   }
 547 
 548   // Print goal for which action is needed.
 549   char* action = NULL;
 550   bool change_for_pause = false;
 551   if ((change_old_gen_for_maj_pauses() ==
 552          decrease_old_gen_for_maj_pauses_true) ||
 553       (change_young_gen_for_min_pauses() ==
 554          decrease_young_gen_for_min_pauses_true)) {
 555     action = (char*) " *** pause time goal ***";
 556     change_for_pause = true;
 557   } else if ((change_old_gen_for_throughput() ==
 558                increase_old_gen_for_throughput_true) ||
 559             (change_young_gen_for_throughput() ==
 560                increase_young_gen_for_througput_true)) {
 561     action = (char*) " *** throughput goal ***";
 562   } else if (decrease_for_footprint()) {
 563     action = (char*) " *** reduced footprint ***";
 564   } else {
 565     // No actions were taken.  This can legitimately be the
 566     // situation if not enough data has been gathered to make
 567     // decisions.
 568     return false;
 569   }
 570 
 571   // Pauses
 572   // Currently the size of the old gen is only adjusted to
 573   // change the major pause times.
 574   char* young_gen_action = NULL;
 575   char* tenured_gen_action = NULL;
 576 
 577   char* shrink_msg = (char*) "(attempted to shrink)";
 578   char* grow_msg = (char*) "(attempted to grow)";
 579   char* no_change_msg = (char*) "(no change)";
 580   if (change_young_gen_for_min_pauses() ==
 581       decrease_young_gen_for_min_pauses_true) {
 582     young_gen_action = shrink_msg;
 583   } else if (change_for_pause) {
 584     young_gen_action = no_change_msg;
 585   }
 586 
 587   if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
 588     tenured_gen_action = shrink_msg;
 589   } else if (change_for_pause) {
 590     tenured_gen_action = no_change_msg;
 591   }
 592 
 593   // Throughput
 594   if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
 595     assert(change_young_gen_for_throughput() ==
 596            increase_young_gen_for_througput_true,
 597            "Both generations should be growing");
 598     young_gen_action = grow_msg;
 599     tenured_gen_action = grow_msg;
 600   } else if (change_young_gen_for_throughput() ==
 601              increase_young_gen_for_througput_true) {
 602     // Only the young generation may grow at start up (before
 603     // enough full collections have been done to grow the old generation).
 604     young_gen_action = grow_msg;
 605     tenured_gen_action = no_change_msg;
 606   }
 607 
 608   // Minimum footprint
 609   if (decrease_for_footprint() != 0) {
 610     young_gen_action = shrink_msg;
 611     tenured_gen_action = shrink_msg;
 612   }
 613 
 614   log_debug(gc, ergo)("UseAdaptiveSizePolicy actions to meet %s", action);
 615   log_debug(gc, ergo)("                       GC overhead (%%)");
 616   log_debug(gc, ergo)("    Young generation:     %7.2f\t  %s",
 617                       100.0 * avg_minor_gc_cost()->average(), young_gen_action);
 618   log_debug(gc, ergo)("    Tenured generation:   %7.2f\t  %s",
 619                       100.0 * avg_major_gc_cost()->average(), tenured_gen_action);
 620   return true;
 621 }
 622 
 623 void AdaptiveSizePolicy::print_tenuring_threshold( uint new_tenuring_threshold_arg) const {
 624   // Tenuring threshold
 625   if (decrement_tenuring_threshold_for_survivor_limit()) {
 626     log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to avoid survivor space overflow) = %u", new_tenuring_threshold_arg);
 627   } else if (decrement_tenuring_threshold_for_gc_cost()) {
 628     log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to balance GC costs) = %u", new_tenuring_threshold_arg);
 629   } else if (increment_tenuring_threshold_for_gc_cost()) {
 630     log_debug(gc, ergo)("Tenuring threshold: (attempted to increase to balance GC costs) = %u", new_tenuring_threshold_arg);
 631   } else {
 632     assert(!tenuring_threshold_change(), "(no change was attempted)");
 633   }
 634 }