1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 #define __ _masm->
  40 
  41 //----------------------------------------------------------------------------------------------------
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No i486 specific initialization
  46 }
  47 
  48 //----------------------------------------------------------------------------------------------------
  49 // Address computation
  50 
  51 // local variables
  52 static inline Address iaddress(int n)            {
  53   return Address(rdi, Interpreter::local_offset_in_bytes(n));
  54 }
  55 
  56 static inline Address laddress(int n)            { return iaddress(n + 1); }
  57 static inline Address haddress(int n)            { return iaddress(n + 0); }
  58 static inline Address faddress(int n)            { return iaddress(n); }
  59 static inline Address daddress(int n)            { return laddress(n); }
  60 static inline Address aaddress(int n)            { return iaddress(n); }
  61 
  62 static inline Address iaddress(Register r)       {
  63   return Address(rdi, r, Interpreter::stackElementScale());
  64 }
  65 static inline Address laddress(Register r)       {
  66   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
  67 }
  68 static inline Address haddress(Register r)       {
  69   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  70 }
  71 
  72 static inline Address faddress(Register r)       { return iaddress(r); }
  73 static inline Address daddress(Register r)       { return laddress(r); }
  74 static inline Address aaddress(Register r)       { return iaddress(r); }
  75 
  76 // expression stack
  77 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
  78 // data beyond the rsp which is potentially unsafe in an MT environment;
  79 // an interrupt may overwrite that data.)
  80 static inline Address at_rsp   () {
  81   return Address(rsp, 0);
  82 }
  83 
  84 // At top of Java expression stack which may be different than rsp().  It
  85 // isn't for category 1 objects.
  86 static inline Address at_tos   () {
  87   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  88   return tos;
  89 }
  90 
  91 static inline Address at_tos_p1() {
  92   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  93 }
  94 
  95 static inline Address at_tos_p2() {
  96   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
  97 }
  98 
  99 // Condition conversion
 100 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 101   switch (cc) {
 102     case TemplateTable::equal        : return Assembler::notEqual;
 103     case TemplateTable::not_equal    : return Assembler::equal;
 104     case TemplateTable::less         : return Assembler::greaterEqual;
 105     case TemplateTable::less_equal   : return Assembler::greater;
 106     case TemplateTable::greater      : return Assembler::lessEqual;
 107     case TemplateTable::greater_equal: return Assembler::less;
 108   }
 109   ShouldNotReachHere();
 110   return Assembler::zero;
 111 }
 112 
 113 
 114 //----------------------------------------------------------------------------------------------------
 115 // Miscelaneous helper routines
 116 
 117 // Store an oop (or NULL) at the address described by obj.
 118 // If val == noreg this means store a NULL
 119 
 120 static void do_oop_store(InterpreterMacroAssembler* _masm,
 121                          Address obj,
 122                          Register val,
 123                          BarrierSet::Name barrier,
 124                          bool precise) {
 125   assert(val == noreg || val == rax, "parameter is just for looks");
 126   switch (barrier) {
 127 #ifndef SERIALGC
 128     case BarrierSet::G1SATBCT:
 129     case BarrierSet::G1SATBCTLogging:
 130       {
 131         // flatten object address if needed
 132         // We do it regardless of precise because we need the registers
 133         if (obj.index() == noreg && obj.disp() == 0) {
 134           if (obj.base() != rdx) {
 135             __ movl(rdx, obj.base());
 136           }
 137         } else {
 138           __ leal(rdx, obj);
 139         }
 140         __ get_thread(rcx);
 141         __ save_bcp();
 142         __ g1_write_barrier_pre(rdx /* obj */,
 143                                 rbx /* pre_val */,
 144                                 rcx /* thread */,
 145                                 rsi /* tmp */,
 146                                 val != noreg /* tosca_live */,
 147                                 false /* expand_call */);
 148 
 149         // Do the actual store
 150         // noreg means NULL
 151         if (val == noreg) {
 152           __ movptr(Address(rdx, 0), NULL_WORD);
 153           // No post barrier for NULL
 154         } else {
 155           __ movl(Address(rdx, 0), val);
 156           __ g1_write_barrier_post(rdx /* store_adr */,
 157                                    val /* new_val */,
 158                                    rcx /* thread */,
 159                                    rbx /* tmp */,
 160                                    rsi /* tmp2 */);
 161         }
 162         __ restore_bcp();
 163 
 164       }
 165       break;
 166 #endif // SERIALGC
 167     case BarrierSet::CardTableModRef:
 168     case BarrierSet::CardTableExtension:
 169       {
 170         if (val == noreg) {
 171           __ movptr(obj, NULL_WORD);
 172         } else {
 173           __ movl(obj, val);
 174           // flatten object address if needed
 175           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 176             __ store_check(obj.base());
 177           } else {
 178             __ leal(rdx, obj);
 179             __ store_check(rdx);
 180           }
 181         }
 182       }
 183       break;
 184     case BarrierSet::ModRef:
 185     case BarrierSet::Other:
 186       if (val == noreg) {
 187         __ movptr(obj, NULL_WORD);
 188       } else {
 189         __ movl(obj, val);
 190       }
 191       break;
 192     default      :
 193       ShouldNotReachHere();
 194 
 195   }
 196 }
 197 
 198 Address TemplateTable::at_bcp(int offset) {
 199   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 200   return Address(rsi, offset);
 201 }
 202 
 203 
 204 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 205                                    Register scratch,
 206                                    bool load_bc_into_scratch/*=true*/) {
 207 
 208   if (!RewriteBytecodes) return;
 209   // the pair bytecodes have already done the load.
 210   if (load_bc_into_scratch) {
 211     __ movl(bc, bytecode);
 212   }
 213   Label patch_done;
 214   if (JvmtiExport::can_post_breakpoint()) {
 215     Label fast_patch;
 216     // if a breakpoint is present we can't rewrite the stream directly
 217     __ movzbl(scratch, at_bcp(0));
 218     __ cmpl(scratch, Bytecodes::_breakpoint);
 219     __ jcc(Assembler::notEqual, fast_patch);
 220     __ get_method(scratch);
 221     // Let breakpoint table handling rewrite to quicker bytecode
 222     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
 223 #ifndef ASSERT
 224     __ jmpb(patch_done);
 225 #else
 226     __ jmp(patch_done);
 227 #endif
 228     __ bind(fast_patch);
 229   }
 230 #ifdef ASSERT
 231   Label okay;
 232   __ load_unsigned_byte(scratch, at_bcp(0));
 233   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
 234   __ jccb(Assembler::equal, okay);
 235   __ cmpl(scratch, bc);
 236   __ jcc(Assembler::equal, okay);
 237   __ stop("patching the wrong bytecode");
 238   __ bind(okay);
 239 #endif
 240   // patch bytecode
 241   __ movb(at_bcp(0), bc);
 242   __ bind(patch_done);
 243 }
 244 
 245 //----------------------------------------------------------------------------------------------------
 246 // Individual instructions
 247 
 248 void TemplateTable::nop() {
 249   transition(vtos, vtos);
 250   // nothing to do
 251 }
 252 
 253 void TemplateTable::shouldnotreachhere() {
 254   transition(vtos, vtos);
 255   __ stop("shouldnotreachhere bytecode");
 256 }
 257 
 258 
 259 
 260 void TemplateTable::aconst_null() {
 261   transition(vtos, atos);
 262   __ xorptr(rax, rax);
 263 }
 264 
 265 
 266 void TemplateTable::iconst(int value) {
 267   transition(vtos, itos);
 268   if (value == 0) {
 269     __ xorptr(rax, rax);
 270   } else {
 271     __ movptr(rax, value);
 272   }
 273 }
 274 
 275 
 276 void TemplateTable::lconst(int value) {
 277   transition(vtos, ltos);
 278   if (value == 0) {
 279     __ xorptr(rax, rax);
 280   } else {
 281     __ movptr(rax, value);
 282   }
 283   assert(value >= 0, "check this code");
 284   __ xorptr(rdx, rdx);
 285 }
 286 
 287 
 288 void TemplateTable::fconst(int value) {
 289   transition(vtos, ftos);
 290          if (value == 0) { __ fldz();
 291   } else if (value == 1) { __ fld1();
 292   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 293   } else                 { ShouldNotReachHere();
 294   }
 295 }
 296 
 297 
 298 void TemplateTable::dconst(int value) {
 299   transition(vtos, dtos);
 300          if (value == 0) { __ fldz();
 301   } else if (value == 1) { __ fld1();
 302   } else                 { ShouldNotReachHere();
 303   }
 304 }
 305 
 306 
 307 void TemplateTable::bipush() {
 308   transition(vtos, itos);
 309   __ load_signed_byte(rax, at_bcp(1));
 310 }
 311 
 312 
 313 void TemplateTable::sipush() {
 314   transition(vtos, itos);
 315   __ load_unsigned_short(rax, at_bcp(1));
 316   __ bswapl(rax);
 317   __ sarl(rax, 16);
 318 }
 319 
 320 void TemplateTable::ldc(bool wide) {
 321   transition(vtos, vtos);
 322   Label call_ldc, notFloat, notClass, Done;
 323 
 324   if (wide) {
 325     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 326   } else {
 327     __ load_unsigned_byte(rbx, at_bcp(1));
 328   }
 329   __ get_cpool_and_tags(rcx, rax);
 330   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 331   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 332 
 333   // get type
 334   __ xorptr(rdx, rdx);
 335   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 336 
 337   // unresolved string - get the resolved string
 338   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 339   __ jccb(Assembler::equal, call_ldc);
 340 
 341   // unresolved class - get the resolved class
 342   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 343   __ jccb(Assembler::equal, call_ldc);
 344 
 345   // unresolved class in error (resolution failed) - call into runtime
 346   // so that the same error from first resolution attempt is thrown.
 347   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 348   __ jccb(Assembler::equal, call_ldc);
 349 
 350   // resolved class - need to call vm to get java mirror of the class
 351   __ cmpl(rdx, JVM_CONSTANT_Class);
 352   __ jcc(Assembler::notEqual, notClass);
 353 
 354   __ bind(call_ldc);
 355   __ movl(rcx, wide);
 356   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
 357   __ push(atos);
 358   __ jmp(Done);
 359 
 360   __ bind(notClass);
 361   __ cmpl(rdx, JVM_CONSTANT_Float);
 362   __ jccb(Assembler::notEqual, notFloat);
 363   // ftos
 364   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
 365   __ push(ftos);
 366   __ jmp(Done);
 367 
 368   __ bind(notFloat);
 369 #ifdef ASSERT
 370   { Label L;
 371     __ cmpl(rdx, JVM_CONSTANT_Integer);
 372     __ jcc(Assembler::equal, L);
 373     __ cmpl(rdx, JVM_CONSTANT_String);
 374     __ jcc(Assembler::equal, L);
 375     __ stop("unexpected tag type in ldc");
 376     __ bind(L);
 377   }
 378 #endif
 379   Label isOop;
 380   // atos and itos
 381   // String is only oop type we will see here
 382   __ cmpl(rdx, JVM_CONSTANT_String);
 383   __ jccb(Assembler::equal, isOop);
 384   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 385   __ push(itos);
 386   __ jmp(Done);
 387   __ bind(isOop);
 388   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 389   __ push(atos);
 390 
 391   if (VerifyOops) {
 392     __ verify_oop(rax);
 393   }
 394   __ bind(Done);
 395 }
 396 
 397 // Fast path for caching oop constants.
 398 // %%% We should use this to handle Class and String constants also.
 399 // %%% It will simplify the ldc/primitive path considerably.
 400 void TemplateTable::fast_aldc(bool wide) {
 401   transition(vtos, atos);
 402 
 403   if (!EnableMethodHandles) {
 404     // We should not encounter this bytecode if !EnableMethodHandles.
 405     // The verifier will stop it.  However, if we get past the verifier,
 406     // this will stop the thread in a reasonable way, without crashing the JVM.
 407     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 408                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 409     // the call_VM checks for exception, so we should never return here.
 410     __ should_not_reach_here();
 411     return;
 412   }
 413 
 414   const Register cache = rcx;
 415   const Register index = rdx;
 416 
 417   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 418   if (VerifyOops) {
 419     __ verify_oop(rax);
 420   }
 421 
 422   Label L_done, L_throw_exception;
 423   const Register con_klass_temp = rcx;  // same as Rcache
 424   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
 425   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 426   __ jcc(Assembler::notEqual, L_done);
 427   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 428   __ jcc(Assembler::notEqual, L_throw_exception);
 429   __ xorptr(rax, rax);
 430   __ jmp(L_done);
 431 
 432   // Load the exception from the system-array which wraps it:
 433   __ bind(L_throw_exception);
 434   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 435   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 436 
 437   __ bind(L_done);
 438 }
 439 
 440 void TemplateTable::ldc2_w() {
 441   transition(vtos, vtos);
 442   Label Long, Done;
 443   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 444 
 445   __ get_cpool_and_tags(rcx, rax);
 446   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 447   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 448 
 449   // get type
 450   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
 451   __ jccb(Assembler::notEqual, Long);
 452   // dtos
 453   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
 454   __ push(dtos);
 455   __ jmpb(Done);
 456 
 457   __ bind(Long);
 458   // ltos
 459   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 460   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 461 
 462   __ push(ltos);
 463 
 464   __ bind(Done);
 465 }
 466 
 467 
 468 void TemplateTable::locals_index(Register reg, int offset) {
 469   __ load_unsigned_byte(reg, at_bcp(offset));
 470   __ negptr(reg);
 471 }
 472 
 473 
 474 void TemplateTable::iload() {
 475   transition(vtos, itos);
 476   if (RewriteFrequentPairs) {
 477     Label rewrite, done;
 478 
 479     // get next byte
 480     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 481     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 482     // last two iloads in a pair.  Comparing against fast_iload means that
 483     // the next bytecode is neither an iload or a caload, and therefore
 484     // an iload pair.
 485     __ cmpl(rbx, Bytecodes::_iload);
 486     __ jcc(Assembler::equal, done);
 487 
 488     __ cmpl(rbx, Bytecodes::_fast_iload);
 489     __ movl(rcx, Bytecodes::_fast_iload2);
 490     __ jccb(Assembler::equal, rewrite);
 491 
 492     // if _caload, rewrite to fast_icaload
 493     __ cmpl(rbx, Bytecodes::_caload);
 494     __ movl(rcx, Bytecodes::_fast_icaload);
 495     __ jccb(Assembler::equal, rewrite);
 496 
 497     // rewrite so iload doesn't check again.
 498     __ movl(rcx, Bytecodes::_fast_iload);
 499 
 500     // rewrite
 501     // rcx: fast bytecode
 502     __ bind(rewrite);
 503     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
 504     __ bind(done);
 505   }
 506 
 507   // Get the local value into tos
 508   locals_index(rbx);
 509   __ movl(rax, iaddress(rbx));
 510 }
 511 
 512 
 513 void TemplateTable::fast_iload2() {
 514   transition(vtos, itos);
 515   locals_index(rbx);
 516   __ movl(rax, iaddress(rbx));
 517   __ push(itos);
 518   locals_index(rbx, 3);
 519   __ movl(rax, iaddress(rbx));
 520 }
 521 
 522 void TemplateTable::fast_iload() {
 523   transition(vtos, itos);
 524   locals_index(rbx);
 525   __ movl(rax, iaddress(rbx));
 526 }
 527 
 528 
 529 void TemplateTable::lload() {
 530   transition(vtos, ltos);
 531   locals_index(rbx);
 532   __ movptr(rax, laddress(rbx));
 533   NOT_LP64(__ movl(rdx, haddress(rbx)));
 534 }
 535 
 536 
 537 void TemplateTable::fload() {
 538   transition(vtos, ftos);
 539   locals_index(rbx);
 540   __ fld_s(faddress(rbx));
 541 }
 542 
 543 
 544 void TemplateTable::dload() {
 545   transition(vtos, dtos);
 546   locals_index(rbx);
 547   __ fld_d(daddress(rbx));
 548 }
 549 
 550 
 551 void TemplateTable::aload() {
 552   transition(vtos, atos);
 553   locals_index(rbx);
 554   __ movptr(rax, aaddress(rbx));
 555 }
 556 
 557 
 558 void TemplateTable::locals_index_wide(Register reg) {
 559   __ movl(reg, at_bcp(2));
 560   __ bswapl(reg);
 561   __ shrl(reg, 16);
 562   __ negptr(reg);
 563 }
 564 
 565 
 566 void TemplateTable::wide_iload() {
 567   transition(vtos, itos);
 568   locals_index_wide(rbx);
 569   __ movl(rax, iaddress(rbx));
 570 }
 571 
 572 
 573 void TemplateTable::wide_lload() {
 574   transition(vtos, ltos);
 575   locals_index_wide(rbx);
 576   __ movptr(rax, laddress(rbx));
 577   NOT_LP64(__ movl(rdx, haddress(rbx)));
 578 }
 579 
 580 
 581 void TemplateTable::wide_fload() {
 582   transition(vtos, ftos);
 583   locals_index_wide(rbx);
 584   __ fld_s(faddress(rbx));
 585 }
 586 
 587 
 588 void TemplateTable::wide_dload() {
 589   transition(vtos, dtos);
 590   locals_index_wide(rbx);
 591   __ fld_d(daddress(rbx));
 592 }
 593 
 594 
 595 void TemplateTable::wide_aload() {
 596   transition(vtos, atos);
 597   locals_index_wide(rbx);
 598   __ movptr(rax, aaddress(rbx));
 599 }
 600 
 601 void TemplateTable::index_check(Register array, Register index) {
 602   // Pop ptr into array
 603   __ pop_ptr(array);
 604   index_check_without_pop(array, index);
 605 }
 606 
 607 void TemplateTable::index_check_without_pop(Register array, Register index) {
 608   // destroys rbx,
 609   // check array
 610   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 611   LP64_ONLY(__ movslq(index, index));
 612   // check index
 613   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 614   if (index != rbx) {
 615     // ??? convention: move aberrant index into rbx, for exception message
 616     assert(rbx != array, "different registers");
 617     __ mov(rbx, index);
 618   }
 619   __ jump_cc(Assembler::aboveEqual,
 620              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 621 }
 622 
 623 
 624 void TemplateTable::iaload() {
 625   transition(itos, itos);
 626   // rdx: array
 627   index_check(rdx, rax);  // kills rbx,
 628   // rax,: index
 629   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
 630 }
 631 
 632 
 633 void TemplateTable::laload() {
 634   transition(itos, ltos);
 635   // rax,: index
 636   // rdx: array
 637   index_check(rdx, rax);
 638   __ mov(rbx, rax);
 639   // rbx,: index
 640   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 641   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 642 }
 643 
 644 
 645 void TemplateTable::faload() {
 646   transition(itos, ftos);
 647   // rdx: array
 648   index_check(rdx, rax);  // kills rbx,
 649   // rax,: index
 650   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 651 }
 652 
 653 
 654 void TemplateTable::daload() {
 655   transition(itos, dtos);
 656   // rdx: array
 657   index_check(rdx, rax);  // kills rbx,
 658   // rax,: index
 659   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 660 }
 661 
 662 
 663 void TemplateTable::aaload() {
 664   transition(itos, atos);
 665   // rdx: array
 666   index_check(rdx, rax);  // kills rbx,
 667   // rax,: index
 668   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 669 }
 670 
 671 
 672 void TemplateTable::baload() {
 673   transition(itos, itos);
 674   // rdx: array
 675   index_check(rdx, rax);  // kills rbx,
 676   // rax,: index
 677   // can do better code for P5 - fix this at some point
 678   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 679   __ mov(rax, rbx);
 680 }
 681 
 682 
 683 void TemplateTable::caload() {
 684   transition(itos, itos);
 685   // rdx: array
 686   index_check(rdx, rax);  // kills rbx,
 687   // rax,: index
 688   // can do better code for P5 - may want to improve this at some point
 689   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 690   __ mov(rax, rbx);
 691 }
 692 
 693 // iload followed by caload frequent pair
 694 void TemplateTable::fast_icaload() {
 695   transition(vtos, itos);
 696   // load index out of locals
 697   locals_index(rbx);
 698   __ movl(rax, iaddress(rbx));
 699 
 700   // rdx: array
 701   index_check(rdx, rax);
 702   // rax,: index
 703   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 704   __ mov(rax, rbx);
 705 }
 706 
 707 void TemplateTable::saload() {
 708   transition(itos, itos);
 709   // rdx: array
 710   index_check(rdx, rax);  // kills rbx,
 711   // rax,: index
 712   // can do better code for P5 - may want to improve this at some point
 713   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 714   __ mov(rax, rbx);
 715 }
 716 
 717 
 718 void TemplateTable::iload(int n) {
 719   transition(vtos, itos);
 720   __ movl(rax, iaddress(n));
 721 }
 722 
 723 
 724 void TemplateTable::lload(int n) {
 725   transition(vtos, ltos);
 726   __ movptr(rax, laddress(n));
 727   NOT_LP64(__ movptr(rdx, haddress(n)));
 728 }
 729 
 730 
 731 void TemplateTable::fload(int n) {
 732   transition(vtos, ftos);
 733   __ fld_s(faddress(n));
 734 }
 735 
 736 
 737 void TemplateTable::dload(int n) {
 738   transition(vtos, dtos);
 739   __ fld_d(daddress(n));
 740 }
 741 
 742 
 743 void TemplateTable::aload(int n) {
 744   transition(vtos, atos);
 745   __ movptr(rax, aaddress(n));
 746 }
 747 
 748 
 749 void TemplateTable::aload_0() {
 750   transition(vtos, atos);
 751   // According to bytecode histograms, the pairs:
 752   //
 753   // _aload_0, _fast_igetfield
 754   // _aload_0, _fast_agetfield
 755   // _aload_0, _fast_fgetfield
 756   //
 757   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 758   // bytecode checks if the next bytecode is either _fast_igetfield,
 759   // _fast_agetfield or _fast_fgetfield and then rewrites the
 760   // current bytecode into a pair bytecode; otherwise it rewrites the current
 761   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 762   //
 763   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
 764   //       otherwise we may miss an opportunity for a pair.
 765   //
 766   // Also rewrite frequent pairs
 767   //   aload_0, aload_1
 768   //   aload_0, iload_1
 769   // These bytecodes with a small amount of code are most profitable to rewrite
 770   if (RewriteFrequentPairs) {
 771     Label rewrite, done;
 772     // get next byte
 773     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 774 
 775     // do actual aload_0
 776     aload(0);
 777 
 778     // if _getfield then wait with rewrite
 779     __ cmpl(rbx, Bytecodes::_getfield);
 780     __ jcc(Assembler::equal, done);
 781 
 782     // if _igetfield then reqrite to _fast_iaccess_0
 783     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 784     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 785     __ movl(rcx, Bytecodes::_fast_iaccess_0);
 786     __ jccb(Assembler::equal, rewrite);
 787 
 788     // if _agetfield then reqrite to _fast_aaccess_0
 789     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 790     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 791     __ movl(rcx, Bytecodes::_fast_aaccess_0);
 792     __ jccb(Assembler::equal, rewrite);
 793 
 794     // if _fgetfield then reqrite to _fast_faccess_0
 795     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 796     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 797     __ movl(rcx, Bytecodes::_fast_faccess_0);
 798     __ jccb(Assembler::equal, rewrite);
 799 
 800     // else rewrite to _fast_aload0
 801     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 802     __ movl(rcx, Bytecodes::_fast_aload_0);
 803 
 804     // rewrite
 805     // rcx: fast bytecode
 806     __ bind(rewrite);
 807     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
 808 
 809     __ bind(done);
 810   } else {
 811     aload(0);
 812   }
 813 }
 814 
 815 void TemplateTable::istore() {
 816   transition(itos, vtos);
 817   locals_index(rbx);
 818   __ movl(iaddress(rbx), rax);
 819 }
 820 
 821 
 822 void TemplateTable::lstore() {
 823   transition(ltos, vtos);
 824   locals_index(rbx);
 825   __ movptr(laddress(rbx), rax);
 826   NOT_LP64(__ movptr(haddress(rbx), rdx));
 827 }
 828 
 829 
 830 void TemplateTable::fstore() {
 831   transition(ftos, vtos);
 832   locals_index(rbx);
 833   __ fstp_s(faddress(rbx));
 834 }
 835 
 836 
 837 void TemplateTable::dstore() {
 838   transition(dtos, vtos);
 839   locals_index(rbx);
 840   __ fstp_d(daddress(rbx));
 841 }
 842 
 843 
 844 void TemplateTable::astore() {
 845   transition(vtos, vtos);
 846   __ pop_ptr(rax);
 847   locals_index(rbx);
 848   __ movptr(aaddress(rbx), rax);
 849 }
 850 
 851 
 852 void TemplateTable::wide_istore() {
 853   transition(vtos, vtos);
 854   __ pop_i(rax);
 855   locals_index_wide(rbx);
 856   __ movl(iaddress(rbx), rax);
 857 }
 858 
 859 
 860 void TemplateTable::wide_lstore() {
 861   transition(vtos, vtos);
 862   __ pop_l(rax, rdx);
 863   locals_index_wide(rbx);
 864   __ movptr(laddress(rbx), rax);
 865   NOT_LP64(__ movl(haddress(rbx), rdx));
 866 }
 867 
 868 
 869 void TemplateTable::wide_fstore() {
 870   wide_istore();
 871 }
 872 
 873 
 874 void TemplateTable::wide_dstore() {
 875   wide_lstore();
 876 }
 877 
 878 
 879 void TemplateTable::wide_astore() {
 880   transition(vtos, vtos);
 881   __ pop_ptr(rax);
 882   locals_index_wide(rbx);
 883   __ movptr(aaddress(rbx), rax);
 884 }
 885 
 886 
 887 void TemplateTable::iastore() {
 888   transition(itos, vtos);
 889   __ pop_i(rbx);
 890   // rax,: value
 891   // rdx: array
 892   index_check(rdx, rbx);  // prefer index in rbx,
 893   // rbx,: index
 894   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
 895 }
 896 
 897 
 898 void TemplateTable::lastore() {
 899   transition(ltos, vtos);
 900   __ pop_i(rbx);
 901   // rax,: low(value)
 902   // rcx: array
 903   // rdx: high(value)
 904   index_check(rcx, rbx);  // prefer index in rbx,
 905   // rbx,: index
 906   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 907   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
 908 }
 909 
 910 
 911 void TemplateTable::fastore() {
 912   transition(ftos, vtos);
 913   __ pop_i(rbx);
 914   // rdx: array
 915   // st0: value
 916   index_check(rdx, rbx);  // prefer index in rbx,
 917   // rbx,: index
 918   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 919 }
 920 
 921 
 922 void TemplateTable::dastore() {
 923   transition(dtos, vtos);
 924   __ pop_i(rbx);
 925   // rdx: array
 926   // st0: value
 927   index_check(rdx, rbx);  // prefer index in rbx,
 928   // rbx,: index
 929   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 930 }
 931 
 932 
 933 void TemplateTable::aastore() {
 934   Label is_null, ok_is_subtype, done;
 935   transition(vtos, vtos);
 936   // stack: ..., array, index, value
 937   __ movptr(rax, at_tos());     // Value
 938   __ movl(rcx, at_tos_p1());  // Index
 939   __ movptr(rdx, at_tos_p2());  // Array
 940 
 941   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 942   index_check_without_pop(rdx, rcx);      // kills rbx,
 943   // do array store check - check for NULL value first
 944   __ testptr(rax, rax);
 945   __ jcc(Assembler::zero, is_null);
 946 
 947   // Move subklass into EBX
 948   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
 949   // Move superklass into EAX
 950   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
 951   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
 952   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
 953   __ lea(rdx, element_address);
 954 
 955   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
 956   // Superklass in EAX.  Subklass in EBX.
 957   __ gen_subtype_check( rbx, ok_is_subtype );
 958 
 959   // Come here on failure
 960   // object is at TOS
 961   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 962 
 963   // Come here on success
 964   __ bind(ok_is_subtype);
 965 
 966   // Get the value to store
 967   __ movptr(rax, at_rsp());
 968   // and store it with appropriate barrier
 969   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 970 
 971   __ jmp(done);
 972 
 973   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
 974   __ bind(is_null);
 975   __ profile_null_seen(rbx);
 976 
 977   // Store NULL, (noreg means NULL to do_oop_store)
 978   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 979 
 980   // Pop stack arguments
 981   __ bind(done);
 982   __ addptr(rsp, 3 * Interpreter::stackElementSize);
 983 }
 984 
 985 
 986 void TemplateTable::bastore() {
 987   transition(itos, vtos);
 988   __ pop_i(rbx);
 989   // rax,: value
 990   // rdx: array
 991   index_check(rdx, rbx);  // prefer index in rbx,
 992   // rbx,: index
 993   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
 994 }
 995 
 996 
 997 void TemplateTable::castore() {
 998   transition(itos, vtos);
 999   __ pop_i(rbx);
1000   // rax,: value
1001   // rdx: array
1002   index_check(rdx, rbx);  // prefer index in rbx,
1003   // rbx,: index
1004   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
1005 }
1006 
1007 
1008 void TemplateTable::sastore() {
1009   castore();
1010 }
1011 
1012 
1013 void TemplateTable::istore(int n) {
1014   transition(itos, vtos);
1015   __ movl(iaddress(n), rax);
1016 }
1017 
1018 
1019 void TemplateTable::lstore(int n) {
1020   transition(ltos, vtos);
1021   __ movptr(laddress(n), rax);
1022   NOT_LP64(__ movptr(haddress(n), rdx));
1023 }
1024 
1025 
1026 void TemplateTable::fstore(int n) {
1027   transition(ftos, vtos);
1028   __ fstp_s(faddress(n));
1029 }
1030 
1031 
1032 void TemplateTable::dstore(int n) {
1033   transition(dtos, vtos);
1034   __ fstp_d(daddress(n));
1035 }
1036 
1037 
1038 void TemplateTable::astore(int n) {
1039   transition(vtos, vtos);
1040   __ pop_ptr(rax);
1041   __ movptr(aaddress(n), rax);
1042 }
1043 
1044 
1045 void TemplateTable::pop() {
1046   transition(vtos, vtos);
1047   __ addptr(rsp, Interpreter::stackElementSize);
1048 }
1049 
1050 
1051 void TemplateTable::pop2() {
1052   transition(vtos, vtos);
1053   __ addptr(rsp, 2*Interpreter::stackElementSize);
1054 }
1055 
1056 
1057 void TemplateTable::dup() {
1058   transition(vtos, vtos);
1059   // stack: ..., a
1060   __ load_ptr(0, rax);
1061   __ push_ptr(rax);
1062   // stack: ..., a, a
1063 }
1064 
1065 
1066 void TemplateTable::dup_x1() {
1067   transition(vtos, vtos);
1068   // stack: ..., a, b
1069   __ load_ptr( 0, rax);  // load b
1070   __ load_ptr( 1, rcx);  // load a
1071   __ store_ptr(1, rax);  // store b
1072   __ store_ptr(0, rcx);  // store a
1073   __ push_ptr(rax);      // push b
1074   // stack: ..., b, a, b
1075 }
1076 
1077 
1078 void TemplateTable::dup_x2() {
1079   transition(vtos, vtos);
1080   // stack: ..., a, b, c
1081   __ load_ptr( 0, rax);  // load c
1082   __ load_ptr( 2, rcx);  // load a
1083   __ store_ptr(2, rax);  // store c in a
1084   __ push_ptr(rax);      // push c
1085   // stack: ..., c, b, c, c
1086   __ load_ptr( 2, rax);  // load b
1087   __ store_ptr(2, rcx);  // store a in b
1088   // stack: ..., c, a, c, c
1089   __ store_ptr(1, rax);  // store b in c
1090   // stack: ..., c, a, b, c
1091 }
1092 
1093 
1094 void TemplateTable::dup2() {
1095   transition(vtos, vtos);
1096   // stack: ..., a, b
1097   __ load_ptr(1, rax);  // load a
1098   __ push_ptr(rax);     // push a
1099   __ load_ptr(1, rax);  // load b
1100   __ push_ptr(rax);     // push b
1101   // stack: ..., a, b, a, b
1102 }
1103 
1104 
1105 void TemplateTable::dup2_x1() {
1106   transition(vtos, vtos);
1107   // stack: ..., a, b, c
1108   __ load_ptr( 0, rcx);  // load c
1109   __ load_ptr( 1, rax);  // load b
1110   __ push_ptr(rax);      // push b
1111   __ push_ptr(rcx);      // push c
1112   // stack: ..., a, b, c, b, c
1113   __ store_ptr(3, rcx);  // store c in b
1114   // stack: ..., a, c, c, b, c
1115   __ load_ptr( 4, rcx);  // load a
1116   __ store_ptr(2, rcx);  // store a in 2nd c
1117   // stack: ..., a, c, a, b, c
1118   __ store_ptr(4, rax);  // store b in a
1119   // stack: ..., b, c, a, b, c
1120   // stack: ..., b, c, a, b, c
1121 }
1122 
1123 
1124 void TemplateTable::dup2_x2() {
1125   transition(vtos, vtos);
1126   // stack: ..., a, b, c, d
1127   __ load_ptr( 0, rcx);  // load d
1128   __ load_ptr( 1, rax);  // load c
1129   __ push_ptr(rax);      // push c
1130   __ push_ptr(rcx);      // push d
1131   // stack: ..., a, b, c, d, c, d
1132   __ load_ptr( 4, rax);  // load b
1133   __ store_ptr(2, rax);  // store b in d
1134   __ store_ptr(4, rcx);  // store d in b
1135   // stack: ..., a, d, c, b, c, d
1136   __ load_ptr( 5, rcx);  // load a
1137   __ load_ptr( 3, rax);  // load c
1138   __ store_ptr(3, rcx);  // store a in c
1139   __ store_ptr(5, rax);  // store c in a
1140   // stack: ..., c, d, a, b, c, d
1141   // stack: ..., c, d, a, b, c, d
1142 }
1143 
1144 
1145 void TemplateTable::swap() {
1146   transition(vtos, vtos);
1147   // stack: ..., a, b
1148   __ load_ptr( 1, rcx);  // load a
1149   __ load_ptr( 0, rax);  // load b
1150   __ store_ptr(0, rcx);  // store a in b
1151   __ store_ptr(1, rax);  // store b in a
1152   // stack: ..., b, a
1153 }
1154 
1155 
1156 void TemplateTable::iop2(Operation op) {
1157   transition(itos, itos);
1158   switch (op) {
1159     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
1160     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1161     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
1162     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
1163     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
1164     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
1165     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1166     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1167     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1168     default   : ShouldNotReachHere();
1169   }
1170 }
1171 
1172 
1173 void TemplateTable::lop2(Operation op) {
1174   transition(ltos, ltos);
1175   __ pop_l(rbx, rcx);
1176   switch (op) {
1177     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1178     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1179                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1180     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1181     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1182     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1183     default   : ShouldNotReachHere();
1184   }
1185 }
1186 
1187 
1188 void TemplateTable::idiv() {
1189   transition(itos, itos);
1190   __ mov(rcx, rax);
1191   __ pop_i(rax);
1192   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1193   //       they are not equal, one could do a normal division (no correction
1194   //       needed), which may speed up this implementation for the common case.
1195   //       (see also JVM spec., p.243 & p.271)
1196   __ corrected_idivl(rcx);
1197 }
1198 
1199 
1200 void TemplateTable::irem() {
1201   transition(itos, itos);
1202   __ mov(rcx, rax);
1203   __ pop_i(rax);
1204   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1205   //       they are not equal, one could do a normal division (no correction
1206   //       needed), which may speed up this implementation for the common case.
1207   //       (see also JVM spec., p.243 & p.271)
1208   __ corrected_idivl(rcx);
1209   __ mov(rax, rdx);
1210 }
1211 
1212 
1213 void TemplateTable::lmul() {
1214   transition(ltos, ltos);
1215   __ pop_l(rbx, rcx);
1216   __ push(rcx); __ push(rbx);
1217   __ push(rdx); __ push(rax);
1218   __ lmul(2 * wordSize, 0);
1219   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1220 }
1221 
1222 
1223 void TemplateTable::ldiv() {
1224   transition(ltos, ltos);
1225   __ pop_l(rbx, rcx);
1226   __ push(rcx); __ push(rbx);
1227   __ push(rdx); __ push(rax);
1228   // check if y = 0
1229   __ orl(rax, rdx);
1230   __ jump_cc(Assembler::zero,
1231              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1232   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1233   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1234 }
1235 
1236 
1237 void TemplateTable::lrem() {
1238   transition(ltos, ltos);
1239   __ pop_l(rbx, rcx);
1240   __ push(rcx); __ push(rbx);
1241   __ push(rdx); __ push(rax);
1242   // check if y = 0
1243   __ orl(rax, rdx);
1244   __ jump_cc(Assembler::zero,
1245              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1246   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1247   __ addptr(rsp, 4 * wordSize);
1248 }
1249 
1250 
1251 void TemplateTable::lshl() {
1252   transition(itos, ltos);
1253   __ movl(rcx, rax);                             // get shift count
1254   __ pop_l(rax, rdx);                            // get shift value
1255   __ lshl(rdx, rax);
1256 }
1257 
1258 
1259 void TemplateTable::lshr() {
1260   transition(itos, ltos);
1261   __ mov(rcx, rax);                              // get shift count
1262   __ pop_l(rax, rdx);                            // get shift value
1263   __ lshr(rdx, rax, true);
1264 }
1265 
1266 
1267 void TemplateTable::lushr() {
1268   transition(itos, ltos);
1269   __ mov(rcx, rax);                              // get shift count
1270   __ pop_l(rax, rdx);                            // get shift value
1271   __ lshr(rdx, rax);
1272 }
1273 
1274 
1275 void TemplateTable::fop2(Operation op) {
1276   transition(ftos, ftos);
1277   switch (op) {
1278     case add: __ fadd_s (at_rsp());                break;
1279     case sub: __ fsubr_s(at_rsp());                break;
1280     case mul: __ fmul_s (at_rsp());                break;
1281     case div: __ fdivr_s(at_rsp());                break;
1282     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1283     default : ShouldNotReachHere();
1284   }
1285   __ f2ieee();
1286   __ pop(rax);  // pop float thing off
1287 }
1288 
1289 
1290 void TemplateTable::dop2(Operation op) {
1291   transition(dtos, dtos);
1292 
1293   switch (op) {
1294     case add: __ fadd_d (at_rsp());                break;
1295     case sub: __ fsubr_d(at_rsp());                break;
1296     case mul: {
1297       Label L_strict;
1298       Label L_join;
1299       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1300       __ get_method(rcx);
1301       __ movl(rcx, access_flags);
1302       __ testl(rcx, JVM_ACC_STRICT);
1303       __ jccb(Assembler::notZero, L_strict);
1304       __ fmul_d (at_rsp());
1305       __ jmpb(L_join);
1306       __ bind(L_strict);
1307       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1308       __ fmulp();
1309       __ fmul_d (at_rsp());
1310       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1311       __ fmulp();
1312       __ bind(L_join);
1313       break;
1314     }
1315     case div: {
1316       Label L_strict;
1317       Label L_join;
1318       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1319       __ get_method(rcx);
1320       __ movl(rcx, access_flags);
1321       __ testl(rcx, JVM_ACC_STRICT);
1322       __ jccb(Assembler::notZero, L_strict);
1323       __ fdivr_d(at_rsp());
1324       __ jmp(L_join);
1325       __ bind(L_strict);
1326       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1327       __ fmul_d (at_rsp());
1328       __ fdivrp();
1329       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1330       __ fmulp();
1331       __ bind(L_join);
1332       break;
1333     }
1334     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1335     default : ShouldNotReachHere();
1336   }
1337   __ d2ieee();
1338   // Pop double precision number from rsp.
1339   __ pop(rax);
1340   __ pop(rdx);
1341 }
1342 
1343 
1344 void TemplateTable::ineg() {
1345   transition(itos, itos);
1346   __ negl(rax);
1347 }
1348 
1349 
1350 void TemplateTable::lneg() {
1351   transition(ltos, ltos);
1352   __ lneg(rdx, rax);
1353 }
1354 
1355 
1356 void TemplateTable::fneg() {
1357   transition(ftos, ftos);
1358   __ fchs();
1359 }
1360 
1361 
1362 void TemplateTable::dneg() {
1363   transition(dtos, dtos);
1364   __ fchs();
1365 }
1366 
1367 
1368 void TemplateTable::iinc() {
1369   transition(vtos, vtos);
1370   __ load_signed_byte(rdx, at_bcp(2));           // get constant
1371   locals_index(rbx);
1372   __ addl(iaddress(rbx), rdx);
1373 }
1374 
1375 
1376 void TemplateTable::wide_iinc() {
1377   transition(vtos, vtos);
1378   __ movl(rdx, at_bcp(4));                       // get constant
1379   locals_index_wide(rbx);
1380   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
1381   __ sarl(rdx, 16);
1382   __ addl(iaddress(rbx), rdx);
1383   // Note: should probably use only one movl to get both
1384   //       the index and the constant -> fix this
1385 }
1386 
1387 
1388 void TemplateTable::convert() {
1389   // Checking
1390 #ifdef ASSERT
1391   { TosState tos_in  = ilgl;
1392     TosState tos_out = ilgl;
1393     switch (bytecode()) {
1394       case Bytecodes::_i2l: // fall through
1395       case Bytecodes::_i2f: // fall through
1396       case Bytecodes::_i2d: // fall through
1397       case Bytecodes::_i2b: // fall through
1398       case Bytecodes::_i2c: // fall through
1399       case Bytecodes::_i2s: tos_in = itos; break;
1400       case Bytecodes::_l2i: // fall through
1401       case Bytecodes::_l2f: // fall through
1402       case Bytecodes::_l2d: tos_in = ltos; break;
1403       case Bytecodes::_f2i: // fall through
1404       case Bytecodes::_f2l: // fall through
1405       case Bytecodes::_f2d: tos_in = ftos; break;
1406       case Bytecodes::_d2i: // fall through
1407       case Bytecodes::_d2l: // fall through
1408       case Bytecodes::_d2f: tos_in = dtos; break;
1409       default             : ShouldNotReachHere();
1410     }
1411     switch (bytecode()) {
1412       case Bytecodes::_l2i: // fall through
1413       case Bytecodes::_f2i: // fall through
1414       case Bytecodes::_d2i: // fall through
1415       case Bytecodes::_i2b: // fall through
1416       case Bytecodes::_i2c: // fall through
1417       case Bytecodes::_i2s: tos_out = itos; break;
1418       case Bytecodes::_i2l: // fall through
1419       case Bytecodes::_f2l: // fall through
1420       case Bytecodes::_d2l: tos_out = ltos; break;
1421       case Bytecodes::_i2f: // fall through
1422       case Bytecodes::_l2f: // fall through
1423       case Bytecodes::_d2f: tos_out = ftos; break;
1424       case Bytecodes::_i2d: // fall through
1425       case Bytecodes::_l2d: // fall through
1426       case Bytecodes::_f2d: tos_out = dtos; break;
1427       default             : ShouldNotReachHere();
1428     }
1429     transition(tos_in, tos_out);
1430   }
1431 #endif // ASSERT
1432 
1433   // Conversion
1434   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1435   switch (bytecode()) {
1436     case Bytecodes::_i2l:
1437       __ extend_sign(rdx, rax);
1438       break;
1439     case Bytecodes::_i2f:
1440       __ push(rax);          // store int on tos
1441       __ fild_s(at_rsp());   // load int to ST0
1442       __ f2ieee();           // truncate to float size
1443       __ pop(rcx);           // adjust rsp
1444       break;
1445     case Bytecodes::_i2d:
1446       __ push(rax);          // add one slot for d2ieee()
1447       __ push(rax);          // store int on tos
1448       __ fild_s(at_rsp());   // load int to ST0
1449       __ d2ieee();           // truncate to double size
1450       __ pop(rcx);           // adjust rsp
1451       __ pop(rcx);
1452       break;
1453     case Bytecodes::_i2b:
1454       __ shll(rax, 24);      // truncate upper 24 bits
1455       __ sarl(rax, 24);      // and sign-extend byte
1456       LP64_ONLY(__ movsbl(rax, rax));
1457       break;
1458     case Bytecodes::_i2c:
1459       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1460       LP64_ONLY(__ movzwl(rax, rax));
1461       break;
1462     case Bytecodes::_i2s:
1463       __ shll(rax, 16);      // truncate upper 16 bits
1464       __ sarl(rax, 16);      // and sign-extend short
1465       LP64_ONLY(__ movswl(rax, rax));
1466       break;
1467     case Bytecodes::_l2i:
1468       /* nothing to do */
1469       break;
1470     case Bytecodes::_l2f:
1471       __ push(rdx);          // store long on tos
1472       __ push(rax);
1473       __ fild_d(at_rsp());   // load long to ST0
1474       __ f2ieee();           // truncate to float size
1475       __ pop(rcx);           // adjust rsp
1476       __ pop(rcx);
1477       break;
1478     case Bytecodes::_l2d:
1479       __ push(rdx);          // store long on tos
1480       __ push(rax);
1481       __ fild_d(at_rsp());   // load long to ST0
1482       __ d2ieee();           // truncate to double size
1483       __ pop(rcx);           // adjust rsp
1484       __ pop(rcx);
1485       break;
1486     case Bytecodes::_f2i:
1487       __ push(rcx);          // reserve space for argument
1488       __ fstp_s(at_rsp());   // pass float argument on stack
1489       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1490       break;
1491     case Bytecodes::_f2l:
1492       __ push(rcx);          // reserve space for argument
1493       __ fstp_s(at_rsp());   // pass float argument on stack
1494       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1495       break;
1496     case Bytecodes::_f2d:
1497       /* nothing to do */
1498       break;
1499     case Bytecodes::_d2i:
1500       __ push(rcx);          // reserve space for argument
1501       __ push(rcx);
1502       __ fstp_d(at_rsp());   // pass double argument on stack
1503       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1504       break;
1505     case Bytecodes::_d2l:
1506       __ push(rcx);          // reserve space for argument
1507       __ push(rcx);
1508       __ fstp_d(at_rsp());   // pass double argument on stack
1509       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1510       break;
1511     case Bytecodes::_d2f:
1512       __ push(rcx);          // reserve space for f2ieee()
1513       __ f2ieee();           // truncate to float size
1514       __ pop(rcx);           // adjust rsp
1515       break;
1516     default             :
1517       ShouldNotReachHere();
1518   }
1519 }
1520 
1521 
1522 void TemplateTable::lcmp() {
1523   transition(ltos, itos);
1524   // y = rdx:rax
1525   __ pop_l(rbx, rcx);             // get x = rcx:rbx
1526   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1527   __ mov(rax, rcx);
1528 }
1529 
1530 
1531 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1532   if (is_float) {
1533     __ fld_s(at_rsp());
1534   } else {
1535     __ fld_d(at_rsp());
1536     __ pop(rdx);
1537   }
1538   __ pop(rcx);
1539   __ fcmp2int(rax, unordered_result < 0);
1540 }
1541 
1542 
1543 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1544   __ get_method(rcx);           // ECX holds method
1545   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1546 
1547   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
1548   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
1549   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1550 
1551   // Load up EDX with the branch displacement
1552   __ movl(rdx, at_bcp(1));
1553   __ bswapl(rdx);
1554   if (!is_wide) __ sarl(rdx, 16);
1555   LP64_ONLY(__ movslq(rdx, rdx));
1556 
1557 
1558   // Handle all the JSR stuff here, then exit.
1559   // It's much shorter and cleaner than intermingling with the
1560   // non-JSR normal-branch stuff occurring below.
1561   if (is_jsr) {
1562     // Pre-load the next target bytecode into EBX
1563     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1564 
1565     // compute return address as bci in rax,
1566     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
1567     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1568     // Adjust the bcp in RSI by the displacement in EDX
1569     __ addptr(rsi, rdx);
1570     // Push return address
1571     __ push_i(rax);
1572     // jsr returns vtos
1573     __ dispatch_only_noverify(vtos);
1574     return;
1575   }
1576 
1577   // Normal (non-jsr) branch handling
1578 
1579   // Adjust the bcp in RSI by the displacement in EDX
1580   __ addptr(rsi, rdx);
1581 
1582   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1583   Label backedge_counter_overflow;
1584   Label profile_method;
1585   Label dispatch;
1586   if (UseLoopCounter) {
1587     // increment backedge counter for backward branches
1588     // rax,: MDO
1589     // rbx,: MDO bumped taken-count
1590     // rcx: method
1591     // rdx: target offset
1592     // rsi: target bcp
1593     // rdi: locals pointer
1594     __ testl(rdx, rdx);             // check if forward or backward branch
1595     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1596 
1597     if (TieredCompilation) {
1598       Label no_mdo;
1599       int increment = InvocationCounter::count_increment;
1600       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1601       if (ProfileInterpreter) {
1602         // Are we profiling?
1603         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1604         __ testptr(rbx, rbx);
1605         __ jccb(Assembler::zero, no_mdo);
1606         // Increment the MDO backedge counter
1607         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1608                                                 in_bytes(InvocationCounter::counter_offset()));
1609         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1610                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1611         __ jmp(dispatch);
1612       }
1613       __ bind(no_mdo);
1614       // Increment backedge counter in methodOop
1615       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1616                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1617     } else {
1618       // increment counter
1619       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1620       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1621       __ movl(Address(rcx, be_offset), rax);        // store counter
1622 
1623       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1624       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
1625       __ addl(rax, Address(rcx, be_offset));        // add both counters
1626 
1627       if (ProfileInterpreter) {
1628         // Test to see if we should create a method data oop
1629         __ cmp32(rax,
1630                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1631         __ jcc(Assembler::less, dispatch);
1632 
1633         // if no method data exists, go to profile method
1634         __ test_method_data_pointer(rax, profile_method);
1635 
1636         if (UseOnStackReplacement) {
1637           // check for overflow against rbx, which is the MDO taken count
1638           __ cmp32(rbx,
1639                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1640           __ jcc(Assembler::below, dispatch);
1641 
1642           // When ProfileInterpreter is on, the backedge_count comes from the
1643           // methodDataOop, which value does not get reset on the call to
1644           // frequency_counter_overflow().  To avoid excessive calls to the overflow
1645           // routine while the method is being compiled, add a second test to make
1646           // sure the overflow function is called only once every overflow_frequency.
1647           const int overflow_frequency = 1024;
1648           __ andptr(rbx, overflow_frequency-1);
1649           __ jcc(Assembler::zero, backedge_counter_overflow);
1650         }
1651       } else {
1652         if (UseOnStackReplacement) {
1653           // check for overflow against rax, which is the sum of the counters
1654           __ cmp32(rax,
1655                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1656           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1657 
1658         }
1659       }
1660     }
1661     __ bind(dispatch);
1662   }
1663 
1664   // Pre-load the next target bytecode into EBX
1665   __ load_unsigned_byte(rbx, Address(rsi, 0));
1666 
1667   // continue with the bytecode @ target
1668   // rax,: return bci for jsr's, unused otherwise
1669   // rbx,: target bytecode
1670   // rsi: target bcp
1671   __ dispatch_only(vtos);
1672 
1673   if (UseLoopCounter) {
1674     if (ProfileInterpreter) {
1675       // Out-of-line code to allocate method data oop.
1676       __ bind(profile_method);
1677       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1678       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1679       __ set_method_data_pointer_for_bcp();
1680       __ jmp(dispatch);
1681     }
1682 
1683     if (UseOnStackReplacement) {
1684 
1685       // invocation counter overflow
1686       __ bind(backedge_counter_overflow);
1687       __ negptr(rdx);
1688       __ addptr(rdx, rsi);        // branch bcp
1689       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1690       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1691 
1692       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1693       // rbx,: target bytecode
1694       // rdx: scratch
1695       // rdi: locals pointer
1696       // rsi: bcp
1697       __ testptr(rax, rax);                      // test result
1698       __ jcc(Assembler::zero, dispatch);         // no osr if null
1699       // nmethod may have been invalidated (VM may block upon call_VM return)
1700       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1701       __ cmpl(rcx, InvalidOSREntryBci);
1702       __ jcc(Assembler::equal, dispatch);
1703 
1704       // We have the address of an on stack replacement routine in rax,
1705       // We need to prepare to execute the OSR method. First we must
1706       // migrate the locals and monitors off of the stack.
1707 
1708       __ mov(rbx, rax);                             // save the nmethod
1709 
1710       const Register thread = rcx;
1711       __ get_thread(thread);
1712       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1713       // rax, is OSR buffer, move it to expected parameter location
1714       __ mov(rcx, rax);
1715 
1716       // pop the interpreter frame
1717       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1718       __ leave();                                // remove frame anchor
1719       __ pop(rdi);                               // get return address
1720       __ mov(rsp, rdx);                          // set sp to sender sp
1721 
1722       // Align stack pointer for compiled code (note that caller is
1723       // responsible for undoing this fixup by remembering the old SP
1724       // in an rbp,-relative location)
1725       __ andptr(rsp, -(StackAlignmentInBytes));
1726 
1727       // push the (possibly adjusted) return address
1728       __ push(rdi);
1729 
1730       // and begin the OSR nmethod
1731       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1732     }
1733   }
1734 }
1735 
1736 
1737 void TemplateTable::if_0cmp(Condition cc) {
1738   transition(itos, vtos);
1739   // assume branch is more often taken than not (loops use backward branches)
1740   Label not_taken;
1741   __ testl(rax, rax);
1742   __ jcc(j_not(cc), not_taken);
1743   branch(false, false);
1744   __ bind(not_taken);
1745   __ profile_not_taken_branch(rax);
1746 }
1747 
1748 
1749 void TemplateTable::if_icmp(Condition cc) {
1750   transition(itos, vtos);
1751   // assume branch is more often taken than not (loops use backward branches)
1752   Label not_taken;
1753   __ pop_i(rdx);
1754   __ cmpl(rdx, rax);
1755   __ jcc(j_not(cc), not_taken);
1756   branch(false, false);
1757   __ bind(not_taken);
1758   __ profile_not_taken_branch(rax);
1759 }
1760 
1761 
1762 void TemplateTable::if_nullcmp(Condition cc) {
1763   transition(atos, vtos);
1764   // assume branch is more often taken than not (loops use backward branches)
1765   Label not_taken;
1766   __ testptr(rax, rax);
1767   __ jcc(j_not(cc), not_taken);
1768   branch(false, false);
1769   __ bind(not_taken);
1770   __ profile_not_taken_branch(rax);
1771 }
1772 
1773 
1774 void TemplateTable::if_acmp(Condition cc) {
1775   transition(atos, vtos);
1776   // assume branch is more often taken than not (loops use backward branches)
1777   Label not_taken;
1778   __ pop_ptr(rdx);
1779   __ cmpptr(rdx, rax);
1780   __ jcc(j_not(cc), not_taken);
1781   branch(false, false);
1782   __ bind(not_taken);
1783   __ profile_not_taken_branch(rax);
1784 }
1785 
1786 
1787 void TemplateTable::ret() {
1788   transition(vtos, vtos);
1789   locals_index(rbx);
1790   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1791   __ profile_ret(rbx, rcx);
1792   __ get_method(rax);
1793   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1794   __ lea(rsi, Address(rsi, rbx, Address::times_1,
1795                       constMethodOopDesc::codes_offset()));
1796   __ dispatch_next(vtos);
1797 }
1798 
1799 
1800 void TemplateTable::wide_ret() {
1801   transition(vtos, vtos);
1802   locals_index_wide(rbx);
1803   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1804   __ profile_ret(rbx, rcx);
1805   __ get_method(rax);
1806   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1807   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1808   __ dispatch_next(vtos);
1809 }
1810 
1811 
1812 void TemplateTable::tableswitch() {
1813   Label default_case, continue_execution;
1814   transition(itos, vtos);
1815   // align rsi
1816   __ lea(rbx, at_bcp(wordSize));
1817   __ andptr(rbx, -wordSize);
1818   // load lo & hi
1819   __ movl(rcx, Address(rbx, 1 * wordSize));
1820   __ movl(rdx, Address(rbx, 2 * wordSize));
1821   __ bswapl(rcx);
1822   __ bswapl(rdx);
1823   // check against lo & hi
1824   __ cmpl(rax, rcx);
1825   __ jccb(Assembler::less, default_case);
1826   __ cmpl(rax, rdx);
1827   __ jccb(Assembler::greater, default_case);
1828   // lookup dispatch offset
1829   __ subl(rax, rcx);
1830   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1831   __ profile_switch_case(rax, rbx, rcx);
1832   // continue execution
1833   __ bind(continue_execution);
1834   __ bswapl(rdx);
1835   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1836   __ addptr(rsi, rdx);
1837   __ dispatch_only(vtos);
1838   // handle default
1839   __ bind(default_case);
1840   __ profile_switch_default(rax);
1841   __ movl(rdx, Address(rbx, 0));
1842   __ jmp(continue_execution);
1843 }
1844 
1845 
1846 void TemplateTable::lookupswitch() {
1847   transition(itos, itos);
1848   __ stop("lookupswitch bytecode should have been rewritten");
1849 }
1850 
1851 
1852 void TemplateTable::fast_linearswitch() {
1853   transition(itos, vtos);
1854   Label loop_entry, loop, found, continue_execution;
1855   // bswapl rax, so we can avoid bswapping the table entries
1856   __ bswapl(rax);
1857   // align rsi
1858   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
1859   __ andptr(rbx, -wordSize);
1860   // set counter
1861   __ movl(rcx, Address(rbx, wordSize));
1862   __ bswapl(rcx);
1863   __ jmpb(loop_entry);
1864   // table search
1865   __ bind(loop);
1866   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1867   __ jccb(Assembler::equal, found);
1868   __ bind(loop_entry);
1869   __ decrementl(rcx);
1870   __ jcc(Assembler::greaterEqual, loop);
1871   // default case
1872   __ profile_switch_default(rax);
1873   __ movl(rdx, Address(rbx, 0));
1874   __ jmpb(continue_execution);
1875   // entry found -> get offset
1876   __ bind(found);
1877   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1878   __ profile_switch_case(rcx, rax, rbx);
1879   // continue execution
1880   __ bind(continue_execution);
1881   __ bswapl(rdx);
1882   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1883   __ addptr(rsi, rdx);
1884   __ dispatch_only(vtos);
1885 }
1886 
1887 
1888 void TemplateTable::fast_binaryswitch() {
1889   transition(itos, vtos);
1890   // Implementation using the following core algorithm:
1891   //
1892   // int binary_search(int key, LookupswitchPair* array, int n) {
1893   //   // Binary search according to "Methodik des Programmierens" by
1894   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1895   //   int i = 0;
1896   //   int j = n;
1897   //   while (i+1 < j) {
1898   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1899   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1900   //     // where a stands for the array and assuming that the (inexisting)
1901   //     // element a[n] is infinitely big.
1902   //     int h = (i + j) >> 1;
1903   //     // i < h < j
1904   //     if (key < array[h].fast_match()) {
1905   //       j = h;
1906   //     } else {
1907   //       i = h;
1908   //     }
1909   //   }
1910   //   // R: a[i] <= key < a[i+1] or Q
1911   //   // (i.e., if key is within array, i is the correct index)
1912   //   return i;
1913   // }
1914 
1915   // register allocation
1916   const Register key   = rax;                    // already set (tosca)
1917   const Register array = rbx;
1918   const Register i     = rcx;
1919   const Register j     = rdx;
1920   const Register h     = rdi;                    // needs to be restored
1921   const Register temp  = rsi;
1922   // setup array
1923   __ save_bcp();
1924 
1925   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
1926   __ andptr(array, -wordSize);
1927   // initialize i & j
1928   __ xorl(i, i);                                 // i = 0;
1929   __ movl(j, Address(array, -wordSize));         // j = length(array);
1930   // Convert j into native byteordering
1931   __ bswapl(j);
1932   // and start
1933   Label entry;
1934   __ jmp(entry);
1935 
1936   // binary search loop
1937   { Label loop;
1938     __ bind(loop);
1939     // int h = (i + j) >> 1;
1940     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1941     __ sarl(h, 1);                               // h = (i + j) >> 1;
1942     // if (key < array[h].fast_match()) {
1943     //   j = h;
1944     // } else {
1945     //   i = h;
1946     // }
1947     // Convert array[h].match to native byte-ordering before compare
1948     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1949     __ bswapl(temp);
1950     __ cmpl(key, temp);
1951     if (VM_Version::supports_cmov()) {
1952       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
1953       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
1954     } else {
1955       Label set_i, end_of_if;
1956       __ jccb(Assembler::greaterEqual, set_i);     // {
1957       __ mov(j, h);                                //   j = h;
1958       __ jmp(end_of_if);                           // }
1959       __ bind(set_i);                              // else {
1960       __ mov(i, h);                                //   i = h;
1961       __ bind(end_of_if);                          // }
1962     }
1963     // while (i+1 < j)
1964     __ bind(entry);
1965     __ leal(h, Address(i, 1));                   // i+1
1966     __ cmpl(h, j);                               // i+1 < j
1967     __ jcc(Assembler::less, loop);
1968   }
1969 
1970   // end of binary search, result index is i (must check again!)
1971   Label default_case;
1972   // Convert array[i].match to native byte-ordering before compare
1973   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
1974   __ bswapl(temp);
1975   __ cmpl(key, temp);
1976   __ jcc(Assembler::notEqual, default_case);
1977 
1978   // entry found -> j = offset
1979   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
1980   __ profile_switch_case(i, key, array);
1981   __ bswapl(j);
1982   LP64_ONLY(__ movslq(j, j));
1983   __ restore_bcp();
1984   __ restore_locals();                           // restore rdi
1985   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1986 
1987   __ addptr(rsi, j);
1988   __ dispatch_only(vtos);
1989 
1990   // default case -> j = default offset
1991   __ bind(default_case);
1992   __ profile_switch_default(i);
1993   __ movl(j, Address(array, -2*wordSize));
1994   __ bswapl(j);
1995   LP64_ONLY(__ movslq(j, j));
1996   __ restore_bcp();
1997   __ restore_locals();                           // restore rdi
1998   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1999   __ addptr(rsi, j);
2000   __ dispatch_only(vtos);
2001 }
2002 
2003 
2004 void TemplateTable::_return(TosState state) {
2005   transition(state, state);
2006   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2007 
2008   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2009     assert(state == vtos, "only valid state");
2010     __ movptr(rax, aaddress(0));
2011     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
2012     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2013     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2014     Label skip_register_finalizer;
2015     __ jcc(Assembler::zero, skip_register_finalizer);
2016 
2017     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2018 
2019     __ bind(skip_register_finalizer);
2020   }
2021 
2022   __ remove_activation(state, rsi);
2023   __ jmp(rsi);
2024 }
2025 
2026 
2027 // ----------------------------------------------------------------------------
2028 // Volatile variables demand their effects be made known to all CPU's in
2029 // order.  Store buffers on most chips allow reads & writes to reorder; the
2030 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2031 // memory barrier (i.e., it's not sufficient that the interpreter does not
2032 // reorder volatile references, the hardware also must not reorder them).
2033 //
2034 // According to the new Java Memory Model (JMM):
2035 // (1) All volatiles are serialized wrt to each other.
2036 // ALSO reads & writes act as aquire & release, so:
2037 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2038 // the read float up to before the read.  It's OK for non-volatile memory refs
2039 // that happen before the volatile read to float down below it.
2040 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2041 // that happen BEFORE the write float down to after the write.  It's OK for
2042 // non-volatile memory refs that happen after the volatile write to float up
2043 // before it.
2044 //
2045 // We only put in barriers around volatile refs (they are expensive), not
2046 // _between_ memory refs (that would require us to track the flavor of the
2047 // previous memory refs).  Requirements (2) and (3) require some barriers
2048 // before volatile stores and after volatile loads.  These nearly cover
2049 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2050 // case is placed after volatile-stores although it could just as well go
2051 // before volatile-loads.
2052 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2053   // Helper function to insert a is-volatile test and memory barrier
2054   if( !os::is_MP() ) return;    // Not needed on single CPU
2055   __ membar(order_constraint);
2056 }
2057 
2058 void TemplateTable::resolve_cache_and_index(int byte_no,
2059                                             Register result,
2060                                             Register Rcache,
2061                                             Register index,
2062                                             size_t index_size) {
2063   Register temp = rbx;
2064 
2065   assert_different_registers(result, Rcache, index, temp);
2066 
2067   Label resolved;
2068   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2069   if (byte_no == f1_oop) {
2070     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2071     // This kind of CP cache entry does not need to match the flags byte, because
2072     // there is a 1-1 relation between bytecode type and CP entry type.
2073     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2074     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2075     __ testptr(result, result);
2076     __ jcc(Assembler::notEqual, resolved);
2077   } else {
2078     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2079     assert(result == noreg, "");  //else change code for setting result
2080     const int shift_count = (1 + byte_no)*BitsPerByte;
2081     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2082     __ shrl(temp, shift_count);
2083     // have we resolved this bytecode?
2084     __ andl(temp, 0xFF);
2085     __ cmpl(temp, (int)bytecode());
2086     __ jcc(Assembler::equal, resolved);
2087   }
2088 
2089   // resolve first time through
2090   address entry;
2091   switch (bytecode()) {
2092     case Bytecodes::_getstatic      : // fall through
2093     case Bytecodes::_putstatic      : // fall through
2094     case Bytecodes::_getfield       : // fall through
2095     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2096     case Bytecodes::_invokevirtual  : // fall through
2097     case Bytecodes::_invokespecial  : // fall through
2098     case Bytecodes::_invokestatic   : // fall through
2099     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2100     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2101     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2102     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2103     default                         : ShouldNotReachHere();                                 break;
2104   }
2105   __ movl(temp, (int)bytecode());
2106   __ call_VM(noreg, entry, temp);
2107   // Update registers with resolved info
2108   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2109   if (result != noreg)
2110     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2111   __ bind(resolved);
2112 }
2113 
2114 
2115 // The cache and index registers must be set before call
2116 void TemplateTable::load_field_cp_cache_entry(Register obj,
2117                                               Register cache,
2118                                               Register index,
2119                                               Register off,
2120                                               Register flags,
2121                                               bool is_static = false) {
2122   assert_different_registers(cache, index, flags, off);
2123 
2124   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2125   // Field offset
2126   __ movptr(off, Address(cache, index, Address::times_ptr,
2127                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2128   // Flags
2129   __ movl(flags, Address(cache, index, Address::times_ptr,
2130            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2131 
2132   // klass     overwrite register
2133   if (is_static) {
2134     __ movptr(obj, Address(cache, index, Address::times_ptr,
2135                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2136   }
2137 }
2138 
2139 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2140                                                Register method,
2141                                                Register itable_index,
2142                                                Register flags,
2143                                                bool is_invokevirtual,
2144                                                bool is_invokevfinal /*unused*/,
2145                                                bool is_invokedynamic) {
2146   // setup registers
2147   const Register cache = rcx;
2148   const Register index = rdx;
2149   assert_different_registers(method, flags);
2150   assert_different_registers(method, cache, index);
2151   assert_different_registers(itable_index, flags);
2152   assert_different_registers(itable_index, cache, index);
2153   // determine constant pool cache field offsets
2154   const int method_offset = in_bytes(
2155     constantPoolCacheOopDesc::base_offset() +
2156       (is_invokevirtual
2157        ? ConstantPoolCacheEntry::f2_offset()
2158        : ConstantPoolCacheEntry::f1_offset()
2159       )
2160     );
2161   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2162                                     ConstantPoolCacheEntry::flags_offset());
2163   // access constant pool cache fields
2164   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2165                                     ConstantPoolCacheEntry::f2_offset());
2166 
2167   if (byte_no == f1_oop) {
2168     // Resolved f1_oop goes directly into 'method' register.
2169     assert(is_invokedynamic, "");
2170     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2171   } else {
2172     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2173     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2174   }
2175   if (itable_index != noreg) {
2176     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2177   }
2178   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2179 }
2180 
2181 
2182 // The registers cache and index expected to be set before call.
2183 // Correct values of the cache and index registers are preserved.
2184 void TemplateTable::jvmti_post_field_access(Register cache,
2185                                             Register index,
2186                                             bool is_static,
2187                                             bool has_tos) {
2188   if (JvmtiExport::can_post_field_access()) {
2189     // Check to see if a field access watch has been set before we take
2190     // the time to call into the VM.
2191     Label L1;
2192     assert_different_registers(cache, index, rax);
2193     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2194     __ testl(rax,rax);
2195     __ jcc(Assembler::zero, L1);
2196 
2197     // cache entry pointer
2198     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
2199     __ shll(index, LogBytesPerWord);
2200     __ addptr(cache, index);
2201     if (is_static) {
2202       __ xorptr(rax, rax);      // NULL object reference
2203     } else {
2204       __ pop(atos);         // Get the object
2205       __ verify_oop(rax);
2206       __ push(atos);        // Restore stack state
2207     }
2208     // rax,:   object pointer or NULL
2209     // cache: cache entry pointer
2210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2211                rax, cache);
2212     __ get_cache_and_index_at_bcp(cache, index, 1);
2213     __ bind(L1);
2214   }
2215 }
2216 
2217 void TemplateTable::pop_and_check_object(Register r) {
2218   __ pop_ptr(r);
2219   __ null_check(r);  // for field access must check obj.
2220   __ verify_oop(r);
2221 }
2222 
2223 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2224   transition(vtos, vtos);
2225 
2226   const Register cache = rcx;
2227   const Register index = rdx;
2228   const Register obj   = rcx;
2229   const Register off   = rbx;
2230   const Register flags = rax;
2231 
2232   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2233   jvmti_post_field_access(cache, index, is_static, false);
2234   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2235 
2236   if (!is_static) pop_and_check_object(obj);
2237 
2238   const Address lo(obj, off, Address::times_1, 0*wordSize);
2239   const Address hi(obj, off, Address::times_1, 1*wordSize);
2240 
2241   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2242 
2243   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2244   assert(btos == 0, "change code, btos != 0");
2245   // btos
2246   __ andptr(flags, 0x0f);
2247   __ jcc(Assembler::notZero, notByte);
2248 
2249   __ load_signed_byte(rax, lo );
2250   __ push(btos);
2251   // Rewrite bytecode to be faster
2252   if (!is_static) {
2253     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2254   }
2255   __ jmp(Done);
2256 
2257   __ bind(notByte);
2258   // itos
2259   __ cmpl(flags, itos );
2260   __ jcc(Assembler::notEqual, notInt);
2261 
2262   __ movl(rax, lo );
2263   __ push(itos);
2264   // Rewrite bytecode to be faster
2265   if (!is_static) {
2266     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2267   }
2268   __ jmp(Done);
2269 
2270   __ bind(notInt);
2271   // atos
2272   __ cmpl(flags, atos );
2273   __ jcc(Assembler::notEqual, notObj);
2274 
2275   __ movl(rax, lo );
2276   __ push(atos);
2277   if (!is_static) {
2278     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2279   }
2280   __ jmp(Done);
2281 
2282   __ bind(notObj);
2283   // ctos
2284   __ cmpl(flags, ctos );
2285   __ jcc(Assembler::notEqual, notChar);
2286 
2287   __ load_unsigned_short(rax, lo );
2288   __ push(ctos);
2289   if (!is_static) {
2290     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2291   }
2292   __ jmp(Done);
2293 
2294   __ bind(notChar);
2295   // stos
2296   __ cmpl(flags, stos );
2297   __ jcc(Assembler::notEqual, notShort);
2298 
2299   __ load_signed_short(rax, lo );
2300   __ push(stos);
2301   if (!is_static) {
2302     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2303   }
2304   __ jmp(Done);
2305 
2306   __ bind(notShort);
2307   // ltos
2308   __ cmpl(flags, ltos );
2309   __ jcc(Assembler::notEqual, notLong);
2310 
2311   // Generate code as if volatile.  There just aren't enough registers to
2312   // save that information and this code is faster than the test.
2313   __ fild_d(lo);                // Must load atomically
2314   __ subptr(rsp,2*wordSize);    // Make space for store
2315   __ fistp_d(Address(rsp,0));
2316   __ pop(rax);
2317   __ pop(rdx);
2318 
2319   __ push(ltos);
2320   // Don't rewrite to _fast_lgetfield for potential volatile case.
2321   __ jmp(Done);
2322 
2323   __ bind(notLong);
2324   // ftos
2325   __ cmpl(flags, ftos );
2326   __ jcc(Assembler::notEqual, notFloat);
2327 
2328   __ fld_s(lo);
2329   __ push(ftos);
2330   if (!is_static) {
2331     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2332   }
2333   __ jmp(Done);
2334 
2335   __ bind(notFloat);
2336   // dtos
2337   __ cmpl(flags, dtos );
2338   __ jcc(Assembler::notEqual, notDouble);
2339 
2340   __ fld_d(lo);
2341   __ push(dtos);
2342   if (!is_static) {
2343     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2344   }
2345   __ jmpb(Done);
2346 
2347   __ bind(notDouble);
2348 
2349   __ stop("Bad state");
2350 
2351   __ bind(Done);
2352   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2353   // volatile_barrier( );
2354 }
2355 
2356 
2357 void TemplateTable::getfield(int byte_no) {
2358   getfield_or_static(byte_no, false);
2359 }
2360 
2361 
2362 void TemplateTable::getstatic(int byte_no) {
2363   getfield_or_static(byte_no, true);
2364 }
2365 
2366 // The registers cache and index expected to be set before call.
2367 // The function may destroy various registers, just not the cache and index registers.
2368 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2369 
2370   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2371 
2372   if (JvmtiExport::can_post_field_modification()) {
2373     // Check to see if a field modification watch has been set before we take
2374     // the time to call into the VM.
2375     Label L1;
2376     assert_different_registers(cache, index, rax);
2377     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2378     __ testl(rax, rax);
2379     __ jcc(Assembler::zero, L1);
2380 
2381     // The cache and index registers have been already set.
2382     // This allows to eliminate this call but the cache and index
2383     // registers have to be correspondingly used after this line.
2384     __ get_cache_and_index_at_bcp(rax, rdx, 1);
2385 
2386     if (is_static) {
2387       // Life is simple.  Null out the object pointer.
2388       __ xorptr(rbx, rbx);
2389     } else {
2390       // Life is harder. The stack holds the value on top, followed by the object.
2391       // We don't know the size of the value, though; it could be one or two words
2392       // depending on its type. As a result, we must find the type to determine where
2393       // the object is.
2394       Label two_word, valsize_known;
2395       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2396                                    ConstantPoolCacheEntry::flags_offset())));
2397       __ mov(rbx, rsp);
2398       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
2399       // Make sure we don't need to mask rcx for tosBits after the above shift
2400       ConstantPoolCacheEntry::verify_tosBits();
2401       __ cmpl(rcx, ltos);
2402       __ jccb(Assembler::equal, two_word);
2403       __ cmpl(rcx, dtos);
2404       __ jccb(Assembler::equal, two_word);
2405       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2406       __ jmpb(valsize_known);
2407 
2408       __ bind(two_word);
2409       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2410 
2411       __ bind(valsize_known);
2412       // setup object pointer
2413       __ movptr(rbx, Address(rbx, 0));
2414     }
2415     // cache entry pointer
2416     __ addptr(rax, in_bytes(cp_base_offset));
2417     __ shll(rdx, LogBytesPerWord);
2418     __ addptr(rax, rdx);
2419     // object (tos)
2420     __ mov(rcx, rsp);
2421     // rbx,: object pointer set up above (NULL if static)
2422     // rax,: cache entry pointer
2423     // rcx: jvalue object on the stack
2424     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2425                rbx, rax, rcx);
2426     __ get_cache_and_index_at_bcp(cache, index, 1);
2427     __ bind(L1);
2428   }
2429 }
2430 
2431 
2432 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2433   transition(vtos, vtos);
2434 
2435   const Register cache = rcx;
2436   const Register index = rdx;
2437   const Register obj   = rcx;
2438   const Register off   = rbx;
2439   const Register flags = rax;
2440 
2441   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2442   jvmti_post_field_mod(cache, index, is_static);
2443   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2444 
2445   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2446   // volatile_barrier( );
2447 
2448   Label notVolatile, Done;
2449   __ movl(rdx, flags);
2450   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2451   __ andl(rdx, 0x1);
2452 
2453   // field addresses
2454   const Address lo(obj, off, Address::times_1, 0*wordSize);
2455   const Address hi(obj, off, Address::times_1, 1*wordSize);
2456 
2457   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2458 
2459   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2460   assert(btos == 0, "change code, btos != 0");
2461   // btos
2462   __ andl(flags, 0x0f);
2463   __ jcc(Assembler::notZero, notByte);
2464 
2465   __ pop(btos);
2466   if (!is_static) pop_and_check_object(obj);
2467   __ movb(lo, rax );
2468   if (!is_static) {
2469     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
2470   }
2471   __ jmp(Done);
2472 
2473   __ bind(notByte);
2474   // itos
2475   __ cmpl(flags, itos );
2476   __ jcc(Assembler::notEqual, notInt);
2477 
2478   __ pop(itos);
2479   if (!is_static) pop_and_check_object(obj);
2480 
2481   __ movl(lo, rax );
2482   if (!is_static) {
2483     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
2484   }
2485   __ jmp(Done);
2486 
2487   __ bind(notInt);
2488   // atos
2489   __ cmpl(flags, atos );
2490   __ jcc(Assembler::notEqual, notObj);
2491 
2492   __ pop(atos);
2493   if (!is_static) pop_and_check_object(obj);
2494 
2495   do_oop_store(_masm, lo, rax, _bs->kind(), false);
2496 
2497   if (!is_static) {
2498     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
2499   }
2500 
2501   __ jmp(Done);
2502 
2503   __ bind(notObj);
2504   // ctos
2505   __ cmpl(flags, ctos );
2506   __ jcc(Assembler::notEqual, notChar);
2507 
2508   __ pop(ctos);
2509   if (!is_static) pop_and_check_object(obj);
2510   __ movw(lo, rax );
2511   if (!is_static) {
2512     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
2513   }
2514   __ jmp(Done);
2515 
2516   __ bind(notChar);
2517   // stos
2518   __ cmpl(flags, stos );
2519   __ jcc(Assembler::notEqual, notShort);
2520 
2521   __ pop(stos);
2522   if (!is_static) pop_and_check_object(obj);
2523   __ movw(lo, rax );
2524   if (!is_static) {
2525     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
2526   }
2527   __ jmp(Done);
2528 
2529   __ bind(notShort);
2530   // ltos
2531   __ cmpl(flags, ltos );
2532   __ jcc(Assembler::notEqual, notLong);
2533 
2534   Label notVolatileLong;
2535   __ testl(rdx, rdx);
2536   __ jcc(Assembler::zero, notVolatileLong);
2537 
2538   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
2539   if (!is_static) pop_and_check_object(obj);
2540 
2541   // Replace with real volatile test
2542   __ push(rdx);
2543   __ push(rax);                 // Must update atomically with FIST
2544   __ fild_d(Address(rsp,0));    // So load into FPU register
2545   __ fistp_d(lo);               // and put into memory atomically
2546   __ addptr(rsp, 2*wordSize);
2547   // volatile_barrier();
2548   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2549                                                Assembler::StoreStore));
2550   // Don't rewrite volatile version
2551   __ jmp(notVolatile);
2552 
2553   __ bind(notVolatileLong);
2554 
2555   __ pop(ltos);  // overwrites rdx
2556   if (!is_static) pop_and_check_object(obj);
2557   NOT_LP64(__ movptr(hi, rdx));
2558   __ movptr(lo, rax);
2559   if (!is_static) {
2560     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
2561   }
2562   __ jmp(notVolatile);
2563 
2564   __ bind(notLong);
2565   // ftos
2566   __ cmpl(flags, ftos );
2567   __ jcc(Assembler::notEqual, notFloat);
2568 
2569   __ pop(ftos);
2570   if (!is_static) pop_and_check_object(obj);
2571   __ fstp_s(lo);
2572   if (!is_static) {
2573     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
2574   }
2575   __ jmp(Done);
2576 
2577   __ bind(notFloat);
2578   // dtos
2579   __ cmpl(flags, dtos );
2580   __ jcc(Assembler::notEqual, notDouble);
2581 
2582   __ pop(dtos);
2583   if (!is_static) pop_and_check_object(obj);
2584   __ fstp_d(lo);
2585   if (!is_static) {
2586     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
2587   }
2588   __ jmp(Done);
2589 
2590   __ bind(notDouble);
2591 
2592   __ stop("Bad state");
2593 
2594   __ bind(Done);
2595 
2596   // Check for volatile store
2597   __ testl(rdx, rdx);
2598   __ jcc(Assembler::zero, notVolatile);
2599   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2600                                                Assembler::StoreStore));
2601   __ bind(notVolatile);
2602 }
2603 
2604 
2605 void TemplateTable::putfield(int byte_no) {
2606   putfield_or_static(byte_no, false);
2607 }
2608 
2609 
2610 void TemplateTable::putstatic(int byte_no) {
2611   putfield_or_static(byte_no, true);
2612 }
2613 
2614 void TemplateTable::jvmti_post_fast_field_mod() {
2615   if (JvmtiExport::can_post_field_modification()) {
2616     // Check to see if a field modification watch has been set before we take
2617     // the time to call into the VM.
2618     Label L2;
2619     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2620     __ testl(rcx,rcx);
2621     __ jcc(Assembler::zero, L2);
2622     __ pop_ptr(rbx);               // copy the object pointer from tos
2623     __ verify_oop(rbx);
2624     __ push_ptr(rbx);              // put the object pointer back on tos
2625     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2626     __ mov(rcx, rsp);
2627     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
2628     __ xorptr(rbx, rbx);
2629     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
2630     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
2631     switch (bytecode()) {          // load values into the jvalue object
2632     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
2633     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
2634     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
2635     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
2636     case Bytecodes::_fast_lputfield:
2637       NOT_LP64(__ movptr(hi_value, rdx));
2638       __ movptr(lo_value, rax);
2639       break;
2640 
2641     // need to call fld_s() after fstp_s() to restore the value for below
2642     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
2643 
2644     // need to call fld_d() after fstp_d() to restore the value for below
2645     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
2646 
2647     // since rcx is not an object we don't call store_check() here
2648     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
2649 
2650     default:  ShouldNotReachHere();
2651     }
2652     __ pop_ptr(rbx);  // restore copy of object pointer
2653 
2654     // Save rax, and sometimes rdx because call_VM() will clobber them,
2655     // then use them for JVM/DI purposes
2656     __ push(rax);
2657     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2658     // access constant pool cache entry
2659     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2660     __ verify_oop(rbx);
2661     // rbx,: object pointer copied above
2662     // rax,: cache entry pointer
2663     // rcx: jvalue object on the stack
2664     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2665     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
2666     __ pop(rax);     // restore lower value
2667     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2668     __ bind(L2);
2669   }
2670 }
2671 
2672 void TemplateTable::fast_storefield(TosState state) {
2673   transition(state, vtos);
2674 
2675   ByteSize base = constantPoolCacheOopDesc::base_offset();
2676 
2677   jvmti_post_fast_field_mod();
2678 
2679   // access constant pool cache
2680   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2681 
2682   // test for volatile with rdx but rdx is tos register for lputfield.
2683   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2684   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2685                        ConstantPoolCacheEntry::flags_offset())));
2686 
2687   // replace index with field offset from cache entry
2688   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2689 
2690   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2691   // volatile_barrier( );
2692 
2693   Label notVolatile, Done;
2694   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2695   __ andl(rdx, 0x1);
2696   // Check for volatile store
2697   __ testl(rdx, rdx);
2698   __ jcc(Assembler::zero, notVolatile);
2699 
2700   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2701 
2702   // Get object from stack
2703   pop_and_check_object(rcx);
2704 
2705   // field addresses
2706   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2707   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2708 
2709   // access field
2710   switch (bytecode()) {
2711     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2712     case Bytecodes::_fast_sputfield: // fall through
2713     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2714     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2715     case Bytecodes::_fast_lputfield:
2716       NOT_LP64(__ movptr(hi, rdx));
2717       __ movptr(lo, rax);
2718       break;
2719     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2720     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2721     case Bytecodes::_fast_aputfield: {
2722       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2723       break;
2724     }
2725     default:
2726       ShouldNotReachHere();
2727   }
2728 
2729   Label done;
2730   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2731                                                Assembler::StoreStore));
2732   // Barriers are so large that short branch doesn't reach!
2733   __ jmp(done);
2734 
2735   // Same code as above, but don't need rdx to test for volatile.
2736   __ bind(notVolatile);
2737 
2738   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2739 
2740   // Get object from stack
2741   pop_and_check_object(rcx);
2742 
2743   // access field
2744   switch (bytecode()) {
2745     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2746     case Bytecodes::_fast_sputfield: // fall through
2747     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2748     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2749     case Bytecodes::_fast_lputfield:
2750       NOT_LP64(__ movptr(hi, rdx));
2751       __ movptr(lo, rax);
2752       break;
2753     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2754     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2755     case Bytecodes::_fast_aputfield: {
2756       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2757       break;
2758     }
2759     default:
2760       ShouldNotReachHere();
2761   }
2762   __ bind(done);
2763 }
2764 
2765 
2766 void TemplateTable::fast_accessfield(TosState state) {
2767   transition(atos, state);
2768 
2769   // do the JVMTI work here to avoid disturbing the register state below
2770   if (JvmtiExport::can_post_field_access()) {
2771     // Check to see if a field access watch has been set before we take
2772     // the time to call into the VM.
2773     Label L1;
2774     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2775     __ testl(rcx,rcx);
2776     __ jcc(Assembler::zero, L1);
2777     // access constant pool cache entry
2778     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2779     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2780     __ verify_oop(rax);
2781     // rax,: object pointer copied above
2782     // rcx: cache entry pointer
2783     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2784     __ pop_ptr(rax);   // restore object pointer
2785     __ bind(L1);
2786   }
2787 
2788   // access constant pool cache
2789   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2790   // replace index with field offset from cache entry
2791   __ movptr(rbx, Address(rcx,
2792                          rbx,
2793                          Address::times_ptr,
2794                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2795 
2796 
2797   // rax,: object
2798   __ verify_oop(rax);
2799   __ null_check(rax);
2800   // field addresses
2801   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2802   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2803 
2804   // access field
2805   switch (bytecode()) {
2806     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
2807     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
2808     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
2809     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
2810     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
2811     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
2812     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
2813     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2814     default:
2815       ShouldNotReachHere();
2816   }
2817 
2818   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2819   // volatile_barrier( );
2820 }
2821 
2822 void TemplateTable::fast_xaccess(TosState state) {
2823   transition(vtos, state);
2824   // get receiver
2825   __ movptr(rax, aaddress(0));
2826   // access constant pool cache
2827   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2828   __ movptr(rbx, Address(rcx,
2829                          rdx,
2830                          Address::times_ptr,
2831                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2832   // make sure exception is reported in correct bcp range (getfield is next instruction)
2833   __ increment(rsi);
2834   __ null_check(rax);
2835   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2836   if (state == itos) {
2837     __ movl(rax, lo);
2838   } else if (state == atos) {
2839     __ movptr(rax, lo);
2840     __ verify_oop(rax);
2841   } else if (state == ftos) {
2842     __ fld_s(lo);
2843   } else {
2844     ShouldNotReachHere();
2845   }
2846   __ decrement(rsi);
2847 }
2848 
2849 
2850 
2851 //----------------------------------------------------------------------------------------------------
2852 // Calls
2853 
2854 void TemplateTable::count_calls(Register method, Register temp) {
2855   // implemented elsewhere
2856   ShouldNotReachHere();
2857 }
2858 
2859 
2860 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2861   // determine flags
2862   Bytecodes::Code code = bytecode();
2863   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2864   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2865   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2866   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2867   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2868   const bool receiver_null_check = is_invokespecial;
2869   const bool save_flags = is_invokeinterface || is_invokevirtual;
2870   // setup registers & access constant pool cache
2871   const Register recv   = rcx;
2872   const Register flags  = rdx;
2873   assert_different_registers(method, index, recv, flags);
2874 
2875   // save 'interpreter return address'
2876   __ save_bcp();
2877 
2878   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2879 
2880   // load receiver if needed (note: no return address pushed yet)
2881   if (load_receiver) {
2882     assert(!is_invokedynamic, "");
2883     __ movl(recv, flags);
2884     __ andl(recv, 0xFF);
2885     // recv count is 0 based?
2886     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
2887     __ movptr(recv, recv_addr);
2888     __ verify_oop(recv);
2889   }
2890 
2891   // do null check if needed
2892   if (receiver_null_check) {
2893     __ null_check(recv);
2894   }
2895 
2896   if (save_flags) {
2897     __ mov(rsi, flags);
2898   }
2899 
2900   // compute return type
2901   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2902   // Make sure we don't need to mask flags for tosBits after the above shift
2903   ConstantPoolCacheEntry::verify_tosBits();
2904   // load return address
2905   {
2906     address table_addr;
2907     if (is_invokeinterface || is_invokedynamic)
2908       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2909     else
2910       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2911     ExternalAddress table(table_addr);
2912     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2913   }
2914 
2915   // push return address
2916   __ push(flags);
2917 
2918   // Restore flag value from the constant pool cache, and restore rsi
2919   // for later null checks.  rsi is the bytecode pointer
2920   if (save_flags) {
2921     __ mov(flags, rsi);
2922     __ restore_bcp();
2923   }
2924 }
2925 
2926 
2927 void TemplateTable::invokevirtual_helper(Register index, Register recv,
2928                         Register flags) {
2929 
2930   // Uses temporary registers rax, rdx
2931   assert_different_registers(index, recv, rax, rdx);
2932 
2933   // Test for an invoke of a final method
2934   Label notFinal;
2935   __ movl(rax, flags);
2936   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2937   __ jcc(Assembler::zero, notFinal);
2938 
2939   Register method = index;  // method must be rbx,
2940   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
2941 
2942   // do the call - the index is actually the method to call
2943   __ verify_oop(method);
2944 
2945   // It's final, need a null check here!
2946   __ null_check(recv);
2947 
2948   // profile this call
2949   __ profile_final_call(rax);
2950 
2951   __ jump_from_interpreted(method, rax);
2952 
2953   __ bind(notFinal);
2954 
2955   // get receiver klass
2956   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2957   // Keep recv in rcx for callee expects it there
2958   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
2959   __ verify_oop(rax);
2960 
2961   // profile this call
2962   __ profile_virtual_call(rax, rdi, rdx);
2963 
2964   // get target methodOop & entry point
2965   const int base = instanceKlass::vtable_start_offset() * wordSize;
2966   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
2967   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
2968   __ jump_from_interpreted(method, rdx);
2969 }
2970 
2971 
2972 void TemplateTable::invokevirtual(int byte_no) {
2973   transition(vtos, vtos);
2974   assert(byte_no == f2_byte, "use this argument");
2975   prepare_invoke(rbx, noreg, byte_no);
2976 
2977   // rbx,: index
2978   // rcx: receiver
2979   // rdx: flags
2980 
2981   invokevirtual_helper(rbx, rcx, rdx);
2982 }
2983 
2984 
2985 void TemplateTable::invokespecial(int byte_no) {
2986   transition(vtos, vtos);
2987   assert(byte_no == f1_byte, "use this argument");
2988   prepare_invoke(rbx, noreg, byte_no);
2989   // do the call
2990   __ verify_oop(rbx);
2991   __ profile_call(rax);
2992   __ jump_from_interpreted(rbx, rax);
2993 }
2994 
2995 
2996 void TemplateTable::invokestatic(int byte_no) {
2997   transition(vtos, vtos);
2998   assert(byte_no == f1_byte, "use this argument");
2999   prepare_invoke(rbx, noreg, byte_no);
3000   // do the call
3001   __ verify_oop(rbx);
3002   __ profile_call(rax);
3003   __ jump_from_interpreted(rbx, rax);
3004 }
3005 
3006 
3007 void TemplateTable::fast_invokevfinal(int byte_no) {
3008   transition(vtos, vtos);
3009   assert(byte_no == f2_byte, "use this argument");
3010   __ stop("fast_invokevfinal not used on x86");
3011 }
3012 
3013 
3014 void TemplateTable::invokeinterface(int byte_no) {
3015   transition(vtos, vtos);
3016   assert(byte_no == f1_byte, "use this argument");
3017   prepare_invoke(rax, rbx, byte_no);
3018 
3019   // rax,: Interface
3020   // rbx,: index
3021   // rcx: receiver
3022   // rdx: flags
3023 
3024   // Special case of invokeinterface called for virtual method of
3025   // java.lang.Object.  See cpCacheOop.cpp for details.
3026   // This code isn't produced by javac, but could be produced by
3027   // another compliant java compiler.
3028   Label notMethod;
3029   __ movl(rdi, rdx);
3030   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
3031   __ jcc(Assembler::zero, notMethod);
3032 
3033   invokevirtual_helper(rbx, rcx, rdx);
3034   __ bind(notMethod);
3035 
3036   // Get receiver klass into rdx - also a null check
3037   __ restore_locals();  // restore rdi
3038   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
3039   __ verify_oop(rdx);
3040 
3041   // profile this call
3042   __ profile_virtual_call(rdx, rsi, rdi);
3043 
3044   Label no_such_interface, no_such_method;
3045 
3046   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3047                              rdx, rax, rbx,
3048                              // outputs: method, scan temp. reg
3049                              rbx, rsi,
3050                              no_such_interface);
3051 
3052   // rbx,: methodOop to call
3053   // rcx: receiver
3054   // Check for abstract method error
3055   // Note: This should be done more efficiently via a throw_abstract_method_error
3056   //       interpreter entry point and a conditional jump to it in case of a null
3057   //       method.
3058   __ testptr(rbx, rbx);
3059   __ jcc(Assembler::zero, no_such_method);
3060 
3061   // do the call
3062   // rcx: receiver
3063   // rbx,: methodOop
3064   __ jump_from_interpreted(rbx, rdx);
3065   __ should_not_reach_here();
3066 
3067   // exception handling code follows...
3068   // note: must restore interpreter registers to canonical
3069   //       state for exception handling to work correctly!
3070 
3071   __ bind(no_such_method);
3072   // throw exception
3073   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3074   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3075   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3076   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3077   // the call_VM checks for exception, so we should never return here.
3078   __ should_not_reach_here();
3079 
3080   __ bind(no_such_interface);
3081   // throw exception
3082   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3083   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3084   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3085   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3086                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3087   // the call_VM checks for exception, so we should never return here.
3088   __ should_not_reach_here();
3089 }
3090 
3091 void TemplateTable::invokedynamic(int byte_no) {
3092   transition(vtos, vtos);
3093 
3094   if (!EnableInvokeDynamic) {
3095     // We should not encounter this bytecode if !EnableInvokeDynamic.
3096     // The verifier will stop it.  However, if we get past the verifier,
3097     // this will stop the thread in a reasonable way, without crashing the JVM.
3098     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3099                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3100     // the call_VM checks for exception, so we should never return here.
3101     __ should_not_reach_here();
3102     return;
3103   }
3104 
3105   assert(byte_no == f1_oop, "use this argument");
3106   prepare_invoke(rax, rbx, byte_no);
3107 
3108   // rax: CallSite object (f1)
3109   // rbx: unused (f2)
3110   // rcx: receiver address
3111   // rdx: flags (unused)
3112 
3113   Register rax_callsite      = rax;
3114   Register rcx_method_handle = rcx;
3115 
3116   if (ProfileInterpreter) {
3117     // %%% should make a type profile for any invokedynamic that takes a ref argument
3118     // profile this call
3119     __ profile_call(rsi);
3120   }
3121 
3122   __ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
3123   __ null_check(rcx_method_handle);
3124   __ prepare_to_jump_from_interpreted();
3125   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3126 }
3127 
3128 //----------------------------------------------------------------------------------------------------
3129 // Allocation
3130 
3131 void TemplateTable::_new() {
3132   transition(vtos, atos);
3133   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3134   Label slow_case;
3135   Label slow_case_no_pop;
3136   Label done;
3137   Label initialize_header;
3138   Label initialize_object;  // including clearing the fields
3139   Label allocate_shared;
3140 
3141   __ get_cpool_and_tags(rcx, rax);
3142 
3143   // Make sure the class we're about to instantiate has been resolved.
3144   // This is done before loading instanceKlass to be consistent with the order
3145   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3146   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3147   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3148   __ jcc(Assembler::notEqual, slow_case_no_pop);
3149 
3150   // get instanceKlass
3151   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3152   __ push(rcx);  // save the contexts of klass for initializing the header
3153 
3154   // make sure klass is initialized & doesn't have finalizer
3155   // make sure klass is fully initialized
3156   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
3157   __ jcc(Assembler::notEqual, slow_case);
3158 
3159   // get instance_size in instanceKlass (scaled to a count of bytes)
3160   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3161   // test to see if it has a finalizer or is malformed in some way
3162   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3163   __ jcc(Assembler::notZero, slow_case);
3164 
3165   //
3166   // Allocate the instance
3167   // 1) Try to allocate in the TLAB
3168   // 2) if fail and the object is large allocate in the shared Eden
3169   // 3) if the above fails (or is not applicable), go to a slow case
3170   // (creates a new TLAB, etc.)
3171 
3172   const bool allow_shared_alloc =
3173     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3174 
3175   const Register thread = rcx;
3176   if (UseTLAB || allow_shared_alloc) {
3177     __ get_thread(thread);
3178   }
3179 
3180   if (UseTLAB) {
3181     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3182     __ lea(rbx, Address(rax, rdx, Address::times_1));
3183     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3184     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3185     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3186     if (ZeroTLAB) {
3187       // the fields have been already cleared
3188       __ jmp(initialize_header);
3189     } else {
3190       // initialize both the header and fields
3191       __ jmp(initialize_object);
3192     }
3193   }
3194 
3195   // Allocation in the shared Eden, if allowed.
3196   //
3197   // rdx: instance size in bytes
3198   if (allow_shared_alloc) {
3199     __ bind(allocate_shared);
3200 
3201     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3202 
3203     Label retry;
3204     __ bind(retry);
3205     __ movptr(rax, heap_top);
3206     __ lea(rbx, Address(rax, rdx, Address::times_1));
3207     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3208     __ jcc(Assembler::above, slow_case);
3209 
3210     // Compare rax, with the top addr, and if still equal, store the new
3211     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3212     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3213     //
3214     // rax,: object begin
3215     // rbx,: object end
3216     // rdx: instance size in bytes
3217     __ locked_cmpxchgptr(rbx, heap_top);
3218 
3219     // if someone beat us on the allocation, try again, otherwise continue
3220     __ jcc(Assembler::notEqual, retry);
3221 
3222     __ incr_allocated_bytes(thread, rdx, 0);
3223   }
3224 
3225   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3226     // The object is initialized before the header.  If the object size is
3227     // zero, go directly to the header initialization.
3228     __ bind(initialize_object);
3229     __ decrement(rdx, sizeof(oopDesc));
3230     __ jcc(Assembler::zero, initialize_header);
3231 
3232     // Initialize topmost object field, divide rdx by 8, check if odd and
3233     // test if zero.
3234     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3235     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3236 
3237     // rdx must have been multiple of 8
3238 #ifdef ASSERT
3239     // make sure rdx was multiple of 8
3240     Label L;
3241     // Ignore partial flag stall after shrl() since it is debug VM
3242     __ jccb(Assembler::carryClear, L);
3243     __ stop("object size is not multiple of 2 - adjust this code");
3244     __ bind(L);
3245     // rdx must be > 0, no extra check needed here
3246 #endif
3247 
3248     // initialize remaining object fields: rdx was a multiple of 8
3249     { Label loop;
3250     __ bind(loop);
3251     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3252     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3253     __ decrement(rdx);
3254     __ jcc(Assembler::notZero, loop);
3255     }
3256 
3257     // initialize object header only.
3258     __ bind(initialize_header);
3259     if (UseBiasedLocking) {
3260       __ pop(rcx);   // get saved klass back in the register.
3261       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3262       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3263     } else {
3264       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3265                 (int32_t)markOopDesc::prototype()); // header
3266       __ pop(rcx);   // get saved klass back in the register.
3267     }
3268     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
3269 
3270     {
3271       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3272       // Trigger dtrace event for fastpath
3273       __ push(atos);
3274       __ call_VM_leaf(
3275            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3276       __ pop(atos);
3277     }
3278 
3279     __ jmp(done);
3280   }
3281 
3282   // slow case
3283   __ bind(slow_case);
3284   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3285   __ bind(slow_case_no_pop);
3286   __ get_constant_pool(rax);
3287   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3288   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3289 
3290   // continue
3291   __ bind(done);
3292 }
3293 
3294 
3295 void TemplateTable::newarray() {
3296   transition(itos, atos);
3297   __ push_i(rax);                                 // make sure everything is on the stack
3298   __ load_unsigned_byte(rdx, at_bcp(1));
3299   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3300   __ pop_i(rdx);                                  // discard size
3301 }
3302 
3303 
3304 void TemplateTable::anewarray() {
3305   transition(itos, atos);
3306   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3307   __ get_constant_pool(rcx);
3308   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3309 }
3310 
3311 
3312 void TemplateTable::arraylength() {
3313   transition(atos, itos);
3314   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3315   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3316 }
3317 
3318 
3319 void TemplateTable::checkcast() {
3320   transition(atos, atos);
3321   Label done, is_null, ok_is_subtype, quicked, resolved;
3322   __ testptr(rax, rax);   // Object is in EAX
3323   __ jcc(Assembler::zero, is_null);
3324 
3325   // Get cpool & tags index
3326   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3327   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3328   // See if bytecode has already been quicked
3329   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3330   __ jcc(Assembler::equal, quicked);
3331 
3332   __ push(atos);
3333   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3334   __ pop_ptr(rdx);
3335   __ jmpb(resolved);
3336 
3337   // Get superklass in EAX and subklass in EBX
3338   __ bind(quicked);
3339   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
3340   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3341 
3342   __ bind(resolved);
3343   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3344 
3345   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
3346   // Superklass in EAX.  Subklass in EBX.
3347   __ gen_subtype_check( rbx, ok_is_subtype );
3348 
3349   // Come here on failure
3350   __ push(rdx);
3351   // object is at TOS
3352   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3353 
3354   // Come here on success
3355   __ bind(ok_is_subtype);
3356   __ mov(rax,rdx);           // Restore object in EDX
3357 
3358   // Collect counts on whether this check-cast sees NULLs a lot or not.
3359   if (ProfileInterpreter) {
3360     __ jmp(done);
3361     __ bind(is_null);
3362     __ profile_null_seen(rcx);
3363   } else {
3364     __ bind(is_null);   // same as 'done'
3365   }
3366   __ bind(done);
3367 }
3368 
3369 
3370 void TemplateTable::instanceof() {
3371   transition(atos, itos);
3372   Label done, is_null, ok_is_subtype, quicked, resolved;
3373   __ testptr(rax, rax);
3374   __ jcc(Assembler::zero, is_null);
3375 
3376   // Get cpool & tags index
3377   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3378   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3379   // See if bytecode has already been quicked
3380   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3381   __ jcc(Assembler::equal, quicked);
3382 
3383   __ push(atos);
3384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3385   __ pop_ptr(rdx);
3386   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3387   __ jmp(resolved);
3388 
3389   // Get superklass in EAX and subklass in EDX
3390   __ bind(quicked);
3391   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
3392   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3393 
3394   __ bind(resolved);
3395 
3396   // Generate subtype check.  Blows ECX.  Resets EDI.
3397   // Superklass in EAX.  Subklass in EDX.
3398   __ gen_subtype_check( rdx, ok_is_subtype );
3399 
3400   // Come here on failure
3401   __ xorl(rax,rax);
3402   __ jmpb(done);
3403   // Come here on success
3404   __ bind(ok_is_subtype);
3405   __ movl(rax, 1);
3406 
3407   // Collect counts on whether this test sees NULLs a lot or not.
3408   if (ProfileInterpreter) {
3409     __ jmp(done);
3410     __ bind(is_null);
3411     __ profile_null_seen(rcx);
3412   } else {
3413     __ bind(is_null);   // same as 'done'
3414   }
3415   __ bind(done);
3416   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
3417   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
3418 }
3419 
3420 
3421 //----------------------------------------------------------------------------------------------------
3422 // Breakpoints
3423 void TemplateTable::_breakpoint() {
3424 
3425   // Note: We get here even if we are single stepping..
3426   // jbug inists on setting breakpoints at every bytecode
3427   // even if we are in single step mode.
3428 
3429   transition(vtos, vtos);
3430 
3431   // get the unpatched byte code
3432   __ get_method(rcx);
3433   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3434   __ mov(rbx, rax);
3435 
3436   // post the breakpoint event
3437   __ get_method(rcx);
3438   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3439 
3440   // complete the execution of original bytecode
3441   __ dispatch_only_normal(vtos);
3442 }
3443 
3444 
3445 //----------------------------------------------------------------------------------------------------
3446 // Exceptions
3447 
3448 void TemplateTable::athrow() {
3449   transition(atos, vtos);
3450   __ null_check(rax);
3451   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3452 }
3453 
3454 
3455 //----------------------------------------------------------------------------------------------------
3456 // Synchronization
3457 //
3458 // Note: monitorenter & exit are symmetric routines; which is reflected
3459 //       in the assembly code structure as well
3460 //
3461 // Stack layout:
3462 //
3463 // [expressions  ] <--- rsp               = expression stack top
3464 // ..
3465 // [expressions  ]
3466 // [monitor entry] <--- monitor block top = expression stack bot
3467 // ..
3468 // [monitor entry]
3469 // [frame data   ] <--- monitor block bot
3470 // ...
3471 // [saved rbp,    ] <--- rbp,
3472 
3473 
3474 void TemplateTable::monitorenter() {
3475   transition(atos, vtos);
3476 
3477   // check for NULL object
3478   __ null_check(rax);
3479 
3480   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3481   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3482   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3483   Label allocated;
3484 
3485   // initialize entry pointer
3486   __ xorl(rdx, rdx);                             // points to free slot or NULL
3487 
3488   // find a free slot in the monitor block (result in rdx)
3489   { Label entry, loop, exit;
3490     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
3491     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
3492     __ jmpb(entry);
3493 
3494     __ bind(loop);
3495     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
3496 
3497 // TODO - need new func here - kbt
3498     if (VM_Version::supports_cmov()) {
3499       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
3500     } else {
3501       Label L;
3502       __ jccb(Assembler::notEqual, L);
3503       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
3504       __ bind(L);
3505     }
3506     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3507     __ jccb(Assembler::equal, exit);             // if same object then stop searching
3508     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
3509     __ bind(entry);
3510     __ cmpptr(rcx, rbx);                         // check if bottom reached
3511     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3512     __ bind(exit);
3513   }
3514 
3515   __ testptr(rdx, rdx);                          // check if a slot has been found
3516   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
3517 
3518   // allocate one if there's no free slot
3519   { Label entry, loop;
3520     // 1. compute new pointers                   // rsp: old expression stack top
3521     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
3522     __ subptr(rsp, entry_size);                  // move expression stack top
3523     __ subptr(rdx, entry_size);                  // move expression stack bottom
3524     __ mov(rcx, rsp);                            // set start value for copy loop
3525     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
3526     __ jmp(entry);
3527     // 2. move expression stack contents
3528     __ bind(loop);
3529     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
3530     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
3531     __ addptr(rcx, wordSize);                    // advance to next word
3532     __ bind(entry);
3533     __ cmpptr(rcx, rdx);                         // check if bottom reached
3534     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
3535   }
3536 
3537   // call run-time routine
3538   // rdx: points to monitor entry
3539   __ bind(allocated);
3540 
3541   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3542   // The object has already been poped from the stack, so the expression stack looks correct.
3543   __ increment(rsi);
3544 
3545   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
3546   __ lock_object(rdx);
3547 
3548   // check to make sure this monitor doesn't cause stack overflow after locking
3549   __ save_bcp();  // in case of exception
3550   __ generate_stack_overflow_check(0);
3551 
3552   // The bcp has already been incremented. Just need to dispatch to next instruction.
3553   __ dispatch_next(vtos);
3554 }
3555 
3556 
3557 void TemplateTable::monitorexit() {
3558   transition(atos, vtos);
3559 
3560   // check for NULL object
3561   __ null_check(rax);
3562 
3563   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3564   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3565   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3566   Label found;
3567 
3568   // find matching slot
3569   { Label entry, loop;
3570     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
3571     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
3572     __ jmpb(entry);
3573 
3574     __ bind(loop);
3575     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3576     __ jcc(Assembler::equal, found);             // if same object then stop searching
3577     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
3578     __ bind(entry);
3579     __ cmpptr(rdx, rbx);                         // check if bottom reached
3580     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3581   }
3582 
3583   // error handling. Unlocking was not block-structured
3584   Label end;
3585   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3586   __ should_not_reach_here();
3587 
3588   // call run-time routine
3589   // rcx: points to monitor entry
3590   __ bind(found);
3591   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
3592   __ unlock_object(rdx);
3593   __ pop_ptr(rax);                                  // discard object
3594   __ bind(end);
3595 }
3596 
3597 
3598 //----------------------------------------------------------------------------------------------------
3599 // Wide instructions
3600 
3601 void TemplateTable::wide() {
3602   transition(vtos, vtos);
3603   __ load_unsigned_byte(rbx, at_bcp(1));
3604   ExternalAddress wtable((address)Interpreter::_wentry_point);
3605   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3606   // Note: the rsi increment step is part of the individual wide bytecode implementations
3607 }
3608 
3609 
3610 //----------------------------------------------------------------------------------------------------
3611 // Multi arrays
3612 
3613 void TemplateTable::multianewarray() {
3614   transition(vtos, atos);
3615   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3616   // last dim is on top of stack; we want address of first one:
3617   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3618   // the latter wordSize to point to the beginning of the array.
3619   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3620   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
3621   __ load_unsigned_byte(rbx, at_bcp(3));
3622   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
3623 }
3624 
3625 #endif /* !CC_INTERP */