1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciCPCache.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ oop2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ oop2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   jobject2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 710   Instruction* src     = x->argument_at(0);
 711   Instruction* src_pos = x->argument_at(1);
 712   Instruction* dst     = x->argument_at(2);
 713   Instruction* dst_pos = x->argument_at(3);
 714   Instruction* length  = x->argument_at(4);
 715 
 716   // first try to identify the likely type of the arrays involved
 717   ciArrayKlass* expected_type = NULL;
 718   bool is_exact = false;
 719   {
 720     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 721     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 722     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 723     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747   }
 748 
 749   // if a probable array type has been identified, figure out if any
 750   // of the required checks for a fast case can be elided.
 751   int flags = LIR_OpArrayCopy::all_flags;
 752   if (expected_type != NULL) {
 753     // try to skip null checks
 754     if (src->as_NewArray() != NULL)
 755       flags &= ~LIR_OpArrayCopy::src_null_check;
 756     if (dst->as_NewArray() != NULL)
 757       flags &= ~LIR_OpArrayCopy::dst_null_check;
 758 
 759     // check from incoming constant values
 760     if (positive_constant(src_pos))
 761       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 762     if (positive_constant(dst_pos))
 763       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 764     if (positive_constant(length))
 765       flags &= ~LIR_OpArrayCopy::length_positive_check;
 766 
 767     // see if the range check can be elided, which might also imply
 768     // that src or dst is non-null.
 769     ArrayLength* al = length->as_ArrayLength();
 770     if (al != NULL) {
 771       if (al->array() == src) {
 772         // it's the length of the source array
 773         flags &= ~LIR_OpArrayCopy::length_positive_check;
 774         flags &= ~LIR_OpArrayCopy::src_null_check;
 775         if (is_constant_zero(src_pos))
 776           flags &= ~LIR_OpArrayCopy::src_range_check;
 777       }
 778       if (al->array() == dst) {
 779         // it's the length of the destination array
 780         flags &= ~LIR_OpArrayCopy::length_positive_check;
 781         flags &= ~LIR_OpArrayCopy::dst_null_check;
 782         if (is_constant_zero(dst_pos))
 783           flags &= ~LIR_OpArrayCopy::dst_range_check;
 784       }
 785     }
 786     if (is_exact) {
 787       flags &= ~LIR_OpArrayCopy::type_check;
 788     }
 789   }
 790 
 791   if (src == dst) {
 792     // moving within a single array so no type checks are needed
 793     if (flags & LIR_OpArrayCopy::type_check) {
 794       flags &= ~LIR_OpArrayCopy::type_check;
 795     }
 796   }
 797   *flagsp = flags;
 798   *expected_typep = (ciArrayKlass*)expected_type;
 799 }
 800 
 801 
 802 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 803   assert(opr->is_register(), "why spill if item is not register?");
 804 
 805   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 806     LIR_Opr result = new_register(T_FLOAT);
 807     set_vreg_flag(result, must_start_in_memory);
 808     assert(opr->is_register(), "only a register can be spilled");
 809     assert(opr->value_type()->is_float(), "rounding only for floats available");
 810     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 811     return result;
 812   }
 813   return opr;
 814 }
 815 
 816 
 817 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 818   assert(type2size[t] == type2size[value->type()], "size mismatch");
 819   if (!value->is_register()) {
 820     // force into a register
 821     LIR_Opr r = new_register(value->type());
 822     __ move(value, r);
 823     value = r;
 824   }
 825 
 826   // create a spill location
 827   LIR_Opr tmp = new_register(t);
 828   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 829 
 830   // move from register to spill
 831   __ move(value, tmp);
 832   return tmp;
 833 }
 834 
 835 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 836   if (if_instr->should_profile()) {
 837     ciMethod* method = if_instr->profiled_method();
 838     assert(method != NULL, "method should be set if branch is profiled");
 839     ciMethodData* md = method->method_data_or_null();
 840     assert(md != NULL, "Sanity");
 841     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 842     assert(data != NULL, "must have profiling data");
 843     assert(data->is_BranchData(), "need BranchData for two-way branches");
 844     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 845     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 846     if (if_instr->is_swapped()) {
 847       int t = taken_count_offset;
 848       taken_count_offset = not_taken_count_offset;
 849       not_taken_count_offset = t;
 850     }
 851 
 852     LIR_Opr md_reg = new_register(T_OBJECT);
 853     __ oop2reg(md->constant_encoding(), md_reg);
 854 
 855     LIR_Opr data_offset_reg = new_pointer_register();
 856     __ cmove(lir_cond(cond),
 857              LIR_OprFact::intptrConst(taken_count_offset),
 858              LIR_OprFact::intptrConst(not_taken_count_offset),
 859              data_offset_reg, as_BasicType(if_instr->x()->type()));
 860 
 861     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 862     LIR_Opr data_reg = new_pointer_register();
 863     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 864     __ move(data_addr, data_reg);
 865     // Use leal instead of add to avoid destroying condition codes on x86
 866     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 867     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 868     __ move(data_reg, data_addr);
 869   }
 870 }
 871 
 872 // Phi technique:
 873 // This is about passing live values from one basic block to the other.
 874 // In code generated with Java it is rather rare that more than one
 875 // value is on the stack from one basic block to the other.
 876 // We optimize our technique for efficient passing of one value
 877 // (of type long, int, double..) but it can be extended.
 878 // When entering or leaving a basic block, all registers and all spill
 879 // slots are release and empty. We use the released registers
 880 // and spill slots to pass the live values from one block
 881 // to the other. The topmost value, i.e., the value on TOS of expression
 882 // stack is passed in registers. All other values are stored in spilling
 883 // area. Every Phi has an index which designates its spill slot
 884 // At exit of a basic block, we fill the register(s) and spill slots.
 885 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 886 // and locks necessary registers and spilling slots.
 887 
 888 
 889 // move current value to referenced phi function
 890 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 891   Phi* phi = sux_val->as_Phi();
 892   // cur_val can be null without phi being null in conjunction with inlining
 893   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 894     LIR_Opr operand = cur_val->operand();
 895     if (cur_val->operand()->is_illegal()) {
 896       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 897              "these can be produced lazily");
 898       operand = operand_for_instruction(cur_val);
 899     }
 900     resolver->move(operand, operand_for_instruction(phi));
 901   }
 902 }
 903 
 904 
 905 // Moves all stack values into their PHI position
 906 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 907   BlockBegin* bb = block();
 908   if (bb->number_of_sux() == 1) {
 909     BlockBegin* sux = bb->sux_at(0);
 910     assert(sux->number_of_preds() > 0, "invalid CFG");
 911 
 912     // a block with only one predecessor never has phi functions
 913     if (sux->number_of_preds() > 1) {
 914       int max_phis = cur_state->stack_size() + cur_state->locals_size();
 915       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
 916 
 917       ValueStack* sux_state = sux->state();
 918       Value sux_value;
 919       int index;
 920 
 921       assert(cur_state->scope() == sux_state->scope(), "not matching");
 922       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
 923       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
 924 
 925       for_each_stack_value(sux_state, index, sux_value) {
 926         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
 927       }
 928 
 929       for_each_local_value(sux_state, index, sux_value) {
 930         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
 931       }
 932 
 933       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
 934     }
 935   }
 936 }
 937 
 938 
 939 LIR_Opr LIRGenerator::new_register(BasicType type) {
 940   int vreg = _virtual_register_number;
 941   // add a little fudge factor for the bailout, since the bailout is
 942   // only checked periodically.  This gives a few extra registers to
 943   // hand out before we really run out, which helps us keep from
 944   // tripping over assertions.
 945   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
 946     bailout("out of virtual registers");
 947     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
 948       // wrap it around
 949       _virtual_register_number = LIR_OprDesc::vreg_base;
 950     }
 951   }
 952   _virtual_register_number += 1;
 953   return LIR_OprFact::virtual_register(vreg, type);
 954 }
 955 
 956 
 957 // Try to lock using register in hint
 958 LIR_Opr LIRGenerator::rlock(Value instr) {
 959   return new_register(instr->type());
 960 }
 961 
 962 
 963 // does an rlock and sets result
 964 LIR_Opr LIRGenerator::rlock_result(Value x) {
 965   LIR_Opr reg = rlock(x);
 966   set_result(x, reg);
 967   return reg;
 968 }
 969 
 970 
 971 // does an rlock and sets result
 972 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
 973   LIR_Opr reg;
 974   switch (type) {
 975   case T_BYTE:
 976   case T_BOOLEAN:
 977     reg = rlock_byte(type);
 978     break;
 979   default:
 980     reg = rlock(x);
 981     break;
 982   }
 983 
 984   set_result(x, reg);
 985   return reg;
 986 }
 987 
 988 
 989 //---------------------------------------------------------------------
 990 ciObject* LIRGenerator::get_jobject_constant(Value value) {
 991   ObjectType* oc = value->type()->as_ObjectType();
 992   if (oc) {
 993     return oc->constant_value();
 994   }
 995   return NULL;
 996 }
 997 
 998 
 999 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1000   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1001   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1002 
1003   // no moves are created for phi functions at the begin of exception
1004   // handlers, so assign operands manually here
1005   for_each_phi_fun(block(), phi,
1006                    operand_for_instruction(phi));
1007 
1008   LIR_Opr thread_reg = getThreadPointer();
1009   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1010                exceptionOopOpr());
1011   __ move_wide(LIR_OprFact::oopConst(NULL),
1012                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1013   __ move_wide(LIR_OprFact::oopConst(NULL),
1014                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1015 
1016   LIR_Opr result = new_register(T_OBJECT);
1017   __ move(exceptionOopOpr(), result);
1018   set_result(x, result);
1019 }
1020 
1021 
1022 //----------------------------------------------------------------------
1023 //----------------------------------------------------------------------
1024 //----------------------------------------------------------------------
1025 //----------------------------------------------------------------------
1026 //                        visitor functions
1027 //----------------------------------------------------------------------
1028 //----------------------------------------------------------------------
1029 //----------------------------------------------------------------------
1030 //----------------------------------------------------------------------
1031 
1032 void LIRGenerator::do_Phi(Phi* x) {
1033   // phi functions are never visited directly
1034   ShouldNotReachHere();
1035 }
1036 
1037 
1038 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1039 void LIRGenerator::do_Constant(Constant* x) {
1040   if (x->state_before() != NULL) {
1041     // Any constant with a ValueStack requires patching so emit the patch here
1042     LIR_Opr reg = rlock_result(x);
1043     CodeEmitInfo* info = state_for(x, x->state_before());
1044     __ oop2reg_patch(NULL, reg, info);
1045   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1046     if (!x->is_pinned()) {
1047       // unpinned constants are handled specially so that they can be
1048       // put into registers when they are used multiple times within a
1049       // block.  After the block completes their operand will be
1050       // cleared so that other blocks can't refer to that register.
1051       set_result(x, load_constant(x));
1052     } else {
1053       LIR_Opr res = x->operand();
1054       if (!res->is_valid()) {
1055         res = LIR_OprFact::value_type(x->type());
1056       }
1057       if (res->is_constant()) {
1058         LIR_Opr reg = rlock_result(x);
1059         __ move(res, reg);
1060       } else {
1061         set_result(x, res);
1062       }
1063     }
1064   } else {
1065     set_result(x, LIR_OprFact::value_type(x->type()));
1066   }
1067 }
1068 
1069 
1070 void LIRGenerator::do_Local(Local* x) {
1071   // operand_for_instruction has the side effect of setting the result
1072   // so there's no need to do it here.
1073   operand_for_instruction(x);
1074 }
1075 
1076 
1077 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1078   Unimplemented();
1079 }
1080 
1081 
1082 void LIRGenerator::do_Return(Return* x) {
1083   if (compilation()->env()->dtrace_method_probes()) {
1084     BasicTypeList signature;
1085     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1086     signature.append(T_OBJECT); // methodOop
1087     LIR_OprList* args = new LIR_OprList();
1088     args->append(getThreadPointer());
1089     LIR_Opr meth = new_register(T_OBJECT);
1090     __ oop2reg(method()->constant_encoding(), meth);
1091     args->append(meth);
1092     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1093   }
1094 
1095   if (x->type()->is_void()) {
1096     __ return_op(LIR_OprFact::illegalOpr);
1097   } else {
1098     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1099     LIRItem result(x->result(), this);
1100 
1101     result.load_item_force(reg);
1102     __ return_op(result.result());
1103   }
1104   set_no_result(x);
1105 }
1106 
1107 
1108 // Example: object.getClass ()
1109 void LIRGenerator::do_getClass(Intrinsic* x) {
1110   assert(x->number_of_arguments() == 1, "wrong type");
1111 
1112   LIRItem rcvr(x->argument_at(0), this);
1113   rcvr.load_item();
1114   LIR_Opr result = rlock_result(x);
1115 
1116   // need to perform the null check on the rcvr
1117   CodeEmitInfo* info = NULL;
1118   if (x->needs_null_check()) {
1119     info = state_for(x);
1120   }
1121   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1122   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1123                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1124 }
1125 
1126 
1127 // Example: Thread.currentThread()
1128 void LIRGenerator::do_currentThread(Intrinsic* x) {
1129   assert(x->number_of_arguments() == 0, "wrong type");
1130   LIR_Opr reg = rlock_result(x);
1131   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1132 }
1133 
1134 
1135 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1136   assert(x->number_of_arguments() == 1, "wrong type");
1137   LIRItem receiver(x->argument_at(0), this);
1138 
1139   receiver.load_item();
1140   BasicTypeList signature;
1141   signature.append(T_OBJECT); // receiver
1142   LIR_OprList* args = new LIR_OprList();
1143   args->append(receiver.result());
1144   CodeEmitInfo* info = state_for(x, x->state());
1145   call_runtime(&signature, args,
1146                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1147                voidType, info);
1148 
1149   set_no_result(x);
1150 }
1151 
1152 
1153 //------------------------local access--------------------------------------
1154 
1155 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1156   if (x->operand()->is_illegal()) {
1157     Constant* c = x->as_Constant();
1158     if (c != NULL) {
1159       x->set_operand(LIR_OprFact::value_type(c->type()));
1160     } else {
1161       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1162       // allocate a virtual register for this local or phi
1163       x->set_operand(rlock(x));
1164       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1165     }
1166   }
1167   return x->operand();
1168 }
1169 
1170 
1171 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1172   if (opr->is_virtual()) {
1173     return instruction_for_vreg(opr->vreg_number());
1174   }
1175   return NULL;
1176 }
1177 
1178 
1179 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1180   if (reg_num < _instruction_for_operand.length()) {
1181     return _instruction_for_operand.at(reg_num);
1182   }
1183   return NULL;
1184 }
1185 
1186 
1187 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1188   if (_vreg_flags.size_in_bits() == 0) {
1189     BitMap2D temp(100, num_vreg_flags);
1190     temp.clear();
1191     _vreg_flags = temp;
1192   }
1193   _vreg_flags.at_put_grow(vreg_num, f, true);
1194 }
1195 
1196 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1197   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1198     return false;
1199   }
1200   return _vreg_flags.at(vreg_num, f);
1201 }
1202 
1203 
1204 // Block local constant handling.  This code is useful for keeping
1205 // unpinned constants and constants which aren't exposed in the IR in
1206 // registers.  Unpinned Constant instructions have their operands
1207 // cleared when the block is finished so that other blocks can't end
1208 // up referring to their registers.
1209 
1210 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1211   assert(!x->is_pinned(), "only for unpinned constants");
1212   _unpinned_constants.append(x);
1213   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1214 }
1215 
1216 
1217 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1218   BasicType t = c->type();
1219   for (int i = 0; i < _constants.length(); i++) {
1220     LIR_Const* other = _constants.at(i);
1221     if (t == other->type()) {
1222       switch (t) {
1223       case T_INT:
1224       case T_FLOAT:
1225         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1226         break;
1227       case T_LONG:
1228       case T_DOUBLE:
1229         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1230         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1231         break;
1232       case T_OBJECT:
1233         if (c->as_jobject() != other->as_jobject()) continue;
1234         break;
1235       }
1236       return _reg_for_constants.at(i);
1237     }
1238   }
1239 
1240   LIR_Opr result = new_register(t);
1241   __ move((LIR_Opr)c, result);
1242   _constants.append(c);
1243   _reg_for_constants.append(result);
1244   return result;
1245 }
1246 
1247 // Various barriers
1248 
1249 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1250   // Do the pre-write barrier, if any.
1251   switch (_bs->kind()) {
1252 #ifndef SERIALGC
1253     case BarrierSet::G1SATBCT:
1254     case BarrierSet::G1SATBCTLogging:
1255       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1256       break;
1257 #endif // SERIALGC
1258     case BarrierSet::CardTableModRef:
1259     case BarrierSet::CardTableExtension:
1260       // No pre barriers
1261       break;
1262     case BarrierSet::ModRef:
1263     case BarrierSet::Other:
1264       // No pre barriers
1265       break;
1266     default      :
1267       ShouldNotReachHere();
1268 
1269   }
1270 }
1271 
1272 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1273   switch (_bs->kind()) {
1274 #ifndef SERIALGC
1275     case BarrierSet::G1SATBCT:
1276     case BarrierSet::G1SATBCTLogging:
1277       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1278       break;
1279 #endif // SERIALGC
1280     case BarrierSet::CardTableModRef:
1281     case BarrierSet::CardTableExtension:
1282       CardTableModRef_post_barrier(addr,  new_val);
1283       break;
1284     case BarrierSet::ModRef:
1285     case BarrierSet::Other:
1286       // No post barriers
1287       break;
1288     default      :
1289       ShouldNotReachHere();
1290     }
1291 }
1292 
1293 ////////////////////////////////////////////////////////////////////////
1294 #ifndef SERIALGC
1295 
1296 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1297   if (G1DisablePreBarrier) return;
1298 
1299   // First we test whether marking is in progress.
1300   BasicType flag_type;
1301   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1302     flag_type = T_INT;
1303   } else {
1304     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1305               "Assumption");
1306     flag_type = T_BYTE;
1307   }
1308   LIR_Opr thrd = getThreadPointer();
1309   LIR_Address* mark_active_flag_addr =
1310     new LIR_Address(thrd,
1311                     in_bytes(JavaThread::satb_mark_queue_offset() +
1312                              PtrQueue::byte_offset_of_active()),
1313                     flag_type);
1314   // Read the marking-in-progress flag.
1315   LIR_Opr flag_val = new_register(T_INT);
1316   __ load(mark_active_flag_addr, flag_val);
1317 
1318   LIR_PatchCode pre_val_patch_code =
1319     patch ? lir_patch_normal : lir_patch_none;
1320 
1321   LIR_Opr pre_val = new_register(T_OBJECT);
1322 
1323   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1324   if (!addr_opr->is_address()) {
1325     assert(addr_opr->is_register(), "must be");
1326     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1327   }
1328   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1329                                         info);
1330   __ branch(lir_cond_notEqual, T_INT, slow);
1331   __ branch_destination(slow->continuation());
1332 }
1333 
1334 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1335   if (G1DisablePostBarrier) return;
1336 
1337   // If the "new_val" is a constant NULL, no barrier is necessary.
1338   if (new_val->is_constant() &&
1339       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1340 
1341   if (!new_val->is_register()) {
1342     LIR_Opr new_val_reg = new_register(T_OBJECT);
1343     if (new_val->is_constant()) {
1344       __ move(new_val, new_val_reg);
1345     } else {
1346       __ leal(new_val, new_val_reg);
1347     }
1348     new_val = new_val_reg;
1349   }
1350   assert(new_val->is_register(), "must be a register at this point");
1351 
1352   if (addr->is_address()) {
1353     LIR_Address* address = addr->as_address_ptr();
1354     LIR_Opr ptr = new_register(T_OBJECT);
1355     if (!address->index()->is_valid() && address->disp() == 0) {
1356       __ move(address->base(), ptr);
1357     } else {
1358       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1359       __ leal(addr, ptr);
1360     }
1361     addr = ptr;
1362   }
1363   assert(addr->is_register(), "must be a register at this point");
1364 
1365   LIR_Opr xor_res = new_pointer_register();
1366   LIR_Opr xor_shift_res = new_pointer_register();
1367   if (TwoOperandLIRForm ) {
1368     __ move(addr, xor_res);
1369     __ logical_xor(xor_res, new_val, xor_res);
1370     __ move(xor_res, xor_shift_res);
1371     __ unsigned_shift_right(xor_shift_res,
1372                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1373                             xor_shift_res,
1374                             LIR_OprDesc::illegalOpr());
1375   } else {
1376     __ logical_xor(addr, new_val, xor_res);
1377     __ unsigned_shift_right(xor_res,
1378                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1379                             xor_shift_res,
1380                             LIR_OprDesc::illegalOpr());
1381   }
1382 
1383   if (!new_val->is_register()) {
1384     LIR_Opr new_val_reg = new_register(T_OBJECT);
1385     __ leal(new_val, new_val_reg);
1386     new_val = new_val_reg;
1387   }
1388   assert(new_val->is_register(), "must be a register at this point");
1389 
1390   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1391 
1392   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1393   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1394   __ branch_destination(slow->continuation());
1395 }
1396 
1397 #endif // SERIALGC
1398 ////////////////////////////////////////////////////////////////////////
1399 
1400 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1401 
1402   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1403   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1404   if (addr->is_address()) {
1405     LIR_Address* address = addr->as_address_ptr();
1406     LIR_Opr ptr = new_register(T_OBJECT);
1407     if (!address->index()->is_valid() && address->disp() == 0) {
1408       __ move(address->base(), ptr);
1409     } else {
1410       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1411       __ leal(addr, ptr);
1412     }
1413     addr = ptr;
1414   }
1415   assert(addr->is_register(), "must be a register at this point");
1416 
1417 #ifdef ARM
1418   // TODO: ARM - move to platform-dependent code
1419   LIR_Opr tmp = FrameMap::R14_opr;
1420   if (VM_Version::supports_movw()) {
1421     __ move((LIR_Opr)card_table_base, tmp);
1422   } else {
1423     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1424   }
1425 
1426   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1427   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1428   if(((int)ct->byte_map_base & 0xff) == 0) {
1429     __ move(tmp, card_addr);
1430   } else {
1431     LIR_Opr tmp_zero = new_register(T_INT);
1432     __ move(LIR_OprFact::intConst(0), tmp_zero);
1433     __ move(tmp_zero, card_addr);
1434   }
1435 #else // ARM
1436   LIR_Opr tmp = new_pointer_register();
1437   if (TwoOperandLIRForm) {
1438     __ move(addr, tmp);
1439     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1440   } else {
1441     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1442   }
1443   if (can_inline_as_constant(card_table_base)) {
1444     __ move(LIR_OprFact::intConst(0),
1445               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1446   } else {
1447     __ move(LIR_OprFact::intConst(0),
1448               new LIR_Address(tmp, load_constant(card_table_base),
1449                               T_BYTE));
1450   }
1451 #endif // ARM
1452 }
1453 
1454 
1455 //------------------------field access--------------------------------------
1456 
1457 // Comment copied form templateTable_i486.cpp
1458 // ----------------------------------------------------------------------------
1459 // Volatile variables demand their effects be made known to all CPU's in
1460 // order.  Store buffers on most chips allow reads & writes to reorder; the
1461 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1462 // memory barrier (i.e., it's not sufficient that the interpreter does not
1463 // reorder volatile references, the hardware also must not reorder them).
1464 //
1465 // According to the new Java Memory Model (JMM):
1466 // (1) All volatiles are serialized wrt to each other.
1467 // ALSO reads & writes act as aquire & release, so:
1468 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1469 // the read float up to before the read.  It's OK for non-volatile memory refs
1470 // that happen before the volatile read to float down below it.
1471 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1472 // that happen BEFORE the write float down to after the write.  It's OK for
1473 // non-volatile memory refs that happen after the volatile write to float up
1474 // before it.
1475 //
1476 // We only put in barriers around volatile refs (they are expensive), not
1477 // _between_ memory refs (that would require us to track the flavor of the
1478 // previous memory refs).  Requirements (2) and (3) require some barriers
1479 // before volatile stores and after volatile loads.  These nearly cover
1480 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1481 // case is placed after volatile-stores although it could just as well go
1482 // before volatile-loads.
1483 
1484 
1485 void LIRGenerator::do_StoreField(StoreField* x) {
1486   bool needs_patching = x->needs_patching();
1487   bool is_volatile = x->field()->is_volatile();
1488   BasicType field_type = x->field_type();
1489   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1490 
1491   CodeEmitInfo* info = NULL;
1492   if (needs_patching) {
1493     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1494     info = state_for(x, x->state_before());
1495   } else if (x->needs_null_check()) {
1496     NullCheck* nc = x->explicit_null_check();
1497     if (nc == NULL) {
1498       info = state_for(x);
1499     } else {
1500       info = state_for(nc);
1501     }
1502   }
1503 
1504 
1505   LIRItem object(x->obj(), this);
1506   LIRItem value(x->value(),  this);
1507 
1508   object.load_item();
1509 
1510   if (is_volatile || needs_patching) {
1511     // load item if field is volatile (fewer special cases for volatiles)
1512     // load item if field not initialized
1513     // load item if field not constant
1514     // because of code patching we cannot inline constants
1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516       value.load_byte_item();
1517     } else  {
1518       value.load_item();
1519     }
1520   } else {
1521     value.load_for_store(field_type);
1522   }
1523 
1524   set_no_result(x);
1525 
1526 #ifndef PRODUCT
1527   if (PrintNotLoaded && needs_patching) {
1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                   x->is_static() ?  "static" : "field", x->printable_bci());
1530   }
1531 #endif
1532 
1533   if (x->needs_null_check() &&
1534       (needs_patching ||
1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536     // emit an explicit null check because the offset is too large
1537     __ null_check(object.result(), new CodeEmitInfo(info));
1538   }
1539 
1540   LIR_Address* address;
1541   if (needs_patching) {
1542     // we need to patch the offset in the instruction so don't allow
1543     // generate_address to try to be smart about emitting the -1.
1544     // Otherwise the patching code won't know how to find the
1545     // instruction to patch.
1546     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1547   } else {
1548     address = generate_address(object.result(), x->offset(), field_type);
1549   }
1550 
1551   if (is_volatile && os::is_MP()) {
1552     __ membar_release();
1553   }
1554 
1555   if (is_oop) {
1556     // Do the pre-write barrier, if any.
1557     pre_barrier(LIR_OprFact::address(address),
1558                 needs_patching,
1559                 (info ? new CodeEmitInfo(info) : NULL));
1560   }
1561 
1562   if (is_volatile) {
1563     assert(!needs_patching && x->is_loaded(),
1564            "how do we know it's volatile if it's not loaded");
1565     volatile_field_store(value.result(), address, info);
1566   } else {
1567     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1568     __ store(value.result(), address, info, patch_code);
1569   }
1570 
1571   if (is_oop) {
1572     // Store to object so mark the card of the header
1573     post_barrier(object.result(), value.result());
1574   }
1575 
1576   if (is_volatile && os::is_MP()) {
1577     __ membar();
1578   }
1579 }
1580 
1581 
1582 void LIRGenerator::do_LoadField(LoadField* x) {
1583   bool needs_patching = x->needs_patching();
1584   bool is_volatile = x->field()->is_volatile();
1585   BasicType field_type = x->field_type();
1586 
1587   CodeEmitInfo* info = NULL;
1588   if (needs_patching) {
1589     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1590     info = state_for(x, x->state_before());
1591   } else if (x->needs_null_check()) {
1592     NullCheck* nc = x->explicit_null_check();
1593     if (nc == NULL) {
1594       info = state_for(x);
1595     } else {
1596       info = state_for(nc);
1597     }
1598   }
1599 
1600   LIRItem object(x->obj(), this);
1601 
1602   object.load_item();
1603 
1604 #ifndef PRODUCT
1605   if (PrintNotLoaded && needs_patching) {
1606     tty->print_cr("   ###class not loaded at load_%s bci %d",
1607                   x->is_static() ?  "static" : "field", x->printable_bci());
1608   }
1609 #endif
1610 
1611   if (x->needs_null_check() &&
1612       (needs_patching ||
1613        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1614     // emit an explicit null check because the offset is too large
1615     __ null_check(object.result(), new CodeEmitInfo(info));
1616   }
1617 
1618   LIR_Opr reg = rlock_result(x, field_type);
1619   LIR_Address* address;
1620   if (needs_patching) {
1621     // we need to patch the offset in the instruction so don't allow
1622     // generate_address to try to be smart about emitting the -1.
1623     // Otherwise the patching code won't know how to find the
1624     // instruction to patch.
1625     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1626   } else {
1627     address = generate_address(object.result(), x->offset(), field_type);
1628   }
1629 
1630   if (is_volatile) {
1631     assert(!needs_patching && x->is_loaded(),
1632            "how do we know it's volatile if it's not loaded");
1633     volatile_field_load(address, reg, info);
1634   } else {
1635     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1636     __ load(address, reg, info, patch_code);
1637   }
1638 
1639   if (is_volatile && os::is_MP()) {
1640     __ membar_acquire();
1641   }
1642 }
1643 
1644 
1645 //------------------------java.nio.Buffer.checkIndex------------------------
1646 
1647 // int java.nio.Buffer.checkIndex(int)
1648 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1649   // NOTE: by the time we are in checkIndex() we are guaranteed that
1650   // the buffer is non-null (because checkIndex is package-private and
1651   // only called from within other methods in the buffer).
1652   assert(x->number_of_arguments() == 2, "wrong type");
1653   LIRItem buf  (x->argument_at(0), this);
1654   LIRItem index(x->argument_at(1), this);
1655   buf.load_item();
1656   index.load_item();
1657 
1658   LIR_Opr result = rlock_result(x);
1659   if (GenerateRangeChecks) {
1660     CodeEmitInfo* info = state_for(x);
1661     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1662     if (index.result()->is_constant()) {
1663       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1664       __ branch(lir_cond_belowEqual, T_INT, stub);
1665     } else {
1666       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1667                   java_nio_Buffer::limit_offset(), T_INT, info);
1668       __ branch(lir_cond_aboveEqual, T_INT, stub);
1669     }
1670     __ move(index.result(), result);
1671   } else {
1672     // Just load the index into the result register
1673     __ move(index.result(), result);
1674   }
1675 }
1676 
1677 
1678 //------------------------array access--------------------------------------
1679 
1680 
1681 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1682   LIRItem array(x->array(), this);
1683   array.load_item();
1684   LIR_Opr reg = rlock_result(x);
1685 
1686   CodeEmitInfo* info = NULL;
1687   if (x->needs_null_check()) {
1688     NullCheck* nc = x->explicit_null_check();
1689     if (nc == NULL) {
1690       info = state_for(x);
1691     } else {
1692       info = state_for(nc);
1693     }
1694   }
1695   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1696 }
1697 
1698 
1699 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1700   bool use_length = x->length() != NULL;
1701   LIRItem array(x->array(), this);
1702   LIRItem index(x->index(), this);
1703   LIRItem length(this);
1704   bool needs_range_check = true;
1705 
1706   if (use_length) {
1707     needs_range_check = x->compute_needs_range_check();
1708     if (needs_range_check) {
1709       length.set_instruction(x->length());
1710       length.load_item();
1711     }
1712   }
1713 
1714   array.load_item();
1715   if (index.is_constant() && can_inline_as_constant(x->index())) {
1716     // let it be a constant
1717     index.dont_load_item();
1718   } else {
1719     index.load_item();
1720   }
1721 
1722   CodeEmitInfo* range_check_info = state_for(x);
1723   CodeEmitInfo* null_check_info = NULL;
1724   if (x->needs_null_check()) {
1725     NullCheck* nc = x->explicit_null_check();
1726     if (nc != NULL) {
1727       null_check_info = state_for(nc);
1728     } else {
1729       null_check_info = range_check_info;
1730     }
1731   }
1732 
1733   // emit array address setup early so it schedules better
1734   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1735 
1736   if (GenerateRangeChecks && needs_range_check) {
1737     if (use_length) {
1738       // TODO: use a (modified) version of array_range_check that does not require a
1739       //       constant length to be loaded to a register
1740       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1741       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1742     } else {
1743       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1744       // The range check performs the null check, so clear it out for the load
1745       null_check_info = NULL;
1746     }
1747   }
1748 
1749   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1750 }
1751 
1752 
1753 void LIRGenerator::do_NullCheck(NullCheck* x) {
1754   if (x->can_trap()) {
1755     LIRItem value(x->obj(), this);
1756     value.load_item();
1757     CodeEmitInfo* info = state_for(x);
1758     __ null_check(value.result(), info);
1759   }
1760 }
1761 
1762 
1763 void LIRGenerator::do_Throw(Throw* x) {
1764   LIRItem exception(x->exception(), this);
1765   exception.load_item();
1766   set_no_result(x);
1767   LIR_Opr exception_opr = exception.result();
1768   CodeEmitInfo* info = state_for(x, x->state());
1769 
1770 #ifndef PRODUCT
1771   if (PrintC1Statistics) {
1772     increment_counter(Runtime1::throw_count_address(), T_INT);
1773   }
1774 #endif
1775 
1776   // check if the instruction has an xhandler in any of the nested scopes
1777   bool unwind = false;
1778   if (info->exception_handlers()->length() == 0) {
1779     // this throw is not inside an xhandler
1780     unwind = true;
1781   } else {
1782     // get some idea of the throw type
1783     bool type_is_exact = true;
1784     ciType* throw_type = x->exception()->exact_type();
1785     if (throw_type == NULL) {
1786       type_is_exact = false;
1787       throw_type = x->exception()->declared_type();
1788     }
1789     if (throw_type != NULL && throw_type->is_instance_klass()) {
1790       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1791       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1792     }
1793   }
1794 
1795   // do null check before moving exception oop into fixed register
1796   // to avoid a fixed interval with an oop during the null check.
1797   // Use a copy of the CodeEmitInfo because debug information is
1798   // different for null_check and throw.
1799   if (GenerateCompilerNullChecks &&
1800       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1801     // if the exception object wasn't created using new then it might be null.
1802     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1803   }
1804 
1805   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1806     // we need to go through the exception lookup path to get JVMTI
1807     // notification done
1808     unwind = false;
1809   }
1810 
1811   // move exception oop into fixed register
1812   __ move(exception_opr, exceptionOopOpr());
1813 
1814   if (unwind) {
1815     __ unwind_exception(exceptionOopOpr());
1816   } else {
1817     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1818   }
1819 }
1820 
1821 
1822 void LIRGenerator::do_RoundFP(RoundFP* x) {
1823   LIRItem input(x->input(), this);
1824   input.load_item();
1825   LIR_Opr input_opr = input.result();
1826   assert(input_opr->is_register(), "why round if value is not in a register?");
1827   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1828   if (input_opr->is_single_fpu()) {
1829     set_result(x, round_item(input_opr)); // This code path not currently taken
1830   } else {
1831     LIR_Opr result = new_register(T_DOUBLE);
1832     set_vreg_flag(result, must_start_in_memory);
1833     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1834     set_result(x, result);
1835   }
1836 }
1837 
1838 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1839   LIRItem base(x->base(), this);
1840   LIRItem idx(this);
1841 
1842   base.load_item();
1843   if (x->has_index()) {
1844     idx.set_instruction(x->index());
1845     idx.load_nonconstant();
1846   }
1847 
1848   LIR_Opr reg = rlock_result(x, x->basic_type());
1849 
1850   int   log2_scale = 0;
1851   if (x->has_index()) {
1852     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1853     log2_scale = x->log2_scale();
1854   }
1855 
1856   assert(!x->has_index() || idx.value() == x->index(), "should match");
1857 
1858   LIR_Opr base_op = base.result();
1859 #ifndef _LP64
1860   if (x->base()->type()->tag() == longTag) {
1861     base_op = new_register(T_INT);
1862     __ convert(Bytecodes::_l2i, base.result(), base_op);
1863   } else {
1864     assert(x->base()->type()->tag() == intTag, "must be");
1865   }
1866 #endif
1867 
1868   BasicType dst_type = x->basic_type();
1869   LIR_Opr index_op = idx.result();
1870 
1871   LIR_Address* addr;
1872   if (index_op->is_constant()) {
1873     assert(log2_scale == 0, "must not have a scale");
1874     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1875   } else {
1876 #ifdef X86
1877 #ifdef _LP64
1878     if (!index_op->is_illegal() && index_op->type() == T_INT) {
1879       LIR_Opr tmp = new_pointer_register();
1880       __ convert(Bytecodes::_i2l, index_op, tmp);
1881       index_op = tmp;
1882     }
1883 #endif
1884     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1885 #elif defined(ARM)
1886     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
1887 #else
1888     if (index_op->is_illegal() || log2_scale == 0) {
1889 #ifdef _LP64
1890       if (!index_op->is_illegal() && index_op->type() == T_INT) {
1891         LIR_Opr tmp = new_pointer_register();
1892         __ convert(Bytecodes::_i2l, index_op, tmp);
1893         index_op = tmp;
1894       }
1895 #endif
1896       addr = new LIR_Address(base_op, index_op, dst_type);
1897     } else {
1898       LIR_Opr tmp = new_pointer_register();
1899       __ shift_left(index_op, log2_scale, tmp);
1900       addr = new LIR_Address(base_op, tmp, dst_type);
1901     }
1902 #endif
1903   }
1904 
1905   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1906     __ unaligned_move(addr, reg);
1907   } else {
1908     if (dst_type == T_OBJECT && x->is_wide()) {
1909       __ move_wide(addr, reg);
1910     } else {
1911       __ move(addr, reg);
1912     }
1913   }
1914 }
1915 
1916 
1917 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1918   int  log2_scale = 0;
1919   BasicType type = x->basic_type();
1920 
1921   if (x->has_index()) {
1922     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1923     log2_scale = x->log2_scale();
1924   }
1925 
1926   LIRItem base(x->base(), this);
1927   LIRItem value(x->value(), this);
1928   LIRItem idx(this);
1929 
1930   base.load_item();
1931   if (x->has_index()) {
1932     idx.set_instruction(x->index());
1933     idx.load_item();
1934   }
1935 
1936   if (type == T_BYTE || type == T_BOOLEAN) {
1937     value.load_byte_item();
1938   } else {
1939     value.load_item();
1940   }
1941 
1942   set_no_result(x);
1943 
1944   LIR_Opr base_op = base.result();
1945 #ifndef _LP64
1946   if (x->base()->type()->tag() == longTag) {
1947     base_op = new_register(T_INT);
1948     __ convert(Bytecodes::_l2i, base.result(), base_op);
1949   } else {
1950     assert(x->base()->type()->tag() == intTag, "must be");
1951   }
1952 #endif
1953 
1954   LIR_Opr index_op = idx.result();
1955   if (log2_scale != 0) {
1956     // temporary fix (platform dependent code without shift on Intel would be better)
1957     index_op = new_pointer_register();
1958 #ifdef _LP64
1959     if(idx.result()->type() == T_INT) {
1960       __ convert(Bytecodes::_i2l, idx.result(), index_op);
1961     } else {
1962 #endif
1963       // TODO: ARM also allows embedded shift in the address
1964       __ move(idx.result(), index_op);
1965 #ifdef _LP64
1966     }
1967 #endif
1968     __ shift_left(index_op, log2_scale, index_op);
1969   }
1970 #ifdef _LP64
1971   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1972     LIR_Opr tmp = new_pointer_register();
1973     __ convert(Bytecodes::_i2l, index_op, tmp);
1974     index_op = tmp;
1975   }
1976 #endif
1977 
1978   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1979   __ move(value.result(), addr);
1980 }
1981 
1982 
1983 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1984   BasicType type = x->basic_type();
1985   LIRItem src(x->object(), this);
1986   LIRItem off(x->offset(), this);
1987 
1988   off.load_item();
1989   src.load_item();
1990 
1991   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1992 
1993   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1994   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1995 }
1996 
1997 
1998 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1999   BasicType type = x->basic_type();
2000   LIRItem src(x->object(), this);
2001   LIRItem off(x->offset(), this);
2002   LIRItem data(x->value(), this);
2003 
2004   src.load_item();
2005   if (type == T_BOOLEAN || type == T_BYTE) {
2006     data.load_byte_item();
2007   } else {
2008     data.load_item();
2009   }
2010   off.load_item();
2011 
2012   set_no_result(x);
2013 
2014   if (x->is_volatile() && os::is_MP()) __ membar_release();
2015   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2016   if (x->is_volatile() && os::is_MP()) __ membar();
2017 }
2018 
2019 
2020 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2021   LIRItem src(x->object(), this);
2022   LIRItem off(x->offset(), this);
2023 
2024   src.load_item();
2025   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2026     // let it be a constant
2027     off.dont_load_item();
2028   } else {
2029     off.load_item();
2030   }
2031 
2032   set_no_result(x);
2033 
2034   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2035   __ prefetch(addr, is_store);
2036 }
2037 
2038 
2039 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2040   do_UnsafePrefetch(x, false);
2041 }
2042 
2043 
2044 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2045   do_UnsafePrefetch(x, true);
2046 }
2047 
2048 
2049 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2050   int lng = x->length();
2051 
2052   for (int i = 0; i < lng; i++) {
2053     SwitchRange* one_range = x->at(i);
2054     int low_key = one_range->low_key();
2055     int high_key = one_range->high_key();
2056     BlockBegin* dest = one_range->sux();
2057     if (low_key == high_key) {
2058       __ cmp(lir_cond_equal, value, low_key);
2059       __ branch(lir_cond_equal, T_INT, dest);
2060     } else if (high_key - low_key == 1) {
2061       __ cmp(lir_cond_equal, value, low_key);
2062       __ branch(lir_cond_equal, T_INT, dest);
2063       __ cmp(lir_cond_equal, value, high_key);
2064       __ branch(lir_cond_equal, T_INT, dest);
2065     } else {
2066       LabelObj* L = new LabelObj();
2067       __ cmp(lir_cond_less, value, low_key);
2068       __ branch(lir_cond_less, L->label());
2069       __ cmp(lir_cond_lessEqual, value, high_key);
2070       __ branch(lir_cond_lessEqual, T_INT, dest);
2071       __ branch_destination(L->label());
2072     }
2073   }
2074   __ jump(default_sux);
2075 }
2076 
2077 
2078 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2079   SwitchRangeList* res = new SwitchRangeList();
2080   int len = x->length();
2081   if (len > 0) {
2082     BlockBegin* sux = x->sux_at(0);
2083     int key = x->lo_key();
2084     BlockBegin* default_sux = x->default_sux();
2085     SwitchRange* range = new SwitchRange(key, sux);
2086     for (int i = 0; i < len; i++, key++) {
2087       BlockBegin* new_sux = x->sux_at(i);
2088       if (sux == new_sux) {
2089         // still in same range
2090         range->set_high_key(key);
2091       } else {
2092         // skip tests which explicitly dispatch to the default
2093         if (sux != default_sux) {
2094           res->append(range);
2095         }
2096         range = new SwitchRange(key, new_sux);
2097       }
2098       sux = new_sux;
2099     }
2100     if (res->length() == 0 || res->last() != range)  res->append(range);
2101   }
2102   return res;
2103 }
2104 
2105 
2106 // we expect the keys to be sorted by increasing value
2107 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2108   SwitchRangeList* res = new SwitchRangeList();
2109   int len = x->length();
2110   if (len > 0) {
2111     BlockBegin* default_sux = x->default_sux();
2112     int key = x->key_at(0);
2113     BlockBegin* sux = x->sux_at(0);
2114     SwitchRange* range = new SwitchRange(key, sux);
2115     for (int i = 1; i < len; i++) {
2116       int new_key = x->key_at(i);
2117       BlockBegin* new_sux = x->sux_at(i);
2118       if (key+1 == new_key && sux == new_sux) {
2119         // still in same range
2120         range->set_high_key(new_key);
2121       } else {
2122         // skip tests which explicitly dispatch to the default
2123         if (range->sux() != default_sux) {
2124           res->append(range);
2125         }
2126         range = new SwitchRange(new_key, new_sux);
2127       }
2128       key = new_key;
2129       sux = new_sux;
2130     }
2131     if (res->length() == 0 || res->last() != range)  res->append(range);
2132   }
2133   return res;
2134 }
2135 
2136 
2137 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2138   LIRItem tag(x->tag(), this);
2139   tag.load_item();
2140   set_no_result(x);
2141 
2142   if (x->is_safepoint()) {
2143     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2144   }
2145 
2146   // move values into phi locations
2147   move_to_phi(x->state());
2148 
2149   int lo_key = x->lo_key();
2150   int hi_key = x->hi_key();
2151   int len = x->length();
2152   LIR_Opr value = tag.result();
2153   if (UseTableRanges) {
2154     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2155   } else {
2156     for (int i = 0; i < len; i++) {
2157       __ cmp(lir_cond_equal, value, i + lo_key);
2158       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2159     }
2160     __ jump(x->default_sux());
2161   }
2162 }
2163 
2164 
2165 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2166   LIRItem tag(x->tag(), this);
2167   tag.load_item();
2168   set_no_result(x);
2169 
2170   if (x->is_safepoint()) {
2171     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2172   }
2173 
2174   // move values into phi locations
2175   move_to_phi(x->state());
2176 
2177   LIR_Opr value = tag.result();
2178   if (UseTableRanges) {
2179     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2180   } else {
2181     int len = x->length();
2182     for (int i = 0; i < len; i++) {
2183       __ cmp(lir_cond_equal, value, x->key_at(i));
2184       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2185     }
2186     __ jump(x->default_sux());
2187   }
2188 }
2189 
2190 
2191 void LIRGenerator::do_Goto(Goto* x) {
2192   set_no_result(x);
2193 
2194   if (block()->next()->as_OsrEntry()) {
2195     // need to free up storage used for OSR entry point
2196     LIR_Opr osrBuffer = block()->next()->operand();
2197     BasicTypeList signature;
2198     signature.append(T_INT);
2199     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2200     __ move(osrBuffer, cc->args()->at(0));
2201     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2202                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2203   }
2204 
2205   if (x->is_safepoint()) {
2206     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2207 
2208     // increment backedge counter if needed
2209     CodeEmitInfo* info = state_for(x, state);
2210     increment_backedge_counter(info, info->stack()->bci());
2211     CodeEmitInfo* safepoint_info = state_for(x, state);
2212     __ safepoint(safepoint_poll_register(), safepoint_info);
2213   }
2214 
2215   // Gotos can be folded Ifs, handle this case.
2216   if (x->should_profile()) {
2217     ciMethod* method = x->profiled_method();
2218     assert(method != NULL, "method should be set if branch is profiled");
2219     ciMethodData* md = method->method_data_or_null();
2220     assert(md != NULL, "Sanity");
2221     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2222     assert(data != NULL, "must have profiling data");
2223     int offset;
2224     if (x->direction() == Goto::taken) {
2225       assert(data->is_BranchData(), "need BranchData for two-way branches");
2226       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2227     } else if (x->direction() == Goto::not_taken) {
2228       assert(data->is_BranchData(), "need BranchData for two-way branches");
2229       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2230     } else {
2231       assert(data->is_JumpData(), "need JumpData for branches");
2232       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2233     }
2234     LIR_Opr md_reg = new_register(T_OBJECT);
2235     __ oop2reg(md->constant_encoding(), md_reg);
2236 
2237     increment_counter(new LIR_Address(md_reg, offset,
2238                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2239   }
2240 
2241   // emit phi-instruction move after safepoint since this simplifies
2242   // describing the state as the safepoint.
2243   move_to_phi(x->state());
2244 
2245   __ jump(x->default_sux());
2246 }
2247 
2248 
2249 void LIRGenerator::do_Base(Base* x) {
2250   __ std_entry(LIR_OprFact::illegalOpr);
2251   // Emit moves from physical registers / stack slots to virtual registers
2252   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2253   IRScope* irScope = compilation()->hir()->top_scope();
2254   int java_index = 0;
2255   for (int i = 0; i < args->length(); i++) {
2256     LIR_Opr src = args->at(i);
2257     assert(!src->is_illegal(), "check");
2258     BasicType t = src->type();
2259 
2260     // Types which are smaller than int are passed as int, so
2261     // correct the type which passed.
2262     switch (t) {
2263     case T_BYTE:
2264     case T_BOOLEAN:
2265     case T_SHORT:
2266     case T_CHAR:
2267       t = T_INT;
2268       break;
2269     }
2270 
2271     LIR_Opr dest = new_register(t);
2272     __ move(src, dest);
2273 
2274     // Assign new location to Local instruction for this local
2275     Local* local = x->state()->local_at(java_index)->as_Local();
2276     assert(local != NULL, "Locals for incoming arguments must have been created");
2277 #ifndef __SOFTFP__
2278     // The java calling convention passes double as long and float as int.
2279     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2280 #endif // __SOFTFP__
2281     local->set_operand(dest);
2282     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2283     java_index += type2size[t];
2284   }
2285 
2286   if (compilation()->env()->dtrace_method_probes()) {
2287     BasicTypeList signature;
2288     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2289     signature.append(T_OBJECT); // methodOop
2290     LIR_OprList* args = new LIR_OprList();
2291     args->append(getThreadPointer());
2292     LIR_Opr meth = new_register(T_OBJECT);
2293     __ oop2reg(method()->constant_encoding(), meth);
2294     args->append(meth);
2295     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2296   }
2297 
2298   if (method()->is_synchronized()) {
2299     LIR_Opr obj;
2300     if (method()->is_static()) {
2301       obj = new_register(T_OBJECT);
2302       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2303     } else {
2304       Local* receiver = x->state()->local_at(0)->as_Local();
2305       assert(receiver != NULL, "must already exist");
2306       obj = receiver->operand();
2307     }
2308     assert(obj->is_valid(), "must be valid");
2309 
2310     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2311       LIR_Opr lock = new_register(T_INT);
2312       __ load_stack_address_monitor(0, lock);
2313 
2314       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2315       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2316 
2317       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2318       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2319     }
2320   }
2321 
2322   // increment invocation counters if needed
2323   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2324     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2325     increment_invocation_counter(info);
2326   }
2327 
2328   // all blocks with a successor must end with an unconditional jump
2329   // to the successor even if they are consecutive
2330   __ jump(x->default_sux());
2331 }
2332 
2333 
2334 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2335   // construct our frame and model the production of incoming pointer
2336   // to the OSR buffer.
2337   __ osr_entry(LIR_Assembler::osrBufferPointer());
2338   LIR_Opr result = rlock_result(x);
2339   __ move(LIR_Assembler::osrBufferPointer(), result);
2340 }
2341 
2342 
2343 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2344   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2345   for (; i < args->length(); i++) {
2346     LIRItem* param = args->at(i);
2347     LIR_Opr loc = arg_list->at(i);
2348     if (loc->is_register()) {
2349       param->load_item_force(loc);
2350     } else {
2351       LIR_Address* addr = loc->as_address_ptr();
2352       param->load_for_store(addr->type());
2353       if (addr->type() == T_OBJECT) {
2354         __ move_wide(param->result(), addr);
2355       } else
2356         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2357           __ unaligned_move(param->result(), addr);
2358         } else {
2359           __ move(param->result(), addr);
2360         }
2361     }
2362   }
2363 
2364   if (x->has_receiver()) {
2365     LIRItem* receiver = args->at(0);
2366     LIR_Opr loc = arg_list->at(0);
2367     if (loc->is_register()) {
2368       receiver->load_item_force(loc);
2369     } else {
2370       assert(loc->is_address(), "just checking");
2371       receiver->load_for_store(T_OBJECT);
2372       __ move_wide(receiver->result(), loc->as_address_ptr());
2373     }
2374   }
2375 }
2376 
2377 
2378 // Visits all arguments, returns appropriate items without loading them
2379 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2380   LIRItemList* argument_items = new LIRItemList();
2381   if (x->has_receiver()) {
2382     LIRItem* receiver = new LIRItem(x->receiver(), this);
2383     argument_items->append(receiver);
2384   }
2385   if (x->is_invokedynamic()) {
2386     // Insert a dummy for the synthetic MethodHandle argument.
2387     argument_items->append(NULL);
2388   }
2389   int idx = x->has_receiver() ? 1 : 0;
2390   for (int i = 0; i < x->number_of_arguments(); i++) {
2391     LIRItem* param = new LIRItem(x->argument_at(i), this);
2392     argument_items->append(param);
2393     idx += (param->type()->is_double_word() ? 2 : 1);
2394   }
2395   return argument_items;
2396 }
2397 
2398 
2399 // The invoke with receiver has following phases:
2400 //   a) traverse and load/lock receiver;
2401 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2402 //   c) push receiver on stack
2403 //   d) load each of the items and push on stack
2404 //   e) unlock receiver
2405 //   f) move receiver into receiver-register %o0
2406 //   g) lock result registers and emit call operation
2407 //
2408 // Before issuing a call, we must spill-save all values on stack
2409 // that are in caller-save register. "spill-save" moves thos registers
2410 // either in a free callee-save register or spills them if no free
2411 // callee save register is available.
2412 //
2413 // The problem is where to invoke spill-save.
2414 // - if invoked between e) and f), we may lock callee save
2415 //   register in "spill-save" that destroys the receiver register
2416 //   before f) is executed
2417 // - if we rearange the f) to be earlier, by loading %o0, it
2418 //   may destroy a value on the stack that is currently in %o0
2419 //   and is waiting to be spilled
2420 // - if we keep the receiver locked while doing spill-save,
2421 //   we cannot spill it as it is spill-locked
2422 //
2423 void LIRGenerator::do_Invoke(Invoke* x) {
2424   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2425 
2426   LIR_OprList* arg_list = cc->args();
2427   LIRItemList* args = invoke_visit_arguments(x);
2428   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2429 
2430   // setup result register
2431   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2432   if (x->type() != voidType) {
2433     result_register = result_register_for(x->type());
2434   }
2435 
2436   CodeEmitInfo* info = state_for(x, x->state());
2437 
2438   // invokedynamics can deoptimize.
2439   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2440 
2441   invoke_load_arguments(x, args, arg_list);
2442 
2443   if (x->has_receiver()) {
2444     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2445     receiver = args->at(0)->result();
2446   }
2447 
2448   // emit invoke code
2449   bool optimized = x->target_is_loaded() && x->target_is_final();
2450   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2451 
2452   // JSR 292
2453   // Preserve the SP over MethodHandle call sites.
2454   ciMethod* target = x->target();
2455   if (target->is_method_handle_invoke()) {
2456     info->set_is_method_handle_invoke(true);
2457     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2458   }
2459 
2460   switch (x->code()) {
2461     case Bytecodes::_invokestatic:
2462       __ call_static(target, result_register,
2463                      SharedRuntime::get_resolve_static_call_stub(),
2464                      arg_list, info);
2465       break;
2466     case Bytecodes::_invokespecial:
2467     case Bytecodes::_invokevirtual:
2468     case Bytecodes::_invokeinterface:
2469       // for final target we still produce an inline cache, in order
2470       // to be able to call mixed mode
2471       if (x->code() == Bytecodes::_invokespecial || optimized) {
2472         __ call_opt_virtual(target, receiver, result_register,
2473                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2474                             arg_list, info);
2475       } else if (x->vtable_index() < 0) {
2476         __ call_icvirtual(target, receiver, result_register,
2477                           SharedRuntime::get_resolve_virtual_call_stub(),
2478                           arg_list, info);
2479       } else {
2480         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2481         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2482         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2483       }
2484       break;
2485     case Bytecodes::_invokedynamic: {
2486       ciBytecodeStream bcs(x->scope()->method());
2487       bcs.force_bci(x->state()->bci());
2488       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2489       ciCPCache* cpcache = bcs.get_cpcache();
2490 
2491       // Get CallSite offset from constant pool cache pointer.
2492       int index = bcs.get_method_index();
2493       size_t call_site_offset = cpcache->get_f1_offset(index);
2494 
2495       // If this invokedynamic call site hasn't been executed yet in
2496       // the interpreter, the CallSite object in the constant pool
2497       // cache is still null and we need to deoptimize.
2498       if (cpcache->is_f1_null_at(index)) {
2499         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2500         // clone all handlers.  This is handled transparently in other
2501         // places by the CodeEmitInfo cloning logic but is handled
2502         // specially here because a stub isn't being used.
2503         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2504 
2505         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2506         __ jump(deopt_stub);
2507       }
2508 
2509       // Use the receiver register for the synthetic MethodHandle
2510       // argument.
2511       receiver = LIR_Assembler::receiverOpr();
2512       LIR_Opr tmp = new_register(objectType);
2513 
2514       // Load CallSite object from constant pool cache.
2515       __ oop2reg(cpcache->constant_encoding(), tmp);
2516       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2517 
2518       // Load target MethodHandle from CallSite object.
2519       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2520 
2521       __ call_dynamic(target, receiver, result_register,
2522                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2523                       arg_list, info);
2524       break;
2525     }
2526     default:
2527       ShouldNotReachHere();
2528       break;
2529   }
2530 
2531   // JSR 292
2532   // Restore the SP after MethodHandle call sites.
2533   if (target->is_method_handle_invoke()) {
2534     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2535   }
2536 
2537   if (x->type()->is_float() || x->type()->is_double()) {
2538     // Force rounding of results from non-strictfp when in strictfp
2539     // scope (or when we don't know the strictness of the callee, to
2540     // be safe.)
2541     if (method()->is_strict()) {
2542       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2543         result_register = round_item(result_register);
2544       }
2545     }
2546   }
2547 
2548   if (result_register->is_valid()) {
2549     LIR_Opr result = rlock_result(x);
2550     __ move(result_register, result);
2551   }
2552 }
2553 
2554 
2555 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2556   assert(x->number_of_arguments() == 1, "wrong type");
2557   LIRItem value       (x->argument_at(0), this);
2558   LIR_Opr reg = rlock_result(x);
2559   value.load_item();
2560   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2561   __ move(tmp, reg);
2562 }
2563 
2564 
2565 
2566 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2567 void LIRGenerator::do_IfOp(IfOp* x) {
2568 #ifdef ASSERT
2569   {
2570     ValueTag xtag = x->x()->type()->tag();
2571     ValueTag ttag = x->tval()->type()->tag();
2572     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2573     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2574     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2575   }
2576 #endif
2577 
2578   LIRItem left(x->x(), this);
2579   LIRItem right(x->y(), this);
2580   left.load_item();
2581   if (can_inline_as_constant(right.value())) {
2582     right.dont_load_item();
2583   } else {
2584     right.load_item();
2585   }
2586 
2587   LIRItem t_val(x->tval(), this);
2588   LIRItem f_val(x->fval(), this);
2589   t_val.dont_load_item();
2590   f_val.dont_load_item();
2591   LIR_Opr reg = rlock_result(x);
2592 
2593   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2594   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2595 }
2596 
2597 
2598 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2599   switch (x->id()) {
2600   case vmIntrinsics::_intBitsToFloat      :
2601   case vmIntrinsics::_doubleToRawLongBits :
2602   case vmIntrinsics::_longBitsToDouble    :
2603   case vmIntrinsics::_floatToRawIntBits   : {
2604     do_FPIntrinsics(x);
2605     break;
2606   }
2607 
2608   case vmIntrinsics::_currentTimeMillis: {
2609     assert(x->number_of_arguments() == 0, "wrong type");
2610     LIR_Opr reg = result_register_for(x->type());
2611     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2612                          reg, new LIR_OprList());
2613     LIR_Opr result = rlock_result(x);
2614     __ move(reg, result);
2615     break;
2616   }
2617 
2618   case vmIntrinsics::_nanoTime: {
2619     assert(x->number_of_arguments() == 0, "wrong type");
2620     LIR_Opr reg = result_register_for(x->type());
2621     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2622                          reg, new LIR_OprList());
2623     LIR_Opr result = rlock_result(x);
2624     __ move(reg, result);
2625     break;
2626   }
2627 
2628   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2629   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2630   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2631 
2632   case vmIntrinsics::_dlog:           // fall through
2633   case vmIntrinsics::_dlog10:         // fall through
2634   case vmIntrinsics::_dabs:           // fall through
2635   case vmIntrinsics::_dsqrt:          // fall through
2636   case vmIntrinsics::_dtan:           // fall through
2637   case vmIntrinsics::_dsin :          // fall through
2638   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2639   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2640 
2641   // java.nio.Buffer.checkIndex
2642   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2643 
2644   case vmIntrinsics::_compareAndSwapObject:
2645     do_CompareAndSwap(x, objectType);
2646     break;
2647   case vmIntrinsics::_compareAndSwapInt:
2648     do_CompareAndSwap(x, intType);
2649     break;
2650   case vmIntrinsics::_compareAndSwapLong:
2651     do_CompareAndSwap(x, longType);
2652     break;
2653 
2654     // sun.misc.AtomicLongCSImpl.attemptUpdate
2655   case vmIntrinsics::_attemptUpdate:
2656     do_AttemptUpdate(x);
2657     break;
2658 
2659   default: ShouldNotReachHere(); break;
2660   }
2661 }
2662 
2663 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2664   // Need recv in a temporary register so it interferes with the other temporaries
2665   LIR_Opr recv = LIR_OprFact::illegalOpr;
2666   LIR_Opr mdo = new_register(T_OBJECT);
2667   // tmp is used to hold the counters on SPARC
2668   LIR_Opr tmp = new_pointer_register();
2669   if (x->recv() != NULL) {
2670     LIRItem value(x->recv(), this);
2671     value.load_item();
2672     recv = new_register(T_OBJECT);
2673     __ move(value.result(), recv);
2674   }
2675   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2676 }
2677 
2678 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2679   // We can safely ignore accessors here, since c2 will inline them anyway,
2680   // accessors are also always mature.
2681   if (!x->inlinee()->is_accessor()) {
2682     CodeEmitInfo* info = state_for(x, x->state(), true);
2683     // Increment invocation counter, don't notify the runtime, because we don't inline loops,
2684     increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
2685   }
2686 }
2687 
2688 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2689   int freq_log;
2690   int level = compilation()->env()->comp_level();
2691   if (level == CompLevel_limited_profile) {
2692     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2693   } else if (level == CompLevel_full_profile) {
2694     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2695   } else {
2696     ShouldNotReachHere();
2697   }
2698   // Increment the appropriate invocation/backedge counter and notify the runtime.
2699   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2700 }
2701 
2702 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2703                                                 ciMethod *method, int frequency,
2704                                                 int bci, bool backedge, bool notify) {
2705   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2706   int level = _compilation->env()->comp_level();
2707   assert(level > CompLevel_simple, "Shouldn't be here");
2708 
2709   int offset = -1;
2710   LIR_Opr counter_holder = new_register(T_OBJECT);
2711   LIR_Opr meth;
2712   if (level == CompLevel_limited_profile) {
2713     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
2714                                  methodOopDesc::invocation_counter_offset());
2715     __ oop2reg(method->constant_encoding(), counter_holder);
2716     meth = counter_holder;
2717   } else if (level == CompLevel_full_profile) {
2718     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
2719                                  methodDataOopDesc::invocation_counter_offset());
2720     ciMethodData* md = method->method_data_or_null();
2721     assert(md != NULL, "Sanity");
2722     __ oop2reg(md->constant_encoding(), counter_holder);
2723     meth = new_register(T_OBJECT);
2724     __ oop2reg(method->constant_encoding(), meth);
2725   } else {
2726     ShouldNotReachHere();
2727   }
2728   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
2729   LIR_Opr result = new_register(T_INT);
2730   __ load(counter, result);
2731   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
2732   __ store(result, counter);
2733   if (notify) {
2734     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
2735     __ logical_and(result, mask, result);
2736     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
2737     // The bci for info can point to cmp for if's we want the if bci
2738     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
2739     __ branch(lir_cond_equal, T_INT, overflow);
2740     __ branch_destination(overflow->continuation());
2741   }
2742 }
2743 
2744 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
2745   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
2746   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
2747 
2748   if (x->pass_thread()) {
2749     signature->append(T_ADDRESS);
2750     args->append(getThreadPointer());
2751   }
2752 
2753   for (int i = 0; i < x->number_of_arguments(); i++) {
2754     Value a = x->argument_at(i);
2755     LIRItem* item = new LIRItem(a, this);
2756     item->load_item();
2757     args->append(item->result());
2758     signature->append(as_BasicType(a->type()));
2759   }
2760 
2761   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
2762   if (x->type() == voidType) {
2763     set_no_result(x);
2764   } else {
2765     __ move(result, rlock_result(x));
2766   }
2767 }
2768 
2769 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2770   LIRItemList args(1);
2771   LIRItem value(arg1, this);
2772   args.append(&value);
2773   BasicTypeList signature;
2774   signature.append(as_BasicType(arg1->type()));
2775 
2776   return call_runtime(&signature, &args, entry, result_type, info);
2777 }
2778 
2779 
2780 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2781   LIRItemList args(2);
2782   LIRItem value1(arg1, this);
2783   LIRItem value2(arg2, this);
2784   args.append(&value1);
2785   args.append(&value2);
2786   BasicTypeList signature;
2787   signature.append(as_BasicType(arg1->type()));
2788   signature.append(as_BasicType(arg2->type()));
2789 
2790   return call_runtime(&signature, &args, entry, result_type, info);
2791 }
2792 
2793 
2794 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2795                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2796   // get a result register
2797   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2798   LIR_Opr result = LIR_OprFact::illegalOpr;
2799   if (result_type->tag() != voidTag) {
2800     result = new_register(result_type);
2801     phys_reg = result_register_for(result_type);
2802   }
2803 
2804   // move the arguments into the correct location
2805   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2806   assert(cc->length() == args->length(), "argument mismatch");
2807   for (int i = 0; i < args->length(); i++) {
2808     LIR_Opr arg = args->at(i);
2809     LIR_Opr loc = cc->at(i);
2810     if (loc->is_register()) {
2811       __ move(arg, loc);
2812     } else {
2813       LIR_Address* addr = loc->as_address_ptr();
2814 //           if (!can_store_as_constant(arg)) {
2815 //             LIR_Opr tmp = new_register(arg->type());
2816 //             __ move(arg, tmp);
2817 //             arg = tmp;
2818 //           }
2819       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2820         __ unaligned_move(arg, addr);
2821       } else {
2822         __ move(arg, addr);
2823       }
2824     }
2825   }
2826 
2827   if (info) {
2828     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2829   } else {
2830     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2831   }
2832   if (result->is_valid()) {
2833     __ move(phys_reg, result);
2834   }
2835   return result;
2836 }
2837 
2838 
2839 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2840                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2841   // get a result register
2842   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2843   LIR_Opr result = LIR_OprFact::illegalOpr;
2844   if (result_type->tag() != voidTag) {
2845     result = new_register(result_type);
2846     phys_reg = result_register_for(result_type);
2847   }
2848 
2849   // move the arguments into the correct location
2850   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2851 
2852   assert(cc->length() == args->length(), "argument mismatch");
2853   for (int i = 0; i < args->length(); i++) {
2854     LIRItem* arg = args->at(i);
2855     LIR_Opr loc = cc->at(i);
2856     if (loc->is_register()) {
2857       arg->load_item_force(loc);
2858     } else {
2859       LIR_Address* addr = loc->as_address_ptr();
2860       arg->load_for_store(addr->type());
2861       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2862         __ unaligned_move(arg->result(), addr);
2863       } else {
2864         __ move(arg->result(), addr);
2865       }
2866     }
2867   }
2868 
2869   if (info) {
2870     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2871   } else {
2872     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2873   }
2874   if (result->is_valid()) {
2875     __ move(phys_reg, result);
2876   }
2877   return result;
2878 }