1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciCPCache.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ oop2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ oop2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   jobject2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 710   Instruction* src     = x->argument_at(0);
 711   Instruction* src_pos = x->argument_at(1);
 712   Instruction* dst     = x->argument_at(2);
 713   Instruction* dst_pos = x->argument_at(3);
 714   Instruction* length  = x->argument_at(4);
 715 
 716   // first try to identify the likely type of the arrays involved
 717   ciArrayKlass* expected_type = NULL;
 718   bool is_exact = false;
 719   {
 720     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 721     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 722     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 723     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747   }
 748 
 749   // if a probable array type has been identified, figure out if any
 750   // of the required checks for a fast case can be elided.
 751   int flags = LIR_OpArrayCopy::all_flags;
 752   if (expected_type != NULL) {
 753     // try to skip null checks
 754     if (src->as_NewArray() != NULL)
 755       flags &= ~LIR_OpArrayCopy::src_null_check;
 756     if (dst->as_NewArray() != NULL)
 757       flags &= ~LIR_OpArrayCopy::dst_null_check;
 758 
 759     // check from incoming constant values
 760     if (positive_constant(src_pos))
 761       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 762     if (positive_constant(dst_pos))
 763       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 764     if (positive_constant(length))
 765       flags &= ~LIR_OpArrayCopy::length_positive_check;
 766 
 767     // see if the range check can be elided, which might also imply
 768     // that src or dst is non-null.
 769     ArrayLength* al = length->as_ArrayLength();
 770     if (al != NULL) {
 771       if (al->array() == src) {
 772         // it's the length of the source array
 773         flags &= ~LIR_OpArrayCopy::length_positive_check;
 774         flags &= ~LIR_OpArrayCopy::src_null_check;
 775         if (is_constant_zero(src_pos))
 776           flags &= ~LIR_OpArrayCopy::src_range_check;
 777       }
 778       if (al->array() == dst) {
 779         // it's the length of the destination array
 780         flags &= ~LIR_OpArrayCopy::length_positive_check;
 781         flags &= ~LIR_OpArrayCopy::dst_null_check;
 782         if (is_constant_zero(dst_pos))
 783           flags &= ~LIR_OpArrayCopy::dst_range_check;
 784       }
 785     }
 786     if (is_exact) {
 787       flags &= ~LIR_OpArrayCopy::type_check;
 788     }
 789   }
 790 
 791   if (src == dst) {
 792     // moving within a single array so no type checks are needed
 793     if (flags & LIR_OpArrayCopy::type_check) {
 794       flags &= ~LIR_OpArrayCopy::type_check;
 795     }
 796   }
 797   *flagsp = flags;
 798   *expected_typep = (ciArrayKlass*)expected_type;
 799 }
 800 
 801 
 802 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 803   assert(opr->is_register(), "why spill if item is not register?");
 804 
 805   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 806     LIR_Opr result = new_register(T_FLOAT);
 807     set_vreg_flag(result, must_start_in_memory);
 808     assert(opr->is_register(), "only a register can be spilled");
 809     assert(opr->value_type()->is_float(), "rounding only for floats available");
 810     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 811     return result;
 812   }
 813   return opr;
 814 }
 815 
 816 
 817 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 818   assert(type2size[t] == type2size[value->type()], "size mismatch");
 819   if (!value->is_register()) {
 820     // force into a register
 821     LIR_Opr r = new_register(value->type());
 822     __ move(value, r);
 823     value = r;
 824   }
 825 
 826   // create a spill location
 827   LIR_Opr tmp = new_register(t);
 828   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 829 
 830   // move from register to spill
 831   __ move(value, tmp);
 832   return tmp;
 833 }
 834 
 835 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 836   if (if_instr->should_profile()) {
 837     ciMethod* method = if_instr->profiled_method();
 838     assert(method != NULL, "method should be set if branch is profiled");
 839     ciMethodData* md = method->method_data_or_null();
 840     assert(md != NULL, "Sanity");
 841     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 842     assert(data != NULL, "must have profiling data");
 843     assert(data->is_BranchData(), "need BranchData for two-way branches");
 844     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 845     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 846     if (if_instr->is_swapped()) {
 847       int t = taken_count_offset;
 848       taken_count_offset = not_taken_count_offset;
 849       not_taken_count_offset = t;
 850     }
 851 
 852     LIR_Opr md_reg = new_register(T_OBJECT);
 853     __ oop2reg(md->constant_encoding(), md_reg);
 854 
 855     LIR_Opr data_offset_reg = new_pointer_register();
 856     __ cmove(lir_cond(cond),
 857              LIR_OprFact::intptrConst(taken_count_offset),
 858              LIR_OprFact::intptrConst(not_taken_count_offset),
 859              data_offset_reg, as_BasicType(if_instr->x()->type()));
 860 
 861     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 862     LIR_Opr data_reg = new_pointer_register();
 863     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 864     __ move(data_addr, data_reg);
 865     // Use leal instead of add to avoid destroying condition codes on x86
 866     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 867     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 868     __ move(data_reg, data_addr);
 869   }
 870 }
 871 
 872 // Phi technique:
 873 // This is about passing live values from one basic block to the other.
 874 // In code generated with Java it is rather rare that more than one
 875 // value is on the stack from one basic block to the other.
 876 // We optimize our technique for efficient passing of one value
 877 // (of type long, int, double..) but it can be extended.
 878 // When entering or leaving a basic block, all registers and all spill
 879 // slots are release and empty. We use the released registers
 880 // and spill slots to pass the live values from one block
 881 // to the other. The topmost value, i.e., the value on TOS of expression
 882 // stack is passed in registers. All other values are stored in spilling
 883 // area. Every Phi has an index which designates its spill slot
 884 // At exit of a basic block, we fill the register(s) and spill slots.
 885 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 886 // and locks necessary registers and spilling slots.
 887 
 888 
 889 // move current value to referenced phi function
 890 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 891   Phi* phi = sux_val->as_Phi();
 892   // cur_val can be null without phi being null in conjunction with inlining
 893   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 894     LIR_Opr operand = cur_val->operand();
 895     if (cur_val->operand()->is_illegal()) {
 896       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 897              "these can be produced lazily");
 898       operand = operand_for_instruction(cur_val);
 899     }
 900     resolver->move(operand, operand_for_instruction(phi));
 901   }
 902 }
 903 
 904 
 905 // Moves all stack values into their PHI position
 906 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 907   BlockBegin* bb = block();
 908   if (bb->number_of_sux() == 1) {
 909     BlockBegin* sux = bb->sux_at(0);
 910     assert(sux->number_of_preds() > 0, "invalid CFG");
 911 
 912     // a block with only one predecessor never has phi functions
 913     if (sux->number_of_preds() > 1) {
 914       int max_phis = cur_state->stack_size() + cur_state->locals_size();
 915       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
 916 
 917       ValueStack* sux_state = sux->state();
 918       Value sux_value;
 919       int index;
 920 
 921       assert(cur_state->scope() == sux_state->scope(), "not matching");
 922       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
 923       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
 924 
 925       for_each_stack_value(sux_state, index, sux_value) {
 926         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
 927       }
 928 
 929       for_each_local_value(sux_state, index, sux_value) {
 930         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
 931       }
 932 
 933       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
 934     }
 935   }
 936 }
 937 
 938 
 939 LIR_Opr LIRGenerator::new_register(BasicType type) {
 940   int vreg = _virtual_register_number;
 941   // add a little fudge factor for the bailout, since the bailout is
 942   // only checked periodically.  This gives a few extra registers to
 943   // hand out before we really run out, which helps us keep from
 944   // tripping over assertions.
 945   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
 946     bailout("out of virtual registers");
 947     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
 948       // wrap it around
 949       _virtual_register_number = LIR_OprDesc::vreg_base;
 950     }
 951   }
 952   _virtual_register_number += 1;
 953   return LIR_OprFact::virtual_register(vreg, type);
 954 }
 955 
 956 
 957 // Try to lock using register in hint
 958 LIR_Opr LIRGenerator::rlock(Value instr) {
 959   return new_register(instr->type());
 960 }
 961 
 962 
 963 // does an rlock and sets result
 964 LIR_Opr LIRGenerator::rlock_result(Value x) {
 965   LIR_Opr reg = rlock(x);
 966   set_result(x, reg);
 967   return reg;
 968 }
 969 
 970 
 971 // does an rlock and sets result
 972 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
 973   LIR_Opr reg;
 974   switch (type) {
 975   case T_BYTE:
 976   case T_BOOLEAN:
 977     reg = rlock_byte(type);
 978     break;
 979   default:
 980     reg = rlock(x);
 981     break;
 982   }
 983 
 984   set_result(x, reg);
 985   return reg;
 986 }
 987 
 988 
 989 //---------------------------------------------------------------------
 990 ciObject* LIRGenerator::get_jobject_constant(Value value) {
 991   ObjectType* oc = value->type()->as_ObjectType();
 992   if (oc) {
 993     return oc->constant_value();
 994   }
 995   return NULL;
 996 }
 997 
 998 
 999 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1000   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1001   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1002 
1003   // no moves are created for phi functions at the begin of exception
1004   // handlers, so assign operands manually here
1005   for_each_phi_fun(block(), phi,
1006                    operand_for_instruction(phi));
1007 
1008   LIR_Opr thread_reg = getThreadPointer();
1009   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1010                exceptionOopOpr());
1011   __ move_wide(LIR_OprFact::oopConst(NULL),
1012                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1013   __ move_wide(LIR_OprFact::oopConst(NULL),
1014                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1015 
1016   LIR_Opr result = new_register(T_OBJECT);
1017   __ move(exceptionOopOpr(), result);
1018   set_result(x, result);
1019 }
1020 
1021 
1022 //----------------------------------------------------------------------
1023 //----------------------------------------------------------------------
1024 //----------------------------------------------------------------------
1025 //----------------------------------------------------------------------
1026 //                        visitor functions
1027 //----------------------------------------------------------------------
1028 //----------------------------------------------------------------------
1029 //----------------------------------------------------------------------
1030 //----------------------------------------------------------------------
1031 
1032 void LIRGenerator::do_Phi(Phi* x) {
1033   // phi functions are never visited directly
1034   ShouldNotReachHere();
1035 }
1036 
1037 
1038 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1039 void LIRGenerator::do_Constant(Constant* x) {
1040   if (x->state_before() != NULL) {
1041     // Any constant with a ValueStack requires patching so emit the patch here
1042     LIR_Opr reg = rlock_result(x);
1043     CodeEmitInfo* info = state_for(x, x->state_before());
1044     __ oop2reg_patch(NULL, reg, info);
1045   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1046     if (!x->is_pinned()) {
1047       // unpinned constants are handled specially so that they can be
1048       // put into registers when they are used multiple times within a
1049       // block.  After the block completes their operand will be
1050       // cleared so that other blocks can't refer to that register.
1051       set_result(x, load_constant(x));
1052     } else {
1053       LIR_Opr res = x->operand();
1054       if (!res->is_valid()) {
1055         res = LIR_OprFact::value_type(x->type());
1056       }
1057       if (res->is_constant()) {
1058         LIR_Opr reg = rlock_result(x);
1059         __ move(res, reg);
1060       } else {
1061         set_result(x, res);
1062       }
1063     }
1064   } else {
1065     set_result(x, LIR_OprFact::value_type(x->type()));
1066   }
1067 }
1068 
1069 
1070 void LIRGenerator::do_Local(Local* x) {
1071   // operand_for_instruction has the side effect of setting the result
1072   // so there's no need to do it here.
1073   operand_for_instruction(x);
1074 }
1075 
1076 
1077 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1078   Unimplemented();
1079 }
1080 
1081 
1082 void LIRGenerator::do_Return(Return* x) {
1083   if (compilation()->env()->dtrace_method_probes()) {
1084     BasicTypeList signature;
1085     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1086     signature.append(T_OBJECT); // methodOop
1087     LIR_OprList* args = new LIR_OprList();
1088     args->append(getThreadPointer());
1089     LIR_Opr meth = new_register(T_OBJECT);
1090     __ oop2reg(method()->constant_encoding(), meth);
1091     args->append(meth);
1092     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1093   }
1094 
1095   if (x->type()->is_void()) {
1096     __ return_op(LIR_OprFact::illegalOpr);
1097   } else {
1098     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1099     LIRItem result(x->result(), this);
1100 
1101     result.load_item_force(reg);
1102     __ return_op(result.result());
1103   }
1104   set_no_result(x);
1105 }
1106 
1107 // Examble: ref.get()
1108 // Combination of LoadField and g1 pre-write barrier
1109 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1110 
1111   const int referent_offset = java_lang_ref_Reference::referent_offset;
1112   guarantee(referent_offset > 0, "referent offset not initialized");
1113   
1114   assert(x->number_of_arguments() == 1, "wrong type");
1115 
1116   LIRItem reference(x->argument_at(0), this);
1117   reference.load_item();
1118 
1119   // need to perform the null check on the reference objecy
1120   CodeEmitInfo* info = NULL;
1121   if (x->needs_null_check()) {
1122     info = state_for(x);
1123   }
1124 
1125   LIR_Address* referent_field_adr =
1126     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1127 
1128   LIR_Opr result = rlock_result(x);
1129 
1130   __ load(referent_field_adr, result, info);
1131 
1132   // Register the value in the referent field with the pre-barrier
1133   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1134               result /* pre_val */,
1135               false  /* do_load */,
1136               false  /* patch */,
1137               NULL   /* info */);
1138 }
1139 
1140 // Example: object.getClass ()
1141 void LIRGenerator::do_getClass(Intrinsic* x) {
1142   assert(x->number_of_arguments() == 1, "wrong type");
1143 
1144   LIRItem rcvr(x->argument_at(0), this);
1145   rcvr.load_item();
1146   LIR_Opr result = rlock_result(x);
1147 
1148   // need to perform the null check on the rcvr
1149   CodeEmitInfo* info = NULL;
1150   if (x->needs_null_check()) {
1151     info = state_for(x);
1152   }
1153   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1154   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1155                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1156 }
1157 
1158 
1159 // Example: Thread.currentThread()
1160 void LIRGenerator::do_currentThread(Intrinsic* x) {
1161   assert(x->number_of_arguments() == 0, "wrong type");
1162   LIR_Opr reg = rlock_result(x);
1163   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1164 }
1165 
1166 
1167 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1168   assert(x->number_of_arguments() == 1, "wrong type");
1169   LIRItem receiver(x->argument_at(0), this);
1170 
1171   receiver.load_item();
1172   BasicTypeList signature;
1173   signature.append(T_OBJECT); // receiver
1174   LIR_OprList* args = new LIR_OprList();
1175   args->append(receiver.result());
1176   CodeEmitInfo* info = state_for(x, x->state());
1177   call_runtime(&signature, args,
1178                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1179                voidType, info);
1180 
1181   set_no_result(x);
1182 }
1183 
1184 
1185 //------------------------local access--------------------------------------
1186 
1187 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1188   if (x->operand()->is_illegal()) {
1189     Constant* c = x->as_Constant();
1190     if (c != NULL) {
1191       x->set_operand(LIR_OprFact::value_type(c->type()));
1192     } else {
1193       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1194       // allocate a virtual register for this local or phi
1195       x->set_operand(rlock(x));
1196       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1197     }
1198   }
1199   return x->operand();
1200 }
1201 
1202 
1203 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1204   if (opr->is_virtual()) {
1205     return instruction_for_vreg(opr->vreg_number());
1206   }
1207   return NULL;
1208 }
1209 
1210 
1211 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1212   if (reg_num < _instruction_for_operand.length()) {
1213     return _instruction_for_operand.at(reg_num);
1214   }
1215   return NULL;
1216 }
1217 
1218 
1219 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1220   if (_vreg_flags.size_in_bits() == 0) {
1221     BitMap2D temp(100, num_vreg_flags);
1222     temp.clear();
1223     _vreg_flags = temp;
1224   }
1225   _vreg_flags.at_put_grow(vreg_num, f, true);
1226 }
1227 
1228 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1229   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1230     return false;
1231   }
1232   return _vreg_flags.at(vreg_num, f);
1233 }
1234 
1235 
1236 // Block local constant handling.  This code is useful for keeping
1237 // unpinned constants and constants which aren't exposed in the IR in
1238 // registers.  Unpinned Constant instructions have their operands
1239 // cleared when the block is finished so that other blocks can't end
1240 // up referring to their registers.
1241 
1242 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1243   assert(!x->is_pinned(), "only for unpinned constants");
1244   _unpinned_constants.append(x);
1245   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1246 }
1247 
1248 
1249 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1250   BasicType t = c->type();
1251   for (int i = 0; i < _constants.length(); i++) {
1252     LIR_Const* other = _constants.at(i);
1253     if (t == other->type()) {
1254       switch (t) {
1255       case T_INT:
1256       case T_FLOAT:
1257         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1258         break;
1259       case T_LONG:
1260       case T_DOUBLE:
1261         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1262         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1263         break;
1264       case T_OBJECT:
1265         if (c->as_jobject() != other->as_jobject()) continue;
1266         break;
1267       }
1268       return _reg_for_constants.at(i);
1269     }
1270   }
1271 
1272   LIR_Opr result = new_register(t);
1273   __ move((LIR_Opr)c, result);
1274   _constants.append(c);
1275   _reg_for_constants.append(result);
1276   return result;
1277 }
1278 
1279 // Various barriers
1280 
1281 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1282                                bool do_load, bool patch, CodeEmitInfo* info) {
1283   // Do the pre-write barrier, if any.
1284   switch (_bs->kind()) {
1285 #ifndef SERIALGC
1286     case BarrierSet::G1SATBCT:
1287     case BarrierSet::G1SATBCTLogging:
1288       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1289       break;
1290 #endif // SERIALGC
1291     case BarrierSet::CardTableModRef:
1292     case BarrierSet::CardTableExtension:
1293       // No pre barriers
1294       break;
1295     case BarrierSet::ModRef:
1296     case BarrierSet::Other:
1297       // No pre barriers
1298       break;
1299     default      :
1300       ShouldNotReachHere();
1301 
1302   }
1303 }
1304 
1305 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1306   switch (_bs->kind()) {
1307 #ifndef SERIALGC
1308     case BarrierSet::G1SATBCT:
1309     case BarrierSet::G1SATBCTLogging:
1310       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1311       break;
1312 #endif // SERIALGC
1313     case BarrierSet::CardTableModRef:
1314     case BarrierSet::CardTableExtension:
1315       CardTableModRef_post_barrier(addr,  new_val);
1316       break;
1317     case BarrierSet::ModRef:
1318     case BarrierSet::Other:
1319       // No post barriers
1320       break;
1321     default      :
1322       ShouldNotReachHere();
1323     }
1324 }
1325 
1326 ////////////////////////////////////////////////////////////////////////
1327 #ifndef SERIALGC
1328 
1329 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1330                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1331   // First we test whether marking is in progress.
1332   BasicType flag_type;
1333   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1334     flag_type = T_INT;
1335   } else {
1336     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1337               "Assumption");
1338     flag_type = T_BYTE;
1339   }
1340   LIR_Opr thrd = getThreadPointer();
1341   LIR_Address* mark_active_flag_addr =
1342     new LIR_Address(thrd,
1343                     in_bytes(JavaThread::satb_mark_queue_offset() +
1344                              PtrQueue::byte_offset_of_active()),
1345                     flag_type);
1346   // Read the marking-in-progress flag.
1347   LIR_Opr flag_val = new_register(T_INT);
1348   __ load(mark_active_flag_addr, flag_val);
1349   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1350 
1351   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1352 
1353   CodeStub* slow;
1354 
1355   if (do_load) {
1356     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1357     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity"); 
1358     
1359     if (patch)
1360       pre_val_patch_code = lir_patch_normal;
1361     
1362     pre_val = new_register(T_OBJECT); 
1363     
1364     if (!addr_opr->is_address()) {
1365       assert(addr_opr->is_register(), "must be");
1366       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1367     }
1368     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1369   } else {
1370     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1371     assert(pre_val->is_register(), "must be");
1372     assert(pre_val->type() == T_OBJECT, "must be an object");
1373     assert(info == NULL, "sanity");
1374 
1375     slow = new G1PreBarrierStub(pre_val);
1376   }
1377 
1378   __ branch(lir_cond_notEqual, T_INT, slow);
1379   __ branch_destination(slow->continuation());
1380 }
1381 
1382 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1383   // If the "new_val" is a constant NULL, no barrier is necessary.
1384   if (new_val->is_constant() &&
1385       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1386 
1387   if (!new_val->is_register()) {
1388     LIR_Opr new_val_reg = new_register(T_OBJECT);
1389     if (new_val->is_constant()) {
1390       __ move(new_val, new_val_reg);
1391     } else {
1392       __ leal(new_val, new_val_reg);
1393     }
1394     new_val = new_val_reg;
1395   }
1396   assert(new_val->is_register(), "must be a register at this point");
1397 
1398   if (addr->is_address()) {
1399     LIR_Address* address = addr->as_address_ptr();
1400     LIR_Opr ptr = new_register(T_OBJECT);
1401     if (!address->index()->is_valid() && address->disp() == 0) {
1402       __ move(address->base(), ptr);
1403     } else {
1404       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1405       __ leal(addr, ptr);
1406     }
1407     addr = ptr;
1408   }
1409   assert(addr->is_register(), "must be a register at this point");
1410 
1411   LIR_Opr xor_res = new_pointer_register();
1412   LIR_Opr xor_shift_res = new_pointer_register();
1413   if (TwoOperandLIRForm ) {
1414     __ move(addr, xor_res);
1415     __ logical_xor(xor_res, new_val, xor_res);
1416     __ move(xor_res, xor_shift_res);
1417     __ unsigned_shift_right(xor_shift_res,
1418                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1419                             xor_shift_res,
1420                             LIR_OprDesc::illegalOpr());
1421   } else {
1422     __ logical_xor(addr, new_val, xor_res);
1423     __ unsigned_shift_right(xor_res,
1424                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1425                             xor_shift_res,
1426                             LIR_OprDesc::illegalOpr());
1427   }
1428 
1429   if (!new_val->is_register()) {
1430     LIR_Opr new_val_reg = new_register(T_OBJECT);
1431     __ leal(new_val, new_val_reg);
1432     new_val = new_val_reg;
1433   }
1434   assert(new_val->is_register(), "must be a register at this point");
1435 
1436   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1437 
1438   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1439   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1440   __ branch_destination(slow->continuation());
1441 }
1442 
1443 #endif // SERIALGC
1444 ////////////////////////////////////////////////////////////////////////
1445 
1446 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1447 
1448   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1449   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1450   if (addr->is_address()) {
1451     LIR_Address* address = addr->as_address_ptr();
1452     LIR_Opr ptr = new_register(T_OBJECT);
1453     if (!address->index()->is_valid() && address->disp() == 0) {
1454       __ move(address->base(), ptr);
1455     } else {
1456       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1457       __ leal(addr, ptr);
1458     }
1459     addr = ptr;
1460   }
1461   assert(addr->is_register(), "must be a register at this point");
1462 
1463 #ifdef ARM
1464   // TODO: ARM - move to platform-dependent code
1465   LIR_Opr tmp = FrameMap::R14_opr;
1466   if (VM_Version::supports_movw()) {
1467     __ move((LIR_Opr)card_table_base, tmp);
1468   } else {
1469     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1470   }
1471 
1472   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1473   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1474   if(((int)ct->byte_map_base & 0xff) == 0) {
1475     __ move(tmp, card_addr);
1476   } else {
1477     LIR_Opr tmp_zero = new_register(T_INT);
1478     __ move(LIR_OprFact::intConst(0), tmp_zero);
1479     __ move(tmp_zero, card_addr);
1480   }
1481 #else // ARM
1482   LIR_Opr tmp = new_pointer_register();
1483   if (TwoOperandLIRForm) {
1484     __ move(addr, tmp);
1485     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1486   } else {
1487     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1488   }
1489   if (can_inline_as_constant(card_table_base)) {
1490     __ move(LIR_OprFact::intConst(0),
1491               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1492   } else {
1493     __ move(LIR_OprFact::intConst(0),
1494               new LIR_Address(tmp, load_constant(card_table_base),
1495                               T_BYTE));
1496   }
1497 #endif // ARM
1498 }
1499 
1500 
1501 //------------------------field access--------------------------------------
1502 
1503 // Comment copied form templateTable_i486.cpp
1504 // ----------------------------------------------------------------------------
1505 // Volatile variables demand their effects be made known to all CPU's in
1506 // order.  Store buffers on most chips allow reads & writes to reorder; the
1507 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1508 // memory barrier (i.e., it's not sufficient that the interpreter does not
1509 // reorder volatile references, the hardware also must not reorder them).
1510 //
1511 // According to the new Java Memory Model (JMM):
1512 // (1) All volatiles are serialized wrt to each other.
1513 // ALSO reads & writes act as aquire & release, so:
1514 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1515 // the read float up to before the read.  It's OK for non-volatile memory refs
1516 // that happen before the volatile read to float down below it.
1517 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1518 // that happen BEFORE the write float down to after the write.  It's OK for
1519 // non-volatile memory refs that happen after the volatile write to float up
1520 // before it.
1521 //
1522 // We only put in barriers around volatile refs (they are expensive), not
1523 // _between_ memory refs (that would require us to track the flavor of the
1524 // previous memory refs).  Requirements (2) and (3) require some barriers
1525 // before volatile stores and after volatile loads.  These nearly cover
1526 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1527 // case is placed after volatile-stores although it could just as well go
1528 // before volatile-loads.
1529 
1530 
1531 void LIRGenerator::do_StoreField(StoreField* x) {
1532   bool needs_patching = x->needs_patching();
1533   bool is_volatile = x->field()->is_volatile();
1534   BasicType field_type = x->field_type();
1535   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1536 
1537   CodeEmitInfo* info = NULL;
1538   if (needs_patching) {
1539     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1540     info = state_for(x, x->state_before());
1541   } else if (x->needs_null_check()) {
1542     NullCheck* nc = x->explicit_null_check();
1543     if (nc == NULL) {
1544       info = state_for(x);
1545     } else {
1546       info = state_for(nc);
1547     }
1548   }
1549 
1550 
1551   LIRItem object(x->obj(), this);
1552   LIRItem value(x->value(),  this);
1553 
1554   object.load_item();
1555 
1556   if (is_volatile || needs_patching) {
1557     // load item if field is volatile (fewer special cases for volatiles)
1558     // load item if field not initialized
1559     // load item if field not constant
1560     // because of code patching we cannot inline constants
1561     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1562       value.load_byte_item();
1563     } else  {
1564       value.load_item();
1565     }
1566   } else {
1567     value.load_for_store(field_type);
1568   }
1569 
1570   set_no_result(x);
1571 
1572 #ifndef PRODUCT
1573   if (PrintNotLoaded && needs_patching) {
1574     tty->print_cr("   ###class not loaded at store_%s bci %d",
1575                   x->is_static() ?  "static" : "field", x->printable_bci());
1576   }
1577 #endif
1578 
1579   if (x->needs_null_check() &&
1580       (needs_patching ||
1581        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1582     // emit an explicit null check because the offset is too large
1583     __ null_check(object.result(), new CodeEmitInfo(info));
1584   }
1585 
1586   LIR_Address* address;
1587   if (needs_patching) {
1588     // we need to patch the offset in the instruction so don't allow
1589     // generate_address to try to be smart about emitting the -1.
1590     // Otherwise the patching code won't know how to find the
1591     // instruction to patch.
1592     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1593   } else {
1594     address = generate_address(object.result(), x->offset(), field_type);
1595   }
1596 
1597   if (is_volatile && os::is_MP()) {
1598     __ membar_release();
1599   }
1600 
1601   if (is_oop) {
1602     // Do the pre-write barrier, if any.
1603     pre_barrier(LIR_OprFact::address(address),
1604                 LIR_OprFact::illegalOpr /* pre_val */,
1605                 true /* do_load*/,
1606                 needs_patching,
1607                 (info ? new CodeEmitInfo(info) : NULL));
1608   }
1609 
1610   if (is_volatile) {
1611     assert(!needs_patching && x->is_loaded(),
1612            "how do we know it's volatile if it's not loaded");
1613     volatile_field_store(value.result(), address, info);
1614   } else {
1615     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1616     __ store(value.result(), address, info, patch_code);
1617   }
1618 
1619   if (is_oop) {
1620     // Store to object so mark the card of the header
1621     post_barrier(object.result(), value.result());
1622   }
1623 
1624   if (is_volatile && os::is_MP()) {
1625     __ membar();
1626   }
1627 }
1628 
1629 
1630 void LIRGenerator::do_LoadField(LoadField* x) {
1631   bool needs_patching = x->needs_patching();
1632   bool is_volatile = x->field()->is_volatile();
1633   BasicType field_type = x->field_type();
1634 
1635   CodeEmitInfo* info = NULL;
1636   if (needs_patching) {
1637     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1638     info = state_for(x, x->state_before());
1639   } else if (x->needs_null_check()) {
1640     NullCheck* nc = x->explicit_null_check();
1641     if (nc == NULL) {
1642       info = state_for(x);
1643     } else {
1644       info = state_for(nc);
1645     }
1646   }
1647 
1648   LIRItem object(x->obj(), this);
1649 
1650   object.load_item();
1651 
1652 #ifndef PRODUCT
1653   if (PrintNotLoaded && needs_patching) {
1654     tty->print_cr("   ###class not loaded at load_%s bci %d",
1655                   x->is_static() ?  "static" : "field", x->printable_bci());
1656   }
1657 #endif
1658 
1659   if (x->needs_null_check() &&
1660       (needs_patching ||
1661        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1662     // emit an explicit null check because the offset is too large
1663     __ null_check(object.result(), new CodeEmitInfo(info));
1664   }
1665 
1666   LIR_Opr reg = rlock_result(x, field_type);
1667   LIR_Address* address;
1668   if (needs_patching) {
1669     // we need to patch the offset in the instruction so don't allow
1670     // generate_address to try to be smart about emitting the -1.
1671     // Otherwise the patching code won't know how to find the
1672     // instruction to patch.
1673     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1674   } else {
1675     address = generate_address(object.result(), x->offset(), field_type);
1676   }
1677 
1678   if (is_volatile) {
1679     assert(!needs_patching && x->is_loaded(),
1680            "how do we know it's volatile if it's not loaded");
1681     volatile_field_load(address, reg, info);
1682   } else {
1683     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1684     __ load(address, reg, info, patch_code);
1685   }
1686 
1687   if (is_volatile && os::is_MP()) {
1688     __ membar_acquire();
1689   }
1690 }
1691 
1692 
1693 //------------------------java.nio.Buffer.checkIndex------------------------
1694 
1695 // int java.nio.Buffer.checkIndex(int)
1696 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1697   // NOTE: by the time we are in checkIndex() we are guaranteed that
1698   // the buffer is non-null (because checkIndex is package-private and
1699   // only called from within other methods in the buffer).
1700   assert(x->number_of_arguments() == 2, "wrong type");
1701   LIRItem buf  (x->argument_at(0), this);
1702   LIRItem index(x->argument_at(1), this);
1703   buf.load_item();
1704   index.load_item();
1705 
1706   LIR_Opr result = rlock_result(x);
1707   if (GenerateRangeChecks) {
1708     CodeEmitInfo* info = state_for(x);
1709     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1710     if (index.result()->is_constant()) {
1711       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1712       __ branch(lir_cond_belowEqual, T_INT, stub);
1713     } else {
1714       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1715                   java_nio_Buffer::limit_offset(), T_INT, info);
1716       __ branch(lir_cond_aboveEqual, T_INT, stub);
1717     }
1718     __ move(index.result(), result);
1719   } else {
1720     // Just load the index into the result register
1721     __ move(index.result(), result);
1722   }
1723 }
1724 
1725 
1726 //------------------------array access--------------------------------------
1727 
1728 
1729 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1730   LIRItem array(x->array(), this);
1731   array.load_item();
1732   LIR_Opr reg = rlock_result(x);
1733 
1734   CodeEmitInfo* info = NULL;
1735   if (x->needs_null_check()) {
1736     NullCheck* nc = x->explicit_null_check();
1737     if (nc == NULL) {
1738       info = state_for(x);
1739     } else {
1740       info = state_for(nc);
1741     }
1742   }
1743   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1744 }
1745 
1746 
1747 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1748   bool use_length = x->length() != NULL;
1749   LIRItem array(x->array(), this);
1750   LIRItem index(x->index(), this);
1751   LIRItem length(this);
1752   bool needs_range_check = true;
1753 
1754   if (use_length) {
1755     needs_range_check = x->compute_needs_range_check();
1756     if (needs_range_check) {
1757       length.set_instruction(x->length());
1758       length.load_item();
1759     }
1760   }
1761 
1762   array.load_item();
1763   if (index.is_constant() && can_inline_as_constant(x->index())) {
1764     // let it be a constant
1765     index.dont_load_item();
1766   } else {
1767     index.load_item();
1768   }
1769 
1770   CodeEmitInfo* range_check_info = state_for(x);
1771   CodeEmitInfo* null_check_info = NULL;
1772   if (x->needs_null_check()) {
1773     NullCheck* nc = x->explicit_null_check();
1774     if (nc != NULL) {
1775       null_check_info = state_for(nc);
1776     } else {
1777       null_check_info = range_check_info;
1778     }
1779   }
1780 
1781   // emit array address setup early so it schedules better
1782   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1783 
1784   if (GenerateRangeChecks && needs_range_check) {
1785     if (use_length) {
1786       // TODO: use a (modified) version of array_range_check that does not require a
1787       //       constant length to be loaded to a register
1788       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1789       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1790     } else {
1791       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1792       // The range check performs the null check, so clear it out for the load
1793       null_check_info = NULL;
1794     }
1795   }
1796 
1797   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1798 }
1799 
1800 
1801 void LIRGenerator::do_NullCheck(NullCheck* x) {
1802   if (x->can_trap()) {
1803     LIRItem value(x->obj(), this);
1804     value.load_item();
1805     CodeEmitInfo* info = state_for(x);
1806     __ null_check(value.result(), info);
1807   }
1808 }
1809 
1810 
1811 void LIRGenerator::do_Throw(Throw* x) {
1812   LIRItem exception(x->exception(), this);
1813   exception.load_item();
1814   set_no_result(x);
1815   LIR_Opr exception_opr = exception.result();
1816   CodeEmitInfo* info = state_for(x, x->state());
1817 
1818 #ifndef PRODUCT
1819   if (PrintC1Statistics) {
1820     increment_counter(Runtime1::throw_count_address(), T_INT);
1821   }
1822 #endif
1823 
1824   // check if the instruction has an xhandler in any of the nested scopes
1825   bool unwind = false;
1826   if (info->exception_handlers()->length() == 0) {
1827     // this throw is not inside an xhandler
1828     unwind = true;
1829   } else {
1830     // get some idea of the throw type
1831     bool type_is_exact = true;
1832     ciType* throw_type = x->exception()->exact_type();
1833     if (throw_type == NULL) {
1834       type_is_exact = false;
1835       throw_type = x->exception()->declared_type();
1836     }
1837     if (throw_type != NULL && throw_type->is_instance_klass()) {
1838       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1839       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1840     }
1841   }
1842 
1843   // do null check before moving exception oop into fixed register
1844   // to avoid a fixed interval with an oop during the null check.
1845   // Use a copy of the CodeEmitInfo because debug information is
1846   // different for null_check and throw.
1847   if (GenerateCompilerNullChecks &&
1848       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1849     // if the exception object wasn't created using new then it might be null.
1850     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1851   }
1852 
1853   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1854     // we need to go through the exception lookup path to get JVMTI
1855     // notification done
1856     unwind = false;
1857   }
1858 
1859   // move exception oop into fixed register
1860   __ move(exception_opr, exceptionOopOpr());
1861 
1862   if (unwind) {
1863     __ unwind_exception(exceptionOopOpr());
1864   } else {
1865     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1866   }
1867 }
1868 
1869 
1870 void LIRGenerator::do_RoundFP(RoundFP* x) {
1871   LIRItem input(x->input(), this);
1872   input.load_item();
1873   LIR_Opr input_opr = input.result();
1874   assert(input_opr->is_register(), "why round if value is not in a register?");
1875   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1876   if (input_opr->is_single_fpu()) {
1877     set_result(x, round_item(input_opr)); // This code path not currently taken
1878   } else {
1879     LIR_Opr result = new_register(T_DOUBLE);
1880     set_vreg_flag(result, must_start_in_memory);
1881     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1882     set_result(x, result);
1883   }
1884 }
1885 
1886 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1887   LIRItem base(x->base(), this);
1888   LIRItem idx(this);
1889 
1890   base.load_item();
1891   if (x->has_index()) {
1892     idx.set_instruction(x->index());
1893     idx.load_nonconstant();
1894   }
1895 
1896   LIR_Opr reg = rlock_result(x, x->basic_type());
1897 
1898   int   log2_scale = 0;
1899   if (x->has_index()) {
1900     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1901     log2_scale = x->log2_scale();
1902   }
1903 
1904   assert(!x->has_index() || idx.value() == x->index(), "should match");
1905 
1906   LIR_Opr base_op = base.result();
1907 #ifndef _LP64
1908   if (x->base()->type()->tag() == longTag) {
1909     base_op = new_register(T_INT);
1910     __ convert(Bytecodes::_l2i, base.result(), base_op);
1911   } else {
1912     assert(x->base()->type()->tag() == intTag, "must be");
1913   }
1914 #endif
1915 
1916   BasicType dst_type = x->basic_type();
1917   LIR_Opr index_op = idx.result();
1918 
1919   LIR_Address* addr;
1920   if (index_op->is_constant()) {
1921     assert(log2_scale == 0, "must not have a scale");
1922     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1923   } else {
1924 #ifdef X86
1925 #ifdef _LP64
1926     if (!index_op->is_illegal() && index_op->type() == T_INT) {
1927       LIR_Opr tmp = new_pointer_register();
1928       __ convert(Bytecodes::_i2l, index_op, tmp);
1929       index_op = tmp;
1930     }
1931 #endif
1932     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1933 #elif defined(ARM)
1934     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
1935 #else
1936     if (index_op->is_illegal() || log2_scale == 0) {
1937 #ifdef _LP64
1938       if (!index_op->is_illegal() && index_op->type() == T_INT) {
1939         LIR_Opr tmp = new_pointer_register();
1940         __ convert(Bytecodes::_i2l, index_op, tmp);
1941         index_op = tmp;
1942       }
1943 #endif
1944       addr = new LIR_Address(base_op, index_op, dst_type);
1945     } else {
1946       LIR_Opr tmp = new_pointer_register();
1947       __ shift_left(index_op, log2_scale, tmp);
1948       addr = new LIR_Address(base_op, tmp, dst_type);
1949     }
1950 #endif
1951   }
1952 
1953   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1954     __ unaligned_move(addr, reg);
1955   } else {
1956     if (dst_type == T_OBJECT && x->is_wide()) {
1957       __ move_wide(addr, reg);
1958     } else {
1959       __ move(addr, reg);
1960     }
1961   }
1962 }
1963 
1964 
1965 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1966   int  log2_scale = 0;
1967   BasicType type = x->basic_type();
1968 
1969   if (x->has_index()) {
1970     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1971     log2_scale = x->log2_scale();
1972   }
1973 
1974   LIRItem base(x->base(), this);
1975   LIRItem value(x->value(), this);
1976   LIRItem idx(this);
1977 
1978   base.load_item();
1979   if (x->has_index()) {
1980     idx.set_instruction(x->index());
1981     idx.load_item();
1982   }
1983 
1984   if (type == T_BYTE || type == T_BOOLEAN) {
1985     value.load_byte_item();
1986   } else {
1987     value.load_item();
1988   }
1989 
1990   set_no_result(x);
1991 
1992   LIR_Opr base_op = base.result();
1993 #ifndef _LP64
1994   if (x->base()->type()->tag() == longTag) {
1995     base_op = new_register(T_INT);
1996     __ convert(Bytecodes::_l2i, base.result(), base_op);
1997   } else {
1998     assert(x->base()->type()->tag() == intTag, "must be");
1999   }
2000 #endif
2001 
2002   LIR_Opr index_op = idx.result();
2003   if (log2_scale != 0) {
2004     // temporary fix (platform dependent code without shift on Intel would be better)
2005     index_op = new_pointer_register();
2006 #ifdef _LP64
2007     if(idx.result()->type() == T_INT) {
2008       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2009     } else {
2010 #endif
2011       // TODO: ARM also allows embedded shift in the address
2012       __ move(idx.result(), index_op);
2013 #ifdef _LP64
2014     }
2015 #endif
2016     __ shift_left(index_op, log2_scale, index_op);
2017   }
2018 #ifdef _LP64
2019   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2020     LIR_Opr tmp = new_pointer_register();
2021     __ convert(Bytecodes::_i2l, index_op, tmp);
2022     index_op = tmp;
2023   }
2024 #endif
2025 
2026   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2027   __ move(value.result(), addr);
2028 }
2029 
2030 
2031 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2032   BasicType type = x->basic_type();
2033   LIRItem src(x->object(), this);
2034   LIRItem off(x->offset(), this);
2035 
2036   off.load_item();
2037   src.load_item();
2038 
2039   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
2040 
2041   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
2042   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2043 }
2044 
2045 
2046 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2047   BasicType type = x->basic_type();
2048   LIRItem src(x->object(), this);
2049   LIRItem off(x->offset(), this);
2050   LIRItem data(x->value(), this);
2051 
2052   src.load_item();
2053   if (type == T_BOOLEAN || type == T_BYTE) {
2054     data.load_byte_item();
2055   } else {
2056     data.load_item();
2057   }
2058   off.load_item();
2059 
2060   set_no_result(x);
2061 
2062   if (x->is_volatile() && os::is_MP()) __ membar_release();
2063   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2064   if (x->is_volatile() && os::is_MP()) __ membar();
2065 }
2066 
2067 
2068 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2069   LIRItem src(x->object(), this);
2070   LIRItem off(x->offset(), this);
2071 
2072   src.load_item();
2073   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2074     // let it be a constant
2075     off.dont_load_item();
2076   } else {
2077     off.load_item();
2078   }
2079 
2080   set_no_result(x);
2081 
2082   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2083   __ prefetch(addr, is_store);
2084 }
2085 
2086 
2087 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2088   do_UnsafePrefetch(x, false);
2089 }
2090 
2091 
2092 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2093   do_UnsafePrefetch(x, true);
2094 }
2095 
2096 
2097 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2098   int lng = x->length();
2099 
2100   for (int i = 0; i < lng; i++) {
2101     SwitchRange* one_range = x->at(i);
2102     int low_key = one_range->low_key();
2103     int high_key = one_range->high_key();
2104     BlockBegin* dest = one_range->sux();
2105     if (low_key == high_key) {
2106       __ cmp(lir_cond_equal, value, low_key);
2107       __ branch(lir_cond_equal, T_INT, dest);
2108     } else if (high_key - low_key == 1) {
2109       __ cmp(lir_cond_equal, value, low_key);
2110       __ branch(lir_cond_equal, T_INT, dest);
2111       __ cmp(lir_cond_equal, value, high_key);
2112       __ branch(lir_cond_equal, T_INT, dest);
2113     } else {
2114       LabelObj* L = new LabelObj();
2115       __ cmp(lir_cond_less, value, low_key);
2116       __ branch(lir_cond_less, L->label());
2117       __ cmp(lir_cond_lessEqual, value, high_key);
2118       __ branch(lir_cond_lessEqual, T_INT, dest);
2119       __ branch_destination(L->label());
2120     }
2121   }
2122   __ jump(default_sux);
2123 }
2124 
2125 
2126 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2127   SwitchRangeList* res = new SwitchRangeList();
2128   int len = x->length();
2129   if (len > 0) {
2130     BlockBegin* sux = x->sux_at(0);
2131     int key = x->lo_key();
2132     BlockBegin* default_sux = x->default_sux();
2133     SwitchRange* range = new SwitchRange(key, sux);
2134     for (int i = 0; i < len; i++, key++) {
2135       BlockBegin* new_sux = x->sux_at(i);
2136       if (sux == new_sux) {
2137         // still in same range
2138         range->set_high_key(key);
2139       } else {
2140         // skip tests which explicitly dispatch to the default
2141         if (sux != default_sux) {
2142           res->append(range);
2143         }
2144         range = new SwitchRange(key, new_sux);
2145       }
2146       sux = new_sux;
2147     }
2148     if (res->length() == 0 || res->last() != range)  res->append(range);
2149   }
2150   return res;
2151 }
2152 
2153 
2154 // we expect the keys to be sorted by increasing value
2155 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2156   SwitchRangeList* res = new SwitchRangeList();
2157   int len = x->length();
2158   if (len > 0) {
2159     BlockBegin* default_sux = x->default_sux();
2160     int key = x->key_at(0);
2161     BlockBegin* sux = x->sux_at(0);
2162     SwitchRange* range = new SwitchRange(key, sux);
2163     for (int i = 1; i < len; i++) {
2164       int new_key = x->key_at(i);
2165       BlockBegin* new_sux = x->sux_at(i);
2166       if (key+1 == new_key && sux == new_sux) {
2167         // still in same range
2168         range->set_high_key(new_key);
2169       } else {
2170         // skip tests which explicitly dispatch to the default
2171         if (range->sux() != default_sux) {
2172           res->append(range);
2173         }
2174         range = new SwitchRange(new_key, new_sux);
2175       }
2176       key = new_key;
2177       sux = new_sux;
2178     }
2179     if (res->length() == 0 || res->last() != range)  res->append(range);
2180   }
2181   return res;
2182 }
2183 
2184 
2185 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2186   LIRItem tag(x->tag(), this);
2187   tag.load_item();
2188   set_no_result(x);
2189 
2190   if (x->is_safepoint()) {
2191     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2192   }
2193 
2194   // move values into phi locations
2195   move_to_phi(x->state());
2196 
2197   int lo_key = x->lo_key();
2198   int hi_key = x->hi_key();
2199   int len = x->length();
2200   LIR_Opr value = tag.result();
2201   if (UseTableRanges) {
2202     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2203   } else {
2204     for (int i = 0; i < len; i++) {
2205       __ cmp(lir_cond_equal, value, i + lo_key);
2206       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2207     }
2208     __ jump(x->default_sux());
2209   }
2210 }
2211 
2212 
2213 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2214   LIRItem tag(x->tag(), this);
2215   tag.load_item();
2216   set_no_result(x);
2217 
2218   if (x->is_safepoint()) {
2219     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2220   }
2221 
2222   // move values into phi locations
2223   move_to_phi(x->state());
2224 
2225   LIR_Opr value = tag.result();
2226   if (UseTableRanges) {
2227     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2228   } else {
2229     int len = x->length();
2230     for (int i = 0; i < len; i++) {
2231       __ cmp(lir_cond_equal, value, x->key_at(i));
2232       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2233     }
2234     __ jump(x->default_sux());
2235   }
2236 }
2237 
2238 
2239 void LIRGenerator::do_Goto(Goto* x) {
2240   set_no_result(x);
2241 
2242   if (block()->next()->as_OsrEntry()) {
2243     // need to free up storage used for OSR entry point
2244     LIR_Opr osrBuffer = block()->next()->operand();
2245     BasicTypeList signature;
2246     signature.append(T_INT);
2247     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2248     __ move(osrBuffer, cc->args()->at(0));
2249     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2250                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2251   }
2252 
2253   if (x->is_safepoint()) {
2254     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2255 
2256     // increment backedge counter if needed
2257     CodeEmitInfo* info = state_for(x, state);
2258     increment_backedge_counter(info, info->stack()->bci());
2259     CodeEmitInfo* safepoint_info = state_for(x, state);
2260     __ safepoint(safepoint_poll_register(), safepoint_info);
2261   }
2262 
2263   // Gotos can be folded Ifs, handle this case.
2264   if (x->should_profile()) {
2265     ciMethod* method = x->profiled_method();
2266     assert(method != NULL, "method should be set if branch is profiled");
2267     ciMethodData* md = method->method_data_or_null();
2268     assert(md != NULL, "Sanity");
2269     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2270     assert(data != NULL, "must have profiling data");
2271     int offset;
2272     if (x->direction() == Goto::taken) {
2273       assert(data->is_BranchData(), "need BranchData for two-way branches");
2274       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2275     } else if (x->direction() == Goto::not_taken) {
2276       assert(data->is_BranchData(), "need BranchData for two-way branches");
2277       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2278     } else {
2279       assert(data->is_JumpData(), "need JumpData for branches");
2280       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2281     }
2282     LIR_Opr md_reg = new_register(T_OBJECT);
2283     __ oop2reg(md->constant_encoding(), md_reg);
2284 
2285     increment_counter(new LIR_Address(md_reg, offset,
2286                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2287   }
2288 
2289   // emit phi-instruction move after safepoint since this simplifies
2290   // describing the state as the safepoint.
2291   move_to_phi(x->state());
2292 
2293   __ jump(x->default_sux());
2294 }
2295 
2296 
2297 void LIRGenerator::do_Base(Base* x) {
2298   __ std_entry(LIR_OprFact::illegalOpr);
2299   // Emit moves from physical registers / stack slots to virtual registers
2300   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2301   IRScope* irScope = compilation()->hir()->top_scope();
2302   int java_index = 0;
2303   for (int i = 0; i < args->length(); i++) {
2304     LIR_Opr src = args->at(i);
2305     assert(!src->is_illegal(), "check");
2306     BasicType t = src->type();
2307 
2308     // Types which are smaller than int are passed as int, so
2309     // correct the type which passed.
2310     switch (t) {
2311     case T_BYTE:
2312     case T_BOOLEAN:
2313     case T_SHORT:
2314     case T_CHAR:
2315       t = T_INT;
2316       break;
2317     }
2318 
2319     LIR_Opr dest = new_register(t);
2320     __ move(src, dest);
2321 
2322     // Assign new location to Local instruction for this local
2323     Local* local = x->state()->local_at(java_index)->as_Local();
2324     assert(local != NULL, "Locals for incoming arguments must have been created");
2325 #ifndef __SOFTFP__
2326     // The java calling convention passes double as long and float as int.
2327     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2328 #endif // __SOFTFP__
2329     local->set_operand(dest);
2330     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2331     java_index += type2size[t];
2332   }
2333 
2334   if (compilation()->env()->dtrace_method_probes()) {
2335     BasicTypeList signature;
2336     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2337     signature.append(T_OBJECT); // methodOop
2338     LIR_OprList* args = new LIR_OprList();
2339     args->append(getThreadPointer());
2340     LIR_Opr meth = new_register(T_OBJECT);
2341     __ oop2reg(method()->constant_encoding(), meth);
2342     args->append(meth);
2343     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2344   }
2345 
2346   if (method()->is_synchronized()) {
2347     LIR_Opr obj;
2348     if (method()->is_static()) {
2349       obj = new_register(T_OBJECT);
2350       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2351     } else {
2352       Local* receiver = x->state()->local_at(0)->as_Local();
2353       assert(receiver != NULL, "must already exist");
2354       obj = receiver->operand();
2355     }
2356     assert(obj->is_valid(), "must be valid");
2357 
2358     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2359       LIR_Opr lock = new_register(T_INT);
2360       __ load_stack_address_monitor(0, lock);
2361 
2362       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2363       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2364 
2365       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2366       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2367     }
2368   }
2369 
2370   // increment invocation counters if needed
2371   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2372     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2373     increment_invocation_counter(info);
2374   }
2375 
2376   // all blocks with a successor must end with an unconditional jump
2377   // to the successor even if they are consecutive
2378   __ jump(x->default_sux());
2379 }
2380 
2381 
2382 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2383   // construct our frame and model the production of incoming pointer
2384   // to the OSR buffer.
2385   __ osr_entry(LIR_Assembler::osrBufferPointer());
2386   LIR_Opr result = rlock_result(x);
2387   __ move(LIR_Assembler::osrBufferPointer(), result);
2388 }
2389 
2390 
2391 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2392   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2393   for (; i < args->length(); i++) {
2394     LIRItem* param = args->at(i);
2395     LIR_Opr loc = arg_list->at(i);
2396     if (loc->is_register()) {
2397       param->load_item_force(loc);
2398     } else {
2399       LIR_Address* addr = loc->as_address_ptr();
2400       param->load_for_store(addr->type());
2401       if (addr->type() == T_OBJECT) {
2402         __ move_wide(param->result(), addr);
2403       } else
2404         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2405           __ unaligned_move(param->result(), addr);
2406         } else {
2407           __ move(param->result(), addr);
2408         }
2409     }
2410   }
2411 
2412   if (x->has_receiver()) {
2413     LIRItem* receiver = args->at(0);
2414     LIR_Opr loc = arg_list->at(0);
2415     if (loc->is_register()) {
2416       receiver->load_item_force(loc);
2417     } else {
2418       assert(loc->is_address(), "just checking");
2419       receiver->load_for_store(T_OBJECT);
2420       __ move_wide(receiver->result(), loc->as_address_ptr());
2421     }
2422   }
2423 }
2424 
2425 
2426 // Visits all arguments, returns appropriate items without loading them
2427 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2428   LIRItemList* argument_items = new LIRItemList();
2429   if (x->has_receiver()) {
2430     LIRItem* receiver = new LIRItem(x->receiver(), this);
2431     argument_items->append(receiver);
2432   }
2433   if (x->is_invokedynamic()) {
2434     // Insert a dummy for the synthetic MethodHandle argument.
2435     argument_items->append(NULL);
2436   }
2437   int idx = x->has_receiver() ? 1 : 0;
2438   for (int i = 0; i < x->number_of_arguments(); i++) {
2439     LIRItem* param = new LIRItem(x->argument_at(i), this);
2440     argument_items->append(param);
2441     idx += (param->type()->is_double_word() ? 2 : 1);
2442   }
2443   return argument_items;
2444 }
2445 
2446 
2447 // The invoke with receiver has following phases:
2448 //   a) traverse and load/lock receiver;
2449 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2450 //   c) push receiver on stack
2451 //   d) load each of the items and push on stack
2452 //   e) unlock receiver
2453 //   f) move receiver into receiver-register %o0
2454 //   g) lock result registers and emit call operation
2455 //
2456 // Before issuing a call, we must spill-save all values on stack
2457 // that are in caller-save register. "spill-save" moves thos registers
2458 // either in a free callee-save register or spills them if no free
2459 // callee save register is available.
2460 //
2461 // The problem is where to invoke spill-save.
2462 // - if invoked between e) and f), we may lock callee save
2463 //   register in "spill-save" that destroys the receiver register
2464 //   before f) is executed
2465 // - if we rearange the f) to be earlier, by loading %o0, it
2466 //   may destroy a value on the stack that is currently in %o0
2467 //   and is waiting to be spilled
2468 // - if we keep the receiver locked while doing spill-save,
2469 //   we cannot spill it as it is spill-locked
2470 //
2471 void LIRGenerator::do_Invoke(Invoke* x) {
2472   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2473 
2474   LIR_OprList* arg_list = cc->args();
2475   LIRItemList* args = invoke_visit_arguments(x);
2476   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2477 
2478   // setup result register
2479   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2480   if (x->type() != voidType) {
2481     result_register = result_register_for(x->type());
2482   }
2483 
2484   CodeEmitInfo* info = state_for(x, x->state());
2485 
2486   // invokedynamics can deoptimize.
2487   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2488 
2489   invoke_load_arguments(x, args, arg_list);
2490 
2491   if (x->has_receiver()) {
2492     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2493     receiver = args->at(0)->result();
2494   }
2495 
2496   // emit invoke code
2497   bool optimized = x->target_is_loaded() && x->target_is_final();
2498   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2499 
2500   // JSR 292
2501   // Preserve the SP over MethodHandle call sites.
2502   ciMethod* target = x->target();
2503   if (target->is_method_handle_invoke()) {
2504     info->set_is_method_handle_invoke(true);
2505     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2506   }
2507 
2508   switch (x->code()) {
2509     case Bytecodes::_invokestatic:
2510       __ call_static(target, result_register,
2511                      SharedRuntime::get_resolve_static_call_stub(),
2512                      arg_list, info);
2513       break;
2514     case Bytecodes::_invokespecial:
2515     case Bytecodes::_invokevirtual:
2516     case Bytecodes::_invokeinterface:
2517       // for final target we still produce an inline cache, in order
2518       // to be able to call mixed mode
2519       if (x->code() == Bytecodes::_invokespecial || optimized) {
2520         __ call_opt_virtual(target, receiver, result_register,
2521                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2522                             arg_list, info);
2523       } else if (x->vtable_index() < 0) {
2524         __ call_icvirtual(target, receiver, result_register,
2525                           SharedRuntime::get_resolve_virtual_call_stub(),
2526                           arg_list, info);
2527       } else {
2528         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2529         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2530         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2531       }
2532       break;
2533     case Bytecodes::_invokedynamic: {
2534       ciBytecodeStream bcs(x->scope()->method());
2535       bcs.force_bci(x->state()->bci());
2536       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2537       ciCPCache* cpcache = bcs.get_cpcache();
2538 
2539       // Get CallSite offset from constant pool cache pointer.
2540       int index = bcs.get_method_index();
2541       size_t call_site_offset = cpcache->get_f1_offset(index);
2542 
2543       // If this invokedynamic call site hasn't been executed yet in
2544       // the interpreter, the CallSite object in the constant pool
2545       // cache is still null and we need to deoptimize.
2546       if (cpcache->is_f1_null_at(index)) {
2547         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2548         // clone all handlers.  This is handled transparently in other
2549         // places by the CodeEmitInfo cloning logic but is handled
2550         // specially here because a stub isn't being used.
2551         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2552 
2553         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2554         __ jump(deopt_stub);
2555       }
2556 
2557       // Use the receiver register for the synthetic MethodHandle
2558       // argument.
2559       receiver = LIR_Assembler::receiverOpr();
2560       LIR_Opr tmp = new_register(objectType);
2561 
2562       // Load CallSite object from constant pool cache.
2563       __ oop2reg(cpcache->constant_encoding(), tmp);
2564       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2565 
2566       // Load target MethodHandle from CallSite object.
2567       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2568 
2569       __ call_dynamic(target, receiver, result_register,
2570                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2571                       arg_list, info);
2572       break;
2573     }
2574     default:
2575       ShouldNotReachHere();
2576       break;
2577   }
2578 
2579   // JSR 292
2580   // Restore the SP after MethodHandle call sites.
2581   if (target->is_method_handle_invoke()) {
2582     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2583   }
2584 
2585   if (x->type()->is_float() || x->type()->is_double()) {
2586     // Force rounding of results from non-strictfp when in strictfp
2587     // scope (or when we don't know the strictness of the callee, to
2588     // be safe.)
2589     if (method()->is_strict()) {
2590       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2591         result_register = round_item(result_register);
2592       }
2593     }
2594   }
2595 
2596   if (result_register->is_valid()) {
2597     LIR_Opr result = rlock_result(x);
2598     __ move(result_register, result);
2599   }
2600 }
2601 
2602 
2603 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2604   assert(x->number_of_arguments() == 1, "wrong type");
2605   LIRItem value       (x->argument_at(0), this);
2606   LIR_Opr reg = rlock_result(x);
2607   value.load_item();
2608   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2609   __ move(tmp, reg);
2610 }
2611 
2612 
2613 
2614 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2615 void LIRGenerator::do_IfOp(IfOp* x) {
2616 #ifdef ASSERT
2617   {
2618     ValueTag xtag = x->x()->type()->tag();
2619     ValueTag ttag = x->tval()->type()->tag();
2620     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2621     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2622     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2623   }
2624 #endif
2625 
2626   LIRItem left(x->x(), this);
2627   LIRItem right(x->y(), this);
2628   left.load_item();
2629   if (can_inline_as_constant(right.value())) {
2630     right.dont_load_item();
2631   } else {
2632     right.load_item();
2633   }
2634 
2635   LIRItem t_val(x->tval(), this);
2636   LIRItem f_val(x->fval(), this);
2637   t_val.dont_load_item();
2638   f_val.dont_load_item();
2639   LIR_Opr reg = rlock_result(x);
2640 
2641   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2642   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2643 }
2644 
2645 
2646 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2647   switch (x->id()) {
2648   case vmIntrinsics::_intBitsToFloat      :
2649   case vmIntrinsics::_doubleToRawLongBits :
2650   case vmIntrinsics::_longBitsToDouble    :
2651   case vmIntrinsics::_floatToRawIntBits   : {
2652     do_FPIntrinsics(x);
2653     break;
2654   }
2655 
2656   case vmIntrinsics::_currentTimeMillis: {
2657     assert(x->number_of_arguments() == 0, "wrong type");
2658     LIR_Opr reg = result_register_for(x->type());
2659     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2660                          reg, new LIR_OprList());
2661     LIR_Opr result = rlock_result(x);
2662     __ move(reg, result);
2663     break;
2664   }
2665 
2666   case vmIntrinsics::_nanoTime: {
2667     assert(x->number_of_arguments() == 0, "wrong type");
2668     LIR_Opr reg = result_register_for(x->type());
2669     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2670                          reg, new LIR_OprList());
2671     LIR_Opr result = rlock_result(x);
2672     __ move(reg, result);
2673     break;
2674   }
2675 
2676   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2677   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2678   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2679 
2680   case vmIntrinsics::_dlog:           // fall through
2681   case vmIntrinsics::_dlog10:         // fall through
2682   case vmIntrinsics::_dabs:           // fall through
2683   case vmIntrinsics::_dsqrt:          // fall through
2684   case vmIntrinsics::_dtan:           // fall through
2685   case vmIntrinsics::_dsin :          // fall through
2686   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2687   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2688 
2689   // java.nio.Buffer.checkIndex
2690   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2691 
2692   case vmIntrinsics::_compareAndSwapObject:
2693     do_CompareAndSwap(x, objectType);
2694     break;
2695   case vmIntrinsics::_compareAndSwapInt:
2696     do_CompareAndSwap(x, intType);
2697     break;
2698   case vmIntrinsics::_compareAndSwapLong:
2699     do_CompareAndSwap(x, longType);
2700     break;
2701 
2702     // sun.misc.AtomicLongCSImpl.attemptUpdate
2703   case vmIntrinsics::_attemptUpdate:
2704     do_AttemptUpdate(x);
2705     break;
2706 
2707   case vmIntrinsics::_Reference_get:
2708     do_Reference_get(x);
2709     break;
2710 
2711   default: ShouldNotReachHere(); break;
2712   }
2713 }
2714 
2715 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2716   // Need recv in a temporary register so it interferes with the other temporaries
2717   LIR_Opr recv = LIR_OprFact::illegalOpr;
2718   LIR_Opr mdo = new_register(T_OBJECT);
2719   // tmp is used to hold the counters on SPARC
2720   LIR_Opr tmp = new_pointer_register();
2721   if (x->recv() != NULL) {
2722     LIRItem value(x->recv(), this);
2723     value.load_item();
2724     recv = new_register(T_OBJECT);
2725     __ move(value.result(), recv);
2726   }
2727   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2728 }
2729 
2730 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2731   // We can safely ignore accessors here, since c2 will inline them anyway,
2732   // accessors are also always mature.
2733   if (!x->inlinee()->is_accessor()) {
2734     CodeEmitInfo* info = state_for(x, x->state(), true);
2735     // Increment invocation counter, don't notify the runtime, because we don't inline loops,
2736     increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
2737   }
2738 }
2739 
2740 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2741   int freq_log;
2742   int level = compilation()->env()->comp_level();
2743   if (level == CompLevel_limited_profile) {
2744     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2745   } else if (level == CompLevel_full_profile) {
2746     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2747   } else {
2748     ShouldNotReachHere();
2749   }
2750   // Increment the appropriate invocation/backedge counter and notify the runtime.
2751   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2752 }
2753 
2754 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2755                                                 ciMethod *method, int frequency,
2756                                                 int bci, bool backedge, bool notify) {
2757   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2758   int level = _compilation->env()->comp_level();
2759   assert(level > CompLevel_simple, "Shouldn't be here");
2760 
2761   int offset = -1;
2762   LIR_Opr counter_holder = new_register(T_OBJECT);
2763   LIR_Opr meth;
2764   if (level == CompLevel_limited_profile) {
2765     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
2766                                  methodOopDesc::invocation_counter_offset());
2767     __ oop2reg(method->constant_encoding(), counter_holder);
2768     meth = counter_holder;
2769   } else if (level == CompLevel_full_profile) {
2770     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
2771                                  methodDataOopDesc::invocation_counter_offset());
2772     ciMethodData* md = method->method_data_or_null();
2773     assert(md != NULL, "Sanity");
2774     __ oop2reg(md->constant_encoding(), counter_holder);
2775     meth = new_register(T_OBJECT);
2776     __ oop2reg(method->constant_encoding(), meth);
2777   } else {
2778     ShouldNotReachHere();
2779   }
2780   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
2781   LIR_Opr result = new_register(T_INT);
2782   __ load(counter, result);
2783   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
2784   __ store(result, counter);
2785   if (notify) {
2786     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
2787     __ logical_and(result, mask, result);
2788     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
2789     // The bci for info can point to cmp for if's we want the if bci
2790     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
2791     __ branch(lir_cond_equal, T_INT, overflow);
2792     __ branch_destination(overflow->continuation());
2793   }
2794 }
2795 
2796 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
2797   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
2798   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
2799 
2800   if (x->pass_thread()) {
2801     signature->append(T_ADDRESS);
2802     args->append(getThreadPointer());
2803   }
2804 
2805   for (int i = 0; i < x->number_of_arguments(); i++) {
2806     Value a = x->argument_at(i);
2807     LIRItem* item = new LIRItem(a, this);
2808     item->load_item();
2809     args->append(item->result());
2810     signature->append(as_BasicType(a->type()));
2811   }
2812 
2813   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
2814   if (x->type() == voidType) {
2815     set_no_result(x);
2816   } else {
2817     __ move(result, rlock_result(x));
2818   }
2819 }
2820 
2821 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2822   LIRItemList args(1);
2823   LIRItem value(arg1, this);
2824   args.append(&value);
2825   BasicTypeList signature;
2826   signature.append(as_BasicType(arg1->type()));
2827 
2828   return call_runtime(&signature, &args, entry, result_type, info);
2829 }
2830 
2831 
2832 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2833   LIRItemList args(2);
2834   LIRItem value1(arg1, this);
2835   LIRItem value2(arg2, this);
2836   args.append(&value1);
2837   args.append(&value2);
2838   BasicTypeList signature;
2839   signature.append(as_BasicType(arg1->type()));
2840   signature.append(as_BasicType(arg2->type()));
2841 
2842   return call_runtime(&signature, &args, entry, result_type, info);
2843 }
2844 
2845 
2846 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2847                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2848   // get a result register
2849   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2850   LIR_Opr result = LIR_OprFact::illegalOpr;
2851   if (result_type->tag() != voidTag) {
2852     result = new_register(result_type);
2853     phys_reg = result_register_for(result_type);
2854   }
2855 
2856   // move the arguments into the correct location
2857   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2858   assert(cc->length() == args->length(), "argument mismatch");
2859   for (int i = 0; i < args->length(); i++) {
2860     LIR_Opr arg = args->at(i);
2861     LIR_Opr loc = cc->at(i);
2862     if (loc->is_register()) {
2863       __ move(arg, loc);
2864     } else {
2865       LIR_Address* addr = loc->as_address_ptr();
2866 //           if (!can_store_as_constant(arg)) {
2867 //             LIR_Opr tmp = new_register(arg->type());
2868 //             __ move(arg, tmp);
2869 //             arg = tmp;
2870 //           }
2871       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2872         __ unaligned_move(arg, addr);
2873       } else {
2874         __ move(arg, addr);
2875       }
2876     }
2877   }
2878 
2879   if (info) {
2880     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2881   } else {
2882     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2883   }
2884   if (result->is_valid()) {
2885     __ move(phys_reg, result);
2886   }
2887   return result;
2888 }
2889 
2890 
2891 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2892                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2893   // get a result register
2894   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2895   LIR_Opr result = LIR_OprFact::illegalOpr;
2896   if (result_type->tag() != voidTag) {
2897     result = new_register(result_type);
2898     phys_reg = result_register_for(result_type);
2899   }
2900 
2901   // move the arguments into the correct location
2902   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2903 
2904   assert(cc->length() == args->length(), "argument mismatch");
2905   for (int i = 0; i < args->length(); i++) {
2906     LIRItem* arg = args->at(i);
2907     LIR_Opr loc = cc->at(i);
2908     if (loc->is_register()) {
2909       arg->load_item_force(loc);
2910     } else {
2911       LIR_Address* addr = loc->as_address_ptr();
2912       arg->load_for_store(addr->type());
2913       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2914         __ unaligned_move(arg->result(), addr);
2915       } else {
2916         __ move(arg->result(), addr);
2917       }
2918     }
2919   }
2920 
2921   if (info) {
2922     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2923   } else {
2924     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2925   }
2926   if (result->is_valid()) {
2927     __ move(phys_reg, result);
2928   }
2929   return result;
2930 }