1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/exceptionHandlerTable.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/block.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/divnode.hpp"
  42 #include "opto/escape.hpp"
  43 #include "opto/idealGraphPrinter.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/macro.hpp"
  47 #include "opto/matcher.hpp"
  48 #include "opto/memnode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/node.hpp"
  51 #include "opto/opcodes.hpp"
  52 #include "opto/output.hpp"
  53 #include "opto/parse.hpp"
  54 #include "opto/phaseX.hpp"
  55 #include "opto/rootnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/stringopts.hpp"
  58 #include "opto/type.hpp"
  59 #include "opto/vectornode.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "utilities/copy.hpp"
  65 #ifdef TARGET_ARCH_MODEL_x86_32
  66 # include "adfiles/ad_x86_32.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_MODEL_x86_64
  69 # include "adfiles/ad_x86_64.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_MODEL_sparc
  72 # include "adfiles/ad_sparc.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_zero
  75 # include "adfiles/ad_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_arm
  78 # include "adfiles/ad_arm.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_ppc
  81 # include "adfiles/ad_ppc.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new GrowableArray<CallGenerator*>(60);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 
 320 
 321 // Identify all nodes that are reachable from below, useful.
 322 // Use breadth-first pass that records state in a Unique_Node_List,
 323 // recursive traversal is slower.
 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 325   int estimated_worklist_size = unique();
 326   useful.map( estimated_worklist_size, NULL );  // preallocate space
 327 
 328   // Initialize worklist
 329   if (root() != NULL)     { useful.push(root()); }
 330   // If 'top' is cached, declare it useful to preserve cached node
 331   if( cached_top_node() ) { useful.push(cached_top_node()); }
 332 
 333   // Push all useful nodes onto the list, breadthfirst
 334   for( uint next = 0; next < useful.size(); ++next ) {
 335     assert( next < unique(), "Unique useful nodes < total nodes");
 336     Node *n  = useful.at(next);
 337     uint max = n->len();
 338     for( uint i = 0; i < max; ++i ) {
 339       Node *m = n->in(i);
 340       if( m == NULL ) continue;
 341       useful.push(m);
 342     }
 343   }
 344 }
 345 
 346 // Disconnect all useless nodes by disconnecting those at the boundary.
 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 348   uint next = 0;
 349   while( next < useful.size() ) {
 350     Node *n = useful.at(next++);
 351     // Use raw traversal of out edges since this code removes out edges
 352     int max = n->outcnt();
 353     for (int j = 0; j < max; ++j ) {
 354       Node* child = n->raw_out(j);
 355       if( ! useful.member(child) ) {
 356         assert( !child->is_top() || child != top(),
 357                 "If top is cached in Compile object it is in useful list");
 358         // Only need to remove this out-edge to the useless node
 359         n->raw_del_out(j);
 360         --j;
 361         --max;
 362       }
 363     }
 364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 365       record_for_igvn( n->unique_out() );
 366     }
 367   }
 368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 369 }
 370 
 371 //------------------------------frame_size_in_words-----------------------------
 372 // frame_slots in units of words
 373 int Compile::frame_size_in_words() const {
 374   // shift is 0 in LP32 and 1 in LP64
 375   const int shift = (LogBytesPerWord - LogBytesPerInt);
 376   int words = _frame_slots >> shift;
 377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 378   return words;
 379 }
 380 
 381 // ============================================================================
 382 //------------------------------CompileWrapper---------------------------------
 383 class CompileWrapper : public StackObj {
 384   Compile *const _compile;
 385  public:
 386   CompileWrapper(Compile* compile);
 387 
 388   ~CompileWrapper();
 389 };
 390 
 391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 392   // the Compile* pointer is stored in the current ciEnv:
 393   ciEnv* env = compile->env();
 394   assert(env == ciEnv::current(), "must already be a ciEnv active");
 395   assert(env->compiler_data() == NULL, "compile already active?");
 396   env->set_compiler_data(compile);
 397   assert(compile == Compile::current(), "sanity");
 398 
 399   compile->set_type_dict(NULL);
 400   compile->set_type_hwm(NULL);
 401   compile->set_type_last_size(0);
 402   compile->set_last_tf(NULL, NULL);
 403   compile->set_indexSet_arena(NULL);
 404   compile->set_indexSet_free_block_list(NULL);
 405   compile->init_type_arena();
 406   Type::Initialize(compile);
 407   _compile->set_scratch_buffer_blob(NULL);
 408   _compile->begin_method();
 409 }
 410 CompileWrapper::~CompileWrapper() {
 411   _compile->end_method();
 412   if (_compile->scratch_buffer_blob() != NULL)
 413     BufferBlob::free(_compile->scratch_buffer_blob());
 414   _compile->env()->set_compiler_data(NULL);
 415 }
 416 
 417 
 418 //----------------------------print_compile_messages---------------------------
 419 void Compile::print_compile_messages() {
 420 #ifndef PRODUCT
 421   // Check if recompiling
 422   if (_subsume_loads == false && PrintOpto) {
 423     // Recompiling without allowing machine instructions to subsume loads
 424     tty->print_cr("*********************************************************");
 425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 426     tty->print_cr("*********************************************************");
 427   }
 428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 429     // Recompiling without escape analysis
 430     tty->print_cr("*********************************************************");
 431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 432     tty->print_cr("*********************************************************");
 433   }
 434   if (env()->break_at_compile()) {
 435     // Open the debugger when compiling this method.
 436     tty->print("### Breaking when compiling: ");
 437     method()->print_short_name();
 438     tty->cr();
 439     BREAKPOINT;
 440   }
 441 
 442   if( PrintOpto ) {
 443     if (is_osr_compilation()) {
 444       tty->print("[OSR]%3d", _compile_id);
 445     } else {
 446       tty->print("%3d", _compile_id);
 447     }
 448   }
 449 #endif
 450 }
 451 
 452 
 453 //-----------------------init_scratch_buffer_blob------------------------------
 454 // Construct a temporary BufferBlob and cache it for this compile.
 455 void Compile::init_scratch_buffer_blob(int const_size) {
 456   // If there is already a scratch buffer blob allocated and the
 457   // constant section is big enough, use it.  Otherwise free the
 458   // current and allocate a new one.
 459   BufferBlob* blob = scratch_buffer_blob();
 460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 461     // Use the current blob.
 462   } else {
 463     if (blob != NULL) {
 464       BufferBlob::free(blob);
 465     }
 466 
 467     ResourceMark rm;
 468     _scratch_const_size = const_size;
 469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 470     blob = BufferBlob::create("Compile::scratch_buffer", size);
 471     // Record the buffer blob for next time.
 472     set_scratch_buffer_blob(blob);
 473     // Have we run out of code space?
 474     if (scratch_buffer_blob() == NULL) {
 475       // Let CompilerBroker disable further compilations.
 476       record_failure("Not enough space for scratch buffer in CodeCache");
 477       return;
 478     }
 479   }
 480 
 481   // Initialize the relocation buffers
 482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 483   set_scratch_locs_memory(locs_buf);
 484 }
 485 
 486 
 487 //-----------------------scratch_emit_size-------------------------------------
 488 // Helper function that computes size by emitting code
 489 uint Compile::scratch_emit_size(const Node* n) {
 490   // Start scratch_emit_size section.
 491   set_in_scratch_emit_size(true);
 492 
 493   // Emit into a trash buffer and count bytes emitted.
 494   // This is a pretty expensive way to compute a size,
 495   // but it works well enough if seldom used.
 496   // All common fixed-size instructions are given a size
 497   // method by the AD file.
 498   // Note that the scratch buffer blob and locs memory are
 499   // allocated at the beginning of the compile task, and
 500   // may be shared by several calls to scratch_emit_size.
 501   // The allocation of the scratch buffer blob is particularly
 502   // expensive, since it has to grab the code cache lock.
 503   BufferBlob* blob = this->scratch_buffer_blob();
 504   assert(blob != NULL, "Initialize BufferBlob at start");
 505   assert(blob->size() > MAX_inst_size, "sanity");
 506   relocInfo* locs_buf = scratch_locs_memory();
 507   address blob_begin = blob->content_begin();
 508   address blob_end   = (address)locs_buf;
 509   assert(blob->content_contains(blob_end), "sanity");
 510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 511   buf.initialize_consts_size(_scratch_const_size);
 512   buf.initialize_stubs_size(MAX_stubs_size);
 513   assert(locs_buf != NULL, "sanity");
 514   int lsize = MAX_locs_size / 3;
 515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 518 
 519   // Do the emission.
 520   n->emit(buf, this->regalloc());
 521 
 522   // End scratch_emit_size section.
 523   set_in_scratch_emit_size(false);
 524 
 525   return buf.insts_size();
 526 }
 527 
 528 
 529 // ============================================================================
 530 //------------------------------Compile standard-------------------------------
 531 debug_only( int Compile::_debug_idx = 100000; )
 532 
 533 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 534 // the continuation bci for on stack replacement.
 535 
 536 
 537 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 538                 : Phase(Compiler),
 539                   _env(ci_env),
 540                   _log(ci_env->log()),
 541                   _compile_id(ci_env->compile_id()),
 542                   _save_argument_registers(false),
 543                   _stub_name(NULL),
 544                   _stub_function(NULL),
 545                   _stub_entry_point(NULL),
 546                   _method(target),
 547                   _entry_bci(osr_bci),
 548                   _initial_gvn(NULL),
 549                   _for_igvn(NULL),
 550                   _warm_calls(NULL),
 551                   _subsume_loads(subsume_loads),
 552                   _do_escape_analysis(do_escape_analysis),
 553                   _failure_reason(NULL),
 554                   _code_buffer("Compile::Fill_buffer"),
 555                   _orig_pc_slot(0),
 556                   _orig_pc_slot_offset_in_bytes(0),
 557                   _has_method_handle_invokes(false),
 558                   _mach_constant_base_node(NULL),
 559                   _node_bundling_limit(0),
 560                   _node_bundling_base(NULL),
 561                   _java_calls(0),
 562                   _inner_loops(0),
 563                   _scratch_const_size(-1),
 564                   _in_scratch_emit_size(false),
 565 #ifndef PRODUCT
 566                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 567                   _printer(IdealGraphPrinter::printer()),
 568 #endif
 569                   _congraph(NULL) {
 570   C = this;
 571 
 572   CompileWrapper cw(this);
 573 #ifndef PRODUCT
 574   if (TimeCompiler2) {
 575     tty->print(" ");
 576     target->holder()->name()->print();
 577     tty->print(".");
 578     target->print_short_name();
 579     tty->print("  ");
 580   }
 581   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 582   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 583   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 584   if (!print_opto_assembly) {
 585     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 586     if (print_assembly && !Disassembler::can_decode()) {
 587       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 588       print_opto_assembly = true;
 589     }
 590   }
 591   set_print_assembly(print_opto_assembly);
 592   set_parsed_irreducible_loop(false);
 593 #endif
 594 
 595   if (ProfileTraps) {
 596     // Make sure the method being compiled gets its own MDO,
 597     // so we can at least track the decompile_count().
 598     method()->ensure_method_data();
 599   }
 600 
 601   Init(::AliasLevel);
 602 
 603 
 604   print_compile_messages();
 605 
 606   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 607     _ilt = InlineTree::build_inline_tree_root();
 608   else
 609     _ilt = NULL;
 610 
 611   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 612   assert(num_alias_types() >= AliasIdxRaw, "");
 613 
 614 #define MINIMUM_NODE_HASH  1023
 615   // Node list that Iterative GVN will start with
 616   Unique_Node_List for_igvn(comp_arena());
 617   set_for_igvn(&for_igvn);
 618 
 619   // GVN that will be run immediately on new nodes
 620   uint estimated_size = method()->code_size()*4+64;
 621   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 622   PhaseGVN gvn(node_arena(), estimated_size);
 623   set_initial_gvn(&gvn);
 624 
 625   { // Scope for timing the parser
 626     TracePhase t3("parse", &_t_parser, true);
 627 
 628     // Put top into the hash table ASAP.
 629     initial_gvn()->transform_no_reclaim(top());
 630 
 631     // Set up tf(), start(), and find a CallGenerator.
 632     CallGenerator* cg;
 633     if (is_osr_compilation()) {
 634       const TypeTuple *domain = StartOSRNode::osr_domain();
 635       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 636       init_tf(TypeFunc::make(domain, range));
 637       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 638       initial_gvn()->set_type_bottom(s);
 639       init_start(s);
 640       cg = CallGenerator::for_osr(method(), entry_bci());
 641     } else {
 642       // Normal case.
 643       init_tf(TypeFunc::make(method()));
 644       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 645       initial_gvn()->set_type_bottom(s);
 646       init_start(s);
 647       float past_uses = method()->interpreter_invocation_count();
 648       float expected_uses = past_uses;
 649       cg = CallGenerator::for_inline(method(), expected_uses);
 650     }
 651     if (failing())  return;
 652     if (cg == NULL) {
 653       record_method_not_compilable_all_tiers("cannot parse method");
 654       return;
 655     }
 656     JVMState* jvms = build_start_state(start(), tf());
 657     if ((jvms = cg->generate(jvms)) == NULL) {
 658       record_method_not_compilable("method parse failed");
 659       return;
 660     }
 661     GraphKit kit(jvms);
 662 
 663     if (!kit.stopped()) {
 664       // Accept return values, and transfer control we know not where.
 665       // This is done by a special, unique ReturnNode bound to root.
 666       return_values(kit.jvms());
 667     }
 668 
 669     if (kit.has_exceptions()) {
 670       // Any exceptions that escape from this call must be rethrown
 671       // to whatever caller is dynamically above us on the stack.
 672       // This is done by a special, unique RethrowNode bound to root.
 673       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 674     }
 675 
 676     if (!failing() && has_stringbuilder()) {
 677       {
 678         // remove useless nodes to make the usage analysis simpler
 679         ResourceMark rm;
 680         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 681       }
 682 
 683       {
 684         ResourceMark rm;
 685         print_method("Before StringOpts", 3);
 686         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 687         print_method("After StringOpts", 3);
 688       }
 689 
 690       // now inline anything that we skipped the first time around
 691       while (_late_inlines.length() > 0) {
 692         CallGenerator* cg = _late_inlines.pop();
 693         cg->do_late_inline();
 694       }
 695     }
 696     assert(_late_inlines.length() == 0, "should have been processed");
 697 
 698     print_method("Before RemoveUseless", 3);
 699 
 700     // Remove clutter produced by parsing.
 701     if (!failing()) {
 702       ResourceMark rm;
 703       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 704     }
 705   }
 706 
 707   // Note:  Large methods are capped off in do_one_bytecode().
 708   if (failing())  return;
 709 
 710   // After parsing, node notes are no longer automagic.
 711   // They must be propagated by register_new_node_with_optimizer(),
 712   // clone(), or the like.
 713   set_default_node_notes(NULL);
 714 
 715   for (;;) {
 716     int successes = Inline_Warm();
 717     if (failing())  return;
 718     if (successes == 0)  break;
 719   }
 720 
 721   // Drain the list.
 722   Finish_Warm();
 723 #ifndef PRODUCT
 724   if (_printer) {
 725     _printer->print_inlining(this);
 726   }
 727 #endif
 728 
 729   if (failing())  return;
 730   NOT_PRODUCT( verify_graph_edges(); )
 731 
 732   // Now optimize
 733   Optimize();
 734   if (failing())  return;
 735   NOT_PRODUCT( verify_graph_edges(); )
 736 
 737 #ifndef PRODUCT
 738   if (PrintIdeal) {
 739     ttyLocker ttyl;  // keep the following output all in one block
 740     // This output goes directly to the tty, not the compiler log.
 741     // To enable tools to match it up with the compilation activity,
 742     // be sure to tag this tty output with the compile ID.
 743     if (xtty != NULL) {
 744       xtty->head("ideal compile_id='%d'%s", compile_id(),
 745                  is_osr_compilation()    ? " compile_kind='osr'" :
 746                  "");
 747     }
 748     root()->dump(9999);
 749     if (xtty != NULL) {
 750       xtty->tail("ideal");
 751     }
 752   }
 753 #endif
 754 
 755   // Now that we know the size of all the monitors we can add a fixed slot
 756   // for the original deopt pc.
 757 
 758   _orig_pc_slot =  fixed_slots();
 759   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 760   set_fixed_slots(next_slot);
 761 
 762   // Now generate code
 763   Code_Gen();
 764   if (failing())  return;
 765 
 766   // Check if we want to skip execution of all compiled code.
 767   {
 768 #ifndef PRODUCT
 769     if (OptoNoExecute) {
 770       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 771       return;
 772     }
 773     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 774 #endif
 775 
 776     if (is_osr_compilation()) {
 777       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 778       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 779     } else {
 780       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 781       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 782     }
 783 
 784     env()->register_method(_method, _entry_bci,
 785                            &_code_offsets,
 786                            _orig_pc_slot_offset_in_bytes,
 787                            code_buffer(),
 788                            frame_size_in_words(), _oop_map_set,
 789                            &_handler_table, &_inc_table,
 790                            compiler,
 791                            env()->comp_level(),
 792                            true, /*has_debug_info*/
 793                            has_unsafe_access()
 794                            );
 795   }
 796 }
 797 
 798 //------------------------------Compile----------------------------------------
 799 // Compile a runtime stub
 800 Compile::Compile( ciEnv* ci_env,
 801                   TypeFunc_generator generator,
 802                   address stub_function,
 803                   const char *stub_name,
 804                   int is_fancy_jump,
 805                   bool pass_tls,
 806                   bool save_arg_registers,
 807                   bool return_pc )
 808   : Phase(Compiler),
 809     _env(ci_env),
 810     _log(ci_env->log()),
 811     _compile_id(-1),
 812     _save_argument_registers(save_arg_registers),
 813     _method(NULL),
 814     _stub_name(stub_name),
 815     _stub_function(stub_function),
 816     _stub_entry_point(NULL),
 817     _entry_bci(InvocationEntryBci),
 818     _initial_gvn(NULL),
 819     _for_igvn(NULL),
 820     _warm_calls(NULL),
 821     _orig_pc_slot(0),
 822     _orig_pc_slot_offset_in_bytes(0),
 823     _subsume_loads(true),
 824     _do_escape_analysis(false),
 825     _failure_reason(NULL),
 826     _code_buffer("Compile::Fill_buffer"),
 827     _has_method_handle_invokes(false),
 828     _mach_constant_base_node(NULL),
 829     _node_bundling_limit(0),
 830     _node_bundling_base(NULL),
 831     _java_calls(0),
 832     _inner_loops(0),
 833 #ifndef PRODUCT
 834     _trace_opto_output(TraceOptoOutput),
 835     _printer(NULL),
 836 #endif
 837     _congraph(NULL) {
 838   C = this;
 839 
 840 #ifndef PRODUCT
 841   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 842   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 843   set_print_assembly(PrintFrameConverterAssembly);
 844   set_parsed_irreducible_loop(false);
 845 #endif
 846   CompileWrapper cw(this);
 847   Init(/*AliasLevel=*/ 0);
 848   init_tf((*generator)());
 849 
 850   {
 851     // The following is a dummy for the sake of GraphKit::gen_stub
 852     Unique_Node_List for_igvn(comp_arena());
 853     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 854     PhaseGVN gvn(Thread::current()->resource_area(),255);
 855     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 856     gvn.transform_no_reclaim(top());
 857 
 858     GraphKit kit;
 859     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 860   }
 861 
 862   NOT_PRODUCT( verify_graph_edges(); )
 863   Code_Gen();
 864   if (failing())  return;
 865 
 866 
 867   // Entry point will be accessed using compile->stub_entry_point();
 868   if (code_buffer() == NULL) {
 869     Matcher::soft_match_failure();
 870   } else {
 871     if (PrintAssembly && (WizardMode || Verbose))
 872       tty->print_cr("### Stub::%s", stub_name);
 873 
 874     if (!failing()) {
 875       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 876 
 877       // Make the NMethod
 878       // For now we mark the frame as never safe for profile stackwalking
 879       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 880                                                       code_buffer(),
 881                                                       CodeOffsets::frame_never_safe,
 882                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 883                                                       frame_size_in_words(),
 884                                                       _oop_map_set,
 885                                                       save_arg_registers);
 886       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 887 
 888       _stub_entry_point = rs->entry_point();
 889     }
 890   }
 891 }
 892 
 893 #ifndef PRODUCT
 894 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 895   if(PrintOpto && Verbose) {
 896     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 897   }
 898 }
 899 #endif
 900 
 901 void Compile::print_codes() {
 902 }
 903 
 904 //------------------------------Init-------------------------------------------
 905 // Prepare for a single compilation
 906 void Compile::Init(int aliaslevel) {
 907   _unique  = 0;
 908   _regalloc = NULL;
 909 
 910   _tf      = NULL;  // filled in later
 911   _top     = NULL;  // cached later
 912   _matcher = NULL;  // filled in later
 913   _cfg     = NULL;  // filled in later
 914 
 915   set_24_bit_selection_and_mode(Use24BitFP, false);
 916 
 917   _node_note_array = NULL;
 918   _default_node_notes = NULL;
 919 
 920   _immutable_memory = NULL; // filled in at first inquiry
 921 
 922   // Globally visible Nodes
 923   // First set TOP to NULL to give safe behavior during creation of RootNode
 924   set_cached_top_node(NULL);
 925   set_root(new (this, 3) RootNode());
 926   // Now that you have a Root to point to, create the real TOP
 927   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 928   set_recent_alloc(NULL, NULL);
 929 
 930   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 931   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 932   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 933   env()->set_dependencies(new Dependencies(env()));
 934 
 935   _fixed_slots = 0;
 936   set_has_split_ifs(false);
 937   set_has_loops(has_method() && method()->has_loops()); // first approximation
 938   set_has_stringbuilder(false);
 939   _trap_can_recompile = false;  // no traps emitted yet
 940   _major_progress = true; // start out assuming good things will happen
 941   set_has_unsafe_access(false);
 942   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 943   set_decompile_count(0);
 944 
 945   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 946   set_num_loop_opts(LoopOptsCount);
 947   set_do_inlining(Inline);
 948   set_max_inline_size(MaxInlineSize);
 949   set_freq_inline_size(FreqInlineSize);
 950   set_do_scheduling(OptoScheduling);
 951   set_do_count_invocations(false);
 952   set_do_method_data_update(false);
 953 
 954   if (debug_info()->recording_non_safepoints()) {
 955     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 956                         (comp_arena(), 8, 0, NULL));
 957     set_default_node_notes(Node_Notes::make(this));
 958   }
 959 
 960   // // -- Initialize types before each compile --
 961   // // Update cached type information
 962   // if( _method && _method->constants() )
 963   //   Type::update_loaded_types(_method, _method->constants());
 964 
 965   // Init alias_type map.
 966   if (!_do_escape_analysis && aliaslevel == 3)
 967     aliaslevel = 2;  // No unique types without escape analysis
 968   _AliasLevel = aliaslevel;
 969   const int grow_ats = 16;
 970   _max_alias_types = grow_ats;
 971   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 972   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 973   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 974   {
 975     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 976   }
 977   // Initialize the first few types.
 978   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 979   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 980   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 981   _num_alias_types = AliasIdxRaw+1;
 982   // Zero out the alias type cache.
 983   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 984   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 985   probe_alias_cache(NULL)->_index = AliasIdxTop;
 986 
 987   _intrinsics = NULL;
 988   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 989   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 990   register_library_intrinsics();
 991 }
 992 
 993 //---------------------------init_start----------------------------------------
 994 // Install the StartNode on this compile object.
 995 void Compile::init_start(StartNode* s) {
 996   if (failing())
 997     return; // already failing
 998   assert(s == start(), "");
 999 }
1000 
1001 StartNode* Compile::start() const {
1002   assert(!failing(), "");
1003   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1004     Node* start = root()->fast_out(i);
1005     if( start->is_Start() )
1006       return start->as_Start();
1007   }
1008   ShouldNotReachHere();
1009   return NULL;
1010 }
1011 
1012 //-------------------------------immutable_memory-------------------------------------
1013 // Access immutable memory
1014 Node* Compile::immutable_memory() {
1015   if (_immutable_memory != NULL) {
1016     return _immutable_memory;
1017   }
1018   StartNode* s = start();
1019   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1020     Node *p = s->fast_out(i);
1021     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1022       _immutable_memory = p;
1023       return _immutable_memory;
1024     }
1025   }
1026   ShouldNotReachHere();
1027   return NULL;
1028 }
1029 
1030 //----------------------set_cached_top_node------------------------------------
1031 // Install the cached top node, and make sure Node::is_top works correctly.
1032 void Compile::set_cached_top_node(Node* tn) {
1033   if (tn != NULL)  verify_top(tn);
1034   Node* old_top = _top;
1035   _top = tn;
1036   // Calling Node::setup_is_top allows the nodes the chance to adjust
1037   // their _out arrays.
1038   if (_top != NULL)     _top->setup_is_top();
1039   if (old_top != NULL)  old_top->setup_is_top();
1040   assert(_top == NULL || top()->is_top(), "");
1041 }
1042 
1043 #ifndef PRODUCT
1044 void Compile::verify_top(Node* tn) const {
1045   if (tn != NULL) {
1046     assert(tn->is_Con(), "top node must be a constant");
1047     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1048     assert(tn->in(0) != NULL, "must have live top node");
1049   }
1050 }
1051 #endif
1052 
1053 
1054 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1055 
1056 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1057   guarantee(arr != NULL, "");
1058   int num_blocks = arr->length();
1059   if (grow_by < num_blocks)  grow_by = num_blocks;
1060   int num_notes = grow_by * _node_notes_block_size;
1061   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1062   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1063   while (num_notes > 0) {
1064     arr->append(notes);
1065     notes     += _node_notes_block_size;
1066     num_notes -= _node_notes_block_size;
1067   }
1068   assert(num_notes == 0, "exact multiple, please");
1069 }
1070 
1071 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1072   if (source == NULL || dest == NULL)  return false;
1073 
1074   if (dest->is_Con())
1075     return false;               // Do not push debug info onto constants.
1076 
1077 #ifdef ASSERT
1078   // Leave a bread crumb trail pointing to the original node:
1079   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1080     dest->set_debug_orig(source);
1081   }
1082 #endif
1083 
1084   if (node_note_array() == NULL)
1085     return false;               // Not collecting any notes now.
1086 
1087   // This is a copy onto a pre-existing node, which may already have notes.
1088   // If both nodes have notes, do not overwrite any pre-existing notes.
1089   Node_Notes* source_notes = node_notes_at(source->_idx);
1090   if (source_notes == NULL || source_notes->is_clear())  return false;
1091   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1092   if (dest_notes == NULL || dest_notes->is_clear()) {
1093     return set_node_notes_at(dest->_idx, source_notes);
1094   }
1095 
1096   Node_Notes merged_notes = (*source_notes);
1097   // The order of operations here ensures that dest notes will win...
1098   merged_notes.update_from(dest_notes);
1099   return set_node_notes_at(dest->_idx, &merged_notes);
1100 }
1101 
1102 
1103 //--------------------------allow_range_check_smearing-------------------------
1104 // Gating condition for coalescing similar range checks.
1105 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1106 // single covering check that is at least as strong as any of them.
1107 // If the optimization succeeds, the simplified (strengthened) range check
1108 // will always succeed.  If it fails, we will deopt, and then give up
1109 // on the optimization.
1110 bool Compile::allow_range_check_smearing() const {
1111   // If this method has already thrown a range-check,
1112   // assume it was because we already tried range smearing
1113   // and it failed.
1114   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1115   return !already_trapped;
1116 }
1117 
1118 
1119 //------------------------------flatten_alias_type-----------------------------
1120 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1121   int offset = tj->offset();
1122   TypePtr::PTR ptr = tj->ptr();
1123 
1124   // Known instance (scalarizable allocation) alias only with itself.
1125   bool is_known_inst = tj->isa_oopptr() != NULL &&
1126                        tj->is_oopptr()->is_known_instance();
1127 
1128   // Process weird unsafe references.
1129   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1130     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1131     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1132     tj = TypeOopPtr::BOTTOM;
1133     ptr = tj->ptr();
1134     offset = tj->offset();
1135   }
1136 
1137   // Array pointers need some flattening
1138   const TypeAryPtr *ta = tj->isa_aryptr();
1139   if( ta && is_known_inst ) {
1140     if ( offset != Type::OffsetBot &&
1141          offset > arrayOopDesc::length_offset_in_bytes() ) {
1142       offset = Type::OffsetBot; // Flatten constant access into array body only
1143       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1144     }
1145   } else if( ta && _AliasLevel >= 2 ) {
1146     // For arrays indexed by constant indices, we flatten the alias
1147     // space to include all of the array body.  Only the header, klass
1148     // and array length can be accessed un-aliased.
1149     if( offset != Type::OffsetBot ) {
1150       if( ta->const_oop() ) { // methodDataOop or methodOop
1151         offset = Type::OffsetBot;   // Flatten constant access into array body
1152         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1153       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1154         // range is OK as-is.
1155         tj = ta = TypeAryPtr::RANGE;
1156       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1157         tj = TypeInstPtr::KLASS; // all klass loads look alike
1158         ta = TypeAryPtr::RANGE; // generic ignored junk
1159         ptr = TypePtr::BotPTR;
1160       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1161         tj = TypeInstPtr::MARK;
1162         ta = TypeAryPtr::RANGE; // generic ignored junk
1163         ptr = TypePtr::BotPTR;
1164       } else {                  // Random constant offset into array body
1165         offset = Type::OffsetBot;   // Flatten constant access into array body
1166         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1167       }
1168     }
1169     // Arrays of fixed size alias with arrays of unknown size.
1170     if (ta->size() != TypeInt::POS) {
1171       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1172       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1173     }
1174     // Arrays of known objects become arrays of unknown objects.
1175     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1176       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1177       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1178     }
1179     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1180       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1181       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1182     }
1183     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1184     // cannot be distinguished by bytecode alone.
1185     if (ta->elem() == TypeInt::BOOL) {
1186       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1187       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1188       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1189     }
1190     // During the 2nd round of IterGVN, NotNull castings are removed.
1191     // Make sure the Bottom and NotNull variants alias the same.
1192     // Also, make sure exact and non-exact variants alias the same.
1193     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1194       if (ta->const_oop()) {
1195         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1196       } else {
1197         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1198       }
1199     }
1200   }
1201 
1202   // Oop pointers need some flattening
1203   const TypeInstPtr *to = tj->isa_instptr();
1204   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1205     ciInstanceKlass *k = to->klass()->as_instance_klass();
1206     if( ptr == TypePtr::Constant ) {
1207       if (to->klass() != ciEnv::current()->Class_klass() ||
1208           offset < k->size_helper() * wordSize) {
1209         // No constant oop pointers (such as Strings); they alias with
1210         // unknown strings.
1211         assert(!is_known_inst, "not scalarizable allocation");
1212         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1213       }
1214     } else if( is_known_inst ) {
1215       tj = to; // Keep NotNull and klass_is_exact for instance type
1216     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1217       // During the 2nd round of IterGVN, NotNull castings are removed.
1218       // Make sure the Bottom and NotNull variants alias the same.
1219       // Also, make sure exact and non-exact variants alias the same.
1220       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1221     }
1222     // Canonicalize the holder of this field
1223     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1224       // First handle header references such as a LoadKlassNode, even if the
1225       // object's klass is unloaded at compile time (4965979).
1226       if (!is_known_inst) { // Do it only for non-instance types
1227         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1228       }
1229     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1230       // Static fields are in the space above the normal instance
1231       // fields in the java.lang.Class instance.
1232       if (to->klass() != ciEnv::current()->Class_klass()) {
1233         to = NULL;
1234         tj = TypeOopPtr::BOTTOM;
1235         offset = tj->offset();
1236       }
1237     } else {
1238       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1239       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1240         if( is_known_inst ) {
1241           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1242         } else {
1243           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1244         }
1245       }
1246     }
1247   }
1248 
1249   // Klass pointers to object array klasses need some flattening
1250   const TypeKlassPtr *tk = tj->isa_klassptr();
1251   if( tk ) {
1252     // If we are referencing a field within a Klass, we need
1253     // to assume the worst case of an Object.  Both exact and
1254     // inexact types must flatten to the same alias class.
1255     // Since the flattened result for a klass is defined to be
1256     // precisely java.lang.Object, use a constant ptr.
1257     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1258 
1259       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1260                                    TypeKlassPtr::OBJECT->klass(),
1261                                    offset);
1262     }
1263 
1264     ciKlass* klass = tk->klass();
1265     if( klass->is_obj_array_klass() ) {
1266       ciKlass* k = TypeAryPtr::OOPS->klass();
1267       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1268         k = TypeInstPtr::BOTTOM->klass();
1269       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1270     }
1271 
1272     // Check for precise loads from the primary supertype array and force them
1273     // to the supertype cache alias index.  Check for generic array loads from
1274     // the primary supertype array and also force them to the supertype cache
1275     // alias index.  Since the same load can reach both, we need to merge
1276     // these 2 disparate memories into the same alias class.  Since the
1277     // primary supertype array is read-only, there's no chance of confusion
1278     // where we bypass an array load and an array store.
1279     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1280     if( offset == Type::OffsetBot ||
1281         off2 < Klass::primary_super_limit()*wordSize ) {
1282       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1283       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1284     }
1285   }
1286 
1287   // Flatten all Raw pointers together.
1288   if (tj->base() == Type::RawPtr)
1289     tj = TypeRawPtr::BOTTOM;
1290 
1291   if (tj->base() == Type::AnyPtr)
1292     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1293 
1294   // Flatten all to bottom for now
1295   switch( _AliasLevel ) {
1296   case 0:
1297     tj = TypePtr::BOTTOM;
1298     break;
1299   case 1:                       // Flatten to: oop, static, field or array
1300     switch (tj->base()) {
1301     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1302     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1303     case Type::AryPtr:   // do not distinguish arrays at all
1304     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1305     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1306     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1307     default: ShouldNotReachHere();
1308     }
1309     break;
1310   case 2:                       // No collapsing at level 2; keep all splits
1311   case 3:                       // No collapsing at level 3; keep all splits
1312     break;
1313   default:
1314     Unimplemented();
1315   }
1316 
1317   offset = tj->offset();
1318   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1319 
1320   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1321           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1322           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1323           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1324           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1325           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1326           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1327           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1328   assert( tj->ptr() != TypePtr::TopPTR &&
1329           tj->ptr() != TypePtr::AnyNull &&
1330           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1331 //    assert( tj->ptr() != TypePtr::Constant ||
1332 //            tj->base() == Type::RawPtr ||
1333 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1334 
1335   return tj;
1336 }
1337 
1338 void Compile::AliasType::Init(int i, const TypePtr* at) {
1339   _index = i;
1340   _adr_type = at;
1341   _field = NULL;
1342   _is_rewritable = true; // default
1343   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1344   if (atoop != NULL && atoop->is_known_instance()) {
1345     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1346     _general_index = Compile::current()->get_alias_index(gt);
1347   } else {
1348     _general_index = 0;
1349   }
1350 }
1351 
1352 //---------------------------------print_on------------------------------------
1353 #ifndef PRODUCT
1354 void Compile::AliasType::print_on(outputStream* st) {
1355   if (index() < 10)
1356         st->print("@ <%d> ", index());
1357   else  st->print("@ <%d>",  index());
1358   st->print(is_rewritable() ? "   " : " RO");
1359   int offset = adr_type()->offset();
1360   if (offset == Type::OffsetBot)
1361         st->print(" +any");
1362   else  st->print(" +%-3d", offset);
1363   st->print(" in ");
1364   adr_type()->dump_on(st);
1365   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1366   if (field() != NULL && tjp) {
1367     if (tjp->klass()  != field()->holder() ||
1368         tjp->offset() != field()->offset_in_bytes()) {
1369       st->print(" != ");
1370       field()->print();
1371       st->print(" ***");
1372     }
1373   }
1374 }
1375 
1376 void print_alias_types() {
1377   Compile* C = Compile::current();
1378   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1379   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1380     C->alias_type(idx)->print_on(tty);
1381     tty->cr();
1382   }
1383 }
1384 #endif
1385 
1386 
1387 //----------------------------probe_alias_cache--------------------------------
1388 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1389   intptr_t key = (intptr_t) adr_type;
1390   key ^= key >> logAliasCacheSize;
1391   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1392 }
1393 
1394 
1395 //-----------------------------grow_alias_types--------------------------------
1396 void Compile::grow_alias_types() {
1397   const int old_ats  = _max_alias_types; // how many before?
1398   const int new_ats  = old_ats;          // how many more?
1399   const int grow_ats = old_ats+new_ats;  // how many now?
1400   _max_alias_types = grow_ats;
1401   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1402   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1403   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1404   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1405 }
1406 
1407 
1408 //--------------------------------find_alias_type------------------------------
1409 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1410   if (_AliasLevel == 0)
1411     return alias_type(AliasIdxBot);
1412 
1413   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1414   if (ace->_adr_type == adr_type) {
1415     return alias_type(ace->_index);
1416   }
1417 
1418   // Handle special cases.
1419   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1420   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1421 
1422   // Do it the slow way.
1423   const TypePtr* flat = flatten_alias_type(adr_type);
1424 
1425 #ifdef ASSERT
1426   assert(flat == flatten_alias_type(flat), "idempotent");
1427   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1428   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1429     const TypeOopPtr* foop = flat->is_oopptr();
1430     // Scalarizable allocations have exact klass always.
1431     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1432     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1433     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1434   }
1435   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1436 #endif
1437 
1438   int idx = AliasIdxTop;
1439   for (int i = 0; i < num_alias_types(); i++) {
1440     if (alias_type(i)->adr_type() == flat) {
1441       idx = i;
1442       break;
1443     }
1444   }
1445 
1446   if (idx == AliasIdxTop) {
1447     if (no_create)  return NULL;
1448     // Grow the array if necessary.
1449     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1450     // Add a new alias type.
1451     idx = _num_alias_types++;
1452     _alias_types[idx]->Init(idx, flat);
1453     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1454     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1455     if (flat->isa_instptr()) {
1456       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1457           && flat->is_instptr()->klass() == env()->Class_klass())
1458         alias_type(idx)->set_rewritable(false);
1459     }
1460     if (flat->isa_klassptr()) {
1461       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1462         alias_type(idx)->set_rewritable(false);
1463       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1464         alias_type(idx)->set_rewritable(false);
1465       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1466         alias_type(idx)->set_rewritable(false);
1467       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1468         alias_type(idx)->set_rewritable(false);
1469     }
1470     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1471     // but the base pointer type is not distinctive enough to identify
1472     // references into JavaThread.)
1473 
1474     // Check for final fields.
1475     const TypeInstPtr* tinst = flat->isa_instptr();
1476     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1477       ciField* field;
1478       if (tinst->const_oop() != NULL &&
1479           tinst->klass() == ciEnv::current()->Class_klass() &&
1480           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1481         // static field
1482         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1483         field = k->get_field_by_offset(tinst->offset(), true);
1484       } else {
1485         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1486         field = k->get_field_by_offset(tinst->offset(), false);
1487       }
1488       assert(field == NULL ||
1489              original_field == NULL ||
1490              (field->holder() == original_field->holder() &&
1491               field->offset() == original_field->offset() &&
1492               field->is_static() == original_field->is_static()), "wrong field?");
1493       // Set field() and is_rewritable() attributes.
1494       if (field != NULL)  alias_type(idx)->set_field(field);
1495     }
1496   }
1497 
1498   // Fill the cache for next time.
1499   ace->_adr_type = adr_type;
1500   ace->_index    = idx;
1501   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1502 
1503   // Might as well try to fill the cache for the flattened version, too.
1504   AliasCacheEntry* face = probe_alias_cache(flat);
1505   if (face->_adr_type == NULL) {
1506     face->_adr_type = flat;
1507     face->_index    = idx;
1508     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1509   }
1510 
1511   return alias_type(idx);
1512 }
1513 
1514 
1515 Compile::AliasType* Compile::alias_type(ciField* field) {
1516   const TypeOopPtr* t;
1517   if (field->is_static())
1518     t = TypeInstPtr::make(field->holder()->java_mirror());
1519   else
1520     t = TypeOopPtr::make_from_klass_raw(field->holder());
1521   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1522   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1523   return atp;
1524 }
1525 
1526 
1527 //------------------------------have_alias_type--------------------------------
1528 bool Compile::have_alias_type(const TypePtr* adr_type) {
1529   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1530   if (ace->_adr_type == adr_type) {
1531     return true;
1532   }
1533 
1534   // Handle special cases.
1535   if (adr_type == NULL)             return true;
1536   if (adr_type == TypePtr::BOTTOM)  return true;
1537 
1538   return find_alias_type(adr_type, true, NULL) != NULL;
1539 }
1540 
1541 //-----------------------------must_alias--------------------------------------
1542 // True if all values of the given address type are in the given alias category.
1543 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1544   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1545   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1546   if (alias_idx == AliasIdxTop)         return false; // the empty category
1547   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1548 
1549   // the only remaining possible overlap is identity
1550   int adr_idx = get_alias_index(adr_type);
1551   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1552   assert(adr_idx == alias_idx ||
1553          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1554           && adr_type                       != TypeOopPtr::BOTTOM),
1555          "should not be testing for overlap with an unsafe pointer");
1556   return adr_idx == alias_idx;
1557 }
1558 
1559 //------------------------------can_alias--------------------------------------
1560 // True if any values of the given address type are in the given alias category.
1561 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1562   if (alias_idx == AliasIdxTop)         return false; // the empty category
1563   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1564   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1565   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1566 
1567   // the only remaining possible overlap is identity
1568   int adr_idx = get_alias_index(adr_type);
1569   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1570   return adr_idx == alias_idx;
1571 }
1572 
1573 
1574 
1575 //---------------------------pop_warm_call-------------------------------------
1576 WarmCallInfo* Compile::pop_warm_call() {
1577   WarmCallInfo* wci = _warm_calls;
1578   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1579   return wci;
1580 }
1581 
1582 //----------------------------Inline_Warm--------------------------------------
1583 int Compile::Inline_Warm() {
1584   // If there is room, try to inline some more warm call sites.
1585   // %%% Do a graph index compaction pass when we think we're out of space?
1586   if (!InlineWarmCalls)  return 0;
1587 
1588   int calls_made_hot = 0;
1589   int room_to_grow   = NodeCountInliningCutoff - unique();
1590   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1591   int amount_grown   = 0;
1592   WarmCallInfo* call;
1593   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1594     int est_size = (int)call->size();
1595     if (est_size > (room_to_grow - amount_grown)) {
1596       // This one won't fit anyway.  Get rid of it.
1597       call->make_cold();
1598       continue;
1599     }
1600     call->make_hot();
1601     calls_made_hot++;
1602     amount_grown   += est_size;
1603     amount_to_grow -= est_size;
1604   }
1605 
1606   if (calls_made_hot > 0)  set_major_progress();
1607   return calls_made_hot;
1608 }
1609 
1610 
1611 //----------------------------Finish_Warm--------------------------------------
1612 void Compile::Finish_Warm() {
1613   if (!InlineWarmCalls)  return;
1614   if (failing())  return;
1615   if (warm_calls() == NULL)  return;
1616 
1617   // Clean up loose ends, if we are out of space for inlining.
1618   WarmCallInfo* call;
1619   while ((call = pop_warm_call()) != NULL) {
1620     call->make_cold();
1621   }
1622 }
1623 
1624 //---------------------cleanup_loop_predicates-----------------------
1625 // Remove the opaque nodes that protect the predicates so that all unused
1626 // checks and uncommon_traps will be eliminated from the ideal graph
1627 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1628   if (predicate_count()==0) return;
1629   for (int i = predicate_count(); i > 0; i--) {
1630     Node * n = predicate_opaque1_node(i-1);
1631     assert(n->Opcode() == Op_Opaque1, "must be");
1632     igvn.replace_node(n, n->in(1));
1633   }
1634   assert(predicate_count()==0, "should be clean!");
1635   igvn.optimize();
1636 }
1637 
1638 //------------------------------Optimize---------------------------------------
1639 // Given a graph, optimize it.
1640 void Compile::Optimize() {
1641   TracePhase t1("optimizer", &_t_optimizer, true);
1642 
1643 #ifndef PRODUCT
1644   if (env()->break_at_compile()) {
1645     BREAKPOINT;
1646   }
1647 
1648 #endif
1649 
1650   ResourceMark rm;
1651   int          loop_opts_cnt;
1652 
1653   NOT_PRODUCT( verify_graph_edges(); )
1654 
1655   print_method("After Parsing");
1656 
1657  {
1658   // Iterative Global Value Numbering, including ideal transforms
1659   // Initialize IterGVN with types and values from parse-time GVN
1660   PhaseIterGVN igvn(initial_gvn());
1661   {
1662     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1663     igvn.optimize();
1664   }
1665 
1666   print_method("Iter GVN 1", 2);
1667 
1668   if (failing())  return;
1669 
1670   // Perform escape analysis
1671   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1672     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1673     ConnectionGraph::do_analysis(this, &igvn);
1674 
1675     if (failing())  return;
1676 
1677     igvn.optimize();
1678     print_method("Iter GVN 3", 2);
1679 
1680     if (failing())  return;
1681 
1682   }
1683 
1684   // Loop transforms on the ideal graph.  Range Check Elimination,
1685   // peeling, unrolling, etc.
1686 
1687   // Set loop opts counter
1688   loop_opts_cnt = num_loop_opts();
1689   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1690     {
1691       TracePhase t2("idealLoop", &_t_idealLoop, true);
1692       PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1693       loop_opts_cnt--;
1694       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1695       if (failing())  return;
1696     }
1697     // Loop opts pass if partial peeling occurred in previous pass
1698     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1699       TracePhase t3("idealLoop", &_t_idealLoop, true);
1700       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1701       loop_opts_cnt--;
1702       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1703       if (failing())  return;
1704     }
1705     // Loop opts pass for loop-unrolling before CCP
1706     if(major_progress() && (loop_opts_cnt > 0)) {
1707       TracePhase t4("idealLoop", &_t_idealLoop, true);
1708       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1709       loop_opts_cnt--;
1710       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1711     }
1712     if (!failing()) {
1713       // Verify that last round of loop opts produced a valid graph
1714       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1715       PhaseIdealLoop::verify(igvn);
1716     }
1717   }
1718   if (failing())  return;
1719 
1720   // Conditional Constant Propagation;
1721   PhaseCCP ccp( &igvn );
1722   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1723   {
1724     TracePhase t2("ccp", &_t_ccp, true);
1725     ccp.do_transform();
1726   }
1727   print_method("PhaseCPP 1", 2);
1728 
1729   assert( true, "Break here to ccp.dump_old2new_map()");
1730 
1731   // Iterative Global Value Numbering, including ideal transforms
1732   {
1733     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1734     igvn = ccp;
1735     igvn.optimize();
1736   }
1737 
1738   print_method("Iter GVN 2", 2);
1739 
1740   if (failing())  return;
1741 
1742   // Loop transforms on the ideal graph.  Range Check Elimination,
1743   // peeling, unrolling, etc.
1744   if(loop_opts_cnt > 0) {
1745     debug_only( int cnt = 0; );
1746     bool loop_predication = UseLoopPredicate;
1747     while(major_progress() && (loop_opts_cnt > 0)) {
1748       TracePhase t2("idealLoop", &_t_idealLoop, true);
1749       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1750       PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1751       loop_opts_cnt--;
1752       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1753       if (failing())  return;
1754       // Perform loop predication optimization during first iteration after CCP.
1755       // After that switch it off and cleanup unused loop predicates.
1756       if (loop_predication) {
1757         loop_predication = false;
1758         cleanup_loop_predicates(igvn);
1759         if (failing())  return;
1760       }
1761     }
1762   }
1763 
1764   {
1765     // Verify that all previous optimizations produced a valid graph
1766     // at least to this point, even if no loop optimizations were done.
1767     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1768     PhaseIdealLoop::verify(igvn);
1769   }
1770 
1771   {
1772     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1773     PhaseMacroExpand  mex(igvn);
1774     if (mex.expand_macro_nodes()) {
1775       assert(failing(), "must bail out w/ explicit message");
1776       return;
1777     }
1778   }
1779 
1780  } // (End scope of igvn; run destructor if necessary for asserts.)
1781 
1782   // A method with only infinite loops has no edges entering loops from root
1783   {
1784     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1785     if (final_graph_reshaping()) {
1786       assert(failing(), "must bail out w/ explicit message");
1787       return;
1788     }
1789   }
1790 
1791   print_method("Optimize finished", 2);
1792 }
1793 
1794 
1795 //------------------------------Code_Gen---------------------------------------
1796 // Given a graph, generate code for it
1797 void Compile::Code_Gen() {
1798   if (failing())  return;
1799 
1800   // Perform instruction selection.  You might think we could reclaim Matcher
1801   // memory PDQ, but actually the Matcher is used in generating spill code.
1802   // Internals of the Matcher (including some VectorSets) must remain live
1803   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1804   // set a bit in reclaimed memory.
1805 
1806   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1807   // nodes.  Mapping is only valid at the root of each matched subtree.
1808   NOT_PRODUCT( verify_graph_edges(); )
1809 
1810   Node_List proj_list;
1811   Matcher m(proj_list);
1812   _matcher = &m;
1813   {
1814     TracePhase t2("matcher", &_t_matcher, true);
1815     m.match();
1816   }
1817   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1818   // nodes.  Mapping is only valid at the root of each matched subtree.
1819   NOT_PRODUCT( verify_graph_edges(); )
1820 
1821   // If you have too many nodes, or if matching has failed, bail out
1822   check_node_count(0, "out of nodes matching instructions");
1823   if (failing())  return;
1824 
1825   // Build a proper-looking CFG
1826   PhaseCFG cfg(node_arena(), root(), m);
1827   _cfg = &cfg;
1828   {
1829     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1830     cfg.Dominators();
1831     if (failing())  return;
1832 
1833     NOT_PRODUCT( verify_graph_edges(); )
1834 
1835     cfg.Estimate_Block_Frequency();
1836     cfg.GlobalCodeMotion(m,unique(),proj_list);
1837 
1838     print_method("Global code motion", 2);
1839 
1840     if (failing())  return;
1841     NOT_PRODUCT( verify_graph_edges(); )
1842 
1843     debug_only( cfg.verify(); )
1844   }
1845   NOT_PRODUCT( verify_graph_edges(); )
1846 
1847   PhaseChaitin regalloc(unique(),cfg,m);
1848   _regalloc = &regalloc;
1849   {
1850     TracePhase t2("regalloc", &_t_registerAllocation, true);
1851     // Perform any platform dependent preallocation actions.  This is used,
1852     // for example, to avoid taking an implicit null pointer exception
1853     // using the frame pointer on win95.
1854     _regalloc->pd_preallocate_hook();
1855 
1856     // Perform register allocation.  After Chaitin, use-def chains are
1857     // no longer accurate (at spill code) and so must be ignored.
1858     // Node->LRG->reg mappings are still accurate.
1859     _regalloc->Register_Allocate();
1860 
1861     // Bail out if the allocator builds too many nodes
1862     if (failing())  return;
1863   }
1864 
1865   // Prior to register allocation we kept empty basic blocks in case the
1866   // the allocator needed a place to spill.  After register allocation we
1867   // are not adding any new instructions.  If any basic block is empty, we
1868   // can now safely remove it.
1869   {
1870     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1871     cfg.remove_empty();
1872     if (do_freq_based_layout()) {
1873       PhaseBlockLayout layout(cfg);
1874     } else {
1875       cfg.set_loop_alignment();
1876     }
1877     cfg.fixup_flow();
1878   }
1879 
1880   // Perform any platform dependent postallocation verifications.
1881   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1882 
1883   // Apply peephole optimizations
1884   if( OptoPeephole ) {
1885     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1886     PhasePeephole peep( _regalloc, cfg);
1887     peep.do_transform();
1888   }
1889 
1890   // Convert Nodes to instruction bits in a buffer
1891   {
1892     // %%%% workspace merge brought two timers together for one job
1893     TracePhase t2a("output", &_t_output, true);
1894     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1895     Output();
1896   }
1897 
1898   print_method("Final Code");
1899 
1900   // He's dead, Jim.
1901   _cfg     = (PhaseCFG*)0xdeadbeef;
1902   _regalloc = (PhaseChaitin*)0xdeadbeef;
1903 }
1904 
1905 
1906 //------------------------------dump_asm---------------------------------------
1907 // Dump formatted assembly
1908 #ifndef PRODUCT
1909 void Compile::dump_asm(int *pcs, uint pc_limit) {
1910   bool cut_short = false;
1911   tty->print_cr("#");
1912   tty->print("#  ");  _tf->dump();  tty->cr();
1913   tty->print_cr("#");
1914 
1915   // For all blocks
1916   int pc = 0x0;                 // Program counter
1917   char starts_bundle = ' ';
1918   _regalloc->dump_frame();
1919 
1920   Node *n = NULL;
1921   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1922     if (VMThread::should_terminate()) { cut_short = true; break; }
1923     Block *b = _cfg->_blocks[i];
1924     if (b->is_connector() && !Verbose) continue;
1925     n = b->_nodes[0];
1926     if (pcs && n->_idx < pc_limit)
1927       tty->print("%3.3x   ", pcs[n->_idx]);
1928     else
1929       tty->print("      ");
1930     b->dump_head( &_cfg->_bbs );
1931     if (b->is_connector()) {
1932       tty->print_cr("        # Empty connector block");
1933     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1934       tty->print_cr("        # Block is sole successor of call");
1935     }
1936 
1937     // For all instructions
1938     Node *delay = NULL;
1939     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1940       if (VMThread::should_terminate()) { cut_short = true; break; }
1941       n = b->_nodes[j];
1942       if (valid_bundle_info(n)) {
1943         Bundle *bundle = node_bundling(n);
1944         if (bundle->used_in_unconditional_delay()) {
1945           delay = n;
1946           continue;
1947         }
1948         if (bundle->starts_bundle())
1949           starts_bundle = '+';
1950       }
1951 
1952       if (WizardMode) n->dump();
1953 
1954       if( !n->is_Region() &&    // Dont print in the Assembly
1955           !n->is_Phi() &&       // a few noisely useless nodes
1956           !n->is_Proj() &&
1957           !n->is_MachTemp() &&
1958           !n->is_SafePointScalarObject() &&
1959           !n->is_Catch() &&     // Would be nice to print exception table targets
1960           !n->is_MergeMem() &&  // Not very interesting
1961           !n->is_top() &&       // Debug info table constants
1962           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1963           ) {
1964         if (pcs && n->_idx < pc_limit)
1965           tty->print("%3.3x", pcs[n->_idx]);
1966         else
1967           tty->print("   ");
1968         tty->print(" %c ", starts_bundle);
1969         starts_bundle = ' ';
1970         tty->print("\t");
1971         n->format(_regalloc, tty);
1972         tty->cr();
1973       }
1974 
1975       // If we have an instruction with a delay slot, and have seen a delay,
1976       // then back up and print it
1977       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1978         assert(delay != NULL, "no unconditional delay instruction");
1979         if (WizardMode) delay->dump();
1980 
1981         if (node_bundling(delay)->starts_bundle())
1982           starts_bundle = '+';
1983         if (pcs && n->_idx < pc_limit)
1984           tty->print("%3.3x", pcs[n->_idx]);
1985         else
1986           tty->print("   ");
1987         tty->print(" %c ", starts_bundle);
1988         starts_bundle = ' ';
1989         tty->print("\t");
1990         delay->format(_regalloc, tty);
1991         tty->print_cr("");
1992         delay = NULL;
1993       }
1994 
1995       // Dump the exception table as well
1996       if( n->is_Catch() && (Verbose || WizardMode) ) {
1997         // Print the exception table for this offset
1998         _handler_table.print_subtable_for(pc);
1999       }
2000     }
2001 
2002     if (pcs && n->_idx < pc_limit)
2003       tty->print_cr("%3.3x", pcs[n->_idx]);
2004     else
2005       tty->print_cr("");
2006 
2007     assert(cut_short || delay == NULL, "no unconditional delay branch");
2008 
2009   } // End of per-block dump
2010   tty->print_cr("");
2011 
2012   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2013 }
2014 #endif
2015 
2016 //------------------------------Final_Reshape_Counts---------------------------
2017 // This class defines counters to help identify when a method
2018 // may/must be executed using hardware with only 24-bit precision.
2019 struct Final_Reshape_Counts : public StackObj {
2020   int  _call_count;             // count non-inlined 'common' calls
2021   int  _float_count;            // count float ops requiring 24-bit precision
2022   int  _double_count;           // count double ops requiring more precision
2023   int  _java_call_count;        // count non-inlined 'java' calls
2024   int  _inner_loop_count;       // count loops which need alignment
2025   VectorSet _visited;           // Visitation flags
2026   Node_List _tests;             // Set of IfNodes & PCTableNodes
2027 
2028   Final_Reshape_Counts() :
2029     _call_count(0), _float_count(0), _double_count(0),
2030     _java_call_count(0), _inner_loop_count(0),
2031     _visited( Thread::current()->resource_area() ) { }
2032 
2033   void inc_call_count  () { _call_count  ++; }
2034   void inc_float_count () { _float_count ++; }
2035   void inc_double_count() { _double_count++; }
2036   void inc_java_call_count() { _java_call_count++; }
2037   void inc_inner_loop_count() { _inner_loop_count++; }
2038 
2039   int  get_call_count  () const { return _call_count  ; }
2040   int  get_float_count () const { return _float_count ; }
2041   int  get_double_count() const { return _double_count; }
2042   int  get_java_call_count() const { return _java_call_count; }
2043   int  get_inner_loop_count() const { return _inner_loop_count; }
2044 };
2045 
2046 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2047   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2048   // Make sure the offset goes inside the instance layout.
2049   return k->contains_field_offset(tp->offset());
2050   // Note that OffsetBot and OffsetTop are very negative.
2051 }
2052 
2053 //------------------------------final_graph_reshaping_impl----------------------
2054 // Implement items 1-5 from final_graph_reshaping below.
2055 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
2056 
2057   if ( n->outcnt() == 0 ) return; // dead node
2058   uint nop = n->Opcode();
2059 
2060   // Check for 2-input instruction with "last use" on right input.
2061   // Swap to left input.  Implements item (2).
2062   if( n->req() == 3 &&          // two-input instruction
2063       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2064       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2065       n->in(2)->outcnt() == 1 &&// right use IS a last use
2066       !n->in(2)->is_Con() ) {   // right use is not a constant
2067     // Check for commutative opcode
2068     switch( nop ) {
2069     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2070     case Op_MaxI:  case Op_MinI:
2071     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2072     case Op_AndL:  case Op_XorL:  case Op_OrL:
2073     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2074       // Move "last use" input to left by swapping inputs
2075       n->swap_edges(1, 2);
2076       break;
2077     }
2078     default:
2079       break;
2080     }
2081   }
2082 
2083 #ifdef ASSERT
2084   if( n->is_Mem() ) {
2085     Compile* C = Compile::current();
2086     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
2087     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2088             // oop will be recorded in oop map if load crosses safepoint
2089             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2090                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2091             "raw memory operations should have control edge");
2092   }
2093 #endif
2094   // Count FPU ops and common calls, implements item (3)
2095   switch( nop ) {
2096   // Count all float operations that may use FPU
2097   case Op_AddF:
2098   case Op_SubF:
2099   case Op_MulF:
2100   case Op_DivF:
2101   case Op_NegF:
2102   case Op_ModF:
2103   case Op_ConvI2F:
2104   case Op_ConF:
2105   case Op_CmpF:
2106   case Op_CmpF3:
2107   // case Op_ConvL2F: // longs are split into 32-bit halves
2108     frc.inc_float_count();
2109     break;
2110 
2111   case Op_ConvF2D:
2112   case Op_ConvD2F:
2113     frc.inc_float_count();
2114     frc.inc_double_count();
2115     break;
2116 
2117   // Count all double operations that may use FPU
2118   case Op_AddD:
2119   case Op_SubD:
2120   case Op_MulD:
2121   case Op_DivD:
2122   case Op_NegD:
2123   case Op_ModD:
2124   case Op_ConvI2D:
2125   case Op_ConvD2I:
2126   // case Op_ConvL2D: // handled by leaf call
2127   // case Op_ConvD2L: // handled by leaf call
2128   case Op_ConD:
2129   case Op_CmpD:
2130   case Op_CmpD3:
2131     frc.inc_double_count();
2132     break;
2133   case Op_Opaque1:              // Remove Opaque Nodes before matching
2134   case Op_Opaque2:              // Remove Opaque Nodes before matching
2135     n->subsume_by(n->in(1));
2136     break;
2137   case Op_CallStaticJava:
2138   case Op_CallJava:
2139   case Op_CallDynamicJava:
2140     frc.inc_java_call_count(); // Count java call site;
2141   case Op_CallRuntime:
2142   case Op_CallLeaf:
2143   case Op_CallLeafNoFP: {
2144     assert( n->is_Call(), "" );
2145     CallNode *call = n->as_Call();
2146     // Count call sites where the FP mode bit would have to be flipped.
2147     // Do not count uncommon runtime calls:
2148     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2149     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2150     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2151       frc.inc_call_count();   // Count the call site
2152     } else {                  // See if uncommon argument is shared
2153       Node *n = call->in(TypeFunc::Parms);
2154       int nop = n->Opcode();
2155       // Clone shared simple arguments to uncommon calls, item (1).
2156       if( n->outcnt() > 1 &&
2157           !n->is_Proj() &&
2158           nop != Op_CreateEx &&
2159           nop != Op_CheckCastPP &&
2160           nop != Op_DecodeN &&
2161           !n->is_Mem() ) {
2162         Node *x = n->clone();
2163         call->set_req( TypeFunc::Parms, x );
2164       }
2165     }
2166     break;
2167   }
2168 
2169   case Op_StoreD:
2170   case Op_LoadD:
2171   case Op_LoadD_unaligned:
2172     frc.inc_double_count();
2173     goto handle_mem;
2174   case Op_StoreF:
2175   case Op_LoadF:
2176     frc.inc_float_count();
2177     goto handle_mem;
2178 
2179   case Op_StoreB:
2180   case Op_StoreC:
2181   case Op_StoreCM:
2182   case Op_StorePConditional:
2183   case Op_StoreI:
2184   case Op_StoreL:
2185   case Op_StoreIConditional:
2186   case Op_StoreLConditional:
2187   case Op_CompareAndSwapI:
2188   case Op_CompareAndSwapL:
2189   case Op_CompareAndSwapP:
2190   case Op_CompareAndSwapN:
2191   case Op_StoreP:
2192   case Op_StoreN:
2193   case Op_LoadB:
2194   case Op_LoadUB:
2195   case Op_LoadUS:
2196   case Op_LoadI:
2197   case Op_LoadUI2L:
2198   case Op_LoadKlass:
2199   case Op_LoadNKlass:
2200   case Op_LoadL:
2201   case Op_LoadL_unaligned:
2202   case Op_LoadPLocked:
2203   case Op_LoadLLocked:
2204   case Op_LoadP:
2205   case Op_LoadN:
2206   case Op_LoadRange:
2207   case Op_LoadS: {
2208   handle_mem:
2209 #ifdef ASSERT
2210     if( VerifyOptoOopOffsets ) {
2211       assert( n->is_Mem(), "" );
2212       MemNode *mem  = (MemNode*)n;
2213       // Check to see if address types have grounded out somehow.
2214       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2215       assert( !tp || oop_offset_is_sane(tp), "" );
2216     }
2217 #endif
2218     break;
2219   }
2220 
2221   case Op_AddP: {               // Assert sane base pointers
2222     Node *addp = n->in(AddPNode::Address);
2223     assert( !addp->is_AddP() ||
2224             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2225             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2226             "Base pointers must match" );
2227 #ifdef _LP64
2228     if (UseCompressedOops &&
2229         addp->Opcode() == Op_ConP &&
2230         addp == n->in(AddPNode::Base) &&
2231         n->in(AddPNode::Offset)->is_Con()) {
2232       // Use addressing with narrow klass to load with offset on x86.
2233       // On sparc loading 32-bits constant and decoding it have less
2234       // instructions (4) then load 64-bits constant (7).
2235       // Do this transformation here since IGVN will convert ConN back to ConP.
2236       const Type* t = addp->bottom_type();
2237       if (t->isa_oopptr()) {
2238         Node* nn = NULL;
2239 
2240         // Look for existing ConN node of the same exact type.
2241         Compile* C = Compile::current();
2242         Node* r  = C->root();
2243         uint cnt = r->outcnt();
2244         for (uint i = 0; i < cnt; i++) {
2245           Node* m = r->raw_out(i);
2246           if (m!= NULL && m->Opcode() == Op_ConN &&
2247               m->bottom_type()->make_ptr() == t) {
2248             nn = m;
2249             break;
2250           }
2251         }
2252         if (nn != NULL) {
2253           // Decode a narrow oop to match address
2254           // [R12 + narrow_oop_reg<<3 + offset]
2255           nn = new (C,  2) DecodeNNode(nn, t);
2256           n->set_req(AddPNode::Base, nn);
2257           n->set_req(AddPNode::Address, nn);
2258           if (addp->outcnt() == 0) {
2259             addp->disconnect_inputs(NULL);
2260           }
2261         }
2262       }
2263     }
2264 #endif
2265     break;
2266   }
2267 
2268 #ifdef _LP64
2269   case Op_CastPP:
2270     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2271       Compile* C = Compile::current();
2272       Node* in1 = n->in(1);
2273       const Type* t = n->bottom_type();
2274       Node* new_in1 = in1->clone();
2275       new_in1->as_DecodeN()->set_type(t);
2276 
2277       if (!Matcher::narrow_oop_use_complex_address()) {
2278         //
2279         // x86, ARM and friends can handle 2 adds in addressing mode
2280         // and Matcher can fold a DecodeN node into address by using
2281         // a narrow oop directly and do implicit NULL check in address:
2282         //
2283         // [R12 + narrow_oop_reg<<3 + offset]
2284         // NullCheck narrow_oop_reg
2285         //
2286         // On other platforms (Sparc) we have to keep new DecodeN node and
2287         // use it to do implicit NULL check in address:
2288         //
2289         // decode_not_null narrow_oop_reg, base_reg
2290         // [base_reg + offset]
2291         // NullCheck base_reg
2292         //
2293         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2294         // to keep the information to which NULL check the new DecodeN node
2295         // corresponds to use it as value in implicit_null_check().
2296         //
2297         new_in1->set_req(0, n->in(0));
2298       }
2299 
2300       n->subsume_by(new_in1);
2301       if (in1->outcnt() == 0) {
2302         in1->disconnect_inputs(NULL);
2303       }
2304     }
2305     break;
2306 
2307   case Op_CmpP:
2308     // Do this transformation here to preserve CmpPNode::sub() and
2309     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2310     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2311       Node* in1 = n->in(1);
2312       Node* in2 = n->in(2);
2313       if (!in1->is_DecodeN()) {
2314         in2 = in1;
2315         in1 = n->in(2);
2316       }
2317       assert(in1->is_DecodeN(), "sanity");
2318 
2319       Compile* C = Compile::current();
2320       Node* new_in2 = NULL;
2321       if (in2->is_DecodeN()) {
2322         new_in2 = in2->in(1);
2323       } else if (in2->Opcode() == Op_ConP) {
2324         const Type* t = in2->bottom_type();
2325         if (t == TypePtr::NULL_PTR) {
2326           // Don't convert CmpP null check into CmpN if compressed
2327           // oops implicit null check is not generated.
2328           // This will allow to generate normal oop implicit null check.
2329           if (Matcher::gen_narrow_oop_implicit_null_checks())
2330             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2331           //
2332           // This transformation together with CastPP transformation above
2333           // will generated code for implicit NULL checks for compressed oops.
2334           //
2335           // The original code after Optimize()
2336           //
2337           //    LoadN memory, narrow_oop_reg
2338           //    decode narrow_oop_reg, base_reg
2339           //    CmpP base_reg, NULL
2340           //    CastPP base_reg // NotNull
2341           //    Load [base_reg + offset], val_reg
2342           //
2343           // after these transformations will be
2344           //
2345           //    LoadN memory, narrow_oop_reg
2346           //    CmpN narrow_oop_reg, NULL
2347           //    decode_not_null narrow_oop_reg, base_reg
2348           //    Load [base_reg + offset], val_reg
2349           //
2350           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2351           // since narrow oops can be used in debug info now (see the code in
2352           // final_graph_reshaping_walk()).
2353           //
2354           // At the end the code will be matched to
2355           // on x86:
2356           //
2357           //    Load_narrow_oop memory, narrow_oop_reg
2358           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2359           //    NullCheck narrow_oop_reg
2360           //
2361           // and on sparc:
2362           //
2363           //    Load_narrow_oop memory, narrow_oop_reg
2364           //    decode_not_null narrow_oop_reg, base_reg
2365           //    Load [base_reg + offset], val_reg
2366           //    NullCheck base_reg
2367           //
2368         } else if (t->isa_oopptr()) {
2369           new_in2 = ConNode::make(C, t->make_narrowoop());
2370         }
2371       }
2372       if (new_in2 != NULL) {
2373         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2374         n->subsume_by( cmpN );
2375         if (in1->outcnt() == 0) {
2376           in1->disconnect_inputs(NULL);
2377         }
2378         if (in2->outcnt() == 0) {
2379           in2->disconnect_inputs(NULL);
2380         }
2381       }
2382     }
2383     break;
2384 
2385   case Op_DecodeN:
2386     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2387     // DecodeN could be pinned when it can't be fold into
2388     // an address expression, see the code for Op_CastPP above.
2389     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2390     break;
2391 
2392   case Op_EncodeP: {
2393     Node* in1 = n->in(1);
2394     if (in1->is_DecodeN()) {
2395       n->subsume_by(in1->in(1));
2396     } else if (in1->Opcode() == Op_ConP) {
2397       Compile* C = Compile::current();
2398       const Type* t = in1->bottom_type();
2399       if (t == TypePtr::NULL_PTR) {
2400         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2401       } else if (t->isa_oopptr()) {
2402         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2403       }
2404     }
2405     if (in1->outcnt() == 0) {
2406       in1->disconnect_inputs(NULL);
2407     }
2408     break;
2409   }
2410 
2411   case Op_Proj: {
2412     if (OptimizeStringConcat) {
2413       ProjNode* p = n->as_Proj();
2414       if (p->_is_io_use) {
2415         // Separate projections were used for the exception path which
2416         // are normally removed by a late inline.  If it wasn't inlined
2417         // then they will hang around and should just be replaced with
2418         // the original one.
2419         Node* proj = NULL;
2420         // Replace with just one
2421         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2422           Node *use = i.get();
2423           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2424             proj = use;
2425             break;
2426           }
2427         }
2428         assert(p != NULL, "must be found");
2429         p->subsume_by(proj);
2430       }
2431     }
2432     break;
2433   }
2434 
2435   case Op_Phi:
2436     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2437       // The EncodeP optimization may create Phi with the same edges
2438       // for all paths. It is not handled well by Register Allocator.
2439       Node* unique_in = n->in(1);
2440       assert(unique_in != NULL, "");
2441       uint cnt = n->req();
2442       for (uint i = 2; i < cnt; i++) {
2443         Node* m = n->in(i);
2444         assert(m != NULL, "");
2445         if (unique_in != m)
2446           unique_in = NULL;
2447       }
2448       if (unique_in != NULL) {
2449         n->subsume_by(unique_in);
2450       }
2451     }
2452     break;
2453 
2454 #endif
2455 
2456   case Op_ModI:
2457     if (UseDivMod) {
2458       // Check if a%b and a/b both exist
2459       Node* d = n->find_similar(Op_DivI);
2460       if (d) {
2461         // Replace them with a fused divmod if supported
2462         Compile* C = Compile::current();
2463         if (Matcher::has_match_rule(Op_DivModI)) {
2464           DivModINode* divmod = DivModINode::make(C, n);
2465           d->subsume_by(divmod->div_proj());
2466           n->subsume_by(divmod->mod_proj());
2467         } else {
2468           // replace a%b with a-((a/b)*b)
2469           Node* mult = new (C, 3) MulINode(d, d->in(2));
2470           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2471           n->subsume_by( sub );
2472         }
2473       }
2474     }
2475     break;
2476 
2477   case Op_ModL:
2478     if (UseDivMod) {
2479       // Check if a%b and a/b both exist
2480       Node* d = n->find_similar(Op_DivL);
2481       if (d) {
2482         // Replace them with a fused divmod if supported
2483         Compile* C = Compile::current();
2484         if (Matcher::has_match_rule(Op_DivModL)) {
2485           DivModLNode* divmod = DivModLNode::make(C, n);
2486           d->subsume_by(divmod->div_proj());
2487           n->subsume_by(divmod->mod_proj());
2488         } else {
2489           // replace a%b with a-((a/b)*b)
2490           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2491           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2492           n->subsume_by( sub );
2493         }
2494       }
2495     }
2496     break;
2497 
2498   case Op_Load16B:
2499   case Op_Load8B:
2500   case Op_Load4B:
2501   case Op_Load8S:
2502   case Op_Load4S:
2503   case Op_Load2S:
2504   case Op_Load8C:
2505   case Op_Load4C:
2506   case Op_Load2C:
2507   case Op_Load4I:
2508   case Op_Load2I:
2509   case Op_Load2L:
2510   case Op_Load4F:
2511   case Op_Load2F:
2512   case Op_Load2D:
2513   case Op_Store16B:
2514   case Op_Store8B:
2515   case Op_Store4B:
2516   case Op_Store8C:
2517   case Op_Store4C:
2518   case Op_Store2C:
2519   case Op_Store4I:
2520   case Op_Store2I:
2521   case Op_Store2L:
2522   case Op_Store4F:
2523   case Op_Store2F:
2524   case Op_Store2D:
2525     break;
2526 
2527   case Op_PackB:
2528   case Op_PackS:
2529   case Op_PackC:
2530   case Op_PackI:
2531   case Op_PackF:
2532   case Op_PackL:
2533   case Op_PackD:
2534     if (n->req()-1 > 2) {
2535       // Replace many operand PackNodes with a binary tree for matching
2536       PackNode* p = (PackNode*) n;
2537       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2538       n->subsume_by(btp);
2539     }
2540     break;
2541   case Op_Loop:
2542   case Op_CountedLoop:
2543     if (n->as_Loop()->is_inner_loop()) {
2544       frc.inc_inner_loop_count();
2545     }
2546     break;
2547   default:
2548     assert( !n->is_Call(), "" );
2549     assert( !n->is_Mem(), "" );
2550     break;
2551   }
2552 
2553   // Collect CFG split points
2554   if (n->is_MultiBranch())
2555     frc._tests.push(n);
2556 }
2557 
2558 //------------------------------final_graph_reshaping_walk---------------------
2559 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2560 // requires that the walk visits a node's inputs before visiting the node.
2561 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2562   ResourceArea *area = Thread::current()->resource_area();
2563   Unique_Node_List sfpt(area);
2564 
2565   frc._visited.set(root->_idx); // first, mark node as visited
2566   uint cnt = root->req();
2567   Node *n = root;
2568   uint  i = 0;
2569   while (true) {
2570     if (i < cnt) {
2571       // Place all non-visited non-null inputs onto stack
2572       Node* m = n->in(i);
2573       ++i;
2574       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2575         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2576           sfpt.push(m);
2577         cnt = m->req();
2578         nstack.push(n, i); // put on stack parent and next input's index
2579         n = m;
2580         i = 0;
2581       }
2582     } else {
2583       // Now do post-visit work
2584       final_graph_reshaping_impl( n, frc );
2585       if (nstack.is_empty())
2586         break;             // finished
2587       n = nstack.node();   // Get node from stack
2588       cnt = n->req();
2589       i = nstack.index();
2590       nstack.pop();        // Shift to the next node on stack
2591     }
2592   }
2593 
2594   // Skip next transformation if compressed oops are not used.
2595   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2596     return;
2597 
2598   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2599   // It could be done for an uncommon traps or any safepoints/calls
2600   // if the DecodeN node is referenced only in a debug info.
2601   while (sfpt.size() > 0) {
2602     n = sfpt.pop();
2603     JVMState *jvms = n->as_SafePoint()->jvms();
2604     assert(jvms != NULL, "sanity");
2605     int start = jvms->debug_start();
2606     int end   = n->req();
2607     bool is_uncommon = (n->is_CallStaticJava() &&
2608                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2609     for (int j = start; j < end; j++) {
2610       Node* in = n->in(j);
2611       if (in->is_DecodeN()) {
2612         bool safe_to_skip = true;
2613         if (!is_uncommon ) {
2614           // Is it safe to skip?
2615           for (uint i = 0; i < in->outcnt(); i++) {
2616             Node* u = in->raw_out(i);
2617             if (!u->is_SafePoint() ||
2618                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2619               safe_to_skip = false;
2620             }
2621           }
2622         }
2623         if (safe_to_skip) {
2624           n->set_req(j, in->in(1));
2625         }
2626         if (in->outcnt() == 0) {
2627           in->disconnect_inputs(NULL);
2628         }
2629       }
2630     }
2631   }
2632 }
2633 
2634 //------------------------------final_graph_reshaping--------------------------
2635 // Final Graph Reshaping.
2636 //
2637 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2638 //     and not commoned up and forced early.  Must come after regular
2639 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2640 //     inputs to Loop Phis; these will be split by the allocator anyways.
2641 //     Remove Opaque nodes.
2642 // (2) Move last-uses by commutative operations to the left input to encourage
2643 //     Intel update-in-place two-address operations and better register usage
2644 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2645 //     calls canonicalizing them back.
2646 // (3) Count the number of double-precision FP ops, single-precision FP ops
2647 //     and call sites.  On Intel, we can get correct rounding either by
2648 //     forcing singles to memory (requires extra stores and loads after each
2649 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2650 //     clearing the mode bit around call sites).  The mode bit is only used
2651 //     if the relative frequency of single FP ops to calls is low enough.
2652 //     This is a key transform for SPEC mpeg_audio.
2653 // (4) Detect infinite loops; blobs of code reachable from above but not
2654 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2655 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2656 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2657 //     Detection is by looking for IfNodes where only 1 projection is
2658 //     reachable from below or CatchNodes missing some targets.
2659 // (5) Assert for insane oop offsets in debug mode.
2660 
2661 bool Compile::final_graph_reshaping() {
2662   // an infinite loop may have been eliminated by the optimizer,
2663   // in which case the graph will be empty.
2664   if (root()->req() == 1) {
2665     record_method_not_compilable("trivial infinite loop");
2666     return true;
2667   }
2668 
2669   Final_Reshape_Counts frc;
2670 
2671   // Visit everybody reachable!
2672   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2673   Node_Stack nstack(unique() >> 1);
2674   final_graph_reshaping_walk(nstack, root(), frc);
2675 
2676   // Check for unreachable (from below) code (i.e., infinite loops).
2677   for( uint i = 0; i < frc._tests.size(); i++ ) {
2678     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2679     // Get number of CFG targets.
2680     // Note that PCTables include exception targets after calls.
2681     uint required_outcnt = n->required_outcnt();
2682     if (n->outcnt() != required_outcnt) {
2683       // Check for a few special cases.  Rethrow Nodes never take the
2684       // 'fall-thru' path, so expected kids is 1 less.
2685       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2686         if (n->in(0)->in(0)->is_Call()) {
2687           CallNode *call = n->in(0)->in(0)->as_Call();
2688           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2689             required_outcnt--;      // Rethrow always has 1 less kid
2690           } else if (call->req() > TypeFunc::Parms &&
2691                      call->is_CallDynamicJava()) {
2692             // Check for null receiver. In such case, the optimizer has
2693             // detected that the virtual call will always result in a null
2694             // pointer exception. The fall-through projection of this CatchNode
2695             // will not be populated.
2696             Node *arg0 = call->in(TypeFunc::Parms);
2697             if (arg0->is_Type() &&
2698                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2699               required_outcnt--;
2700             }
2701           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2702                      call->req() > TypeFunc::Parms+1 &&
2703                      call->is_CallStaticJava()) {
2704             // Check for negative array length. In such case, the optimizer has
2705             // detected that the allocation attempt will always result in an
2706             // exception. There is no fall-through projection of this CatchNode .
2707             Node *arg1 = call->in(TypeFunc::Parms+1);
2708             if (arg1->is_Type() &&
2709                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2710               required_outcnt--;
2711             }
2712           }
2713         }
2714       }
2715       // Recheck with a better notion of 'required_outcnt'
2716       if (n->outcnt() != required_outcnt) {
2717         record_method_not_compilable("malformed control flow");
2718         return true;            // Not all targets reachable!
2719       }
2720     }
2721     // Check that I actually visited all kids.  Unreached kids
2722     // must be infinite loops.
2723     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2724       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2725         record_method_not_compilable("infinite loop");
2726         return true;            // Found unvisited kid; must be unreach
2727       }
2728   }
2729 
2730   // If original bytecodes contained a mixture of floats and doubles
2731   // check if the optimizer has made it homogenous, item (3).
2732   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2733       frc.get_float_count() > 32 &&
2734       frc.get_double_count() == 0 &&
2735       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2736     set_24_bit_selection_and_mode( false,  true );
2737   }
2738 
2739   set_java_calls(frc.get_java_call_count());
2740   set_inner_loops(frc.get_inner_loop_count());
2741 
2742   // No infinite loops, no reason to bail out.
2743   return false;
2744 }
2745 
2746 //-----------------------------too_many_traps----------------------------------
2747 // Report if there are too many traps at the current method and bci.
2748 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2749 bool Compile::too_many_traps(ciMethod* method,
2750                              int bci,
2751                              Deoptimization::DeoptReason reason) {
2752   ciMethodData* md = method->method_data();
2753   if (md->is_empty()) {
2754     // Assume the trap has not occurred, or that it occurred only
2755     // because of a transient condition during start-up in the interpreter.
2756     return false;
2757   }
2758   if (md->has_trap_at(bci, reason) != 0) {
2759     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2760     // Also, if there are multiple reasons, or if there is no per-BCI record,
2761     // assume the worst.
2762     if (log())
2763       log()->elem("observe trap='%s' count='%d'",
2764                   Deoptimization::trap_reason_name(reason),
2765                   md->trap_count(reason));
2766     return true;
2767   } else {
2768     // Ignore method/bci and see if there have been too many globally.
2769     return too_many_traps(reason, md);
2770   }
2771 }
2772 
2773 // Less-accurate variant which does not require a method and bci.
2774 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2775                              ciMethodData* logmd) {
2776  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2777     // Too many traps globally.
2778     // Note that we use cumulative trap_count, not just md->trap_count.
2779     if (log()) {
2780       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2781       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2782                   Deoptimization::trap_reason_name(reason),
2783                   mcount, trap_count(reason));
2784     }
2785     return true;
2786   } else {
2787     // The coast is clear.
2788     return false;
2789   }
2790 }
2791 
2792 //--------------------------too_many_recompiles--------------------------------
2793 // Report if there are too many recompiles at the current method and bci.
2794 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2795 // Is not eager to return true, since this will cause the compiler to use
2796 // Action_none for a trap point, to avoid too many recompilations.
2797 bool Compile::too_many_recompiles(ciMethod* method,
2798                                   int bci,
2799                                   Deoptimization::DeoptReason reason) {
2800   ciMethodData* md = method->method_data();
2801   if (md->is_empty()) {
2802     // Assume the trap has not occurred, or that it occurred only
2803     // because of a transient condition during start-up in the interpreter.
2804     return false;
2805   }
2806   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2807   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2808   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2809   Deoptimization::DeoptReason per_bc_reason
2810     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2811   if ((per_bc_reason == Deoptimization::Reason_none
2812        || md->has_trap_at(bci, reason) != 0)
2813       // The trap frequency measure we care about is the recompile count:
2814       && md->trap_recompiled_at(bci)
2815       && md->overflow_recompile_count() >= bc_cutoff) {
2816     // Do not emit a trap here if it has already caused recompilations.
2817     // Also, if there are multiple reasons, or if there is no per-BCI record,
2818     // assume the worst.
2819     if (log())
2820       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2821                   Deoptimization::trap_reason_name(reason),
2822                   md->trap_count(reason),
2823                   md->overflow_recompile_count());
2824     return true;
2825   } else if (trap_count(reason) != 0
2826              && decompile_count() >= m_cutoff) {
2827     // Too many recompiles globally, and we have seen this sort of trap.
2828     // Use cumulative decompile_count, not just md->decompile_count.
2829     if (log())
2830       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2831                   Deoptimization::trap_reason_name(reason),
2832                   md->trap_count(reason), trap_count(reason),
2833                   md->decompile_count(), decompile_count());
2834     return true;
2835   } else {
2836     // The coast is clear.
2837     return false;
2838   }
2839 }
2840 
2841 
2842 #ifndef PRODUCT
2843 //------------------------------verify_graph_edges---------------------------
2844 // Walk the Graph and verify that there is a one-to-one correspondence
2845 // between Use-Def edges and Def-Use edges in the graph.
2846 void Compile::verify_graph_edges(bool no_dead_code) {
2847   if (VerifyGraphEdges) {
2848     ResourceArea *area = Thread::current()->resource_area();
2849     Unique_Node_List visited(area);
2850     // Call recursive graph walk to check edges
2851     _root->verify_edges(visited);
2852     if (no_dead_code) {
2853       // Now make sure that no visited node is used by an unvisited node.
2854       bool dead_nodes = 0;
2855       Unique_Node_List checked(area);
2856       while (visited.size() > 0) {
2857         Node* n = visited.pop();
2858         checked.push(n);
2859         for (uint i = 0; i < n->outcnt(); i++) {
2860           Node* use = n->raw_out(i);
2861           if (checked.member(use))  continue;  // already checked
2862           if (visited.member(use))  continue;  // already in the graph
2863           if (use->is_Con())        continue;  // a dead ConNode is OK
2864           // At this point, we have found a dead node which is DU-reachable.
2865           if (dead_nodes++ == 0)
2866             tty->print_cr("*** Dead nodes reachable via DU edges:");
2867           use->dump(2);
2868           tty->print_cr("---");
2869           checked.push(use);  // No repeats; pretend it is now checked.
2870         }
2871       }
2872       assert(dead_nodes == 0, "using nodes must be reachable from root");
2873     }
2874   }
2875 }
2876 #endif
2877 
2878 // The Compile object keeps track of failure reasons separately from the ciEnv.
2879 // This is required because there is not quite a 1-1 relation between the
2880 // ciEnv and its compilation task and the Compile object.  Note that one
2881 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2882 // to backtrack and retry without subsuming loads.  Other than this backtracking
2883 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2884 // by the logic in C2Compiler.
2885 void Compile::record_failure(const char* reason) {
2886   if (log() != NULL) {
2887     log()->elem("failure reason='%s' phase='compile'", reason);
2888   }
2889   if (_failure_reason == NULL) {
2890     // Record the first failure reason.
2891     _failure_reason = reason;
2892   }
2893   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2894     C->print_method(_failure_reason);
2895   }
2896   _root = NULL;  // flush the graph, too
2897 }
2898 
2899 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2900   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2901 {
2902   if (dolog) {
2903     C = Compile::current();
2904     _log = C->log();
2905   } else {
2906     C = NULL;
2907     _log = NULL;
2908   }
2909   if (_log != NULL) {
2910     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2911     _log->stamp();
2912     _log->end_head();
2913   }
2914 }
2915 
2916 Compile::TracePhase::~TracePhase() {
2917   if (_log != NULL) {
2918     _log->done("phase nodes='%d'", C->unique());
2919   }
2920 }
2921 
2922 //=============================================================================
2923 // Two Constant's are equal when the type and the value are equal.
2924 bool Compile::Constant::operator==(const Constant& other) {
2925   if (type()          != other.type()         )  return false;
2926   if (can_be_reused() != other.can_be_reused())  return false;
2927   // For floating point values we compare the bit pattern.
2928   switch (type()) {
2929   case T_FLOAT:   return (_value.i == other._value.i);
2930   case T_LONG:
2931   case T_DOUBLE:  return (_value.j == other._value.j);
2932   case T_OBJECT:
2933   case T_ADDRESS: return (_value.l == other._value.l);
2934   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
2935   default: ShouldNotReachHere();
2936   }
2937   return false;
2938 }
2939 
2940 // Emit constants grouped in the following order:
2941 static BasicType type_order[] = {
2942   T_FLOAT,    // 32-bit
2943   T_OBJECT,   // 32 or 64-bit
2944   T_ADDRESS,  // 32 or 64-bit
2945   T_DOUBLE,   // 64-bit
2946   T_LONG,     // 64-bit
2947   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
2948   T_ILLEGAL
2949 };
2950 
2951 static int type_to_size_in_bytes(BasicType t) {
2952   switch (t) {
2953   case T_LONG:    return sizeof(jlong  );
2954   case T_FLOAT:   return sizeof(jfloat );
2955   case T_DOUBLE:  return sizeof(jdouble);
2956     // We use T_VOID as marker for jump-table entries (labels) which
2957     // need an interal word relocation.
2958   case T_VOID:
2959   case T_ADDRESS:
2960   case T_OBJECT:  return sizeof(jobject);
2961   }
2962 
2963   ShouldNotReachHere();
2964   return -1;
2965 }
2966 
2967 void Compile::ConstantTable::calculate_offsets_and_size() {
2968   int size = 0;
2969   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
2970     BasicType type = type_order[t];
2971 
2972     for (int i = 0; i < _constants.length(); i++) {
2973       Constant con = _constants.at(i);
2974       if (con.type() != type)  continue;  // Skip other types.
2975 
2976       // Align size for type.
2977       int typesize = type_to_size_in_bytes(con.type());
2978       size = align_size_up(size, typesize);
2979 
2980       // Set offset.
2981       con.set_offset(size);
2982       _constants.at_put(i, con);
2983 
2984       // Add type size.
2985       size = size + typesize;
2986     }
2987   }
2988 
2989   // Align size up to the next section start (which is insts; see
2990   // CodeBuffer::align_at_start).
2991   assert(_size == -1, "already set?");
2992   _size = align_size_up(size, CodeEntryAlignment);
2993 
2994   if (Matcher::constant_table_absolute_addressing) {
2995     set_table_base_offset(0);  // No table base offset required
2996   } else {
2997     if (UseRDPCForConstantTableBase) {
2998       // table base offset is set in MachConstantBaseNode::emit
2999     } else {
3000       // When RDPC is not used, the table base is set into the middle of
3001       // the constant table.
3002       int half_size = _size / 2;
3003       assert(half_size * 2 == _size, "sanity");
3004       set_table_base_offset(-half_size);
3005     }
3006   }
3007 }
3008 
3009 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3010   MacroAssembler _masm(&cb);
3011   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
3012     BasicType type = type_order[t];
3013 
3014     for (int i = 0; i < _constants.length(); i++) {
3015       Constant con = _constants.at(i);
3016       if (con.type() != type)  continue;  // Skip other types.
3017 
3018       address constant_addr;
3019       switch (con.type()) {
3020       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3021       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3022       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3023       case T_OBJECT: {
3024         jobject obj = con.get_jobject();
3025         int oop_index = _masm.oop_recorder()->find_index(obj);
3026         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3027         break;
3028       }
3029       case T_ADDRESS: {
3030         address addr = (address) con.get_jobject();
3031         constant_addr = _masm.address_constant(addr);
3032         break;
3033       }
3034       // We use T_VOID as marker for jump-table entries (labels) which
3035       // need an interal word relocation.
3036       case T_VOID: {
3037         // Write a dummy word.  The real value is filled in later
3038         // in fill_jump_table_in_constant_table.
3039         address addr = (address) con.get_jobject();
3040         constant_addr = _masm.address_constant(addr);
3041         break;
3042       }
3043       default: ShouldNotReachHere();
3044       }
3045       assert(constant_addr != NULL, "consts section too small");
3046       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3047     }
3048   }
3049 }
3050 
3051 int Compile::ConstantTable::find_offset(Constant& con) const {
3052   int idx = _constants.find(con);
3053   assert(idx != -1, "constant must be in constant table");
3054   int offset = _constants.at(idx).offset();
3055   assert(offset != -1, "constant table not emitted yet?");
3056   return offset;
3057 }
3058 
3059 void Compile::ConstantTable::add(Constant& con) {
3060   if (con.can_be_reused()) {
3061     int idx = _constants.find(con);
3062     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3063       return;
3064     }
3065   }
3066   (void) _constants.append(con);
3067 }
3068 
3069 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
3070   Constant con(type, value);
3071   add(con);
3072   return con;
3073 }
3074 
3075 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
3076   jvalue value;
3077   BasicType type = oper->type()->basic_type();
3078   switch (type) {
3079   case T_LONG:    value.j = oper->constantL(); break;
3080   case T_FLOAT:   value.f = oper->constantF(); break;
3081   case T_DOUBLE:  value.d = oper->constantD(); break;
3082   case T_OBJECT:
3083   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3084   default: ShouldNotReachHere();
3085   }
3086   return add(type, value);
3087 }
3088 
3089 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
3090   jvalue value;
3091   // We can use the node pointer here to identify the right jump-table
3092   // as this method is called from Compile::Fill_buffer right before
3093   // the MachNodes are emitted and the jump-table is filled (means the
3094   // MachNode pointers do not change anymore).
3095   value.l = (jobject) n;
3096   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
3097   for (uint i = 0; i < n->outcnt(); i++) {
3098     add(con);
3099   }
3100   return con;
3101 }
3102 
3103 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3104   // If called from Compile::scratch_emit_size do nothing.
3105   if (Compile::current()->in_scratch_emit_size())  return;
3106 
3107   assert(labels.is_nonempty(), "must be");
3108   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
3109 
3110   // Since MachConstantNode::constant_offset() also contains
3111   // table_base_offset() we need to subtract the table_base_offset()
3112   // to get the plain offset into the constant table.
3113   int offset = n->constant_offset() - table_base_offset();
3114 
3115   MacroAssembler _masm(&cb);
3116   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3117 
3118   for (int i = 0; i < labels.length(); i++) {
3119     address* constant_addr = &jump_table_base[i];
3120     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
3121     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3122     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3123   }
3124 }