1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegionSets.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
  35 
  36 // Closure used by CM during concurrent reference discovery
  37 // and reference processing (during remarking) to determine
  38 // if a particular object is alive. It is primarily used
  39 // to determine if referents of discovered reference objects
  40 // are alive. An instance is also embedded into the
  41 // reference processor as the _is_alive_non_header field
  42 class G1CMIsAliveClosure: public BoolObjectClosure {
  43   G1CollectedHeap* _g1;
  44  public:
  45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
  46     _g1(g1)
  47   {}
  48 
  49   void do_object(oop obj) {
  50     ShouldNotCallThis();
  51   }
  52   bool do_object_b(oop obj);
  53 };
  54 
  55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  56 // class, with one bit per (1<<_shifter) HeapWords.
  57 
  58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  59  protected:
  60   HeapWord* _bmStartWord;      // base address of range covered by map
  61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  62   const int _shifter;          // map to char or bit
  63   VirtualSpace _virtual_space; // underlying the bit map
  64   BitMap    _bm;               // the bit map itself
  65 
  66  public:
  67   // constructor
  68   CMBitMapRO(ReservedSpace rs, int shifter);
  69 
  70   enum { do_yield = true };
  71 
  72   // inquiries
  73   HeapWord* startWord()   const { return _bmStartWord; }
  74   size_t    sizeInWords() const { return _bmWordSize;  }
  75   // the following is one past the last word in space
  76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  77 
  78   // read marks
  79 
  80   bool isMarked(HeapWord* addr) const {
  81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  82            "outside underlying space?");
  83     return _bm.at(heapWordToOffset(addr));
  84   }
  85 
  86   // iteration
  87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
  88   bool iterate(BitMapClosure* cl, MemRegion mr);
  89 
  90   // Return the address corresponding to the next marked bit at or after
  91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  94                                      HeapWord* limit = NULL) const;
  95   // Return the address corresponding to the next unmarked bit at or after
  96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  99                                        HeapWord* limit = NULL) const;
 100 
 101   // conversion utilities
 102   // XXX Fix these so that offsets are size_t's...
 103   HeapWord* offsetToHeapWord(size_t offset) const {
 104     return _bmStartWord + (offset << _shifter);
 105   }
 106   size_t heapWordToOffset(HeapWord* addr) const {
 107     return pointer_delta(addr, _bmStartWord) >> _shifter;
 108   }
 109   int heapWordDiffToOffsetDiff(size_t diff) const;
 110   HeapWord* nextWord(HeapWord* addr) {
 111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
 112   }
 113 
 114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
 115                                    size_t    from_start_index,
 116                                    HeapWord* to_start_word,
 117                                    size_t    word_num);
 118 
 119   // debugging
 120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 121 };
 122 
 123 class CMBitMap : public CMBitMapRO {
 124 
 125  public:
 126   // constructor
 127   CMBitMap(ReservedSpace rs, int shifter) :
 128     CMBitMapRO(rs, shifter) {}
 129 
 130   // write marks
 131   void mark(HeapWord* addr) {
 132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 133            "outside underlying space?");
 134     _bm.at_put(heapWordToOffset(addr), true);
 135   }
 136   void clear(HeapWord* addr) {
 137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 138            "outside underlying space?");
 139     _bm.at_put(heapWordToOffset(addr), false);
 140   }
 141   bool parMark(HeapWord* addr) {
 142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 143            "outside underlying space?");
 144     return _bm.par_at_put(heapWordToOffset(addr), true);
 145   }
 146   bool parClear(HeapWord* addr) {
 147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 148            "outside underlying space?");
 149     return _bm.par_at_put(heapWordToOffset(addr), false);
 150   }
 151   void markRange(MemRegion mr);
 152   void clearAll();
 153   void clearRange(MemRegion mr);
 154 
 155   // Starting at the bit corresponding to "addr" (inclusive), find the next
 156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 157   // the end of this run (stopping at "end_addr").  Return the MemRegion
 158   // covering from the start of the region corresponding to the first bit
 159   // of the run to the end of the region corresponding to the last bit of
 160   // the run.  If there is no "1" bit at or after "addr", return an empty
 161   // MemRegion.
 162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 163 };
 164 
 165 // Represents a marking stack used by the CM collector.
 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 168   ConcurrentMark* _cm;
 169   oop*   _base;      // bottom of stack
 170   jint   _index;     // one more than last occupied index
 171   jint   _capacity;  // max #elements
 172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
 173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
 174 
 175   bool   _overflow;
 176   DEBUG_ONLY(bool _drain_in_progress;)
 177   DEBUG_ONLY(bool _drain_in_progress_yields;)
 178 
 179  public:
 180   CMMarkStack(ConcurrentMark* cm);
 181   ~CMMarkStack();
 182 
 183   void allocate(size_t size);
 184 
 185   oop pop() {
 186     if (!isEmpty()) {
 187       return _base[--_index] ;
 188     }
 189     return NULL;
 190   }
 191 
 192   // If overflow happens, don't do the push, and record the overflow.
 193   // *Requires* that "ptr" is already marked.
 194   void push(oop ptr) {
 195     if (isFull()) {
 196       // Record overflow.
 197       _overflow = true;
 198       return;
 199     } else {
 200       _base[_index++] = ptr;
 201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 202     }
 203   }
 204   // Non-block impl.  Note: concurrency is allowed only with other
 205   // "par_push" operations, not with "pop" or "drain".  We would need
 206   // parallel versions of them if such concurrency was desired.
 207   void par_push(oop ptr);
 208 
 209   // Pushes the first "n" elements of "ptr_arr" on the stack.
 210   // Non-block impl.  Note: concurrency is allowed only with other
 211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 212   void par_adjoin_arr(oop* ptr_arr, int n);
 213 
 214   // Pushes the first "n" elements of "ptr_arr" on the stack.
 215   // Locking impl: concurrency is allowed only with
 216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 217   // locking strategy.
 218   void par_push_arr(oop* ptr_arr, int n);
 219 
 220   // If returns false, the array was empty.  Otherwise, removes up to "max"
 221   // elements from the stack, and transfers them to "ptr_arr" in an
 222   // unspecified order.  The actual number transferred is given in "n" ("n
 223   // == 0" is deliberately redundant with the return value.)  Locking impl:
 224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 225   // operations, which use the same locking strategy.
 226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 227 
 228   // Drain the mark stack, applying the given closure to all fields of
 229   // objects on the stack.  (That is, continue until the stack is empty,
 230   // even if closure applications add entries to the stack.)  The "bm"
 231   // argument, if non-null, may be used to verify that only marked objects
 232   // are on the mark stack.  If "yield_after" is "true", then the
 233   // concurrent marker performing the drain offers to yield after
 234   // processing each object.  If a yield occurs, stops the drain operation
 235   // and returns false.  Otherwise, returns true.
 236   template<class OopClosureClass>
 237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 238 
 239   bool isEmpty()    { return _index == 0; }
 240   bool isFull()     { return _index == _capacity; }
 241   int maxElems()    { return _capacity; }
 242 
 243   bool overflow() { return _overflow; }
 244   void clear_overflow() { _overflow = false; }
 245 
 246   int  size() { return _index; }
 247 
 248   void setEmpty()   { _index = 0; clear_overflow(); }
 249 
 250   // Record the current size; a subsequent "oops_do" will iterate only over
 251   // indices valid at the time of this call.
 252   void set_oops_do_bound(jint bound = -1) {
 253     if (bound == -1) {
 254       _oops_do_bound = _index;
 255     } else {
 256       _oops_do_bound = bound;
 257     }
 258   }
 259   jint oops_do_bound() { return _oops_do_bound; }
 260   // iterate over the oops in the mark stack, up to the bound recorded via
 261   // the call above.
 262   void oops_do(OopClosure* f);
 263 };
 264 
 265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
 266   MemRegion* _base;
 267   jint _capacity;
 268   jint _index;
 269   jint _oops_do_bound;
 270   bool _overflow;
 271 public:
 272   CMRegionStack();
 273   ~CMRegionStack();
 274   void allocate(size_t size);
 275 
 276   // This is lock-free; assumes that it will only be called in parallel
 277   // with other "push" operations (no pops).
 278   void push_lock_free(MemRegion mr);
 279 
 280   // Lock-free; assumes that it will only be called in parallel
 281   // with other "pop" operations (no pushes).
 282   MemRegion pop_lock_free();
 283 
 284 #if 0
 285   // The routines that manipulate the region stack with a lock are
 286   // not currently used. They should be retained, however, as a
 287   // diagnostic aid.
 288 
 289   // These two are the implementations that use a lock. They can be
 290   // called concurrently with each other but they should not be called
 291   // concurrently with the lock-free versions (push() / pop()).
 292   void push_with_lock(MemRegion mr);
 293   MemRegion pop_with_lock();
 294 #endif
 295 
 296   bool isEmpty()    { return _index == 0; }
 297   bool isFull()     { return _index == _capacity; }
 298 
 299   bool overflow() { return _overflow; }
 300   void clear_overflow() { _overflow = false; }
 301 
 302   int  size() { return _index; }
 303 
 304   // It iterates over the entries in the region stack and it
 305   // invalidates (i.e. assigns MemRegion()) the ones that point to
 306   // regions in the collection set.
 307   bool invalidate_entries_into_cset();
 308 
 309   // This gives an upper bound up to which the iteration in
 310   // invalidate_entries_into_cset() will reach. This prevents
 311   // newly-added entries to be unnecessarily scanned.
 312   void set_oops_do_bound() {
 313     _oops_do_bound = _index;
 314   }
 315 
 316   void setEmpty()   { _index = 0; clear_overflow(); }
 317 };
 318 
 319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 320 private:
 321 #ifndef PRODUCT
 322   uintx _num_remaining;
 323   bool _force;
 324 #endif // !defined(PRODUCT)
 325 
 326 public:
 327   void init() PRODUCT_RETURN;
 328   void update() PRODUCT_RETURN;
 329   bool should_force() PRODUCT_RETURN_( return false; );
 330 };
 331 
 332 // this will enable a variety of different statistics per GC task
 333 #define _MARKING_STATS_       0
 334 // this will enable the higher verbose levels
 335 #define _MARKING_VERBOSE_     0
 336 
 337 #if _MARKING_STATS_
 338 #define statsOnly(statement)  \
 339 do {                          \
 340   statement ;                 \
 341 } while (0)
 342 #else // _MARKING_STATS_
 343 #define statsOnly(statement)  \
 344 do {                          \
 345 } while (0)
 346 #endif // _MARKING_STATS_
 347 
 348 typedef enum {
 349   no_verbose  = 0,   // verbose turned off
 350   stats_verbose,     // only prints stats at the end of marking
 351   low_verbose,       // low verbose, mostly per region and per major event
 352   medium_verbose,    // a bit more detailed than low
 353   high_verbose       // per object verbose
 354 } CMVerboseLevel;
 355 
 356 
 357 class ConcurrentMarkThread;
 358 
 359 class ConcurrentMark: public CHeapObj {
 360   friend class ConcurrentMarkThread;
 361   friend class CMTask;
 362   friend class CMBitMapClosure;
 363   friend class CSMarkOopClosure;
 364   friend class CMGlobalObjectClosure;
 365   friend class CMRemarkTask;
 366   friend class CMConcurrentMarkingTask;
 367   friend class G1ParNoteEndTask;
 368   friend class CalcLiveObjectsClosure;
 369   friend class G1RefProcTaskProxy;
 370   friend class G1RefProcTaskExecutor;
 371   friend class G1CMParKeepAliveAndDrainClosure;
 372   friend class G1CMParDrainMarkingStackClosure;
 373 
 374 protected:
 375   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 376   G1CollectedHeap*      _g1h;        // the heap.
 377   size_t                _parallel_marking_threads; // the number of marking
 378                                                    // threads we'll use
 379   double                _sleep_factor; // how much we have to sleep, with
 380                                        // respect to the work we just did, to
 381                                        // meet the marking overhead goal
 382   double                _marking_task_overhead; // marking target overhead for
 383                                                 // a single task
 384 
 385   // same as the two above, but for the cleanup task
 386   double                _cleanup_sleep_factor;
 387   double                _cleanup_task_overhead;
 388 
 389   FreeRegionList        _cleanup_list;
 390 
 391   // CMS marking support structures
 392   CMBitMap                _markBitMap1;
 393   CMBitMap                _markBitMap2;
 394   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 395   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 396   bool                    _at_least_one_mark_complete;
 397 
 398   BitMap                  _region_bm;
 399   BitMap                  _card_bm;
 400 
 401   // Heap bounds
 402   HeapWord*               _heap_start;
 403   HeapWord*               _heap_end;
 404 
 405   // For gray objects
 406   CMMarkStack             _markStack; // Grey objects behind global finger.
 407   CMRegionStack           _regionStack; // Grey regions behind global finger.
 408   HeapWord* volatile      _finger;  // the global finger, region aligned,
 409                                     // always points to the end of the
 410                                     // last claimed region
 411 
 412   // marking tasks
 413   size_t                  _max_task_num; // maximum task number
 414   size_t                  _active_tasks; // task num currently active
 415   CMTask**                _tasks;        // task queue array (max_task_num len)
 416   CMTaskQueueSet*         _task_queues;  // task queue set
 417   ParallelTaskTerminator  _terminator;   // for termination
 418 
 419   // Two sync barriers that are used to synchronise tasks when an
 420   // overflow occurs. The algorithm is the following. All tasks enter
 421   // the first one to ensure that they have all stopped manipulating
 422   // the global data structures. After they exit it, they re-initialise
 423   // their data structures and task 0 re-initialises the global data
 424   // structures. Then, they enter the second sync barrier. This
 425   // ensure, that no task starts doing work before all data
 426   // structures (local and global) have been re-initialised. When they
 427   // exit it, they are free to start working again.
 428   WorkGangBarrierSync     _first_overflow_barrier_sync;
 429   WorkGangBarrierSync     _second_overflow_barrier_sync;
 430 
 431 
 432   // this is set by any task, when an overflow on the global data
 433   // structures is detected.
 434   volatile bool           _has_overflown;
 435   // true: marking is concurrent, false: we're in remark
 436   volatile bool           _concurrent;
 437   // set at the end of a Full GC so that marking aborts
 438   volatile bool           _has_aborted;
 439 
 440   // used when remark aborts due to an overflow to indicate that
 441   // another concurrent marking phase should start
 442   volatile bool           _restart_for_overflow;
 443 
 444   // This is true from the very start of concurrent marking until the
 445   // point when all the tasks complete their work. It is really used
 446   // to determine the points between the end of concurrent marking and
 447   // time of remark.
 448   volatile bool           _concurrent_marking_in_progress;
 449 
 450   // verbose level
 451   CMVerboseLevel          _verbose_level;
 452 
 453   // These two fields are used to implement the optimisation that
 454   // avoids pushing objects on the global/region stack if there are
 455   // no collection set regions above the lowest finger.
 456 
 457   // This is the lowest finger (among the global and local fingers),
 458   // which is calculated before a new collection set is chosen.
 459   HeapWord* _min_finger;
 460   // If this flag is true, objects/regions that are marked below the
 461   // finger should be pushed on the stack(s). If this is flag is
 462   // false, it is safe not to push them on the stack(s).
 463   bool      _should_gray_objects;
 464 
 465   // All of these times are in ms.
 466   NumberSeq _init_times;
 467   NumberSeq _remark_times;
 468   NumberSeq   _remark_mark_times;
 469   NumberSeq   _remark_weak_ref_times;
 470   NumberSeq _cleanup_times;
 471   double    _total_counting_time;
 472   double    _total_rs_scrub_time;
 473 
 474   double*   _accum_task_vtime;   // accumulated task vtime
 475 
 476   WorkGang* _parallel_workers;
 477 
 478   ForceOverflowSettings _force_overflow_conc;
 479   ForceOverflowSettings _force_overflow_stw;
 480 
 481   void weakRefsWork(bool clear_all_soft_refs);
 482 
 483   void swapMarkBitMaps();
 484 
 485   // It resets the global marking data structures, as well as the
 486   // task local ones; should be called during initial mark.
 487   void reset();
 488   // It resets all the marking data structures.
 489   void clear_marking_state(bool clear_overflow = true);
 490 
 491   // It should be called to indicate which phase we're in (concurrent
 492   // mark or remark) and how many threads are currently active.
 493   void set_phase(size_t active_tasks, bool concurrent);
 494   // We do this after we're done with marking so that the marking data
 495   // structures are initialised to a sensible and predictable state.
 496   void set_non_marking_state();
 497 
 498   // prints all gathered CM-related statistics
 499   void print_stats();
 500 
 501   bool cleanup_list_is_empty() {
 502     return _cleanup_list.is_empty();
 503   }
 504 
 505   // accessor methods
 506   size_t parallel_marking_threads() { return _parallel_marking_threads; }
 507   double sleep_factor()             { return _sleep_factor; }
 508   double marking_task_overhead()    { return _marking_task_overhead;}
 509   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
 510   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
 511 
 512   HeapWord*               finger()        { return _finger;   }
 513   bool                    concurrent()    { return _concurrent; }
 514   size_t                  active_tasks()  { return _active_tasks; }
 515   ParallelTaskTerminator* terminator()    { return &_terminator; }
 516 
 517   // It claims the next available region to be scanned by a marking
 518   // task. It might return NULL if the next region is empty or we have
 519   // run out of regions. In the latter case, out_of_regions()
 520   // determines whether we've really run out of regions or the task
 521   // should call claim_region() again.  This might seem a bit
 522   // awkward. Originally, the code was written so that claim_region()
 523   // either successfully returned with a non-empty region or there
 524   // were no more regions to be claimed. The problem with this was
 525   // that, in certain circumstances, it iterated over large chunks of
 526   // the heap finding only empty regions and, while it was working, it
 527   // was preventing the calling task to call its regular clock
 528   // method. So, this way, each task will spend very little time in
 529   // claim_region() and is allowed to call the regular clock method
 530   // frequently.
 531   HeapRegion* claim_region(int task);
 532 
 533   // It determines whether we've run out of regions to scan.
 534   bool        out_of_regions() { return _finger == _heap_end; }
 535 
 536   // Returns the task with the given id
 537   CMTask* task(int id) {
 538     assert(0 <= id && id < (int) _active_tasks,
 539            "task id not within active bounds");
 540     return _tasks[id];
 541   }
 542 
 543   // Returns the task queue with the given id
 544   CMTaskQueue* task_queue(int id) {
 545     assert(0 <= id && id < (int) _active_tasks,
 546            "task queue id not within active bounds");
 547     return (CMTaskQueue*) _task_queues->queue(id);
 548   }
 549 
 550   // Returns the task queue set
 551   CMTaskQueueSet* task_queues()  { return _task_queues; }
 552 
 553   // Access / manipulation of the overflow flag which is set to
 554   // indicate that the global stack or region stack has overflown
 555   bool has_overflown()           { return _has_overflown; }
 556   void set_has_overflown()       { _has_overflown = true; }
 557   void clear_has_overflown()     { _has_overflown = false; }
 558 
 559   bool has_aborted()             { return _has_aborted; }
 560   bool restart_for_overflow()    { return _restart_for_overflow; }
 561 
 562   // Methods to enter the two overflow sync barriers
 563   void enter_first_sync_barrier(int task_num);
 564   void enter_second_sync_barrier(int task_num);
 565 
 566   ForceOverflowSettings* force_overflow_conc() {
 567     return &_force_overflow_conc;
 568   }
 569 
 570   ForceOverflowSettings* force_overflow_stw() {
 571     return &_force_overflow_stw;
 572   }
 573 
 574   ForceOverflowSettings* force_overflow() {
 575     if (concurrent()) {
 576       return force_overflow_conc();
 577     } else {
 578       return force_overflow_stw();
 579     }
 580   }
 581 
 582 public:
 583   // Manipulation of the global mark stack.
 584   // Notice that the first mark_stack_push is CAS-based, whereas the
 585   // two below are Mutex-based. This is OK since the first one is only
 586   // called during evacuation pauses and doesn't compete with the
 587   // other two (which are called by the marking tasks during
 588   // concurrent marking or remark).
 589   bool mark_stack_push(oop p) {
 590     _markStack.par_push(p);
 591     if (_markStack.overflow()) {
 592       set_has_overflown();
 593       return false;
 594     }
 595     return true;
 596   }
 597   bool mark_stack_push(oop* arr, int n) {
 598     _markStack.par_push_arr(arr, n);
 599     if (_markStack.overflow()) {
 600       set_has_overflown();
 601       return false;
 602     }
 603     return true;
 604   }
 605   void mark_stack_pop(oop* arr, int max, int* n) {
 606     _markStack.par_pop_arr(arr, max, n);
 607   }
 608   size_t mark_stack_size()              { return _markStack.size(); }
 609   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 610   bool mark_stack_overflow()            { return _markStack.overflow(); }
 611   bool mark_stack_empty()               { return _markStack.isEmpty(); }
 612 
 613   // (Lock-free) Manipulation of the region stack
 614   bool region_stack_push_lock_free(MemRegion mr) {
 615     // Currently we only call the lock-free version during evacuation
 616     // pauses.
 617     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
 618 
 619     _regionStack.push_lock_free(mr);
 620     if (_regionStack.overflow()) {
 621       set_has_overflown();
 622       return false;
 623     }
 624     return true;
 625   }
 626 
 627   // Lock-free version of region-stack pop. Should only be
 628   // called in tandem with other lock-free pops.
 629   MemRegion region_stack_pop_lock_free() {
 630     return _regionStack.pop_lock_free();
 631   }
 632 
 633 #if 0
 634   // The routines that manipulate the region stack with a lock are
 635   // not currently used. They should be retained, however, as a
 636   // diagnostic aid.
 637 
 638   bool region_stack_push_with_lock(MemRegion mr) {
 639     // Currently we only call the lock-based version during either
 640     // concurrent marking or remark.
 641     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 642            "if we are at a safepoint it should be the remark safepoint");
 643 
 644     _regionStack.push_with_lock(mr);
 645     if (_regionStack.overflow()) {
 646       set_has_overflown();
 647       return false;
 648     }
 649     return true;
 650   }
 651 
 652   MemRegion region_stack_pop_with_lock() {
 653     // Currently we only call the lock-based version during either
 654     // concurrent marking or remark.
 655     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 656            "if we are at a safepoint it should be the remark safepoint");
 657 
 658     return _regionStack.pop_with_lock();
 659   }
 660 #endif
 661 
 662   int region_stack_size()               { return _regionStack.size(); }
 663   bool region_stack_overflow()          { return _regionStack.overflow(); }
 664   bool region_stack_empty()             { return _regionStack.isEmpty(); }
 665 
 666   // Iterate over any regions that were aborted while draining the
 667   // region stack (any such regions are saved in the corresponding
 668   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
 669   // any regions that point into the collection set.
 670   bool invalidate_aborted_regions_in_cset();
 671 
 672   // Returns true if there are any aborted memory regions.
 673   bool has_aborted_regions();
 674 
 675   bool concurrent_marking_in_progress() {
 676     return _concurrent_marking_in_progress;
 677   }
 678   void set_concurrent_marking_in_progress() {
 679     _concurrent_marking_in_progress = true;
 680   }
 681   void clear_concurrent_marking_in_progress() {
 682     _concurrent_marking_in_progress = false;
 683   }
 684 
 685   void update_accum_task_vtime(int i, double vtime) {
 686     _accum_task_vtime[i] += vtime;
 687   }
 688 
 689   double all_task_accum_vtime() {
 690     double ret = 0.0;
 691     for (int i = 0; i < (int)_max_task_num; ++i)
 692       ret += _accum_task_vtime[i];
 693     return ret;
 694   }
 695 
 696   // Attempts to steal an object from the task queues of other tasks
 697   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
 698     return _task_queues->steal(task_num, hash_seed, obj);
 699   }
 700 
 701   // It grays an object by first marking it. Then, if it's behind the
 702   // global finger, it also pushes it on the global stack.
 703   void deal_with_reference(oop obj);
 704 
 705   ConcurrentMark(ReservedSpace rs, int max_regions);
 706   ~ConcurrentMark();
 707   ConcurrentMarkThread* cmThread() { return _cmThread; }
 708 
 709   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 710   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 711 
 712   // The following three are interaction between CM and
 713   // G1CollectedHeap
 714 
 715   // This notifies CM that a root during initial-mark needs to be
 716   // grayed and it's MT-safe. Currently, we just mark it. But, in the
 717   // future, we can experiment with pushing it on the stack and we can
 718   // do this without changing G1CollectedHeap.
 719   void grayRoot(oop p);
 720   // It's used during evacuation pauses to gray a region, if
 721   // necessary, and it's MT-safe. It assumes that the caller has
 722   // marked any objects on that region. If _should_gray_objects is
 723   // true and we're still doing concurrent marking, the region is
 724   // pushed on the region stack, if it is located below the global
 725   // finger, otherwise we do nothing.
 726   void grayRegionIfNecessary(MemRegion mr);
 727   // It's used during evacuation pauses to mark and, if necessary,
 728   // gray a single object and it's MT-safe. It assumes the caller did
 729   // not mark the object. If _should_gray_objects is true and we're
 730   // still doing concurrent marking, the objects is pushed on the
 731   // global stack, if it is located below the global finger, otherwise
 732   // we do nothing.
 733   void markAndGrayObjectIfNecessary(oop p);
 734 
 735   // It iterates over the heap and for each object it comes across it
 736   // will dump the contents of its reference fields, as well as
 737   // liveness information for the object and its referents. The dump
 738   // will be written to a file with the following name:
 739   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
 740   // whether the prev (use_prev_marking == true) or next
 741   // (use_prev_marking == false) marking information will be used to
 742   // determine the liveness of each object / referent. If all is true,
 743   // all objects in the heap will be dumped, otherwise only the live
 744   // ones. In the dump the following symbols / abbreviations are used:
 745   //   M : an explicitly live object (its bitmap bit is set)
 746   //   > : an implicitly live object (over tams)
 747   //   O : an object outside the G1 heap (typically: in the perm gen)
 748   //   NOT : a reference field whose referent is not live
 749   //   AND MARKED : indicates that an object is both explicitly and
 750   //   implicitly live (it should be one or the other, not both)
 751   void print_reachable(const char* str,
 752                        bool use_prev_marking, bool all) PRODUCT_RETURN;
 753 
 754   // Clear the next marking bitmap (will be called concurrently).
 755   void clearNextBitmap();
 756 
 757   // main CMS steps and related support
 758   void checkpointRootsInitial();
 759 
 760   // These two do the work that needs to be done before and after the
 761   // initial root checkpoint. Since this checkpoint can be done at two
 762   // different points (i.e. an explicit pause or piggy-backed on a
 763   // young collection), then it's nice to be able to easily share the
 764   // pre/post code. It might be the case that we can put everything in
 765   // the post method. TP
 766   void checkpointRootsInitialPre();
 767   void checkpointRootsInitialPost();
 768 
 769   // Do concurrent phase of marking, to a tentative transitive closure.
 770   void markFromRoots();
 771 
 772   // Process all unprocessed SATB buffers. It is called at the
 773   // beginning of an evacuation pause.
 774   void drainAllSATBBuffers();
 775 
 776   void checkpointRootsFinal(bool clear_all_soft_refs);
 777   void checkpointRootsFinalWork();
 778   void calcDesiredRegions();
 779   void cleanup();
 780   void completeCleanup();
 781 
 782   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 783   // this carefully!
 784   void markPrev(oop p);
 785   void clear(oop p);
 786   // Clears marks for all objects in the given range, for both prev and
 787   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
 788   // this carefully!
 789   void clearRangeBothMaps(MemRegion mr);
 790 
 791   // Record the current top of the mark and region stacks; a
 792   // subsequent oops_do() on the mark stack and
 793   // invalidate_entries_into_cset() on the region stack will iterate
 794   // only over indices valid at the time of this call.
 795   void set_oops_do_bound() {
 796     _markStack.set_oops_do_bound();
 797     _regionStack.set_oops_do_bound();
 798   }
 799   // Iterate over the oops in the mark stack and all local queues. It
 800   // also calls invalidate_entries_into_cset() on the region stack.
 801   void oops_do(OopClosure* f);
 802   // It is called at the end of an evacuation pause during marking so
 803   // that CM is notified of where the new end of the heap is. It
 804   // doesn't do anything if concurrent_marking_in_progress() is false,
 805   // unless the force parameter is true.
 806   void update_g1_committed(bool force = false);
 807 
 808   void complete_marking_in_collection_set();
 809 
 810   // It indicates that a new collection set is being chosen.
 811   void newCSet();
 812   // It registers a collection set heap region with CM. This is used
 813   // to determine whether any heap regions are located above the finger.
 814   void registerCSetRegion(HeapRegion* hr);
 815 
 816   // Registers the maximum region-end associated with a set of
 817   // regions with CM. Again this is used to determine whether any
 818   // heap regions are located above the finger.
 819   void register_collection_set_finger(HeapWord* max_finger) {
 820     // max_finger is the highest heap region end of the regions currently
 821     // contained in the collection set. If this value is larger than
 822     // _min_finger then we need to gray objects.
 823     // This routine is like registerCSetRegion but for an entire
 824     // collection of regions.
 825     if (max_finger > _min_finger)
 826       _should_gray_objects = true;
 827   }
 828 
 829   // Returns "true" if at least one mark has been completed.
 830   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
 831 
 832   bool isMarked(oop p) const {
 833     assert(p != NULL && p->is_oop(), "expected an oop");
 834     HeapWord* addr = (HeapWord*)p;
 835     assert(addr >= _nextMarkBitMap->startWord() ||
 836            addr < _nextMarkBitMap->endWord(), "in a region");
 837 
 838     return _nextMarkBitMap->isMarked(addr);
 839   }
 840 
 841   inline bool not_yet_marked(oop p) const;
 842 
 843   // XXX Debug code
 844   bool containing_card_is_marked(void* p);
 845   bool containing_cards_are_marked(void* start, void* last);
 846 
 847   bool isPrevMarked(oop p) const {
 848     assert(p != NULL && p->is_oop(), "expected an oop");
 849     HeapWord* addr = (HeapWord*)p;
 850     assert(addr >= _prevMarkBitMap->startWord() ||
 851            addr < _prevMarkBitMap->endWord(), "in a region");
 852 
 853     return _prevMarkBitMap->isMarked(addr);
 854   }
 855 
 856   inline bool do_yield_check(int worker_i = 0);
 857   inline bool should_yield();
 858 
 859   // Called to abort the marking cycle after a Full GC takes palce.
 860   void abort();
 861 
 862   // This prints the global/local fingers. It is used for debugging.
 863   NOT_PRODUCT(void print_finger();)
 864 
 865   void print_summary_info();
 866 
 867   void print_worker_threads_on(outputStream* st) const;
 868 
 869   // The following indicate whether a given verbose level has been
 870   // set. Notice that anything above stats is conditional to
 871   // _MARKING_VERBOSE_ having been set to 1
 872   bool verbose_stats()
 873     { return _verbose_level >= stats_verbose; }
 874   bool verbose_low()
 875     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
 876   bool verbose_medium()
 877     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
 878   bool verbose_high()
 879     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
 880 };
 881 
 882 // A class representing a marking task.
 883 class CMTask : public TerminatorTerminator {
 884 private:
 885   enum PrivateConstants {
 886     // the regular clock call is called once the scanned words reaches
 887     // this limit
 888     words_scanned_period          = 12*1024,
 889     // the regular clock call is called once the number of visited
 890     // references reaches this limit
 891     refs_reached_period           = 384,
 892     // initial value for the hash seed, used in the work stealing code
 893     init_hash_seed                = 17,
 894     // how many entries will be transferred between global stack and
 895     // local queues
 896     global_stack_transfer_size    = 16
 897   };
 898 
 899   int                         _task_id;
 900   G1CollectedHeap*            _g1h;
 901   ConcurrentMark*             _cm;
 902   CMBitMap*                   _nextMarkBitMap;
 903   // the task queue of this task
 904   CMTaskQueue*                _task_queue;
 905 private:
 906   // the task queue set---needed for stealing
 907   CMTaskQueueSet*             _task_queues;
 908   // indicates whether the task has been claimed---this is only  for
 909   // debugging purposes
 910   bool                        _claimed;
 911 
 912   // number of calls to this task
 913   int                         _calls;
 914 
 915   // when the virtual timer reaches this time, the marking step should
 916   // exit
 917   double                      _time_target_ms;
 918   // the start time of the current marking step
 919   double                      _start_time_ms;
 920 
 921   // the oop closure used for iterations over oops
 922   OopClosure*                 _oop_closure;
 923 
 924   // the region this task is scanning, NULL if we're not scanning any
 925   HeapRegion*                 _curr_region;
 926   // the local finger of this task, NULL if we're not scanning a region
 927   HeapWord*                   _finger;
 928   // limit of the region this task is scanning, NULL if we're not scanning one
 929   HeapWord*                   _region_limit;
 930 
 931   // This is used only when we scan regions popped from the region
 932   // stack. It records what the last object on such a region we
 933   // scanned was. It is used to ensure that, if we abort region
 934   // iteration, we do not rescan the first part of the region. This
 935   // should be NULL when we're not scanning a region from the region
 936   // stack.
 937   HeapWord*                   _region_finger;
 938 
 939   // If we abort while scanning a region we record the remaining
 940   // unscanned portion and check this field when marking restarts.
 941   // This avoids having to push on the region stack while other
 942   // marking threads may still be popping regions.
 943   // If we were to push the unscanned portion directly to the
 944   // region stack then we would need to using locking versions
 945   // of the push and pop operations.
 946   MemRegion                   _aborted_region;
 947 
 948   // the number of words this task has scanned
 949   size_t                      _words_scanned;
 950   // When _words_scanned reaches this limit, the regular clock is
 951   // called. Notice that this might be decreased under certain
 952   // circumstances (i.e. when we believe that we did an expensive
 953   // operation).
 954   size_t                      _words_scanned_limit;
 955   // the initial value of _words_scanned_limit (i.e. what it was
 956   // before it was decreased).
 957   size_t                      _real_words_scanned_limit;
 958 
 959   // the number of references this task has visited
 960   size_t                      _refs_reached;
 961   // When _refs_reached reaches this limit, the regular clock is
 962   // called. Notice this this might be decreased under certain
 963   // circumstances (i.e. when we believe that we did an expensive
 964   // operation).
 965   size_t                      _refs_reached_limit;
 966   // the initial value of _refs_reached_limit (i.e. what it was before
 967   // it was decreased).
 968   size_t                      _real_refs_reached_limit;
 969 
 970   // used by the work stealing stuff
 971   int                         _hash_seed;
 972   // if this is true, then the task has aborted for some reason
 973   bool                        _has_aborted;
 974   // set when the task aborts because it has met its time quota
 975   bool                        _has_timed_out;
 976   // true when we're draining SATB buffers; this avoids the task
 977   // aborting due to SATB buffers being available (as we're already
 978   // dealing with them)
 979   bool                        _draining_satb_buffers;
 980 
 981   // number sequence of past step times
 982   NumberSeq                   _step_times_ms;
 983   // elapsed time of this task
 984   double                      _elapsed_time_ms;
 985   // termination time of this task
 986   double                      _termination_time_ms;
 987   // when this task got into the termination protocol
 988   double                      _termination_start_time_ms;
 989 
 990   // true when the task is during a concurrent phase, false when it is
 991   // in the remark phase (so, in the latter case, we do not have to
 992   // check all the things that we have to check during the concurrent
 993   // phase, i.e. SATB buffer availability...)
 994   bool                        _concurrent;
 995 
 996   TruncatedSeq                _marking_step_diffs_ms;
 997 
 998   // LOTS of statistics related with this task
 999 #if _MARKING_STATS_
1000   NumberSeq                   _all_clock_intervals_ms;
1001   double                      _interval_start_time_ms;
1002 
1003   int                         _aborted;
1004   int                         _aborted_overflow;
1005   int                         _aborted_cm_aborted;
1006   int                         _aborted_yield;
1007   int                         _aborted_timed_out;
1008   int                         _aborted_satb;
1009   int                         _aborted_termination;
1010 
1011   int                         _steal_attempts;
1012   int                         _steals;
1013 
1014   int                         _clock_due_to_marking;
1015   int                         _clock_due_to_scanning;
1016 
1017   int                         _local_pushes;
1018   int                         _local_pops;
1019   int                         _local_max_size;
1020   int                         _objs_scanned;
1021 
1022   int                         _global_pushes;
1023   int                         _global_pops;
1024   int                         _global_max_size;
1025 
1026   int                         _global_transfers_to;
1027   int                         _global_transfers_from;
1028 
1029   int                         _region_stack_pops;
1030 
1031   int                         _regions_claimed;
1032   int                         _objs_found_on_bitmap;
1033 
1034   int                         _satb_buffers_processed;
1035 #endif // _MARKING_STATS_
1036 
1037   // it updates the local fields after this task has claimed
1038   // a new region to scan
1039   void setup_for_region(HeapRegion* hr);
1040   // it brings up-to-date the limit of the region
1041   void update_region_limit();
1042   // it resets the local fields after a task has finished scanning a
1043   // region
1044   void giveup_current_region();
1045 
1046   // called when either the words scanned or the refs visited limit
1047   // has been reached
1048   void reached_limit();
1049   // recalculates the words scanned and refs visited limits
1050   void recalculate_limits();
1051   // decreases the words scanned and refs visited limits when we reach
1052   // an expensive operation
1053   void decrease_limits();
1054   // it checks whether the words scanned or refs visited reached their
1055   // respective limit and calls reached_limit() if they have
1056   void check_limits() {
1057     if (_words_scanned >= _words_scanned_limit ||
1058         _refs_reached >= _refs_reached_limit)
1059       reached_limit();
1060   }
1061   // this is supposed to be called regularly during a marking step as
1062   // it checks a bunch of conditions that might cause the marking step
1063   // to abort
1064   void regular_clock_call();
1065   bool concurrent() { return _concurrent; }
1066 
1067 public:
1068   // It resets the task; it should be called right at the beginning of
1069   // a marking phase.
1070   void reset(CMBitMap* _nextMarkBitMap);
1071   // it clears all the fields that correspond to a claimed region.
1072   void clear_region_fields();
1073 
1074   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1075 
1076   // The main method of this class which performs a marking step
1077   // trying not to exceed the given duration. However, it might exit
1078   // prematurely, according to some conditions (i.e. SATB buffers are
1079   // available for processing).
1080   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
1081 
1082   // These two calls start and stop the timer
1083   void record_start_time() {
1084     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1085   }
1086   void record_end_time() {
1087     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1088   }
1089 
1090   // returns the task ID
1091   int task_id() { return _task_id; }
1092 
1093   // From TerminatorTerminator. It determines whether this task should
1094   // exit the termination protocol after it's entered it.
1095   virtual bool should_exit_termination();
1096 
1097   HeapWord* finger()            { return _finger; }
1098 
1099   bool has_aborted()            { return _has_aborted; }
1100   void set_has_aborted()        { _has_aborted = true; }
1101   void clear_has_aborted()      { _has_aborted = false; }
1102   bool has_timed_out()          { return _has_timed_out; }
1103   bool claimed()                { return _claimed; }
1104 
1105   // Support routines for the partially scanned region that may be
1106   // recorded as a result of aborting while draining the CMRegionStack
1107   MemRegion aborted_region()    { return _aborted_region; }
1108   void set_aborted_region(MemRegion mr)
1109                                 { _aborted_region = mr; }
1110 
1111   // Clears any recorded partially scanned region
1112   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
1113 
1114   void set_oop_closure(OopClosure* oop_closure) {
1115     _oop_closure = oop_closure;
1116   }
1117 
1118   // It grays the object by marking it and, if necessary, pushing it
1119   // on the local queue
1120   void deal_with_reference(oop obj);
1121 
1122   // It scans an object and visits its children.
1123   void scan_object(oop obj) {
1124     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
1125 
1126     if (_cm->verbose_high())
1127       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
1128                              _task_id, (void*) obj);
1129 
1130     size_t obj_size = obj->size();
1131     _words_scanned += obj_size;
1132 
1133     obj->oop_iterate(_oop_closure);
1134     statsOnly( ++_objs_scanned );
1135     check_limits();
1136   }
1137 
1138   // It pushes an object on the local queue.
1139   void push(oop obj);
1140 
1141   // These two move entries to/from the global stack.
1142   void move_entries_to_global_stack();
1143   void get_entries_from_global_stack();
1144 
1145   // It pops and scans objects from the local queue. If partially is
1146   // true, then it stops when the queue size is of a given limit. If
1147   // partially is false, then it stops when the queue is empty.
1148   void drain_local_queue(bool partially);
1149   // It moves entries from the global stack to the local queue and
1150   // drains the local queue. If partially is true, then it stops when
1151   // both the global stack and the local queue reach a given size. If
1152   // partially if false, it tries to empty them totally.
1153   void drain_global_stack(bool partially);
1154   // It keeps picking SATB buffers and processing them until no SATB
1155   // buffers are available.
1156   void drain_satb_buffers();
1157   // It keeps popping regions from the region stack and processing
1158   // them until the region stack is empty.
1159   void drain_region_stack(BitMapClosure* closure);
1160 
1161   // moves the local finger to a new location
1162   inline void move_finger_to(HeapWord* new_finger) {
1163     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1164     _finger = new_finger;
1165   }
1166 
1167   // moves the region finger to a new location
1168   inline void move_region_finger_to(HeapWord* new_finger) {
1169     assert(new_finger < _cm->finger(), "invariant");
1170     _region_finger = new_finger;
1171   }
1172 
1173   CMTask(int task_num, ConcurrentMark *cm,
1174          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1175 
1176   // it prints statistics associated with this task
1177   void print_stats();
1178 
1179 #if _MARKING_STATS_
1180   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1181 #endif // _MARKING_STATS_
1182 };
1183 
1184 // Class that's used to to print out per-region liveness
1185 // information. It's currently used at the end of marking and also
1186 // after we sort the old regions at the end of the cleanup operation.
1187 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1188 private:
1189   outputStream* _out;
1190 
1191   // Accumulators for these values.
1192   size_t _total_used_bytes;
1193   size_t _total_capacity_bytes;
1194   size_t _total_prev_live_bytes;
1195   size_t _total_next_live_bytes;
1196 
1197   // These are set up when we come across a "stars humongous" region
1198   // (as this is where most of this information is stored, not in the
1199   // subsequent "continues humongous" regions). After that, for every
1200   // region in a given humongous region series we deduce the right
1201   // values for it by simply subtracting the appropriate amount from
1202   // these fields. All these values should reach 0 after we've visited
1203   // the last region in the series.
1204   size_t _hum_used_bytes;
1205   size_t _hum_capacity_bytes;
1206   size_t _hum_prev_live_bytes;
1207   size_t _hum_next_live_bytes;
1208 
1209   static double perc(size_t val, size_t total) {
1210     if (total == 0) {
1211       return 0.0;
1212     } else {
1213       return 100.0 * ((double) val / (double) total);
1214     }
1215   }
1216 
1217   static double bytes_to_mb(size_t val) {
1218     return (double) val / (double) M;
1219   }
1220 
1221   // See the .cpp file.
1222   size_t get_hum_bytes(size_t* hum_bytes);
1223   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1224                      size_t* prev_live_bytes, size_t* next_live_bytes);
1225 
1226 public:
1227   // The header and footer are printed in the constructor and
1228   // destructor respectively.
1229   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1230   virtual bool doHeapRegion(HeapRegion* r);
1231   ~G1PrintRegionLivenessInfoClosure();
1232 };
1233 
1234 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP