1 /*
   2  * Copyright (c) 2006, 2009, Oracle and/or its affiliates. All rights reserved.
   3  */
   4 /*
   5  * Licensed to the Apache Software Foundation (ASF) under one or more
   6  * contributor license agreements.  See the NOTICE file distributed with
   7  * this work for additional information regarding copyright ownership.
   8  * The ASF licenses this file to You under the Apache License, Version 2.0
   9  * (the "License"); you may not use this file except in compliance with
  10  * the License.  You may obtain a copy of the License at
  11  *
  12  *      http://www.apache.org/licenses/LICENSE-2.0
  13  *
  14  * Unless required by applicable law or agreed to in writing, software
  15  * distributed under the License is distributed on an "AS IS" BASIS,
  16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  17  * See the License for the specific language governing permissions and
  18  * limitations under the License.
  19  */
  20 
  21 package com.sun.org.apache.xerces.internal.impl.xs.models;
  22 
  23 import com.sun.org.apache.xerces.internal.xni.QName;
  24 import com.sun.org.apache.xerces.internal.impl.dtd.models.CMNode;
  25 import com.sun.org.apache.xerces.internal.impl.dtd.models.CMStateSet;
  26 import com.sun.org.apache.xerces.internal.impl.xs.SchemaSymbols;
  27 import com.sun.org.apache.xerces.internal.impl.xs.SubstitutionGroupHandler;
  28 import com.sun.org.apache.xerces.internal.impl.xs.XSElementDecl;
  29 import com.sun.org.apache.xerces.internal.impl.xs.XSParticleDecl;
  30 import com.sun.org.apache.xerces.internal.impl.xs.XSModelGroupImpl;
  31 import com.sun.org.apache.xerces.internal.impl.xs.XSWildcardDecl;
  32 import com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaException;
  33 import com.sun.org.apache.xerces.internal.impl.xs.XSConstraints;
  34 import java.util.ArrayList;
  35 import java.util.HashMap;
  36 
  37 /**
  38  * DFAContentModel is the implementation of XSCMValidator that does
  39  * all of the non-trivial element content validation. This class does
  40  * the conversion from the regular expression to the DFA that
  41  * it then uses in its validation algorithm.
  42  *
  43  * @xerces.internal
  44  *
  45  * @author Neil Graham, IBM
  46  */
  47 public class XSDFACM
  48     implements XSCMValidator {
  49 
  50     //
  51     // Constants
  52     //
  53     private static final boolean DEBUG = false;
  54 
  55     // special strings
  56 
  57     // debugging
  58 
  59     /** Set to true to debug content model validation. */
  60     private static final boolean DEBUG_VALIDATE_CONTENT = false;
  61 
  62     //
  63     // Data
  64     //
  65 
  66     /**
  67      * This is the map of unique input symbol elements to indices into
  68      * each state's per-input symbol transition table entry. This is part
  69      * of the built DFA information that must be kept around to do the
  70      * actual validation.  Note tat since either XSElementDecl or XSParticleDecl object
  71      * can live here, we've got to use an Object.
  72      */
  73     private Object fElemMap[] = null;
  74 
  75     /**
  76      * This is a map of whether the element map contains information
  77      * related to ANY models.
  78      */
  79     private int fElemMapType[] = null;
  80 
  81     /**
  82      * id of the unique input symbol
  83      */
  84     private int fElemMapId[] = null;
  85 
  86     /** The element map size. */
  87     private int fElemMapSize = 0;
  88 
  89     /**
  90      * This is an array of booleans, one per state (there are
  91      * fTransTableSize states in the DFA) that indicates whether that
  92      * state is a final state.
  93      */
  94     private boolean fFinalStateFlags[] = null;
  95 
  96     /**
  97      * The list of follow positions for each NFA position (i.e. for each
  98      * non-epsilon leaf node.) This is only used during the building of
  99      * the DFA, and is let go afterwards.
 100      */
 101     private CMStateSet fFollowList[] = null;
 102 
 103     /**
 104      * This is the head node of our intermediate representation. It is
 105      * only non-null during the building of the DFA (just so that it
 106      * does not have to be passed all around.) Once the DFA is built,
 107      * this is no longer required so its nulled out.
 108      */
 109     private CMNode fHeadNode = null;
 110 
 111     /**
 112      * The count of leaf nodes. This is an important number that set some
 113      * limits on the sizes of data structures in the DFA process.
 114      */
 115     private int fLeafCount = 0;
 116 
 117     /**
 118      * An array of non-epsilon leaf nodes, which is used during the DFA
 119      * build operation, then dropped.
 120      */
 121     private XSCMLeaf fLeafList[] = null;
 122 
 123     /** Array mapping ANY types to the leaf list. */
 124     private int fLeafListType[] = null;
 125 
 126     /**
 127      * This is the transition table that is the main by product of all
 128      * of the effort here. It is an array of arrays of ints. The first
 129      * dimension is the number of states we end up with in the DFA. The
 130      * second dimensions is the number of unique elements in the content
 131      * model (fElemMapSize). Each entry in the second dimension indicates
 132      * the new state given that input for the first dimension's start
 133      * state.
 134      * <p>
 135      * The fElemMap array handles mapping from element indexes to
 136      * positions in the second dimension of the transition table.
 137      */
 138     private int fTransTable[][] = null;
 139     /**
 140      * Array containing occurence information for looping states
 141      * which use counters to check minOccurs/maxOccurs.
 142      */
 143     private Occurence [] fCountingStates = null;
 144     static final class Occurence {
 145         final int minOccurs;
 146         final int maxOccurs;
 147         final int elemIndex;
 148         public Occurence (XSCMRepeatingLeaf leaf, int elemIndex) {
 149             minOccurs = leaf.getMinOccurs();
 150             maxOccurs = leaf.getMaxOccurs();
 151             this.elemIndex = elemIndex;
 152         }
 153         public String toString() {
 154             return "minOccurs=" + minOccurs
 155                 + ";maxOccurs=" +
 156                 ((maxOccurs != SchemaSymbols.OCCURRENCE_UNBOUNDED)
 157                         ? Integer.toString(maxOccurs) : "unbounded");
 158         }
 159     }
 160 
 161     /**
 162      * The number of valid entries in the transition table, and in the other
 163      * related tables such as fFinalStateFlags.
 164      */
 165     private int fTransTableSize = 0;
 166 
 167     private boolean fIsCompactedForUPA;
 168 
 169     /**
 170      * Array of counters for all the for elements (or wildcards)
 171      * of the form a{n,m} where n > 1 and m <= unbounded. Used
 172      * to count the a's to later check against n and m. Counter
 173      * set to -1 if element (or wildcard) not optimized by
 174      * constant space algorithm.
 175      */
 176     private int fElemMapCounter[];
 177 
 178     /**
 179      * Array of lower bounds for all the for elements (or wildcards)
 180      * of the form a{n,m} where n > 1 and m <= unbounded. This array
 181      * stores the n's for those elements (or wildcards) for which
 182      * the constant space algorithm applies (or -1 otherwise).
 183      */
 184     private int fElemMapCounterLowerBound[];
 185 
 186     /**
 187      * Array of upper bounds for all the for elements (or wildcards)
 188      * of the form a{n,m} where n > 1 and m <= unbounded. This array
 189      * stores the n's for those elements (or wildcards) for which
 190      * the constant space algorithm applies, or -1 if algorithm does
 191      * not apply or m = unbounded.
 192      */
 193     private int fElemMapCounterUpperBound[];   // -1 if no upper bound
 194 
 195     // temp variables
 196 
 197     //
 198     // Constructors
 199     //
 200 
 201     /**
 202      * Constructs a DFA content model.
 203      *
 204      * @param syntaxTree    The syntax tree of the content model.
 205      * @param leafCount     The number of leaves.
 206      *
 207      * @exception RuntimeException Thrown if DFA can't be built.
 208      */
 209 
 210    public XSDFACM(CMNode syntaxTree, int leafCount) {
 211 
 212         // Store away our index and pools in members
 213         fLeafCount = leafCount;
 214 
 215         //
 216         //  Create some string pool indexes that represent the names of some
 217         //  magical nodes in the syntax tree.
 218         //  (already done in static initialization...
 219         //
 220 
 221         //
 222         //  Ok, so lets grind through the building of the DFA. This method
 223         //  handles the high level logic of the algorithm, but it uses a
 224         //  number of helper classes to do its thing.
 225         //
 226         //  In order to avoid having hundreds of references to the error and
 227         //  string handlers around, this guy and all of his helper classes
 228         //  just throw a simple exception and we then pass it along.
 229         //
 230 
 231         if(DEBUG_VALIDATE_CONTENT) {
 232             XSDFACM.time -= System.currentTimeMillis();
 233         }
 234 
 235         buildDFA(syntaxTree);
 236 
 237         if(DEBUG_VALIDATE_CONTENT) {
 238             XSDFACM.time += System.currentTimeMillis();
 239             System.out.println("DFA build: " + XSDFACM.time + "ms");
 240         }
 241     }
 242 
 243     private static long time = 0;
 244 
 245     //
 246     // XSCMValidator methods
 247     //
 248 
 249     /**
 250      * check whether the given state is one of the final states
 251      *
 252      * @param state       the state to check
 253      *
 254      * @return whether it's a final state
 255      */
 256     public boolean isFinalState (int state) {
 257         return (state < 0)? false :
 258             fFinalStateFlags[state];
 259     }
 260 
 261     /**
 262      * one transition only
 263      *
 264      * @param curElem The current element's QName
 265      * @param state stack to store the previous state
 266      * @param subGroupHandler the substitution group handler
 267      *
 268      * @return  null if transition is invalid; otherwise the Object corresponding to the
 269      *      XSElementDecl or XSWildcardDecl identified.  Also, the
 270      *      state array will be modified to include the new state; this so that the validator can
 271      *      store it away.
 272      *
 273      * @exception RuntimeException thrown on error
 274      */
 275     public Object oneTransition(QName curElem, int[] state, SubstitutionGroupHandler subGroupHandler) {
 276         int curState = state[0];
 277 
 278         if(curState == XSCMValidator.FIRST_ERROR || curState == XSCMValidator.SUBSEQUENT_ERROR) {
 279             // there was an error last time; so just go find correct Object in fElemmMap.
 280             // ... after resetting state[0].
 281             if(curState == XSCMValidator.FIRST_ERROR)
 282                 state[0] = XSCMValidator.SUBSEQUENT_ERROR;
 283 
 284             return findMatchingDecl(curElem, subGroupHandler);
 285         }
 286 
 287         int nextState = 0;
 288         int elemIndex = 0;
 289         Object matchingDecl = null;
 290 
 291         for (; elemIndex < fElemMapSize; elemIndex++) {
 292             nextState = fTransTable[curState][elemIndex];
 293             if (nextState == -1)
 294                 continue;
 295             int type = fElemMapType[elemIndex] ;
 296             if (type == XSParticleDecl.PARTICLE_ELEMENT) {
 297                 matchingDecl = subGroupHandler.getMatchingElemDecl(curElem, (XSElementDecl)fElemMap[elemIndex]);
 298                 if (matchingDecl != null) {
 299                     // Increment counter if constant space algorithm applies
 300                     if (fElemMapCounter[elemIndex] >= 0) {
 301                         fElemMapCounter[elemIndex]++;
 302                     }
 303                     break;
 304                 }
 305             }
 306             else if (type == XSParticleDecl.PARTICLE_WILDCARD) {
 307                 if (((XSWildcardDecl)fElemMap[elemIndex]).allowNamespace(curElem.uri)) {
 308                     matchingDecl = fElemMap[elemIndex];
 309                     // Increment counter if constant space algorithm applies
 310                     if (fElemMapCounter[elemIndex] >= 0) {
 311                         fElemMapCounter[elemIndex]++;
 312                     }
 313                     break;
 314                 }
 315             }
 316         }
 317 
 318         // if we still can't find a match, set the state to first_error
 319         // and return null
 320         if (elemIndex == fElemMapSize) {
 321             state[1] = state[0];
 322             state[0] = XSCMValidator.FIRST_ERROR;
 323             return findMatchingDecl(curElem, subGroupHandler);
 324         }
 325 
 326         if (fCountingStates != null) {
 327             Occurence o = fCountingStates[curState];
 328             if (o != null) {
 329                 if (curState == nextState) {
 330                     if (++state[2] > o.maxOccurs &&
 331                         o.maxOccurs != SchemaSymbols.OCCURRENCE_UNBOUNDED) {
 332                         // It's likely that we looped too many times on the current state
 333                         // however it's possible that we actually matched another particle
 334                         // which allows the same name.
 335                         //
 336                         // Consider:
 337                         //
 338                         // <xs:sequence>
 339                         //  <xs:element name="foo" type="xs:string" minOccurs="3" maxOccurs="3"/>
 340                         //  <xs:element name="foo" type="xs:string" fixed="bar"/>
 341                         // </xs:sequence>
 342                         //
 343                         // and
 344                         //
 345                         // <xs:sequence>
 346                         //  <xs:element name="foo" type="xs:string" minOccurs="3" maxOccurs="3"/>
 347                         //  <xs:any namespace="##any" processContents="skip"/>
 348                         // </xs:sequence>
 349                         //
 350                         // In the DFA there will be two transitions from the current state which
 351                         // allow "foo". Note that this is not a UPA violation. The ambiguity of which
 352                         // transition to take is resolved by the current value of the counter. Since
 353                         // we've already seen enough instances of the first "foo" perhaps there is
 354                         // another element declaration or wildcard deeper in the element map which
 355                         // matches.
 356                         return findMatchingDecl(curElem, state, subGroupHandler, elemIndex);
 357                     }
 358                 }
 359                 else if (state[2] < o.minOccurs) {
 360                     // not enough loops on the current state.
 361                     state[1] = state[0];
 362                     state[0] = XSCMValidator.FIRST_ERROR;
 363                     return findMatchingDecl(curElem, subGroupHandler);
 364                 }
 365                 else {
 366                     // Exiting a counting state. If we're entering a new
 367                     // counting state, reset the counter.
 368                     o = fCountingStates[nextState];
 369                     if (o != null) {
 370                         state[2] = (elemIndex == o.elemIndex) ? 1 : 0;
 371                     }
 372                 }
 373             }
 374             else {
 375                 o = fCountingStates[nextState];
 376                 if (o != null) {
 377                     // Entering a new counting state. Reset the counter.
 378                     // If we've already seen one instance of the looping
 379                     // particle set the counter to 1, otherwise set it
 380                     // to 0.
 381                     state[2] = (elemIndex == o.elemIndex) ? 1 : 0;
 382                 }
 383             }
 384         }
 385 
 386         state[0] = nextState;
 387         return matchingDecl;
 388     } // oneTransition(QName, int[], SubstitutionGroupHandler):  Object
 389 
 390     Object findMatchingDecl(QName curElem, SubstitutionGroupHandler subGroupHandler) {
 391         Object matchingDecl = null;
 392 
 393         for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
 394             int type = fElemMapType[elemIndex] ;
 395             if (type == XSParticleDecl.PARTICLE_ELEMENT) {
 396                 matchingDecl = subGroupHandler.getMatchingElemDecl(curElem, (XSElementDecl)fElemMap[elemIndex]);
 397                 if (matchingDecl != null) {
 398                     return matchingDecl;
 399                 }
 400             }
 401             else if (type == XSParticleDecl.PARTICLE_WILDCARD) {
 402                 if(((XSWildcardDecl)fElemMap[elemIndex]).allowNamespace(curElem.uri))
 403                     return fElemMap[elemIndex];
 404             }
 405         }
 406 
 407         return null;
 408     } // findMatchingDecl(QName, SubstitutionGroupHandler): Object
 409 
 410     Object findMatchingDecl(QName curElem, int[] state, SubstitutionGroupHandler subGroupHandler, int elemIndex) {
 411 
 412         int curState = state[0];
 413         int nextState = 0;
 414         Object matchingDecl = null;
 415 
 416         while (++elemIndex < fElemMapSize) {
 417             nextState = fTransTable[curState][elemIndex];
 418             if (nextState == -1)
 419                 continue;
 420             int type = fElemMapType[elemIndex] ;
 421             if (type == XSParticleDecl.PARTICLE_ELEMENT) {
 422                 matchingDecl = subGroupHandler.getMatchingElemDecl(curElem, (XSElementDecl)fElemMap[elemIndex]);
 423                 if (matchingDecl != null) {
 424                     break;
 425                 }
 426             }
 427             else if (type == XSParticleDecl.PARTICLE_WILDCARD) {
 428                 if (((XSWildcardDecl)fElemMap[elemIndex]).allowNamespace(curElem.uri)) {
 429                     matchingDecl = fElemMap[elemIndex];
 430                     break;
 431                 }
 432             }
 433         }
 434 
 435         // if we still can't find a match, set the state to FIRST_ERROR and return null
 436         if (elemIndex == fElemMapSize) {
 437             state[1] = state[0];
 438             state[0] = XSCMValidator.FIRST_ERROR;
 439             return findMatchingDecl(curElem, subGroupHandler);
 440         }
 441 
 442         // if we found a match, set the next state and reset the
 443         // counter if the next state is a counting state.
 444         state[0] = nextState;
 445         final Occurence o = fCountingStates[nextState];
 446         if (o != null) {
 447             state[2] = (elemIndex == o.elemIndex) ? 1 : 0;
 448         }
 449         return matchingDecl;
 450     } // findMatchingDecl(QName, int[], SubstitutionGroupHandler, int): Object
 451 
 452     // This method returns the start states of the content model.
 453     public int[] startContentModel() {
 454         // Clear all constant space algorithm counters in use
 455         for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
 456             if (fElemMapCounter[elemIndex] != -1) {
 457                 fElemMapCounter[elemIndex] = 0;
 458             }
 459         }
 460         // [0] : the current state
 461         // [1] : if [0] is an error state then the
 462         //       last valid state before the error
 463         // [2] : occurence counter for counting states
 464         return new int [3];
 465     } // startContentModel():int[]
 466 
 467     // this method returns whether the last state was a valid final state
 468     public boolean endContentModel(int[] state) {
 469         final int curState = state[0];
 470         if (fFinalStateFlags[curState]) {
 471             if (fCountingStates != null) {
 472                 Occurence o = fCountingStates[curState];
 473                 if (o != null && state[2] < o.minOccurs) {
 474                     // not enough loops on the current state to be considered final.
 475                     return false;
 476                 }
 477             }
 478             return true;
 479         }
 480         return false;
 481     } // endContentModel(int[]):  boolean
 482 
 483     // Killed off whatCanGoHere; we may need it for DOM canInsert(...) etc.,
 484     // but we can put it back later.
 485 
 486     //
 487     // Private methods
 488     //
 489 
 490     /**
 491      * Builds the internal DFA transition table from the given syntax tree.
 492      *
 493      * @param syntaxTree The syntax tree.
 494      *
 495      * @exception RuntimeException Thrown if DFA cannot be built.
 496      */
 497     private void buildDFA(CMNode syntaxTree) {
 498         //
 499         //  The first step we need to take is to rewrite the content model
 500         //  using our CMNode objects, and in the process get rid of any
 501         //  repetition short cuts, converting them into '*' style repetitions
 502         //  or getting rid of repetitions altogether.
 503         //
 504         //  The conversions done are:
 505         //
 506         //  x+ -> (x|x*)
 507         //  x? -> (x|epsilon)
 508         //
 509         //  This is a relatively complex scenario. What is happening is that
 510         //  we create a top level binary node of which the special EOC value
 511         //  is set as the right side node. The the left side is set to the
 512         //  rewritten syntax tree. The source is the original content model
 513         //  info from the decl pool. The rewrite is done by buildSyntaxTree()
 514         //  which recurses the decl pool's content of the element and builds
 515         //  a new tree in the process.
 516         //
 517         //  Note that, during this operation, we set each non-epsilon leaf
 518         //  node's DFA state position and count the number of such leafs, which
 519         //  is left in the fLeafCount member.
 520         //
 521         //  The nodeTmp object is passed in just as a temp node to use during
 522         //  the recursion. Otherwise, we'd have to create a new node on every
 523         //  level of recursion, which would be piggy in Java (as is everything
 524         //  for that matter.)
 525         //
 526 
 527         /* MODIFIED (Jan, 2001)
 528          *
 529          * Use following rules.
 530          *   nullable(x+) := nullable(x), first(x+) := first(x),  last(x+) := last(x)
 531          *   nullable(x?) := true, first(x?) := first(x),  last(x?) := last(x)
 532          *
 533          * The same computation of follow as x* is applied to x+
 534          *
 535          * The modification drastically reduces computation time of
 536          * "(a, (b, a+, (c, (b, a+)+, a+, (d,  (c, (b, a+)+, a+)+, (b, a+)+, a+)+)+)+)+"
 537          */
 538 
 539         //
 540         //  And handle specially the EOC node, which also must be numbered
 541         //  and counted as a non-epsilon leaf node. It could not be handled
 542         //  in the above tree build because it was created before all that
 543         //  started. We save the EOC position since its used during the DFA
 544         //  building loop.
 545         //
 546         int EOCPos = fLeafCount;
 547         XSCMLeaf nodeEOC = new XSCMLeaf(XSParticleDecl.PARTICLE_ELEMENT, null, -1, fLeafCount++);
 548         fHeadNode = new XSCMBinOp(
 549             XSModelGroupImpl.MODELGROUP_SEQUENCE,
 550             syntaxTree,
 551             nodeEOC
 552         );
 553 
 554         //
 555         //  Ok, so now we have to iterate the new tree and do a little more
 556         //  work now that we know the leaf count. One thing we need to do is
 557         //  to calculate the first and last position sets of each node. This
 558         //  is cached away in each of the nodes.
 559         //
 560         //  Along the way we also set the leaf count in each node as the
 561         //  maximum state count. They must know this in order to create their
 562         //  first/last pos sets.
 563         //
 564         //  We also need to build an array of references to the non-epsilon
 565         //  leaf nodes. Since we iterate it in the same way as before, this
 566         //  will put them in the array according to their position values.
 567         //
 568         fLeafList = new XSCMLeaf[fLeafCount];
 569         fLeafListType = new int[fLeafCount];
 570         postTreeBuildInit(fHeadNode);
 571 
 572         //
 573         //  And, moving onward... We now need to build the follow position
 574         //  sets for all the nodes. So we allocate an array of state sets,
 575         //  one for each leaf node (i.e. each DFA position.)
 576         //
 577         fFollowList = new CMStateSet[fLeafCount];
 578         for (int index = 0; index < fLeafCount; index++)
 579             fFollowList[index] = new CMStateSet(fLeafCount);
 580         calcFollowList(fHeadNode);
 581         //
 582         //  And finally the big push... Now we build the DFA using all the
 583         //  states and the tree we've built up. First we set up the various
 584         //  data structures we are going to use while we do this.
 585         //
 586         //  First of all we need an array of unique element names in our
 587         //  content model. For each transition table entry, we need a set of
 588         //  contiguous indices to represent the transitions for a particular
 589         //  input element. So we need to a zero based range of indexes that
 590         //  map to element types. This element map provides that mapping.
 591         //
 592         fElemMap = new Object[fLeafCount];
 593         fElemMapType = new int[fLeafCount];
 594         fElemMapId = new int[fLeafCount];
 595 
 596         fElemMapCounter = new int[fLeafCount];
 597         fElemMapCounterLowerBound = new int[fLeafCount];
 598         fElemMapCounterUpperBound = new int[fLeafCount];
 599 
 600         fElemMapSize = 0;
 601         Occurence [] elemOccurenceMap = null;
 602 
 603         for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
 604             // optimization from Henry Zongaro:
 605             //fElemMap[outIndex] = new Object ();
 606             fElemMap[outIndex] = null;
 607 
 608             int inIndex = 0;
 609             final int id = fLeafList[outIndex].getParticleId();
 610             for (; inIndex < fElemMapSize; inIndex++) {
 611                 if (id == fElemMapId[inIndex])
 612                     break;
 613             }
 614 
 615             // If it was not in the list, then add it, if not the EOC node
 616             if (inIndex == fElemMapSize) {
 617                 XSCMLeaf leaf = fLeafList[outIndex];
 618                 fElemMap[fElemMapSize] = leaf.getLeaf();
 619                 if (leaf instanceof XSCMRepeatingLeaf) {
 620                     if (elemOccurenceMap == null) {
 621                         elemOccurenceMap = new Occurence[fLeafCount];
 622                     }
 623                     elemOccurenceMap[fElemMapSize] = new Occurence((XSCMRepeatingLeaf) leaf, fElemMapSize);
 624                 }
 625 
 626                 fElemMapType[fElemMapSize] = fLeafListType[outIndex];
 627                 fElemMapId[fElemMapSize] = id;
 628 
 629                 // Init counters and bounds for a{n,m} algorithm
 630                 int[] bounds = (int[]) leaf.getUserData();
 631                 if (bounds != null) {
 632                     fElemMapCounter[fElemMapSize] = 0;
 633                     fElemMapCounterLowerBound[fElemMapSize] = bounds[0];
 634                     fElemMapCounterUpperBound[fElemMapSize] = bounds[1];
 635                 } else {
 636                     fElemMapCounter[fElemMapSize] = -1;
 637                     fElemMapCounterLowerBound[fElemMapSize] = -1;
 638                     fElemMapCounterUpperBound[fElemMapSize] = -1;
 639                 }
 640 
 641                 fElemMapSize++;
 642             }
 643         }
 644 
 645         // the last entry in the element map must be the EOC element.
 646         // remove it from the map.
 647         if (DEBUG) {
 648             if (fElemMapId[fElemMapSize-1] != -1)
 649                 System.err.println("interal error in DFA: last element is not EOC.");
 650         }
 651         fElemMapSize--;
 652 
 653         /***
 654          * Optimization(Jan, 2001); We sort fLeafList according to
 655          * elemIndex which is *uniquely* associated to each leaf.
 656          * We are *assuming* that each element appears in at least one leaf.
 657          **/
 658 
 659         int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
 660         int fSortCount = 0;
 661 
 662         for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
 663             final int id = fElemMapId[elemIndex];
 664             for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
 665                 if (id == fLeafList[leafIndex].getParticleId())
 666                     fLeafSorter[fSortCount++] = leafIndex;
 667             }
 668             fLeafSorter[fSortCount++] = -1;
 669         }
 670 
 671         /* Optimization(Jan, 2001) */
 672 
 673         //
 674         //  Next lets create some arrays, some that hold transient
 675         //  information during the DFA build and some that are permament.
 676         //  These are kind of sticky since we cannot know how big they will
 677         //  get, but we don't want to use any Java collections because of
 678         //  performance.
 679         //
 680         //  Basically they will probably be about fLeafCount*2 on average,
 681         //  but can be as large as 2^(fLeafCount*2), worst case. So we start
 682         //  with fLeafCount*4 as a middle ground. This will be very unlikely
 683         //  to ever have to expand, though it if does, the overhead will be
 684         //  somewhat ugly.
 685         //
 686         int curArraySize = fLeafCount * 4;
 687         CMStateSet[] statesToDo = new CMStateSet[curArraySize];
 688         fFinalStateFlags = new boolean[curArraySize];
 689         fTransTable = new int[curArraySize][];
 690 
 691         //
 692         //  Ok we start with the initial set as the first pos set of the
 693         //  head node (which is the seq node that holds the content model
 694         //  and the EOC node.)
 695         //
 696         CMStateSet setT = fHeadNode.firstPos();
 697 
 698         //
 699         //  Init our two state flags. Basically the unmarked state counter
 700         //  is always chasing the current state counter. When it catches up,
 701         //  that means we made a pass through that did not add any new states
 702         //  to the lists, at which time we are done. We could have used a
 703         //  expanding array of flags which we used to mark off states as we
 704         //  complete them, but this is easier though less readable maybe.
 705         //
 706         int unmarkedState = 0;
 707         int curState = 0;
 708 
 709         //
 710         //  Init the first transition table entry, and put the initial state
 711         //  into the states to do list, then bump the current state.
 712         //
 713         fTransTable[curState] = makeDefStateList();
 714         statesToDo[curState] = setT;
 715         curState++;
 716 
 717         /* Optimization(Jan, 2001); This is faster for
 718          * a large content model such as, "(t001+|t002+|.... |t500+)".
 719          */
 720 
 721         HashMap stateTable = new HashMap();
 722 
 723         /* Optimization(Jan, 2001) */
 724 
 725         //
 726         //  Ok, almost done with the algorithm... We now enter the
 727         //  loop where we go until the states done counter catches up with
 728         //  the states to do counter.
 729         //
 730         while (unmarkedState < curState) {
 731             //
 732             //  Get the first unmarked state out of the list of states to do.
 733             //  And get the associated transition table entry.
 734             //
 735             setT = statesToDo[unmarkedState];
 736             int[] transEntry = fTransTable[unmarkedState];
 737 
 738             // Mark this one final if it contains the EOC state
 739             fFinalStateFlags[unmarkedState] = setT.getBit(EOCPos);
 740 
 741             // Bump up the unmarked state count, marking this state done
 742             unmarkedState++;
 743 
 744             // Loop through each possible input symbol in the element map
 745             CMStateSet newSet = null;
 746             /* Optimization(Jan, 2001) */
 747             int sorterIndex = 0;
 748             /* Optimization(Jan, 2001) */
 749             for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
 750                 //
 751                 //  Build up a set of states which is the union of all of
 752                 //  the follow sets of DFA positions that are in the current
 753                 //  state. If we gave away the new set last time through then
 754                 //  create a new one. Otherwise, zero out the existing one.
 755                 //
 756                 if (newSet == null)
 757                     newSet = new CMStateSet(fLeafCount);
 758                 else
 759                     newSet.zeroBits();
 760 
 761                 /* Optimization(Jan, 2001) */
 762                 int leafIndex = fLeafSorter[sorterIndex++];
 763 
 764                 while (leafIndex != -1) {
 765                     // If this leaf index (DFA position) is in the current set...
 766                     if (setT.getBit(leafIndex)) {
 767                         //
 768                         //  If this leaf is the current input symbol, then we
 769                         //  want to add its follow list to the set of states to
 770                         //  transition to from the current state.
 771                         //
 772                         newSet.union(fFollowList[leafIndex]);
 773                     }
 774 
 775                    leafIndex = fLeafSorter[sorterIndex++];
 776                 }
 777                 /* Optimization(Jan, 2001) */
 778 
 779                 //
 780                 //  If this new set is not empty, then see if its in the list
 781                 //  of states to do. If not, then add it.
 782                 //
 783                 if (!newSet.isEmpty()) {
 784                     //
 785                     //  Search the 'states to do' list to see if this new
 786                     //  state set is already in there.
 787                     //
 788 
 789                     /* Optimization(Jan, 2001) */
 790                     Integer stateObj = (Integer)stateTable.get(newSet);
 791                     int stateIndex = (stateObj == null ? curState : stateObj.intValue());
 792                     /* Optimization(Jan, 2001) */
 793 
 794                     // If we did not find it, then add it
 795                     if (stateIndex == curState) {
 796                         //
 797                         //  Put this new state into the states to do and init
 798                         //  a new entry at the same index in the transition
 799                         //  table.
 800                         //
 801                         statesToDo[curState] = newSet;
 802                         fTransTable[curState] = makeDefStateList();
 803 
 804                         /* Optimization(Jan, 2001) */
 805                         stateTable.put(newSet, new Integer(curState));
 806                         /* Optimization(Jan, 2001) */
 807 
 808                         // We now have a new state to do so bump the count
 809                         curState++;
 810 
 811                         //
 812                         //  Null out the new set to indicate we adopted it.
 813                         //  This will cause the creation of a new set on the
 814                         //  next time around the loop.
 815                         //
 816                         newSet = null;
 817                     }
 818 
 819                     //
 820                     //  Now set this state in the transition table's entry
 821                     //  for this element (using its index), with the DFA
 822                     //  state we will move to from the current state when we
 823                     //  see this input element.
 824                     //
 825                     transEntry[elemIndex] = stateIndex;
 826 
 827                     // Expand the arrays if we're full
 828                     if (curState == curArraySize) {
 829                         //
 830                         //  Yikes, we overflowed the initial array size, so
 831                         //  we've got to expand all of these arrays. So adjust
 832                         //  up the size by 50% and allocate new arrays.
 833                         //
 834                         final int newSize = (int)(curArraySize * 1.5);
 835                         CMStateSet[] newToDo = new CMStateSet[newSize];
 836                         boolean[] newFinalFlags = new boolean[newSize];
 837                         int[][] newTransTable = new int[newSize][];
 838 
 839                         // Copy over all of the existing content
 840                         System.arraycopy(statesToDo, 0, newToDo, 0, curArraySize);
 841                         System.arraycopy(fFinalStateFlags, 0, newFinalFlags, 0, curArraySize);
 842                         System.arraycopy(fTransTable, 0, newTransTable, 0, curArraySize);
 843 
 844                         // Store the new array size
 845                         curArraySize = newSize;
 846                         statesToDo = newToDo;
 847                         fFinalStateFlags = newFinalFlags;
 848                         fTransTable = newTransTable;
 849                     }
 850                 }
 851             }
 852         }
 853 
 854         //
 855         // Fill in the occurence information for each looping state
 856         // if we're using counters.
 857         //
 858         if (elemOccurenceMap != null) {
 859             fCountingStates = new Occurence[curState];
 860             for (int i = 0; i < curState; ++i) {
 861                 int [] transitions = fTransTable[i];
 862                 for (int j = 0; j < transitions.length; ++j) {
 863                     if (i == transitions[j]) {
 864                         fCountingStates[i] = elemOccurenceMap[j];
 865                         break;
 866                     }
 867                 }
 868             }
 869         }
 870 
 871         //
 872         //  And now we can say bye bye to the temp representation since we've
 873         //  built the DFA.
 874         //
 875         if (DEBUG_VALIDATE_CONTENT)
 876             dumpTree(fHeadNode, 0);
 877         fHeadNode = null;
 878         fLeafList = null;
 879         fFollowList = null;
 880         fLeafListType = null;
 881         fElemMapId = null;
 882     }
 883 
 884     /**
 885      * Calculates the follow list of the current node.
 886      *
 887      * @param nodeCur The curent node.
 888      *
 889      * @exception RuntimeException Thrown if follow list cannot be calculated.
 890      */
 891     private void calcFollowList(CMNode nodeCur) {
 892         // Recurse as required
 893         if (nodeCur.type() == XSModelGroupImpl.MODELGROUP_CHOICE) {
 894             // Recurse only
 895             calcFollowList(((XSCMBinOp)nodeCur).getLeft());
 896             calcFollowList(((XSCMBinOp)nodeCur).getRight());
 897         }
 898          else if (nodeCur.type() == XSModelGroupImpl.MODELGROUP_SEQUENCE) {
 899             // Recurse first
 900             calcFollowList(((XSCMBinOp)nodeCur).getLeft());
 901             calcFollowList(((XSCMBinOp)nodeCur).getRight());
 902 
 903             //
 904             //  Now handle our level. We use our left child's last pos
 905             //  set and our right child's first pos set, so go ahead and
 906             //  get them ahead of time.
 907             //
 908             final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
 909             final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();
 910 
 911             //
 912             //  Now, for every position which is in our left child's last set
 913             //  add all of the states in our right child's first set to the
 914             //  follow set for that position.
 915             //
 916             for (int index = 0; index < fLeafCount; index++) {
 917                 if (last.getBit(index))
 918                     fFollowList[index].union(first);
 919             }
 920         }
 921          else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
 922         || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
 923             // Recurse first
 924             calcFollowList(((XSCMUniOp)nodeCur).getChild());
 925 
 926             //
 927             //  Now handle our level. We use our own first and last position
 928             //  sets, so get them up front.
 929             //
 930             final CMStateSet first = nodeCur.firstPos();
 931             final CMStateSet last  = nodeCur.lastPos();
 932 
 933             //
 934             //  For every position which is in our last position set, add all
 935             //  of our first position states to the follow set for that
 936             //  position.
 937             //
 938             for (int index = 0; index < fLeafCount; index++) {
 939                 if (last.getBit(index))
 940                     fFollowList[index].union(first);
 941             }
 942         }
 943 
 944         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
 945             // Recurse only
 946             calcFollowList(((XSCMUniOp)nodeCur).getChild());
 947         }
 948 
 949     }
 950 
 951     /**
 952      * Dumps the tree of the current node to standard output.
 953      *
 954      * @param nodeCur The current node.
 955      * @param level   The maximum levels to output.
 956      *
 957      * @exception RuntimeException Thrown on error.
 958      */
 959     private void dumpTree(CMNode nodeCur, int level) {
 960         for (int index = 0; index < level; index++)
 961             System.out.print("   ");
 962 
 963         int type = nodeCur.type();
 964 
 965         switch(type ) {
 966 
 967         case XSModelGroupImpl.MODELGROUP_CHOICE:
 968         case XSModelGroupImpl.MODELGROUP_SEQUENCE: {
 969             if (type == XSModelGroupImpl.MODELGROUP_CHOICE)
 970                 System.out.print("Choice Node ");
 971             else
 972                 System.out.print("Seq Node ");
 973 
 974             if (nodeCur.isNullable())
 975                 System.out.print("Nullable ");
 976 
 977             System.out.print("firstPos=");
 978             System.out.print(nodeCur.firstPos().toString());
 979             System.out.print(" lastPos=");
 980             System.out.println(nodeCur.lastPos().toString());
 981 
 982             dumpTree(((XSCMBinOp)nodeCur).getLeft(), level+1);
 983             dumpTree(((XSCMBinOp)nodeCur).getRight(), level+1);
 984             break;
 985         }
 986         case XSParticleDecl.PARTICLE_ZERO_OR_MORE:
 987         case XSParticleDecl.PARTICLE_ONE_OR_MORE:
 988         case XSParticleDecl.PARTICLE_ZERO_OR_ONE: {
 989             System.out.print("Rep Node ");
 990 
 991             if (nodeCur.isNullable())
 992                 System.out.print("Nullable ");
 993 
 994             System.out.print("firstPos=");
 995             System.out.print(nodeCur.firstPos().toString());
 996             System.out.print(" lastPos=");
 997             System.out.println(nodeCur.lastPos().toString());
 998 
 999             dumpTree(((XSCMUniOp)nodeCur).getChild(), level+1);
1000             break;
1001         }
1002         case XSParticleDecl.PARTICLE_ELEMENT: {
1003             System.out.print
1004             (
1005                 "Leaf: (pos="
1006                 + ((XSCMLeaf)nodeCur).getPosition()
1007                 + "), "
1008                 + "(elemIndex="
1009                 + ((XSCMLeaf)nodeCur).getLeaf()
1010                 + ") "
1011             );
1012 
1013             if (nodeCur.isNullable())
1014                 System.out.print(" Nullable ");
1015 
1016             System.out.print("firstPos=");
1017             System.out.print(nodeCur.firstPos().toString());
1018             System.out.print(" lastPos=");
1019             System.out.println(nodeCur.lastPos().toString());
1020             break;
1021         }
1022         case XSParticleDecl.PARTICLE_WILDCARD:
1023               System.out.print("Any Node: ");
1024 
1025             System.out.print("firstPos=");
1026             System.out.print(nodeCur.firstPos().toString());
1027             System.out.print(" lastPos=");
1028             System.out.println(nodeCur.lastPos().toString());
1029             break;
1030         default: {
1031             throw new RuntimeException("ImplementationMessages.VAL_NIICM");
1032         }
1033         }
1034 
1035     }
1036 
1037 
1038     /**
1039      * -1 is used to represent bad transitions in the transition table
1040      * entry for each state. So each entry is initialized to an all -1
1041      * array. This method creates a new entry and initializes it.
1042      */
1043     private int[] makeDefStateList()
1044     {
1045         int[] retArray = new int[fElemMapSize];
1046         for (int index = 0; index < fElemMapSize; index++)
1047             retArray[index] = -1;
1048         return retArray;
1049     }
1050 
1051     /** Post tree build initialization. */
1052     private void postTreeBuildInit(CMNode nodeCur) throws RuntimeException {
1053         // Set the maximum states on this node
1054         nodeCur.setMaxStates(fLeafCount);
1055 
1056         XSCMLeaf leaf = null;
1057         int pos = 0;
1058         // Recurse as required
1059         if (nodeCur.type() == XSParticleDecl.PARTICLE_WILDCARD) {
1060             leaf = (XSCMLeaf)nodeCur;
1061             pos = leaf.getPosition();
1062             fLeafList[pos] = leaf;
1063             fLeafListType[pos] = XSParticleDecl.PARTICLE_WILDCARD;
1064         }
1065         else if ((nodeCur.type() == XSModelGroupImpl.MODELGROUP_CHOICE) ||
1066                  (nodeCur.type() == XSModelGroupImpl.MODELGROUP_SEQUENCE)) {
1067             postTreeBuildInit(((XSCMBinOp)nodeCur).getLeft());
1068             postTreeBuildInit(((XSCMBinOp)nodeCur).getRight());
1069         }
1070         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE ||
1071                  nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE ||
1072                  nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
1073             postTreeBuildInit(((XSCMUniOp)nodeCur).getChild());
1074         }
1075         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ELEMENT) {
1076             //  Put this node in the leaf list at the current index if its
1077             //  a non-epsilon leaf.
1078             leaf = (XSCMLeaf)nodeCur;
1079             pos = leaf.getPosition();
1080             fLeafList[pos] = leaf;
1081             fLeafListType[pos] = XSParticleDecl.PARTICLE_ELEMENT;
1082         }
1083         else {
1084             throw new RuntimeException("ImplementationMessages.VAL_NIICM");
1085         }
1086     }
1087 
1088     /**
1089      * check whether this content violates UPA constraint.
1090      *
1091      * @param subGroupHandler the substitution group handler
1092      * @return true if this content model contains other or list wildcard
1093      */
1094     public boolean checkUniqueParticleAttribution(SubstitutionGroupHandler subGroupHandler) throws XMLSchemaException {
1095         // Unique Particle Attribution
1096         // store the conflict results between any two elements in fElemMap
1097         // 0: not compared; -1: no conflict; 1: conflict
1098         // initialize the conflict table (all 0 initially)
1099         byte conflictTable[][] = new byte[fElemMapSize][fElemMapSize];
1100 
1101         // for each state, check whether it has overlap transitions
1102         for (int i = 0; i < fTransTable.length && fTransTable[i] != null; i++) {
1103             for (int j = 0; j < fElemMapSize; j++) {
1104                 for (int k = j+1; k < fElemMapSize; k++) {
1105                     if (fTransTable[i][j] != -1 &&
1106                         fTransTable[i][k] != -1) {
1107                         if (conflictTable[j][k] == 0) {
1108                             if (XSConstraints.overlapUPA
1109                                     (fElemMap[j], fElemMap[k],
1110                                             subGroupHandler)) {
1111                                 if (fCountingStates != null) {
1112                                     Occurence o = fCountingStates[i];
1113                                     // If "i" is a counting state and exactly one of the transitions
1114                                     // loops back to "i" then the two particles do not overlap if
1115                                     // minOccurs == maxOccurs.
1116                                     if (o != null &&
1117                                         fTransTable[i][j] == i ^ fTransTable[i][k] == i &&
1118                                         o.minOccurs == o.maxOccurs) {
1119                                         conflictTable[j][k] = (byte) -1;
1120                                         continue;
1121                                     }
1122                                 }
1123                                 conflictTable[j][k] = (byte) 1;
1124                             }
1125                             else {
1126                                 conflictTable[j][k] = (byte) -1;
1127                             }
1128                         }
1129                     }
1130                 }
1131             }
1132         }
1133 
1134         // report all errors
1135         for (int i = 0; i < fElemMapSize; i++) {
1136             for (int j = 0; j < fElemMapSize; j++) {
1137                 if (conflictTable[i][j] == 1) {
1138                     //errors.newError("cos-nonambig", new Object[]{fElemMap[i].toString(),
1139                     //                                             fElemMap[j].toString()});
1140                     // REVISIT: do we want to report all errors? or just one?
1141                     throw new XMLSchemaException("cos-nonambig", new Object[]{fElemMap[i].toString(),
1142                                                                               fElemMap[j].toString()});
1143                 }
1144             }
1145         }
1146 
1147         // if there is a other or list wildcard, we need to check this CM
1148         // again, if this grammar is cached.
1149         for (int i = 0; i < fElemMapSize; i++) {
1150             if (fElemMapType[i] == XSParticleDecl.PARTICLE_WILDCARD) {
1151                 XSWildcardDecl wildcard = (XSWildcardDecl)fElemMap[i];
1152                 if (wildcard.fType == XSWildcardDecl.NSCONSTRAINT_LIST ||
1153                     wildcard.fType == XSWildcardDecl.NSCONSTRAINT_NOT) {
1154                     return true;
1155                 }
1156             }
1157         }
1158 
1159         return false;
1160     }
1161 
1162     /**
1163      * Check which elements are valid to appear at this point. This method also
1164      * works if the state is in error, in which case it returns what should
1165      * have been seen.
1166      *
1167      * @param state  the current state
1168      * @return       a list whose entries are instances of
1169      *               either XSWildcardDecl or XSElementDecl.
1170      */
1171     public ArrayList whatCanGoHere(int[] state) {
1172         int curState = state[0];
1173         if (curState < 0)
1174             curState = state[1];
1175         Occurence o = (fCountingStates != null) ?
1176                 fCountingStates[curState] : null;
1177         int count = state[2];
1178 
1179         ArrayList ret = new ArrayList();
1180         for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
1181             int nextState = fTransTable[curState][elemIndex];
1182             if (nextState != -1) {
1183                 if (o != null) {
1184                     if (curState == nextState) {
1185                         // Do not include transitions which loop back to the
1186                         // current state if we've looped the maximum number
1187                         // of times or greater.
1188                         if (count >= o.maxOccurs &&
1189                             o.maxOccurs != SchemaSymbols.OCCURRENCE_UNBOUNDED) {
1190                             continue;
1191                         }
1192                     }
1193                     // Do not include transitions which advance past the
1194                     // current state if we have not looped enough times.
1195                     else if (count < o.minOccurs) {
1196                         continue;
1197                     }
1198                 }
1199                 ret.add(fElemMap[elemIndex]);
1200             }
1201         }
1202         return ret;
1203     }
1204 
1205     /**
1206      * Used by constant space algorithm for a{n,m} for n > 1 and
1207      * m <= unbounded. Called by a validator if validation of
1208      * countent model succeeds after subsuming a{n,m} to a*
1209      * (or a+) to check the n and m bounds.
1210      * Returns <code>null</code> if validation of bounds is
1211      * successful. Returns a list of strings with error info
1212      * if not. Even entries in list returned are error codes
1213      * (used to look up properties) and odd entries are parameters
1214      * to be passed when formatting error message. Each parameter
1215      * is associated with the error code that preceeds it in
1216      * the list.
1217      */
1218     public ArrayList checkMinMaxBounds() {
1219         ArrayList result = null;
1220         for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
1221             int count = fElemMapCounter[elemIndex];
1222             if (count == -1) {
1223                 continue;
1224             }
1225             final int minOccurs = fElemMapCounterLowerBound[elemIndex];
1226             final int maxOccurs = fElemMapCounterUpperBound[elemIndex];
1227             if (count < minOccurs) {
1228                 if (result == null) result = new ArrayList();
1229                 result.add("cvc-complex-type.2.4.b");
1230                 result.add("{" + fElemMap[elemIndex] + "}");
1231             }
1232             if (maxOccurs != -1 && count > maxOccurs) {
1233                 if (result == null) result = new ArrayList();
1234                 result.add("cvc-complex-type.2.4.d.1");
1235                 result.add("{" + fElemMap[elemIndex] + "}");
1236             }
1237         }
1238         return result;
1239     }
1240 
1241     public int [] occurenceInfo(int[] state) {
1242         if (fCountingStates != null) {
1243             int curState = state[0];
1244             if (curState < 0) {
1245                 curState = state[1];
1246             }
1247             Occurence o = fCountingStates[curState];
1248             if (o != null) {
1249                 int [] occurenceInfo = new int[4];
1250                 occurenceInfo[0] = o.minOccurs;
1251                 occurenceInfo[1] = o.maxOccurs;
1252                 occurenceInfo[2] = state[2];
1253                 occurenceInfo[3] = o.elemIndex;
1254                 return occurenceInfo;
1255             }
1256         }
1257         return null;
1258     }
1259 
1260     public String getTermName(int termId) {
1261         Object term = fElemMap[termId];
1262         return (term != null) ? term.toString() : null;
1263     }
1264 
1265     public boolean isCompactedForUPA() {
1266         return fIsCompactedForUPA;
1267     }
1268 } // class DFAContentModel