1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 #define __ _masm->
  40 
  41 // Misc helpers
  42 
  43 // Do an oop store like *(base + index + offset) = val
  44 // index can be noreg,
  45 static void do_oop_store(InterpreterMacroAssembler* _masm,
  46                          Register base,
  47                          Register index,
  48                          int offset,
  49                          Register val,
  50                          Register tmp,
  51                          BarrierSet::Name barrier,
  52                          bool precise) {
  53   assert(tmp != val && tmp != base && tmp != index, "register collision");
  54   assert(index == noreg || offset == 0, "only one offset");
  55   switch (barrier) {
  56 #ifndef SERIALGC
  57     case BarrierSet::G1SATBCT:
  58     case BarrierSet::G1SATBCTLogging:
  59       {
  60         __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
  61         if (index == noreg ) {
  62           assert(Assembler::is_simm13(offset), "fix this code");
  63           __ store_heap_oop(val, base, offset);
  64         } else {
  65           __ store_heap_oop(val, base, index);
  66         }
  67 
  68         // No need for post barrier if storing NULL
  69         if (val != G0) {
  70           if (precise) {
  71             if (index == noreg) {
  72               __ add(base, offset, base);
  73             } else {
  74               __ add(base, index, base);
  75             }
  76           }
  77           __ g1_write_barrier_post(base, val, tmp);
  78         }
  79       }
  80       break;
  81 #endif // SERIALGC
  82     case BarrierSet::CardTableModRef:
  83     case BarrierSet::CardTableExtension:
  84       {
  85         if (index == noreg ) {
  86           assert(Assembler::is_simm13(offset), "fix this code");
  87           __ store_heap_oop(val, base, offset);
  88         } else {
  89           __ store_heap_oop(val, base, index);
  90         }
  91         // No need for post barrier if storing NULL
  92         if (val != G0) {
  93           if (precise) {
  94             if (index == noreg) {
  95               __ add(base, offset, base);
  96             } else {
  97               __ add(base, index, base);
  98             }
  99           }
 100           __ card_write_barrier_post(base, val, tmp);
 101         }
 102       }
 103       break;
 104     case BarrierSet::ModRef:
 105     case BarrierSet::Other:
 106       ShouldNotReachHere();
 107       break;
 108     default      :
 109       ShouldNotReachHere();
 110 
 111   }
 112 }
 113 
 114 
 115 //----------------------------------------------------------------------------------------------------
 116 // Platform-dependent initialization
 117 
 118 void TemplateTable::pd_initialize() {
 119   // (none)
 120 }
 121 
 122 
 123 //----------------------------------------------------------------------------------------------------
 124 // Condition conversion
 125 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 126   switch (cc) {
 127     case TemplateTable::equal        : return Assembler::notEqual;
 128     case TemplateTable::not_equal    : return Assembler::equal;
 129     case TemplateTable::less         : return Assembler::greaterEqual;
 130     case TemplateTable::less_equal   : return Assembler::greater;
 131     case TemplateTable::greater      : return Assembler::lessEqual;
 132     case TemplateTable::greater_equal: return Assembler::less;
 133   }
 134   ShouldNotReachHere();
 135   return Assembler::zero;
 136 }
 137 
 138 //----------------------------------------------------------------------------------------------------
 139 // Miscelaneous helper routines
 140 
 141 
 142 Address TemplateTable::at_bcp(int offset) {
 143   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 144   return Address(Lbcp, offset);
 145 }
 146 
 147 
 148 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
 149                                    Register Rscratch,
 150                                    bool load_bc_into_scratch /*=true*/) {
 151   // With sharing on, may need to test methodOop flag.
 152   if (!RewriteBytecodes) return;
 153   if (load_bc_into_scratch) __ set(bc, Rbyte_code);
 154   Label patch_done;
 155   if (JvmtiExport::can_post_breakpoint()) {
 156     Label fast_patch;
 157     __ ldub(at_bcp(0), Rscratch);
 158     __ cmp(Rscratch, Bytecodes::_breakpoint);
 159     __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
 160     __ delayed()->nop();  // don't bother to hoist the stb here
 161     // perform the quickening, slowly, in the bowels of the breakpoint table
 162     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
 163     __ ba(false, patch_done);
 164     __ delayed()->nop();
 165     __ bind(fast_patch);
 166   }
 167 #ifdef ASSERT
 168   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 169   Label okay;
 170   __ ldub(at_bcp(0), Rscratch);
 171   __ cmp(Rscratch, orig_bytecode);
 172   __ br(Assembler::equal, false, Assembler::pt, okay);
 173   __ delayed() ->cmp(Rscratch, Rbyte_code);
 174   __ br(Assembler::equal, false, Assembler::pt, okay);
 175   __ delayed()->nop();
 176   __ stop("Rewriting wrong bytecode location");
 177   __ bind(okay);
 178 #endif
 179   __ stb(Rbyte_code, at_bcp(0));
 180   __ bind(patch_done);
 181 }
 182 
 183 //----------------------------------------------------------------------------------------------------
 184 // Individual instructions
 185 
 186 void TemplateTable::nop() {
 187   transition(vtos, vtos);
 188   // nothing to do
 189 }
 190 
 191 void TemplateTable::shouldnotreachhere() {
 192   transition(vtos, vtos);
 193   __ stop("shouldnotreachhere bytecode");
 194 }
 195 
 196 void TemplateTable::aconst_null() {
 197   transition(vtos, atos);
 198   __ clr(Otos_i);
 199 }
 200 
 201 
 202 void TemplateTable::iconst(int value) {
 203   transition(vtos, itos);
 204   __ set(value, Otos_i);
 205 }
 206 
 207 
 208 void TemplateTable::lconst(int value) {
 209   transition(vtos, ltos);
 210   assert(value >= 0, "check this code");
 211 #ifdef _LP64
 212   __ set(value, Otos_l);
 213 #else
 214   __ set(value, Otos_l2);
 215   __ clr( Otos_l1);
 216 #endif
 217 }
 218 
 219 
 220 void TemplateTable::fconst(int value) {
 221   transition(vtos, ftos);
 222   static float zero = 0.0, one = 1.0, two = 2.0;
 223   float* p;
 224   switch( value ) {
 225    default: ShouldNotReachHere();
 226    case 0:  p = &zero;  break;
 227    case 1:  p = &one;   break;
 228    case 2:  p = &two;   break;
 229   }
 230   AddressLiteral a(p);
 231   __ sethi(a, G3_scratch);
 232   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 233 }
 234 
 235 
 236 void TemplateTable::dconst(int value) {
 237   transition(vtos, dtos);
 238   static double zero = 0.0, one = 1.0;
 239   double* p;
 240   switch( value ) {
 241    default: ShouldNotReachHere();
 242    case 0:  p = &zero;  break;
 243    case 1:  p = &one;   break;
 244   }
 245   AddressLiteral a(p);
 246   __ sethi(a, G3_scratch);
 247   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 248 }
 249 
 250 
 251 // %%%%% Should factore most snippet templates across platforms
 252 
 253 void TemplateTable::bipush() {
 254   transition(vtos, itos);
 255   __ ldsb( at_bcp(1), Otos_i );
 256 }
 257 
 258 void TemplateTable::sipush() {
 259   transition(vtos, itos);
 260   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 261 }
 262 
 263 void TemplateTable::ldc(bool wide) {
 264   transition(vtos, vtos);
 265   Label call_ldc, notInt, notString, notClass, exit;
 266 
 267   if (wide) {
 268     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 269   } else {
 270     __ ldub(Lbcp, 1, O1);
 271   }
 272   __ get_cpool_and_tags(O0, O2);
 273 
 274   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 275   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 276 
 277   // get type from tags
 278   __ add(O2, tags_offset, O2);
 279   __ ldub(O2, O1, O2);
 280   __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
 281   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
 282   __ delayed()->nop();
 283 
 284   __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
 285   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
 286   __ delayed()->nop();
 287 
 288   __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
 289   __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
 290   __ delayed()->nop();
 291 
 292   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 293   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 294   __ delayed()->add(O0, base_offset, O0);
 295 
 296   __ bind(call_ldc);
 297   __ set(wide, O1);
 298   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 299   __ push(atos);
 300   __ ba(false, exit);
 301   __ delayed()->nop();
 302 
 303   __ bind(notClass);
 304  // __ add(O0, base_offset, O0);
 305   __ sll(O1, LogBytesPerWord, O1);
 306   __ cmp(O2, JVM_CONSTANT_Integer);
 307   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 308   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 309   __ ld(O0, O1, Otos_i);
 310   __ push(itos);
 311   __ ba(false, exit);
 312   __ delayed()->nop();
 313 
 314   __ bind(notInt);
 315  // __ cmp(O2, JVM_CONSTANT_String);
 316   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 317   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 318   __ ld_ptr(O0, O1, Otos_i);
 319   __ verify_oop(Otos_i);
 320   __ push(atos);
 321   __ ba(false, exit);
 322   __ delayed()->nop();
 323 
 324   __ bind(notString);
 325  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 326   __ push(ftos);
 327 
 328   __ bind(exit);
 329 }
 330 
 331 // Fast path for caching oop constants.
 332 // %%% We should use this to handle Class and String constants also.
 333 // %%% It will simplify the ldc/primitive path considerably.
 334 void TemplateTable::fast_aldc(bool wide) {
 335   transition(vtos, atos);
 336 
 337   if (!EnableMethodHandles) {
 338     // We should not encounter this bytecode if !EnableMethodHandles.
 339     // The verifier will stop it.  However, if we get past the verifier,
 340     // this will stop the thread in a reasonable way, without crashing the JVM.
 341     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 342                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 343     // the call_VM checks for exception, so we should never return here.
 344     __ should_not_reach_here();
 345     return;
 346   }
 347 
 348   Register Rcache = G3_scratch;
 349   Register Rscratch = G4_scratch;
 350 
 351   resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
 352 
 353   __ verify_oop(Otos_i);
 354 
 355   Label L_done;
 356   const Register Rcon_klass = G3_scratch;  // same as Rcache
 357   const Register Rarray_klass = G4_scratch;  // same as Rscratch
 358   __ load_klass(Otos_i, Rcon_klass);
 359   AddressLiteral array_klass_addr((address)Universe::systemObjArrayKlassObj_addr());
 360   __ load_contents(array_klass_addr, Rarray_klass);
 361   __ cmp(Rarray_klass, Rcon_klass);
 362   __ brx(Assembler::notEqual, false, Assembler::pt, L_done);
 363   __ delayed()->nop();
 364   __ ld(Address(Otos_i, arrayOopDesc::length_offset_in_bytes()), Rcon_klass);
 365   __ tst(Rcon_klass);
 366   __ brx(Assembler::zero, true, Assembler::pt, L_done);
 367   __ delayed()->clr(Otos_i);    // executed only if branch is taken
 368 
 369   // Load the exception from the system-array which wraps it:
 370   __ load_heap_oop(Otos_i, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 371   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
 372 
 373   __ bind(L_done);
 374 }
 375 
 376 void TemplateTable::ldc2_w() {
 377   transition(vtos, vtos);
 378   Label retry, resolved, Long, exit;
 379 
 380   __ bind(retry);
 381   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 382   __ get_cpool_and_tags(O0, O2);
 383 
 384   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 385   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 386   // get type from tags
 387   __ add(O2, tags_offset, O2);
 388   __ ldub(O2, O1, O2);
 389 
 390   __ sll(O1, LogBytesPerWord, O1);
 391   __ add(O0, O1, G3_scratch);
 392 
 393   __ cmp(O2, JVM_CONSTANT_Double);
 394   __ brx(Assembler::notEqual, false, Assembler::pt, Long);
 395   __ delayed()->nop();
 396   // A double can be placed at word-aligned locations in the constant pool.
 397   // Check out Conversions.java for an example.
 398   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
 399   // to double-align double on the constant pool.  SG, 11/7/97
 400 #ifdef _LP64
 401   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 402 #else
 403   FloatRegister f = Ftos_d;
 404   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 405   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 406          f->successor());
 407 #endif
 408   __ push(dtos);
 409   __ ba(false, exit);
 410   __ delayed()->nop();
 411 
 412   __ bind(Long);
 413 #ifdef _LP64
 414   __ ldx(G3_scratch, base_offset, Otos_l);
 415 #else
 416   __ ld(G3_scratch, base_offset, Otos_l);
 417   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 418 #endif
 419   __ push(ltos);
 420 
 421   __ bind(exit);
 422 }
 423 
 424 
 425 void TemplateTable::locals_index(Register reg, int offset) {
 426   __ ldub( at_bcp(offset), reg );
 427 }
 428 
 429 
 430 void TemplateTable::locals_index_wide(Register reg) {
 431   // offset is 2, not 1, because Lbcp points to wide prefix code
 432   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 433 }
 434 
 435 void TemplateTable::iload() {
 436   transition(vtos, itos);
 437   // Rewrite iload,iload  pair into fast_iload2
 438   //         iload,caload pair into fast_icaload
 439   if (RewriteFrequentPairs) {
 440     Label rewrite, done;
 441 
 442     // get next byte
 443     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 444 
 445     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 446     // last two iloads in a pair.  Comparing against fast_iload means that
 447     // the next bytecode is neither an iload or a caload, and therefore
 448     // an iload pair.
 449     __ cmp(G3_scratch, (int)Bytecodes::_iload);
 450     __ br(Assembler::equal, false, Assembler::pn, done);
 451     __ delayed()->nop();
 452 
 453     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 454     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 455     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 456 
 457     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 458     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 459     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 460 
 461     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 462     // rewrite
 463     // G4_scratch: fast bytecode
 464     __ bind(rewrite);
 465     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 466     __ bind(done);
 467   }
 468 
 469   // Get the local value into tos
 470   locals_index(G3_scratch);
 471   __ access_local_int( G3_scratch, Otos_i );
 472 }
 473 
 474 void TemplateTable::fast_iload2() {
 475   transition(vtos, itos);
 476   locals_index(G3_scratch);
 477   __ access_local_int( G3_scratch, Otos_i );
 478   __ push_i();
 479   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 480   __ access_local_int( G3_scratch, Otos_i );
 481 }
 482 
 483 void TemplateTable::fast_iload() {
 484   transition(vtos, itos);
 485   locals_index(G3_scratch);
 486   __ access_local_int( G3_scratch, Otos_i );
 487 }
 488 
 489 void TemplateTable::lload() {
 490   transition(vtos, ltos);
 491   locals_index(G3_scratch);
 492   __ access_local_long( G3_scratch, Otos_l );
 493 }
 494 
 495 
 496 void TemplateTable::fload() {
 497   transition(vtos, ftos);
 498   locals_index(G3_scratch);
 499   __ access_local_float( G3_scratch, Ftos_f );
 500 }
 501 
 502 
 503 void TemplateTable::dload() {
 504   transition(vtos, dtos);
 505   locals_index(G3_scratch);
 506   __ access_local_double( G3_scratch, Ftos_d );
 507 }
 508 
 509 
 510 void TemplateTable::aload() {
 511   transition(vtos, atos);
 512   locals_index(G3_scratch);
 513   __ access_local_ptr( G3_scratch, Otos_i);
 514 }
 515 
 516 
 517 void TemplateTable::wide_iload() {
 518   transition(vtos, itos);
 519   locals_index_wide(G3_scratch);
 520   __ access_local_int( G3_scratch, Otos_i );
 521 }
 522 
 523 
 524 void TemplateTable::wide_lload() {
 525   transition(vtos, ltos);
 526   locals_index_wide(G3_scratch);
 527   __ access_local_long( G3_scratch, Otos_l );
 528 }
 529 
 530 
 531 void TemplateTable::wide_fload() {
 532   transition(vtos, ftos);
 533   locals_index_wide(G3_scratch);
 534   __ access_local_float( G3_scratch, Ftos_f );
 535 }
 536 
 537 
 538 void TemplateTable::wide_dload() {
 539   transition(vtos, dtos);
 540   locals_index_wide(G3_scratch);
 541   __ access_local_double( G3_scratch, Ftos_d );
 542 }
 543 
 544 
 545 void TemplateTable::wide_aload() {
 546   transition(vtos, atos);
 547   locals_index_wide(G3_scratch);
 548   __ access_local_ptr( G3_scratch, Otos_i );
 549   __ verify_oop(Otos_i);
 550 }
 551 
 552 
 553 void TemplateTable::iaload() {
 554   transition(itos, itos);
 555   // Otos_i: index
 556   // tos: array
 557   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 558   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 559 }
 560 
 561 
 562 void TemplateTable::laload() {
 563   transition(itos, ltos);
 564   // Otos_i: index
 565   // O2: array
 566   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 567   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 568 }
 569 
 570 
 571 void TemplateTable::faload() {
 572   transition(itos, ftos);
 573   // Otos_i: index
 574   // O2: array
 575   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 576   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 577 }
 578 
 579 
 580 void TemplateTable::daload() {
 581   transition(itos, dtos);
 582   // Otos_i: index
 583   // O2: array
 584   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 585   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 586 }
 587 
 588 
 589 void TemplateTable::aaload() {
 590   transition(itos, atos);
 591   // Otos_i: index
 592   // tos: array
 593   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 594   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 595   __ verify_oop(Otos_i);
 596 }
 597 
 598 
 599 void TemplateTable::baload() {
 600   transition(itos, itos);
 601   // Otos_i: index
 602   // tos: array
 603   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 604   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 605 }
 606 
 607 
 608 void TemplateTable::caload() {
 609   transition(itos, itos);
 610   // Otos_i: index
 611   // tos: array
 612   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 613   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 614 }
 615 
 616 void TemplateTable::fast_icaload() {
 617   transition(vtos, itos);
 618   // Otos_i: index
 619   // tos: array
 620   locals_index(G3_scratch);
 621   __ access_local_int( G3_scratch, Otos_i );
 622   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 623   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 624 }
 625 
 626 
 627 void TemplateTable::saload() {
 628   transition(itos, itos);
 629   // Otos_i: index
 630   // tos: array
 631   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 632   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 633 }
 634 
 635 
 636 void TemplateTable::iload(int n) {
 637   transition(vtos, itos);
 638   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 639 }
 640 
 641 
 642 void TemplateTable::lload(int n) {
 643   transition(vtos, ltos);
 644   assert(n+1 < Argument::n_register_parameters, "would need more code");
 645   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 646 }
 647 
 648 
 649 void TemplateTable::fload(int n) {
 650   transition(vtos, ftos);
 651   assert(n < Argument::n_register_parameters, "would need more code");
 652   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 653 }
 654 
 655 
 656 void TemplateTable::dload(int n) {
 657   transition(vtos, dtos);
 658   FloatRegister dst = Ftos_d;
 659   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 660 }
 661 
 662 
 663 void TemplateTable::aload(int n) {
 664   transition(vtos, atos);
 665   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 666 }
 667 
 668 
 669 void TemplateTable::aload_0() {
 670   transition(vtos, atos);
 671 
 672   // According to bytecode histograms, the pairs:
 673   //
 674   // _aload_0, _fast_igetfield (itos)
 675   // _aload_0, _fast_agetfield (atos)
 676   // _aload_0, _fast_fgetfield (ftos)
 677   //
 678   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 679   // bytecode checks the next bytecode and then rewrites the current
 680   // bytecode into a pair bytecode; otherwise it rewrites the current
 681   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 682   //
 683   if (RewriteFrequentPairs) {
 684     Label rewrite, done;
 685 
 686     // get next byte
 687     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 688 
 689     // do actual aload_0
 690     aload(0);
 691 
 692     // if _getfield then wait with rewrite
 693     __ cmp(G3_scratch, (int)Bytecodes::_getfield);
 694     __ br(Assembler::equal, false, Assembler::pn, done);
 695     __ delayed()->nop();
 696 
 697     // if _igetfield then rewrite to _fast_iaccess_0
 698     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 699     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 700     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 701     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 702 
 703     // if _agetfield then rewrite to _fast_aaccess_0
 704     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 705     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 706     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 707     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 708 
 709     // if _fgetfield then rewrite to _fast_faccess_0
 710     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 711     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 712     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 713     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 714 
 715     // else rewrite to _fast_aload0
 716     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 717     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 718 
 719     // rewrite
 720     // G4_scratch: fast bytecode
 721     __ bind(rewrite);
 722     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 723     __ bind(done);
 724   } else {
 725     aload(0);
 726   }
 727 }
 728 
 729 
 730 void TemplateTable::istore() {
 731   transition(itos, vtos);
 732   locals_index(G3_scratch);
 733   __ store_local_int( G3_scratch, Otos_i );
 734 }
 735 
 736 
 737 void TemplateTable::lstore() {
 738   transition(ltos, vtos);
 739   locals_index(G3_scratch);
 740   __ store_local_long( G3_scratch, Otos_l );
 741 }
 742 
 743 
 744 void TemplateTable::fstore() {
 745   transition(ftos, vtos);
 746   locals_index(G3_scratch);
 747   __ store_local_float( G3_scratch, Ftos_f );
 748 }
 749 
 750 
 751 void TemplateTable::dstore() {
 752   transition(dtos, vtos);
 753   locals_index(G3_scratch);
 754   __ store_local_double( G3_scratch, Ftos_d );
 755 }
 756 
 757 
 758 void TemplateTable::astore() {
 759   transition(vtos, vtos);
 760   __ load_ptr(0, Otos_i);
 761   __ inc(Lesp, Interpreter::stackElementSize);
 762   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 763   locals_index(G3_scratch);
 764   __ store_local_ptr(G3_scratch, Otos_i);
 765 }
 766 
 767 
 768 void TemplateTable::wide_istore() {
 769   transition(vtos, vtos);
 770   __ pop_i();
 771   locals_index_wide(G3_scratch);
 772   __ store_local_int( G3_scratch, Otos_i );
 773 }
 774 
 775 
 776 void TemplateTable::wide_lstore() {
 777   transition(vtos, vtos);
 778   __ pop_l();
 779   locals_index_wide(G3_scratch);
 780   __ store_local_long( G3_scratch, Otos_l );
 781 }
 782 
 783 
 784 void TemplateTable::wide_fstore() {
 785   transition(vtos, vtos);
 786   __ pop_f();
 787   locals_index_wide(G3_scratch);
 788   __ store_local_float( G3_scratch, Ftos_f );
 789 }
 790 
 791 
 792 void TemplateTable::wide_dstore() {
 793   transition(vtos, vtos);
 794   __ pop_d();
 795   locals_index_wide(G3_scratch);
 796   __ store_local_double( G3_scratch, Ftos_d );
 797 }
 798 
 799 
 800 void TemplateTable::wide_astore() {
 801   transition(vtos, vtos);
 802   __ load_ptr(0, Otos_i);
 803   __ inc(Lesp, Interpreter::stackElementSize);
 804   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 805   locals_index_wide(G3_scratch);
 806   __ store_local_ptr(G3_scratch, Otos_i);
 807 }
 808 
 809 
 810 void TemplateTable::iastore() {
 811   transition(itos, vtos);
 812   __ pop_i(O2); // index
 813   // Otos_i: val
 814   // O3: array
 815   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 816   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 817 }
 818 
 819 
 820 void TemplateTable::lastore() {
 821   transition(ltos, vtos);
 822   __ pop_i(O2); // index
 823   // Otos_l: val
 824   // O3: array
 825   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 826   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 827 }
 828 
 829 
 830 void TemplateTable::fastore() {
 831   transition(ftos, vtos);
 832   __ pop_i(O2); // index
 833   // Ftos_f: val
 834   // O3: array
 835   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 836   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 837 }
 838 
 839 
 840 void TemplateTable::dastore() {
 841   transition(dtos, vtos);
 842   __ pop_i(O2); // index
 843   // Fos_d: val
 844   // O3: array
 845   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 846   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 847 }
 848 
 849 
 850 void TemplateTable::aastore() {
 851   Label store_ok, is_null, done;
 852   transition(vtos, vtos);
 853   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 854   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 855   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 856   // Otos_i: val
 857   // O2: index
 858   // O3: array
 859   __ verify_oop(Otos_i);
 860   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 861 
 862   // do array store check - check for NULL value first
 863   __ br_null( Otos_i, false, Assembler::pn, is_null );
 864   __ delayed()->nop();
 865 
 866   __ load_klass(O3, O4); // get array klass
 867   __ load_klass(Otos_i, O5); // get value klass
 868 
 869   // do fast instanceof cache test
 870 
 871   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
 872 
 873   assert(Otos_i == O0, "just checking");
 874 
 875   // Otos_i:    value
 876   // O1:        addr - offset
 877   // O2:        index
 878   // O3:        array
 879   // O4:        array element klass
 880   // O5:        value klass
 881 
 882   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 883 
 884   // Generate a fast subtype check.  Branch to store_ok if no
 885   // failure.  Throw if failure.
 886   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 887 
 888   // Not a subtype; so must throw exception
 889   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 890 
 891   // Store is OK.
 892   __ bind(store_ok);
 893   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 894 
 895   __ ba(false,done);
 896   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 897 
 898   __ bind(is_null);
 899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 900 
 901   __ profile_null_seen(G3_scratch);
 902   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 903   __ bind(done);
 904 }
 905 
 906 
 907 void TemplateTable::bastore() {
 908   transition(itos, vtos);
 909   __ pop_i(O2); // index
 910   // Otos_i: val
 911   // O3: array
 912   __ index_check(O3, O2, 0, G3_scratch, O2);
 913   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 914 }
 915 
 916 
 917 void TemplateTable::castore() {
 918   transition(itos, vtos);
 919   __ pop_i(O2); // index
 920   // Otos_i: val
 921   // O3: array
 922   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 923   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 924 }
 925 
 926 
 927 void TemplateTable::sastore() {
 928   // %%%%% Factor across platform
 929   castore();
 930 }
 931 
 932 
 933 void TemplateTable::istore(int n) {
 934   transition(itos, vtos);
 935   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 936 }
 937 
 938 
 939 void TemplateTable::lstore(int n) {
 940   transition(ltos, vtos);
 941   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 942   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 943 
 944 }
 945 
 946 
 947 void TemplateTable::fstore(int n) {
 948   transition(ftos, vtos);
 949   assert(n < Argument::n_register_parameters, "only handle register cases");
 950   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 951 }
 952 
 953 
 954 void TemplateTable::dstore(int n) {
 955   transition(dtos, vtos);
 956   FloatRegister src = Ftos_d;
 957   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 958 }
 959 
 960 
 961 void TemplateTable::astore(int n) {
 962   transition(vtos, vtos);
 963   __ load_ptr(0, Otos_i);
 964   __ inc(Lesp, Interpreter::stackElementSize);
 965   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 966   __ store_local_ptr(n, Otos_i);
 967 }
 968 
 969 
 970 void TemplateTable::pop() {
 971   transition(vtos, vtos);
 972   __ inc(Lesp, Interpreter::stackElementSize);
 973 }
 974 
 975 
 976 void TemplateTable::pop2() {
 977   transition(vtos, vtos);
 978   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 979 }
 980 
 981 
 982 void TemplateTable::dup() {
 983   transition(vtos, vtos);
 984   // stack: ..., a
 985   // load a and tag
 986   __ load_ptr(0, Otos_i);
 987   __ push_ptr(Otos_i);
 988   // stack: ..., a, a
 989 }
 990 
 991 
 992 void TemplateTable::dup_x1() {
 993   transition(vtos, vtos);
 994   // stack: ..., a, b
 995   __ load_ptr( 1, G3_scratch);  // get a
 996   __ load_ptr( 0, Otos_l1);     // get b
 997   __ store_ptr(1, Otos_l1);     // put b
 998   __ store_ptr(0, G3_scratch);  // put a - like swap
 999   __ push_ptr(Otos_l1);         // push b
1000   // stack: ..., b, a, b
1001 }
1002 
1003 
1004 void TemplateTable::dup_x2() {
1005   transition(vtos, vtos);
1006   // stack: ..., a, b, c
1007   // get c and push on stack, reuse registers
1008   __ load_ptr( 0, G3_scratch);  // get c
1009   __ push_ptr(G3_scratch);      // push c with tag
1010   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1011   // (stack offsets n+1 now)
1012   __ load_ptr( 3, Otos_l1);     // get a
1013   __ store_ptr(3, G3_scratch);  // put c at 3
1014   // stack: ..., c, b, c, c  (a in reg)
1015   __ load_ptr( 2, G3_scratch);  // get b
1016   __ store_ptr(2, Otos_l1);     // put a at 2
1017   // stack: ..., c, a, c, c  (b in reg)
1018   __ store_ptr(1, G3_scratch);  // put b at 1
1019   // stack: ..., c, a, b, c
1020 }
1021 
1022 
1023 void TemplateTable::dup2() {
1024   transition(vtos, vtos);
1025   __ load_ptr(1, G3_scratch);  // get a
1026   __ load_ptr(0, Otos_l1);     // get b
1027   __ push_ptr(G3_scratch);     // push a
1028   __ push_ptr(Otos_l1);        // push b
1029   // stack: ..., a, b, a, b
1030 }
1031 
1032 
1033 void TemplateTable::dup2_x1() {
1034   transition(vtos, vtos);
1035   // stack: ..., a, b, c
1036   __ load_ptr( 1, Lscratch);    // get b
1037   __ load_ptr( 2, Otos_l1);     // get a
1038   __ store_ptr(2, Lscratch);    // put b at a
1039   // stack: ..., b, b, c
1040   __ load_ptr( 0, G3_scratch);  // get c
1041   __ store_ptr(1, G3_scratch);  // put c at b
1042   // stack: ..., b, c, c
1043   __ store_ptr(0, Otos_l1);     // put a at c
1044   // stack: ..., b, c, a
1045   __ push_ptr(Lscratch);        // push b
1046   __ push_ptr(G3_scratch);      // push c
1047   // stack: ..., b, c, a, b, c
1048 }
1049 
1050 
1051 // The spec says that these types can be a mixture of category 1 (1 word)
1052 // types and/or category 2 types (long and doubles)
1053 void TemplateTable::dup2_x2() {
1054   transition(vtos, vtos);
1055   // stack: ..., a, b, c, d
1056   __ load_ptr( 1, Lscratch);    // get c
1057   __ load_ptr( 3, Otos_l1);     // get a
1058   __ store_ptr(3, Lscratch);    // put c at 3
1059   __ store_ptr(1, Otos_l1);     // put a at 1
1060   // stack: ..., c, b, a, d
1061   __ load_ptr( 2, G3_scratch);  // get b
1062   __ load_ptr( 0, Otos_l1);     // get d
1063   __ store_ptr(0, G3_scratch);  // put b at 0
1064   __ store_ptr(2, Otos_l1);     // put d at 2
1065   // stack: ..., c, d, a, b
1066   __ push_ptr(Lscratch);        // push c
1067   __ push_ptr(Otos_l1);         // push d
1068   // stack: ..., c, d, a, b, c, d
1069 }
1070 
1071 
1072 void TemplateTable::swap() {
1073   transition(vtos, vtos);
1074   // stack: ..., a, b
1075   __ load_ptr( 1, G3_scratch);  // get a
1076   __ load_ptr( 0, Otos_l1);     // get b
1077   __ store_ptr(0, G3_scratch);  // put b
1078   __ store_ptr(1, Otos_l1);     // put a
1079   // stack: ..., b, a
1080 }
1081 
1082 
1083 void TemplateTable::iop2(Operation op) {
1084   transition(itos, itos);
1085   __ pop_i(O1);
1086   switch (op) {
1087    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1088    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1089      // %%%%% Mul may not exist: better to call .mul?
1090    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1091    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1092    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1093    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1094    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1095    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1096    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1097    default: ShouldNotReachHere();
1098   }
1099 }
1100 
1101 
1102 void TemplateTable::lop2(Operation op) {
1103   transition(ltos, ltos);
1104   __ pop_l(O2);
1105   switch (op) {
1106 #ifdef _LP64
1107    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1108    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1109    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1110    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1111    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1112 #else
1113    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1114    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1115    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1116    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1117    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1118 #endif
1119    default: ShouldNotReachHere();
1120   }
1121 }
1122 
1123 
1124 void TemplateTable::idiv() {
1125   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1126   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1127 
1128   transition(itos, itos);
1129   __ pop_i(O1); // get 1st op
1130 
1131   // Y contains upper 32 bits of result, set it to 0 or all ones
1132   __ wry(G0);
1133   __ mov(~0, G3_scratch);
1134 
1135   __ tst(O1);
1136      Label neg;
1137   __ br(Assembler::negative, true, Assembler::pn, neg);
1138   __ delayed()->wry(G3_scratch);
1139   __ bind(neg);
1140 
1141      Label ok;
1142   __ tst(Otos_i);
1143   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1144 
1145   const int min_int = 0x80000000;
1146   Label regular;
1147   __ cmp(Otos_i, -1);
1148   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1149 #ifdef _LP64
1150   // Don't put set in delay slot
1151   // Set will turn into multiple instructions in 64 bit mode
1152   __ delayed()->nop();
1153   __ set(min_int, G4_scratch);
1154 #else
1155   __ delayed()->set(min_int, G4_scratch);
1156 #endif
1157   Label done;
1158   __ cmp(O1, G4_scratch);
1159   __ br(Assembler::equal, true, Assembler::pt, done);
1160   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1161 
1162   __ bind(regular);
1163   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1164   __ bind(done);
1165 }
1166 
1167 
1168 void TemplateTable::irem() {
1169   transition(itos, itos);
1170   __ mov(Otos_i, O2); // save divisor
1171   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1172   __ smul(Otos_i, O2, Otos_i);
1173   __ sub(O1, Otos_i, Otos_i);
1174 }
1175 
1176 
1177 void TemplateTable::lmul() {
1178   transition(ltos, ltos);
1179   __ pop_l(O2);
1180 #ifdef _LP64
1181   __ mulx(Otos_l, O2, Otos_l);
1182 #else
1183   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1184 #endif
1185 
1186 }
1187 
1188 
1189 void TemplateTable::ldiv() {
1190   transition(ltos, ltos);
1191 
1192   // check for zero
1193   __ pop_l(O2);
1194 #ifdef _LP64
1195   __ tst(Otos_l);
1196   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1197   __ sdivx(O2, Otos_l, Otos_l);
1198 #else
1199   __ orcc(Otos_l1, Otos_l2, G0);
1200   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1201   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1202 #endif
1203 }
1204 
1205 
1206 void TemplateTable::lrem() {
1207   transition(ltos, ltos);
1208 
1209   // check for zero
1210   __ pop_l(O2);
1211 #ifdef _LP64
1212   __ tst(Otos_l);
1213   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1214   __ sdivx(O2, Otos_l, Otos_l2);
1215   __ mulx (Otos_l2, Otos_l, Otos_l2);
1216   __ sub  (O2, Otos_l2, Otos_l);
1217 #else
1218   __ orcc(Otos_l1, Otos_l2, G0);
1219   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1220   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1221 #endif
1222 }
1223 
1224 
1225 void TemplateTable::lshl() {
1226   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1227 
1228   __ pop_l(O2);                          // shift value in O2, O3
1229 #ifdef _LP64
1230   __ sllx(O2, Otos_i, Otos_l);
1231 #else
1232   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1233 #endif
1234 }
1235 
1236 
1237 void TemplateTable::lshr() {
1238   transition(itos, ltos); // %%%% see lshl comment
1239 
1240   __ pop_l(O2);                          // shift value in O2, O3
1241 #ifdef _LP64
1242   __ srax(O2, Otos_i, Otos_l);
1243 #else
1244   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1245 #endif
1246 }
1247 
1248 
1249 
1250 void TemplateTable::lushr() {
1251   transition(itos, ltos); // %%%% see lshl comment
1252 
1253   __ pop_l(O2);                          // shift value in O2, O3
1254 #ifdef _LP64
1255   __ srlx(O2, Otos_i, Otos_l);
1256 #else
1257   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1258 #endif
1259 }
1260 
1261 
1262 void TemplateTable::fop2(Operation op) {
1263   transition(ftos, ftos);
1264   switch (op) {
1265    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1266    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1267    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1268    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1269    case  rem:
1270      assert(Ftos_f == F0, "just checking");
1271 #ifdef _LP64
1272      // LP64 calling conventions use F1, F3 for passing 2 floats
1273      __ pop_f(F1);
1274      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1275 #else
1276      __ pop_i(O0);
1277      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1278      __ ld( __ d_tmp, O1 );
1279 #endif
1280      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1281      assert( Ftos_f == F0, "fix this code" );
1282      break;
1283 
1284    default: ShouldNotReachHere();
1285   }
1286 }
1287 
1288 
1289 void TemplateTable::dop2(Operation op) {
1290   transition(dtos, dtos);
1291   switch (op) {
1292    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1293    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1294    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1295    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1296    case  rem:
1297 #ifdef _LP64
1298      // Pass arguments in D0, D2
1299      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1300      __ pop_d( F0 );
1301 #else
1302      // Pass arguments in O0O1, O2O3
1303      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1304      __ ldd( __ d_tmp, O2 );
1305      __ pop_d(Ftos_f);
1306      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1307      __ ldd( __ d_tmp, O0 );
1308 #endif
1309      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1310      assert( Ftos_d == F0, "fix this code" );
1311      break;
1312 
1313    default: ShouldNotReachHere();
1314   }
1315 }
1316 
1317 
1318 void TemplateTable::ineg() {
1319   transition(itos, itos);
1320   __ neg(Otos_i);
1321 }
1322 
1323 
1324 void TemplateTable::lneg() {
1325   transition(ltos, ltos);
1326 #ifdef _LP64
1327   __ sub(G0, Otos_l, Otos_l);
1328 #else
1329   __ lneg(Otos_l1, Otos_l2);
1330 #endif
1331 }
1332 
1333 
1334 void TemplateTable::fneg() {
1335   transition(ftos, ftos);
1336   __ fneg(FloatRegisterImpl::S, Ftos_f);
1337 }
1338 
1339 
1340 void TemplateTable::dneg() {
1341   transition(dtos, dtos);
1342   // v8 has fnegd if source and dest are the same
1343   __ fneg(FloatRegisterImpl::D, Ftos_f);
1344 }
1345 
1346 
1347 void TemplateTable::iinc() {
1348   transition(vtos, vtos);
1349   locals_index(G3_scratch);
1350   __ ldsb(Lbcp, 2, O2);  // load constant
1351   __ access_local_int(G3_scratch, Otos_i);
1352   __ add(Otos_i, O2, Otos_i);
1353   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1354 }
1355 
1356 
1357 void TemplateTable::wide_iinc() {
1358   transition(vtos, vtos);
1359   locals_index_wide(G3_scratch);
1360   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1361   __ access_local_int(G3_scratch, Otos_i);
1362   __ add(Otos_i, O3, Otos_i);
1363   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1364 }
1365 
1366 
1367 void TemplateTable::convert() {
1368 // %%%%% Factor this first part accross platforms
1369   #ifdef ASSERT
1370     TosState tos_in  = ilgl;
1371     TosState tos_out = ilgl;
1372     switch (bytecode()) {
1373       case Bytecodes::_i2l: // fall through
1374       case Bytecodes::_i2f: // fall through
1375       case Bytecodes::_i2d: // fall through
1376       case Bytecodes::_i2b: // fall through
1377       case Bytecodes::_i2c: // fall through
1378       case Bytecodes::_i2s: tos_in = itos; break;
1379       case Bytecodes::_l2i: // fall through
1380       case Bytecodes::_l2f: // fall through
1381       case Bytecodes::_l2d: tos_in = ltos; break;
1382       case Bytecodes::_f2i: // fall through
1383       case Bytecodes::_f2l: // fall through
1384       case Bytecodes::_f2d: tos_in = ftos; break;
1385       case Bytecodes::_d2i: // fall through
1386       case Bytecodes::_d2l: // fall through
1387       case Bytecodes::_d2f: tos_in = dtos; break;
1388       default             : ShouldNotReachHere();
1389     }
1390     switch (bytecode()) {
1391       case Bytecodes::_l2i: // fall through
1392       case Bytecodes::_f2i: // fall through
1393       case Bytecodes::_d2i: // fall through
1394       case Bytecodes::_i2b: // fall through
1395       case Bytecodes::_i2c: // fall through
1396       case Bytecodes::_i2s: tos_out = itos; break;
1397       case Bytecodes::_i2l: // fall through
1398       case Bytecodes::_f2l: // fall through
1399       case Bytecodes::_d2l: tos_out = ltos; break;
1400       case Bytecodes::_i2f: // fall through
1401       case Bytecodes::_l2f: // fall through
1402       case Bytecodes::_d2f: tos_out = ftos; break;
1403       case Bytecodes::_i2d: // fall through
1404       case Bytecodes::_l2d: // fall through
1405       case Bytecodes::_f2d: tos_out = dtos; break;
1406       default             : ShouldNotReachHere();
1407     }
1408     transition(tos_in, tos_out);
1409   #endif
1410 
1411 
1412   // Conversion
1413   Label done;
1414   switch (bytecode()) {
1415    case Bytecodes::_i2l:
1416 #ifdef _LP64
1417     // Sign extend the 32 bits
1418     __ sra ( Otos_i, 0, Otos_l );
1419 #else
1420     __ addcc(Otos_i, 0, Otos_l2);
1421     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1422     __ delayed()->clr(Otos_l1);
1423     __ set(~0, Otos_l1);
1424 #endif
1425     break;
1426 
1427    case Bytecodes::_i2f:
1428     __ st(Otos_i, __ d_tmp );
1429     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1430     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1431     break;
1432 
1433    case Bytecodes::_i2d:
1434     __ st(Otos_i, __ d_tmp);
1435     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1436     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1437     break;
1438 
1439    case Bytecodes::_i2b:
1440     __ sll(Otos_i, 24, Otos_i);
1441     __ sra(Otos_i, 24, Otos_i);
1442     break;
1443 
1444    case Bytecodes::_i2c:
1445     __ sll(Otos_i, 16, Otos_i);
1446     __ srl(Otos_i, 16, Otos_i);
1447     break;
1448 
1449    case Bytecodes::_i2s:
1450     __ sll(Otos_i, 16, Otos_i);
1451     __ sra(Otos_i, 16, Otos_i);
1452     break;
1453 
1454    case Bytecodes::_l2i:
1455 #ifndef _LP64
1456     __ mov(Otos_l2, Otos_i);
1457 #else
1458     // Sign-extend into the high 32 bits
1459     __ sra(Otos_l, 0, Otos_i);
1460 #endif
1461     break;
1462 
1463    case Bytecodes::_l2f:
1464    case Bytecodes::_l2d:
1465     __ st_long(Otos_l, __ d_tmp);
1466     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1467 
1468     if (VM_Version::v9_instructions_work()) {
1469       if (bytecode() == Bytecodes::_l2f) {
1470         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1471       } else {
1472         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1473       }
1474     } else {
1475       __ call_VM_leaf(
1476         Lscratch,
1477         bytecode() == Bytecodes::_l2f
1478           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
1479           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
1480       );
1481     }
1482     break;
1483 
1484   case Bytecodes::_f2i:  {
1485       Label isNaN;
1486       // result must be 0 if value is NaN; test by comparing value to itself
1487       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1488       // According to the v8 manual, you have to have a non-fp instruction
1489       // between fcmp and fb.
1490       if (!VM_Version::v9_instructions_work()) {
1491         __ nop();
1492       }
1493       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1494       __ delayed()->clr(Otos_i);                                     // NaN
1495       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1496       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1497       __ ld(__ d_tmp, Otos_i);
1498       __ bind(isNaN);
1499     }
1500     break;
1501 
1502    case Bytecodes::_f2l:
1503     // must uncache tos
1504     __ push_f();
1505 #ifdef _LP64
1506     __ pop_f(F1);
1507 #else
1508     __ pop_i(O0);
1509 #endif
1510     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1511     break;
1512 
1513    case Bytecodes::_f2d:
1514     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1515     break;
1516 
1517    case Bytecodes::_d2i:
1518    case Bytecodes::_d2l:
1519     // must uncache tos
1520     __ push_d();
1521 #ifdef _LP64
1522     // LP64 calling conventions pass first double arg in D0
1523     __ pop_d( Ftos_d );
1524 #else
1525     __ pop_i( O0 );
1526     __ pop_i( O1 );
1527 #endif
1528     __ call_VM_leaf(Lscratch,
1529         bytecode() == Bytecodes::_d2i
1530           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1531           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1532     break;
1533 
1534     case Bytecodes::_d2f:
1535     if (VM_Version::v9_instructions_work()) {
1536       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1537     }
1538     else {
1539       // must uncache tos
1540       __ push_d();
1541       __ pop_i(O0);
1542       __ pop_i(O1);
1543       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
1544     }
1545     break;
1546 
1547     default: ShouldNotReachHere();
1548   }
1549   __ bind(done);
1550 }
1551 
1552 
1553 void TemplateTable::lcmp() {
1554   transition(ltos, itos);
1555 
1556 #ifdef _LP64
1557   __ pop_l(O1); // pop off value 1, value 2 is in O0
1558   __ lcmp( O1, Otos_l, Otos_i );
1559 #else
1560   __ pop_l(O2); // cmp O2,3 to O0,1
1561   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1562 #endif
1563 }
1564 
1565 
1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1567 
1568   if (is_float) __ pop_f(F2);
1569   else          __ pop_d(F2);
1570 
1571   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1572 
1573   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1574 }
1575 
1576 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1577   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1578   __ verify_oop(Lmethod);
1579   __ verify_thread();
1580 
1581   const Register O2_bumped_count = O2;
1582   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1583 
1584   // get (wide) offset to O1_disp
1585   const Register O1_disp = O1;
1586   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1587   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1588 
1589   // Handle all the JSR stuff here, then exit.
1590   // It's much shorter and cleaner than intermingling with the
1591   // non-JSR normal-branch stuff occurring below.
1592   if( is_jsr ) {
1593     // compute return address as bci in Otos_i
1594     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1595     __ sub(Lbcp, G3_scratch, G3_scratch);
1596     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1597 
1598     // Bump Lbcp to target of JSR
1599     __ add(Lbcp, O1_disp, Lbcp);
1600     // Push returnAddress for "ret" on stack
1601     __ push_ptr(Otos_i);
1602     // And away we go!
1603     __ dispatch_next(vtos);
1604     return;
1605   }
1606 
1607   // Normal (non-jsr) branch handling
1608 
1609   // Save the current Lbcp
1610   const Register O0_cur_bcp = O0;
1611   __ mov( Lbcp, O0_cur_bcp );
1612 
1613 
1614   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1615   if ( increment_invocation_counter_for_backward_branches ) {
1616     Label Lforward;
1617     // check branch direction
1618     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1619     // Bump bytecode pointer by displacement (take the branch)
1620     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1621 
1622     if (TieredCompilation) {
1623       Label Lno_mdo, Loverflow;
1624       int increment = InvocationCounter::count_increment;
1625       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1626       if (ProfileInterpreter) {
1627         // If no method data exists, go to profile_continue.
1628         __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
1629         __ br_null(G4_scratch, false, Assembler::pn, Lno_mdo);
1630         __ delayed()->nop();
1631 
1632         // Increment backedge counter in the MDO
1633         Address mdo_backedge_counter(G4_scratch, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1634                                                  in_bytes(InvocationCounter::counter_offset()));
1635         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
1636                                    Assembler::notZero, &Lforward);
1637         __ ba(false, Loverflow);
1638         __ delayed()->nop();
1639       }
1640 
1641       // If there's no MDO, increment counter in methodOop
1642       __ bind(Lno_mdo);
1643       Address backedge_counter(Lmethod, in_bytes(methodOopDesc::backedge_counter_offset()) +
1644                                         in_bytes(InvocationCounter::counter_offset()));
1645       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
1646                                  Assembler::notZero, &Lforward);
1647       __ bind(Loverflow);
1648 
1649       // notify point for loop, pass branch bytecode
1650       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
1651 
1652       // Was an OSR adapter generated?
1653       // O0 = osr nmethod
1654       __ br_null(O0, false, Assembler::pn, Lforward);
1655       __ delayed()->nop();
1656 
1657       // Has the nmethod been invalidated already?
1658       __ ld(O0, nmethod::entry_bci_offset(), O2);
1659       __ cmp(O2, InvalidOSREntryBci);
1660       __ br(Assembler::equal, false, Assembler::pn, Lforward);
1661       __ delayed()->nop();
1662 
1663       // migrate the interpreter frame off of the stack
1664 
1665       __ mov(G2_thread, L7);
1666       // save nmethod
1667       __ mov(O0, L6);
1668       __ set_last_Java_frame(SP, noreg);
1669       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1670       __ reset_last_Java_frame();
1671       __ mov(L7, G2_thread);
1672 
1673       // move OSR nmethod to I1
1674       __ mov(L6, I1);
1675 
1676       // OSR buffer to I0
1677       __ mov(O0, I0);
1678 
1679       // remove the interpreter frame
1680       __ restore(I5_savedSP, 0, SP);
1681 
1682       // Jump to the osr code.
1683       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1684       __ jmp(O2, G0);
1685       __ delayed()->nop();
1686 
1687     } else {
1688       // Update Backedge branch separately from invocations
1689       const Register G4_invoke_ctr = G4;
1690       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
1691       if (ProfileInterpreter) {
1692         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
1693         if (UseOnStackReplacement) {
1694           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
1695         }
1696       } else {
1697         if (UseOnStackReplacement) {
1698           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
1699         }
1700       }
1701     }
1702 
1703     __ bind(Lforward);
1704   } else
1705     // Bump bytecode pointer by displacement (take the branch)
1706     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1707 
1708   // continue with bytecode @ target
1709   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1710   // %%%%% and changing dispatch_next to dispatch_only
1711   __ dispatch_next(vtos);
1712 }
1713 
1714 
1715 // Note Condition in argument is TemplateTable::Condition
1716 // arg scope is within class scope
1717 
1718 void TemplateTable::if_0cmp(Condition cc) {
1719   // no pointers, integer only!
1720   transition(itos, vtos);
1721   // assume branch is more often taken than not (loops use backward branches)
1722   __ cmp( Otos_i, 0);
1723   __ if_cmp(ccNot(cc), false);
1724 }
1725 
1726 
1727 void TemplateTable::if_icmp(Condition cc) {
1728   transition(itos, vtos);
1729   __ pop_i(O1);
1730   __ cmp(O1, Otos_i);
1731   __ if_cmp(ccNot(cc), false);
1732 }
1733 
1734 
1735 void TemplateTable::if_nullcmp(Condition cc) {
1736   transition(atos, vtos);
1737   __ tst(Otos_i);
1738   __ if_cmp(ccNot(cc), true);
1739 }
1740 
1741 
1742 void TemplateTable::if_acmp(Condition cc) {
1743   transition(atos, vtos);
1744   __ pop_ptr(O1);
1745   __ verify_oop(O1);
1746   __ verify_oop(Otos_i);
1747   __ cmp(O1, Otos_i);
1748   __ if_cmp(ccNot(cc), true);
1749 }
1750 
1751 
1752 
1753 void TemplateTable::ret() {
1754   transition(vtos, vtos);
1755   locals_index(G3_scratch);
1756   __ access_local_returnAddress(G3_scratch, Otos_i);
1757   // Otos_i contains the bci, compute the bcp from that
1758 
1759 #ifdef _LP64
1760 #ifdef ASSERT
1761   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1762   // the result.  The return address (really a BCI) was stored with an
1763   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1764   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1765   // loaded value.
1766   { Label zzz ;
1767      __ set (65536, G3_scratch) ;
1768      __ cmp (Otos_i, G3_scratch) ;
1769      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1770      __ delayed()->nop();
1771      __ stop("BCI is in the wrong register half?");
1772      __ bind (zzz) ;
1773   }
1774 #endif
1775 #endif
1776 
1777   __ profile_ret(vtos, Otos_i, G4_scratch);
1778 
1779   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1780   __ add(G3_scratch, Otos_i, G3_scratch);
1781   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1782   __ dispatch_next(vtos);
1783 }
1784 
1785 
1786 void TemplateTable::wide_ret() {
1787   transition(vtos, vtos);
1788   locals_index_wide(G3_scratch);
1789   __ access_local_returnAddress(G3_scratch, Otos_i);
1790   // Otos_i contains the bci, compute the bcp from that
1791 
1792   __ profile_ret(vtos, Otos_i, G4_scratch);
1793 
1794   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1795   __ add(G3_scratch, Otos_i, G3_scratch);
1796   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1797   __ dispatch_next(vtos);
1798 }
1799 
1800 
1801 void TemplateTable::tableswitch() {
1802   transition(itos, vtos);
1803   Label default_case, continue_execution;
1804 
1805   // align bcp
1806   __ add(Lbcp, BytesPerInt, O1);
1807   __ and3(O1, -BytesPerInt, O1);
1808   // load lo, hi
1809   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1810   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1811 #ifdef _LP64
1812   // Sign extend the 32 bits
1813   __ sra ( Otos_i, 0, Otos_i );
1814 #endif /* _LP64 */
1815 
1816   // check against lo & hi
1817   __ cmp( Otos_i, O2);
1818   __ br( Assembler::less, false, Assembler::pn, default_case);
1819   __ delayed()->cmp( Otos_i, O3 );
1820   __ br( Assembler::greater, false, Assembler::pn, default_case);
1821   // lookup dispatch offset
1822   __ delayed()->sub(Otos_i, O2, O2);
1823   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1824   __ sll(O2, LogBytesPerInt, O2);
1825   __ add(O2, 3 * BytesPerInt, O2);
1826   __ ba(false, continue_execution);
1827   __ delayed()->ld(O1, O2, O2);
1828   // handle default
1829   __ bind(default_case);
1830   __ profile_switch_default(O3);
1831   __ ld(O1, 0, O2); // get default offset
1832   // continue execution
1833   __ bind(continue_execution);
1834   __ add(Lbcp, O2, Lbcp);
1835   __ dispatch_next(vtos);
1836 }
1837 
1838 
1839 void TemplateTable::lookupswitch() {
1840   transition(itos, itos);
1841   __ stop("lookupswitch bytecode should have been rewritten");
1842 }
1843 
1844 void TemplateTable::fast_linearswitch() {
1845   transition(itos, vtos);
1846     Label loop_entry, loop, found, continue_execution;
1847   // align bcp
1848   __ add(Lbcp, BytesPerInt, O1);
1849   __ and3(O1, -BytesPerInt, O1);
1850  // set counter
1851   __ ld(O1, BytesPerInt, O2);
1852   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1853   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1854   __ ba(false, loop_entry);
1855   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1856 
1857   // table search
1858   __ bind(loop);
1859   __ cmp(O4, Otos_i);
1860   __ br(Assembler::equal, true, Assembler::pn, found);
1861   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1862   __ inc(O3, 2 * BytesPerInt);
1863 
1864   __ bind(loop_entry);
1865   __ cmp(O2, O3);
1866   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1867   __ delayed()->ld(O3, 0, O4);
1868 
1869   // default case
1870   __ ld(O1, 0, O4); // get default offset
1871   if (ProfileInterpreter) {
1872     __ profile_switch_default(O3);
1873     __ ba(false, continue_execution);
1874     __ delayed()->nop();
1875   }
1876 
1877   // entry found -> get offset
1878   __ bind(found);
1879   if (ProfileInterpreter) {
1880     __ sub(O3, O1, O3);
1881     __ sub(O3, 2*BytesPerInt, O3);
1882     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1883     __ profile_switch_case(O3, O1, O2, G3_scratch);
1884 
1885     __ bind(continue_execution);
1886   }
1887   __ add(Lbcp, O4, Lbcp);
1888   __ dispatch_next(vtos);
1889 }
1890 
1891 
1892 void TemplateTable::fast_binaryswitch() {
1893   transition(itos, vtos);
1894   // Implementation using the following core algorithm: (copied from Intel)
1895   //
1896   // int binary_search(int key, LookupswitchPair* array, int n) {
1897   //   // Binary search according to "Methodik des Programmierens" by
1898   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1899   //   int i = 0;
1900   //   int j = n;
1901   //   while (i+1 < j) {
1902   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1903   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1904   //     // where a stands for the array and assuming that the (inexisting)
1905   //     // element a[n] is infinitely big.
1906   //     int h = (i + j) >> 1;
1907   //     // i < h < j
1908   //     if (key < array[h].fast_match()) {
1909   //       j = h;
1910   //     } else {
1911   //       i = h;
1912   //     }
1913   //   }
1914   //   // R: a[i] <= key < a[i+1] or Q
1915   //   // (i.e., if key is within array, i is the correct index)
1916   //   return i;
1917   // }
1918 
1919   // register allocation
1920   assert(Otos_i == O0, "alias checking");
1921   const Register Rkey     = Otos_i;                    // already set (tosca)
1922   const Register Rarray   = O1;
1923   const Register Ri       = O2;
1924   const Register Rj       = O3;
1925   const Register Rh       = O4;
1926   const Register Rscratch = O5;
1927 
1928   const int log_entry_size = 3;
1929   const int entry_size = 1 << log_entry_size;
1930 
1931   Label found;
1932   // Find Array start
1933   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1934   __ and3(Rarray, -BytesPerInt, Rarray);
1935   // initialize i & j (in delay slot)
1936   __ clr( Ri );
1937 
1938   // and start
1939   Label entry;
1940   __ ba(false, entry);
1941   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1942   // (Rj is already in the native byte-ordering.)
1943 
1944   // binary search loop
1945   { Label loop;
1946     __ bind( loop );
1947     // int h = (i + j) >> 1;
1948     __ sra( Rh, 1, Rh );
1949     // if (key < array[h].fast_match()) {
1950     //   j = h;
1951     // } else {
1952     //   i = h;
1953     // }
1954     __ sll( Rh, log_entry_size, Rscratch );
1955     __ ld( Rarray, Rscratch, Rscratch );
1956     // (Rscratch is already in the native byte-ordering.)
1957     __ cmp( Rkey, Rscratch );
1958     if ( VM_Version::v9_instructions_work() ) {
1959       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1960       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1961     }
1962     else {
1963       Label end_of_if;
1964       __ br( Assembler::less, true, Assembler::pt, end_of_if );
1965       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
1966       __ mov( Rh, Ri );            // else i = h
1967       __ bind(end_of_if);          // }
1968     }
1969 
1970     // while (i+1 < j)
1971     __ bind( entry );
1972     __ add( Ri, 1, Rscratch );
1973     __ cmp(Rscratch, Rj);
1974     __ br( Assembler::less, true, Assembler::pt, loop );
1975     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1976   }
1977 
1978   // end of binary search, result index is i (must check again!)
1979   Label default_case;
1980   Label continue_execution;
1981   if (ProfileInterpreter) {
1982     __ mov( Ri, Rh );              // Save index in i for profiling
1983   }
1984   __ sll( Ri, log_entry_size, Ri );
1985   __ ld( Rarray, Ri, Rscratch );
1986   // (Rscratch is already in the native byte-ordering.)
1987   __ cmp( Rkey, Rscratch );
1988   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1989   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1990 
1991   // entry found -> j = offset
1992   __ inc( Ri, BytesPerInt );
1993   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1994   __ ld( Rarray, Ri, Rj );
1995   // (Rj is already in the native byte-ordering.)
1996 
1997   if (ProfileInterpreter) {
1998     __ ba(false, continue_execution);
1999     __ delayed()->nop();
2000   }
2001 
2002   __ bind(default_case); // fall through (if not profiling)
2003   __ profile_switch_default(Ri);
2004 
2005   __ bind(continue_execution);
2006   __ add( Lbcp, Rj, Lbcp );
2007   __ dispatch_next( vtos );
2008 }
2009 
2010 
2011 void TemplateTable::_return(TosState state) {
2012   transition(state, state);
2013   assert(_desc->calls_vm(), "inconsistent calls_vm information");
2014 
2015   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2016     assert(state == vtos, "only valid state");
2017     __ mov(G0, G3_scratch);
2018     __ access_local_ptr(G3_scratch, Otos_i);
2019     __ load_klass(Otos_i, O2);
2020     __ set(JVM_ACC_HAS_FINALIZER, G3);
2021     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
2022     __ andcc(G3, O2, G0);
2023     Label skip_register_finalizer;
2024     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2025     __ delayed()->nop();
2026 
2027     // Call out to do finalizer registration
2028     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2029 
2030     __ bind(skip_register_finalizer);
2031   }
2032 
2033   __ remove_activation(state, /* throw_monitor_exception */ true);
2034 
2035   // The caller's SP was adjusted upon method entry to accomodate
2036   // the callee's non-argument locals. Undo that adjustment.
2037   __ ret();                             // return to caller
2038   __ delayed()->restore(I5_savedSP, G0, SP);
2039 }
2040 
2041 
2042 // ----------------------------------------------------------------------------
2043 // Volatile variables demand their effects be made known to all CPU's in
2044 // order.  Store buffers on most chips allow reads & writes to reorder; the
2045 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2046 // memory barrier (i.e., it's not sufficient that the interpreter does not
2047 // reorder volatile references, the hardware also must not reorder them).
2048 //
2049 // According to the new Java Memory Model (JMM):
2050 // (1) All volatiles are serialized wrt to each other.
2051 // ALSO reads & writes act as aquire & release, so:
2052 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2053 // the read float up to before the read.  It's OK for non-volatile memory refs
2054 // that happen before the volatile read to float down below it.
2055 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2056 // that happen BEFORE the write float down to after the write.  It's OK for
2057 // non-volatile memory refs that happen after the volatile write to float up
2058 // before it.
2059 //
2060 // We only put in barriers around volatile refs (they are expensive), not
2061 // _between_ memory refs (that would require us to track the flavor of the
2062 // previous memory refs).  Requirements (2) and (3) require some barriers
2063 // before volatile stores and after volatile loads.  These nearly cover
2064 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2065 // case is placed after volatile-stores although it could just as well go
2066 // before volatile-loads.
2067 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2068   // Helper function to insert a is-volatile test and memory barrier
2069   // All current sparc implementations run in TSO, needing only StoreLoad
2070   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2071   __ membar( order_constraint );
2072 }
2073 
2074 // ----------------------------------------------------------------------------
2075 void TemplateTable::resolve_cache_and_index(int byte_no,
2076                                             Register result,
2077                                             Register Rcache,
2078                                             Register index,
2079                                             size_t index_size) {
2080   // Depends on cpCacheOop layout!
2081   Label resolved;
2082 
2083   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2084   if (byte_no == f1_oop) {
2085     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2086     // This kind of CP cache entry does not need to match the flags byte, because
2087     // there is a 1-1 relation between bytecode type and CP entry type.
2088     assert_different_registers(result, Rcache);
2089     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2090               ConstantPoolCacheEntry::f1_offset(), result);
2091     __ tst(result);
2092     __ br(Assembler::notEqual, false, Assembler::pt, resolved);
2093     __ delayed()->set((int)bytecode(), O1);
2094   } else {
2095     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2096     assert(result == noreg, "");  //else change code for setting result
2097     const int shift_count = (1 + byte_no)*BitsPerByte;
2098 
2099     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2100               ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
2101 
2102     __ srl(  Lbyte_code, shift_count, Lbyte_code );
2103     __ and3( Lbyte_code,        0xFF, Lbyte_code );
2104     __ cmp(  Lbyte_code, (int)bytecode());
2105     __ br(   Assembler::equal, false, Assembler::pt, resolved);
2106     __ delayed()->set((int)bytecode(), O1);
2107   }
2108 
2109   address entry;
2110   switch (bytecode()) {
2111     case Bytecodes::_getstatic      : // fall through
2112     case Bytecodes::_putstatic      : // fall through
2113     case Bytecodes::_getfield       : // fall through
2114     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2115     case Bytecodes::_invokevirtual  : // fall through
2116     case Bytecodes::_invokespecial  : // fall through
2117     case Bytecodes::_invokestatic   : // fall through
2118     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2119     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2120     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2121     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2122     default                         : ShouldNotReachHere();                                 break;
2123   }
2124   // first time invocation - must resolve first
2125   __ call_VM(noreg, entry, O1);
2126   // Update registers with resolved info
2127   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2128   if (result != noreg)
2129     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
2130               ConstantPoolCacheEntry::f1_offset(), result);
2131   __ bind(resolved);
2132 }
2133 
2134 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2135                                                Register Rmethod,
2136                                                Register Ritable_index,
2137                                                Register Rflags,
2138                                                bool is_invokevirtual,
2139                                                bool is_invokevfinal,
2140                                                bool is_invokedynamic) {
2141   // Uses both G3_scratch and G4_scratch
2142   Register Rcache = G3_scratch;
2143   Register Rscratch = G4_scratch;
2144   assert_different_registers(Rcache, Rmethod, Ritable_index);
2145 
2146   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2147 
2148   // determine constant pool cache field offsets
2149   const int method_offset = in_bytes(
2150     cp_base_offset +
2151       (is_invokevirtual
2152        ? ConstantPoolCacheEntry::f2_offset()
2153        : ConstantPoolCacheEntry::f1_offset()
2154       )
2155     );
2156   const int flags_offset = in_bytes(cp_base_offset +
2157                                     ConstantPoolCacheEntry::flags_offset());
2158   // access constant pool cache fields
2159   const int index_offset = in_bytes(cp_base_offset +
2160                                     ConstantPoolCacheEntry::f2_offset());
2161 
2162   if (is_invokevfinal) {
2163     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
2164     __ ld_ptr(Rcache, method_offset, Rmethod);
2165   } else if (byte_no == f1_oop) {
2166     // Resolved f1_oop goes directly into 'method' register.
2167     resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
2168   } else {
2169     resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
2170     __ ld_ptr(Rcache, method_offset, Rmethod);
2171   }
2172 
2173   if (Ritable_index != noreg) {
2174     __ ld_ptr(Rcache, index_offset, Ritable_index);
2175   }
2176   __ ld_ptr(Rcache, flags_offset, Rflags);
2177 }
2178 
2179 // The Rcache register must be set before call
2180 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2181                                               Register Rcache,
2182                                               Register index,
2183                                               Register Roffset,
2184                                               Register Rflags,
2185                                               bool is_static) {
2186   assert_different_registers(Rcache, Rflags, Roffset);
2187 
2188   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2189 
2190   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2191   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2192   if (is_static) {
2193     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2194   }
2195 }
2196 
2197 // The registers Rcache and index expected to be set before call.
2198 // Correct values of the Rcache and index registers are preserved.
2199 void TemplateTable::jvmti_post_field_access(Register Rcache,
2200                                             Register index,
2201                                             bool is_static,
2202                                             bool has_tos) {
2203   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2204 
2205   if (JvmtiExport::can_post_field_access()) {
2206     // Check to see if a field access watch has been set before we take
2207     // the time to call into the VM.
2208     Label Label1;
2209     assert_different_registers(Rcache, index, G1_scratch);
2210     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2211     __ load_contents(get_field_access_count_addr, G1_scratch);
2212     __ tst(G1_scratch);
2213     __ br(Assembler::zero, false, Assembler::pt, Label1);
2214     __ delayed()->nop();
2215 
2216     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2217 
2218     if (is_static) {
2219       __ clr(Otos_i);
2220     } else {
2221       if (has_tos) {
2222       // save object pointer before call_VM() clobbers it
2223         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2224       } else {
2225         // Load top of stack (do not pop the value off the stack);
2226         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2227       }
2228       __ verify_oop(Otos_i);
2229     }
2230     // Otos_i: object pointer or NULL if static
2231     // Rcache: cache entry pointer
2232     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2233                Otos_i, Rcache);
2234     if (!is_static && has_tos) {
2235       __ pop_ptr(Otos_i);  // restore object pointer
2236       __ verify_oop(Otos_i);
2237     }
2238     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2239     __ bind(Label1);
2240   }
2241 }
2242 
2243 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2244   transition(vtos, vtos);
2245 
2246   Register Rcache = G3_scratch;
2247   Register index  = G4_scratch;
2248   Register Rclass = Rcache;
2249   Register Roffset= G4_scratch;
2250   Register Rflags = G1_scratch;
2251   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2252 
2253   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
2254   jvmti_post_field_access(Rcache, index, is_static, false);
2255   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2256 
2257   if (!is_static) {
2258     pop_and_check_object(Rclass);
2259   } else {
2260     __ verify_oop(Rclass);
2261   }
2262 
2263   Label exit;
2264 
2265   Assembler::Membar_mask_bits membar_bits =
2266     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2267 
2268   if (__ membar_has_effect(membar_bits)) {
2269     // Get volatile flag
2270     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2271     __ and3(Rflags, Lscratch, Lscratch);
2272   }
2273 
2274   Label checkVolatile;
2275 
2276   // compute field type
2277   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2278   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2279   // Make sure we don't need to mask Rflags for tosBits after the above shift
2280   ConstantPoolCacheEntry::verify_tosBits();
2281 
2282   // Check atos before itos for getstatic, more likely (in Queens at least)
2283   __ cmp(Rflags, atos);
2284   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2285   __ delayed() ->cmp(Rflags, itos);
2286 
2287   // atos
2288   __ load_heap_oop(Rclass, Roffset, Otos_i);
2289   __ verify_oop(Otos_i);
2290   __ push(atos);
2291   if (!is_static) {
2292     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2293   }
2294   __ ba(false, checkVolatile);
2295   __ delayed()->tst(Lscratch);
2296 
2297   __ bind(notObj);
2298 
2299   // cmp(Rflags, itos);
2300   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2301   __ delayed() ->cmp(Rflags, ltos);
2302 
2303   // itos
2304   __ ld(Rclass, Roffset, Otos_i);
2305   __ push(itos);
2306   if (!is_static) {
2307     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2308   }
2309   __ ba(false, checkVolatile);
2310   __ delayed()->tst(Lscratch);
2311 
2312   __ bind(notInt);
2313 
2314   // cmp(Rflags, ltos);
2315   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2316   __ delayed() ->cmp(Rflags, btos);
2317 
2318   // ltos
2319   // load must be atomic
2320   __ ld_long(Rclass, Roffset, Otos_l);
2321   __ push(ltos);
2322   if (!is_static) {
2323     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2324   }
2325   __ ba(false, checkVolatile);
2326   __ delayed()->tst(Lscratch);
2327 
2328   __ bind(notLong);
2329 
2330   // cmp(Rflags, btos);
2331   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2332   __ delayed() ->cmp(Rflags, ctos);
2333 
2334   // btos
2335   __ ldsb(Rclass, Roffset, Otos_i);
2336   __ push(itos);
2337   if (!is_static) {
2338     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2339   }
2340   __ ba(false, checkVolatile);
2341   __ delayed()->tst(Lscratch);
2342 
2343   __ bind(notByte);
2344 
2345   // cmp(Rflags, ctos);
2346   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2347   __ delayed() ->cmp(Rflags, stos);
2348 
2349   // ctos
2350   __ lduh(Rclass, Roffset, Otos_i);
2351   __ push(itos);
2352   if (!is_static) {
2353     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2354   }
2355   __ ba(false, checkVolatile);
2356   __ delayed()->tst(Lscratch);
2357 
2358   __ bind(notChar);
2359 
2360   // cmp(Rflags, stos);
2361   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2362   __ delayed() ->cmp(Rflags, ftos);
2363 
2364   // stos
2365   __ ldsh(Rclass, Roffset, Otos_i);
2366   __ push(itos);
2367   if (!is_static) {
2368     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2369   }
2370   __ ba(false, checkVolatile);
2371   __ delayed()->tst(Lscratch);
2372 
2373   __ bind(notShort);
2374 
2375 
2376   // cmp(Rflags, ftos);
2377   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2378   __ delayed() ->tst(Lscratch);
2379 
2380   // ftos
2381   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2382   __ push(ftos);
2383   if (!is_static) {
2384     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2385   }
2386   __ ba(false, checkVolatile);
2387   __ delayed()->tst(Lscratch);
2388 
2389   __ bind(notFloat);
2390 
2391 
2392   // dtos
2393   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2394   __ push(dtos);
2395   if (!is_static) {
2396     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2397   }
2398 
2399   __ bind(checkVolatile);
2400   if (__ membar_has_effect(membar_bits)) {
2401     // __ tst(Lscratch); executed in delay slot
2402     __ br(Assembler::zero, false, Assembler::pt, exit);
2403     __ delayed()->nop();
2404     volatile_barrier(membar_bits);
2405   }
2406 
2407   __ bind(exit);
2408 }
2409 
2410 
2411 void TemplateTable::getfield(int byte_no) {
2412   getfield_or_static(byte_no, false);
2413 }
2414 
2415 void TemplateTable::getstatic(int byte_no) {
2416   getfield_or_static(byte_no, true);
2417 }
2418 
2419 
2420 void TemplateTable::fast_accessfield(TosState state) {
2421   transition(atos, state);
2422   Register Rcache  = G3_scratch;
2423   Register index   = G4_scratch;
2424   Register Roffset = G4_scratch;
2425   Register Rflags  = Rcache;
2426   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2427 
2428   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2429   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2430 
2431   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2432 
2433   __ null_check(Otos_i);
2434   __ verify_oop(Otos_i);
2435 
2436   Label exit;
2437 
2438   Assembler::Membar_mask_bits membar_bits =
2439     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2440   if (__ membar_has_effect(membar_bits)) {
2441     // Get volatile flag
2442     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2443     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2444   }
2445 
2446   switch (bytecode()) {
2447     case Bytecodes::_fast_bgetfield:
2448       __ ldsb(Otos_i, Roffset, Otos_i);
2449       break;
2450     case Bytecodes::_fast_cgetfield:
2451       __ lduh(Otos_i, Roffset, Otos_i);
2452       break;
2453     case Bytecodes::_fast_sgetfield:
2454       __ ldsh(Otos_i, Roffset, Otos_i);
2455       break;
2456     case Bytecodes::_fast_igetfield:
2457       __ ld(Otos_i, Roffset, Otos_i);
2458       break;
2459     case Bytecodes::_fast_lgetfield:
2460       __ ld_long(Otos_i, Roffset, Otos_l);
2461       break;
2462     case Bytecodes::_fast_fgetfield:
2463       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2464       break;
2465     case Bytecodes::_fast_dgetfield:
2466       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2467       break;
2468     case Bytecodes::_fast_agetfield:
2469       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2470       break;
2471     default:
2472       ShouldNotReachHere();
2473   }
2474 
2475   if (__ membar_has_effect(membar_bits)) {
2476     __ btst(Lscratch, Rflags);
2477     __ br(Assembler::zero, false, Assembler::pt, exit);
2478     __ delayed()->nop();
2479     volatile_barrier(membar_bits);
2480     __ bind(exit);
2481   }
2482 
2483   if (state == atos) {
2484     __ verify_oop(Otos_i);    // does not blow flags!
2485   }
2486 }
2487 
2488 void TemplateTable::jvmti_post_fast_field_mod() {
2489   if (JvmtiExport::can_post_field_modification()) {
2490     // Check to see if a field modification watch has been set before we take
2491     // the time to call into the VM.
2492     Label done;
2493     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2494     __ load_contents(get_field_modification_count_addr, G4_scratch);
2495     __ tst(G4_scratch);
2496     __ br(Assembler::zero, false, Assembler::pt, done);
2497     __ delayed()->nop();
2498     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2499     __ verify_oop(G4_scratch);
2500     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2501     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2502     // Save tos values before call_VM() clobbers them. Since we have
2503     // to do it for every data type, we use the saved values as the
2504     // jvalue object.
2505     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2506     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2507     case Bytecodes::_fast_bputfield: // fall through
2508     case Bytecodes::_fast_sputfield: // fall through
2509     case Bytecodes::_fast_cputfield: // fall through
2510     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2511     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2512     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2513     // get words in right order for use as jvalue object
2514     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2515     }
2516     // setup pointer to jvalue object
2517     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2518     // G4_scratch:  object pointer
2519     // G1_scratch: cache entry pointer
2520     // G3_scratch: jvalue object on the stack
2521     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2522     switch (bytecode()) {             // restore tos values
2523     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2524     case Bytecodes::_fast_bputfield: // fall through
2525     case Bytecodes::_fast_sputfield: // fall through
2526     case Bytecodes::_fast_cputfield: // fall through
2527     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2528     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2529     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2530     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2531     }
2532     __ bind(done);
2533   }
2534 }
2535 
2536 // The registers Rcache and index expected to be set before call.
2537 // The function may destroy various registers, just not the Rcache and index registers.
2538 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2539   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2540 
2541   if (JvmtiExport::can_post_field_modification()) {
2542     // Check to see if a field modification watch has been set before we take
2543     // the time to call into the VM.
2544     Label Label1;
2545     assert_different_registers(Rcache, index, G1_scratch);
2546     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2547     __ load_contents(get_field_modification_count_addr, G1_scratch);
2548     __ tst(G1_scratch);
2549     __ br(Assembler::zero, false, Assembler::pt, Label1);
2550     __ delayed()->nop();
2551 
2552     // The Rcache and index registers have been already set.
2553     // This allows to eliminate this call but the Rcache and index
2554     // registers must be correspondingly used after this line.
2555     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2556 
2557     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2558     if (is_static) {
2559       // Life is simple.  Null out the object pointer.
2560       __ clr(G4_scratch);
2561     } else {
2562       Register Rflags = G1_scratch;
2563       // Life is harder. The stack holds the value on top, followed by the
2564       // object.  We don't know the size of the value, though; it could be
2565       // one or two words depending on its type. As a result, we must find
2566       // the type to determine where the object is.
2567 
2568       Label two_word, valsizeknown;
2569       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2570       __ mov(Lesp, G4_scratch);
2571       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2572       // Make sure we don't need to mask Rflags for tosBits after the above shift
2573       ConstantPoolCacheEntry::verify_tosBits();
2574       __ cmp(Rflags, ltos);
2575       __ br(Assembler::equal, false, Assembler::pt, two_word);
2576       __ delayed()->cmp(Rflags, dtos);
2577       __ br(Assembler::equal, false, Assembler::pt, two_word);
2578       __ delayed()->nop();
2579       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2580       __ br(Assembler::always, false, Assembler::pt, valsizeknown);
2581       __ delayed()->nop();
2582       __ bind(two_word);
2583 
2584       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2585 
2586       __ bind(valsizeknown);
2587       // setup object pointer
2588       __ ld_ptr(G4_scratch, 0, G4_scratch);
2589       __ verify_oop(G4_scratch);
2590     }
2591     // setup pointer to jvalue object
2592     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2593     // G4_scratch:  object pointer or NULL if static
2594     // G3_scratch: cache entry pointer
2595     // G1_scratch: jvalue object on the stack
2596     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2597                G4_scratch, G3_scratch, G1_scratch);
2598     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2599     __ bind(Label1);
2600   }
2601 }
2602 
2603 void TemplateTable::pop_and_check_object(Register r) {
2604   __ pop_ptr(r);
2605   __ null_check(r);  // for field access must check obj.
2606   __ verify_oop(r);
2607 }
2608 
2609 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2610   transition(vtos, vtos);
2611   Register Rcache = G3_scratch;
2612   Register index  = G4_scratch;
2613   Register Rclass = Rcache;
2614   Register Roffset= G4_scratch;
2615   Register Rflags = G1_scratch;
2616   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2617 
2618   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
2619   jvmti_post_field_mod(Rcache, index, is_static);
2620   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2621 
2622   Assembler::Membar_mask_bits read_bits =
2623     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2624   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2625 
2626   Label notVolatile, checkVolatile, exit;
2627   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2628     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2629     __ and3(Rflags, Lscratch, Lscratch);
2630 
2631     if (__ membar_has_effect(read_bits)) {
2632       __ tst(Lscratch);
2633       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2634       __ delayed()->nop();
2635       volatile_barrier(read_bits);
2636       __ bind(notVolatile);
2637     }
2638   }
2639 
2640   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2641   // Make sure we don't need to mask Rflags for tosBits after the above shift
2642   ConstantPoolCacheEntry::verify_tosBits();
2643 
2644   // compute field type
2645   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2646 
2647   if (is_static) {
2648     // putstatic with object type most likely, check that first
2649     __ cmp(Rflags, atos );
2650     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2651     __ delayed() ->cmp(Rflags, itos );
2652 
2653     // atos
2654     __ pop_ptr();
2655     __ verify_oop(Otos_i);
2656 
2657     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2658 
2659     __ ba(false, checkVolatile);
2660     __ delayed()->tst(Lscratch);
2661 
2662     __ bind(notObj);
2663 
2664     // cmp(Rflags, itos );
2665     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2666     __ delayed() ->cmp(Rflags, btos );
2667 
2668     // itos
2669     __ pop_i();
2670     __ st(Otos_i, Rclass, Roffset);
2671     __ ba(false, checkVolatile);
2672     __ delayed()->tst(Lscratch);
2673 
2674     __ bind(notInt);
2675 
2676   } else {
2677     // putfield with int type most likely, check that first
2678     __ cmp(Rflags, itos );
2679     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2680     __ delayed() ->cmp(Rflags, atos );
2681 
2682     // itos
2683     __ pop_i();
2684     pop_and_check_object(Rclass);
2685     __ st(Otos_i, Rclass, Roffset);
2686     patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
2687     __ ba(false, checkVolatile);
2688     __ delayed()->tst(Lscratch);
2689 
2690     __ bind(notInt);
2691     // cmp(Rflags, atos );
2692     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2693     __ delayed() ->cmp(Rflags, btos );
2694 
2695     // atos
2696     __ pop_ptr();
2697     pop_and_check_object(Rclass);
2698     __ verify_oop(Otos_i);
2699 
2700     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2701 
2702     patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
2703     __ ba(false, checkVolatile);
2704     __ delayed()->tst(Lscratch);
2705 
2706     __ bind(notObj);
2707   }
2708 
2709   // cmp(Rflags, btos );
2710   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2711   __ delayed() ->cmp(Rflags, ltos );
2712 
2713   // btos
2714   __ pop_i();
2715   if (!is_static) pop_and_check_object(Rclass);
2716   __ stb(Otos_i, Rclass, Roffset);
2717   if (!is_static) {
2718     patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
2719   }
2720   __ ba(false, checkVolatile);
2721   __ delayed()->tst(Lscratch);
2722 
2723   __ bind(notByte);
2724 
2725   // cmp(Rflags, ltos );
2726   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2727   __ delayed() ->cmp(Rflags, ctos );
2728 
2729   // ltos
2730   __ pop_l();
2731   if (!is_static) pop_and_check_object(Rclass);
2732   __ st_long(Otos_l, Rclass, Roffset);
2733   if (!is_static) {
2734     patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
2735   }
2736   __ ba(false, checkVolatile);
2737   __ delayed()->tst(Lscratch);
2738 
2739   __ bind(notLong);
2740 
2741   // cmp(Rflags, ctos );
2742   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2743   __ delayed() ->cmp(Rflags, stos );
2744 
2745   // ctos (char)
2746   __ pop_i();
2747   if (!is_static) pop_and_check_object(Rclass);
2748   __ sth(Otos_i, Rclass, Roffset);
2749   if (!is_static) {
2750     patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
2751   }
2752   __ ba(false, checkVolatile);
2753   __ delayed()->tst(Lscratch);
2754 
2755   __ bind(notChar);
2756   // cmp(Rflags, stos );
2757   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2758   __ delayed() ->cmp(Rflags, ftos );
2759 
2760   // stos (char)
2761   __ pop_i();
2762   if (!is_static) pop_and_check_object(Rclass);
2763   __ sth(Otos_i, Rclass, Roffset);
2764   if (!is_static) {
2765     patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
2766   }
2767   __ ba(false, checkVolatile);
2768   __ delayed()->tst(Lscratch);
2769 
2770   __ bind(notShort);
2771   // cmp(Rflags, ftos );
2772   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2773   __ delayed()->nop();
2774 
2775   // ftos
2776   __ pop_f();
2777   if (!is_static) pop_and_check_object(Rclass);
2778   __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2779   if (!is_static) {
2780     patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
2781   }
2782   __ ba(false, checkVolatile);
2783   __ delayed()->tst(Lscratch);
2784 
2785   __ bind(notFloat);
2786 
2787   // dtos
2788   __ pop_d();
2789   if (!is_static) pop_and_check_object(Rclass);
2790   __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2791   if (!is_static) {
2792     patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
2793   }
2794 
2795   __ bind(checkVolatile);
2796   __ tst(Lscratch);
2797 
2798   if (__ membar_has_effect(write_bits)) {
2799     // __ tst(Lscratch); in delay slot
2800     __ br(Assembler::zero, false, Assembler::pt, exit);
2801     __ delayed()->nop();
2802     volatile_barrier(Assembler::StoreLoad);
2803     __ bind(exit);
2804   }
2805 }
2806 
2807 void TemplateTable::fast_storefield(TosState state) {
2808   transition(state, vtos);
2809   Register Rcache = G3_scratch;
2810   Register Rclass = Rcache;
2811   Register Roffset= G4_scratch;
2812   Register Rflags = G1_scratch;
2813   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2814 
2815   jvmti_post_fast_field_mod();
2816 
2817   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2818 
2819   Assembler::Membar_mask_bits read_bits =
2820     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2821   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2822 
2823   Label notVolatile, checkVolatile, exit;
2824   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2825     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2826     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2827     __ and3(Rflags, Lscratch, Lscratch);
2828     if (__ membar_has_effect(read_bits)) {
2829       __ tst(Lscratch);
2830       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2831       __ delayed()->nop();
2832       volatile_barrier(read_bits);
2833       __ bind(notVolatile);
2834     }
2835   }
2836 
2837   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2838   pop_and_check_object(Rclass);
2839 
2840   switch (bytecode()) {
2841     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2842     case Bytecodes::_fast_cputfield: /* fall through */
2843     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2844     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2845     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2846     case Bytecodes::_fast_fputfield:
2847       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2848       break;
2849     case Bytecodes::_fast_dputfield:
2850       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2851       break;
2852     case Bytecodes::_fast_aputfield:
2853       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2854       break;
2855     default:
2856       ShouldNotReachHere();
2857   }
2858 
2859   if (__ membar_has_effect(write_bits)) {
2860     __ tst(Lscratch);
2861     __ br(Assembler::zero, false, Assembler::pt, exit);
2862     __ delayed()->nop();
2863     volatile_barrier(Assembler::StoreLoad);
2864     __ bind(exit);
2865   }
2866 }
2867 
2868 
2869 void TemplateTable::putfield(int byte_no) {
2870   putfield_or_static(byte_no, false);
2871 }
2872 
2873 void TemplateTable::putstatic(int byte_no) {
2874   putfield_or_static(byte_no, true);
2875 }
2876 
2877 
2878 void TemplateTable::fast_xaccess(TosState state) {
2879   transition(vtos, state);
2880   Register Rcache = G3_scratch;
2881   Register Roffset = G4_scratch;
2882   Register Rflags  = G4_scratch;
2883   Register Rreceiver = Lscratch;
2884 
2885   __ ld_ptr(Llocals, 0, Rreceiver);
2886 
2887   // access constant pool cache  (is resolved)
2888   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2889   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2890   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2891 
2892   __ verify_oop(Rreceiver);
2893   __ null_check(Rreceiver);
2894   if (state == atos) {
2895     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2896   } else if (state == itos) {
2897     __ ld (Rreceiver, Roffset, Otos_i) ;
2898   } else if (state == ftos) {
2899     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2900   } else {
2901     ShouldNotReachHere();
2902   }
2903 
2904   Assembler::Membar_mask_bits membar_bits =
2905     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2906   if (__ membar_has_effect(membar_bits)) {
2907 
2908     // Get is_volatile value in Rflags and check if membar is needed
2909     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2910 
2911     // Test volatile
2912     Label notVolatile;
2913     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2914     __ btst(Rflags, Lscratch);
2915     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2916     __ delayed()->nop();
2917     volatile_barrier(membar_bits);
2918     __ bind(notVolatile);
2919   }
2920 
2921   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2922   __ sub(Lbcp, 1, Lbcp);
2923 }
2924 
2925 //----------------------------------------------------------------------------------------------------
2926 // Calls
2927 
2928 void TemplateTable::count_calls(Register method, Register temp) {
2929   // implemented elsewhere
2930   ShouldNotReachHere();
2931 }
2932 
2933 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2934   Register Rtemp = G4_scratch;
2935   Register Rcall = Rindex;
2936   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2937 
2938   // get target methodOop & entry point
2939   const int base = instanceKlass::vtable_start_offset() * wordSize;
2940   if (vtableEntry::size() % 3 == 0) {
2941     // scale the vtable index by 12:
2942     int one_third = vtableEntry::size() / 3;
2943     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
2944     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
2945     __ add(Rindex, Rtemp, Rindex);
2946   } else {
2947     // scale the vtable index by 8:
2948     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
2949   }
2950 
2951   __ add(Rrecv, Rindex, Rrecv);
2952   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
2953 
2954   __ call_from_interpreter(Rcall, Gargs, Rret);
2955 }
2956 
2957 void TemplateTable::invokevirtual(int byte_no) {
2958   transition(vtos, vtos);
2959   assert(byte_no == f2_byte, "use this argument");
2960 
2961   Register Rscratch = G3_scratch;
2962   Register Rtemp = G4_scratch;
2963   Register Rret = Lscratch;
2964   Register Rrecv = G5_method;
2965   Label notFinal;
2966 
2967   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2968   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2969 
2970   // Check for vfinal
2971   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
2972   __ btst(Rret, G4_scratch);
2973   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2974   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2975 
2976   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2977 
2978   invokevfinal_helper(Rscratch, Rret);
2979 
2980   __ bind(notFinal);
2981 
2982   __ mov(G5_method, Rscratch);  // better scratch register
2983   __ load_receiver(G4_scratch, O0);  // gets receiverOop
2984   // receiver is in O0
2985   __ verify_oop(O0);
2986 
2987   // get return address
2988   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2989   __ set(table, Rtemp);
2990   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2991   // Make sure we don't need to mask Rret for tosBits after the above shift
2992   ConstantPoolCacheEntry::verify_tosBits();
2993   __ sll(Rret,  LogBytesPerWord, Rret);
2994   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2995 
2996   // get receiver klass
2997   __ null_check(O0, oopDesc::klass_offset_in_bytes());
2998   __ load_klass(O0, Rrecv);
2999   __ verify_oop(Rrecv);
3000 
3001   __ profile_virtual_call(Rrecv, O4);
3002 
3003   generate_vtable_call(Rrecv, Rscratch, Rret);
3004 }
3005 
3006 void TemplateTable::fast_invokevfinal(int byte_no) {
3007   transition(vtos, vtos);
3008   assert(byte_no == f2_byte, "use this argument");
3009 
3010   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3011                              /*is_invokevfinal*/true, false);
3012   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3013   invokevfinal_helper(G3_scratch, Lscratch);
3014 }
3015 
3016 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3017   Register Rtemp = G4_scratch;
3018 
3019   __ verify_oop(G5_method);
3020 
3021   // Load receiver from stack slot
3022   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
3023   __ load_receiver(G4_scratch, O0);
3024 
3025   // receiver NULL check
3026   __ null_check(O0);
3027 
3028   __ profile_final_call(O4);
3029 
3030   // get return address
3031   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3032   __ set(table, Rtemp);
3033   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3034   // Make sure we don't need to mask Rret for tosBits after the above shift
3035   ConstantPoolCacheEntry::verify_tosBits();
3036   __ sll(Rret,  LogBytesPerWord, Rret);
3037   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3038 
3039 
3040   // do the call
3041   __ call_from_interpreter(Rscratch, Gargs, Rret);
3042 }
3043 
3044 void TemplateTable::invokespecial(int byte_no) {
3045   transition(vtos, vtos);
3046   assert(byte_no == f1_byte, "use this argument");
3047 
3048   Register Rscratch = G3_scratch;
3049   Register Rtemp = G4_scratch;
3050   Register Rret = Lscratch;
3051 
3052   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
3053   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3054 
3055   __ verify_oop(G5_method);
3056 
3057   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
3058   __ load_receiver(G4_scratch, O0);
3059 
3060   // receiver NULL check
3061   __ null_check(O0);
3062 
3063   __ profile_call(O4);
3064 
3065   // get return address
3066   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3067   __ set(table, Rtemp);
3068   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3069   // Make sure we don't need to mask Rret for tosBits after the above shift
3070   ConstantPoolCacheEntry::verify_tosBits();
3071   __ sll(Rret,  LogBytesPerWord, Rret);
3072   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3073 
3074   // do the call
3075   __ call_from_interpreter(Rscratch, Gargs, Rret);
3076 }
3077 
3078 void TemplateTable::invokestatic(int byte_no) {
3079   transition(vtos, vtos);
3080   assert(byte_no == f1_byte, "use this argument");
3081 
3082   Register Rscratch = G3_scratch;
3083   Register Rtemp = G4_scratch;
3084   Register Rret = Lscratch;
3085 
3086   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
3087   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3088 
3089   __ verify_oop(G5_method);
3090 
3091   __ profile_call(O4);
3092 
3093   // get return address
3094   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3095   __ set(table, Rtemp);
3096   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3097   // Make sure we don't need to mask Rret for tosBits after the above shift
3098   ConstantPoolCacheEntry::verify_tosBits();
3099   __ sll(Rret,  LogBytesPerWord, Rret);
3100   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3101 
3102   // do the call
3103   __ call_from_interpreter(Rscratch, Gargs, Rret);
3104 }
3105 
3106 
3107 void TemplateTable::invokeinterface_object_method(Register RklassOop,
3108                                                   Register Rcall,
3109                                                   Register Rret,
3110                                                   Register Rflags) {
3111   Register Rscratch = G4_scratch;
3112   Register Rindex = Lscratch;
3113 
3114   assert_different_registers(Rscratch, Rindex, Rret);
3115 
3116   Label notFinal;
3117 
3118   // Check for vfinal
3119   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
3120   __ btst(Rflags, Rscratch);
3121   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3122   __ delayed()->nop();
3123 
3124   __ profile_final_call(O4);
3125 
3126   // do the call - the index (f2) contains the methodOop
3127   assert_different_registers(G5_method, Gargs, Rcall);
3128   __ mov(Rindex, G5_method);
3129   __ call_from_interpreter(Rcall, Gargs, Rret);
3130   __ bind(notFinal);
3131 
3132   __ profile_virtual_call(RklassOop, O4);
3133   generate_vtable_call(RklassOop, Rindex, Rret);
3134 }
3135 
3136 
3137 void TemplateTable::invokeinterface(int byte_no) {
3138   transition(vtos, vtos);
3139   assert(byte_no == f1_byte, "use this argument");
3140 
3141   Register Rscratch = G4_scratch;
3142   Register Rret = G3_scratch;
3143   Register Rindex = Lscratch;
3144   Register Rinterface = G1_scratch;
3145   Register RklassOop = G5_method;
3146   Register Rflags = O1;
3147   assert_different_registers(Rscratch, G5_method);
3148 
3149   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
3150   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3151 
3152   // get receiver
3153   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
3154   __ load_receiver(Rscratch, O0);
3155   __ verify_oop(O0);
3156 
3157   __ mov(Rflags, Rret);
3158 
3159   // get return address
3160   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3161   __ set(table, Rscratch);
3162   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3163   // Make sure we don't need to mask Rret for tosBits after the above shift
3164   ConstantPoolCacheEntry::verify_tosBits();
3165   __ sll(Rret,  LogBytesPerWord, Rret);
3166   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
3167 
3168   // get receiver klass
3169   __ null_check(O0, oopDesc::klass_offset_in_bytes());
3170   __ load_klass(O0, RklassOop);
3171   __ verify_oop(RklassOop);
3172 
3173   // Special case of invokeinterface called for virtual method of
3174   // java.lang.Object.  See cpCacheOop.cpp for details.
3175   // This code isn't produced by javac, but could be produced by
3176   // another compliant java compiler.
3177   Label notMethod;
3178   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
3179   __ btst(Rflags, Rscratch);
3180   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3181   __ delayed()->nop();
3182 
3183   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
3184 
3185   __ bind(notMethod);
3186 
3187   __ profile_virtual_call(RklassOop, O4);
3188 
3189   //
3190   // find entry point to call
3191   //
3192 
3193   // compute start of first itableOffsetEntry (which is at end of vtable)
3194   const int base = instanceKlass::vtable_start_offset() * wordSize;
3195   Label search;
3196   Register Rtemp = Rflags;
3197 
3198   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
3199   if (align_object_offset(1) > 1) {
3200     __ round_to(Rtemp, align_object_offset(1));
3201   }
3202   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3203   if (Assembler::is_simm13(base)) {
3204     __ add(Rtemp, base, Rtemp);
3205   } else {
3206     __ set(base, Rscratch);
3207     __ add(Rscratch, Rtemp, Rtemp);
3208   }
3209   __ add(RklassOop, Rtemp, Rscratch);
3210 
3211   __ bind(search);
3212 
3213   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3214   {
3215     Label ok;
3216 
3217     // Check that entry is non-null.  Null entries are probably a bytecode
3218     // problem.  If the interface isn't implemented by the receiver class,
3219     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3220     // this too but that's only if the entry isn't already resolved, so we
3221     // need to check again.
3222     __ br_notnull( Rtemp, false, Assembler::pt, ok);
3223     __ delayed()->nop();
3224     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3225     __ should_not_reach_here();
3226     __ bind(ok);
3227     __ verify_oop(Rtemp);
3228   }
3229 
3230   __ verify_oop(Rinterface);
3231 
3232   __ cmp(Rinterface, Rtemp);
3233   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3234   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3235 
3236   // entry found and Rscratch points to it
3237   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3238 
3239   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3240   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3241   __ add(Rscratch, Rindex, Rscratch);
3242   __ ld_ptr(RklassOop, Rscratch, G5_method);
3243 
3244   // Check for abstract method error.
3245   {
3246     Label ok;
3247     __ tst(G5_method);
3248     __ brx(Assembler::notZero, false, Assembler::pt, ok);
3249     __ delayed()->nop();
3250     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3251     __ should_not_reach_here();
3252     __ bind(ok);
3253   }
3254 
3255   Register Rcall = Rinterface;
3256   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3257 
3258   __ verify_oop(G5_method);
3259   __ call_from_interpreter(Rcall, Gargs, Rret);
3260 
3261 }
3262 
3263 
3264 void TemplateTable::invokedynamic(int byte_no) {
3265   transition(vtos, vtos);
3266   assert(byte_no == f1_oop, "use this argument");
3267 
3268   if (!EnableInvokeDynamic) {
3269     // We should not encounter this bytecode if !EnableInvokeDynamic.
3270     // The verifier will stop it.  However, if we get past the verifier,
3271     // this will stop the thread in a reasonable way, without crashing the JVM.
3272     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3273                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3274     // the call_VM checks for exception, so we should never return here.
3275     __ should_not_reach_here();
3276     return;
3277   }
3278 
3279   // G5: CallSite object (f1)
3280   // XX: unused (f2)
3281   // XX: flags (unused)
3282 
3283   Register G5_callsite = G5_method;
3284   Register Rscratch    = G3_scratch;
3285   Register Rtemp       = G1_scratch;
3286   Register Rret        = Lscratch;
3287 
3288   load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
3289                              /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
3290   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
3291 
3292   __ verify_oop(G5_callsite);
3293 
3294   // profile this call
3295   __ profile_call(O4);
3296 
3297   // get return address
3298   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3299   __ set(table, Rtemp);
3300   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
3301   // Make sure we don't need to mask Rret for tosBits after the above shift
3302   ConstantPoolCacheEntry::verify_tosBits();
3303   __ sll(Rret, LogBytesPerWord, Rret);
3304   __ ld_ptr(Rtemp, Rret, Rret);  // get return address
3305 
3306   __ load_heap_oop(G5_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
3307   __ null_check(G3_method_handle);
3308 
3309   // Adjust Rret first so Llast_SP can be same as Rret
3310   __ add(Rret, -frame::pc_return_offset, O7);
3311   __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
3312   __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
3313   // Record SP so we can remove any stack space allocated by adapter transition
3314   __ delayed()->mov(SP, Llast_SP);
3315 }
3316 
3317 
3318 //----------------------------------------------------------------------------------------------------
3319 // Allocation
3320 
3321 void TemplateTable::_new() {
3322   transition(vtos, atos);
3323 
3324   Label slow_case;
3325   Label done;
3326   Label initialize_header;
3327   Label initialize_object;  // including clearing the fields
3328 
3329   Register RallocatedObject = Otos_i;
3330   Register RinstanceKlass = O1;
3331   Register Roffset = O3;
3332   Register Rscratch = O4;
3333 
3334   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3335   __ get_cpool_and_tags(Rscratch, G3_scratch);
3336   // make sure the class we're about to instantiate has been resolved
3337   // This is done before loading instanceKlass to be consistent with the order
3338   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3339   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3340   __ ldub(G3_scratch, Roffset, G3_scratch);
3341   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3342   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3343   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3344   // get instanceKlass
3345   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3346   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3347   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3348 
3349   // make sure klass is fully initialized:
3350   __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
3351   __ cmp(G3_scratch, instanceKlass::fully_initialized);
3352   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3353   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3354 
3355   // get instance_size in instanceKlass (already aligned)
3356   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3357 
3358   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3359   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3360   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3361   __ delayed()->nop();
3362 
3363   // allocate the instance
3364   // 1) Try to allocate in the TLAB
3365   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3366   // 3) if the above fails (or is not applicable), go to a slow case
3367   // (creates a new TLAB, etc.)
3368 
3369   const bool allow_shared_alloc =
3370     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3371 
3372   if(UseTLAB) {
3373     Register RoldTopValue = RallocatedObject;
3374     Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
3375     Register RnewTopValue = G1_scratch;
3376     Register RendValue = Rscratch;
3377     Register RfreeValue = RnewTopValue;
3378 
3379     // check if we can allocate in the TLAB
3380     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3381     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3382     __ add(RoldTopValue, Roffset, RnewTopValue);
3383 
3384     // if there is enough space, we do not CAS and do not clear
3385     __ cmp(RnewTopValue, RendValue);
3386     if(ZeroTLAB) {
3387       // the fields have already been cleared
3388       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3389     } else {
3390       // initialize both the header and fields
3391       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3392     }
3393     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3394 
3395     if (allow_shared_alloc) {
3396       // Check if tlab should be discarded (refill_waste_limit >= free)
3397       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3398       __ sub(RendValue, RoldTopValue, RfreeValue);
3399 #ifdef _LP64
3400       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3401 #else
3402       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3403 #endif
3404       __ cmp(RtlabWasteLimitValue, RfreeValue);
3405       __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
3406       __ delayed()->nop();
3407 
3408       // increment waste limit to prevent getting stuck on this slow path
3409       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3410       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3411     } else {
3412       // No allocation in the shared eden.
3413       __ br(Assembler::always, false, Assembler::pt, slow_case);
3414       __ delayed()->nop();
3415     }
3416   }
3417 
3418   // Allocation in the shared Eden
3419   if (allow_shared_alloc) {
3420     Register RoldTopValue = G1_scratch;
3421     Register RtopAddr = G3_scratch;
3422     Register RnewTopValue = RallocatedObject;
3423     Register RendValue = Rscratch;
3424 
3425     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3426 
3427     Label retry;
3428     __ bind(retry);
3429     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3430     __ ld_ptr(RendValue, 0, RendValue);
3431     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3432     __ add(RoldTopValue, Roffset, RnewTopValue);
3433 
3434     // RnewTopValue contains the top address after the new object
3435     // has been allocated.
3436     __ cmp(RnewTopValue, RendValue);
3437     __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
3438     __ delayed()->nop();
3439 
3440     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
3441       VM_Version::v9_instructions_work() ? NULL :
3442       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3443 
3444     // if someone beat us on the allocation, try again, otherwise continue
3445     __ cmp(RoldTopValue, RnewTopValue);
3446     __ brx(Assembler::notEqual, false, Assembler::pn, retry);
3447     __ delayed()->nop();
3448 
3449     // bump total bytes allocated by this thread
3450     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3451     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3452   }
3453 
3454   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3455     // clear object fields
3456     __ bind(initialize_object);
3457     __ deccc(Roffset, sizeof(oopDesc));
3458     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3459     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3460 
3461     // initialize remaining object fields
3462     { Label loop;
3463       __ subcc(Roffset, wordSize, Roffset);
3464       __ bind(loop);
3465       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3466       __ st_ptr(G0, G3_scratch, Roffset);
3467       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3468       __ delayed()->subcc(Roffset, wordSize, Roffset);
3469     }
3470     __ br(Assembler::always, false, Assembler::pt, initialize_header);
3471     __ delayed()->nop();
3472   }
3473 
3474   // slow case
3475   __ bind(slow_case);
3476   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3477   __ get_constant_pool(O1);
3478 
3479   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3480 
3481   __ ba(false, done);
3482   __ delayed()->nop();
3483 
3484   // Initialize the header: mark, klass
3485   __ bind(initialize_header);
3486 
3487   if (UseBiasedLocking) {
3488     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
3489   } else {
3490     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3491   }
3492   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3493   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3494   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3495 
3496   {
3497     SkipIfEqual skip_if(
3498       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3499     // Trigger dtrace event
3500     __ push(atos);
3501     __ call_VM_leaf(noreg,
3502        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3503     __ pop(atos);
3504   }
3505 
3506   // continue
3507   __ bind(done);
3508 }
3509 
3510 
3511 
3512 void TemplateTable::newarray() {
3513   transition(itos, atos);
3514   __ ldub(Lbcp, 1, O1);
3515      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3516 }
3517 
3518 
3519 void TemplateTable::anewarray() {
3520   transition(itos, atos);
3521   __ get_constant_pool(O1);
3522   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3523      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3524 }
3525 
3526 
3527 void TemplateTable::arraylength() {
3528   transition(atos, itos);
3529   Label ok;
3530   __ verify_oop(Otos_i);
3531   __ tst(Otos_i);
3532   __ throw_if_not_1_x( Assembler::notZero, ok );
3533   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3534   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3535 }
3536 
3537 
3538 void TemplateTable::checkcast() {
3539   transition(atos, atos);
3540   Label done, is_null, quicked, cast_ok, resolved;
3541   Register Roffset = G1_scratch;
3542   Register RobjKlass = O5;
3543   Register RspecifiedKlass = O4;
3544 
3545   // Check for casting a NULL
3546   __ br_null(Otos_i, false, Assembler::pn, is_null);
3547   __ delayed()->nop();
3548 
3549   // Get value klass in RobjKlass
3550   __ load_klass(Otos_i, RobjKlass); // get value klass
3551 
3552   // Get constant pool tag
3553   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3554 
3555   // See if the checkcast has been quickened
3556   __ get_cpool_and_tags(Lscratch, G3_scratch);
3557   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3558   __ ldub(G3_scratch, Roffset, G3_scratch);
3559   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3560   __ br(Assembler::equal, true, Assembler::pt, quicked);
3561   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3562 
3563   __ push_ptr(); // save receiver for result, and for GC
3564   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3565   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3566 
3567   __ br(Assembler::always, false, Assembler::pt, resolved);
3568   __ delayed()->nop();
3569 
3570   // Extract target class from constant pool
3571   __ bind(quicked);
3572   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3573   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3574   __ bind(resolved);
3575   __ load_klass(Otos_i, RobjKlass); // get value klass
3576 
3577   // Generate a fast subtype check.  Branch to cast_ok if no
3578   // failure.  Throw exception if failure.
3579   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3580 
3581   // Not a subtype; so must throw exception
3582   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3583 
3584   __ bind(cast_ok);
3585 
3586   if (ProfileInterpreter) {
3587     __ ba(false, done);
3588     __ delayed()->nop();
3589   }
3590   __ bind(is_null);
3591   __ profile_null_seen(G3_scratch);
3592   __ bind(done);
3593 }
3594 
3595 
3596 void TemplateTable::instanceof() {
3597   Label done, is_null, quicked, resolved;
3598   transition(atos, itos);
3599   Register Roffset = G1_scratch;
3600   Register RobjKlass = O5;
3601   Register RspecifiedKlass = O4;
3602 
3603   // Check for casting a NULL
3604   __ br_null(Otos_i, false, Assembler::pt, is_null);
3605   __ delayed()->nop();
3606 
3607   // Get value klass in RobjKlass
3608   __ load_klass(Otos_i, RobjKlass); // get value klass
3609 
3610   // Get constant pool tag
3611   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3612 
3613   // See if the checkcast has been quickened
3614   __ get_cpool_and_tags(Lscratch, G3_scratch);
3615   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3616   __ ldub(G3_scratch, Roffset, G3_scratch);
3617   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3618   __ br(Assembler::equal, true, Assembler::pt, quicked);
3619   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3620 
3621   __ push_ptr(); // save receiver for result, and for GC
3622   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3623   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3624 
3625   __ br(Assembler::always, false, Assembler::pt, resolved);
3626   __ delayed()->nop();
3627 
3628 
3629   // Extract target class from constant pool
3630   __ bind(quicked);
3631   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3632   __ get_constant_pool(Lscratch);
3633   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3634   __ bind(resolved);
3635   __ load_klass(Otos_i, RobjKlass); // get value klass
3636 
3637   // Generate a fast subtype check.  Branch to cast_ok if no
3638   // failure.  Return 0 if failure.
3639   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3640   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3641   // Not a subtype; return 0;
3642   __ clr( Otos_i );
3643 
3644   if (ProfileInterpreter) {
3645     __ ba(false, done);
3646     __ delayed()->nop();
3647   }
3648   __ bind(is_null);
3649   __ profile_null_seen(G3_scratch);
3650   __ bind(done);
3651 }
3652 
3653 void TemplateTable::_breakpoint() {
3654 
3655    // Note: We get here even if we are single stepping..
3656    // jbug inists on setting breakpoints at every bytecode
3657    // even if we are in single step mode.
3658 
3659    transition(vtos, vtos);
3660    // get the unpatched byte code
3661    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3662    __ mov(O0, Lbyte_code);
3663 
3664    // post the breakpoint event
3665    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3666 
3667    // complete the execution of original bytecode
3668    __ dispatch_normal(vtos);
3669 }
3670 
3671 
3672 //----------------------------------------------------------------------------------------------------
3673 // Exceptions
3674 
3675 void TemplateTable::athrow() {
3676   transition(atos, vtos);
3677 
3678   // This works because exception is cached in Otos_i which is same as O0,
3679   // which is same as what throw_exception_entry_expects
3680   assert(Otos_i == Oexception, "see explanation above");
3681 
3682   __ verify_oop(Otos_i);
3683   __ null_check(Otos_i);
3684   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3685 }
3686 
3687 
3688 //----------------------------------------------------------------------------------------------------
3689 // Synchronization
3690 
3691 
3692 // See frame_sparc.hpp for monitor block layout.
3693 // Monitor elements are dynamically allocated by growing stack as needed.
3694 
3695 void TemplateTable::monitorenter() {
3696   transition(atos, vtos);
3697   __ verify_oop(Otos_i);
3698   // Try to acquire a lock on the object
3699   // Repeat until succeeded (i.e., until
3700   // monitorenter returns true).
3701 
3702   {   Label ok;
3703     __ tst(Otos_i);
3704     __ throw_if_not_1_x( Assembler::notZero,  ok);
3705     __ delayed()->mov(Otos_i, Lscratch); // save obj
3706     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3707   }
3708 
3709   assert(O0 == Otos_i, "Be sure where the object to lock is");
3710 
3711   // find a free slot in the monitor block
3712 
3713 
3714   // initialize entry pointer
3715   __ clr(O1); // points to free slot or NULL
3716 
3717   {
3718     Label entry, loop, exit;
3719     __ add( __ top_most_monitor(), O2 ); // last one to check
3720     __ ba( false, entry );
3721     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3722 
3723 
3724     __ bind( loop );
3725 
3726     __ verify_oop(O4);          // verify each monitor's oop
3727     __ tst(O4); // is this entry unused?
3728     if (VM_Version::v9_instructions_work())
3729       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3730     else {
3731       Label L;
3732       __ br( Assembler::zero, true, Assembler::pn, L );
3733       __ delayed()->mov(O3, O1); // rememeber this one if match
3734       __ bind(L);
3735     }
3736 
3737     __ cmp(O4, O0); // check if current entry is for same object
3738     __ brx( Assembler::equal, false, Assembler::pn, exit );
3739     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3740 
3741     __ bind( entry );
3742 
3743     __ cmp( O3, O2 );
3744     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3745     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3746 
3747     __ bind( exit );
3748   }
3749 
3750   { Label allocated;
3751 
3752     // found free slot?
3753     __ br_notnull(O1, false, Assembler::pn, allocated);
3754     __ delayed()->nop();
3755 
3756     __ add_monitor_to_stack( false, O2, O3 );
3757     __ mov(Lmonitors, O1);
3758 
3759     __ bind(allocated);
3760   }
3761 
3762   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3763   // The object has already been poped from the stack, so the expression stack looks correct.
3764   __ inc(Lbcp);
3765 
3766   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3767   __ lock_object(O1, O0);
3768 
3769   // check if there's enough space on the stack for the monitors after locking
3770   __ generate_stack_overflow_check(0);
3771 
3772   // The bcp has already been incremented. Just need to dispatch to next instruction.
3773   __ dispatch_next(vtos);
3774 }
3775 
3776 
3777 void TemplateTable::monitorexit() {
3778   transition(atos, vtos);
3779   __ verify_oop(Otos_i);
3780   __ tst(Otos_i);
3781   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3782 
3783   assert(O0 == Otos_i, "just checking");
3784 
3785   { Label entry, loop, found;
3786     __ add( __ top_most_monitor(), O2 ); // last one to check
3787     __ ba(false, entry );
3788     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3789     // By using a local it survives the call to the C routine.
3790     __ delayed()->mov( Lmonitors, Lscratch );
3791 
3792     __ bind( loop );
3793 
3794     __ verify_oop(O4);          // verify each monitor's oop
3795     __ cmp(O4, O0); // check if current entry is for desired object
3796     __ brx( Assembler::equal, true, Assembler::pt, found );
3797     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3798 
3799     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3800 
3801     __ bind( entry );
3802 
3803     __ cmp( Lscratch, O2 );
3804     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3805     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3806 
3807     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3808     __ should_not_reach_here();
3809 
3810     __ bind(found);
3811   }
3812   __ unlock_object(O1);
3813 }
3814 
3815 
3816 //----------------------------------------------------------------------------------------------------
3817 // Wide instructions
3818 
3819 void TemplateTable::wide() {
3820   transition(vtos, vtos);
3821   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3822   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3823   AddressLiteral ep(Interpreter::_wentry_point);
3824   __ set(ep, G4_scratch);
3825   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3826   __ jmp(G3_scratch, G0);
3827   __ delayed()->nop();
3828   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3829 }
3830 
3831 
3832 //----------------------------------------------------------------------------------------------------
3833 // Multi arrays
3834 
3835 void TemplateTable::multianewarray() {
3836   transition(vtos, atos);
3837      // put ndims * wordSize into Lscratch
3838   __ ldub( Lbcp,     3,               Lscratch);
3839   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3840      // Lesp points past last_dim, so set to O1 to first_dim address
3841   __ add(  Lesp,     Lscratch,        O1);
3842      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3843   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3844 }
3845 #endif /* !CC_INTERP */