1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/gcId.hpp"
  27 #include "gc/shared/workgroup.hpp"
  28 #include "gc/shared/adaptiveSizePolicy.inline.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "runtime/atomic.inline.hpp"
  32 #include "runtime/os.hpp"
  33 #include "runtime/semaphore.hpp"
  34 #include "runtime/thread.inline.hpp"
  35 
  36 // Definitions of WorkGang methods.
  37 
  38 // The current implementation will exit if the allocation
  39 // of any worker fails.  Still, return a boolean so that
  40 // a future implementation can possibly do a partial
  41 // initialization of the workers and report such to the
  42 // caller.
  43 bool AbstractWorkGang::initialize_workers() {
  44   log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
  45   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
  46   if (_workers == NULL) {
  47     vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
  48     return false;
  49   }
  50 
  51   _active_workers = AdaptiveSizePolicy::initial_number_of_workers();
  52   return add_workers(true);
  53 }
  54 
  55 
  56 AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
  57   AbstractGangWorker* new_worker = allocate_worker(worker_id);
  58   set_thread(worker_id, new_worker);
  59   return new_worker;
  60 }
  61 
  62 bool AbstractWorkGang::add_workers(bool initializing) {
  63 
  64   os::ThreadType worker_type;
  65   if (are_ConcurrentGC_threads()) {
  66     worker_type = os::cgc_thread;
  67   } else {
  68     worker_type = os::pgc_thread;
  69   }
  70 
  71   return AdaptiveSizePolicy::add_workers(this,
  72                                          _active_workers,
  73                                          _total_workers,
  74                                          _created_workers,
  75                                          worker_type,
  76                                          initializing);
  77 }
  78 
  79 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
  80   // Array index bounds checking.
  81   AbstractGangWorker* result = NULL;
  82   assert(_workers != NULL, "No workers for indexing");
  83   assert(i < total_workers(), "Worker index out of bounds");
  84   result = _workers[i];
  85   assert(result != NULL, "Indexing to null worker");
  86   return result;
  87 }
  88 
  89 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
  90   uint workers = created_workers();
  91   for (uint i = 0; i < workers; i++) {
  92     worker(i)->print_on(st);
  93     st->cr();
  94   }
  95 }
  96 
  97 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
  98   assert(tc != NULL, "Null ThreadClosure");
  99   uint workers = created_workers();
 100   for (uint i = 0; i < workers; i++) {
 101     tc->do_thread(worker(i));
 102   }
 103 }
 104 
 105 // WorkGang dispatcher implemented with semaphores.
 106 //
 107 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
 108 // This helps lowering the latency when starting and stopping the worker threads.
 109 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
 110   // The task currently being dispatched to the GangWorkers.
 111   AbstractGangTask* _task;
 112 
 113   volatile uint _started;
 114   volatile uint _not_finished;
 115 
 116   // Semaphore used to start the GangWorkers.
 117   Semaphore* _start_semaphore;
 118   // Semaphore used to notify the coordinator that all workers are done.
 119   Semaphore* _end_semaphore;
 120 
 121 public:
 122   SemaphoreGangTaskDispatcher() :
 123       _task(NULL),
 124       _started(0),
 125       _not_finished(0),
 126       _start_semaphore(new Semaphore()),
 127       _end_semaphore(new Semaphore())
 128 { }
 129 
 130   ~SemaphoreGangTaskDispatcher() {
 131     delete _start_semaphore;
 132     delete _end_semaphore;
 133   }
 134 
 135   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 136     // No workers are allowed to read the state variables until they have been signaled.
 137     _task         = task;
 138     _not_finished = num_workers;
 139 
 140     // Dispatch 'num_workers' number of tasks.
 141     _start_semaphore->signal(num_workers);
 142 
 143     // Wait for the last worker to signal the coordinator.
 144     _end_semaphore->wait();
 145 
 146     // No workers are allowed to read the state variables after the coordinator has been signaled.
 147     assert(_not_finished == 0, "%d not finished workers?", _not_finished);
 148     _task    = NULL;
 149     _started = 0;
 150 
 151   }
 152 
 153   WorkData worker_wait_for_task() {
 154     // Wait for the coordinator to dispatch a task.
 155     _start_semaphore->wait();
 156 
 157     uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started);
 158 
 159     // Subtract one to get a zero-indexed worker id.
 160     uint worker_id = num_started - 1;
 161 
 162     return WorkData(_task, worker_id);
 163   }
 164 
 165   void worker_done_with_task() {
 166     // Mark that the worker is done with the task.
 167     // The worker is not allowed to read the state variables after this line.
 168     uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished);
 169 
 170     // The last worker signals to the coordinator that all work is completed.
 171     if (not_finished == 0) {
 172       _end_semaphore->signal();
 173     }
 174   }
 175 };
 176 
 177 class MutexGangTaskDispatcher : public GangTaskDispatcher {
 178   AbstractGangTask* _task;
 179 
 180   volatile uint _started;
 181   volatile uint _finished;
 182   volatile uint _num_workers;
 183 
 184   Monitor* _monitor;
 185 
 186  public:
 187   MutexGangTaskDispatcher()
 188       : _task(NULL),
 189         _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)),
 190         _started(0),
 191         _finished(0),
 192         _num_workers(0) {}
 193 
 194   ~MutexGangTaskDispatcher() {
 195     delete _monitor;
 196   }
 197 
 198   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 199     MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 200 
 201     _task        = task;
 202     _num_workers = num_workers;
 203 
 204     // Tell the workers to get to work.
 205     _monitor->notify_all();
 206 
 207     // Wait for them to finish.
 208     while (_finished < _num_workers) {
 209       _monitor->wait(/* no_safepoint_check */ true);
 210     }
 211 
 212     _task        = NULL;
 213     _num_workers = 0;
 214     _started     = 0;
 215     _finished    = 0;
 216   }
 217 
 218   WorkData worker_wait_for_task() {
 219     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 220 
 221     while (_num_workers == 0 || _started == _num_workers) {
 222       _monitor->wait(/* no_safepoint_check */ true);
 223     }
 224 
 225     _started++;
 226 
 227     // Subtract one to get a zero-indexed worker id.
 228     uint worker_id = _started - 1;
 229 
 230     return WorkData(_task, worker_id);
 231   }
 232 
 233   void worker_done_with_task() {
 234     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 235 
 236     _finished++;
 237 
 238     if (_finished == _num_workers) {
 239       // This will wake up all workers and not only the coordinator.
 240       _monitor->notify_all();
 241     }
 242   }
 243 };
 244 
 245 static GangTaskDispatcher* create_dispatcher() {
 246   if (UseSemaphoreGCThreadsSynchronization) {
 247     return new SemaphoreGangTaskDispatcher();
 248   }
 249 
 250   return new MutexGangTaskDispatcher();
 251 }
 252 
 253 WorkGang::WorkGang(const char* name,
 254                    uint  workers,
 255                    bool  are_GC_task_threads,
 256                    bool  are_ConcurrentGC_threads) :
 257     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
 258     _dispatcher(create_dispatcher())
 259 { }
 260 
 261 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
 262   return new GangWorker(this, worker_id);
 263 }
 264 
 265 void WorkGang::run_task(AbstractGangTask* task) {
 266   _dispatcher->coordinator_execute_on_workers(task, active_workers());
 267 }
 268 
 269 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
 270   _gang = gang;
 271   set_id(id);
 272   set_name("%s#%d", gang->name(), id);
 273 }
 274 
 275 void AbstractGangWorker::run() {
 276   initialize();
 277   loop();
 278 }
 279 
 280 void AbstractGangWorker::initialize() {
 281   this->record_stack_base_and_size();
 282   this->initialize_named_thread();
 283   assert(_gang != NULL, "No gang to run in");
 284   os::set_priority(this, NearMaxPriority);
 285   log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
 286   // The VM thread should not execute here because MutexLocker's are used
 287   // as (opposed to MutexLockerEx's).
 288   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
 289          " of a work gang");
 290 }
 291 
 292 bool AbstractGangWorker::is_GC_task_thread() const {
 293   return gang()->are_GC_task_threads();
 294 }
 295 
 296 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
 297   return gang()->are_ConcurrentGC_threads();
 298 }
 299 
 300 void AbstractGangWorker::print_on(outputStream* st) const {
 301   st->print("\"%s\" ", name());
 302   Thread::print_on(st);
 303   st->cr();
 304 }
 305 
 306 WorkData GangWorker::wait_for_task() {
 307   return gang()->dispatcher()->worker_wait_for_task();
 308 }
 309 
 310 void GangWorker::signal_task_done() {
 311   gang()->dispatcher()->worker_done_with_task();
 312 }
 313 
 314 void GangWorker::run_task(WorkData data) {
 315   GCIdMark gc_id_mark(data._task->gc_id());
 316   log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
 317 
 318   data._task->work(data._worker_id);
 319 
 320   log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
 321                                   name(), data._task->name(), data._worker_id, p2i(Thread::current()));
 322 }
 323 
 324 void GangWorker::loop() {
 325   while (true) {
 326     WorkData data = wait_for_task();
 327 
 328     run_task(data);
 329 
 330     signal_task_done();
 331   }
 332 }
 333 
 334 // *** WorkGangBarrierSync
 335 
 336 WorkGangBarrierSync::WorkGangBarrierSync()
 337   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
 338              Monitor::_safepoint_check_never),
 339     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
 340 }
 341 
 342 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
 343   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
 344     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
 345 }
 346 
 347 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
 348   _n_workers    = n_workers;
 349   _n_completed  = 0;
 350   _should_reset = false;
 351   _aborted      = false;
 352 }
 353 
 354 bool WorkGangBarrierSync::enter() {
 355   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 356   if (should_reset()) {
 357     // The should_reset() was set and we are the first worker to enter
 358     // the sync barrier. We will zero the n_completed() count which
 359     // effectively resets the barrier.
 360     zero_completed();
 361     set_should_reset(false);
 362   }
 363   inc_completed();
 364   if (n_completed() == n_workers()) {
 365     // At this point we would like to reset the barrier to be ready in
 366     // case it is used again. However, we cannot set n_completed() to
 367     // 0, even after the notify_all(), given that some other workers
 368     // might still be waiting for n_completed() to become ==
 369     // n_workers(). So, if we set n_completed() to 0, those workers
 370     // will get stuck (as they will wake up, see that n_completed() !=
 371     // n_workers() and go back to sleep). Instead, we raise the
 372     // should_reset() flag and the barrier will be reset the first
 373     // time a worker enters it again.
 374     set_should_reset(true);
 375     monitor()->notify_all();
 376   } else {
 377     while (n_completed() != n_workers() && !aborted()) {
 378       monitor()->wait(/* no_safepoint_check */ true);
 379     }
 380   }
 381   return !aborted();
 382 }
 383 
 384 void WorkGangBarrierSync::abort() {
 385   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 386   set_aborted();
 387   monitor()->notify_all();
 388 }
 389 
 390 // SubTasksDone functions.
 391 
 392 SubTasksDone::SubTasksDone(uint n) :
 393   _n_tasks(n), _tasks(NULL) {
 394   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
 395   guarantee(_tasks != NULL, "alloc failure");
 396   clear();
 397 }
 398 
 399 bool SubTasksDone::valid() {
 400   return _tasks != NULL;
 401 }
 402 
 403 void SubTasksDone::clear() {
 404   for (uint i = 0; i < _n_tasks; i++) {
 405     _tasks[i] = 0;
 406   }
 407   _threads_completed = 0;
 408 #ifdef ASSERT
 409   _claimed = 0;
 410 #endif
 411 }
 412 
 413 bool SubTasksDone::is_task_claimed(uint t) {
 414   assert(t < _n_tasks, "bad task id.");
 415   uint old = _tasks[t];
 416   if (old == 0) {
 417     old = Atomic::cmpxchg(1, &_tasks[t], 0);
 418   }
 419   assert(_tasks[t] == 1, "What else?");
 420   bool res = old != 0;
 421 #ifdef ASSERT
 422   if (!res) {
 423     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
 424     Atomic::inc((volatile jint*) &_claimed);
 425   }
 426 #endif
 427   return res;
 428 }
 429 
 430 void SubTasksDone::all_tasks_completed(uint n_threads) {
 431   jint observed = _threads_completed;
 432   jint old;
 433   do {
 434     old = observed;
 435     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
 436   } while (observed != old);
 437   // If this was the last thread checking in, clear the tasks.
 438   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
 439   if (observed + 1 == (jint)adjusted_thread_count) {
 440     clear();
 441   }
 442 }
 443 
 444 
 445 SubTasksDone::~SubTasksDone() {
 446   if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
 447 }
 448 
 449 // *** SequentialSubTasksDone
 450 
 451 void SequentialSubTasksDone::clear() {
 452   _n_tasks   = _n_claimed   = 0;
 453   _n_threads = _n_completed = 0;
 454 }
 455 
 456 bool SequentialSubTasksDone::valid() {
 457   return _n_threads > 0;
 458 }
 459 
 460 bool SequentialSubTasksDone::is_task_claimed(uint& t) {
 461   uint* n_claimed_ptr = &_n_claimed;
 462   t = *n_claimed_ptr;
 463   while (t < _n_tasks) {
 464     jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t);
 465     if (res == (jint)t) {
 466       return false;
 467     }
 468     t = *n_claimed_ptr;
 469   }
 470   return true;
 471 }
 472 
 473 bool SequentialSubTasksDone::all_tasks_completed() {
 474   uint* n_completed_ptr = &_n_completed;
 475   uint  complete        = *n_completed_ptr;
 476   while (true) {
 477     uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
 478     if (res == complete) {
 479       break;
 480     }
 481     complete = res;
 482   }
 483   if (complete+1 == _n_threads) {
 484     clear();
 485     return true;
 486   }
 487   return false;
 488 }