1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = true;
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object());
 271 
 272   LIRItem array(x->array(), this);
 273   LIRItem index(x->index(), this);
 274   LIRItem value(x->value(), this);
 275   LIRItem length(this);
 276 
 277   array.load_item();
 278   index.load_nonconstant();
 279 
 280   if (use_length) {
 281     needs_range_check = x->compute_needs_range_check();
 282     if (needs_range_check) {
 283       length.set_instruction(x->length());
 284       length.load_item();
 285     }
 286   }
 287   if (needs_store_check) {
 288     value.load_item();
 289   } else {
 290     value.load_for_store(x->elt_type());
 291   }
 292 
 293   set_no_result(x);
 294 
 295   // the CodeEmitInfo must be duplicated for each different
 296   // LIR-instruction because spilling can occur anywhere between two
 297   // instructions and so the debug information must be different
 298   CodeEmitInfo* range_check_info = state_for(x);
 299   CodeEmitInfo* null_check_info = NULL;
 300   if (x->needs_null_check()) {
 301     null_check_info = new CodeEmitInfo(range_check_info);
 302   }
 303 
 304   // emit array address setup early so it schedules better
 305   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 306 
 307   if (GenerateRangeChecks && needs_range_check) {
 308     if (use_length) {
 309       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 310       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 311     } else {
 312       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 313       // range_check also does the null check
 314       null_check_info = NULL;
 315     }
 316   }
 317 
 318   if (GenerateArrayStoreCheck && needs_store_check) {
 319     LIR_Opr tmp1 = new_register(objectType);
 320     LIR_Opr tmp2 = new_register(objectType);
 321     LIR_Opr tmp3 = new_register(objectType);
 322 
 323     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 324     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
 325   }
 326 
 327   if (obj_store) {
 328     // Needs GC write barriers.
 329     pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
 330     __ move(value.result(), array_addr, null_check_info);
 331     // Seems to be a precise
 332     post_barrier(LIR_OprFact::address(array_addr), value.result());
 333   } else {
 334     __ move(value.result(), array_addr, null_check_info);
 335   }
 336 }
 337 
 338 
 339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 340   assert(x->is_pinned(),"");
 341   LIRItem obj(x->obj(), this);
 342   obj.load_item();
 343 
 344   set_no_result(x);
 345 
 346   // "lock" stores the address of the monitor stack slot, so this is not an oop
 347   LIR_Opr lock = new_register(T_INT);
 348   // Need a scratch register for biased locking on x86
 349   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 350   if (UseBiasedLocking) {
 351     scratch = new_register(T_INT);
 352   }
 353 
 354   CodeEmitInfo* info_for_exception = NULL;
 355   if (x->needs_null_check()) {
 356     info_for_exception = state_for(x);
 357   }
 358   // this CodeEmitInfo must not have the xhandlers because here the
 359   // object is already locked (xhandlers expect object to be unlocked)
 360   CodeEmitInfo* info = state_for(x, x->state(), true);
 361   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 362                         x->monitor_no(), info_for_exception, info);
 363 }
 364 
 365 
 366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 367   assert(x->is_pinned(),"");
 368 
 369   LIRItem obj(x->obj(), this);
 370   obj.dont_load_item();
 371 
 372   LIR_Opr lock = new_register(T_INT);
 373   LIR_Opr obj_temp = new_register(T_INT);
 374   set_no_result(x);
 375   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 376 }
 377 
 378 
 379 // _ineg, _lneg, _fneg, _dneg
 380 void LIRGenerator::do_NegateOp(NegateOp* x) {
 381   LIRItem value(x->x(), this);
 382   value.set_destroys_register();
 383   value.load_item();
 384   LIR_Opr reg = rlock(x);
 385   __ negate(value.result(), reg);
 386 
 387   set_result(x, round_item(reg));
 388 }
 389 
 390 
 391 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 392 //      _dadd, _dmul, _dsub, _ddiv, _drem
 393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 394   LIRItem left(x->x(),  this);
 395   LIRItem right(x->y(), this);
 396   LIRItem* left_arg  = &left;
 397   LIRItem* right_arg = &right;
 398   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 399   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 400   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 401     left.load_item();
 402   } else {
 403     left.dont_load_item();
 404   }
 405 
 406   // do not load right operand if it is a constant.  only 0 and 1 are
 407   // loaded because there are special instructions for loading them
 408   // without memory access (not needed for SSE2 instructions)
 409   bool must_load_right = false;
 410   if (right.is_constant()) {
 411     LIR_Const* c = right.result()->as_constant_ptr();
 412     assert(c != NULL, "invalid constant");
 413     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 414 
 415     if (c->type() == T_FLOAT) {
 416       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 417     } else {
 418       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 419     }
 420   }
 421 
 422   if (must_load_both) {
 423     // frem and drem destroy also right operand, so move it to a new register
 424     right.set_destroys_register();
 425     right.load_item();
 426   } else if (right.is_register() || must_load_right) {
 427     right.load_item();
 428   } else {
 429     right.dont_load_item();
 430   }
 431   LIR_Opr reg = rlock(x);
 432   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 433   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 434     tmp = new_register(T_DOUBLE);
 435   }
 436 
 437   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 438     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 439     LIR_Opr fpu0, fpu1;
 440     if (x->op() == Bytecodes::_frem) {
 441       fpu0 = LIR_OprFact::single_fpu(0);
 442       fpu1 = LIR_OprFact::single_fpu(1);
 443     } else {
 444       fpu0 = LIR_OprFact::double_fpu(0);
 445       fpu1 = LIR_OprFact::double_fpu(1);
 446     }
 447     __ move(right.result(), fpu1); // order of left and right operand is important!
 448     __ move(left.result(), fpu0);
 449     __ rem (fpu0, fpu1, fpu0);
 450     __ move(fpu0, reg);
 451 
 452   } else {
 453     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 454   }
 455 
 456   set_result(x, round_item(reg));
 457 }
 458 
 459 
 460 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 462   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 463     // long division is implemented as a direct call into the runtime
 464     LIRItem left(x->x(), this);
 465     LIRItem right(x->y(), this);
 466 
 467     // the check for division by zero destroys the right operand
 468     right.set_destroys_register();
 469 
 470     BasicTypeList signature(2);
 471     signature.append(T_LONG);
 472     signature.append(T_LONG);
 473     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 474 
 475     // check for division by zero (destroys registers of right operand!)
 476     CodeEmitInfo* info = state_for(x);
 477 
 478     const LIR_Opr result_reg = result_register_for(x->type());
 479     left.load_item_force(cc->at(1));
 480     right.load_item();
 481 
 482     __ move(right.result(), cc->at(0));
 483 
 484     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 485     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 486 
 487     address entry;
 488     switch (x->op()) {
 489     case Bytecodes::_lrem:
 490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 491       break; // check if dividend is 0 is done elsewhere
 492     case Bytecodes::_ldiv:
 493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 494       break; // check if dividend is 0 is done elsewhere
 495     case Bytecodes::_lmul:
 496       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 497       break;
 498     default:
 499       ShouldNotReachHere();
 500     }
 501 
 502     LIR_Opr result = rlock_result(x);
 503     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 504     __ move(result_reg, result);
 505   } else if (x->op() == Bytecodes::_lmul) {
 506     // missing test if instr is commutative and if we should swap
 507     LIRItem left(x->x(), this);
 508     LIRItem right(x->y(), this);
 509 
 510     // right register is destroyed by the long mul, so it must be
 511     // copied to a new register.
 512     right.set_destroys_register();
 513 
 514     left.load_item();
 515     right.load_item();
 516 
 517     LIR_Opr reg = FrameMap::long0_opr;
 518     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 519     LIR_Opr result = rlock_result(x);
 520     __ move(reg, result);
 521   } else {
 522     // missing test if instr is commutative and if we should swap
 523     LIRItem left(x->x(), this);
 524     LIRItem right(x->y(), this);
 525 
 526     left.load_item();
 527     // don't load constants to save register
 528     right.load_nonconstant();
 529     rlock_result(x);
 530     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 531   }
 532 }
 533 
 534 
 535 
 536 // for: _iadd, _imul, _isub, _idiv, _irem
 537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 538   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 539     // The requirements for division and modulo
 540     // input : rax,: dividend                         min_int
 541     //         reg: divisor   (may not be rax,/rdx)   -1
 542     //
 543     // output: rax,: quotient  (= rax, idiv reg)       min_int
 544     //         rdx: remainder (= rax, irem reg)       0
 545 
 546     // rax, and rdx will be destroyed
 547 
 548     // Note: does this invalidate the spec ???
 549     LIRItem right(x->y(), this);
 550     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 551 
 552     // call state_for before load_item_force because state_for may
 553     // force the evaluation of other instructions that are needed for
 554     // correct debug info.  Otherwise the live range of the fix
 555     // register might be too long.
 556     CodeEmitInfo* info = state_for(x);
 557 
 558     left.load_item_force(divInOpr());
 559 
 560     right.load_item();
 561 
 562     LIR_Opr result = rlock_result(x);
 563     LIR_Opr result_reg;
 564     if (x->op() == Bytecodes::_idiv) {
 565       result_reg = divOutOpr();
 566     } else {
 567       result_reg = remOutOpr();
 568     }
 569 
 570     if (!ImplicitDiv0Checks) {
 571       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 572       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 573     }
 574     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 575     if (x->op() == Bytecodes::_irem) {
 576       __ irem(left.result(), right.result(), result_reg, tmp, info);
 577     } else if (x->op() == Bytecodes::_idiv) {
 578       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 579     } else {
 580       ShouldNotReachHere();
 581     }
 582 
 583     __ move(result_reg, result);
 584   } else {
 585     // missing test if instr is commutative and if we should swap
 586     LIRItem left(x->x(),  this);
 587     LIRItem right(x->y(), this);
 588     LIRItem* left_arg = &left;
 589     LIRItem* right_arg = &right;
 590     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 591       // swap them if left is real stack (or cached) and right is real register(not cached)
 592       left_arg = &right;
 593       right_arg = &left;
 594     }
 595 
 596     left_arg->load_item();
 597 
 598     // do not need to load right, as we can handle stack and constants
 599     if (x->op() == Bytecodes::_imul ) {
 600       // check if we can use shift instead
 601       bool use_constant = false;
 602       bool use_tmp = false;
 603       if (right_arg->is_constant()) {
 604         int iconst = right_arg->get_jint_constant();
 605         if (iconst > 0) {
 606           if (is_power_of_2(iconst)) {
 607             use_constant = true;
 608           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 609             use_constant = true;
 610             use_tmp = true;
 611           }
 612         }
 613       }
 614       if (use_constant) {
 615         right_arg->dont_load_item();
 616       } else {
 617         right_arg->load_item();
 618       }
 619       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 620       if (use_tmp) {
 621         tmp = new_register(T_INT);
 622       }
 623       rlock_result(x);
 624 
 625       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 626     } else {
 627       right_arg->dont_load_item();
 628       rlock_result(x);
 629       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 630       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 631     }
 632   }
 633 }
 634 
 635 
 636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 637   // when an operand with use count 1 is the left operand, then it is
 638   // likely that no move for 2-operand-LIR-form is necessary
 639   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 640     x->swap_operands();
 641   }
 642 
 643   ValueTag tag = x->type()->tag();
 644   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 645   switch (tag) {
 646     case floatTag:
 647     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 648     case longTag:    do_ArithmeticOp_Long(x); return;
 649     case intTag:     do_ArithmeticOp_Int(x);  return;
 650   }
 651   ShouldNotReachHere();
 652 }
 653 
 654 
 655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 657   // count must always be in rcx
 658   LIRItem value(x->x(), this);
 659   LIRItem count(x->y(), this);
 660 
 661   ValueTag elemType = x->type()->tag();
 662   bool must_load_count = !count.is_constant() || elemType == longTag;
 663   if (must_load_count) {
 664     // count for long must be in register
 665     count.load_item_force(shiftCountOpr());
 666   } else {
 667     count.dont_load_item();
 668   }
 669   value.load_item();
 670   LIR_Opr reg = rlock_result(x);
 671 
 672   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 673 }
 674 
 675 
 676 // _iand, _land, _ior, _lor, _ixor, _lxor
 677 void LIRGenerator::do_LogicOp(LogicOp* x) {
 678   // when an operand with use count 1 is the left operand, then it is
 679   // likely that no move for 2-operand-LIR-form is necessary
 680   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 681     x->swap_operands();
 682   }
 683 
 684   LIRItem left(x->x(), this);
 685   LIRItem right(x->y(), this);
 686 
 687   left.load_item();
 688   right.load_nonconstant();
 689   LIR_Opr reg = rlock_result(x);
 690 
 691   logic_op(x->op(), reg, left.result(), right.result());
 692 }
 693 
 694 
 695 
 696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 697 void LIRGenerator::do_CompareOp(CompareOp* x) {
 698   LIRItem left(x->x(), this);
 699   LIRItem right(x->y(), this);
 700   ValueTag tag = x->x()->type()->tag();
 701   if (tag == longTag) {
 702     left.set_destroys_register();
 703   }
 704   left.load_item();
 705   right.load_item();
 706   LIR_Opr reg = rlock_result(x);
 707 
 708   if (x->x()->type()->is_float_kind()) {
 709     Bytecodes::Code code = x->op();
 710     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 711   } else if (x->x()->type()->tag() == longTag) {
 712     __ lcmp2int(left.result(), right.result(), reg);
 713   } else {
 714     Unimplemented();
 715   }
 716 }
 717 
 718 
 719 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
 720   assert(x->number_of_arguments() == 3, "wrong type");
 721   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
 722   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
 723   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
 724 
 725   // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
 726   cmp_value.load_item_force(FrameMap::long0_opr);
 727 
 728   // new value must be in rcx,ebx (hi,lo)
 729   new_value.load_item_force(FrameMap::long1_opr);
 730 
 731   // object pointer register is overwritten with field address
 732   obj.load_item();
 733 
 734   // generate compare-and-swap; produces zero condition if swap occurs
 735   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
 736   LIR_Opr addr = new_pointer_register();
 737   __ leal(LIR_OprFact::address(new LIR_Address(obj.result(), value_offset, T_LONG)), addr);
 738   LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
 739   LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
 740   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
 741 
 742   // generate conditional move of boolean result
 743   LIR_Opr result = rlock_result(x);
 744   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, T_LONG);
 745 }
 746 
 747 
 748 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 749   assert(x->number_of_arguments() == 4, "wrong type");
 750   LIRItem obj   (x->argument_at(0), this);  // object
 751   LIRItem offset(x->argument_at(1), this);  // offset of field
 752   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 753   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 754 
 755   assert(obj.type()->tag() == objectTag, "invalid type");
 756 
 757   // In 64bit the type can be long, sparc doesn't have this assert
 758   // assert(offset.type()->tag() == intTag, "invalid type");
 759 
 760   assert(cmp.type()->tag() == type->tag(), "invalid type");
 761   assert(val.type()->tag() == type->tag(), "invalid type");
 762 
 763   // get address of field
 764   obj.load_item();
 765   offset.load_nonconstant();
 766 
 767   if (type == objectType) {
 768     cmp.load_item_force(FrameMap::rax_oop_opr);
 769     val.load_item();
 770   } else if (type == intType) {
 771     cmp.load_item_force(FrameMap::rax_opr);
 772     val.load_item();
 773   } else if (type == longType) {
 774     cmp.load_item_force(FrameMap::long0_opr);
 775     val.load_item_force(FrameMap::long1_opr);
 776   } else {
 777     ShouldNotReachHere();
 778   }
 779 
 780   LIR_Opr addr = new_pointer_register();
 781   LIR_Address* a;
 782   if(offset.result()->is_constant()) {
 783     a = new LIR_Address(obj.result(),
 784                         NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
 785                         as_BasicType(type));
 786   } else {
 787     a = new LIR_Address(obj.result(),
 788                         offset.result(),
 789                         LIR_Address::times_1,
 790                         0,
 791                         as_BasicType(type));
 792   }
 793   __ leal(LIR_OprFact::address(a), addr);
 794 
 795   if (type == objectType) {  // Write-barrier needed for Object fields.
 796     // Do the pre-write barrier, if any.
 797     pre_barrier(addr, false, NULL);
 798   }
 799 
 800   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 801   if (type == objectType)
 802     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 803   else if (type == intType)
 804     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 805   else if (type == longType)
 806     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 807   else {
 808     ShouldNotReachHere();
 809   }
 810 
 811   // generate conditional move of boolean result
 812   LIR_Opr result = rlock_result(x);
 813   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 814            result, as_BasicType(type));
 815   if (type == objectType) {   // Write-barrier needed for Object fields.
 816     // Seems to be precise
 817     post_barrier(addr, val.result());
 818   }
 819 }
 820 
 821 
 822 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 823   assert(x->number_of_arguments() == 1, "wrong type");
 824   LIRItem value(x->argument_at(0), this);
 825 
 826   bool use_fpu = false;
 827   if (UseSSE >= 2) {
 828     switch(x->id()) {
 829       case vmIntrinsics::_dsin:
 830       case vmIntrinsics::_dcos:
 831       case vmIntrinsics::_dtan:
 832       case vmIntrinsics::_dlog:
 833       case vmIntrinsics::_dlog10:
 834         use_fpu = true;
 835     }
 836   } else {
 837     value.set_destroys_register();
 838   }
 839 
 840   value.load_item();
 841 
 842   LIR_Opr calc_input = value.result();
 843   LIR_Opr calc_result = rlock_result(x);
 844 
 845   // sin and cos need two free fpu stack slots, so register two temporary operands
 846   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 847   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 848 
 849   if (use_fpu) {
 850     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 851     __ move(calc_input, tmp);
 852 
 853     calc_input = tmp;
 854     calc_result = tmp;
 855     tmp1 = FrameMap::caller_save_fpu_reg_at(1);
 856     tmp2 = FrameMap::caller_save_fpu_reg_at(2);
 857   }
 858 
 859   switch(x->id()) {
 860     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 861     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 862     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 863     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 864     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 865     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 866     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 867     default:                    ShouldNotReachHere();
 868   }
 869 
 870   if (use_fpu) {
 871     __ move(calc_result, x->operand());
 872   }
 873 }
 874 
 875 
 876 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 877   assert(x->number_of_arguments() == 5, "wrong type");
 878 
 879   // Make all state_for calls early since they can emit code
 880   CodeEmitInfo* info = state_for(x, x->state());
 881 
 882   LIRItem src(x->argument_at(0), this);
 883   LIRItem src_pos(x->argument_at(1), this);
 884   LIRItem dst(x->argument_at(2), this);
 885   LIRItem dst_pos(x->argument_at(3), this);
 886   LIRItem length(x->argument_at(4), this);
 887 
 888   // operands for arraycopy must use fixed registers, otherwise
 889   // LinearScan will fail allocation (because arraycopy always needs a
 890   // call)
 891 
 892 #ifndef _LP64
 893   src.load_item_force     (FrameMap::rcx_oop_opr);
 894   src_pos.load_item_force (FrameMap::rdx_opr);
 895   dst.load_item_force     (FrameMap::rax_oop_opr);
 896   dst_pos.load_item_force (FrameMap::rbx_opr);
 897   length.load_item_force  (FrameMap::rdi_opr);
 898   LIR_Opr tmp =           (FrameMap::rsi_opr);
 899 #else
 900 
 901   // The java calling convention will give us enough registers
 902   // so that on the stub side the args will be perfect already.
 903   // On the other slow/special case side we call C and the arg
 904   // positions are not similar enough to pick one as the best.
 905   // Also because the java calling convention is a "shifted" version
 906   // of the C convention we can process the java args trivially into C
 907   // args without worry of overwriting during the xfer
 908 
 909   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 910   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 911   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 912   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 913   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 914 
 915   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 916 #endif // LP64
 917 
 918   set_no_result(x);
 919 
 920   int flags;
 921   ciArrayKlass* expected_type;
 922   arraycopy_helper(x, &flags, &expected_type);
 923 
 924   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 925 }
 926 
 927 
 928 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 929 // _i2b, _i2c, _i2s
 930 LIR_Opr fixed_register_for(BasicType type) {
 931   switch (type) {
 932     case T_FLOAT:  return FrameMap::fpu0_float_opr;
 933     case T_DOUBLE: return FrameMap::fpu0_double_opr;
 934     case T_INT:    return FrameMap::rax_opr;
 935     case T_LONG:   return FrameMap::long0_opr;
 936     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 937   }
 938 }
 939 
 940 void LIRGenerator::do_Convert(Convert* x) {
 941   // flags that vary for the different operations and different SSE-settings
 942   bool fixed_input, fixed_result, round_result, needs_stub;
 943 
 944   switch (x->op()) {
 945     case Bytecodes::_i2l: // fall through
 946     case Bytecodes::_l2i: // fall through
 947     case Bytecodes::_i2b: // fall through
 948     case Bytecodes::_i2c: // fall through
 949     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 950 
 951     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
 952     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
 953     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
 954     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 955     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 956     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 957     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
 958     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
 959     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 960     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 961     default: ShouldNotReachHere();
 962   }
 963 
 964   LIRItem value(x->value(), this);
 965   value.load_item();
 966   LIR_Opr input = value.result();
 967   LIR_Opr result = rlock(x);
 968 
 969   // arguments of lir_convert
 970   LIR_Opr conv_input = input;
 971   LIR_Opr conv_result = result;
 972   ConversionStub* stub = NULL;
 973 
 974   if (fixed_input) {
 975     conv_input = fixed_register_for(input->type());
 976     __ move(input, conv_input);
 977   }
 978 
 979   assert(fixed_result == false || round_result == false, "cannot set both");
 980   if (fixed_result) {
 981     conv_result = fixed_register_for(result->type());
 982   } else if (round_result) {
 983     result = new_register(result->type());
 984     set_vreg_flag(result, must_start_in_memory);
 985   }
 986 
 987   if (needs_stub) {
 988     stub = new ConversionStub(x->op(), conv_input, conv_result);
 989   }
 990 
 991   __ convert(x->op(), conv_input, conv_result, stub);
 992 
 993   if (result != conv_result) {
 994     __ move(conv_result, result);
 995   }
 996 
 997   assert(result->is_virtual(), "result must be virtual register");
 998   set_result(x, result);
 999 }
1000 
1001 
1002 void LIRGenerator::do_NewInstance(NewInstance* x) {
1003 #ifndef PRODUCT
1004   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1005     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1006   }
1007 #endif
1008   CodeEmitInfo* info = state_for(x, x->state());
1009   LIR_Opr reg = result_register_for(x->type());
1010   LIR_Opr klass_reg = new_register(objectType);
1011   new_instance(reg, x->klass(),
1012                        FrameMap::rcx_oop_opr,
1013                        FrameMap::rdi_oop_opr,
1014                        FrameMap::rsi_oop_opr,
1015                        LIR_OprFact::illegalOpr,
1016                        FrameMap::rdx_oop_opr, info);
1017   LIR_Opr result = rlock_result(x);
1018   __ move(reg, result);
1019 }
1020 
1021 
1022 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1023   CodeEmitInfo* info = state_for(x, x->state());
1024 
1025   LIRItem length(x->length(), this);
1026   length.load_item_force(FrameMap::rbx_opr);
1027 
1028   LIR_Opr reg = result_register_for(x->type());
1029   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1030   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1031   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1032   LIR_Opr tmp4 = reg;
1033   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1034   LIR_Opr len = length.result();
1035   BasicType elem_type = x->elt_type();
1036 
1037   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1038 
1039   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1040   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1041 
1042   LIR_Opr result = rlock_result(x);
1043   __ move(reg, result);
1044 }
1045 
1046 
1047 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1048   LIRItem length(x->length(), this);
1049   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1050   // and therefore provide the state before the parameters have been consumed
1051   CodeEmitInfo* patching_info = NULL;
1052   if (!x->klass()->is_loaded() || PatchALot) {
1053     patching_info =  state_for(x, x->state_before());
1054   }
1055 
1056   CodeEmitInfo* info = state_for(x, x->state());
1057 
1058   const LIR_Opr reg = result_register_for(x->type());
1059   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1060   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1061   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1062   LIR_Opr tmp4 = reg;
1063   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1064 
1065   length.load_item_force(FrameMap::rbx_opr);
1066   LIR_Opr len = length.result();
1067 
1068   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1069   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1070   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1071     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1072   }
1073   jobject2reg_with_patching(klass_reg, obj, patching_info);
1074   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1075 
1076   LIR_Opr result = rlock_result(x);
1077   __ move(reg, result);
1078 }
1079 
1080 
1081 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1082   Values* dims = x->dims();
1083   int i = dims->length();
1084   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1085   while (i-- > 0) {
1086     LIRItem* size = new LIRItem(dims->at(i), this);
1087     items->at_put(i, size);
1088   }
1089 
1090   // Evaluate state_for early since it may emit code.
1091   CodeEmitInfo* patching_info = NULL;
1092   if (!x->klass()->is_loaded() || PatchALot) {
1093     patching_info = state_for(x, x->state_before());
1094 
1095     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
1096     // clone all handlers.  This is handled transparently in other
1097     // places by the CodeEmitInfo cloning logic but is handled
1098     // specially here because a stub isn't being used.
1099     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1100   }
1101   CodeEmitInfo* info = state_for(x, x->state());
1102 
1103   i = dims->length();
1104   while (i-- > 0) {
1105     LIRItem* size = items->at(i);
1106     size->load_nonconstant();
1107 
1108     store_stack_parameter(size->result(), in_ByteSize(i*4));
1109   }
1110 
1111   LIR_Opr reg = result_register_for(x->type());
1112   jobject2reg_with_patching(reg, x->klass(), patching_info);
1113 
1114   LIR_Opr rank = FrameMap::rbx_opr;
1115   __ move(LIR_OprFact::intConst(x->rank()), rank);
1116   LIR_Opr varargs = FrameMap::rcx_opr;
1117   __ move(FrameMap::rsp_opr, varargs);
1118   LIR_OprList* args = new LIR_OprList(3);
1119   args->append(reg);
1120   args->append(rank);
1121   args->append(varargs);
1122   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1123                   LIR_OprFact::illegalOpr,
1124                   reg, args, info);
1125 
1126   LIR_Opr result = rlock_result(x);
1127   __ move(reg, result);
1128 }
1129 
1130 
1131 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1132   // nothing to do for now
1133 }
1134 
1135 
1136 void LIRGenerator::do_CheckCast(CheckCast* x) {
1137   LIRItem obj(x->obj(), this);
1138 
1139   CodeEmitInfo* patching_info = NULL;
1140   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1141     // must do this before locking the destination register as an oop register,
1142     // and before the obj is loaded (the latter is for deoptimization)
1143     patching_info = state_for(x, x->state_before());
1144   }
1145   obj.load_item();
1146 
1147   // info for exceptions
1148   CodeEmitInfo* info_for_exception = state_for(x);
1149 
1150   CodeStub* stub;
1151   if (x->is_incompatible_class_change_check()) {
1152     assert(patching_info == NULL, "can't patch this");
1153     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1154   } else {
1155     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1156   }
1157   LIR_Opr reg = rlock_result(x);
1158   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1159   if (!x->klass()->is_loaded() || UseCompressedOops) {
1160     tmp3 = new_register(objectType);
1161   }
1162   __ checkcast(reg, obj.result(), x->klass(),
1163                new_register(objectType), new_register(objectType), tmp3,
1164                x->direct_compare(), info_for_exception, patching_info, stub,
1165                x->profiled_method(), x->profiled_bci());
1166 }
1167 
1168 
1169 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1170   LIRItem obj(x->obj(), this);
1171 
1172   // result and test object may not be in same register
1173   LIR_Opr reg = rlock_result(x);
1174   CodeEmitInfo* patching_info = NULL;
1175   if ((!x->klass()->is_loaded() || PatchALot)) {
1176     // must do this before locking the destination register as an oop register
1177     patching_info = state_for(x, x->state_before());
1178   }
1179   obj.load_item();
1180   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1181   if (!x->klass()->is_loaded() || UseCompressedOops) {
1182     tmp3 = new_register(objectType);
1183   }
1184   __ instanceof(reg, obj.result(), x->klass(),
1185                 new_register(objectType), new_register(objectType), tmp3,
1186                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1187 }
1188 
1189 
1190 void LIRGenerator::do_If(If* x) {
1191   assert(x->number_of_sux() == 2, "inconsistency");
1192   ValueTag tag = x->x()->type()->tag();
1193   bool is_safepoint = x->is_safepoint();
1194 
1195   If::Condition cond = x->cond();
1196 
1197   LIRItem xitem(x->x(), this);
1198   LIRItem yitem(x->y(), this);
1199   LIRItem* xin = &xitem;
1200   LIRItem* yin = &yitem;
1201 
1202   if (tag == longTag) {
1203     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1204     // mirror for other conditions
1205     if (cond == If::gtr || cond == If::leq) {
1206       cond = Instruction::mirror(cond);
1207       xin = &yitem;
1208       yin = &xitem;
1209     }
1210     xin->set_destroys_register();
1211   }
1212   xin->load_item();
1213   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1214     // inline long zero
1215     yin->dont_load_item();
1216   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1217     // longs cannot handle constants at right side
1218     yin->load_item();
1219   } else {
1220     yin->dont_load_item();
1221   }
1222 
1223   // add safepoint before generating condition code so it can be recomputed
1224   if (x->is_safepoint()) {
1225     // increment backedge counter if needed
1226     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1227     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1228   }
1229   set_no_result(x);
1230 
1231   LIR_Opr left = xin->result();
1232   LIR_Opr right = yin->result();
1233   __ cmp(lir_cond(cond), left, right);
1234   // Generate branch profiling. Profiling code doesn't kill flags.
1235   profile_branch(x, cond);
1236   move_to_phi(x->state());
1237   if (x->x()->type()->is_float_kind()) {
1238     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1239   } else {
1240     __ branch(lir_cond(cond), right->type(), x->tsux());
1241   }
1242   assert(x->default_sux() == x->fsux(), "wrong destination above");
1243   __ jump(x->default_sux());
1244 }
1245 
1246 
1247 LIR_Opr LIRGenerator::getThreadPointer() {
1248 #ifdef _LP64
1249   return FrameMap::as_pointer_opr(r15_thread);
1250 #else
1251   LIR_Opr result = new_register(T_INT);
1252   __ get_thread(result);
1253   return result;
1254 #endif //
1255 }
1256 
1257 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1258   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1259   LIR_OprList* args = new LIR_OprList();
1260   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1261   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1262 }
1263 
1264 
1265 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1266                                         CodeEmitInfo* info) {
1267   if (address->type() == T_LONG) {
1268     address = new LIR_Address(address->base(),
1269                               address->index(), address->scale(),
1270                               address->disp(), T_DOUBLE);
1271     // Transfer the value atomically by using FP moves.  This means
1272     // the value has to be moved between CPU and FPU registers.  It
1273     // always has to be moved through spill slot since there's no
1274     // quick way to pack the value into an SSE register.
1275     LIR_Opr temp_double = new_register(T_DOUBLE);
1276     LIR_Opr spill = new_register(T_LONG);
1277     set_vreg_flag(spill, must_start_in_memory);
1278     __ move(value, spill);
1279     __ volatile_move(spill, temp_double, T_LONG);
1280     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1281   } else {
1282     __ store(value, address, info);
1283   }
1284 }
1285 
1286 
1287 
1288 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1289                                        CodeEmitInfo* info) {
1290   if (address->type() == T_LONG) {
1291     address = new LIR_Address(address->base(),
1292                               address->index(), address->scale(),
1293                               address->disp(), T_DOUBLE);
1294     // Transfer the value atomically by using FP moves.  This means
1295     // the value has to be moved between CPU and FPU registers.  In
1296     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1297     // SSE2+ mode it can be moved directly.
1298     LIR_Opr temp_double = new_register(T_DOUBLE);
1299     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1300     __ volatile_move(temp_double, result, T_LONG);
1301     if (UseSSE < 2) {
1302       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1303       set_vreg_flag(result, must_start_in_memory);
1304     }
1305   } else {
1306     __ load(address, result, info);
1307   }
1308 }
1309 
1310 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1311                                      BasicType type, bool is_volatile) {
1312   if (is_volatile && type == T_LONG) {
1313     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1314     LIR_Opr tmp = new_register(T_DOUBLE);
1315     __ load(addr, tmp);
1316     LIR_Opr spill = new_register(T_LONG);
1317     set_vreg_flag(spill, must_start_in_memory);
1318     __ move(tmp, spill);
1319     __ move(spill, dst);
1320   } else {
1321     LIR_Address* addr = new LIR_Address(src, offset, type);
1322     __ load(addr, dst);
1323   }
1324 }
1325 
1326 
1327 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1328                                      BasicType type, bool is_volatile) {
1329   if (is_volatile && type == T_LONG) {
1330     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1331     LIR_Opr tmp = new_register(T_DOUBLE);
1332     LIR_Opr spill = new_register(T_DOUBLE);
1333     set_vreg_flag(spill, must_start_in_memory);
1334     __ move(data, spill);
1335     __ move(spill, tmp);
1336     __ move(tmp, addr);
1337   } else {
1338     LIR_Address* addr = new LIR_Address(src, offset, type);
1339     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1340     if (is_obj) {
1341       // Do the pre-write barrier, if any.
1342       pre_barrier(LIR_OprFact::address(addr), false, NULL);
1343       __ move(data, addr);
1344       assert(src->is_register(), "must be register");
1345       // Seems to be a precise address
1346       post_barrier(LIR_OprFact::address(addr), data);
1347     } else {
1348       __ move(data, addr);
1349     }
1350   }
1351 }