1 /*
   2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #ifdef SHARK
  49 #include "shark/shark_globals.hpp"
  50 #endif
  51 
  52 #ifdef CC_INTERP
  53 
  54 // Routine exists to make tracebacks look decent in debugger
  55 // while we are recursed in the frame manager/c++ interpreter.
  56 // We could use an address in the frame manager but having
  57 // frames look natural in the debugger is a plus.
  58 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
  59 {
  60   //
  61   ShouldNotReachHere();
  62 }
  63 
  64 
  65 #define __ _masm->
  66 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
  67 
  68 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  69                                       // c++ interpreter entry point this holds that entry point label.
  70 
  71 // default registers for state and sender_sp
  72 // state and sender_sp are the same on 32bit because we have no choice.
  73 // state could be rsi on 64bit but it is an arg reg and not callee save
  74 // so r13 is better choice.
  75 
  76 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
  77 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
  78 
  79 // NEEDED for JVMTI?
  80 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
  81 
  82 static address unctrap_frame_manager_entry  = NULL;
  83 
  84 static address deopt_frame_manager_return_atos  = NULL;
  85 static address deopt_frame_manager_return_btos  = NULL;
  86 static address deopt_frame_manager_return_itos  = NULL;
  87 static address deopt_frame_manager_return_ltos  = NULL;
  88 static address deopt_frame_manager_return_ftos  = NULL;
  89 static address deopt_frame_manager_return_dtos  = NULL;
  90 static address deopt_frame_manager_return_vtos  = NULL;
  91 
  92 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  93   int i = 0;
  94   switch (type) {
  95     case T_BOOLEAN: i = 0; break;
  96     case T_CHAR   : i = 1; break;
  97     case T_BYTE   : i = 2; break;
  98     case T_SHORT  : i = 3; break;
  99     case T_INT    : i = 4; break;
 100     case T_VOID   : i = 5; break;
 101     case T_FLOAT  : i = 8; break;
 102     case T_LONG   : i = 9; break;
 103     case T_DOUBLE : i = 6; break;
 104     case T_OBJECT : // fall through
 105     case T_ARRAY  : i = 7; break;
 106     default       : ShouldNotReachHere();
 107   }
 108   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 109   return i;
 110 }
 111 
 112 // Is this pc anywhere within code owned by the interpreter?
 113 // This only works for pc that might possibly be exposed to frame
 114 // walkers. It clearly misses all of the actual c++ interpreter
 115 // implementation
 116 bool CppInterpreter::contains(address pc)            {
 117     return (_code->contains(pc) ||
 118             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
 119 }
 120 
 121 
 122 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 123   address entry = __ pc();
 124   switch (type) {
 125     case T_BOOLEAN: __ c2bool(rax);            break;
 126     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
 127     case T_BYTE   : __ sign_extend_byte (rax); break;
 128     case T_SHORT  : __ sign_extend_short(rax); break;
 129     case T_VOID   : // fall thru
 130     case T_LONG   : // fall thru
 131     case T_INT    : /* nothing to do */        break;
 132 
 133     case T_DOUBLE :
 134     case T_FLOAT  :
 135       {
 136         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 137         __ pop(t);                            // remove return address first
 138         // Must return a result for interpreter or compiler. In SSE
 139         // mode, results are returned in xmm0 and the FPU stack must
 140         // be empty.
 141         if (type == T_FLOAT && UseSSE >= 1) {
 142 #ifndef _LP64
 143           // Load ST0
 144           __ fld_d(Address(rsp, 0));
 145           // Store as float and empty fpu stack
 146           __ fstp_s(Address(rsp, 0));
 147 #endif // !_LP64
 148           // and reload
 149           __ movflt(xmm0, Address(rsp, 0));
 150         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 151           __ movdbl(xmm0, Address(rsp, 0));
 152         } else {
 153           // restore ST0
 154           __ fld_d(Address(rsp, 0));
 155         }
 156         // and pop the temp
 157         __ addptr(rsp, 2 * wordSize);
 158         __ push(t);                            // restore return address
 159       }
 160       break;
 161     case T_OBJECT :
 162       // retrieve result from frame
 163       __ movptr(rax, STATE(_oop_temp));
 164       // and verify it
 165       __ verify_oop(rax);
 166       break;
 167     default       : ShouldNotReachHere();
 168   }
 169   __ ret(0);                                   // return from result handler
 170   return entry;
 171 }
 172 
 173 // tosca based result to c++ interpreter stack based result.
 174 // Result goes to top of native stack.
 175 
 176 #undef EXTEND  // SHOULD NOT BE NEEDED
 177 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 178   // A result is in the tosca (abi result) from either a native method call or compiled
 179   // code. Place this result on the java expression stack so C++ interpreter can use it.
 180   address entry = __ pc();
 181 
 182   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 183   __ pop(t);                            // remove return address first
 184   switch (type) {
 185     case T_VOID:
 186        break;
 187     case T_BOOLEAN:
 188 #ifdef EXTEND
 189       __ c2bool(rax);
 190 #endif
 191       __ push(rax);
 192       break;
 193     case T_CHAR   :
 194 #ifdef EXTEND
 195       __ andl(rax, 0xFFFF);
 196 #endif
 197       __ push(rax);
 198       break;
 199     case T_BYTE   :
 200 #ifdef EXTEND
 201       __ sign_extend_byte (rax);
 202 #endif
 203       __ push(rax);
 204       break;
 205     case T_SHORT  :
 206 #ifdef EXTEND
 207       __ sign_extend_short(rax);
 208 #endif
 209       __ push(rax);
 210       break;
 211     case T_LONG    :
 212       __ push(rdx);                             // pushes useless junk on 64bit
 213       __ push(rax);
 214       break;
 215     case T_INT    :
 216       __ push(rax);
 217       break;
 218     case T_FLOAT  :
 219       // Result is in ST(0)/xmm0
 220       __ subptr(rsp, wordSize);
 221       if ( UseSSE < 1) {
 222         __ fstp_s(Address(rsp, 0));
 223       } else {
 224         __ movflt(Address(rsp, 0), xmm0);
 225       }
 226       break;
 227     case T_DOUBLE  :
 228       __ subptr(rsp, 2*wordSize);
 229       if ( UseSSE < 2 ) {
 230         __ fstp_d(Address(rsp, 0));
 231       } else {
 232         __ movdbl(Address(rsp, 0), xmm0);
 233       }
 234       break;
 235     case T_OBJECT :
 236       __ verify_oop(rax);                      // verify it
 237       __ push(rax);
 238       break;
 239     default       : ShouldNotReachHere();
 240   }
 241   __ jmp(t);                                   // return from result handler
 242   return entry;
 243 }
 244 
 245 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 246   // A result is in the java expression stack of the interpreted method that has just
 247   // returned. Place this result on the java expression stack of the caller.
 248   //
 249   // The current interpreter activation in rsi/r13 is for the method just returning its
 250   // result. So we know that the result of this method is on the top of the current
 251   // execution stack (which is pre-pushed) and will be return to the top of the caller
 252   // stack. The top of the callers stack is the bottom of the locals of the current
 253   // activation.
 254   // Because of the way activation are managed by the frame manager the value of rsp is
 255   // below both the stack top of the current activation and naturally the stack top
 256   // of the calling activation. This enable this routine to leave the return address
 257   // to the frame manager on the stack and do a vanilla return.
 258   //
 259   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 260   // On Return: rsi/r13 - unchanged
 261   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
 262   //
 263   // Can destroy rdx, rcx.
 264   //
 265 
 266   address entry = __ pc();
 267   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 268   switch (type) {
 269     case T_VOID:
 270       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
 271       __ addptr(rax, wordSize);                                         // account for prepush before we return
 272       break;
 273     case T_FLOAT  :
 274     case T_BOOLEAN:
 275     case T_CHAR   :
 276     case T_BYTE   :
 277     case T_SHORT  :
 278     case T_INT    :
 279       // 1 word result
 280       __ movptr(rdx, STATE(_stack));
 281       __ movptr(rax, STATE(_locals));                                   // address for result
 282       __ movl(rdx, Address(rdx, wordSize));                             // get result
 283       __ movptr(Address(rax, 0), rdx);                                  // and store it
 284       break;
 285     case T_LONG    :
 286     case T_DOUBLE  :
 287       // return top two words on current expression stack to caller's expression stack
 288       // The caller's expression stack is adjacent to the current frame manager's intepretState
 289       // except we allocated one extra word for this intepretState so we won't overwrite it
 290       // when we return a two word result.
 291 
 292       __ movptr(rax, STATE(_locals));                                   // address for result
 293       __ movptr(rcx, STATE(_stack));
 294       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
 295       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
 296       __ movptr(Address(rax, wordSize), rdx);                           // and store it
 297       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
 298       __ movptr(Address(rax, 0), rdx);                                  // and store it
 299       break;
 300     case T_OBJECT :
 301       __ movptr(rdx, STATE(_stack));
 302       __ movptr(rax, STATE(_locals));                                   // address for result
 303       __ movptr(rdx, Address(rdx, wordSize));                           // get result
 304       __ verify_oop(rdx);                                               // verify it
 305       __ movptr(Address(rax, 0), rdx);                                  // and store it
 306       break;
 307     default       : ShouldNotReachHere();
 308   }
 309   __ ret(0);
 310   return entry;
 311 }
 312 
 313 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 314   // A result is in the java expression stack of the interpreted method that has just
 315   // returned. Place this result in the native abi that the caller expects.
 316   //
 317   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 318   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 319   // and so rather than return result onto caller's java expression stack we return the
 320   // result in the expected location based on the native abi.
 321   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 322   // On Return: rsi/r13 - unchanged
 323   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
 324 
 325   address entry = __ pc();
 326   switch (type) {
 327     case T_VOID:
 328        break;
 329     case T_BOOLEAN:
 330     case T_CHAR   :
 331     case T_BYTE   :
 332     case T_SHORT  :
 333     case T_INT    :
 334       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 335       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
 336       break;
 337     case T_LONG    :
 338       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 339       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
 340       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
 341       break;
 342     case T_FLOAT  :
 343       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 344       if ( UseSSE >= 1) {
 345         __ movflt(xmm0, Address(rdx, wordSize));
 346       } else {
 347         __ fld_s(Address(rdx, wordSize));                               // pushd float result
 348       }
 349       break;
 350     case T_DOUBLE  :
 351       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 352       if ( UseSSE > 1) {
 353         __ movdbl(xmm0, Address(rdx, wordSize));
 354       } else {
 355         __ fld_d(Address(rdx, wordSize));                               // push double result
 356       }
 357       break;
 358     case T_OBJECT :
 359       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 360       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
 361       __ verify_oop(rax);                                               // verify it
 362       break;
 363     default       : ShouldNotReachHere();
 364   }
 365   __ ret(0);
 366   return entry;
 367 }
 368 
 369 address CppInterpreter::return_entry(TosState state, int length) {
 370   // make it look good in the debugger
 371   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
 372 }
 373 
 374 address CppInterpreter::deopt_entry(TosState state, int length) {
 375   address ret = NULL;
 376   if (length != 0) {
 377     switch (state) {
 378       case atos: ret = deopt_frame_manager_return_atos; break;
 379       case btos: ret = deopt_frame_manager_return_btos; break;
 380       case ctos:
 381       case stos:
 382       case itos: ret = deopt_frame_manager_return_itos; break;
 383       case ltos: ret = deopt_frame_manager_return_ltos; break;
 384       case ftos: ret = deopt_frame_manager_return_ftos; break;
 385       case dtos: ret = deopt_frame_manager_return_dtos; break;
 386       case vtos: ret = deopt_frame_manager_return_vtos; break;
 387     }
 388   } else {
 389     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 390   }
 391   assert(ret != NULL, "Not initialized");
 392   return ret;
 393 }
 394 
 395 // C++ Interpreter
 396 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 397                                                                  const Register locals,
 398                                                                  const Register sender_sp,
 399                                                                  bool native) {
 400 
 401   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
 402   // a static method). "state" contains any previous frame manager state which we must save a link
 403   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
 404   // state object. We must allocate and initialize a new interpretState object and the method
 405   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
 406   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
 407   // be sure to leave space on the caller's stack so that this result will not overwrite values when
 408   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
 409   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
 410   // non-product builds and initialize this last local with the previous interpreterState as
 411   // this makes things look real nice in the debugger.
 412 
 413   // State on entry
 414   // Assumes locals == &locals[0]
 415   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
 416   // Assumes rax = return address
 417   // rcx == senders_sp
 418   // rbx == method
 419   // Modifies rcx, rdx, rax
 420   // Returns:
 421   // state == address of new interpreterState
 422   // rsp == bottom of method's expression stack.
 423 
 424   const Address const_offset      (rbx, methodOopDesc::const_offset());
 425 
 426 
 427   // On entry sp is the sender's sp. This includes the space for the arguments
 428   // that the sender pushed. If the sender pushed no args (a static) and the
 429   // caller returns a long then we need two words on the sender's stack which
 430   // are not present (although when we return a restore full size stack the
 431   // space will be present). If we didn't allocate two words here then when
 432   // we "push" the result of the caller's stack we would overwrite the return
 433   // address and the saved rbp. Not good. So simply allocate 2 words now
 434   // just to be safe. This is the "static long no_params() method" issue.
 435   // See Lo.java for a testcase.
 436   // We don't need this for native calls because they return result in
 437   // register and the stack is expanded in the caller before we store
 438   // the results on the stack.
 439 
 440   if (!native) {
 441 #ifdef PRODUCT
 442     __ subptr(rsp, 2*wordSize);
 443 #else /* PRODUCT */
 444     __ push((int32_t)NULL_WORD);
 445     __ push(state);                         // make it look like a real argument
 446 #endif /* PRODUCT */
 447   }
 448 
 449   // Now that we are assure of space for stack result, setup typical linkage
 450 
 451   __ push(rax);
 452   __ enter();
 453 
 454   __ mov(rax, state);                                  // save current state
 455 
 456   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
 457   __ mov(state, rsp);
 458 
 459   // rsi/r13 == state/locals rax == prevstate
 460 
 461   // initialize the "shadow" frame so that use since C++ interpreter not directly
 462   // recursive. Simpler to recurse but we can't trim expression stack as we call
 463   // new methods.
 464   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
 465   __ movptr(STATE(_self_link), state);                  // point to self
 466   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
 467   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
 468 #ifdef _LP64
 469   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
 470 #else
 471   __ get_thread(rax);                                   // get vm's javathread*
 472   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
 473 #endif // _LP64
 474   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
 475   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
 476   if (native) {
 477     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
 478   } else {
 479     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
 480   }
 481   __ xorptr(rdx, rdx);
 482   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
 483   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
 484   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
 485   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 486   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
 487 
 488   __ movptr(STATE(_method), rbx);                       // state->_method = method()
 489   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
 490   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
 491 
 492 
 493   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
 494                                                         // entries run from -1..x where &monitor[x] ==
 495 
 496   {
 497     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
 498     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
 499     // immediately.
 500 
 501     // synchronize method
 502     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 503     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 504     Label not_synced;
 505 
 506     __ movl(rax, access_flags);
 507     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 508     __ jcc(Assembler::zero, not_synced);
 509 
 510     // Allocate initial monitor and pre initialize it
 511     // get synchronization object
 512 
 513     Label done;
 514     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 515     __ movl(rax, access_flags);
 516     __ testl(rax, JVM_ACC_STATIC);
 517     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
 518     __ jcc(Assembler::zero, done);
 519     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 520     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 521     __ movptr(rax, Address(rax, mirror_offset));
 522     __ bind(done);
 523     // add space for monitor & lock
 524     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 525     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 526     __ bind(not_synced);
 527   }
 528 
 529   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
 530   if (native) {
 531     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 532     __ movptr(STATE(_stack_limit), rsp);
 533   } else {
 534     __ subptr(rsp, wordSize);                                             // pre-push stack
 535     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 536 
 537     // compute full expression stack limit
 538 
 539     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 540     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_words();
 541     __ load_unsigned_short(rdx, size_of_stack);                           // get size of expression stack in words
 542     __ negptr(rdx);                                                       // so we can subtract in next step
 543     // Allocate expression stack
 544     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -extra_stack));
 545     __ movptr(STATE(_stack_limit), rsp);
 546   }
 547 
 548 #ifdef _LP64
 549   // Make sure stack is properly aligned and sized for the abi
 550   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 551   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 552 #endif // _LP64
 553 
 554 
 555 
 556 }
 557 
 558 // Helpers for commoning out cases in the various type of method entries.
 559 //
 560 
 561 // increment invocation count & check for overflow
 562 //
 563 // Note: checking for negative value instead of overflow
 564 //       so we have a 'sticky' overflow test
 565 //
 566 // rbx,: method
 567 // rcx: invocation counter
 568 //
 569 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 570 
 571   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 572   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
 573 
 574   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 575     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
 576   }
 577   // Update standard invocation counters
 578   __ movl(rax, backedge_counter);               // load backedge counter
 579 
 580   __ increment(rcx, InvocationCounter::count_increment);
 581   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 582 
 583   __ movl(invocation_counter, rcx);             // save invocation count
 584   __ addl(rcx, rax);                            // add both counters
 585 
 586   // profile_method is non-null only for interpreted method so
 587   // profile_method != NULL == !native_call
 588   // BytecodeInterpreter only calls for native so code is elided.
 589 
 590   __ cmp32(rcx,
 591            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 592   __ jcc(Assembler::aboveEqual, *overflow);
 593 
 594 }
 595 
 596 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 597 
 598   // C++ interpreter on entry
 599   // rsi/r13 - new interpreter state pointer
 600   // rbp - interpreter frame pointer
 601   // rbx - method
 602 
 603   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 604   // rbx, - method
 605   // rcx - rcvr (assuming there is one)
 606   // top of stack return address of interpreter caller
 607   // rsp - sender_sp
 608 
 609   // C++ interpreter only
 610   // rsi/r13 - previous interpreter state pointer
 611 
 612   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 613 
 614   // InterpreterRuntime::frequency_counter_overflow takes one argument
 615   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 616   // The call returns the address of the verified entry point for the method or NULL
 617   // if the compilation did not complete (either went background or bailed out).
 618   __ movptr(rax, (int32_t)false);
 619   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 620 
 621   // for c++ interpreter can rsi really be munged?
 622   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
 623   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
 624   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
 625 
 626   __ jmp(*do_continue, relocInfo::none);
 627 
 628 }
 629 
 630 void InterpreterGenerator::generate_stack_overflow_check(void) {
 631   // see if we've got enough room on the stack for locals plus overhead.
 632   // the expression stack grows down incrementally, so the normal guard
 633   // page mechanism will work for that.
 634   //
 635   // Registers live on entry:
 636   //
 637   // Asm interpreter
 638   // rdx: number of additional locals this frame needs (what we must check)
 639   // rbx,: methodOop
 640 
 641   // C++ Interpreter
 642   // rsi/r13: previous interpreter frame state object
 643   // rdi: &locals[0]
 644   // rcx: # of locals
 645   // rdx: number of additional locals this frame needs (what we must check)
 646   // rbx: methodOop
 647 
 648   // destroyed on exit
 649   // rax,
 650 
 651   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 652   // generate_method_entry) so the guard should work for them too.
 653   //
 654 
 655   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
 656   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 657 
 658   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 659   // be sure to change this if you add/subtract anything to/from the overhead area
 660   const int overhead_size = (int)sizeof(BytecodeInterpreter);
 661 
 662   const int page_size = os::vm_page_size();
 663 
 664   Label after_frame_check;
 665 
 666   // compute rsp as if this were going to be the last frame on
 667   // the stack before the red zone
 668 
 669   Label after_frame_check_pop;
 670 
 671   // save rsi == caller's bytecode ptr (c++ previous interp. state)
 672   // QQQ problem here?? rsi overload????
 673   __ push(state);
 674 
 675   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
 676 
 677   NOT_LP64(__ get_thread(thread));
 678 
 679   const Address stack_base(thread, Thread::stack_base_offset());
 680   const Address stack_size(thread, Thread::stack_size_offset());
 681 
 682   // locals + overhead, in bytes
 683     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 684     // Always give one monitor to allow us to start interp if sync method.
 685     // Any additional monitors need a check when moving the expression stack
 686     const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
 687     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
 688   __ load_unsigned_short(rax, size_of_stack);                           // get size of expression stack in words
 689   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), extra_stack + one_monitor));
 690   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
 691 
 692 #ifdef ASSERT
 693   Label stack_base_okay, stack_size_okay;
 694   // verify that thread stack base is non-zero
 695   __ cmpptr(stack_base, (int32_t)0);
 696   __ jcc(Assembler::notEqual, stack_base_okay);
 697   __ stop("stack base is zero");
 698   __ bind(stack_base_okay);
 699   // verify that thread stack size is non-zero
 700   __ cmpptr(stack_size, (int32_t)0);
 701   __ jcc(Assembler::notEqual, stack_size_okay);
 702   __ stop("stack size is zero");
 703   __ bind(stack_size_okay);
 704 #endif
 705 
 706   // Add stack base to locals and subtract stack size
 707   __ addptr(rax, stack_base);
 708   __ subptr(rax, stack_size);
 709 
 710   // We should have a magic number here for the size of the c++ interpreter frame.
 711   // We can't actually tell this ahead of time. The debug version size is around 3k
 712   // product is 1k and fastdebug is 4k
 713   const int slop = 6 * K;
 714 
 715   // Use the maximum number of pages we might bang.
 716   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 717                                                                               (StackRedPages+StackYellowPages);
 718   // Only need this if we are stack banging which is temporary while
 719   // we're debugging.
 720   __ addptr(rax, slop + 2*max_pages * page_size);
 721 
 722   // check against the current stack bottom
 723   __ cmpptr(rsp, rax);
 724   __ jcc(Assembler::above, after_frame_check_pop);
 725 
 726   __ pop(state);  //  get c++ prev state.
 727 
 728      // throw exception return address becomes throwing pc
 729   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 730 
 731   // all done with frame size check
 732   __ bind(after_frame_check_pop);
 733   __ pop(state);
 734 
 735   __ bind(after_frame_check);
 736 }
 737 
 738 // Find preallocated  monitor and lock method (C++ interpreter)
 739 // rbx - methodOop
 740 //
 741 void InterpreterGenerator::lock_method(void) {
 742   // assumes state == rsi/r13 == pointer to current interpreterState
 743   // minimally destroys rax, rdx|c_rarg1, rdi
 744   //
 745   // synchronize method
 746   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 747   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 748 
 749   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 750 
 751   // find initial monitor i.e. monitors[-1]
 752   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
 753   __ subptr(monitor, entry_size);                                             // point to initial monitor
 754 
 755 #ifdef ASSERT
 756   { Label L;
 757     __ movl(rax, access_flags);
 758     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 759     __ jcc(Assembler::notZero, L);
 760     __ stop("method doesn't need synchronization");
 761     __ bind(L);
 762   }
 763 #endif // ASSERT
 764   // get synchronization object
 765   { Label done;
 766     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 767     __ movl(rax, access_flags);
 768     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
 769     __ testl(rax, JVM_ACC_STATIC);
 770     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
 771     __ jcc(Assembler::zero, done);
 772     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 773     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 774     __ movptr(rax, Address(rax, mirror_offset));
 775     __ bind(done);
 776   }
 777 #ifdef ASSERT
 778   { Label L;
 779     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
 780     __ jcc(Assembler::equal, L);
 781     __ stop("wrong synchronization lobject");
 782     __ bind(L);
 783   }
 784 #endif // ASSERT
 785   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
 786   __ lock_object(monitor);
 787 }
 788 
 789 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 790 
 791 address InterpreterGenerator::generate_accessor_entry(void) {
 792 
 793   // rbx: methodOop
 794 
 795   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
 796 
 797   Label xreturn_path;
 798 
 799   // do fastpath for resolved accessor methods
 800   if (UseFastAccessorMethods) {
 801 
 802     address entry_point = __ pc();
 803 
 804     Label slow_path;
 805     // If we need a safepoint check, generate full interpreter entry.
 806     ExternalAddress state(SafepointSynchronize::address_of_state());
 807     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 808              SafepointSynchronize::_not_synchronized);
 809 
 810     __ jcc(Assembler::notEqual, slow_path);
 811     // ASM/C++ Interpreter
 812     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 813     // Note: We can only use this code if the getfield has been resolved
 814     //       and if we don't have a null-pointer exception => check for
 815     //       these conditions first and use slow path if necessary.
 816     // rbx,: method
 817     // rcx: receiver
 818     __ movptr(rax, Address(rsp, wordSize));
 819 
 820     // check if local 0 != NULL and read field
 821     __ testptr(rax, rax);
 822     __ jcc(Assembler::zero, slow_path);
 823 
 824     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
 825     // read first instruction word and extract bytecode @ 1 and index @ 2
 826     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 827     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 828     // Shift codes right to get the index on the right.
 829     // The bytecode fetched looks like <index><0xb4><0x2a>
 830     __ shrl(rdx, 2*BitsPerByte);
 831     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 832     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 833 
 834     // rax,: local 0
 835     // rbx,: method
 836     // rcx: receiver - do not destroy since it is needed for slow path!
 837     // rcx: scratch
 838     // rdx: constant pool cache index
 839     // rdi: constant pool cache
 840     // rsi/r13: sender sp
 841 
 842     // check if getfield has been resolved and read constant pool cache entry
 843     // check the validity of the cache entry by testing whether _indices field
 844     // contains Bytecode::_getfield in b1 byte.
 845     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 846     __ movl(rcx,
 847             Address(rdi,
 848                     rdx,
 849                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 850     __ shrl(rcx, 2*BitsPerByte);
 851     __ andl(rcx, 0xFF);
 852     __ cmpl(rcx, Bytecodes::_getfield);
 853     __ jcc(Assembler::notEqual, slow_path);
 854 
 855     // Note: constant pool entry is not valid before bytecode is resolved
 856     __ movptr(rcx,
 857             Address(rdi,
 858                     rdx,
 859                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 860     __ movl(rdx,
 861             Address(rdi,
 862                     rdx,
 863                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 864 
 865     Label notByte, notShort, notChar;
 866     const Address field_address (rax, rcx, Address::times_1);
 867 
 868     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 869     // because they are different sizes.
 870     // Use the type from the constant pool cache
 871     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 872     // Make sure we don't need to mask rdx for tosBits after the above shift
 873     ConstantPoolCacheEntry::verify_tosBits();
 874 #ifdef _LP64
 875     Label notObj;
 876     __ cmpl(rdx, atos);
 877     __ jcc(Assembler::notEqual, notObj);
 878     // atos
 879     __ movptr(rax, field_address);
 880     __ jmp(xreturn_path);
 881 
 882     __ bind(notObj);
 883 #endif // _LP64
 884     __ cmpl(rdx, btos);
 885     __ jcc(Assembler::notEqual, notByte);
 886     __ load_signed_byte(rax, field_address);
 887     __ jmp(xreturn_path);
 888 
 889     __ bind(notByte);
 890     __ cmpl(rdx, stos);
 891     __ jcc(Assembler::notEqual, notShort);
 892     __ load_signed_short(rax, field_address);
 893     __ jmp(xreturn_path);
 894 
 895     __ bind(notShort);
 896     __ cmpl(rdx, ctos);
 897     __ jcc(Assembler::notEqual, notChar);
 898     __ load_unsigned_short(rax, field_address);
 899     __ jmp(xreturn_path);
 900 
 901     __ bind(notChar);
 902 #ifdef ASSERT
 903     Label okay;
 904 #ifndef _LP64
 905     __ cmpl(rdx, atos);
 906     __ jcc(Assembler::equal, okay);
 907 #endif // _LP64
 908     __ cmpl(rdx, itos);
 909     __ jcc(Assembler::equal, okay);
 910     __ stop("what type is this?");
 911     __ bind(okay);
 912 #endif // ASSERT
 913     // All the rest are a 32 bit wordsize
 914     __ movl(rax, field_address);
 915 
 916     __ bind(xreturn_path);
 917 
 918     // _ireturn/_areturn
 919     __ pop(rdi);                               // get return address
 920     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
 921     __ jmp(rdi);
 922 
 923     // generate a vanilla interpreter entry as the slow path
 924     __ bind(slow_path);
 925     // We will enter c++ interpreter looking like it was
 926     // called by the call_stub this will cause it to return
 927     // a tosca result to the invoker which might have been
 928     // the c++ interpreter itself.
 929 
 930     __ jmp(fast_accessor_slow_entry_path);
 931     return entry_point;
 932 
 933   } else {
 934     return NULL;
 935   }
 936 
 937 }
 938 
 939 //
 940 // C++ Interpreter stub for calling a native method.
 941 // This sets up a somewhat different looking stack for calling the native method
 942 // than the typical interpreter frame setup but still has the pointer to
 943 // an interpreter state.
 944 //
 945 
 946 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 947   // determine code generation flags
 948   bool inc_counter  = UseCompiler || CountCompiledCalls;
 949 
 950   // rbx: methodOop
 951   // rcx: receiver (unused)
 952   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
 953   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
 954   //      to save/restore.
 955   address entry_point = __ pc();
 956 
 957   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 958   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
 959   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 960   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 961 
 962   // rsi/r13 == state/locals rdi == prevstate
 963   const Register locals = rdi;
 964 
 965   // get parameter size (always needed)
 966   __ load_unsigned_short(rcx, size_of_parameters);
 967 
 968   // rbx: methodOop
 969   // rcx: size of parameters
 970   __ pop(rax);                                       // get return address
 971   // for natives the size of locals is zero
 972 
 973   // compute beginning of parameters /locals
 974   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
 975 
 976   // initialize fixed part of activation frame
 977 
 978   // Assumes rax = return address
 979 
 980   // allocate and initialize new interpreterState and method expression stack
 981   // IN(locals) ->  locals
 982   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
 983   // destroys rax, rcx, rdx
 984   // OUT (state) -> new interpreterState
 985   // OUT(rsp) -> bottom of methods expression stack
 986 
 987   // save sender_sp
 988   __ mov(rcx, sender_sp_on_entry);
 989   // start with NULL previous state
 990   __ movptr(state, (int32_t)NULL_WORD);
 991   generate_compute_interpreter_state(state, locals, rcx, true);
 992 
 993 #ifdef ASSERT
 994   { Label L;
 995     __ movptr(rax, STATE(_stack_base));
 996 #ifdef _LP64
 997     // duplicate the alignment rsp got after setting stack_base
 998     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
 999     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1000 #endif // _LP64
1001     __ cmpptr(rax, rsp);
1002     __ jcc(Assembler::equal, L);
1003     __ stop("broken stack frame setup in interpreter");
1004     __ bind(L);
1005   }
1006 #endif
1007 
1008   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
1009 
1010   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
1011   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
1012   // Since at this point in the method invocation the exception handler
1013   // would try to exit the monitor of synchronized methods which hasn't
1014   // been entered yet, we set the thread local variable
1015   // _do_not_unlock_if_synchronized to true. The remove_activation will
1016   // check this flag.
1017 
1018   const Address do_not_unlock_if_synchronized(unlock_thread,
1019         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1020   __ movbool(do_not_unlock_if_synchronized, true);
1021 
1022   // make sure method is native & not abstract
1023 #ifdef ASSERT
1024   __ movl(rax, access_flags);
1025   {
1026     Label L;
1027     __ testl(rax, JVM_ACC_NATIVE);
1028     __ jcc(Assembler::notZero, L);
1029     __ stop("tried to execute non-native method as native");
1030     __ bind(L);
1031   }
1032   { Label L;
1033     __ testl(rax, JVM_ACC_ABSTRACT);
1034     __ jcc(Assembler::zero, L);
1035     __ stop("tried to execute abstract method in interpreter");
1036     __ bind(L);
1037   }
1038 #endif
1039 
1040 
1041   // increment invocation count & check for overflow
1042   Label invocation_counter_overflow;
1043   if (inc_counter) {
1044     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1045   }
1046 
1047   Label continue_after_compile;
1048 
1049   __ bind(continue_after_compile);
1050 
1051   bang_stack_shadow_pages(true);
1052 
1053   // reset the _do_not_unlock_if_synchronized flag
1054   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
1055   __ movbool(do_not_unlock_if_synchronized, false);
1056 
1057 
1058   // check for synchronized native methods
1059   //
1060   // Note: This must happen *after* invocation counter check, since
1061   //       when overflow happens, the method should not be locked.
1062   if (synchronized) {
1063     // potentially kills rax, rcx, rdx, rdi
1064     lock_method();
1065   } else {
1066     // no synchronization necessary
1067 #ifdef ASSERT
1068       { Label L;
1069         __ movl(rax, access_flags);
1070         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1071         __ jcc(Assembler::zero, L);
1072         __ stop("method needs synchronization");
1073         __ bind(L);
1074       }
1075 #endif
1076   }
1077 
1078   // start execution
1079 
1080   // jvmti support
1081   __ notify_method_entry();
1082 
1083   // work registers
1084   const Register method = rbx;
1085   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1086   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
1087 
1088   // allocate space for parameters
1089   __ movptr(method, STATE(_method));
1090   __ verify_oop(method);
1091   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
1092   __ shll(t, 2);
1093 #ifdef _LP64
1094   __ subptr(rsp, t);
1095   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1096   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1097 #else
1098   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1099   __ subptr(rsp, t);
1100   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1101 #endif // _LP64
1102 
1103   // get signature handler
1104     Label pending_exception_present;
1105 
1106   { Label L;
1107     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1108     __ testptr(t, t);
1109     __ jcc(Assembler::notZero, L);
1110     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1111     __ movptr(method, STATE(_method));
1112     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1113     __ jcc(Assembler::notEqual, pending_exception_present);
1114     __ verify_oop(method);
1115     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1116     __ bind(L);
1117   }
1118 #ifdef ASSERT
1119   {
1120     Label L;
1121     __ push(t);
1122     __ get_thread(t);                                   // get vm's javathread*
1123     __ cmpptr(t, STATE(_thread));
1124     __ jcc(Assembler::equal, L);
1125     __ int3();
1126     __ bind(L);
1127     __ pop(t);
1128   }
1129 #endif //
1130 
1131   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1132   // call signature handler
1133   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1134 
1135   // The generated handlers do not touch RBX (the method oop).
1136   // However, large signatures cannot be cached and are generated
1137   // each time here.  The slow-path generator will blow RBX
1138   // sometime, so we must reload it after the call.
1139   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1140   __ call(t);
1141   __ movptr(method, STATE(_method));
1142   __ verify_oop(method);
1143 
1144   // result handler is in rax
1145   // set result handler
1146   __ movptr(STATE(_result_handler), rax);
1147 
1148 
1149   // get native function entry point
1150   { Label L;
1151     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1152     __ testptr(rax, rax);
1153     __ jcc(Assembler::notZero, L);
1154     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1155     __ movptr(method, STATE(_method));
1156     __ verify_oop(method);
1157     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1158     __ bind(L);
1159   }
1160 
1161   // pass mirror handle if static call
1162   { Label L;
1163     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1164     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1165     __ testl(t, JVM_ACC_STATIC);
1166     __ jcc(Assembler::zero, L);
1167     // get mirror
1168     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
1169     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1170     __ movptr(t, Address(t, mirror_offset));
1171     // copy mirror into activation object
1172     __ movptr(STATE(_oop_temp), t);
1173     // pass handle to mirror
1174 #ifdef _LP64
1175     __ lea(c_rarg1, STATE(_oop_temp));
1176 #else
1177     __ lea(t, STATE(_oop_temp));
1178     __ movptr(Address(rsp, wordSize), t);
1179 #endif // _LP64
1180     __ bind(L);
1181   }
1182 #ifdef ASSERT
1183   {
1184     Label L;
1185     __ push(t);
1186     __ get_thread(t);                                   // get vm's javathread*
1187     __ cmpptr(t, STATE(_thread));
1188     __ jcc(Assembler::equal, L);
1189     __ int3();
1190     __ bind(L);
1191     __ pop(t);
1192   }
1193 #endif //
1194 
1195   // pass JNIEnv
1196 #ifdef _LP64
1197   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1198 #else
1199   __ movptr(thread, STATE(_thread));          // get thread
1200   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1201 
1202   __ movptr(Address(rsp, 0), t);
1203 #endif // _LP64
1204 
1205 #ifdef ASSERT
1206   {
1207     Label L;
1208     __ push(t);
1209     __ get_thread(t);                                   // get vm's javathread*
1210     __ cmpptr(t, STATE(_thread));
1211     __ jcc(Assembler::equal, L);
1212     __ int3();
1213     __ bind(L);
1214     __ pop(t);
1215   }
1216 #endif //
1217 
1218 #ifdef ASSERT
1219   { Label L;
1220     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1221     __ cmpl(t, _thread_in_Java);
1222     __ jcc(Assembler::equal, L);
1223     __ stop("Wrong thread state in native stub");
1224     __ bind(L);
1225   }
1226 #endif
1227 
1228   // Change state to native (we save the return address in the thread, since it might not
1229   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1230   // points into the right code segment. It does not have to be the correct return pc.
1231 
1232   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1233 
1234   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1235 
1236   __ call(rax);
1237 
1238   // result potentially in rdx:rax or ST0
1239   __ movptr(method, STATE(_method));
1240   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1241 
1242   // The potential result is in ST(0) & rdx:rax
1243   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1244   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1245   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1246   // be destroyed.
1247   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1248   // via _last_native_pc and not via _last_jave_sp
1249 
1250     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1251     { Label Lpush, Lskip;
1252       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1253       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1254       __ cmpptr(STATE(_result_handler), float_handler.addr());
1255       __ jcc(Assembler::equal, Lpush);
1256       __ cmpptr(STATE(_result_handler), double_handler.addr());
1257       __ jcc(Assembler::notEqual, Lskip);
1258       __ bind(Lpush);
1259       __ subptr(rsp, 2*wordSize);
1260       if ( UseSSE < 2 ) {
1261         __ fstp_d(Address(rsp, 0));
1262       } else {
1263         __ movdbl(Address(rsp, 0), xmm0);
1264       }
1265       __ bind(Lskip);
1266     }
1267 
1268   // save rax:rdx for potential use by result handler.
1269   __ push(rax);
1270 #ifndef _LP64
1271   __ push(rdx);
1272 #endif // _LP64
1273 
1274   // Either restore the MXCSR register after returning from the JNI Call
1275   // or verify that it wasn't changed.
1276   if (VM_Version::supports_sse()) {
1277     if (RestoreMXCSROnJNICalls) {
1278       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1279     }
1280     else if (CheckJNICalls ) {
1281       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1282     }
1283   }
1284 
1285 #ifndef _LP64
1286   // Either restore the x87 floating pointer control word after returning
1287   // from the JNI call or verify that it wasn't changed.
1288   if (CheckJNICalls) {
1289     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1290   }
1291 #endif // _LP64
1292 
1293 
1294   // change thread state
1295   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1296   if(os::is_MP()) {
1297     // Write serialization page so VM thread can do a pseudo remote membar.
1298     // We use the current thread pointer to calculate a thread specific
1299     // offset to write to within the page. This minimizes bus traffic
1300     // due to cache line collision.
1301     __ serialize_memory(thread, rcx);
1302   }
1303 
1304   // check for safepoint operation in progress and/or pending suspend requests
1305   { Label Continue;
1306 
1307     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1308              SafepointSynchronize::_not_synchronized);
1309 
1310     // threads running native code and they are expected to self-suspend
1311     // when leaving the _thread_in_native state. We need to check for
1312     // pending suspend requests here.
1313     Label L;
1314     __ jcc(Assembler::notEqual, L);
1315     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1316     __ jcc(Assembler::equal, Continue);
1317     __ bind(L);
1318 
1319     // Don't use call_VM as it will see a possible pending exception and forward it
1320     // and never return here preventing us from clearing _last_native_pc down below.
1321     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1322     // preserved and correspond to the bcp/locals pointers.
1323     //
1324 
1325     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1326                           thread);
1327     __ increment(rsp, wordSize);
1328 
1329     __ movptr(method, STATE(_method));
1330     __ verify_oop(method);
1331     __ movptr(thread, STATE(_thread));                       // get thread
1332 
1333     __ bind(Continue);
1334   }
1335 
1336   // change thread state
1337   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1338 
1339   __ reset_last_Java_frame(thread, true, true);
1340 
1341   // reset handle block
1342   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1343   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1344 
1345   // If result was an oop then unbox and save it in the frame
1346   { Label L;
1347     Label no_oop, store_result;
1348       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1349     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1350     __ jcc(Assembler::notEqual, no_oop);
1351 #ifndef _LP64
1352     __ pop(rdx);
1353 #endif // _LP64
1354     __ pop(rax);
1355     __ testptr(rax, rax);
1356     __ jcc(Assembler::zero, store_result);
1357     // unbox
1358     __ movptr(rax, Address(rax, 0));
1359     __ bind(store_result);
1360     __ movptr(STATE(_oop_temp), rax);
1361     // keep stack depth as expected by pushing oop which will eventually be discarded
1362     __ push(rax);
1363 #ifndef _LP64
1364     __ push(rdx);
1365 #endif // _LP64
1366     __ bind(no_oop);
1367   }
1368 
1369   {
1370      Label no_reguard;
1371      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1372      __ jcc(Assembler::notEqual, no_reguard);
1373 
1374      __ pusha();
1375      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1376      __ popa();
1377 
1378      __ bind(no_reguard);
1379    }
1380 
1381 
1382   // QQQ Seems like for native methods we simply return and the caller will see the pending
1383   // exception and do the right thing. Certainly the interpreter will, don't know about
1384   // compiled methods.
1385   // Seems that the answer to above is no this is wrong. The old code would see the exception
1386   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1387   // This seems wrong need to investigate the spec.
1388 
1389   // handle exceptions (exception handling will handle unlocking!)
1390   { Label L;
1391     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1392     __ jcc(Assembler::zero, L);
1393     __ bind(pending_exception_present);
1394 
1395     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1396     // return and let caller deal with exception. This skips the unlocking here which
1397     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1398     // Note: must preverve method in rbx
1399     //
1400 
1401     // remove activation
1402 
1403     __ movptr(t, STATE(_sender_sp));
1404     __ leave();                                  // remove frame anchor
1405     __ pop(rdi);                                 // get return address
1406     __ movptr(state, STATE(_prev_link));         // get previous state for return
1407     __ mov(rsp, t);                              // set sp to sender sp
1408     __ push(rdi);                                // push throwing pc
1409     // The skips unlocking!! This seems to be what asm interpreter does but seems
1410     // very wrong. Not clear if this violates the spec.
1411     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1412     __ bind(L);
1413   }
1414 
1415   // do unlocking if necessary
1416   { Label L;
1417     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1418     __ testl(t, JVM_ACC_SYNCHRONIZED);
1419     __ jcc(Assembler::zero, L);
1420     // the code below should be shared with interpreter macro assembler implementation
1421     { Label unlock;
1422     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1423       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1424       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1425       __ movptr(monitor, STATE(_monitor_base));
1426       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1427 
1428       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1429       __ testptr(t, t);
1430       __ jcc(Assembler::notZero, unlock);
1431 
1432       // Entry already unlocked, need to throw exception
1433       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1434       __ should_not_reach_here();
1435 
1436       __ bind(unlock);
1437       __ unlock_object(monitor);
1438       // unlock can blow rbx so restore it for path that needs it below
1439       __ movptr(method, STATE(_method));
1440     }
1441     __ bind(L);
1442   }
1443 
1444   // jvmti support
1445   // Note: This must happen _after_ handling/throwing any exceptions since
1446   //       the exception handler code notifies the runtime of method exits
1447   //       too. If this happens before, method entry/exit notifications are
1448   //       not properly paired (was bug - gri 11/22/99).
1449   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1450 
1451   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1452 #ifndef _LP64
1453   __ pop(rdx);
1454 #endif // _LP64
1455   __ pop(rax);
1456   __ movptr(t, STATE(_result_handler));       // get result handler
1457   __ call(t);                                 // call result handler to convert to tosca form
1458 
1459   // remove activation
1460 
1461   __ movptr(t, STATE(_sender_sp));
1462 
1463   __ leave();                                  // remove frame anchor
1464   __ pop(rdi);                                 // get return address
1465   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1466   __ mov(rsp, t);                              // set sp to sender sp
1467   __ jmp(rdi);
1468 
1469   // invocation counter overflow
1470   if (inc_counter) {
1471     // Handle overflow of counter and compile method
1472     __ bind(invocation_counter_overflow);
1473     generate_counter_overflow(&continue_after_compile);
1474   }
1475 
1476   return entry_point;
1477 }
1478 
1479 // Generate entries that will put a result type index into rcx
1480 void CppInterpreterGenerator::generate_deopt_handling() {
1481 
1482   Label return_from_deopt_common;
1483 
1484   // Generate entries that will put a result type index into rcx
1485   // deopt needs to jump to here to enter the interpreter (return a result)
1486   deopt_frame_manager_return_atos  = __ pc();
1487 
1488   // rax is live here
1489   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1490   __ jmp(return_from_deopt_common);
1491 
1492 
1493   // deopt needs to jump to here to enter the interpreter (return a result)
1494   deopt_frame_manager_return_btos  = __ pc();
1495 
1496   // rax is live here
1497   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1498   __ jmp(return_from_deopt_common);
1499 
1500   // deopt needs to jump to here to enter the interpreter (return a result)
1501   deopt_frame_manager_return_itos  = __ pc();
1502 
1503   // rax is live here
1504   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1505   __ jmp(return_from_deopt_common);
1506 
1507   // deopt needs to jump to here to enter the interpreter (return a result)
1508 
1509   deopt_frame_manager_return_ltos  = __ pc();
1510   // rax,rdx are live here
1511   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1512   __ jmp(return_from_deopt_common);
1513 
1514   // deopt needs to jump to here to enter the interpreter (return a result)
1515 
1516   deopt_frame_manager_return_ftos  = __ pc();
1517   // st(0) is live here
1518   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1519   __ jmp(return_from_deopt_common);
1520 
1521   // deopt needs to jump to here to enter the interpreter (return a result)
1522   deopt_frame_manager_return_dtos  = __ pc();
1523 
1524   // st(0) is live here
1525   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1526   __ jmp(return_from_deopt_common);
1527 
1528   // deopt needs to jump to here to enter the interpreter (return a result)
1529   deopt_frame_manager_return_vtos  = __ pc();
1530 
1531   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1532 
1533   // Deopt return common
1534   // an index is present in rcx that lets us move any possible result being
1535   // return to the interpreter's stack
1536   //
1537   // Because we have a full sized interpreter frame on the youngest
1538   // activation the stack is pushed too deep to share the tosca to
1539   // stack converters directly. We shrink the stack to the desired
1540   // amount and then push result and then re-extend the stack.
1541   // We could have the code in size_activation layout a short
1542   // frame for the top activation but that would look different
1543   // than say sparc (which needs a full size activation because
1544   // the windows are in the way. Really it could be short? QQQ
1545   //
1546   __ bind(return_from_deopt_common);
1547 
1548   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1549 
1550   // setup rsp so we can push the "result" as needed.
1551   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1552   __ addptr(rsp, wordSize);                                        // undo prepush
1553 
1554   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1555   // Address index(noreg, rcx, Address::times_ptr);
1556   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1557   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1558   __ call(rcx);                                                   // call result converter
1559 
1560   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1561   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1562   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1563                                                                    // result if any on stack already )
1564   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1565 }
1566 
1567 // Generate the code to handle a more_monitors message from the c++ interpreter
1568 void CppInterpreterGenerator::generate_more_monitors() {
1569 
1570 
1571   Label entry, loop;
1572   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1573   // 1. compute new pointers                     // rsp: old expression stack top
1574   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1575   __ subptr(rsp, entry_size);                    // move expression stack top limit
1576   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1577   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1578   __ subptr(rdx, entry_size);                    // move expression stack bottom
1579   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1580   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1581   __ jmp(entry);
1582   // 2. move expression stack contents
1583   __ bind(loop);
1584   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1585   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1586   __ addptr(rcx, wordSize);                      // advance to next word
1587   __ bind(entry);
1588   __ cmpptr(rcx, rdx);                           // check if bottom reached
1589   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1590   // now zero the slot so we can find it.
1591   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1592   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1593 }
1594 
1595 
1596 // Initial entry to C++ interpreter from the call_stub.
1597 // This entry point is called the frame manager since it handles the generation
1598 // of interpreter activation frames via requests directly from the vm (via call_stub)
1599 // and via requests from the interpreter. The requests from the call_stub happen
1600 // directly thru the entry point. Requests from the interpreter happen via returning
1601 // from the interpreter and examining the message the interpreter has returned to
1602 // the frame manager. The frame manager can take the following requests:
1603 
1604 // NO_REQUEST - error, should never happen.
1605 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1606 //                 allocate a new monitor.
1607 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1608 //               happens during entry during the entry via the call stub.
1609 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1610 //
1611 // Arguments:
1612 //
1613 // rbx: methodOop
1614 // rcx: receiver - unused (retrieved from stack as needed)
1615 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1616 //
1617 //
1618 // Stack layout at entry
1619 //
1620 // [ return address     ] <--- rsp
1621 // [ parameter n        ]
1622 //   ...
1623 // [ parameter 1        ]
1624 // [ expression stack   ]
1625 //
1626 //
1627 // We are free to blow any registers we like because the call_stub which brought us here
1628 // initially has preserved the callee save registers already.
1629 //
1630 //
1631 
1632 static address interpreter_frame_manager = NULL;
1633 
1634 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1635 
1636   // rbx: methodOop
1637   // rsi/r13: sender sp
1638 
1639   // Because we redispatch "recursive" interpreter entries thru this same entry point
1640   // the "input" register usage is a little strange and not what you expect coming
1641   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1642   // state are NULL but on "recursive" dispatches they are what you'd expect.
1643   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1644 
1645 
1646   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1647   // the code is pretty much ready. Would need to change the test below and for good measure
1648   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1649   // routines. Not clear this is worth it yet.
1650 
1651   if (interpreter_frame_manager) return interpreter_frame_manager;
1652 
1653   address entry_point = __ pc();
1654 
1655   // Fast accessor methods share this entry point.
1656   // This works because frame manager is in the same codelet
1657   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1658 
1659   Label dispatch_entry_2;
1660   __ movptr(rcx, sender_sp_on_entry);
1661   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1662 
1663   __ jmp(dispatch_entry_2);
1664 
1665   const Register locals  = rdi;
1666 
1667   Label re_dispatch;
1668 
1669   __ bind(re_dispatch);
1670 
1671   // save sender sp (doesn't include return address
1672   __ lea(rcx, Address(rsp, wordSize));
1673 
1674   __ bind(dispatch_entry_2);
1675 
1676   // save sender sp
1677   __ push(rcx);
1678 
1679   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1680   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
1681   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
1682 
1683   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1684   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1685   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1686 
1687   // get parameter size (always needed)
1688   __ load_unsigned_short(rcx, size_of_parameters);
1689 
1690   // rbx: methodOop
1691   // rcx: size of parameters
1692   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
1693 
1694   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1695 
1696   // see if we've got enough room on the stack for locals plus overhead.
1697   generate_stack_overflow_check();                                 // C++
1698 
1699   // c++ interpreter does not use stack banging or any implicit exceptions
1700   // leave for now to verify that check is proper.
1701   bang_stack_shadow_pages(false);
1702 
1703 
1704 
1705   // compute beginning of parameters (rdi)
1706   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1707 
1708   // save sender's sp
1709   // __ movl(rcx, rsp);
1710 
1711   // get sender's sp
1712   __ pop(rcx);
1713 
1714   // get return address
1715   __ pop(rax);
1716 
1717   // rdx - # of additional locals
1718   // allocate space for locals
1719   // explicitly initialize locals
1720   {
1721     Label exit, loop;
1722     __ testl(rdx, rdx);                               // (32bit ok)
1723     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1724     __ bind(loop);
1725     __ push((int32_t)NULL_WORD);                      // initialize local variables
1726     __ decrement(rdx);                                // until everything initialized
1727     __ jcc(Assembler::greater, loop);
1728     __ bind(exit);
1729   }
1730 
1731 
1732   // Assumes rax = return address
1733 
1734   // allocate and initialize new interpreterState and method expression stack
1735   // IN(locals) ->  locals
1736   // IN(state) -> any current interpreter activation
1737   // destroys rax, rcx, rdx, rdi
1738   // OUT (state) -> new interpreterState
1739   // OUT(rsp) -> bottom of methods expression stack
1740 
1741   generate_compute_interpreter_state(state, locals, rcx, false);
1742 
1743   // Call interpreter
1744 
1745   Label call_interpreter;
1746   __ bind(call_interpreter);
1747 
1748   // c++ interpreter does not use stack banging or any implicit exceptions
1749   // leave for now to verify that check is proper.
1750   bang_stack_shadow_pages(false);
1751 
1752 
1753   // Call interpreter enter here if message is
1754   // set and we know stack size is valid
1755 
1756   Label call_interpreter_2;
1757 
1758   __ bind(call_interpreter_2);
1759 
1760   {
1761     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1762 
1763 #ifdef _LP64
1764     __ mov(c_rarg0, state);
1765 #else
1766     __ push(state);                                                 // push arg to interpreter
1767     __ movptr(thread, STATE(_thread));
1768 #endif // _LP64
1769 
1770     // We can setup the frame anchor with everything we want at this point
1771     // as we are thread_in_Java and no safepoints can occur until we go to
1772     // vm mode. We do have to clear flags on return from vm but that is it
1773     //
1774     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1775     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1776 
1777     // Call the interpreter
1778 
1779     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1780     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1781 
1782     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1783     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1784     //
1785     // state is preserved since it is callee saved
1786     //
1787 
1788     // reset_last_Java_frame
1789 
1790     NOT_LP64(__ movl(thread, STATE(_thread));)
1791     __ reset_last_Java_frame(thread, true, true);
1792   }
1793 
1794   // examine msg from interpreter to determine next action
1795 
1796   __ movl(rdx, STATE(_msg));                                       // Get new message
1797 
1798   Label call_method;
1799   Label return_from_interpreted_method;
1800   Label throw_exception;
1801   Label bad_msg;
1802   Label do_OSR;
1803 
1804   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1805   __ jcc(Assembler::equal, call_method);
1806   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1807   __ jcc(Assembler::equal, return_from_interpreted_method);
1808   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1809   __ jcc(Assembler::equal, do_OSR);
1810   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1811   __ jcc(Assembler::equal, throw_exception);
1812   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1813   __ jcc(Assembler::notEqual, bad_msg);
1814 
1815   // Allocate more monitor space, shuffle expression stack....
1816 
1817   generate_more_monitors();
1818 
1819   __ jmp(call_interpreter);
1820 
1821   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1822   unctrap_frame_manager_entry  = __ pc();
1823   //
1824   // Load the registers we need.
1825   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1826   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1827   __ jmp(call_interpreter_2);
1828 
1829 
1830 
1831   //=============================================================================
1832   // Returning from a compiled method into a deopted method. The bytecode at the
1833   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1834   // for the template based interpreter). Any stack space that was used by the
1835   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1836   // so all that we have to do is place any pending result on the expression stack
1837   // and resume execution on the next bytecode.
1838 
1839 
1840   generate_deopt_handling();
1841   __ jmp(call_interpreter);
1842 
1843 
1844   // Current frame has caught an exception we need to dispatch to the
1845   // handler. We can get here because a native interpreter frame caught
1846   // an exception in which case there is no handler and we must rethrow
1847   // If it is a vanilla interpreted frame the we simply drop into the
1848   // interpreter and let it do the lookup.
1849 
1850   Interpreter::_rethrow_exception_entry = __ pc();
1851   // rax: exception
1852   // rdx: return address/pc that threw exception
1853 
1854   Label return_with_exception;
1855   Label unwind_and_forward;
1856 
1857   // restore state pointer.
1858   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1859 
1860   __ movptr(rbx, STATE(_method));                       // get method
1861 #ifdef _LP64
1862   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1863 #else
1864   __ movl(rcx, STATE(_thread));                       // get thread
1865 
1866   // Store exception with interpreter will expect it
1867   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1868 #endif // _LP64
1869 
1870   // is current frame vanilla or native?
1871 
1872   __ movl(rdx, access_flags);
1873   __ testl(rdx, JVM_ACC_NATIVE);
1874   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1875 
1876   // We drop thru to unwind a native interpreted frame with a pending exception
1877   // We jump here for the initial interpreter frame with exception pending
1878   // We unwind the current acivation and forward it to our caller.
1879 
1880   __ bind(unwind_and_forward);
1881 
1882   // unwind rbp, return stack to unextended value and re-push return address
1883 
1884   __ movptr(rcx, STATE(_sender_sp));
1885   __ leave();
1886   __ pop(rdx);
1887   __ mov(rsp, rcx);
1888   __ push(rdx);
1889   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1890 
1891   // Return point from a call which returns a result in the native abi
1892   // (c1/c2/jni-native). This result must be processed onto the java
1893   // expression stack.
1894   //
1895   // A pending exception may be present in which case there is no result present
1896 
1897   Label resume_interpreter;
1898   Label do_float;
1899   Label do_double;
1900   Label done_conv;
1901 
1902   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1903   if (UseSSE < 2) {
1904     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1905     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1906     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1907     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1908     __ jcc(Assembler::equal, do_float);
1909     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1910     __ jcc(Assembler::equal, do_double);
1911 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1912     __ empty_FPU_stack();
1913 #endif // COMPILER2
1914     __ jmp(done_conv);
1915 
1916     __ bind(do_float);
1917 #ifdef COMPILER2
1918     for (int i = 1; i < 8; i++) {
1919       __ ffree(i);
1920     }
1921 #endif // COMPILER2
1922     __ jmp(done_conv);
1923     __ bind(do_double);
1924 #ifdef COMPILER2
1925     for (int i = 1; i < 8; i++) {
1926       __ ffree(i);
1927     }
1928 #endif // COMPILER2
1929     __ jmp(done_conv);
1930   } else {
1931     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1932     __ jmp(done_conv);
1933   }
1934 
1935   // Return point to interpreter from compiled/native method
1936   InternalAddress return_from_native_method(__ pc());
1937 
1938   __ bind(done_conv);
1939 
1940 
1941   // Result if any is in tosca. The java expression stack is in the state that the
1942   // calling convention left it (i.e. params may or may not be present)
1943   // Copy the result from tosca and place it on java expression stack.
1944 
1945   // Restore rsi/r13 as compiled code may not preserve it
1946 
1947   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1948 
1949   // restore stack to what we had when we left (in case i2c extended it)
1950 
1951   __ movptr(rsp, STATE(_stack));
1952   __ lea(rsp, Address(rsp, wordSize));
1953 
1954   // If there is a pending exception then we don't really have a result to process
1955 
1956 #ifdef _LP64
1957   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1958 #else
1959   __ movptr(rcx, STATE(_thread));                       // get thread
1960   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1961 #endif // _LP64
1962   __ jcc(Assembler::notZero, return_with_exception);
1963 
1964   // get method just executed
1965   __ movptr(rbx, STATE(_result._to_call._callee));
1966 
1967   // callee left args on top of expression stack, remove them
1968   __ load_unsigned_short(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
1969   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1970 
1971   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1972   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1973   // Address index(noreg, rax, Address::times_ptr);
1974   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1975   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1976   __ call(rcx);                                               // call result converter
1977   __ jmp(resume_interpreter);
1978 
1979   // An exception is being caught on return to a vanilla interpreter frame.
1980   // Empty the stack and resume interpreter
1981 
1982   __ bind(return_with_exception);
1983 
1984   // Exception present, empty stack
1985   __ movptr(rsp, STATE(_stack_base));
1986   __ jmp(resume_interpreter);
1987 
1988   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1989   // interpreter call, or native) and unwind this interpreter activation.
1990   // All monitors should be unlocked.
1991 
1992   __ bind(return_from_interpreted_method);
1993 
1994   Label return_to_initial_caller;
1995 
1996   __ movptr(rbx, STATE(_method));                                   // get method just executed
1997   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
1998   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
1999   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
2000 
2001   // Copy result to callers java stack
2002   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
2003   // Address index(noreg, rax, Address::times_ptr);
2004 
2005   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
2006   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
2007   __ call(rax);                                                     // call result converter
2008 
2009   Label unwind_recursive_activation;
2010   __ bind(unwind_recursive_activation);
2011 
2012   // returning to interpreter method from "recursive" interpreter call
2013   // result converter left rax pointing to top of the java stack for method we are returning
2014   // to. Now all we must do is unwind the state from the completed call
2015 
2016   __ movptr(state, STATE(_prev_link));                              // unwind state
2017   __ leave();                                                       // pop the frame
2018   __ mov(rsp, rax);                                                 // unwind stack to remove args
2019 
2020   // Resume the interpreter. The current frame contains the current interpreter
2021   // state object.
2022   //
2023 
2024   __ bind(resume_interpreter);
2025 
2026   // state == interpreterState object for method we are resuming
2027 
2028   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2029   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
2030   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
2031                                                                    // result if any on stack already )
2032   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
2033   __ jmp(call_interpreter_2);                                      // No need to bang
2034 
2035   // interpreter returning to native code (call_stub/c1/c2)
2036   // convert result and unwind initial activation
2037   // rax - result index
2038 
2039   __ bind(return_to_initial_caller);
2040   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2041   // Address index(noreg, rax, Address::times_ptr);
2042 
2043   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2044   __ call(rax);                                                    // call result converter
2045 
2046   Label unwind_initial_activation;
2047   __ bind(unwind_initial_activation);
2048 
2049   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2050 
2051   /* Current stack picture
2052 
2053         [ incoming parameters ]
2054         [ extra locals ]
2055         [ return address to CALL_STUB/C1/C2]
2056   fp -> [ CALL_STUB/C1/C2 fp ]
2057         BytecodeInterpreter object
2058         expression stack
2059   sp ->
2060 
2061   */
2062 
2063   // return restoring the stack to the original sender_sp value
2064 
2065   __ movptr(rcx, STATE(_sender_sp));
2066   __ leave();
2067   __ pop(rdi);                                                        // get return address
2068   // set stack to sender's sp
2069   __ mov(rsp, rcx);
2070   __ jmp(rdi);                                                        // return to call_stub
2071 
2072   // OSR request, adjust return address to make current frame into adapter frame
2073   // and enter OSR nmethod
2074 
2075   __ bind(do_OSR);
2076 
2077   Label remove_initial_frame;
2078 
2079   // We are going to pop this frame. Is there another interpreter frame underneath
2080   // it or is it callstub/compiled?
2081 
2082   // Move buffer to the expected parameter location
2083   __ movptr(rcx, STATE(_result._osr._osr_buf));
2084 
2085   __ movptr(rax, STATE(_result._osr._osr_entry));
2086 
2087   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
2088   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
2089 
2090   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
2091   __ leave();                                                  // pop the frame
2092   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
2093 
2094 
2095   // We know we are calling compiled so push specialized return
2096   // method uses specialized entry, push a return so we look like call stub setup
2097   // this path will handle fact that result is returned in registers and not
2098   // on the java stack.
2099 
2100   __ pushptr(return_from_native_method.addr());
2101 
2102   __ jmp(rax);
2103 
2104   __ bind(remove_initial_frame);
2105 
2106   __ movptr(rdx, STATE(_sender_sp));
2107   __ leave();
2108   // get real return
2109   __ pop(rsi);
2110   // set stack to sender's sp
2111   __ mov(rsp, rdx);
2112   // repush real return
2113   __ push(rsi);
2114   // Enter OSR nmethod
2115   __ jmp(rax);
2116 
2117 
2118 
2119 
2120   // Call a new method. All we do is (temporarily) trim the expression stack
2121   // push a return address to bring us back to here and leap to the new entry.
2122 
2123   __ bind(call_method);
2124 
2125   // stack points to next free location and not top element on expression stack
2126   // method expects sp to be pointing to topmost element
2127 
2128   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
2129   __ lea(rsp, Address(rsp, wordSize));
2130 
2131   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
2132 
2133   // don't need a return address if reinvoking interpreter
2134 
2135   // Make it look like call_stub calling conventions
2136 
2137   // Get (potential) receiver
2138   __ load_unsigned_short(rcx, size_of_parameters);                   // get size of parameters in words
2139 
2140   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2141   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2142 
2143   InternalAddress entry(entry_point);
2144   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2145   __ jcc(Assembler::equal, re_dispatch);                             // yes
2146 
2147   __ pop(rax);                                                       // pop dummy address
2148 
2149 
2150   // get specialized entry
2151   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2152   // set sender SP
2153   __ mov(sender_sp_on_entry, rsp);
2154 
2155   // method uses specialized entry, push a return so we look like call stub setup
2156   // this path will handle fact that result is returned in registers and not
2157   // on the java stack.
2158 
2159   __ pushptr(return_from_native_method.addr());
2160 
2161   __ jmp(rax);
2162 
2163   __ bind(bad_msg);
2164   __ stop("Bad message from interpreter");
2165 
2166   // Interpreted method "returned" with an exception pass it on...
2167   // Pass result, unwind activation and continue/return to interpreter/call_stub
2168   // We handle result (if any) differently based on return to interpreter or call_stub
2169 
2170   Label unwind_initial_with_pending_exception;
2171 
2172   __ bind(throw_exception);
2173   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2174   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2175   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2176   __ addptr(rax, wordSize);                                         // account for prepush before we return
2177   __ jmp(unwind_recursive_activation);
2178 
2179   __ bind(unwind_initial_with_pending_exception);
2180 
2181   // We will unwind the current (initial) interpreter frame and forward
2182   // the exception to the caller. We must put the exception in the
2183   // expected register and clear pending exception and then forward.
2184 
2185   __ jmp(unwind_and_forward);
2186 
2187   interpreter_frame_manager = entry_point;
2188   return entry_point;
2189 }
2190 
2191 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2192   // determine code generation flags
2193   bool synchronized = false;
2194   address entry_point = NULL;
2195 
2196   switch (kind) {
2197     case Interpreter::zerolocals             :                                                                             break;
2198     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
2199     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
2200     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
2201     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
2202     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
2203     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
2204     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
2205 
2206     case Interpreter::java_lang_math_sin     : // fall thru
2207     case Interpreter::java_lang_math_cos     : // fall thru
2208     case Interpreter::java_lang_math_tan     : // fall thru
2209     case Interpreter::java_lang_math_abs     : // fall thru
2210     case Interpreter::java_lang_math_log     : // fall thru
2211     case Interpreter::java_lang_math_log10   : // fall thru
2212     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
2213     default                                  : ShouldNotReachHere();                                                       break;
2214   }
2215 
2216   if (entry_point) return entry_point;
2217 
2218   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2219 
2220 }
2221 
2222 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2223  : CppInterpreterGenerator(code) {
2224    generate_all(); // down here so it can be "virtual"
2225 }
2226 
2227 // Deoptimization helpers for C++ interpreter
2228 
2229 // How much stack a method activation needs in words.
2230 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2231 
2232   const int stub_code = 4;  // see generate_call_stub
2233   // Save space for one monitor to get into the interpreted method in case
2234   // the method is synchronized
2235   int monitor_size    = method->is_synchronized() ?
2236                                 1*frame::interpreter_frame_monitor_size() : 0;
2237 
2238   // total static overhead size. Account for interpreter state object, return
2239   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2240 
2241   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2242     ( frame::sender_sp_offset - frame::link_offset) + 2;
2243 
2244   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2245   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
2246                            Interpreter::stackElementWords();
2247   return overhead_size + method_stack + stub_code;
2248 }
2249 
2250 // returns the activation size.
2251 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2252   return (extra_locals_size +                  // the addition space for locals
2253           2*BytesPerWord +                     // return address and saved rbp
2254           2*BytesPerWord +                     // "static long no_params() method" issue
2255           sizeof(BytecodeInterpreter) +               // interpreterState
2256           monitor_size);                       // monitors
2257 }
2258 
2259 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2260                                            frame* caller,
2261                                            frame* current,
2262                                            methodOop method,
2263                                            intptr_t* locals,
2264                                            intptr_t* stack,
2265                                            intptr_t* stack_base,
2266                                            intptr_t* monitor_base,
2267                                            intptr_t* frame_bottom,
2268                                            bool is_top_frame
2269                                            )
2270 {
2271   // What about any vtable?
2272   //
2273   to_fill->_thread = JavaThread::current();
2274   // This gets filled in later but make it something recognizable for now
2275   to_fill->_bcp = method->code_base();
2276   to_fill->_locals = locals;
2277   to_fill->_constants = method->constants()->cache();
2278   to_fill->_method = method;
2279   to_fill->_mdx = NULL;
2280   to_fill->_stack = stack;
2281   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2282     to_fill->_msg = deopt_resume2;
2283   } else {
2284     to_fill->_msg = method_resume;
2285   }
2286   to_fill->_result._to_call._bcp_advance = 0;
2287   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2288   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2289   to_fill->_prev_link = NULL;
2290 
2291   to_fill->_sender_sp = caller->unextended_sp();
2292 
2293   if (caller->is_interpreted_frame()) {
2294     interpreterState prev  = caller->get_interpreterState();
2295     to_fill->_prev_link = prev;
2296     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2297     // Make the prev callee look proper
2298     prev->_result._to_call._callee = method;
2299     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2300       prev->_result._to_call._bcp_advance = 5;
2301     } else {
2302       prev->_result._to_call._bcp_advance = 3;
2303     }
2304   }
2305   to_fill->_oop_temp = NULL;
2306   to_fill->_stack_base = stack_base;
2307   // Need +1 here because stack_base points to the word just above the first expr stack entry
2308   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2309   // See generate_compute_interpreter_state.
2310   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2311   to_fill->_stack_limit = stack_base - (method->max_stack() + extra_stack + 1);
2312   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2313 
2314   to_fill->_self_link = to_fill;
2315   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2316          "Stack top out of range");
2317 }
2318 
2319 int AbstractInterpreter::layout_activation(methodOop method,
2320                                                 int tempcount,  //
2321                                                 int popframe_extra_args,
2322                                                 int moncount,
2323                                                 int callee_param_count,
2324                                                 int callee_locals,
2325                                                 frame* caller,
2326                                                 frame* interpreter_frame,
2327                                                 bool is_top_frame) {
2328 
2329   assert(popframe_extra_args == 0, "FIX ME");
2330   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2331   // does as far as allocating an interpreter frame.
2332   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2333   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2334   // as determined by a previous call to this method.
2335   // It is also guaranteed to be walkable even though it is in a skeletal state
2336   // NOTE: return size is in words not bytes
2337   // NOTE: tempcount is the current size of the java expression stack. For top most
2338   //       frames we will allocate a full sized expression stack and not the curback
2339   //       version that non-top frames have.
2340 
2341   // Calculate the amount our frame will be adjust by the callee. For top frame
2342   // this is zero.
2343 
2344   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2345   // calculates the extra locals based on itself. Not what the callee does
2346   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2347   // as getting sender_sp correct.
2348 
2349   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2350   int monitor_size = sizeof(BasicObjectLock) * moncount;
2351 
2352   // First calculate the frame size without any java expression stack
2353   int short_frame_size = size_activation_helper(extra_locals_size,
2354                                                 monitor_size);
2355 
2356   // Now with full size expression stack
2357   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2358   int full_frame_size = short_frame_size + (method->max_stack() + extra_stack) * BytesPerWord;
2359 
2360   // and now with only live portion of the expression stack
2361   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2362 
2363   // the size the activation is right now. Only top frame is full size
2364   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2365 
2366   if (interpreter_frame != NULL) {
2367 #ifdef ASSERT
2368     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2369 #endif
2370 
2371     // MUCHO HACK
2372 
2373     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2374 
2375     /* Now fillin the interpreterState object */
2376 
2377     // The state object is the first thing on the frame and easily located
2378 
2379     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2380 
2381 
2382     // Find the locals pointer. This is rather simple on x86 because there is no
2383     // confusing rounding at the callee to account for. We can trivially locate
2384     // our locals based on the current fp().
2385     // Note: the + 2 is for handling the "static long no_params() method" issue.
2386     // (too bad I don't really remember that issue well...)
2387 
2388     intptr_t* locals;
2389     // If the caller is interpreted we need to make sure that locals points to the first
2390     // argument that the caller passed and not in an area where the stack might have been extended.
2391     // because the stack to stack to converter needs a proper locals value in order to remove the
2392     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2393     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2394     // adjust the stack?? HMMM QQQ
2395     //
2396     if (caller->is_interpreted_frame()) {
2397       // locals must agree with the caller because it will be used to set the
2398       // caller's tos when we return.
2399       interpreterState prev  = caller->get_interpreterState();
2400       // stack() is prepushed.
2401       locals = prev->stack() + method->size_of_parameters();
2402       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2403       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2404         // os::breakpoint();
2405       }
2406     } else {
2407       // this is where a c2i would have placed locals (except for the +2)
2408       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2409     }
2410 
2411     intptr_t* monitor_base = (intptr_t*) cur_state;
2412     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2413     /* +1 because stack is always prepushed */
2414     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2415 
2416 
2417     BytecodeInterpreter::layout_interpreterState(cur_state,
2418                                           caller,
2419                                           interpreter_frame,
2420                                           method,
2421                                           locals,
2422                                           stack,
2423                                           stack_base,
2424                                           monitor_base,
2425                                           frame_bottom,
2426                                           is_top_frame);
2427 
2428     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2429   }
2430   return frame_size/BytesPerWord;
2431 }
2432 
2433 #endif // CC_INTERP (all)