1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  27 
  28 #include "memory/referencePolicy.hpp"
  29 #include "oops/instanceRefKlass.hpp"
  30 
  31 // ReferenceProcessor class encapsulates the per-"collector" processing
  32 // of java.lang.Reference objects for GC. The interface is useful for supporting
  33 // a generational abstraction, in particular when there are multiple
  34 // generations that are being independently collected -- possibly
  35 // concurrently and/or incrementally.  Note, however, that the
  36 // ReferenceProcessor class abstracts away from a generational setting
  37 // by using only a heap interval (called "span" below), thus allowing
  38 // its use in a straightforward manner in a general, non-generational
  39 // setting.
  40 //
  41 // The basic idea is that each ReferenceProcessor object concerns
  42 // itself with ("weak") reference processing in a specific "span"
  43 // of the heap of interest to a specific collector. Currently,
  44 // the span is a convex interval of the heap, but, efficiency
  45 // apart, there seems to be no reason it couldn't be extended
  46 // (with appropriate modifications) to any "non-convex interval".
  47 
  48 // forward references
  49 class ReferencePolicy;
  50 class AbstractRefProcTaskExecutor;
  51 
  52 // List of discovered references.
  53 class DiscoveredList {
  54 public:
  55   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  56   oop head() const     {
  57      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  58                                 _oop_head;
  59   }
  60   HeapWord* adr_head() {
  61     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  62                                (HeapWord*)&_oop_head;
  63   }
  64   void set_head(oop o) {
  65     if (UseCompressedOops) {
  66       // Must compress the head ptr.
  67       _compressed_head = oopDesc::encode_heap_oop(o);
  68     } else {
  69       _oop_head = o;
  70     }
  71   }
  72   bool   is_empty() const       { return head() == NULL; }
  73   size_t length()               { return _len; }
  74   void   set_length(size_t len) { _len = len;  }
  75   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  76   void   dec_length(size_t dec) { _len -= dec; }
  77 private:
  78   // Set value depending on UseCompressedOops. This could be a template class
  79   // but then we have to fix all the instantiations and declarations that use this class.
  80   oop       _oop_head;
  81   narrowOop _compressed_head;
  82   size_t _len;
  83 };
  84 
  85 // Iterator for the list of discovered references.
  86 class DiscoveredListIterator {
  87 private:
  88   DiscoveredList&    _refs_list;
  89   HeapWord*          _prev_next;
  90   oop                _prev;
  91   oop                _ref;
  92   HeapWord*          _discovered_addr;
  93   oop                _next;
  94   HeapWord*          _referent_addr;
  95   oop                _referent;
  96   OopClosure*        _keep_alive;
  97   BoolObjectClosure* _is_alive;
  98 
  99   DEBUG_ONLY(
 100   oop                _first_seen; // cyclic linked list check
 101   )
 102 
 103   NOT_PRODUCT(
 104   size_t             _processed;
 105   size_t             _removed;
 106   )
 107 
 108 public:
 109   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 110                                 OopClosure*        keep_alive,
 111                                 BoolObjectClosure* is_alive):
 112     _refs_list(refs_list),
 113     _prev_next(refs_list.adr_head()),
 114     _prev(NULL),
 115     _ref(refs_list.head()),
 116 #ifdef ASSERT
 117     _first_seen(refs_list.head()),
 118 #endif
 119 #ifndef PRODUCT
 120     _processed(0),
 121     _removed(0),
 122 #endif
 123     _next(NULL),
 124     _keep_alive(keep_alive),
 125     _is_alive(is_alive)
 126 { }
 127 
 128   // End Of List.
 129   inline bool has_next() const { return _ref != NULL; }
 130 
 131   // Get oop to the Reference object.
 132   inline oop obj() const { return _ref; }
 133 
 134   // Get oop to the referent object.
 135   inline oop referent() const { return _referent; }
 136 
 137   // Returns true if referent is alive.
 138   inline bool is_referent_alive() const {
 139     return _is_alive->do_object_b(_referent);
 140   }
 141 
 142   // Loads data for the current reference.
 143   // The "allow_null_referent" argument tells us to allow for the possibility
 144   // of a NULL referent in the discovered Reference object. This typically
 145   // happens in the case of concurrent collectors that may have done the
 146   // discovery concurrently, or interleaved, with mutator execution.
 147   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 148 
 149   // Move to the next discovered reference.
 150   inline void next() {
 151     _prev_next = _discovered_addr;
 152     _prev = _ref;
 153     move_to_next();
 154   }
 155 
 156   // Remove the current reference from the list
 157   void remove();
 158 
 159   // Make the Reference object active again.
 160   void make_active();
 161 
 162   // Make the referent alive.
 163   inline void make_referent_alive() {
 164     if (UseCompressedOops) {
 165       _keep_alive->do_oop((narrowOop*)_referent_addr);
 166     } else {
 167       _keep_alive->do_oop((oop*)_referent_addr);
 168     }
 169   }
 170 
 171   // Update the discovered field.
 172   inline void update_discovered() {
 173     // First _prev_next ref actually points into DiscoveredList (gross).
 174     if (UseCompressedOops) {
 175       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
 176         _keep_alive->do_oop((narrowOop*)_prev_next);
 177       }
 178     } else {
 179       if (!oopDesc::is_null(*(oop*)_prev_next)) {
 180         _keep_alive->do_oop((oop*)_prev_next);
 181       }
 182     }
 183   }
 184 
 185   // NULL out referent pointer.
 186   void clear_referent();
 187 
 188   // Statistics
 189   NOT_PRODUCT(
 190   inline size_t processed() const { return _processed; }
 191   inline size_t removed() const   { return _removed; }
 192   )
 193 
 194   inline void move_to_next() {
 195     if (_ref == _next) {
 196       // End of the list.
 197       _ref = NULL;
 198     } else {
 199       _ref = _next;
 200     }
 201     assert(_ref != _first_seen, "cyclic ref_list found");
 202     NOT_PRODUCT(_processed++);
 203   }
 204 
 205 };
 206 
 207 class ReferenceProcessor : public CHeapObj {
 208  protected:
 209   // Compatibility with pre-4965777 JDK's
 210   static bool _pending_list_uses_discovered_field;
 211 
 212   MemRegion   _span;                    // (right-open) interval of heap
 213                                         // subject to wkref discovery
 214 
 215   bool        _discovering_refs;        // true when discovery enabled
 216   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 217                                         // other collectors in configuration
 218   bool        _discovery_is_mt;         // true if reference discovery is MT.
 219 
 220   // If true, setting "next" field of a discovered refs list requires
 221   // write barrier(s).  (Must be true if used in a collector in which
 222   // elements of a discovered list may be moved during discovery: for
 223   // example, a collector like Garbage-First that moves objects during a
 224   // long-term concurrent marking phase that does weak reference
 225   // discovery.)
 226   bool        _discovered_list_needs_barrier;
 227 
 228   BarrierSet* _bs;                      // Cached copy of BarrierSet.
 229   bool        _enqueuing_is_done;       // true if all weak references enqueued
 230   bool        _processing_is_mt;        // true during phases when
 231                                         // reference processing is MT.
 232   int         _next_id;                 // round-robin mod _num_q counter in
 233                                         // support of work distribution
 234 
 235   // For collectors that do not keep GC liveness information
 236   // in the object header, this field holds a closure that
 237   // helps the reference processor determine the reachability
 238   // of an oop. It is currently initialized to NULL for all
 239   // collectors except for CMS and G1.
 240   BoolObjectClosure* _is_alive_non_header;
 241 
 242   // Soft ref clearing policies
 243   // . the default policy
 244   static ReferencePolicy*   _default_soft_ref_policy;
 245   // . the "clear all" policy
 246   static ReferencePolicy*   _always_clear_soft_ref_policy;
 247   // . the current policy below is either one of the above
 248   ReferencePolicy*          _current_soft_ref_policy;
 249 
 250   // The discovered ref lists themselves
 251 
 252   // The active MT'ness degree of the queues below
 253   int             _num_q;
 254   // The maximum MT'ness degree of the queues below
 255   int             _max_num_q;
 256   // Arrays of lists of oops, one per thread
 257   DiscoveredList* _discoveredSoftRefs;
 258   DiscoveredList* _discoveredWeakRefs;
 259   DiscoveredList* _discoveredFinalRefs;
 260   DiscoveredList* _discoveredPhantomRefs;
 261 
 262  public:
 263   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 264 
 265   int num_q()                              { return _num_q; }
 266   int max_num_q()                          { return _max_num_q; }
 267   void set_active_mt_degree(int v)         { _num_q = v; }
 268   DiscoveredList* discovered_soft_refs()   { return _discoveredSoftRefs; }
 269 
 270   ReferencePolicy* setup_policy(bool always_clear) {
 271     _current_soft_ref_policy = always_clear ?
 272       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 273     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 274     return _current_soft_ref_policy;
 275   }
 276 
 277   // Process references with a certain reachability level.
 278   void process_discovered_reflist(DiscoveredList               refs_lists[],
 279                                   ReferencePolicy*             policy,
 280                                   bool                         clear_referent,
 281                                   BoolObjectClosure*           is_alive,
 282                                   OopClosure*                  keep_alive,
 283                                   VoidClosure*                 complete_gc,
 284                                   AbstractRefProcTaskExecutor* task_executor);
 285 
 286   void process_phaseJNI(BoolObjectClosure* is_alive,
 287                         OopClosure*        keep_alive,
 288                         VoidClosure*       complete_gc);
 289 
 290   // Work methods used by the method process_discovered_reflist
 291   // Phase1: keep alive all those referents that are otherwise
 292   // dead but which must be kept alive by policy (and their closure).
 293   void process_phase1(DiscoveredList&     refs_list,
 294                       ReferencePolicy*    policy,
 295                       BoolObjectClosure*  is_alive,
 296                       OopClosure*         keep_alive,
 297                       VoidClosure*        complete_gc);
 298   // Phase2: remove all those references whose referents are
 299   // reachable.
 300   inline void process_phase2(DiscoveredList&    refs_list,
 301                              BoolObjectClosure* is_alive,
 302                              OopClosure*        keep_alive,
 303                              VoidClosure*       complete_gc) {
 304     if (discovery_is_atomic()) {
 305       // complete_gc is ignored in this case for this phase
 306       pp2_work(refs_list, is_alive, keep_alive);
 307     } else {
 308       assert(complete_gc != NULL, "Error");
 309       pp2_work_concurrent_discovery(refs_list, is_alive,
 310                                     keep_alive, complete_gc);
 311     }
 312   }
 313   // Work methods in support of process_phase2
 314   void pp2_work(DiscoveredList&    refs_list,
 315                 BoolObjectClosure* is_alive,
 316                 OopClosure*        keep_alive);
 317   void pp2_work_concurrent_discovery(
 318                 DiscoveredList&    refs_list,
 319                 BoolObjectClosure* is_alive,
 320                 OopClosure*        keep_alive,
 321                 VoidClosure*       complete_gc);
 322   // Phase3: process the referents by either clearing them
 323   // or keeping them alive (and their closure)
 324   void process_phase3(DiscoveredList&    refs_list,
 325                       bool               clear_referent,
 326                       BoolObjectClosure* is_alive,
 327                       OopClosure*        keep_alive,
 328                       VoidClosure*       complete_gc);
 329 
 330   // Enqueue references with a certain reachability level
 331   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 332 
 333   // "Preclean" all the discovered reference lists
 334   // by removing references with strongly reachable referents.
 335   // The first argument is a predicate on an oop that indicates
 336   // its (strong) reachability and the second is a closure that
 337   // may be used to incrementalize or abort the precleaning process.
 338   // The caller is responsible for taking care of potential
 339   // interference with concurrent operations on these lists
 340   // (or predicates involved) by other threads. Currently
 341   // only used by the CMS collector.  should_unload_classes is
 342   // used to aid assertion checking when classes are collected.
 343   void preclean_discovered_references(BoolObjectClosure* is_alive,
 344                                       OopClosure*        keep_alive,
 345                                       VoidClosure*       complete_gc,
 346                                       YieldClosure*      yield,
 347                                       bool               should_unload_classes);
 348 
 349   // Delete entries in the discovered lists that have
 350   // either a null referent or are not active. Such
 351   // Reference objects can result from the clearing
 352   // or enqueueing of Reference objects concurrent
 353   // with their discovery by a (concurrent) collector.
 354   // For a definition of "active" see java.lang.ref.Reference;
 355   // Refs are born active, become inactive when enqueued,
 356   // and never become active again. The state of being
 357   // active is encoded as follows: A Ref is active
 358   // if and only if its "next" field is NULL.
 359   void clean_up_discovered_references();
 360   void clean_up_discovered_reflist(DiscoveredList& refs_list);
 361 
 362   // Returns the name of the discovered reference list
 363   // occupying the i / _num_q slot.
 364   const char* list_name(int i);
 365 
 366   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 367 
 368  protected:
 369   // Set the 'discovered' field of the given reference to
 370   // the given value - emitting barriers depending upon
 371   // the value of _discovered_list_needs_barrier.
 372   void set_discovered(oop ref, oop value);
 373 
 374   // "Preclean" the given discovered reference list
 375   // by removing references with strongly reachable referents.
 376   // Currently used in support of CMS only.
 377   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 378                                    BoolObjectClosure* is_alive,
 379                                    OopClosure*        keep_alive,
 380                                    VoidClosure*       complete_gc,
 381                                    YieldClosure*      yield);
 382 
 383   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 384   int next_id() {
 385     int id = _next_id;
 386     if (++_next_id == _num_q) {
 387       _next_id = 0;
 388     }
 389     return id;
 390   }
 391   DiscoveredList* get_discovered_list(ReferenceType rt);
 392   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 393                                         HeapWord* discovered_addr);
 394   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
 395 
 396   void clear_discovered_references(DiscoveredList& refs_list);
 397   void abandon_partial_discovered_list(DiscoveredList& refs_list);
 398 
 399   // Calculate the number of jni handles.
 400   unsigned int count_jni_refs();
 401 
 402   // Balances reference queues.
 403   void balance_queues(DiscoveredList ref_lists[]);
 404 
 405   // Update (advance) the soft ref master clock field.
 406   void update_soft_ref_master_clock();
 407 
 408  public:
 409   // constructor
 410   ReferenceProcessor():
 411     _span((HeapWord*)NULL, (HeapWord*)NULL),
 412     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
 413     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
 414     _discovering_refs(false),
 415     _discovery_is_atomic(true),
 416     _enqueuing_is_done(false),
 417     _discovery_is_mt(false),
 418     _discovered_list_needs_barrier(false),
 419     _bs(NULL),
 420     _is_alive_non_header(NULL),
 421     _num_q(0),
 422     _max_num_q(0),
 423     _processing_is_mt(false),
 424     _next_id(0)
 425   { }
 426 
 427   // Default parameters give you a vanilla reference processor.
 428   ReferenceProcessor(MemRegion span,
 429                      bool mt_processing = false, int mt_processing_degree = 1,
 430                      bool mt_discovery  = false, int mt_discovery_degree  = 1,
 431                      bool atomic_discovery = true,
 432                      BoolObjectClosure* is_alive_non_header = NULL,
 433                      bool discovered_list_needs_barrier = false);
 434 
 435   // RefDiscoveryPolicy values
 436   enum DiscoveryPolicy {
 437     ReferenceBasedDiscovery = 0,
 438     ReferentBasedDiscovery  = 1,
 439     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 440     DiscoveryPolicyMax      = ReferentBasedDiscovery
 441   };
 442 
 443   static void init_statics();
 444 
 445  public:
 446   // get and set "is_alive_non_header" field
 447   BoolObjectClosure* is_alive_non_header() {
 448     return _is_alive_non_header;
 449   }
 450   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 451     _is_alive_non_header = is_alive_non_header;
 452   }
 453 
 454   // get and set span
 455   MemRegion span()                   { return _span; }
 456   void      set_span(MemRegion span) { _span = span; }
 457 
 458   // start and stop weak ref discovery
 459   void enable_discovery(bool verify_disabled, bool check_no_refs) {
 460 #ifdef ASSERT
 461     // Verify that we're not currently discovering refs
 462     assert(!verify_disabled || !_discovering_refs, "nested call?");
 463 
 464     if (check_no_refs) {
 465       // Verify that the discovered lists are empty
 466       verify_no_references_recorded();
 467     }
 468 #endif // ASSERT
 469     _discovering_refs = true;
 470   }
 471 
 472   void disable_discovery()  { _discovering_refs = false; }
 473   bool discovery_enabled()  { return _discovering_refs;  }
 474 
 475   // whether discovery is atomic wrt other collectors
 476   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 477   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 478 
 479   // whether the JDK in which we are embedded is a pre-4965777 JDK,
 480   // and thus whether or not it uses the discovered field to chain
 481   // the entries in the pending list.
 482   static bool pending_list_uses_discovered_field() {
 483     return _pending_list_uses_discovered_field;
 484   }
 485 
 486   // whether discovery is done by multiple threads same-old-timeously
 487   bool discovery_is_mt() const { return _discovery_is_mt; }
 488   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 489 
 490   // Whether we are in a phase when _processing_ is MT.
 491   bool processing_is_mt() const { return _processing_is_mt; }
 492   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 493 
 494   // whether all enqueuing of weak references is complete
 495   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 496   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 497 
 498   // iterate over oops
 499   void weak_oops_do(OopClosure* f);       // weak roots
 500 
 501   // Balance each of the discovered lists.
 502   void balance_all_queues();
 503 
 504   // Discover a Reference object, using appropriate discovery criteria
 505   bool discover_reference(oop obj, ReferenceType rt);
 506 
 507   // Process references found during GC (called by the garbage collector)
 508   void process_discovered_references(BoolObjectClosure*           is_alive,
 509                                      OopClosure*                  keep_alive,
 510                                      VoidClosure*                 complete_gc,
 511                                      AbstractRefProcTaskExecutor* task_executor);
 512 
 513  public:
 514   // Enqueue references at end of GC (called by the garbage collector)
 515   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 516 
 517   // If a discovery is in process that is being superceded, abandon it: all
 518   // the discovered lists will be empty, and all the objects on them will
 519   // have NULL discovered fields.  Must be called only at a safepoint.
 520   void abandon_partial_discovery();
 521 
 522   // debugging
 523   void verify_no_references_recorded() PRODUCT_RETURN;
 524   void verify_referent(oop obj)        PRODUCT_RETURN;
 525 
 526   // clear the discovered lists (unlinking each entry).
 527   void clear_discovered_references() PRODUCT_RETURN;
 528 };
 529 
 530 // A utility class to disable reference discovery in
 531 // the scope which contains it, for given ReferenceProcessor.
 532 class NoRefDiscovery: StackObj {
 533  private:
 534   ReferenceProcessor* _rp;
 535   bool _was_discovering_refs;
 536  public:
 537   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 538     _was_discovering_refs = _rp->discovery_enabled();
 539     if (_was_discovering_refs) {
 540       _rp->disable_discovery();
 541     }
 542   }
 543 
 544   ~NoRefDiscovery() {
 545     if (_was_discovering_refs) {
 546       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
 547     }
 548   }
 549 };
 550 
 551 
 552 // A utility class to temporarily mutate the span of the
 553 // given ReferenceProcessor in the scope that contains it.
 554 class ReferenceProcessorSpanMutator: StackObj {
 555  private:
 556   ReferenceProcessor* _rp;
 557   MemRegion           _saved_span;
 558 
 559  public:
 560   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 561                                 MemRegion span):
 562     _rp(rp) {
 563     _saved_span = _rp->span();
 564     _rp->set_span(span);
 565   }
 566 
 567   ~ReferenceProcessorSpanMutator() {
 568     _rp->set_span(_saved_span);
 569   }
 570 };
 571 
 572 // A utility class to temporarily change the MT'ness of
 573 // reference discovery for the given ReferenceProcessor
 574 // in the scope that contains it.
 575 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 576  private:
 577   ReferenceProcessor* _rp;
 578   bool                _saved_mt;
 579 
 580  public:
 581   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 582                                        bool mt):
 583     _rp(rp) {
 584     _saved_mt = _rp->discovery_is_mt();
 585     _rp->set_mt_discovery(mt);
 586   }
 587 
 588   ~ReferenceProcessorMTDiscoveryMutator() {
 589     _rp->set_mt_discovery(_saved_mt);
 590   }
 591 };
 592 
 593 
 594 // A utility class to temporarily change the disposition
 595 // of the "is_alive_non_header" closure field of the
 596 // given ReferenceProcessor in the scope that contains it.
 597 class ReferenceProcessorIsAliveMutator: StackObj {
 598  private:
 599   ReferenceProcessor* _rp;
 600   BoolObjectClosure*  _saved_cl;
 601 
 602  public:
 603   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 604                                    BoolObjectClosure*  cl):
 605     _rp(rp) {
 606     _saved_cl = _rp->is_alive_non_header();
 607     _rp->set_is_alive_non_header(cl);
 608   }
 609 
 610   ~ReferenceProcessorIsAliveMutator() {
 611     _rp->set_is_alive_non_header(_saved_cl);
 612   }
 613 };
 614 
 615 // A utility class to temporarily change the disposition
 616 // of the "discovery_is_atomic" field of the
 617 // given ReferenceProcessor in the scope that contains it.
 618 class ReferenceProcessorAtomicMutator: StackObj {
 619  private:
 620   ReferenceProcessor* _rp;
 621   bool                _saved_atomic_discovery;
 622 
 623  public:
 624   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 625                                   bool atomic):
 626     _rp(rp) {
 627     _saved_atomic_discovery = _rp->discovery_is_atomic();
 628     _rp->set_atomic_discovery(atomic);
 629   }
 630 
 631   ~ReferenceProcessorAtomicMutator() {
 632     _rp->set_atomic_discovery(_saved_atomic_discovery);
 633   }
 634 };
 635 
 636 
 637 // A utility class to temporarily change the MT processing
 638 // disposition of the given ReferenceProcessor instance
 639 // in the scope that contains it.
 640 class ReferenceProcessorMTProcMutator: StackObj {
 641  private:
 642   ReferenceProcessor* _rp;
 643   bool  _saved_mt;
 644 
 645  public:
 646   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 647                                   bool mt):
 648     _rp(rp) {
 649     _saved_mt = _rp->processing_is_mt();
 650     _rp->set_mt_processing(mt);
 651   }
 652 
 653   ~ReferenceProcessorMTProcMutator() {
 654     _rp->set_mt_processing(_saved_mt);
 655   }
 656 };
 657 
 658 
 659 // This class is an interface used to implement task execution for the
 660 // reference processing.
 661 class AbstractRefProcTaskExecutor {
 662 public:
 663 
 664   // Abstract tasks to execute.
 665   class ProcessTask;
 666   class EnqueueTask;
 667 
 668   // Executes a task using worker threads.
 669   virtual void execute(ProcessTask& task) = 0;
 670   virtual void execute(EnqueueTask& task) = 0;
 671 
 672   // Switch to single threaded mode.
 673   virtual void set_single_threaded_mode() { };
 674 };
 675 
 676 // Abstract reference processing task to execute.
 677 class AbstractRefProcTaskExecutor::ProcessTask {
 678 protected:
 679   ProcessTask(ReferenceProcessor& ref_processor,
 680               DiscoveredList      refs_lists[],
 681               bool                marks_oops_alive)
 682     : _ref_processor(ref_processor),
 683       _refs_lists(refs_lists),
 684       _marks_oops_alive(marks_oops_alive)
 685   { }
 686 
 687 public:
 688   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 689                     OopClosure& keep_alive,
 690                     VoidClosure& complete_gc) = 0;
 691 
 692   // Returns true if a task marks some oops as alive.
 693   bool marks_oops_alive() const
 694   { return _marks_oops_alive; }
 695 
 696 protected:
 697   ReferenceProcessor& _ref_processor;
 698   DiscoveredList*     _refs_lists;
 699   const bool          _marks_oops_alive;
 700 };
 701 
 702 // Abstract reference processing task to execute.
 703 class AbstractRefProcTaskExecutor::EnqueueTask {
 704 protected:
 705   EnqueueTask(ReferenceProcessor& ref_processor,
 706               DiscoveredList      refs_lists[],
 707               HeapWord*           pending_list_addr,
 708               int                 n_queues)
 709     : _ref_processor(ref_processor),
 710       _refs_lists(refs_lists),
 711       _pending_list_addr(pending_list_addr),
 712       _n_queues(n_queues)
 713   { }
 714 
 715 public:
 716   virtual void work(unsigned int work_id) = 0;
 717 
 718 protected:
 719   ReferenceProcessor& _ref_processor;
 720   DiscoveredList*     _refs_lists;
 721   HeapWord*           _pending_list_addr;
 722   int                 _n_queues;
 723 };
 724 
 725 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP