1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1MarkSweep.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/g1/vm_operations_g1.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/generationSpec.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.pcgc.inline.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/vmThread.hpp"
  48 
  49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  50 
  51 // turn it on so that the contents of the young list (scan-only /
  52 // to-be-collected) are printed at "strategic" points before / during
  53 // / after the collection --- this is useful for debugging
  54 #define YOUNG_LIST_VERBOSE 0
  55 // CURRENT STATUS
  56 // This file is under construction.  Search for "FIXME".
  57 
  58 // INVARIANTS/NOTES
  59 //
  60 // All allocation activity covered by the G1CollectedHeap interface is
  61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  62 // and allocate_new_tlab, which are the "entry" points to the
  63 // allocation code from the rest of the JVM.  (Note that this does not
  64 // apply to TLAB allocation, which is not part of this interface: it
  65 // is done by clients of this interface.)
  66 
  67 // Local to this file.
  68 
  69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  70   SuspendibleThreadSet* _sts;
  71   G1RemSet* _g1rs;
  72   ConcurrentG1Refine* _cg1r;
  73   bool _concurrent;
  74 public:
  75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  76                               G1RemSet* g1rs,
  77                               ConcurrentG1Refine* cg1r) :
  78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  79   {}
  80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  82     // This path is executed by the concurrent refine or mutator threads,
  83     // concurrently, and so we do not care if card_ptr contains references
  84     // that point into the collection set.
  85     assert(!oops_into_cset, "should be");
  86 
  87     if (_concurrent && _sts->should_yield()) {
  88       // Caller will actually yield.
  89       return false;
  90     }
  91     // Otherwise, we finished successfully; return true.
  92     return true;
  93   }
  94   void set_concurrent(bool b) { _concurrent = b; }
  95 };
  96 
  97 
  98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  99   int _calls;
 100   G1CollectedHeap* _g1h;
 101   CardTableModRefBS* _ctbs;
 102   int _histo[256];
 103 public:
 104   ClearLoggedCardTableEntryClosure() :
 105     _calls(0)
 106   {
 107     _g1h = G1CollectedHeap::heap();
 108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 109     for (int i = 0; i < 256; i++) _histo[i] = 0;
 110   }
 111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 113       _calls++;
 114       unsigned char* ujb = (unsigned char*)card_ptr;
 115       int ind = (int)(*ujb);
 116       _histo[ind]++;
 117       *card_ptr = -1;
 118     }
 119     return true;
 120   }
 121   int calls() { return _calls; }
 122   void print_histo() {
 123     gclog_or_tty->print_cr("Card table value histogram:");
 124     for (int i = 0; i < 256; i++) {
 125       if (_histo[i] != 0) {
 126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 127       }
 128     }
 129   }
 130 };
 131 
 132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 133   int _calls;
 134   G1CollectedHeap* _g1h;
 135   CardTableModRefBS* _ctbs;
 136 public:
 137   RedirtyLoggedCardTableEntryClosure() :
 138     _calls(0)
 139   {
 140     _g1h = G1CollectedHeap::heap();
 141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 142   }
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 145       _calls++;
 146       *card_ptr = 0;
 147     }
 148     return true;
 149   }
 150   int calls() { return _calls; }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 154 public:
 155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 156     *card_ptr = CardTableModRefBS::dirty_card_val();
 157     return true;
 158   }
 159 };
 160 
 161 YoungList::YoungList(G1CollectedHeap* g1h)
 162   : _g1h(g1h), _head(NULL),
 163     _length(0),
 164     _last_sampled_rs_lengths(0),
 165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 166 {
 167   guarantee( check_list_empty(false), "just making sure..." );
 168 }
 169 
 170 void YoungList::push_region(HeapRegion *hr) {
 171   assert(!hr->is_young(), "should not already be young");
 172   assert(hr->get_next_young_region() == NULL, "cause it should!");
 173 
 174   hr->set_next_young_region(_head);
 175   _head = hr;
 176 
 177   hr->set_young();
 178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 179   ++_length;
 180 }
 181 
 182 void YoungList::add_survivor_region(HeapRegion* hr) {
 183   assert(hr->is_survivor(), "should be flagged as survivor region");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_survivor_head);
 187   if (_survivor_head == NULL) {
 188     _survivor_tail = hr;
 189   }
 190   _survivor_head = hr;
 191 
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     list->set_not_young();
 201     list = next;
 202   }
 203 }
 204 
 205 void YoungList::empty_list() {
 206   assert(check_list_well_formed(), "young list should be well formed");
 207 
 208   empty_list(_head);
 209   _head = NULL;
 210   _length = 0;
 211 
 212   empty_list(_survivor_head);
 213   _survivor_head = NULL;
 214   _survivor_tail = NULL;
 215   _survivor_length = 0;
 216 
 217   _last_sampled_rs_lengths = 0;
 218 
 219   assert(check_list_empty(false), "just making sure...");
 220 }
 221 
 222 bool YoungList::check_list_well_formed() {
 223   bool ret = true;
 224 
 225   size_t length = 0;
 226   HeapRegion* curr = _head;
 227   HeapRegion* last = NULL;
 228   while (curr != NULL) {
 229     if (!curr->is_young()) {
 230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 231                              "incorrectly tagged (y: %d, surv: %d)",
 232                              curr->bottom(), curr->end(),
 233                              curr->is_young(), curr->is_survivor());
 234       ret = false;
 235     }
 236     ++length;
 237     last = curr;
 238     curr = curr->get_next_young_region();
 239   }
 240   ret = ret && (length == _length);
 241 
 242   if (!ret) {
 243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 245                            length, _length);
 246   }
 247 
 248   return ret;
 249 }
 250 
 251 bool YoungList::check_list_empty(bool check_sample) {
 252   bool ret = true;
 253 
 254   if (_length != 0) {
 255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 256                   _length);
 257     ret = false;
 258   }
 259   if (check_sample && _last_sampled_rs_lengths != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 261     ret = false;
 262   }
 263   if (_head != NULL) {
 264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 265     ret = false;
 266   }
 267   if (!ret) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 269   }
 270 
 271   return ret;
 272 }
 273 
 274 void
 275 YoungList::rs_length_sampling_init() {
 276   _sampled_rs_lengths = 0;
 277   _curr               = _head;
 278 }
 279 
 280 bool
 281 YoungList::rs_length_sampling_more() {
 282   return _curr != NULL;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_next() {
 287   assert( _curr != NULL, "invariant" );
 288   size_t rs_length = _curr->rem_set()->occupied();
 289 
 290   _sampled_rs_lengths += rs_length;
 291 
 292   // The current region may not yet have been added to the
 293   // incremental collection set (it gets added when it is
 294   // retired as the current allocation region).
 295   if (_curr->in_collection_set()) {
 296     // Update the collection set policy information for this region
 297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 298   }
 299 
 300   _curr = _curr->get_next_young_region();
 301   if (_curr == NULL) {
 302     _last_sampled_rs_lengths = _sampled_rs_lengths;
 303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 304   }
 305 }
 306 
 307 void
 308 YoungList::reset_auxilary_lists() {
 309   guarantee( is_empty(), "young list should be empty" );
 310   assert(check_list_well_formed(), "young list should be well formed");
 311 
 312   // Add survivor regions to SurvRateGroup.
 313   _g1h->g1_policy()->note_start_adding_survivor_regions();
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 315 
 316   for (HeapRegion* curr = _survivor_head;
 317        curr != NULL;
 318        curr = curr->get_next_young_region()) {
 319     _g1h->g1_policy()->set_region_survivors(curr);
 320 
 321     // The region is a non-empty survivor so let's add it to
 322     // the incremental collection set for the next evacuation
 323     // pause.
 324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 325   }
 326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 327 
 328   _head   = _survivor_head;
 329   _length = _survivor_length;
 330   if (_survivor_head != NULL) {
 331     assert(_survivor_tail != NULL, "cause it shouldn't be");
 332     assert(_survivor_length > 0, "invariant");
 333     _survivor_tail->set_next_young_region(NULL);
 334   }
 335 
 336   // Don't clear the survivor list handles until the start of
 337   // the next evacuation pause - we need it in order to re-tag
 338   // the survivor regions from this evacuation pause as 'young'
 339   // at the start of the next.
 340 
 341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 342 
 343   assert(check_list_well_formed(), "young list should be well formed");
 344 }
 345 
 346 void YoungList::print() {
 347   HeapRegion* lists[] = {_head,   _survivor_head};
 348   const char* names[] = {"YOUNG", "SURVIVOR"};
 349 
 350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 352     HeapRegion *curr = lists[list];
 353     if (curr == NULL)
 354       gclog_or_tty->print_cr("  empty");
 355     while (curr != NULL) {
 356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 357                              "age: %4d, y: %d, surv: %d",
 358                              curr->bottom(), curr->end(),
 359                              curr->top(),
 360                              curr->prev_top_at_mark_start(),
 361                              curr->next_top_at_mark_start(),
 362                              curr->top_at_conc_mark_count(),
 363                              curr->age_in_surv_rate_group_cond(),
 364                              curr->is_young(),
 365                              curr->is_survivor());
 366       curr = curr->get_next_young_region();
 367     }
 368   }
 369 
 370   gclog_or_tty->print_cr("");
 371 }
 372 
 373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 374 {
 375   // Claim the right to put the region on the dirty cards region list
 376   // by installing a self pointer.
 377   HeapRegion* next = hr->get_next_dirty_cards_region();
 378   if (next == NULL) {
 379     HeapRegion* res = (HeapRegion*)
 380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 381                           NULL);
 382     if (res == NULL) {
 383       HeapRegion* head;
 384       do {
 385         // Put the region to the dirty cards region list.
 386         head = _dirty_cards_region_list;
 387         next = (HeapRegion*)
 388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 389         if (next == head) {
 390           assert(hr->get_next_dirty_cards_region() == hr,
 391                  "hr->get_next_dirty_cards_region() != hr");
 392           if (next == NULL) {
 393             // The last region in the list points to itself.
 394             hr->set_next_dirty_cards_region(hr);
 395           } else {
 396             hr->set_next_dirty_cards_region(next);
 397           }
 398         }
 399       } while (next != head);
 400     }
 401   }
 402 }
 403 
 404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 405 {
 406   HeapRegion* head;
 407   HeapRegion* hr;
 408   do {
 409     head = _dirty_cards_region_list;
 410     if (head == NULL) {
 411       return NULL;
 412     }
 413     HeapRegion* new_head = head->get_next_dirty_cards_region();
 414     if (head == new_head) {
 415       // The last region.
 416       new_head = NULL;
 417     }
 418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 419                                           head);
 420   } while (hr != head);
 421   assert(hr != NULL, "invariant");
 422   hr->set_next_dirty_cards_region(NULL);
 423   return hr;
 424 }
 425 
 426 void G1CollectedHeap::stop_conc_gc_threads() {
 427   _cg1r->stop();
 428   _cmThread->stop();
 429 }
 430 
 431 #ifdef ASSERT
 432 // A region is added to the collection set as it is retired
 433 // so an address p can point to a region which will be in the
 434 // collection set but has not yet been retired.  This method
 435 // therefore is only accurate during a GC pause after all
 436 // regions have been retired.  It is used for debugging
 437 // to check if an nmethod has references to objects that can
 438 // be move during a partial collection.  Though it can be
 439 // inaccurate, it is sufficient for G1 because the conservative
 440 // implementation of is_scavengable() for G1 will indicate that
 441 // all nmethods must be scanned during a partial collection.
 442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 443   HeapRegion* hr = heap_region_containing(p);
 444   return hr != NULL && hr->in_collection_set();
 445 }
 446 #endif
 447 
 448 // Returns true if the reference points to an object that
 449 // can move in an incremental collecction.
 450 bool G1CollectedHeap::is_scavengable(const void* p) {
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452   G1CollectorPolicy* g1p = g1h->g1_policy();
 453   HeapRegion* hr = heap_region_containing(p);
 454   if (hr == NULL) {
 455      // perm gen (or null)
 456      return false;
 457   } else {
 458     return !hr->isHumongous();
 459   }
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.set_closure(&clear);
 474   dcqs.apply_closure_to_all_completed_buffers();
 475   dcqs.iterate_closure_all_threads(false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 
 504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list() {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has "SIZE_FORMAT" entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_head();
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notifed either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 553   assert(!isHumongous(word_size) ||
 554                                   word_size <= (size_t) HeapRegion::GrainWords,
 555          "the only time we use this to allocate a humongous region is "
 556          "when we are allocating a single humongous region");
 557 
 558   HeapRegion* res;
 559   if (G1StressConcRegionFreeing) {
 560     if (!_secondary_free_list.is_empty()) {
 561       if (G1ConcRegionFreeingVerbose) {
 562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                                "forced to look at the secondary_free_list");
 564       }
 565       res = new_region_try_secondary_free_list();
 566       if (res != NULL) {
 567         return res;
 568       }
 569     }
 570   }
 571   res = _free_list.remove_head_or_null();
 572   if (res == NULL) {
 573     if (G1ConcRegionFreeingVerbose) {
 574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                              "res == NULL, trying the secondary_free_list");
 576     }
 577     res = new_region_try_secondary_free_list();
 578   }
 579   if (res == NULL && do_expand) {
 580     if (expand(word_size * HeapWordSize)) {
 581       // The expansion succeeded and so we should have at least one
 582       // region on the free list.
 583       res = _free_list.remove_head();
 584     }
 585   }
 586   if (res != NULL) {
 587     if (G1PrintHeapRegions) {
 588       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
 589                              "top "PTR_FORMAT, res->hrs_index(),
 590                              res->bottom(), res->end(), res->top());
 591     }
 592   }
 593   return res;
 594 }
 595 
 596 HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
 597                                                  size_t word_size) {
 598   HeapRegion* alloc_region = NULL;
 599   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
 600     alloc_region = new_region(word_size, true /* do_expand */);
 601     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
 602       alloc_region->set_survivor();
 603     }
 604     ++_gc_alloc_region_counts[purpose];
 605   } else {
 606     g1_policy()->note_alloc_region_limit_reached(purpose);
 607   }
 608   return alloc_region;
 609 }
 610 
 611 int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 612                                                        size_t word_size) {
 613   assert(isHumongous(word_size), "word_size should be humongous");
 614   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 615 
 616   int first = -1;
 617   if (num_regions == 1) {
 618     // Only one region to allocate, no need to go through the slower
 619     // path. The caller will attempt the expasion if this fails, so
 620     // let's not try to expand here too.
 621     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 622     if (hr != NULL) {
 623       first = hr->hrs_index();
 624     } else {
 625       first = -1;
 626     }
 627   } else {
 628     // We can't allocate humongous regions while cleanupComplete() is
 629     // running, since some of the regions we find to be empty might not
 630     // yet be added to the free list and it is not straightforward to
 631     // know which list they are on so that we can remove them. Note
 632     // that we only need to do this if we need to allocate more than
 633     // one region to satisfy the current humongous allocation
 634     // request. If we are only allocating one region we use the common
 635     // region allocation code (see above).
 636     wait_while_free_regions_coming();
 637     append_secondary_free_list_if_not_empty_with_lock();
 638 
 639     if (free_regions() >= num_regions) {
 640       first = _hrs->find_contiguous(num_regions);
 641       if (first != -1) {
 642         for (int i = first; i < first + (int) num_regions; ++i) {
 643           HeapRegion* hr = _hrs->at(i);
 644           assert(hr->is_empty(), "sanity");
 645           assert(is_on_master_free_list(hr), "sanity");
 646           hr->set_pending_removal(true);
 647         }
 648         _free_list.remove_all_pending(num_regions);
 649       }
 650     }
 651   }
 652   return first;
 653 }
 654 
 655 HeapWord*
 656 G1CollectedHeap::humongous_obj_allocate_initialize_regions(int first,
 657                                                            size_t num_regions,
 658                                                            size_t word_size) {
 659   assert(first != -1, "pre-condition");
 660   assert(isHumongous(word_size), "word_size should be humongous");
 661   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 662 
 663   // Index of last region in the series + 1.
 664   int last = first + (int) num_regions;
 665 
 666   // We need to initialize the region(s) we just discovered. This is
 667   // a bit tricky given that it can happen concurrently with
 668   // refinement threads refining cards on these regions and
 669   // potentially wanting to refine the BOT as they are scanning
 670   // those cards (this can happen shortly after a cleanup; see CR
 671   // 6991377). So we have to set up the region(s) carefully and in
 672   // a specific order.
 673 
 674   // The word size sum of all the regions we will allocate.
 675   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 676   assert(word_size <= word_size_sum, "sanity");
 677 
 678   // This will be the "starts humongous" region.
 679   HeapRegion* first_hr = _hrs->at(first);
 680   // The header of the new object will be placed at the bottom of
 681   // the first region.
 682   HeapWord* new_obj = first_hr->bottom();
 683   // This will be the new end of the first region in the series that
 684   // should also match the end of the last region in the seriers.
 685   HeapWord* new_end = new_obj + word_size_sum;
 686   // This will be the new top of the first region that will reflect
 687   // this allocation.
 688   HeapWord* new_top = new_obj + word_size;
 689 
 690   // First, we need to zero the header of the space that we will be
 691   // allocating. When we update top further down, some refinement
 692   // threads might try to scan the region. By zeroing the header we
 693   // ensure that any thread that will try to scan the region will
 694   // come across the zero klass word and bail out.
 695   //
 696   // NOTE: It would not have been correct to have used
 697   // CollectedHeap::fill_with_object() and make the space look like
 698   // an int array. The thread that is doing the allocation will
 699   // later update the object header to a potentially different array
 700   // type and, for a very short period of time, the klass and length
 701   // fields will be inconsistent. This could cause a refinement
 702   // thread to calculate the object size incorrectly.
 703   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 704 
 705   // We will set up the first region as "starts humongous". This
 706   // will also update the BOT covering all the regions to reflect
 707   // that there is a single object that starts at the bottom of the
 708   // first region.
 709   first_hr->set_startsHumongous(new_top, new_end);
 710 
 711   // Then, if there are any, we will set up the "continues
 712   // humongous" regions.
 713   HeapRegion* hr = NULL;
 714   for (int i = first + 1; i < last; ++i) {
 715     hr = _hrs->at(i);
 716     hr->set_continuesHumongous(first_hr);
 717   }
 718   // If we have "continues humongous" regions (hr != NULL), then the
 719   // end of the last one should match new_end.
 720   assert(hr == NULL || hr->end() == new_end, "sanity");
 721 
 722   // Up to this point no concurrent thread would have been able to
 723   // do any scanning on any region in this series. All the top
 724   // fields still point to bottom, so the intersection between
 725   // [bottom,top] and [card_start,card_end] will be empty. Before we
 726   // update the top fields, we'll do a storestore to make sure that
 727   // no thread sees the update to top before the zeroing of the
 728   // object header and the BOT initialization.
 729   OrderAccess::storestore();
 730 
 731   // Now that the BOT and the object header have been initialized,
 732   // we can update top of the "starts humongous" region.
 733   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 734          "new_top should be in this region");
 735   first_hr->set_top(new_top);
 736 
 737   // Now, we will update the top fields of the "continues humongous"
 738   // regions. The reason we need to do this is that, otherwise,
 739   // these regions would look empty and this will confuse parts of
 740   // G1. For example, the code that looks for a consecutive number
 741   // of empty regions will consider them empty and try to
 742   // re-allocate them. We can extend is_empty() to also include
 743   // !continuesHumongous(), but it is easier to just update the top
 744   // fields here. The way we set top for all regions (i.e., top ==
 745   // end for all regions but the last one, top == new_top for the
 746   // last one) is actually used when we will free up the humongous
 747   // region in free_humongous_region().
 748   hr = NULL;
 749   for (int i = first + 1; i < last; ++i) {
 750     hr = _hrs->at(i);
 751     if ((i + 1) == last) {
 752       // last continues humongous region
 753       assert(hr->bottom() < new_top && new_top <= hr->end(),
 754              "new_top should fall on this region");
 755       hr->set_top(new_top);
 756     } else {
 757       // not last one
 758       assert(new_top > hr->end(), "new_top should be above this region");
 759       hr->set_top(hr->end());
 760     }
 761   }
 762   // If we have continues humongous regions (hr != NULL), then the
 763   // end of the last one should match new_end and its top should
 764   // match new_top.
 765   assert(hr == NULL ||
 766          (hr->end() == new_end && hr->top() == new_top), "sanity");
 767 
 768   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 769   _summary_bytes_used += first_hr->used();
 770   _humongous_set.add(first_hr);
 771 
 772   return new_obj;
 773 }
 774 
 775 // If could fit into free regions w/o expansion, try.
 776 // Otherwise, if can expand, do so.
 777 // Otherwise, if using ex regions might help, try with ex given back.
 778 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 779   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 780 
 781   verify_region_sets_optional();
 782 
 783   size_t num_regions =
 784          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 785   size_t x_size = expansion_regions();
 786   size_t fs = _hrs->free_suffix();
 787   int first = humongous_obj_allocate_find_first(num_regions, word_size);
 788   if (first == -1) {
 789     // The only thing we can do now is attempt expansion.
 790     if (fs + x_size >= num_regions) {
 791       // If the number of regions we're trying to allocate for this
 792       // object is at most the number of regions in the free suffix,
 793       // then the call to humongous_obj_allocate_find_first() above
 794       // should have succeeded and we wouldn't be here.
 795       //
 796       // We should only be trying to expand when the free suffix is
 797       // not sufficient for the object _and_ we have some expansion
 798       // room available.
 799       assert(num_regions > fs, "earlier allocation should have succeeded");
 800 
 801       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 802         first = humongous_obj_allocate_find_first(num_regions, word_size);
 803         // If the expansion was successful then the allocation
 804         // should have been successful.
 805         assert(first != -1, "this should have worked");
 806       }
 807     }
 808   }
 809 
 810   HeapWord* result = NULL;
 811   if (first != -1) {
 812     result =
 813       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 814     assert(result != NULL, "it should always return a valid result");
 815   }
 816 
 817   verify_region_sets_optional();
 818 
 819   return result;
 820 }
 821 
 822 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 823   assert_heap_not_locked_and_not_at_safepoint();
 824   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 825 
 826   unsigned int dummy_gc_count_before;
 827   return attempt_allocation(word_size, &dummy_gc_count_before);
 828 }
 829 
 830 HeapWord*
 831 G1CollectedHeap::mem_allocate(size_t word_size,
 832                               bool   is_noref,
 833                               bool   is_tlab,
 834                               bool*  gc_overhead_limit_was_exceeded) {
 835   assert_heap_not_locked_and_not_at_safepoint();
 836   assert(!is_tlab, "mem_allocate() this should not be called directly "
 837          "to allocate TLABs");
 838 
 839   // Loop until the allocation is satisified, or unsatisfied after GC.
 840   for (int try_count = 1; /* we'll return */; try_count += 1) {
 841     unsigned int gc_count_before;
 842 
 843     HeapWord* result = NULL;
 844     if (!isHumongous(word_size)) {
 845       result = attempt_allocation(word_size, &gc_count_before);
 846     } else {
 847       result = attempt_allocation_humongous(word_size, &gc_count_before);
 848     }
 849     if (result != NULL) {
 850       return result;
 851     }
 852 
 853     // Create the garbage collection operation...
 854     VM_G1CollectForAllocation op(gc_count_before, word_size);
 855     // ...and get the VM thread to execute it.
 856     VMThread::execute(&op);
 857 
 858     if (op.prologue_succeeded() && op.pause_succeeded()) {
 859       // If the operation was successful we'll return the result even
 860       // if it is NULL. If the allocation attempt failed immediately
 861       // after a Full GC, it's unlikely we'll be able to allocate now.
 862       HeapWord* result = op.result();
 863       if (result != NULL && !isHumongous(word_size)) {
 864         // Allocations that take place on VM operations do not do any
 865         // card dirtying and we have to do it here. We only have to do
 866         // this for non-humongous allocations, though.
 867         dirty_young_block(result, word_size);
 868       }
 869       return result;
 870     } else {
 871       assert(op.result() == NULL,
 872              "the result should be NULL if the VM op did not succeed");
 873     }
 874 
 875     // Give a warning if we seem to be looping forever.
 876     if ((QueuedAllocationWarningCount > 0) &&
 877         (try_count % QueuedAllocationWarningCount == 0)) {
 878       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 879     }
 880   }
 881 
 882   ShouldNotReachHere();
 883   return NULL;
 884 }
 885 
 886 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 887                                            unsigned int *gc_count_before_ret) {
 888   // Make sure you read the note in attempt_allocation_humongous().
 889 
 890   assert_heap_not_locked_and_not_at_safepoint();
 891   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 892          "be called for humongous allocation requests");
 893 
 894   // We should only get here after the first-level allocation attempt
 895   // (attempt_allocation()) failed to allocate.
 896 
 897   // We will loop until a) we manage to successfully perform the
 898   // allocation or b) we successfully schedule a collection which
 899   // fails to perform the allocation. b) is the only case when we'll
 900   // return NULL.
 901   HeapWord* result = NULL;
 902   for (int try_count = 1; /* we'll return */; try_count += 1) {
 903     bool should_try_gc;
 904     unsigned int gc_count_before;
 905 
 906     {
 907       MutexLockerEx x(Heap_lock);
 908 
 909       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 910                                                       false /* bot_updates */);
 911       if (result != NULL) {
 912         return result;
 913       }
 914 
 915       // If we reach here, attempt_allocation_locked() above failed to
 916       // allocate a new region. So the mutator alloc region should be NULL.
 917       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 918 
 919       if (GC_locker::is_active_and_needs_gc()) {
 920         if (g1_policy()->can_expand_young_list()) {
 921           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 922                                                       false /* bot_updates */);
 923           if (result != NULL) {
 924             return result;
 925           }
 926         }
 927         should_try_gc = false;
 928       } else {
 929         // Read the GC count while still holding the Heap_lock.
 930         gc_count_before = SharedHeap::heap()->total_collections();
 931         should_try_gc = true;
 932       }
 933     }
 934 
 935     if (should_try_gc) {
 936       bool succeeded;
 937       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 938       if (result != NULL) {
 939         assert(succeeded, "only way to get back a non-NULL result");
 940         return result;
 941       }
 942 
 943       if (succeeded) {
 944         // If we get here we successfully scheduled a collection which
 945         // failed to allocate. No point in trying to allocate
 946         // further. We'll just return NULL.
 947         MutexLockerEx x(Heap_lock);
 948         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 949         return NULL;
 950       }
 951     } else {
 952       GC_locker::stall_until_clear();
 953     }
 954 
 955     // We can reach here if we were unsuccessul in scheduling a
 956     // collection (because another thread beat us to it) or if we were
 957     // stalled due to the GC locker. In either can we should retry the
 958     // allocation attempt in case another thread successfully
 959     // performed a collection and reclaimed enough space. We do the
 960     // first attempt (without holding the Heap_lock) here and the
 961     // follow-on attempt will be at the start of the next loop
 962     // iteration (after taking the Heap_lock).
 963     result = _mutator_alloc_region.attempt_allocation(word_size,
 964                                                       false /* bot_updates */);
 965     if (result != NULL ){
 966       return result;
 967     }
 968 
 969     // Give a warning if we seem to be looping forever.
 970     if ((QueuedAllocationWarningCount > 0) &&
 971         (try_count % QueuedAllocationWarningCount == 0)) {
 972       warning("G1CollectedHeap::attempt_allocation_slow() "
 973               "retries %d times", try_count);
 974     }
 975   }
 976 
 977   ShouldNotReachHere();
 978   return NULL;
 979 }
 980 
 981 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 982                                           unsigned int * gc_count_before_ret) {
 983   // The structure of this method has a lot of similarities to
 984   // attempt_allocation_slow(). The reason these two were not merged
 985   // into a single one is that such a method would require several "if
 986   // allocation is not humongous do this, otherwise do that"
 987   // conditional paths which would obscure its flow. In fact, an early
 988   // version of this code did use a unified method which was harder to
 989   // follow and, as a result, it had subtle bugs that were hard to
 990   // track down. So keeping these two methods separate allows each to
 991   // be more readable. It will be good to keep these two in sync as
 992   // much as possible.
 993 
 994   assert_heap_not_locked_and_not_at_safepoint();
 995   assert(isHumongous(word_size), "attempt_allocation_humongous() "
 996          "should only be called for humongous allocations");
 997 
 998   // We will loop until a) we manage to successfully perform the
 999   // allocation or b) we successfully schedule a collection which
1000   // fails to perform the allocation. b) is the only case when we'll
1001   // return NULL.
1002   HeapWord* result = NULL;
1003   for (int try_count = 1; /* we'll return */; try_count += 1) {
1004     bool should_try_gc;
1005     unsigned int gc_count_before;
1006 
1007     {
1008       MutexLockerEx x(Heap_lock);
1009 
1010       // Given that humongous objects are not allocated in young
1011       // regions, we'll first try to do the allocation without doing a
1012       // collection hoping that there's enough space in the heap.
1013       result = humongous_obj_allocate(word_size);
1014       if (result != NULL) {
1015         return result;
1016       }
1017 
1018       if (GC_locker::is_active_and_needs_gc()) {
1019         should_try_gc = false;
1020       } else {
1021         // Read the GC count while still holding the Heap_lock.
1022         gc_count_before = SharedHeap::heap()->total_collections();
1023         should_try_gc = true;
1024       }
1025     }
1026 
1027     if (should_try_gc) {
1028       // If we failed to allocate the humongous object, we should try to
1029       // do a collection pause (if we're allowed) in case it reclaims
1030       // enough space for the allocation to succeed after the pause.
1031 
1032       bool succeeded;
1033       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1034       if (result != NULL) {
1035         assert(succeeded, "only way to get back a non-NULL result");
1036         return result;
1037       }
1038 
1039       if (succeeded) {
1040         // If we get here we successfully scheduled a collection which
1041         // failed to allocate. No point in trying to allocate
1042         // further. We'll just return NULL.
1043         MutexLockerEx x(Heap_lock);
1044         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1045         return NULL;
1046       }
1047     } else {
1048       GC_locker::stall_until_clear();
1049     }
1050 
1051     // We can reach here if we were unsuccessul in scheduling a
1052     // collection (because another thread beat us to it) or if we were
1053     // stalled due to the GC locker. In either can we should retry the
1054     // allocation attempt in case another thread successfully
1055     // performed a collection and reclaimed enough space.  Give a
1056     // warning if we seem to be looping forever.
1057 
1058     if ((QueuedAllocationWarningCount > 0) &&
1059         (try_count % QueuedAllocationWarningCount == 0)) {
1060       warning("G1CollectedHeap::attempt_allocation_humongous() "
1061               "retries %d times", try_count);
1062     }
1063   }
1064 
1065   ShouldNotReachHere();
1066   return NULL;
1067 }
1068 
1069 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1070                                        bool expect_null_mutator_alloc_region) {
1071   assert_at_safepoint(true /* should_be_vm_thread */);
1072   assert(_mutator_alloc_region.get() == NULL ||
1073                                              !expect_null_mutator_alloc_region,
1074          "the current alloc region was unexpectedly found to be non-NULL");
1075 
1076   if (!isHumongous(word_size)) {
1077     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1078                                                       false /* bot_updates */);
1079   } else {
1080     return humongous_obj_allocate(word_size);
1081   }
1082 
1083   ShouldNotReachHere();
1084 }
1085 
1086 void G1CollectedHeap::abandon_gc_alloc_regions() {
1087   // first, make sure that the GC alloc region list is empty (it should!)
1088   assert(_gc_alloc_region_list == NULL, "invariant");
1089   release_gc_alloc_regions(true /* totally */);
1090 }
1091 
1092 class PostMCRemSetClearClosure: public HeapRegionClosure {
1093   ModRefBarrierSet* _mr_bs;
1094 public:
1095   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1096   bool doHeapRegion(HeapRegion* r) {
1097     r->reset_gc_time_stamp();
1098     if (r->continuesHumongous())
1099       return false;
1100     HeapRegionRemSet* hrrs = r->rem_set();
1101     if (hrrs != NULL) hrrs->clear();
1102     // You might think here that we could clear just the cards
1103     // corresponding to the used region.  But no: if we leave a dirty card
1104     // in a region we might allocate into, then it would prevent that card
1105     // from being enqueued, and cause it to be missed.
1106     // Re: the performance cost: we shouldn't be doing full GC anyway!
1107     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1108     return false;
1109   }
1110 };
1111 
1112 
1113 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1114   ModRefBarrierSet* _mr_bs;
1115 public:
1116   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1117   bool doHeapRegion(HeapRegion* r) {
1118     if (r->continuesHumongous()) return false;
1119     if (r->used_region().word_size() != 0) {
1120       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1121     }
1122     return false;
1123   }
1124 };
1125 
1126 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1127   G1CollectedHeap*   _g1h;
1128   UpdateRSOopClosure _cl;
1129   int                _worker_i;
1130 public:
1131   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1132     _cl(g1->g1_rem_set(), worker_i),
1133     _worker_i(worker_i),
1134     _g1h(g1)
1135   { }
1136 
1137   bool doHeapRegion(HeapRegion* r) {
1138     if (!r->continuesHumongous()) {
1139       _cl.set_from(r);
1140       r->oop_iterate(&_cl);
1141     }
1142     return false;
1143   }
1144 };
1145 
1146 class ParRebuildRSTask: public AbstractGangTask {
1147   G1CollectedHeap* _g1;
1148 public:
1149   ParRebuildRSTask(G1CollectedHeap* g1)
1150     : AbstractGangTask("ParRebuildRSTask"),
1151       _g1(g1)
1152   { }
1153 
1154   void work(int i) {
1155     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1156     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1157                                          HeapRegion::RebuildRSClaimValue);
1158   }
1159 };
1160 
1161 bool G1CollectedHeap::do_collection(bool explicit_gc,
1162                                     bool clear_all_soft_refs,
1163                                     size_t word_size) {
1164   assert_at_safepoint(true /* should_be_vm_thread */);
1165 
1166   if (GC_locker::check_active_before_gc()) {
1167     return false;
1168   }
1169 
1170   SvcGCMarker sgcm(SvcGCMarker::FULL);
1171   ResourceMark rm;
1172 
1173   if (PrintHeapAtGC) {
1174     Universe::print_heap_before_gc();
1175   }
1176 
1177   verify_region_sets_optional();
1178 
1179   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1180                            collector_policy()->should_clear_all_soft_refs();
1181 
1182   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1183 
1184   {
1185     IsGCActiveMark x;
1186 
1187     // Timing
1188     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1189     assert(!system_gc || explicit_gc, "invariant");
1190     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1191     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1192     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1193                 PrintGC, true, gclog_or_tty);
1194 
1195     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1196     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1197 
1198     double start = os::elapsedTime();
1199     g1_policy()->record_full_collection_start();
1200 
1201     wait_while_free_regions_coming();
1202     append_secondary_free_list_if_not_empty_with_lock();
1203 
1204     gc_prologue(true);
1205     increment_total_collections(true /* full gc */);
1206 
1207     size_t g1h_prev_used = used();
1208     assert(used() == recalculate_used(), "Should be equal");
1209 
1210     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1211       HandleMark hm;  // Discard invalid handles created during verification
1212       gclog_or_tty->print(" VerifyBeforeGC:");
1213       prepare_for_verify();
1214       Universe::verify(true);
1215     }
1216 
1217     COMPILER2_PRESENT(DerivedPointerTable::clear());
1218 
1219     // We want to discover references, but not process them yet.
1220     // This mode is disabled in
1221     // instanceRefKlass::process_discovered_references if the
1222     // generation does some collection work, or
1223     // instanceRefKlass::enqueue_discovered_references if the
1224     // generation returns without doing any work.
1225     ref_processor()->disable_discovery();
1226     ref_processor()->abandon_partial_discovery();
1227     ref_processor()->verify_no_references_recorded();
1228 
1229     // Abandon current iterations of concurrent marking and concurrent
1230     // refinement, if any are in progress.
1231     concurrent_mark()->abort();
1232 
1233     // Make sure we'll choose a new allocation region afterwards.
1234     release_mutator_alloc_region();
1235     abandon_gc_alloc_regions();
1236     g1_rem_set()->cleanupHRRS();
1237     tear_down_region_lists();
1238 
1239     // We may have added regions to the current incremental collection
1240     // set between the last GC or pause and now. We need to clear the
1241     // incremental collection set and then start rebuilding it afresh
1242     // after this full GC.
1243     abandon_collection_set(g1_policy()->inc_cset_head());
1244     g1_policy()->clear_incremental_cset();
1245     g1_policy()->stop_incremental_cset_building();
1246 
1247     if (g1_policy()->in_young_gc_mode()) {
1248       empty_young_list();
1249       g1_policy()->set_full_young_gcs(true);
1250     }
1251 
1252     // See the comment in G1CollectedHeap::ref_processing_init() about
1253     // how reference processing currently works in G1.
1254 
1255     // Temporarily make reference _discovery_ single threaded (non-MT).
1256     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1257 
1258     // Temporarily make refs discovery atomic
1259     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
1260 
1261     // Temporarily clear _is_alive_non_header
1262     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
1263 
1264     ref_processor()->enable_discovery();
1265     ref_processor()->setup_policy(do_clear_all_soft_refs);
1266 
1267     // Do collection work
1268     {
1269       HandleMark hm;  // Discard invalid handles created during gc
1270       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1271     }
1272     assert(free_regions() == 0, "we should not have added any free regions");
1273     rebuild_region_lists();
1274 
1275     _summary_bytes_used = recalculate_used();
1276 
1277     ref_processor()->enqueue_discovered_references();
1278 
1279     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1280 
1281     MemoryService::track_memory_usage();
1282 
1283     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1284       HandleMark hm;  // Discard invalid handles created during verification
1285       gclog_or_tty->print(" VerifyAfterGC:");
1286       prepare_for_verify();
1287       Universe::verify(false);
1288     }
1289     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1290 
1291     reset_gc_time_stamp();
1292     // Since everything potentially moved, we will clear all remembered
1293     // sets, and clear all cards.  Later we will rebuild remebered
1294     // sets. We will also reset the GC time stamps of the regions.
1295     PostMCRemSetClearClosure rs_clear(mr_bs());
1296     heap_region_iterate(&rs_clear);
1297 
1298     // Resize the heap if necessary.
1299     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1300 
1301     if (_cg1r->use_cache()) {
1302       _cg1r->clear_and_record_card_counts();
1303       _cg1r->clear_hot_cache();
1304     }
1305 
1306     // Rebuild remembered sets of all regions.
1307 
1308     if (G1CollectedHeap::use_parallel_gc_threads()) {
1309       ParRebuildRSTask rebuild_rs_task(this);
1310       assert(check_heap_region_claim_values(
1311              HeapRegion::InitialClaimValue), "sanity check");
1312       set_par_threads(workers()->total_workers());
1313       workers()->run_task(&rebuild_rs_task);
1314       set_par_threads(0);
1315       assert(check_heap_region_claim_values(
1316              HeapRegion::RebuildRSClaimValue), "sanity check");
1317       reset_heap_region_claim_values();
1318     } else {
1319       RebuildRSOutOfRegionClosure rebuild_rs(this);
1320       heap_region_iterate(&rebuild_rs);
1321     }
1322 
1323     if (PrintGC) {
1324       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1325     }
1326 
1327     if (true) { // FIXME
1328       // Ask the permanent generation to adjust size for full collections
1329       perm()->compute_new_size();
1330     }
1331 
1332     // Start a new incremental collection set for the next pause
1333     assert(g1_policy()->collection_set() == NULL, "must be");
1334     g1_policy()->start_incremental_cset_building();
1335 
1336     // Clear the _cset_fast_test bitmap in anticipation of adding
1337     // regions to the incremental collection set for the next
1338     // evacuation pause.
1339     clear_cset_fast_test();
1340 
1341     init_mutator_alloc_region();
1342 
1343     double end = os::elapsedTime();
1344     g1_policy()->record_full_collection_end();
1345 
1346 #ifdef TRACESPINNING
1347     ParallelTaskTerminator::print_termination_counts();
1348 #endif
1349 
1350     gc_epilogue(true);
1351 
1352     // Discard all rset updates
1353     JavaThread::dirty_card_queue_set().abandon_logs();
1354     assert(!G1DeferredRSUpdate
1355            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1356   }
1357 
1358   if (g1_policy()->in_young_gc_mode()) {
1359     _young_list->reset_sampled_info();
1360     // At this point there should be no regions in the
1361     // entire heap tagged as young.
1362     assert( check_young_list_empty(true /* check_heap */),
1363             "young list should be empty at this point");
1364   }
1365 
1366   // Update the number of full collections that have been completed.
1367   increment_full_collections_completed(false /* concurrent */);
1368 
1369   verify_region_sets_optional();
1370 
1371   if (PrintHeapAtGC) {
1372     Universe::print_heap_after_gc();
1373   }
1374   g1mm()->update_counters();
1375 
1376   return true;
1377 }
1378 
1379 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1380   // do_collection() will return whether it succeeded in performing
1381   // the GC. Currently, there is no facility on the
1382   // do_full_collection() API to notify the caller than the collection
1383   // did not succeed (e.g., because it was locked out by the GC
1384   // locker). So, right now, we'll ignore the return value.
1385   bool dummy = do_collection(true,                /* explicit_gc */
1386                              clear_all_soft_refs,
1387                              0                    /* word_size */);
1388 }
1389 
1390 // This code is mostly copied from TenuredGeneration.
1391 void
1392 G1CollectedHeap::
1393 resize_if_necessary_after_full_collection(size_t word_size) {
1394   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1395 
1396   // Include the current allocation, if any, and bytes that will be
1397   // pre-allocated to support collections, as "used".
1398   const size_t used_after_gc = used();
1399   const size_t capacity_after_gc = capacity();
1400   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1401 
1402   // This is enforced in arguments.cpp.
1403   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1404          "otherwise the code below doesn't make sense");
1405 
1406   // We don't have floating point command-line arguments
1407   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1408   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1409   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1410   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1411 
1412   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1413   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1414 
1415   // We have to be careful here as these two calculations can overflow
1416   // 32-bit size_t's.
1417   double used_after_gc_d = (double) used_after_gc;
1418   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1419   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1420 
1421   // Let's make sure that they are both under the max heap size, which
1422   // by default will make them fit into a size_t.
1423   double desired_capacity_upper_bound = (double) max_heap_size;
1424   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1425                                     desired_capacity_upper_bound);
1426   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1427                                     desired_capacity_upper_bound);
1428 
1429   // We can now safely turn them into size_t's.
1430   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1431   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1432 
1433   // This assert only makes sense here, before we adjust them
1434   // with respect to the min and max heap size.
1435   assert(minimum_desired_capacity <= maximum_desired_capacity,
1436          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1437                  "maximum_desired_capacity = "SIZE_FORMAT,
1438                  minimum_desired_capacity, maximum_desired_capacity));
1439 
1440   // Should not be greater than the heap max size. No need to adjust
1441   // it with respect to the heap min size as it's a lower bound (i.e.,
1442   // we'll try to make the capacity larger than it, not smaller).
1443   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1444   // Should not be less than the heap min size. No need to adjust it
1445   // with respect to the heap max size as it's an upper bound (i.e.,
1446   // we'll try to make the capacity smaller than it, not greater).
1447   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1448 
1449   if (PrintGC && Verbose) {
1450     const double free_percentage =
1451       (double) free_after_gc / (double) capacity_after_gc;
1452     gclog_or_tty->print_cr("Computing new size after full GC ");
1453     gclog_or_tty->print_cr("  "
1454                            "  minimum_free_percentage: %6.2f",
1455                            minimum_free_percentage);
1456     gclog_or_tty->print_cr("  "
1457                            "  maximum_free_percentage: %6.2f",
1458                            maximum_free_percentage);
1459     gclog_or_tty->print_cr("  "
1460                            "  capacity: %6.1fK"
1461                            "  minimum_desired_capacity: %6.1fK"
1462                            "  maximum_desired_capacity: %6.1fK",
1463                            (double) capacity_after_gc / (double) K,
1464                            (double) minimum_desired_capacity / (double) K,
1465                            (double) maximum_desired_capacity / (double) K);
1466     gclog_or_tty->print_cr("  "
1467                            "  free_after_gc: %6.1fK"
1468                            "  used_after_gc: %6.1fK",
1469                            (double) free_after_gc / (double) K,
1470                            (double) used_after_gc / (double) K);
1471     gclog_or_tty->print_cr("  "
1472                            "   free_percentage: %6.2f",
1473                            free_percentage);
1474   }
1475   if (capacity_after_gc < minimum_desired_capacity) {
1476     // Don't expand unless it's significant
1477     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1478     if (expand(expand_bytes)) {
1479       if (PrintGC && Verbose) {
1480         gclog_or_tty->print_cr("  "
1481                                "  expanding:"
1482                                "  max_heap_size: %6.1fK"
1483                                "  minimum_desired_capacity: %6.1fK"
1484                                "  expand_bytes: %6.1fK",
1485                                (double) max_heap_size / (double) K,
1486                                (double) minimum_desired_capacity / (double) K,
1487                                (double) expand_bytes / (double) K);
1488       }
1489     }
1490 
1491     // No expansion, now see if we want to shrink
1492   } else if (capacity_after_gc > maximum_desired_capacity) {
1493     // Capacity too large, compute shrinking size
1494     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1495     shrink(shrink_bytes);
1496     if (PrintGC && Verbose) {
1497       gclog_or_tty->print_cr("  "
1498                              "  shrinking:"
1499                              "  min_heap_size: %6.1fK"
1500                              "  maximum_desired_capacity: %6.1fK"
1501                              "  shrink_bytes: %6.1fK",
1502                              (double) min_heap_size / (double) K,
1503                              (double) maximum_desired_capacity / (double) K,
1504                              (double) shrink_bytes / (double) K);
1505     }
1506   }
1507 }
1508 
1509 
1510 HeapWord*
1511 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1512                                            bool* succeeded) {
1513   assert_at_safepoint(true /* should_be_vm_thread */);
1514 
1515   *succeeded = true;
1516   // Let's attempt the allocation first.
1517   HeapWord* result =
1518     attempt_allocation_at_safepoint(word_size,
1519                                  false /* expect_null_mutator_alloc_region */);
1520   if (result != NULL) {
1521     assert(*succeeded, "sanity");
1522     return result;
1523   }
1524 
1525   // In a G1 heap, we're supposed to keep allocation from failing by
1526   // incremental pauses.  Therefore, at least for now, we'll favor
1527   // expansion over collection.  (This might change in the future if we can
1528   // do something smarter than full collection to satisfy a failed alloc.)
1529   result = expand_and_allocate(word_size);
1530   if (result != NULL) {
1531     assert(*succeeded, "sanity");
1532     return result;
1533   }
1534 
1535   // Expansion didn't work, we'll try to do a Full GC.
1536   bool gc_succeeded = do_collection(false, /* explicit_gc */
1537                                     false, /* clear_all_soft_refs */
1538                                     word_size);
1539   if (!gc_succeeded) {
1540     *succeeded = false;
1541     return NULL;
1542   }
1543 
1544   // Retry the allocation
1545   result = attempt_allocation_at_safepoint(word_size,
1546                                   true /* expect_null_mutator_alloc_region */);
1547   if (result != NULL) {
1548     assert(*succeeded, "sanity");
1549     return result;
1550   }
1551 
1552   // Then, try a Full GC that will collect all soft references.
1553   gc_succeeded = do_collection(false, /* explicit_gc */
1554                                true,  /* clear_all_soft_refs */
1555                                word_size);
1556   if (!gc_succeeded) {
1557     *succeeded = false;
1558     return NULL;
1559   }
1560 
1561   // Retry the allocation once more
1562   result = attempt_allocation_at_safepoint(word_size,
1563                                   true /* expect_null_mutator_alloc_region */);
1564   if (result != NULL) {
1565     assert(*succeeded, "sanity");
1566     return result;
1567   }
1568 
1569   assert(!collector_policy()->should_clear_all_soft_refs(),
1570          "Flag should have been handled and cleared prior to this point");
1571 
1572   // What else?  We might try synchronous finalization later.  If the total
1573   // space available is large enough for the allocation, then a more
1574   // complete compaction phase than we've tried so far might be
1575   // appropriate.
1576   assert(*succeeded, "sanity");
1577   return NULL;
1578 }
1579 
1580 // Attempting to expand the heap sufficiently
1581 // to support an allocation of the given "word_size".  If
1582 // successful, perform the allocation and return the address of the
1583 // allocated block, or else "NULL".
1584 
1585 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1586   assert_at_safepoint(true /* should_be_vm_thread */);
1587 
1588   verify_region_sets_optional();
1589 
1590   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1591   if (expand(expand_bytes)) {
1592     verify_region_sets_optional();
1593     return attempt_allocation_at_safepoint(word_size,
1594                                  false /* expect_null_mutator_alloc_region */);
1595   }
1596   return NULL;
1597 }
1598 
1599 bool G1CollectedHeap::expand(size_t expand_bytes) {
1600   size_t old_mem_size = _g1_storage.committed_size();
1601   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1602   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1603                                        HeapRegion::GrainBytes);
1604 
1605   if (Verbose && PrintGC) {
1606     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
1607                            old_mem_size/K, aligned_expand_bytes/K);
1608   }
1609 
1610   HeapWord* old_end = (HeapWord*)_g1_storage.high();
1611   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1612   if (successful) {
1613     HeapWord* new_end = (HeapWord*)_g1_storage.high();
1614 
1615     // Expand the committed region.
1616     _g1_committed.set_end(new_end);
1617 
1618     // Tell the cardtable about the expansion.
1619     Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1620 
1621     // And the offset table as well.
1622     _bot_shared->resize(_g1_committed.word_size());
1623 
1624     expand_bytes = aligned_expand_bytes;
1625     HeapWord* base = old_end;
1626 
1627     // Create the heap regions for [old_end, new_end)
1628     while (expand_bytes > 0) {
1629       HeapWord* high = base + HeapRegion::GrainWords;
1630 
1631       // Create a new HeapRegion.
1632       MemRegion mr(base, high);
1633       bool is_zeroed = !_g1_max_committed.contains(base);
1634       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
1635 
1636       // Add it to the HeapRegionSeq.
1637       _hrs->insert(hr);
1638       _free_list.add_as_tail(hr);
1639 
1640       // And we used up an expansion region to create it.
1641       _expansion_regions--;
1642 
1643       expand_bytes -= HeapRegion::GrainBytes;
1644       base += HeapRegion::GrainWords;
1645     }
1646     assert(base == new_end, "sanity");
1647 
1648     // Now update max_committed if necessary.
1649     _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));
1650 
1651   } else {
1652     // The expansion of the virtual storage space was unsuccessful.
1653     // Let's see if it was because we ran out of swap.
1654     if (G1ExitOnExpansionFailure &&
1655         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1656       // We had head room...
1657       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1658     }
1659   }
1660 
1661   if (Verbose && PrintGC) {
1662     size_t new_mem_size = _g1_storage.committed_size();
1663     gclog_or_tty->print_cr("...%s, expanded to %ldK",
1664                            (successful ? "Successful" : "Failed"),
1665                            new_mem_size/K);
1666   }
1667   return successful;
1668 }
1669 
1670 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
1671 {
1672   size_t old_mem_size = _g1_storage.committed_size();
1673   size_t aligned_shrink_bytes =
1674     ReservedSpace::page_align_size_down(shrink_bytes);
1675   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1676                                          HeapRegion::GrainBytes);
1677   size_t num_regions_deleted = 0;
1678   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
1679 
1680   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1681   if (mr.byte_size() > 0)
1682     _g1_storage.shrink_by(mr.byte_size());
1683   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1684 
1685   _g1_committed.set_end(mr.start());
1686   _expansion_regions += num_regions_deleted;
1687 
1688   // Tell the cardtable about it.
1689   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1690 
1691   // And the offset table as well.
1692   _bot_shared->resize(_g1_committed.word_size());
1693 
1694   HeapRegionRemSet::shrink_heap(n_regions());
1695 
1696   if (Verbose && PrintGC) {
1697     size_t new_mem_size = _g1_storage.committed_size();
1698     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1699                            old_mem_size/K, aligned_shrink_bytes/K,
1700                            new_mem_size/K);
1701   }
1702 }
1703 
1704 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705   verify_region_sets_optional();
1706 
1707   release_gc_alloc_regions(true /* totally */);
1708   // Instead of tearing down / rebuilding the free lists here, we
1709   // could instead use the remove_all_pending() method on free_list to
1710   // remove only the ones that we need to remove.
1711   tear_down_region_lists();  // We will rebuild them in a moment.
1712   shrink_helper(shrink_bytes);
1713   rebuild_region_lists();
1714 
1715   verify_region_sets_optional();
1716 }
1717 
1718 // Public methods.
1719 
1720 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1721 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1722 #endif // _MSC_VER
1723 
1724 
1725 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1726   SharedHeap(policy_),
1727   _g1_policy(policy_),
1728   _dirty_card_queue_set(false),
1729   _into_cset_dirty_card_queue_set(false),
1730   _is_alive_closure(this),
1731   _ref_processor(NULL),
1732   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1733   _bot_shared(NULL),
1734   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1735   _evac_failure_scan_stack(NULL) ,
1736   _mark_in_progress(false),
1737   _cg1r(NULL), _summary_bytes_used(0),
1738   _refine_cte_cl(NULL),
1739   _full_collection(false),
1740   _free_list("Master Free List"),
1741   _secondary_free_list("Secondary Free List"),
1742   _humongous_set("Master Humongous Set"),
1743   _free_regions_coming(false),
1744   _young_list(new YoungList(this)),
1745   _gc_time_stamp(0),
1746   _surviving_young_words(NULL),
1747   _full_collections_completed(0),
1748   _in_cset_fast_test(NULL),
1749   _in_cset_fast_test_base(NULL),
1750   _dirty_cards_region_list(NULL) {
1751   _g1h = this; // To catch bugs.
1752   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1753     vm_exit_during_initialization("Failed necessary allocation.");
1754   }
1755 
1756   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1757 
1758   int n_queues = MAX2((int)ParallelGCThreads, 1);
1759   _task_queues = new RefToScanQueueSet(n_queues);
1760 
1761   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1762   assert(n_rem_sets > 0, "Invariant.");
1763 
1764   HeapRegionRemSetIterator** iter_arr =
1765     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1766   for (int i = 0; i < n_queues; i++) {
1767     iter_arr[i] = new HeapRegionRemSetIterator();
1768   }
1769   _rem_set_iterator = iter_arr;
1770 
1771   for (int i = 0; i < n_queues; i++) {
1772     RefToScanQueue* q = new RefToScanQueue();
1773     q->initialize();
1774     _task_queues->register_queue(i, q);
1775   }
1776 
1777   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1778     _gc_alloc_regions[ap]          = NULL;
1779     _gc_alloc_region_counts[ap]    = 0;
1780     _retained_gc_alloc_regions[ap] = NULL;
1781     // by default, we do not retain a GC alloc region for each ap;
1782     // we'll override this, when appropriate, below
1783     _retain_gc_alloc_region[ap]    = false;
1784   }
1785 
1786   // We will try to remember the last half-full tenured region we
1787   // allocated to at the end of a collection so that we can re-use it
1788   // during the next collection.
1789   _retain_gc_alloc_region[GCAllocForTenured]  = true;
1790 
1791   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1792 }
1793 
1794 jint G1CollectedHeap::initialize() {
1795   CollectedHeap::pre_initialize();
1796   os::enable_vtime();
1797 
1798   // Necessary to satisfy locking discipline assertions.
1799 
1800   MutexLocker x(Heap_lock);
1801 
1802   // While there are no constraints in the GC code that HeapWordSize
1803   // be any particular value, there are multiple other areas in the
1804   // system which believe this to be true (e.g. oop->object_size in some
1805   // cases incorrectly returns the size in wordSize units rather than
1806   // HeapWordSize).
1807   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1808 
1809   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1810   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1811 
1812   // Ensure that the sizes are properly aligned.
1813   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1814   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1815 
1816   _cg1r = new ConcurrentG1Refine();
1817 
1818   // Reserve the maximum.
1819   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1820   // Includes the perm-gen.
1821 
1822   const size_t total_reserved = max_byte_size + pgs->max_size();
1823   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1824 
1825   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
1826                         HeapRegion::GrainBytes,
1827                         UseLargePages, addr);
1828 
1829   if (UseCompressedOops) {
1830     if (addr != NULL && !heap_rs.is_reserved()) {
1831       // Failed to reserve at specified address - the requested memory
1832       // region is taken already, for example, by 'java' launcher.
1833       // Try again to reserver heap higher.
1834       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1835       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1836                              UseLargePages, addr);
1837       if (addr != NULL && !heap_rs0.is_reserved()) {
1838         // Failed to reserve at specified address again - give up.
1839         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1840         assert(addr == NULL, "");
1841         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1842                                UseLargePages, addr);
1843         heap_rs = heap_rs1;
1844       } else {
1845         heap_rs = heap_rs0;
1846       }
1847     }
1848   }
1849 
1850   if (!heap_rs.is_reserved()) {
1851     vm_exit_during_initialization("Could not reserve enough space for object heap");
1852     return JNI_ENOMEM;
1853   }
1854 
1855   // It is important to do this in a way such that concurrent readers can't
1856   // temporarily think somethings in the heap.  (I've actually seen this
1857   // happen in asserts: DLD.)
1858   _reserved.set_word_size(0);
1859   _reserved.set_start((HeapWord*)heap_rs.base());
1860   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1861 
1862   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1863 
1864   // Create the gen rem set (and barrier set) for the entire reserved region.
1865   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1866   set_barrier_set(rem_set()->bs());
1867   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1868     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1869   } else {
1870     vm_exit_during_initialization("G1 requires a mod ref bs.");
1871     return JNI_ENOMEM;
1872   }
1873 
1874   // Also create a G1 rem set.
1875   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1876     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1877   } else {
1878     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1879     return JNI_ENOMEM;
1880   }
1881 
1882   // Carve out the G1 part of the heap.
1883 
1884   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1885   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1886                            g1_rs.size()/HeapWordSize);
1887   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1888 
1889   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1890 
1891   _g1_storage.initialize(g1_rs, 0);
1892   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1893   _g1_max_committed = _g1_committed;
1894   _hrs = new HeapRegionSeq(_expansion_regions);
1895   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
1896 
1897   // 6843694 - ensure that the maximum region index can fit
1898   // in the remembered set structures.
1899   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1900   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1901 
1902   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1903   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1904   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1905             "too many cards per region");
1906 
1907   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
1908 
1909   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1910                                              heap_word_size(init_byte_size));
1911 
1912   _g1h = this;
1913 
1914    _in_cset_fast_test_length = max_regions();
1915    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1916 
1917    // We're biasing _in_cset_fast_test to avoid subtracting the
1918    // beginning of the heap every time we want to index; basically
1919    // it's the same with what we do with the card table.
1920    _in_cset_fast_test = _in_cset_fast_test_base -
1921                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1922 
1923    // Clear the _cset_fast_test bitmap in anticipation of adding
1924    // regions to the incremental collection set for the first
1925    // evacuation pause.
1926    clear_cset_fast_test();
1927 
1928   // Create the ConcurrentMark data structure and thread.
1929   // (Must do this late, so that "max_regions" is defined.)
1930   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1931   _cmThread = _cm->cmThread();
1932 
1933   // Initialize the from_card cache structure of HeapRegionRemSet.
1934   HeapRegionRemSet::init_heap(max_regions());
1935 
1936   // Now expand into the initial heap size.
1937   if (!expand(init_byte_size)) {
1938     vm_exit_during_initialization("Failed to allocate initial heap.");
1939     return JNI_ENOMEM;
1940   }
1941 
1942   // Perform any initialization actions delegated to the policy.
1943   g1_policy()->init();
1944 
1945   g1_policy()->note_start_of_mark_thread();
1946 
1947   _refine_cte_cl =
1948     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
1949                                     g1_rem_set(),
1950                                     concurrent_g1_refine());
1951   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
1952 
1953   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1954                                                SATB_Q_FL_lock,
1955                                                G1SATBProcessCompletedThreshold,
1956                                                Shared_SATB_Q_lock);
1957 
1958   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1959                                                 DirtyCardQ_FL_lock,
1960                                                 concurrent_g1_refine()->yellow_zone(),
1961                                                 concurrent_g1_refine()->red_zone(),
1962                                                 Shared_DirtyCardQ_lock);
1963 
1964   if (G1DeferredRSUpdate) {
1965     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1966                                       DirtyCardQ_FL_lock,
1967                                       -1, // never trigger processing
1968                                       -1, // no limit on length
1969                                       Shared_DirtyCardQ_lock,
1970                                       &JavaThread::dirty_card_queue_set());
1971   }
1972 
1973   // Initialize the card queue set used to hold cards containing
1974   // references into the collection set.
1975   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
1976                                              DirtyCardQ_FL_lock,
1977                                              -1, // never trigger processing
1978                                              -1, // no limit on length
1979                                              Shared_DirtyCardQ_lock,
1980                                              &JavaThread::dirty_card_queue_set());
1981 
1982   // In case we're keeping closure specialization stats, initialize those
1983   // counts and that mechanism.
1984   SpecializationStats::clear();
1985 
1986   _gc_alloc_region_list = NULL;
1987 
1988   // Do later initialization work for concurrent refinement.
1989   _cg1r->init();
1990 
1991   // Here we allocate the dummy full region that is required by the
1992   // G1AllocRegion class. If we don't pass an address in the reserved
1993   // space here, lots of asserts fire.
1994   MemRegion mr(_g1_reserved.start(), HeapRegion::GrainWords);
1995   HeapRegion* dummy_region = new HeapRegion(_bot_shared, mr, true);
1996   // We'll re-use the same region whether the alloc region will
1997   // require BOT updates or not and, if it doesn't, then a non-young
1998   // region will complain that it cannot support allocations without
1999   // BOT updates. So we'll tag the dummy region as young to avoid that.
2000   dummy_region->set_young();
2001   // Make sure it's full.
2002   dummy_region->set_top(dummy_region->end());
2003   G1AllocRegion::setup(this, dummy_region);
2004 
2005   init_mutator_alloc_region();
2006 
2007   // Do create of the monitoring and management support so that
2008   // values in the heap have been properly initialized.
2009   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2010 
2011   return JNI_OK;
2012 }
2013 
2014 void G1CollectedHeap::ref_processing_init() {
2015   // Reference processing in G1 currently works as follows:
2016   //
2017   // * There is only one reference processor instance that
2018   //   'spans' the entire heap. It is created by the code
2019   //   below.
2020   // * Reference discovery is not enabled during an incremental
2021   //   pause (see 6484982).
2022   // * Discoverered refs are not enqueued nor are they processed
2023   //   during an incremental pause (see 6484982).
2024   // * Reference discovery is enabled at initial marking.
2025   // * Reference discovery is disabled and the discovered
2026   //   references processed etc during remarking.
2027   // * Reference discovery is MT (see below).
2028   // * Reference discovery requires a barrier (see below).
2029   // * Reference processing is currently not MT (see 6608385).
2030   // * A full GC enables (non-MT) reference discovery and
2031   //   processes any discovered references.
2032 
2033   SharedHeap::ref_processing_init();
2034   MemRegion mr = reserved_region();
2035   _ref_processor =
2036     new ReferenceProcessor(mr,    // span
2037                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
2038                            (int) ParallelGCThreads,   // degree of mt processing
2039                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
2040                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
2041                            false,                     // Reference discovery is not atomic
2042                            &_is_alive_closure,        // is alive closure for efficiency
2043                            true);                     // Setting next fields of discovered
2044                                                       // lists requires a barrier.
2045 }
2046 
2047 size_t G1CollectedHeap::capacity() const {
2048   return _g1_committed.byte_size();
2049 }
2050 
2051 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2052                                                  DirtyCardQueue* into_cset_dcq,
2053                                                  bool concurrent,
2054                                                  int worker_i) {
2055   // Clean cards in the hot card cache
2056   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2057 
2058   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2059   int n_completed_buffers = 0;
2060   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2061     n_completed_buffers++;
2062   }
2063   g1_policy()->record_update_rs_processed_buffers(worker_i,
2064                                                   (double) n_completed_buffers);
2065   dcqs.clear_n_completed_buffers();
2066   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2067 }
2068 
2069 
2070 // Computes the sum of the storage used by the various regions.
2071 
2072 size_t G1CollectedHeap::used() const {
2073   assert(Heap_lock->owner() != NULL,
2074          "Should be owned on this thread's behalf.");
2075   size_t result = _summary_bytes_used;
2076   // Read only once in case it is set to NULL concurrently
2077   HeapRegion* hr = _mutator_alloc_region.get();
2078   if (hr != NULL)
2079     result += hr->used();
2080   return result;
2081 }
2082 
2083 size_t G1CollectedHeap::used_unlocked() const {
2084   size_t result = _summary_bytes_used;
2085   return result;
2086 }
2087 
2088 class SumUsedClosure: public HeapRegionClosure {
2089   size_t _used;
2090 public:
2091   SumUsedClosure() : _used(0) {}
2092   bool doHeapRegion(HeapRegion* r) {
2093     if (!r->continuesHumongous()) {
2094       _used += r->used();
2095     }
2096     return false;
2097   }
2098   size_t result() { return _used; }
2099 };
2100 
2101 size_t G1CollectedHeap::recalculate_used() const {
2102   SumUsedClosure blk;
2103   _hrs->iterate(&blk);
2104   return blk.result();
2105 }
2106 
2107 #ifndef PRODUCT
2108 class SumUsedRegionsClosure: public HeapRegionClosure {
2109   size_t _num;
2110 public:
2111   SumUsedRegionsClosure() : _num(0) {}
2112   bool doHeapRegion(HeapRegion* r) {
2113     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
2114       _num += 1;
2115     }
2116     return false;
2117   }
2118   size_t result() { return _num; }
2119 };
2120 
2121 size_t G1CollectedHeap::recalculate_used_regions() const {
2122   SumUsedRegionsClosure blk;
2123   _hrs->iterate(&blk);
2124   return blk.result();
2125 }
2126 #endif // PRODUCT
2127 
2128 size_t G1CollectedHeap::unsafe_max_alloc() {
2129   if (free_regions() > 0) return HeapRegion::GrainBytes;
2130   // otherwise, is there space in the current allocation region?
2131 
2132   // We need to store the current allocation region in a local variable
2133   // here. The problem is that this method doesn't take any locks and
2134   // there may be other threads which overwrite the current allocation
2135   // region field. attempt_allocation(), for example, sets it to NULL
2136   // and this can happen *after* the NULL check here but before the call
2137   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2138   // to be a problem in the optimized build, since the two loads of the
2139   // current allocation region field are optimized away.
2140   HeapRegion* hr = _mutator_alloc_region.get();
2141   if (hr == NULL) {
2142     return 0;
2143   }
2144   return hr->free();
2145 }
2146 
2147 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2148   return
2149     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2150      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2151 }
2152 
2153 #ifndef PRODUCT
2154 void G1CollectedHeap::allocate_dummy_regions() {
2155   // Let's fill up most of the region
2156   size_t word_size = HeapRegion::GrainWords - 1024;
2157   // And as a result the region we'll allocate will be humongous.
2158   guarantee(isHumongous(word_size), "sanity");
2159 
2160   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2161     // Let's use the existing mechanism for the allocation
2162     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2163     if (dummy_obj != NULL) {
2164       MemRegion mr(dummy_obj, word_size);
2165       CollectedHeap::fill_with_object(mr);
2166     } else {
2167       // If we can't allocate once, we probably cannot allocate
2168       // again. Let's get out of the loop.
2169       break;
2170     }
2171   }
2172 }
2173 #endif // !PRODUCT
2174 
2175 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2176   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2177 
2178   // We assume that if concurrent == true, then the caller is a
2179   // concurrent thread that was joined the Suspendible Thread
2180   // Set. If there's ever a cheap way to check this, we should add an
2181   // assert here.
2182 
2183   // We have already incremented _total_full_collections at the start
2184   // of the GC, so total_full_collections() represents how many full
2185   // collections have been started.
2186   unsigned int full_collections_started = total_full_collections();
2187 
2188   // Given that this method is called at the end of a Full GC or of a
2189   // concurrent cycle, and those can be nested (i.e., a Full GC can
2190   // interrupt a concurrent cycle), the number of full collections
2191   // completed should be either one (in the case where there was no
2192   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2193   // behind the number of full collections started.
2194 
2195   // This is the case for the inner caller, i.e. a Full GC.
2196   assert(concurrent ||
2197          (full_collections_started == _full_collections_completed + 1) ||
2198          (full_collections_started == _full_collections_completed + 2),
2199          err_msg("for inner caller (Full GC): full_collections_started = %u "
2200                  "is inconsistent with _full_collections_completed = %u",
2201                  full_collections_started, _full_collections_completed));
2202 
2203   // This is the case for the outer caller, i.e. the concurrent cycle.
2204   assert(!concurrent ||
2205          (full_collections_started == _full_collections_completed + 1),
2206          err_msg("for outer caller (concurrent cycle): "
2207                  "full_collections_started = %u "
2208                  "is inconsistent with _full_collections_completed = %u",
2209                  full_collections_started, _full_collections_completed));
2210 
2211   _full_collections_completed += 1;
2212 
2213   // We need to clear the "in_progress" flag in the CM thread before
2214   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2215   // is set) so that if a waiter requests another System.gc() it doesn't
2216   // incorrectly see that a marking cyle is still in progress.
2217   if (concurrent) {
2218     _cmThread->clear_in_progress();
2219   }
2220 
2221   // This notify_all() will ensure that a thread that called
2222   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2223   // and it's waiting for a full GC to finish will be woken up. It is
2224   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2225   FullGCCount_lock->notify_all();
2226 }
2227 
2228 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2229   assert_at_safepoint(true /* should_be_vm_thread */);
2230   GCCauseSetter gcs(this, cause);
2231   switch (cause) {
2232     case GCCause::_heap_inspection:
2233     case GCCause::_heap_dump: {
2234       HandleMark hm;
2235       do_full_collection(false);         // don't clear all soft refs
2236       break;
2237     }
2238     default: // XXX FIX ME
2239       ShouldNotReachHere(); // Unexpected use of this function
2240   }
2241 }
2242 
2243 void G1CollectedHeap::collect(GCCause::Cause cause) {
2244   // The caller doesn't have the Heap_lock
2245   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2246 
2247   unsigned int gc_count_before;
2248   unsigned int full_gc_count_before;
2249   {
2250     MutexLocker ml(Heap_lock);
2251 
2252     // Read the GC count while holding the Heap_lock
2253     gc_count_before = SharedHeap::heap()->total_collections();
2254     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2255   }
2256 
2257   if (should_do_concurrent_full_gc(cause)) {
2258     // Schedule an initial-mark evacuation pause that will start a
2259     // concurrent cycle. We're setting word_size to 0 which means that
2260     // we are not requesting a post-GC allocation.
2261     VM_G1IncCollectionPause op(gc_count_before,
2262                                0,     /* word_size */
2263                                true,  /* should_initiate_conc_mark */
2264                                g1_policy()->max_pause_time_ms(),
2265                                cause);
2266     VMThread::execute(&op);
2267   } else {
2268     if (cause == GCCause::_gc_locker
2269         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2270 
2271       // Schedule a standard evacuation pause. We're setting word_size
2272       // to 0 which means that we are not requesting a post-GC allocation.
2273       VM_G1IncCollectionPause op(gc_count_before,
2274                                  0,     /* word_size */
2275                                  false, /* should_initiate_conc_mark */
2276                                  g1_policy()->max_pause_time_ms(),
2277                                  cause);
2278       VMThread::execute(&op);
2279     } else {
2280       // Schedule a Full GC.
2281       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2282       VMThread::execute(&op);
2283     }
2284   }
2285 }
2286 
2287 bool G1CollectedHeap::is_in(const void* p) const {
2288   if (_g1_committed.contains(p)) {
2289     HeapRegion* hr = _hrs->addr_to_region(p);
2290     return hr->is_in(p);
2291   } else {
2292     return _perm_gen->as_gen()->is_in(p);
2293   }
2294 }
2295 
2296 // Iteration functions.
2297 
2298 // Iterates an OopClosure over all ref-containing fields of objects
2299 // within a HeapRegion.
2300 
2301 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2302   MemRegion _mr;
2303   OopClosure* _cl;
2304 public:
2305   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2306     : _mr(mr), _cl(cl) {}
2307   bool doHeapRegion(HeapRegion* r) {
2308     if (! r->continuesHumongous()) {
2309       r->oop_iterate(_cl);
2310     }
2311     return false;
2312   }
2313 };
2314 
2315 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2316   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2317   _hrs->iterate(&blk);
2318   if (do_perm) {
2319     perm_gen()->oop_iterate(cl);
2320   }
2321 }
2322 
2323 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2324   IterateOopClosureRegionClosure blk(mr, cl);
2325   _hrs->iterate(&blk);
2326   if (do_perm) {
2327     perm_gen()->oop_iterate(cl);
2328   }
2329 }
2330 
2331 // Iterates an ObjectClosure over all objects within a HeapRegion.
2332 
2333 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2334   ObjectClosure* _cl;
2335 public:
2336   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2337   bool doHeapRegion(HeapRegion* r) {
2338     if (! r->continuesHumongous()) {
2339       r->object_iterate(_cl);
2340     }
2341     return false;
2342   }
2343 };
2344 
2345 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2346   IterateObjectClosureRegionClosure blk(cl);
2347   _hrs->iterate(&blk);
2348   if (do_perm) {
2349     perm_gen()->object_iterate(cl);
2350   }
2351 }
2352 
2353 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2354   // FIXME: is this right?
2355   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2356 }
2357 
2358 // Calls a SpaceClosure on a HeapRegion.
2359 
2360 class SpaceClosureRegionClosure: public HeapRegionClosure {
2361   SpaceClosure* _cl;
2362 public:
2363   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2364   bool doHeapRegion(HeapRegion* r) {
2365     _cl->do_space(r);
2366     return false;
2367   }
2368 };
2369 
2370 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2371   SpaceClosureRegionClosure blk(cl);
2372   _hrs->iterate(&blk);
2373 }
2374 
2375 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
2376   _hrs->iterate(cl);
2377 }
2378 
2379 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2380                                                HeapRegionClosure* cl) {
2381   _hrs->iterate_from(r, cl);
2382 }
2383 
2384 void
2385 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
2386   _hrs->iterate_from(idx, cl);
2387 }
2388 
2389 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
2390 
2391 void
2392 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2393                                                  int worker,
2394                                                  jint claim_value) {
2395   const size_t regions = n_regions();
2396   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2397   // try to spread out the starting points of the workers
2398   const size_t start_index = regions / worker_num * (size_t) worker;
2399 
2400   // each worker will actually look at all regions
2401   for (size_t count = 0; count < regions; ++count) {
2402     const size_t index = (start_index + count) % regions;
2403     assert(0 <= index && index < regions, "sanity");
2404     HeapRegion* r = region_at(index);
2405     // we'll ignore "continues humongous" regions (we'll process them
2406     // when we come across their corresponding "start humongous"
2407     // region) and regions already claimed
2408     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2409       continue;
2410     }
2411     // OK, try to claim it
2412     if (r->claimHeapRegion(claim_value)) {
2413       // success!
2414       assert(!r->continuesHumongous(), "sanity");
2415       if (r->startsHumongous()) {
2416         // If the region is "starts humongous" we'll iterate over its
2417         // "continues humongous" first; in fact we'll do them
2418         // first. The order is important. In on case, calling the
2419         // closure on the "starts humongous" region might de-allocate
2420         // and clear all its "continues humongous" regions and, as a
2421         // result, we might end up processing them twice. So, we'll do
2422         // them first (notice: most closures will ignore them anyway) and
2423         // then we'll do the "starts humongous" region.
2424         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2425           HeapRegion* chr = region_at(ch_index);
2426 
2427           // if the region has already been claimed or it's not
2428           // "continues humongous" we're done
2429           if (chr->claim_value() == claim_value ||
2430               !chr->continuesHumongous()) {
2431             break;
2432           }
2433 
2434           // Noone should have claimed it directly. We can given
2435           // that we claimed its "starts humongous" region.
2436           assert(chr->claim_value() != claim_value, "sanity");
2437           assert(chr->humongous_start_region() == r, "sanity");
2438 
2439           if (chr->claimHeapRegion(claim_value)) {
2440             // we should always be able to claim it; noone else should
2441             // be trying to claim this region
2442 
2443             bool res2 = cl->doHeapRegion(chr);
2444             assert(!res2, "Should not abort");
2445 
2446             // Right now, this holds (i.e., no closure that actually
2447             // does something with "continues humongous" regions
2448             // clears them). We might have to weaken it in the future,
2449             // but let's leave these two asserts here for extra safety.
2450             assert(chr->continuesHumongous(), "should still be the case");
2451             assert(chr->humongous_start_region() == r, "sanity");
2452           } else {
2453             guarantee(false, "we should not reach here");
2454           }
2455         }
2456       }
2457 
2458       assert(!r->continuesHumongous(), "sanity");
2459       bool res = cl->doHeapRegion(r);
2460       assert(!res, "Should not abort");
2461     }
2462   }
2463 }
2464 
2465 class ResetClaimValuesClosure: public HeapRegionClosure {
2466 public:
2467   bool doHeapRegion(HeapRegion* r) {
2468     r->set_claim_value(HeapRegion::InitialClaimValue);
2469     return false;
2470   }
2471 };
2472 
2473 void
2474 G1CollectedHeap::reset_heap_region_claim_values() {
2475   ResetClaimValuesClosure blk;
2476   heap_region_iterate(&blk);
2477 }
2478 
2479 #ifdef ASSERT
2480 // This checks whether all regions in the heap have the correct claim
2481 // value. I also piggy-backed on this a check to ensure that the
2482 // humongous_start_region() information on "continues humongous"
2483 // regions is correct.
2484 
2485 class CheckClaimValuesClosure : public HeapRegionClosure {
2486 private:
2487   jint _claim_value;
2488   size_t _failures;
2489   HeapRegion* _sh_region;
2490 public:
2491   CheckClaimValuesClosure(jint claim_value) :
2492     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2493   bool doHeapRegion(HeapRegion* r) {
2494     if (r->claim_value() != _claim_value) {
2495       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2496                              "claim value = %d, should be %d",
2497                              r->bottom(), r->end(), r->claim_value(),
2498                              _claim_value);
2499       ++_failures;
2500     }
2501     if (!r->isHumongous()) {
2502       _sh_region = NULL;
2503     } else if (r->startsHumongous()) {
2504       _sh_region = r;
2505     } else if (r->continuesHumongous()) {
2506       if (r->humongous_start_region() != _sh_region) {
2507         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2508                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2509                                r->bottom(), r->end(),
2510                                r->humongous_start_region(),
2511                                _sh_region);
2512         ++_failures;
2513       }
2514     }
2515     return false;
2516   }
2517   size_t failures() {
2518     return _failures;
2519   }
2520 };
2521 
2522 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2523   CheckClaimValuesClosure cl(claim_value);
2524   heap_region_iterate(&cl);
2525   return cl.failures() == 0;
2526 }
2527 #endif // ASSERT
2528 
2529 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2530   HeapRegion* r = g1_policy()->collection_set();
2531   while (r != NULL) {
2532     HeapRegion* next = r->next_in_collection_set();
2533     if (cl->doHeapRegion(r)) {
2534       cl->incomplete();
2535       return;
2536     }
2537     r = next;
2538   }
2539 }
2540 
2541 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2542                                                   HeapRegionClosure *cl) {
2543   if (r == NULL) {
2544     // The CSet is empty so there's nothing to do.
2545     return;
2546   }
2547 
2548   assert(r->in_collection_set(),
2549          "Start region must be a member of the collection set.");
2550   HeapRegion* cur = r;
2551   while (cur != NULL) {
2552     HeapRegion* next = cur->next_in_collection_set();
2553     if (cl->doHeapRegion(cur) && false) {
2554       cl->incomplete();
2555       return;
2556     }
2557     cur = next;
2558   }
2559   cur = g1_policy()->collection_set();
2560   while (cur != r) {
2561     HeapRegion* next = cur->next_in_collection_set();
2562     if (cl->doHeapRegion(cur) && false) {
2563       cl->incomplete();
2564       return;
2565     }
2566     cur = next;
2567   }
2568 }
2569 
2570 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2571   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
2572 }
2573 
2574 
2575 Space* G1CollectedHeap::space_containing(const void* addr) const {
2576   Space* res = heap_region_containing(addr);
2577   if (res == NULL)
2578     res = perm_gen()->space_containing(addr);
2579   return res;
2580 }
2581 
2582 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2583   Space* sp = space_containing(addr);
2584   if (sp != NULL) {
2585     return sp->block_start(addr);
2586   }
2587   return NULL;
2588 }
2589 
2590 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2591   Space* sp = space_containing(addr);
2592   assert(sp != NULL, "block_size of address outside of heap");
2593   return sp->block_size(addr);
2594 }
2595 
2596 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2597   Space* sp = space_containing(addr);
2598   return sp->block_is_obj(addr);
2599 }
2600 
2601 bool G1CollectedHeap::supports_tlab_allocation() const {
2602   return true;
2603 }
2604 
2605 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2606   return HeapRegion::GrainBytes;
2607 }
2608 
2609 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2610   // Return the remaining space in the cur alloc region, but not less than
2611   // the min TLAB size.
2612 
2613   // Also, this value can be at most the humongous object threshold,
2614   // since we can't allow tlabs to grow big enough to accomodate
2615   // humongous objects.
2616 
2617   HeapRegion* hr = _mutator_alloc_region.get();
2618   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2619   if (hr == NULL) {
2620     return max_tlab_size;
2621   } else {
2622     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2623   }
2624 }
2625 
2626 size_t G1CollectedHeap::large_typearray_limit() {
2627   // FIXME
2628   return HeapRegion::GrainBytes/HeapWordSize;
2629 }
2630 
2631 size_t G1CollectedHeap::max_capacity() const {
2632   return _g1_reserved.byte_size();
2633 }
2634 
2635 jlong G1CollectedHeap::millis_since_last_gc() {
2636   // assert(false, "NYI");
2637   return 0;
2638 }
2639 
2640 void G1CollectedHeap::prepare_for_verify() {
2641   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2642     ensure_parsability(false);
2643   }
2644   g1_rem_set()->prepare_for_verify();
2645 }
2646 
2647 class VerifyLivenessOopClosure: public OopClosure {
2648   G1CollectedHeap* g1h;
2649 public:
2650   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
2651     g1h = _g1h;
2652   }
2653   void do_oop(narrowOop *p) { do_oop_work(p); }
2654   void do_oop(      oop *p) { do_oop_work(p); }
2655 
2656   template <class T> void do_oop_work(T *p) {
2657     oop obj = oopDesc::load_decode_heap_oop(p);
2658     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
2659               "Dead object referenced by a not dead object");
2660   }
2661 };
2662 
2663 class VerifyObjsInRegionClosure: public ObjectClosure {
2664 private:
2665   G1CollectedHeap* _g1h;
2666   size_t _live_bytes;
2667   HeapRegion *_hr;
2668   bool _use_prev_marking;
2669 public:
2670   // use_prev_marking == true  -> use "prev" marking information,
2671   // use_prev_marking == false -> use "next" marking information
2672   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
2673     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2674     _g1h = G1CollectedHeap::heap();
2675   }
2676   void do_object(oop o) {
2677     VerifyLivenessOopClosure isLive(_g1h);
2678     assert(o != NULL, "Huh?");
2679     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2680       o->oop_iterate(&isLive);
2681       if (!_hr->obj_allocated_since_prev_marking(o)) {
2682         size_t obj_size = o->size();    // Make sure we don't overflow
2683         _live_bytes += (obj_size * HeapWordSize);
2684       }
2685     }
2686   }
2687   size_t live_bytes() { return _live_bytes; }
2688 };
2689 
2690 class PrintObjsInRegionClosure : public ObjectClosure {
2691   HeapRegion *_hr;
2692   G1CollectedHeap *_g1;
2693 public:
2694   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2695     _g1 = G1CollectedHeap::heap();
2696   };
2697 
2698   void do_object(oop o) {
2699     if (o != NULL) {
2700       HeapWord *start = (HeapWord *) o;
2701       size_t word_sz = o->size();
2702       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2703                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2704                           (void*) o, word_sz,
2705                           _g1->isMarkedPrev(o),
2706                           _g1->isMarkedNext(o),
2707                           _hr->obj_allocated_since_prev_marking(o));
2708       HeapWord *end = start + word_sz;
2709       HeapWord *cur;
2710       int *val;
2711       for (cur = start; cur < end; cur++) {
2712         val = (int *) cur;
2713         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2714       }
2715     }
2716   }
2717 };
2718 
2719 class VerifyRegionClosure: public HeapRegionClosure {
2720 private:
2721   bool _allow_dirty;
2722   bool _par;
2723   bool _use_prev_marking;
2724   bool _failures;
2725 public:
2726   // use_prev_marking == true  -> use "prev" marking information,
2727   // use_prev_marking == false -> use "next" marking information
2728   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2729     : _allow_dirty(allow_dirty),
2730       _par(par),
2731       _use_prev_marking(use_prev_marking),
2732       _failures(false) {}
2733 
2734   bool failures() {
2735     return _failures;
2736   }
2737 
2738   bool doHeapRegion(HeapRegion* r) {
2739     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2740               "Should be unclaimed at verify points.");
2741     if (!r->continuesHumongous()) {
2742       bool failures = false;
2743       r->verify(_allow_dirty, _use_prev_marking, &failures);
2744       if (failures) {
2745         _failures = true;
2746       } else {
2747         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
2748         r->object_iterate(&not_dead_yet_cl);
2749         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2750           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2751                                  "max_live_bytes "SIZE_FORMAT" "
2752                                  "< calculated "SIZE_FORMAT,
2753                                  r->bottom(), r->end(),
2754                                  r->max_live_bytes(),
2755                                  not_dead_yet_cl.live_bytes());
2756           _failures = true;
2757         }
2758       }
2759     }
2760     return false; // stop the region iteration if we hit a failure
2761   }
2762 };
2763 
2764 class VerifyRootsClosure: public OopsInGenClosure {
2765 private:
2766   G1CollectedHeap* _g1h;
2767   bool             _use_prev_marking;
2768   bool             _failures;
2769 public:
2770   // use_prev_marking == true  -> use "prev" marking information,
2771   // use_prev_marking == false -> use "next" marking information
2772   VerifyRootsClosure(bool use_prev_marking) :
2773     _g1h(G1CollectedHeap::heap()),
2774     _use_prev_marking(use_prev_marking),
2775     _failures(false) { }
2776 
2777   bool failures() { return _failures; }
2778 
2779   template <class T> void do_oop_nv(T* p) {
2780     T heap_oop = oopDesc::load_heap_oop(p);
2781     if (!oopDesc::is_null(heap_oop)) {
2782       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2783       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2784         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2785                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2786         obj->print_on(gclog_or_tty);
2787         _failures = true;
2788       }
2789     }
2790   }
2791 
2792   void do_oop(oop* p)       { do_oop_nv(p); }
2793   void do_oop(narrowOop* p) { do_oop_nv(p); }
2794 };
2795 
2796 // This is the task used for parallel heap verification.
2797 
2798 class G1ParVerifyTask: public AbstractGangTask {
2799 private:
2800   G1CollectedHeap* _g1h;
2801   bool _allow_dirty;
2802   bool _use_prev_marking;
2803   bool _failures;
2804 
2805 public:
2806   // use_prev_marking == true  -> use "prev" marking information,
2807   // use_prev_marking == false -> use "next" marking information
2808   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
2809                   bool use_prev_marking) :
2810     AbstractGangTask("Parallel verify task"),
2811     _g1h(g1h),
2812     _allow_dirty(allow_dirty),
2813     _use_prev_marking(use_prev_marking),
2814     _failures(false) { }
2815 
2816   bool failures() {
2817     return _failures;
2818   }
2819 
2820   void work(int worker_i) {
2821     HandleMark hm;
2822     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2823     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2824                                           HeapRegion::ParVerifyClaimValue);
2825     if (blk.failures()) {
2826       _failures = true;
2827     }
2828   }
2829 };
2830 
2831 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2832   verify(allow_dirty, silent, /* use_prev_marking */ true);
2833 }
2834 
2835 void G1CollectedHeap::verify(bool allow_dirty,
2836                              bool silent,
2837                              bool use_prev_marking) {
2838   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2839     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2840     VerifyRootsClosure rootsCl(use_prev_marking);
2841     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2842     // We apply the relevant closures to all the oops in the
2843     // system dictionary, the string table and the code cache.
2844     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2845     process_strong_roots(true,      // activate StrongRootsScope
2846                          true,      // we set "collecting perm gen" to true,
2847                                     // so we don't reset the dirty cards in the perm gen.
2848                          SharedHeap::ScanningOption(so),  // roots scanning options
2849                          &rootsCl,
2850                          &blobsCl,
2851                          &rootsCl);
2852     // Since we used "collecting_perm_gen" == true above, we will not have
2853     // checked the refs from perm into the G1-collected heap. We check those
2854     // references explicitly below. Whether the relevant cards are dirty
2855     // is checked further below in the rem set verification.
2856     if (!silent) { gclog_or_tty->print("Permgen roots "); }
2857     perm_gen()->oop_iterate(&rootsCl);
2858     bool failures = rootsCl.failures();
2859     if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
2860     verify_region_sets();
2861     if (!silent) { gclog_or_tty->print("HeapRegions "); }
2862     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2863       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2864              "sanity check");
2865 
2866       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
2867       int n_workers = workers()->total_workers();
2868       set_par_threads(n_workers);
2869       workers()->run_task(&task);
2870       set_par_threads(0);
2871       if (task.failures()) {
2872         failures = true;
2873       }
2874 
2875       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2876              "sanity check");
2877 
2878       reset_heap_region_claim_values();
2879 
2880       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2881              "sanity check");
2882     } else {
2883       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
2884       _hrs->iterate(&blk);
2885       if (blk.failures()) {
2886         failures = true;
2887       }
2888     }
2889     if (!silent) gclog_or_tty->print("RemSet ");
2890     rem_set()->verify();
2891 
2892     if (failures) {
2893       gclog_or_tty->print_cr("Heap:");
2894       print_on(gclog_or_tty, true /* extended */);
2895       gclog_or_tty->print_cr("");
2896 #ifndef PRODUCT
2897       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2898         concurrent_mark()->print_reachable("at-verification-failure",
2899                                            use_prev_marking, false /* all */);
2900       }
2901 #endif
2902       gclog_or_tty->flush();
2903     }
2904     guarantee(!failures, "there should not have been any failures");
2905   } else {
2906     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2907   }
2908 }
2909 
2910 class PrintRegionClosure: public HeapRegionClosure {
2911   outputStream* _st;
2912 public:
2913   PrintRegionClosure(outputStream* st) : _st(st) {}
2914   bool doHeapRegion(HeapRegion* r) {
2915     r->print_on(_st);
2916     return false;
2917   }
2918 };
2919 
2920 void G1CollectedHeap::print() const { print_on(tty); }
2921 
2922 void G1CollectedHeap::print_on(outputStream* st) const {
2923   print_on(st, PrintHeapAtGCExtended);
2924 }
2925 
2926 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2927   st->print(" %-20s", "garbage-first heap");
2928   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2929             capacity()/K, used_unlocked()/K);
2930   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2931             _g1_storage.low_boundary(),
2932             _g1_storage.high(),
2933             _g1_storage.high_boundary());
2934   st->cr();
2935   st->print("  region size " SIZE_FORMAT "K, ",
2936             HeapRegion::GrainBytes/K);
2937   size_t young_regions = _young_list->length();
2938   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
2939             young_regions, young_regions * HeapRegion::GrainBytes / K);
2940   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
2941   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
2942             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
2943   st->cr();
2944   perm()->as_gen()->print_on(st);
2945   if (extended) {
2946     st->cr();
2947     print_on_extended(st);
2948   }
2949 }
2950 
2951 void G1CollectedHeap::print_on_extended(outputStream* st) const {
2952   PrintRegionClosure blk(st);
2953   _hrs->iterate(&blk);
2954 }
2955 
2956 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2957   if (G1CollectedHeap::use_parallel_gc_threads()) {
2958     workers()->print_worker_threads_on(st);
2959   }
2960   _cmThread->print_on(st);
2961   st->cr();
2962   _cm->print_worker_threads_on(st);
2963   _cg1r->print_worker_threads_on(st);
2964   st->cr();
2965 }
2966 
2967 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2968   if (G1CollectedHeap::use_parallel_gc_threads()) {
2969     workers()->threads_do(tc);
2970   }
2971   tc->do_thread(_cmThread);
2972   _cg1r->threads_do(tc);
2973 }
2974 
2975 void G1CollectedHeap::print_tracing_info() const {
2976   // We'll overload this to mean "trace GC pause statistics."
2977   if (TraceGen0Time || TraceGen1Time) {
2978     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
2979     // to that.
2980     g1_policy()->print_tracing_info();
2981   }
2982   if (G1SummarizeRSetStats) {
2983     g1_rem_set()->print_summary_info();
2984   }
2985   if (G1SummarizeConcMark) {
2986     concurrent_mark()->print_summary_info();
2987   }
2988   g1_policy()->print_yg_surv_rate_info();
2989   SpecializationStats::print();
2990 }
2991 
2992 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
2993   HeapRegion* hr = heap_region_containing(addr);
2994   if (hr == NULL) {
2995     return 0;
2996   } else {
2997     return 1;
2998   }
2999 }
3000 
3001 G1CollectedHeap* G1CollectedHeap::heap() {
3002   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3003          "not a garbage-first heap");
3004   return _g1h;
3005 }
3006 
3007 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3008   // always_do_update_barrier = false;
3009   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3010   // Call allocation profiler
3011   AllocationProfiler::iterate_since_last_gc();
3012   // Fill TLAB's and such
3013   ensure_parsability(true);
3014 }
3015 
3016 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3017   // FIXME: what is this about?
3018   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3019   // is set.
3020   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3021                         "derived pointer present"));
3022   // always_do_update_barrier = true;
3023 }
3024 
3025 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3026                                                unsigned int gc_count_before,
3027                                                bool* succeeded) {
3028   assert_heap_not_locked_and_not_at_safepoint();
3029   g1_policy()->record_stop_world_start();
3030   VM_G1IncCollectionPause op(gc_count_before,
3031                              word_size,
3032                              false, /* should_initiate_conc_mark */
3033                              g1_policy()->max_pause_time_ms(),
3034                              GCCause::_g1_inc_collection_pause);
3035   VMThread::execute(&op);
3036 
3037   HeapWord* result = op.result();
3038   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3039   assert(result == NULL || ret_succeeded,
3040          "the result should be NULL if the VM did not succeed");
3041   *succeeded = ret_succeeded;
3042 
3043   assert_heap_not_locked();
3044   return result;
3045 }
3046 
3047 void
3048 G1CollectedHeap::doConcurrentMark() {
3049   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3050   if (!_cmThread->in_progress()) {
3051     _cmThread->set_started();
3052     CGC_lock->notify();
3053   }
3054 }
3055 
3056 class VerifyMarkedObjsClosure: public ObjectClosure {
3057     G1CollectedHeap* _g1h;
3058     public:
3059     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
3060     void do_object(oop obj) {
3061       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
3062              "markandsweep mark should agree with concurrent deadness");
3063     }
3064 };
3065 
3066 void
3067 G1CollectedHeap::checkConcurrentMark() {
3068     VerifyMarkedObjsClosure verifycl(this);
3069     //    MutexLockerEx x(getMarkBitMapLock(),
3070     //              Mutex::_no_safepoint_check_flag);
3071     object_iterate(&verifycl, false);
3072 }
3073 
3074 void G1CollectedHeap::do_sync_mark() {
3075   _cm->checkpointRootsInitial();
3076   _cm->markFromRoots();
3077   _cm->checkpointRootsFinal(false);
3078 }
3079 
3080 // <NEW PREDICTION>
3081 
3082 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3083                                                        bool young) {
3084   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3085 }
3086 
3087 void G1CollectedHeap::check_if_region_is_too_expensive(double
3088                                                            predicted_time_ms) {
3089   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3090 }
3091 
3092 size_t G1CollectedHeap::pending_card_num() {
3093   size_t extra_cards = 0;
3094   JavaThread *curr = Threads::first();
3095   while (curr != NULL) {
3096     DirtyCardQueue& dcq = curr->dirty_card_queue();
3097     extra_cards += dcq.size();
3098     curr = curr->next();
3099   }
3100   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3101   size_t buffer_size = dcqs.buffer_size();
3102   size_t buffer_num = dcqs.completed_buffers_num();
3103   return buffer_size * buffer_num + extra_cards;
3104 }
3105 
3106 size_t G1CollectedHeap::max_pending_card_num() {
3107   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3108   size_t buffer_size = dcqs.buffer_size();
3109   size_t buffer_num  = dcqs.completed_buffers_num();
3110   int thread_num  = Threads::number_of_threads();
3111   return (buffer_num + thread_num) * buffer_size;
3112 }
3113 
3114 size_t G1CollectedHeap::cards_scanned() {
3115   return g1_rem_set()->cardsScanned();
3116 }
3117 
3118 void
3119 G1CollectedHeap::setup_surviving_young_words() {
3120   guarantee( _surviving_young_words == NULL, "pre-condition" );
3121   size_t array_length = g1_policy()->young_cset_length();
3122   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3123   if (_surviving_young_words == NULL) {
3124     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3125                           "Not enough space for young surv words summary.");
3126   }
3127   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3128 #ifdef ASSERT
3129   for (size_t i = 0;  i < array_length; ++i) {
3130     assert( _surviving_young_words[i] == 0, "memset above" );
3131   }
3132 #endif // !ASSERT
3133 }
3134 
3135 void
3136 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3137   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3138   size_t array_length = g1_policy()->young_cset_length();
3139   for (size_t i = 0; i < array_length; ++i)
3140     _surviving_young_words[i] += surv_young_words[i];
3141 }
3142 
3143 void
3144 G1CollectedHeap::cleanup_surviving_young_words() {
3145   guarantee( _surviving_young_words != NULL, "pre-condition" );
3146   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3147   _surviving_young_words = NULL;
3148 }
3149 
3150 // </NEW PREDICTION>
3151 
3152 struct PrepareForRSScanningClosure : public HeapRegionClosure {
3153   bool doHeapRegion(HeapRegion *r) {
3154     r->rem_set()->set_iter_claimed(0);
3155     return false;
3156   }
3157 };
3158 
3159 #if TASKQUEUE_STATS
3160 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3161   st->print_raw_cr("GC Task Stats");
3162   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3163   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3164 }
3165 
3166 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3167   print_taskqueue_stats_hdr(st);
3168 
3169   TaskQueueStats totals;
3170   const int n = workers() != NULL ? workers()->total_workers() : 1;
3171   for (int i = 0; i < n; ++i) {
3172     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3173     totals += task_queue(i)->stats;
3174   }
3175   st->print_raw("tot "); totals.print(st); st->cr();
3176 
3177   DEBUG_ONLY(totals.verify());
3178 }
3179 
3180 void G1CollectedHeap::reset_taskqueue_stats() {
3181   const int n = workers() != NULL ? workers()->total_workers() : 1;
3182   for (int i = 0; i < n; ++i) {
3183     task_queue(i)->stats.reset();
3184   }
3185 }
3186 #endif // TASKQUEUE_STATS
3187 
3188 bool
3189 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3190   assert_at_safepoint(true /* should_be_vm_thread */);
3191   guarantee(!is_gc_active(), "collection is not reentrant");
3192 
3193   if (GC_locker::check_active_before_gc()) {
3194     return false;
3195   }
3196 
3197   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3198   ResourceMark rm;
3199 
3200   if (PrintHeapAtGC) {
3201     Universe::print_heap_before_gc();
3202   }
3203 
3204   verify_region_sets_optional();
3205   verify_dirty_young_regions();
3206 
3207   {
3208     // This call will decide whether this pause is an initial-mark
3209     // pause. If it is, during_initial_mark_pause() will return true
3210     // for the duration of this pause.
3211     g1_policy()->decide_on_conc_mark_initiation();
3212 
3213     char verbose_str[128];
3214     sprintf(verbose_str, "GC pause ");
3215     if (g1_policy()->in_young_gc_mode()) {
3216       if (g1_policy()->full_young_gcs())
3217         strcat(verbose_str, "(young)");
3218       else
3219         strcat(verbose_str, "(partial)");
3220     }
3221     if (g1_policy()->during_initial_mark_pause()) {
3222       strcat(verbose_str, " (initial-mark)");
3223       // We are about to start a marking cycle, so we increment the
3224       // full collection counter.
3225       increment_total_full_collections();
3226     }
3227 
3228     // if PrintGCDetails is on, we'll print long statistics information
3229     // in the collector policy code, so let's not print this as the output
3230     // is messy if we do.
3231     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3232     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3233     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3234 
3235     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3236     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3237 
3238     // If the secondary_free_list is not empty, append it to the
3239     // free_list. No need to wait for the cleanup operation to finish;
3240     // the region allocation code will check the secondary_free_list
3241     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3242     // set, skip this step so that the region allocation code has to
3243     // get entries from the secondary_free_list.
3244     if (!G1StressConcRegionFreeing) {
3245       append_secondary_free_list_if_not_empty_with_lock();
3246     }
3247 
3248     increment_gc_time_stamp();
3249 
3250     if (g1_policy()->in_young_gc_mode()) {
3251       assert(check_young_list_well_formed(),
3252              "young list should be well formed");
3253     }
3254 
3255     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3256       IsGCActiveMark x;
3257 
3258       gc_prologue(false);
3259       increment_total_collections(false /* full gc */);
3260 
3261 #if G1_REM_SET_LOGGING
3262       gclog_or_tty->print_cr("\nJust chose CS, heap:");
3263       print();
3264 #endif
3265 
3266       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3267         HandleMark hm;  // Discard invalid handles created during verification
3268         gclog_or_tty->print(" VerifyBeforeGC:");
3269         prepare_for_verify();
3270         Universe::verify(false);
3271       }
3272 
3273       COMPILER2_PRESENT(DerivedPointerTable::clear());
3274 
3275       // Please see comment in G1CollectedHeap::ref_processing_init()
3276       // to see how reference processing currently works in G1.
3277       //
3278       // We want to turn off ref discovery, if necessary, and turn it back on
3279       // on again later if we do. XXX Dubious: why is discovery disabled?
3280       bool was_enabled = ref_processor()->discovery_enabled();
3281       if (was_enabled) ref_processor()->disable_discovery();
3282 
3283       // Forget the current alloc region (we might even choose it to be part
3284       // of the collection set!).
3285       release_mutator_alloc_region();
3286 
3287       // The elapsed time induced by the start time below deliberately elides
3288       // the possible verification above.
3289       double start_time_sec = os::elapsedTime();
3290       size_t start_used_bytes = used();
3291 
3292 #if YOUNG_LIST_VERBOSE
3293       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3294       _young_list->print();
3295       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3296 #endif // YOUNG_LIST_VERBOSE
3297 
3298       g1_policy()->record_collection_pause_start(start_time_sec,
3299                                                  start_used_bytes);
3300 
3301 #if YOUNG_LIST_VERBOSE
3302       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3303       _young_list->print();
3304 #endif // YOUNG_LIST_VERBOSE
3305 
3306       if (g1_policy()->during_initial_mark_pause()) {
3307         concurrent_mark()->checkpointRootsInitialPre();
3308       }
3309       save_marks();
3310 
3311       // We must do this before any possible evacuation that should propagate
3312       // marks.
3313       if (mark_in_progress()) {
3314         double start_time_sec = os::elapsedTime();
3315 
3316         _cm->drainAllSATBBuffers();
3317         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3318         g1_policy()->record_satb_drain_time(finish_mark_ms);
3319       }
3320       // Record the number of elements currently on the mark stack, so we
3321       // only iterate over these.  (Since evacuation may add to the mark
3322       // stack, doing more exposes race conditions.)  If no mark is in
3323       // progress, this will be zero.
3324       _cm->set_oops_do_bound();
3325 
3326       if (mark_in_progress())
3327         concurrent_mark()->newCSet();
3328 
3329 #if YOUNG_LIST_VERBOSE
3330       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3331       _young_list->print();
3332       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3333 #endif // YOUNG_LIST_VERBOSE
3334 
3335       g1_policy()->choose_collection_set(target_pause_time_ms);
3336 
3337       // Nothing to do if we were unable to choose a collection set.
3338 #if G1_REM_SET_LOGGING
3339       gclog_or_tty->print_cr("\nAfter pause, heap:");
3340       print();
3341 #endif
3342       PrepareForRSScanningClosure prepare_for_rs_scan;
3343       collection_set_iterate(&prepare_for_rs_scan);
3344 
3345       setup_surviving_young_words();
3346 
3347       // Set up the gc allocation regions.
3348       get_gc_alloc_regions();
3349 
3350       // Actually do the work...
3351       evacuate_collection_set();
3352 
3353       free_collection_set(g1_policy()->collection_set());
3354       g1_policy()->clear_collection_set();
3355 
3356       cleanup_surviving_young_words();
3357 
3358       // Start a new incremental collection set for the next pause.
3359       g1_policy()->start_incremental_cset_building();
3360 
3361       // Clear the _cset_fast_test bitmap in anticipation of adding
3362       // regions to the incremental collection set for the next
3363       // evacuation pause.
3364       clear_cset_fast_test();
3365 
3366       if (g1_policy()->in_young_gc_mode()) {
3367         _young_list->reset_sampled_info();
3368 
3369         // Don't check the whole heap at this point as the
3370         // GC alloc regions from this pause have been tagged
3371         // as survivors and moved on to the survivor list.
3372         // Survivor regions will fail the !is_young() check.
3373         assert(check_young_list_empty(false /* check_heap */),
3374                "young list should be empty");
3375 
3376 #if YOUNG_LIST_VERBOSE
3377         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3378         _young_list->print();
3379 #endif // YOUNG_LIST_VERBOSE
3380 
3381         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3382                                           _young_list->first_survivor_region(),
3383                                           _young_list->last_survivor_region());
3384 
3385         _young_list->reset_auxilary_lists();
3386       }
3387 
3388       if (evacuation_failed()) {
3389         _summary_bytes_used = recalculate_used();
3390       } else {
3391         // The "used" of the the collection set have already been subtracted
3392         // when they were freed.  Add in the bytes evacuated.
3393         _summary_bytes_used += g1_policy()->bytes_in_to_space();
3394       }
3395 
3396       if (g1_policy()->in_young_gc_mode() &&
3397           g1_policy()->during_initial_mark_pause()) {
3398         concurrent_mark()->checkpointRootsInitialPost();
3399         set_marking_started();
3400         // CAUTION: after the doConcurrentMark() call below,
3401         // the concurrent marking thread(s) could be running
3402         // concurrently with us. Make sure that anything after
3403         // this point does not assume that we are the only GC thread
3404         // running. Note: of course, the actual marking work will
3405         // not start until the safepoint itself is released in
3406         // ConcurrentGCThread::safepoint_desynchronize().
3407         doConcurrentMark();
3408       }
3409 
3410       allocate_dummy_regions();
3411 
3412 #if YOUNG_LIST_VERBOSE
3413       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3414       _young_list->print();
3415       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3416 #endif // YOUNG_LIST_VERBOSE
3417 
3418       init_mutator_alloc_region();
3419 
3420       double end_time_sec = os::elapsedTime();
3421       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3422       g1_policy()->record_pause_time_ms(pause_time_ms);
3423       g1_policy()->record_collection_pause_end();
3424 
3425       MemoryService::track_memory_usage();
3426 
3427       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3428         HandleMark hm;  // Discard invalid handles created during verification
3429         gclog_or_tty->print(" VerifyAfterGC:");
3430         prepare_for_verify();
3431         Universe::verify(false);
3432       }
3433 
3434       if (was_enabled) ref_processor()->enable_discovery();
3435 
3436       {
3437         size_t expand_bytes = g1_policy()->expansion_amount();
3438         if (expand_bytes > 0) {
3439           size_t bytes_before = capacity();
3440           if (!expand(expand_bytes)) {
3441             // We failed to expand the heap so let's verify that
3442             // committed/uncommitted amount match the backing store
3443             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3444             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3445           }
3446         }
3447       }
3448 
3449       if (mark_in_progress()) {
3450         concurrent_mark()->update_g1_committed();
3451       }
3452 
3453 #ifdef TRACESPINNING
3454       ParallelTaskTerminator::print_termination_counts();
3455 #endif
3456 
3457       gc_epilogue(false);
3458     }
3459 
3460     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3461       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3462       print_tracing_info();
3463       vm_exit(-1);
3464     }
3465   }
3466 
3467   verify_region_sets_optional();
3468 
3469   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3470   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3471 
3472   if (PrintHeapAtGC) {
3473     Universe::print_heap_after_gc();
3474   }
3475   g1mm()->update_counters();
3476 
3477   if (G1SummarizeRSetStats &&
3478       (G1SummarizeRSetStatsPeriod > 0) &&
3479       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3480     g1_rem_set()->print_summary_info();
3481   }
3482 
3483   return true;
3484 }
3485 
3486 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3487 {
3488   size_t gclab_word_size;
3489   switch (purpose) {
3490     case GCAllocForSurvived:
3491       gclab_word_size = YoungPLABSize;
3492       break;
3493     case GCAllocForTenured:
3494       gclab_word_size = OldPLABSize;
3495       break;
3496     default:
3497       assert(false, "unknown GCAllocPurpose");
3498       gclab_word_size = OldPLABSize;
3499       break;
3500   }
3501   return gclab_word_size;
3502 }
3503 
3504 void G1CollectedHeap::init_mutator_alloc_region() {
3505   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3506   _mutator_alloc_region.init();
3507 }
3508 
3509 void G1CollectedHeap::release_mutator_alloc_region() {
3510   _mutator_alloc_region.release();
3511   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3512 }
3513 
3514 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
3515   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3516   // make sure we don't call set_gc_alloc_region() multiple times on
3517   // the same region
3518   assert(r == NULL || !r->is_gc_alloc_region(),
3519          "shouldn't already be a GC alloc region");
3520   assert(r == NULL || !r->isHumongous(),
3521          "humongous regions shouldn't be used as GC alloc regions");
3522 
3523   HeapWord* original_top = NULL;
3524   if (r != NULL)
3525     original_top = r->top();
3526 
3527   // We will want to record the used space in r as being there before gc.
3528   // One we install it as a GC alloc region it's eligible for allocation.
3529   // So record it now and use it later.
3530   size_t r_used = 0;
3531   if (r != NULL) {
3532     r_used = r->used();
3533 
3534     if (G1CollectedHeap::use_parallel_gc_threads()) {
3535       // need to take the lock to guard against two threads calling
3536       // get_gc_alloc_region concurrently (very unlikely but...)
3537       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3538       r->save_marks();
3539     }
3540   }
3541   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
3542   _gc_alloc_regions[purpose] = r;
3543   if (old_alloc_region != NULL) {
3544     // Replace aliases too.
3545     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3546       if (_gc_alloc_regions[ap] == old_alloc_region) {
3547         _gc_alloc_regions[ap] = r;
3548       }
3549     }
3550   }
3551   if (r != NULL) {
3552     push_gc_alloc_region(r);
3553     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
3554       // We are using a region as a GC alloc region after it has been used
3555       // as a mutator allocation region during the current marking cycle.
3556       // The mutator-allocated objects are currently implicitly marked, but
3557       // when we move hr->next_top_at_mark_start() forward at the the end
3558       // of the GC pause, they won't be.  We therefore mark all objects in
3559       // the "gap".  We do this object-by-object, since marking densely
3560       // does not currently work right with marking bitmap iteration.  This
3561       // means we rely on TLAB filling at the start of pauses, and no
3562       // "resuscitation" of filled TLAB's.  If we want to do this, we need
3563       // to fix the marking bitmap iteration.
3564       HeapWord* curhw = r->next_top_at_mark_start();
3565       HeapWord* t = original_top;
3566 
3567       while (curhw < t) {
3568         oop cur = (oop)curhw;
3569         // We'll assume parallel for generality.  This is rare code.
3570         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
3571         curhw = curhw + cur->size();
3572       }
3573       assert(curhw == t, "Should have parsed correctly.");
3574     }
3575     if (G1PolicyVerbose > 1) {
3576       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
3577                           "for survivors:", r->bottom(), original_top, r->end());
3578       r->print();
3579     }
3580     g1_policy()->record_before_bytes(r_used);
3581   }
3582 }
3583 
3584 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
3585   assert(Thread::current()->is_VM_thread() ||
3586          FreeList_lock->owned_by_self(), "Precondition");
3587   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
3588          "Precondition.");
3589   hr->set_is_gc_alloc_region(true);
3590   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
3591   _gc_alloc_region_list = hr;
3592 }
3593 
3594 #ifdef G1_DEBUG
3595 class FindGCAllocRegion: public HeapRegionClosure {
3596 public:
3597   bool doHeapRegion(HeapRegion* r) {
3598     if (r->is_gc_alloc_region()) {
3599       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
3600                              r->hrs_index(), r->bottom());
3601     }
3602     return false;
3603   }
3604 };
3605 #endif // G1_DEBUG
3606 
3607 void G1CollectedHeap::forget_alloc_region_list() {
3608   assert_at_safepoint(true /* should_be_vm_thread */);
3609   while (_gc_alloc_region_list != NULL) {
3610     HeapRegion* r = _gc_alloc_region_list;
3611     assert(r->is_gc_alloc_region(), "Invariant.");
3612     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
3613     // newly allocated data in order to be able to apply deferred updates
3614     // before the GC is done for verification purposes (i.e to allow
3615     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
3616     // collection.
3617     r->ContiguousSpace::set_saved_mark();
3618     _gc_alloc_region_list = r->next_gc_alloc_region();
3619     r->set_next_gc_alloc_region(NULL);
3620     r->set_is_gc_alloc_region(false);
3621     if (r->is_survivor()) {
3622       if (r->is_empty()) {
3623         r->set_not_young();
3624       } else {
3625         _young_list->add_survivor_region(r);
3626       }
3627     }
3628   }
3629 #ifdef G1_DEBUG
3630   FindGCAllocRegion fa;
3631   heap_region_iterate(&fa);
3632 #endif // G1_DEBUG
3633 }
3634 
3635 
3636 bool G1CollectedHeap::check_gc_alloc_regions() {
3637   // TODO: allocation regions check
3638   return true;
3639 }
3640 
3641 void G1CollectedHeap::get_gc_alloc_regions() {
3642   // First, let's check that the GC alloc region list is empty (it should)
3643   assert(_gc_alloc_region_list == NULL, "invariant");
3644 
3645   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3646     assert(_gc_alloc_regions[ap] == NULL, "invariant");
3647     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3648 
3649     // Create new GC alloc regions.
3650     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
3651     _retained_gc_alloc_regions[ap] = NULL;
3652 
3653     if (alloc_region != NULL) {
3654       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
3655 
3656       // let's make sure that the GC alloc region is not tagged as such
3657       // outside a GC operation
3658       assert(!alloc_region->is_gc_alloc_region(), "sanity");
3659 
3660       if (alloc_region->in_collection_set() ||
3661           alloc_region->top() == alloc_region->end() ||
3662           alloc_region->top() == alloc_region->bottom() ||
3663           alloc_region->isHumongous()) {
3664         // we will discard the current GC alloc region if
3665         // * it's in the collection set (it can happen!),
3666         // * it's already full (no point in using it),
3667         // * it's empty (this means that it was emptied during
3668         // a cleanup and it should be on the free list now), or
3669         // * it's humongous (this means that it was emptied
3670         // during a cleanup and was added to the free list, but
3671         // has been subseqently used to allocate a humongous
3672         // object that may be less than the region size).
3673 
3674         alloc_region = NULL;
3675       }
3676     }
3677 
3678     if (alloc_region == NULL) {
3679       // we will get a new GC alloc region
3680       alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
3681     } else {
3682       // the region was retained from the last collection
3683       ++_gc_alloc_region_counts[ap];
3684       if (G1PrintHeapRegions) {
3685         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
3686                                "top "PTR_FORMAT,
3687                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
3688       }
3689     }
3690 
3691     if (alloc_region != NULL) {
3692       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3693       set_gc_alloc_region(ap, alloc_region);
3694     }
3695 
3696     assert(_gc_alloc_regions[ap] == NULL ||
3697            _gc_alloc_regions[ap]->is_gc_alloc_region(),
3698            "the GC alloc region should be tagged as such");
3699     assert(_gc_alloc_regions[ap] == NULL ||
3700            _gc_alloc_regions[ap] == _gc_alloc_region_list,
3701            "the GC alloc region should be the same as the GC alloc list head");
3702   }
3703   // Set alternative regions for allocation purposes that have reached
3704   // their limit.
3705   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3706     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
3707     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
3708       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
3709     }
3710   }
3711   assert(check_gc_alloc_regions(), "alloc regions messed up");
3712 }
3713 
3714 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3715   // We keep a separate list of all regions that have been alloc regions in
3716   // the current collection pause. Forget that now. This method will
3717   // untag the GC alloc regions and tear down the GC alloc region
3718   // list. It's desirable that no regions are tagged as GC alloc
3719   // outside GCs.
3720 
3721   forget_alloc_region_list();
3722 
3723   // The current alloc regions contain objs that have survived
3724   // collection. Make them no longer GC alloc regions.
3725   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3726     HeapRegion* r = _gc_alloc_regions[ap];
3727     _retained_gc_alloc_regions[ap] = NULL;
3728     _gc_alloc_region_counts[ap] = 0;
3729 
3730     if (r != NULL) {
3731       // we retain nothing on _gc_alloc_regions between GCs
3732       set_gc_alloc_region(ap, NULL);
3733 
3734       if (r->is_empty()) {
3735         // We didn't actually allocate anything in it; let's just put
3736         // it back on the free list.
3737         _free_list.add_as_head(r);
3738       } else if (_retain_gc_alloc_region[ap] && !totally) {
3739         // retain it so that we can use it at the beginning of the next GC
3740         _retained_gc_alloc_regions[ap] = r;
3741       }
3742     }
3743   }
3744 }
3745 
3746 #ifndef PRODUCT
3747 // Useful for debugging
3748 
3749 void G1CollectedHeap::print_gc_alloc_regions() {
3750   gclog_or_tty->print_cr("GC alloc regions");
3751   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3752     HeapRegion* r = _gc_alloc_regions[ap];
3753     if (r == NULL) {
3754       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
3755     } else {
3756       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
3757                              ap, r->bottom(), r->used());
3758     }
3759   }
3760 }
3761 #endif // PRODUCT
3762 
3763 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3764   _drain_in_progress = false;
3765   set_evac_failure_closure(cl);
3766   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3767 }
3768 
3769 void G1CollectedHeap::finalize_for_evac_failure() {
3770   assert(_evac_failure_scan_stack != NULL &&
3771          _evac_failure_scan_stack->length() == 0,
3772          "Postcondition");
3773   assert(!_drain_in_progress, "Postcondition");
3774   delete _evac_failure_scan_stack;
3775   _evac_failure_scan_stack = NULL;
3776 }
3777 
3778 
3779 
3780 // *** Sequential G1 Evacuation
3781 
3782 class G1IsAliveClosure: public BoolObjectClosure {
3783   G1CollectedHeap* _g1;
3784 public:
3785   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3786   void do_object(oop p) { assert(false, "Do not call."); }
3787   bool do_object_b(oop p) {
3788     // It is reachable if it is outside the collection set, or is inside
3789     // and forwarded.
3790 
3791 #ifdef G1_DEBUG
3792     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3793                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3794                            !_g1->obj_in_cs(p) || p->is_forwarded());
3795 #endif // G1_DEBUG
3796 
3797     return !_g1->obj_in_cs(p) || p->is_forwarded();
3798   }
3799 };
3800 
3801 class G1KeepAliveClosure: public OopClosure {
3802   G1CollectedHeap* _g1;
3803 public:
3804   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3805   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3806   void do_oop(      oop* p) {
3807     oop obj = *p;
3808 #ifdef G1_DEBUG
3809     if (PrintGC && Verbose) {
3810       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3811                              p, (void*) obj, (void*) *p);
3812     }
3813 #endif // G1_DEBUG
3814 
3815     if (_g1->obj_in_cs(obj)) {
3816       assert( obj->is_forwarded(), "invariant" );
3817       *p = obj->forwardee();
3818 #ifdef G1_DEBUG
3819       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3820                              (void*) obj, (void*) *p);
3821 #endif // G1_DEBUG
3822     }
3823   }
3824 };
3825 
3826 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3827 private:
3828   G1CollectedHeap* _g1;
3829   DirtyCardQueue *_dcq;
3830   CardTableModRefBS* _ct_bs;
3831 
3832 public:
3833   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3834     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3835 
3836   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3837   virtual void do_oop(      oop* p) { do_oop_work(p); }
3838   template <class T> void do_oop_work(T* p) {
3839     assert(_from->is_in_reserved(p), "paranoia");
3840     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3841         !_from->is_survivor()) {
3842       size_t card_index = _ct_bs->index_for(p);
3843       if (_ct_bs->mark_card_deferred(card_index)) {
3844         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3845       }
3846     }
3847   }
3848 };
3849 
3850 class RemoveSelfPointerClosure: public ObjectClosure {
3851 private:
3852   G1CollectedHeap* _g1;
3853   ConcurrentMark* _cm;
3854   HeapRegion* _hr;
3855   size_t _prev_marked_bytes;
3856   size_t _next_marked_bytes;
3857   OopsInHeapRegionClosure *_cl;
3858 public:
3859   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3860                            OopsInHeapRegionClosure* cl) :
3861     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3862     _next_marked_bytes(0), _cl(cl) {}
3863 
3864   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3865   size_t next_marked_bytes() { return _next_marked_bytes; }
3866 
3867   // <original comment>
3868   // The original idea here was to coalesce evacuated and dead objects.
3869   // However that caused complications with the block offset table (BOT).
3870   // In particular if there were two TLABs, one of them partially refined.
3871   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3872   // The BOT entries of the unrefined part of TLAB_2 point to the start
3873   // of TLAB_2. If the last object of the TLAB_1 and the first object
3874   // of TLAB_2 are coalesced, then the cards of the unrefined part
3875   // would point into middle of the filler object.
3876   // The current approach is to not coalesce and leave the BOT contents intact.
3877   // </original comment>
3878   //
3879   // We now reset the BOT when we start the object iteration over the
3880   // region and refine its entries for every object we come across. So
3881   // the above comment is not really relevant and we should be able
3882   // to coalesce dead objects if we want to.
3883   void do_object(oop obj) {
3884     HeapWord* obj_addr = (HeapWord*) obj;
3885     assert(_hr->is_in(obj_addr), "sanity");
3886     size_t obj_size = obj->size();
3887     _hr->update_bot_for_object(obj_addr, obj_size);
3888     if (obj->is_forwarded() && obj->forwardee() == obj) {
3889       // The object failed to move.
3890       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3891       _cm->markPrev(obj);
3892       assert(_cm->isPrevMarked(obj), "Should be marked!");
3893       _prev_marked_bytes += (obj_size * HeapWordSize);
3894       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3895         _cm->markAndGrayObjectIfNecessary(obj);
3896       }
3897       obj->set_mark(markOopDesc::prototype());
3898       // While we were processing RSet buffers during the
3899       // collection, we actually didn't scan any cards on the
3900       // collection set, since we didn't want to update remebered
3901       // sets with entries that point into the collection set, given
3902       // that live objects fromthe collection set are about to move
3903       // and such entries will be stale very soon. This change also
3904       // dealt with a reliability issue which involved scanning a
3905       // card in the collection set and coming across an array that
3906       // was being chunked and looking malformed. The problem is
3907       // that, if evacuation fails, we might have remembered set
3908       // entries missing given that we skipped cards on the
3909       // collection set. So, we'll recreate such entries now.
3910       obj->oop_iterate(_cl);
3911       assert(_cm->isPrevMarked(obj), "Should be marked!");
3912     } else {
3913       // The object has been either evacuated or is dead. Fill it with a
3914       // dummy object.
3915       MemRegion mr((HeapWord*)obj, obj_size);
3916       CollectedHeap::fill_with_object(mr);
3917       _cm->clearRangeBothMaps(mr);
3918     }
3919   }
3920 };
3921 
3922 void G1CollectedHeap::remove_self_forwarding_pointers() {
3923   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3924   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3925   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3926   OopsInHeapRegionClosure *cl;
3927   if (G1DeferredRSUpdate) {
3928     cl = &deferred_update;
3929   } else {
3930     cl = &immediate_update;
3931   }
3932   HeapRegion* cur = g1_policy()->collection_set();
3933   while (cur != NULL) {
3934     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3935     assert(!cur->isHumongous(), "sanity");
3936 
3937     if (cur->evacuation_failed()) {
3938       assert(cur->in_collection_set(), "bad CS");
3939       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
3940 
3941       cur->reset_bot();
3942       cl->set_region(cur);
3943       cur->object_iterate(&rspc);
3944 
3945       // A number of manipulations to make the TAMS be the current top,
3946       // and the marked bytes be the ones observed in the iteration.
3947       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3948         // The comments below are the postconditions achieved by the
3949         // calls.  Note especially the last such condition, which says that
3950         // the count of marked bytes has been properly restored.
3951         cur->note_start_of_marking(false);
3952         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3953         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3954         // _next_marked_bytes == prev_marked_bytes.
3955         cur->note_end_of_marking();
3956         // _prev_top_at_mark_start == top(),
3957         // _prev_marked_bytes == prev_marked_bytes
3958       }
3959       // If there is no mark in progress, we modified the _next variables
3960       // above needlessly, but harmlessly.
3961       if (_g1h->mark_in_progress()) {
3962         cur->note_start_of_marking(false);
3963         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3964         // _next_marked_bytes == next_marked_bytes.
3965       }
3966 
3967       // Now make sure the region has the right index in the sorted array.
3968       g1_policy()->note_change_in_marked_bytes(cur);
3969     }
3970     cur = cur->next_in_collection_set();
3971   }
3972   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3973 
3974   // Now restore saved marks, if any.
3975   if (_objs_with_preserved_marks != NULL) {
3976     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3977     guarantee(_objs_with_preserved_marks->length() ==
3978               _preserved_marks_of_objs->length(), "Both or none.");
3979     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3980       oop obj   = _objs_with_preserved_marks->at(i);
3981       markOop m = _preserved_marks_of_objs->at(i);
3982       obj->set_mark(m);
3983     }
3984     // Delete the preserved marks growable arrays (allocated on the C heap).
3985     delete _objs_with_preserved_marks;
3986     delete _preserved_marks_of_objs;
3987     _objs_with_preserved_marks = NULL;
3988     _preserved_marks_of_objs = NULL;
3989   }
3990 }
3991 
3992 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3993   _evac_failure_scan_stack->push(obj);
3994 }
3995 
3996 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3997   assert(_evac_failure_scan_stack != NULL, "precondition");
3998 
3999   while (_evac_failure_scan_stack->length() > 0) {
4000      oop obj = _evac_failure_scan_stack->pop();
4001      _evac_failure_closure->set_region(heap_region_containing(obj));
4002      obj->oop_iterate_backwards(_evac_failure_closure);
4003   }
4004 }
4005 
4006 oop
4007 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4008                                                oop old) {
4009   assert(obj_in_cs(old),
4010          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4011                  (HeapWord*) old));
4012   markOop m = old->mark();
4013   oop forward_ptr = old->forward_to_atomic(old);
4014   if (forward_ptr == NULL) {
4015     // Forward-to-self succeeded.
4016     if (_evac_failure_closure != cl) {
4017       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4018       assert(!_drain_in_progress,
4019              "Should only be true while someone holds the lock.");
4020       // Set the global evac-failure closure to the current thread's.
4021       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4022       set_evac_failure_closure(cl);
4023       // Now do the common part.
4024       handle_evacuation_failure_common(old, m);
4025       // Reset to NULL.
4026       set_evac_failure_closure(NULL);
4027     } else {
4028       // The lock is already held, and this is recursive.
4029       assert(_drain_in_progress, "This should only be the recursive case.");
4030       handle_evacuation_failure_common(old, m);
4031     }
4032     return old;
4033   } else {
4034     // Forward-to-self failed. Either someone else managed to allocate
4035     // space for this object (old != forward_ptr) or they beat us in
4036     // self-forwarding it (old == forward_ptr).
4037     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4038            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4039                    "should not be in the CSet",
4040                    (HeapWord*) old, (HeapWord*) forward_ptr));
4041     return forward_ptr;
4042   }
4043 }
4044 
4045 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4046   set_evacuation_failed(true);
4047 
4048   preserve_mark_if_necessary(old, m);
4049 
4050   HeapRegion* r = heap_region_containing(old);
4051   if (!r->evacuation_failed()) {
4052     r->set_evacuation_failed(true);
4053     if (G1PrintHeapRegions) {
4054       gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
4055                           "["PTR_FORMAT","PTR_FORMAT")\n",
4056                           r, r->bottom(), r->end());
4057     }
4058   }
4059 
4060   push_on_evac_failure_scan_stack(old);
4061 
4062   if (!_drain_in_progress) {
4063     // prevent recursion in copy_to_survivor_space()
4064     _drain_in_progress = true;
4065     drain_evac_failure_scan_stack();
4066     _drain_in_progress = false;
4067   }
4068 }
4069 
4070 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4071   assert(evacuation_failed(), "Oversaving!");
4072   // We want to call the "for_promotion_failure" version only in the
4073   // case of a promotion failure.
4074   if (m->must_be_preserved_for_promotion_failure(obj)) {
4075     if (_objs_with_preserved_marks == NULL) {
4076       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4077       _objs_with_preserved_marks =
4078         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4079       _preserved_marks_of_objs =
4080         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4081     }
4082     _objs_with_preserved_marks->push(obj);
4083     _preserved_marks_of_objs->push(m);
4084   }
4085 }
4086 
4087 // *** Parallel G1 Evacuation
4088 
4089 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4090                                                   size_t word_size) {
4091   assert(!isHumongous(word_size),
4092          err_msg("we should not be seeing humongous allocation requests "
4093                  "during GC, word_size = "SIZE_FORMAT, word_size));
4094 
4095   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
4096   // let the caller handle alloc failure
4097   if (alloc_region == NULL) return NULL;
4098 
4099   HeapWord* block = alloc_region->par_allocate(word_size);
4100   if (block == NULL) {
4101     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
4102   }
4103   return block;
4104 }
4105 
4106 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
4107                                             bool par) {
4108   // Another thread might have obtained alloc_region for the given
4109   // purpose, and might be attempting to allocate in it, and might
4110   // succeed.  Therefore, we can't do the "finalization" stuff on the
4111   // region below until we're sure the last allocation has happened.
4112   // We ensure this by allocating the remaining space with a garbage
4113   // object.
4114   if (par) par_allocate_remaining_space(alloc_region);
4115   // Now we can do the post-GC stuff on the region.
4116   alloc_region->note_end_of_copying();
4117   g1_policy()->record_after_bytes(alloc_region->used());
4118 }
4119 
4120 HeapWord*
4121 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
4122                                          HeapRegion*    alloc_region,
4123                                          bool           par,
4124                                          size_t         word_size) {
4125   assert(!isHumongous(word_size),
4126          err_msg("we should not be seeing humongous allocation requests "
4127                  "during GC, word_size = "SIZE_FORMAT, word_size));
4128 
4129   // We need to make sure we serialize calls to this method. Given
4130   // that the FreeList_lock guards accesses to the free_list anyway,
4131   // and we need to potentially remove a region from it, we'll use it
4132   // to protect the whole call.
4133   MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4134 
4135   HeapWord* block = NULL;
4136   // In the parallel case, a previous thread to obtain the lock may have
4137   // already assigned a new gc_alloc_region.
4138   if (alloc_region != _gc_alloc_regions[purpose]) {
4139     assert(par, "But should only happen in parallel case.");
4140     alloc_region = _gc_alloc_regions[purpose];
4141     if (alloc_region == NULL) return NULL;
4142     block = alloc_region->par_allocate(word_size);
4143     if (block != NULL) return block;
4144     // Otherwise, continue; this new region is empty, too.
4145   }
4146   assert(alloc_region != NULL, "We better have an allocation region");
4147   retire_alloc_region(alloc_region, par);
4148 
4149   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
4150     // Cannot allocate more regions for the given purpose.
4151     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
4152     // Is there an alternative?
4153     if (purpose != alt_purpose) {
4154       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
4155       // Has not the alternative region been aliased?
4156       if (alloc_region != alt_region && alt_region != NULL) {
4157         // Try to allocate in the alternative region.
4158         if (par) {
4159           block = alt_region->par_allocate(word_size);
4160         } else {
4161           block = alt_region->allocate(word_size);
4162         }
4163         // Make an alias.
4164         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4165         if (block != NULL) {
4166           return block;
4167         }
4168         retire_alloc_region(alt_region, par);
4169       }
4170       // Both the allocation region and the alternative one are full
4171       // and aliased, replace them with a new allocation region.
4172       purpose = alt_purpose;
4173     } else {
4174       set_gc_alloc_region(purpose, NULL);
4175       return NULL;
4176     }
4177   }
4178 
4179   // Now allocate a new region for allocation.
4180   alloc_region = new_gc_alloc_region(purpose, word_size);
4181 
4182   // let the caller handle alloc failure
4183   if (alloc_region != NULL) {
4184 
4185     assert(check_gc_alloc_regions(), "alloc regions messed up");
4186     assert(alloc_region->saved_mark_at_top(),
4187            "Mark should have been saved already.");
4188     // This must be done last: once it's installed, other regions may
4189     // allocate in it (without holding the lock.)
4190     set_gc_alloc_region(purpose, alloc_region);
4191 
4192     if (par) {
4193       block = alloc_region->par_allocate(word_size);
4194     } else {
4195       block = alloc_region->allocate(word_size);
4196     }
4197     // Caller handles alloc failure.
4198   } else {
4199     // This sets other apis using the same old alloc region to NULL, also.
4200     set_gc_alloc_region(purpose, NULL);
4201   }
4202   return block;  // May be NULL.
4203 }
4204 
4205 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
4206   HeapWord* block = NULL;
4207   size_t free_words;
4208   do {
4209     free_words = r->free()/HeapWordSize;
4210     // If there's too little space, no one can allocate, so we're done.
4211     if (free_words < CollectedHeap::min_fill_size()) return;
4212     // Otherwise, try to claim it.
4213     block = r->par_allocate(free_words);
4214   } while (block == NULL);
4215   fill_with_object(block, free_words);
4216 }
4217 
4218 #ifndef PRODUCT
4219 bool GCLabBitMapClosure::do_bit(size_t offset) {
4220   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4221   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4222   return true;
4223 }
4224 #endif // PRODUCT
4225 
4226 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4227   : _g1h(g1h),
4228     _refs(g1h->task_queue(queue_num)),
4229     _dcq(&g1h->dirty_card_queue_set()),
4230     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4231     _g1_rem(g1h->g1_rem_set()),
4232     _hash_seed(17), _queue_num(queue_num),
4233     _term_attempts(0),
4234     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4235     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4236     _age_table(false),
4237     _strong_roots_time(0), _term_time(0),
4238     _alloc_buffer_waste(0), _undo_waste(0)
4239 {
4240   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4241   // we "sacrifice" entry 0 to keep track of surviving bytes for
4242   // non-young regions (where the age is -1)
4243   // We also add a few elements at the beginning and at the end in
4244   // an attempt to eliminate cache contention
4245   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4246   size_t array_length = PADDING_ELEM_NUM +
4247                         real_length +
4248                         PADDING_ELEM_NUM;
4249   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4250   if (_surviving_young_words_base == NULL)
4251     vm_exit_out_of_memory(array_length * sizeof(size_t),
4252                           "Not enough space for young surv histo.");
4253   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4254   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4255 
4256   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4257   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4258 
4259   _start = os::elapsedTime();
4260 }
4261 
4262 void
4263 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4264 {
4265   st->print_raw_cr("GC Termination Stats");
4266   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4267                    " ------waste (KiB)------");
4268   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4269                    "  total   alloc    undo");
4270   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4271                    " ------- ------- -------");
4272 }
4273 
4274 void
4275 G1ParScanThreadState::print_termination_stats(int i,
4276                                               outputStream* const st) const
4277 {
4278   const double elapsed_ms = elapsed_time() * 1000.0;
4279   const double s_roots_ms = strong_roots_time() * 1000.0;
4280   const double term_ms    = term_time() * 1000.0;
4281   st->print_cr("%3d %9.2f %9.2f %6.2f "
4282                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4283                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4284                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4285                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4286                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4287                alloc_buffer_waste() * HeapWordSize / K,
4288                undo_waste() * HeapWordSize / K);
4289 }
4290 
4291 #ifdef ASSERT
4292 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4293   assert(ref != NULL, "invariant");
4294   assert(UseCompressedOops, "sanity");
4295   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4296   oop p = oopDesc::load_decode_heap_oop(ref);
4297   assert(_g1h->is_in_g1_reserved(p),
4298          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4299   return true;
4300 }
4301 
4302 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4303   assert(ref != NULL, "invariant");
4304   if (has_partial_array_mask(ref)) {
4305     // Must be in the collection set--it's already been copied.
4306     oop p = clear_partial_array_mask(ref);
4307     assert(_g1h->obj_in_cs(p),
4308            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4309   } else {
4310     oop p = oopDesc::load_decode_heap_oop(ref);
4311     assert(_g1h->is_in_g1_reserved(p),
4312            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4313   }
4314   return true;
4315 }
4316 
4317 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4318   if (ref.is_narrow()) {
4319     return verify_ref((narrowOop*) ref);
4320   } else {
4321     return verify_ref((oop*) ref);
4322   }
4323 }
4324 #endif // ASSERT
4325 
4326 void G1ParScanThreadState::trim_queue() {
4327   StarTask ref;
4328   do {
4329     // Drain the overflow stack first, so other threads can steal.
4330     while (refs()->pop_overflow(ref)) {
4331       deal_with_reference(ref);
4332     }
4333     while (refs()->pop_local(ref)) {
4334       deal_with_reference(ref);
4335     }
4336   } while (!refs()->is_empty());
4337 }
4338 
4339 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4340   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4341   _par_scan_state(par_scan_state) { }
4342 
4343 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4344   // This is called _after_ do_oop_work has been called, hence after
4345   // the object has been relocated to its new location and *p points
4346   // to its new location.
4347 
4348   T heap_oop = oopDesc::load_heap_oop(p);
4349   if (!oopDesc::is_null(heap_oop)) {
4350     oop obj = oopDesc::decode_heap_oop(heap_oop);
4351     HeapWord* addr = (HeapWord*)obj;
4352     if (_g1->is_in_g1_reserved(addr)) {
4353       _cm->grayRoot(oop(addr));
4354     }
4355   }
4356 }
4357 
4358 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
4359   size_t    word_sz = old->size();
4360   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4361   // +1 to make the -1 indexes valid...
4362   int       young_index = from_region->young_index_in_cset()+1;
4363   assert( (from_region->is_young() && young_index > 0) ||
4364           (!from_region->is_young() && young_index == 0), "invariant" );
4365   G1CollectorPolicy* g1p = _g1->g1_policy();
4366   markOop m = old->mark();
4367   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4368                                            : m->age();
4369   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4370                                                              word_sz);
4371   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4372   oop       obj     = oop(obj_ptr);
4373 
4374   if (obj_ptr == NULL) {
4375     // This will either forward-to-self, or detect that someone else has
4376     // installed a forwarding pointer.
4377     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4378     return _g1->handle_evacuation_failure_par(cl, old);
4379   }
4380 
4381   // We're going to allocate linearly, so might as well prefetch ahead.
4382   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4383 
4384   oop forward_ptr = old->forward_to_atomic(obj);
4385   if (forward_ptr == NULL) {
4386     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4387     if (g1p->track_object_age(alloc_purpose)) {
4388       // We could simply do obj->incr_age(). However, this causes a
4389       // performance issue. obj->incr_age() will first check whether
4390       // the object has a displaced mark by checking its mark word;
4391       // getting the mark word from the new location of the object
4392       // stalls. So, given that we already have the mark word and we
4393       // are about to install it anyway, it's better to increase the
4394       // age on the mark word, when the object does not have a
4395       // displaced mark word. We're not expecting many objects to have
4396       // a displaced marked word, so that case is not optimized
4397       // further (it could be...) and we simply call obj->incr_age().
4398 
4399       if (m->has_displaced_mark_helper()) {
4400         // in this case, we have to install the mark word first,
4401         // otherwise obj looks to be forwarded (the old mark word,
4402         // which contains the forward pointer, was copied)
4403         obj->set_mark(m);
4404         obj->incr_age();
4405       } else {
4406         m = m->incr_age();
4407         obj->set_mark(m);
4408       }
4409       _par_scan_state->age_table()->add(obj, word_sz);
4410     } else {
4411       obj->set_mark(m);
4412     }
4413 
4414     // preserve "next" mark bit
4415     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4416       if (!use_local_bitmaps ||
4417           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4418         // if we couldn't mark it on the local bitmap (this happens when
4419         // the object was not allocated in the GCLab), we have to bite
4420         // the bullet and do the standard parallel mark
4421         _cm->markAndGrayObjectIfNecessary(obj);
4422       }
4423 #if 1
4424       if (_g1->isMarkedNext(old)) {
4425         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4426       }
4427 #endif
4428     }
4429 
4430     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4431     surv_young_words[young_index] += word_sz;
4432 
4433     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4434       arrayOop(old)->set_length(0);
4435       oop* old_p = set_partial_array_mask(old);
4436       _par_scan_state->push_on_queue(old_p);
4437     } else {
4438       // No point in using the slower heap_region_containing() method,
4439       // given that we know obj is in the heap.
4440       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4441       obj->oop_iterate_backwards(_scanner);
4442     }
4443   } else {
4444     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4445     obj = forward_ptr;
4446   }
4447   return obj;
4448 }
4449 
4450 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4451 template <class T>
4452 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4453 ::do_oop_work(T* p) {
4454   oop obj = oopDesc::load_decode_heap_oop(p);
4455   assert(barrier != G1BarrierRS || obj != NULL,
4456          "Precondition: G1BarrierRS implies obj is nonNull");
4457 
4458   // here the null check is implicit in the cset_fast_test() test
4459   if (_g1->in_cset_fast_test(obj)) {
4460 #if G1_REM_SET_LOGGING
4461     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
4462                            "into CS.", p, (void*) obj);
4463 #endif
4464     if (obj->is_forwarded()) {
4465       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4466     } else {
4467       oop copy_oop = copy_to_survivor_space(obj);
4468       oopDesc::encode_store_heap_oop(p, copy_oop);
4469     }
4470     // When scanning the RS, we only care about objs in CS.
4471     if (barrier == G1BarrierRS) {
4472       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4473     }
4474   }
4475 
4476   if (barrier == G1BarrierEvac && obj != NULL) {
4477     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4478   }
4479 
4480   if (do_gen_barrier && obj != NULL) {
4481     par_do_barrier(p);
4482   }
4483 }
4484 
4485 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4486 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4487 
4488 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4489   assert(has_partial_array_mask(p), "invariant");
4490   oop old = clear_partial_array_mask(p);
4491   assert(old->is_objArray(), "must be obj array");
4492   assert(old->is_forwarded(), "must be forwarded");
4493   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4494 
4495   objArrayOop obj = objArrayOop(old->forwardee());
4496   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4497   // Process ParGCArrayScanChunk elements now
4498   // and push the remainder back onto queue
4499   int start     = arrayOop(old)->length();
4500   int end       = obj->length();
4501   int remainder = end - start;
4502   assert(start <= end, "just checking");
4503   if (remainder > 2 * ParGCArrayScanChunk) {
4504     // Test above combines last partial chunk with a full chunk
4505     end = start + ParGCArrayScanChunk;
4506     arrayOop(old)->set_length(end);
4507     // Push remainder.
4508     oop* old_p = set_partial_array_mask(old);
4509     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4510     _par_scan_state->push_on_queue(old_p);
4511   } else {
4512     // Restore length so that the heap remains parsable in
4513     // case of evacuation failure.
4514     arrayOop(old)->set_length(end);
4515   }
4516   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4517   // process our set of indices (include header in first chunk)
4518   obj->oop_iterate_range(&_scanner, start, end);
4519 }
4520 
4521 class G1ParEvacuateFollowersClosure : public VoidClosure {
4522 protected:
4523   G1CollectedHeap*              _g1h;
4524   G1ParScanThreadState*         _par_scan_state;
4525   RefToScanQueueSet*            _queues;
4526   ParallelTaskTerminator*       _terminator;
4527 
4528   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4529   RefToScanQueueSet*      queues()         { return _queues; }
4530   ParallelTaskTerminator* terminator()     { return _terminator; }
4531 
4532 public:
4533   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4534                                 G1ParScanThreadState* par_scan_state,
4535                                 RefToScanQueueSet* queues,
4536                                 ParallelTaskTerminator* terminator)
4537     : _g1h(g1h), _par_scan_state(par_scan_state),
4538       _queues(queues), _terminator(terminator) {}
4539 
4540   void do_void();
4541 
4542 private:
4543   inline bool offer_termination();
4544 };
4545 
4546 bool G1ParEvacuateFollowersClosure::offer_termination() {
4547   G1ParScanThreadState* const pss = par_scan_state();
4548   pss->start_term_time();
4549   const bool res = terminator()->offer_termination();
4550   pss->end_term_time();
4551   return res;
4552 }
4553 
4554 void G1ParEvacuateFollowersClosure::do_void() {
4555   StarTask stolen_task;
4556   G1ParScanThreadState* const pss = par_scan_state();
4557   pss->trim_queue();
4558 
4559   do {
4560     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4561       assert(pss->verify_task(stolen_task), "sanity");
4562       if (stolen_task.is_narrow()) {
4563         pss->deal_with_reference((narrowOop*) stolen_task);
4564       } else {
4565         pss->deal_with_reference((oop*) stolen_task);
4566       }
4567 
4568       // We've just processed a reference and we might have made
4569       // available new entries on the queues. So we have to make sure
4570       // we drain the queues as necessary.
4571       pss->trim_queue();
4572     }
4573   } while (!offer_termination());
4574 
4575   pss->retire_alloc_buffers();
4576 }
4577 
4578 class G1ParTask : public AbstractGangTask {
4579 protected:
4580   G1CollectedHeap*       _g1h;
4581   RefToScanQueueSet      *_queues;
4582   ParallelTaskTerminator _terminator;
4583   int _n_workers;
4584 
4585   Mutex _stats_lock;
4586   Mutex* stats_lock() { return &_stats_lock; }
4587 
4588   size_t getNCards() {
4589     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4590       / G1BlockOffsetSharedArray::N_bytes;
4591   }
4592 
4593 public:
4594   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4595     : AbstractGangTask("G1 collection"),
4596       _g1h(g1h),
4597       _queues(task_queues),
4598       _terminator(workers, _queues),
4599       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4600       _n_workers(workers)
4601   {}
4602 
4603   RefToScanQueueSet* queues() { return _queues; }
4604 
4605   RefToScanQueue *work_queue(int i) {
4606     return queues()->queue(i);
4607   }
4608 
4609   void work(int i) {
4610     if (i >= _n_workers) return;  // no work needed this round
4611 
4612     double start_time_ms = os::elapsedTime() * 1000.0;
4613     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4614 
4615     ResourceMark rm;
4616     HandleMark   hm;
4617 
4618     G1ParScanThreadState            pss(_g1h, i);
4619     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4620     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4621     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4622 
4623     pss.set_evac_closure(&scan_evac_cl);
4624     pss.set_evac_failure_closure(&evac_failure_cl);
4625     pss.set_partial_scan_closure(&partial_scan_cl);
4626 
4627     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4628     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4629     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4630     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4631 
4632     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4633     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4634     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4635 
4636     OopsInHeapRegionClosure        *scan_root_cl;
4637     OopsInHeapRegionClosure        *scan_perm_cl;
4638 
4639     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4640       scan_root_cl = &scan_mark_root_cl;
4641       scan_perm_cl = &scan_mark_perm_cl;
4642     } else {
4643       scan_root_cl = &only_scan_root_cl;
4644       scan_perm_cl = &only_scan_perm_cl;
4645     }
4646 
4647     pss.start_strong_roots();
4648     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4649                                   SharedHeap::SO_AllClasses,
4650                                   scan_root_cl,
4651                                   &push_heap_rs_cl,
4652                                   scan_perm_cl,
4653                                   i);
4654     pss.end_strong_roots();
4655     {
4656       double start = os::elapsedTime();
4657       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4658       evac.do_void();
4659       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4660       double term_ms = pss.term_time()*1000.0;
4661       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4662       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4663     }
4664     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4665     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4666 
4667     // Clean up any par-expanded rem sets.
4668     HeapRegionRemSet::par_cleanup();
4669 
4670     if (ParallelGCVerbose) {
4671       MutexLocker x(stats_lock());
4672       pss.print_termination_stats(i);
4673     }
4674 
4675     assert(pss.refs()->is_empty(), "should be empty");
4676     double end_time_ms = os::elapsedTime() * 1000.0;
4677     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4678   }
4679 };
4680 
4681 // *** Common G1 Evacuation Stuff
4682 
4683 // This method is run in a GC worker.
4684 
4685 void
4686 G1CollectedHeap::
4687 g1_process_strong_roots(bool collecting_perm_gen,
4688                         SharedHeap::ScanningOption so,
4689                         OopClosure* scan_non_heap_roots,
4690                         OopsInHeapRegionClosure* scan_rs,
4691                         OopsInGenClosure* scan_perm,
4692                         int worker_i) {
4693   // First scan the strong roots, including the perm gen.
4694   double ext_roots_start = os::elapsedTime();
4695   double closure_app_time_sec = 0.0;
4696 
4697   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4698   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4699   buf_scan_perm.set_generation(perm_gen());
4700 
4701   // Walk the code cache w/o buffering, because StarTask cannot handle
4702   // unaligned oop locations.
4703   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4704 
4705   process_strong_roots(false, // no scoping; this is parallel code
4706                        collecting_perm_gen, so,
4707                        &buf_scan_non_heap_roots,
4708                        &eager_scan_code_roots,
4709                        &buf_scan_perm);
4710 
4711   // Finish up any enqueued closure apps.
4712   buf_scan_non_heap_roots.done();
4713   buf_scan_perm.done();
4714   double ext_roots_end = os::elapsedTime();
4715   g1_policy()->reset_obj_copy_time(worker_i);
4716   double obj_copy_time_sec =
4717     buf_scan_non_heap_roots.closure_app_seconds() +
4718     buf_scan_perm.closure_app_seconds();
4719   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4720   double ext_root_time_ms =
4721     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4722   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4723 
4724   // Scan strong roots in mark stack.
4725   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4726     concurrent_mark()->oops_do(scan_non_heap_roots);
4727   }
4728   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4729   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4730 
4731   // XXX What should this be doing in the parallel case?
4732   g1_policy()->record_collection_pause_end_CH_strong_roots();
4733   // Now scan the complement of the collection set.
4734   if (scan_rs != NULL) {
4735     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4736   }
4737   // Finish with the ref_processor roots.
4738   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4739     // We need to treat the discovered reference lists as roots and
4740     // keep entries (which are added by the marking threads) on them
4741     // live until they can be processed at the end of marking.
4742     ref_processor()->weak_oops_do(scan_non_heap_roots);
4743     ref_processor()->oops_do(scan_non_heap_roots);
4744   }
4745   g1_policy()->record_collection_pause_end_G1_strong_roots();
4746   _process_strong_tasks->all_tasks_completed();
4747 }
4748 
4749 void
4750 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4751                                        OopClosure* non_root_closure) {
4752   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4753   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4754 }
4755 
4756 
4757 class SaveMarksClosure: public HeapRegionClosure {
4758 public:
4759   bool doHeapRegion(HeapRegion* r) {
4760     r->save_marks();
4761     return false;
4762   }
4763 };
4764 
4765 void G1CollectedHeap::save_marks() {
4766   if (!CollectedHeap::use_parallel_gc_threads()) {
4767     SaveMarksClosure sm;
4768     heap_region_iterate(&sm);
4769   }
4770   // We do this even in the parallel case
4771   perm_gen()->save_marks();
4772 }
4773 
4774 void G1CollectedHeap::evacuate_collection_set() {
4775   set_evacuation_failed(false);
4776 
4777   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4778   concurrent_g1_refine()->set_use_cache(false);
4779   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4780 
4781   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4782   set_par_threads(n_workers);
4783   G1ParTask g1_par_task(this, n_workers, _task_queues);
4784 
4785   init_for_evac_failure(NULL);
4786 
4787   rem_set()->prepare_for_younger_refs_iterate(true);
4788 
4789   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4790   double start_par = os::elapsedTime();
4791   if (G1CollectedHeap::use_parallel_gc_threads()) {
4792     // The individual threads will set their evac-failure closures.
4793     StrongRootsScope srs(this);
4794     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4795     workers()->run_task(&g1_par_task);
4796   } else {
4797     StrongRootsScope srs(this);
4798     g1_par_task.work(0);
4799   }
4800 
4801   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4802   g1_policy()->record_par_time(par_time);
4803   set_par_threads(0);
4804   // Is this the right thing to do here?  We don't save marks
4805   // on individual heap regions when we allocate from
4806   // them in parallel, so this seems like the correct place for this.
4807   retire_all_alloc_regions();
4808 
4809   // Weak root processing.
4810   // Note: when JSR 292 is enabled and code blobs can contain
4811   // non-perm oops then we will need to process the code blobs
4812   // here too.
4813   {
4814     G1IsAliveClosure is_alive(this);
4815     G1KeepAliveClosure keep_alive(this);
4816     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4817   }
4818   release_gc_alloc_regions(false /* totally */);
4819   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4820 
4821   concurrent_g1_refine()->clear_hot_cache();
4822   concurrent_g1_refine()->set_use_cache(true);
4823 
4824   finalize_for_evac_failure();
4825 
4826   // Must do this before removing self-forwarding pointers, which clears
4827   // the per-region evac-failure flags.
4828   concurrent_mark()->complete_marking_in_collection_set();
4829 
4830   if (evacuation_failed()) {
4831     remove_self_forwarding_pointers();
4832     if (PrintGCDetails) {
4833       gclog_or_tty->print(" (to-space overflow)");
4834     } else if (PrintGC) {
4835       gclog_or_tty->print("--");
4836     }
4837   }
4838 
4839   if (G1DeferredRSUpdate) {
4840     RedirtyLoggedCardTableEntryFastClosure redirty;
4841     dirty_card_queue_set().set_closure(&redirty);
4842     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4843 
4844     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4845     dcq.merge_bufferlists(&dirty_card_queue_set());
4846     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4847   }
4848   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4849 }
4850 
4851 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4852                                      size_t* pre_used,
4853                                      FreeRegionList* free_list,
4854                                      HumongousRegionSet* humongous_proxy_set,
4855                                      HRRSCleanupTask* hrrs_cleanup_task,
4856                                      bool par) {
4857   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
4858     if (hr->isHumongous()) {
4859       assert(hr->startsHumongous(), "we should only see starts humongous");
4860       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
4861     } else {
4862       free_region(hr, pre_used, free_list, par);
4863     }
4864   } else {
4865     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4866   }
4867 }
4868 
4869 void G1CollectedHeap::free_region(HeapRegion* hr,
4870                                   size_t* pre_used,
4871                                   FreeRegionList* free_list,
4872                                   bool par) {
4873   assert(!hr->isHumongous(), "this is only for non-humongous regions");
4874   assert(!hr->is_empty(), "the region should not be empty");
4875   assert(free_list != NULL, "pre-condition");
4876 
4877   *pre_used += hr->used();
4878   hr->hr_clear(par, true /* clear_space */);
4879   free_list->add_as_head(hr);
4880 }
4881 
4882 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4883                                      size_t* pre_used,
4884                                      FreeRegionList* free_list,
4885                                      HumongousRegionSet* humongous_proxy_set,
4886                                      bool par) {
4887   assert(hr->startsHumongous(), "this is only for starts humongous regions");
4888   assert(free_list != NULL, "pre-condition");
4889   assert(humongous_proxy_set != NULL, "pre-condition");
4890 
4891   size_t hr_used = hr->used();
4892   size_t hr_capacity = hr->capacity();
4893   size_t hr_pre_used = 0;
4894   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
4895   hr->set_notHumongous();
4896   free_region(hr, &hr_pre_used, free_list, par);
4897 
4898   int i = hr->hrs_index() + 1;
4899   size_t num = 1;
4900   while ((size_t) i < n_regions()) {
4901     HeapRegion* curr_hr = _hrs->at(i);
4902     if (!curr_hr->continuesHumongous()) {
4903       break;
4904     }
4905     curr_hr->set_notHumongous();
4906     free_region(curr_hr, &hr_pre_used, free_list, par);
4907     num += 1;
4908     i += 1;
4909   }
4910   assert(hr_pre_used == hr_used,
4911          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
4912                  "should be the same", hr_pre_used, hr_used));
4913   *pre_used += hr_pre_used;
4914 }
4915 
4916 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
4917                                        FreeRegionList* free_list,
4918                                        HumongousRegionSet* humongous_proxy_set,
4919                                        bool par) {
4920   if (pre_used > 0) {
4921     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4922     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4923     assert(_summary_bytes_used >= pre_used,
4924            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
4925                    "should be >= pre_used: "SIZE_FORMAT,
4926                    _summary_bytes_used, pre_used));
4927     _summary_bytes_used -= pre_used;
4928   }
4929   if (free_list != NULL && !free_list->is_empty()) {
4930     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4931     _free_list.add_as_head(free_list);
4932   }
4933   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
4934     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4935     _humongous_set.update_from_proxy(humongous_proxy_set);
4936   }
4937 }
4938 
4939 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
4940   while (list != NULL) {
4941     guarantee( list->is_young(), "invariant" );
4942 
4943     HeapWord* bottom = list->bottom();
4944     HeapWord* end = list->end();
4945     MemRegion mr(bottom, end);
4946     ct_bs->dirty(mr);
4947 
4948     list = list->get_next_young_region();
4949   }
4950 }
4951 
4952 
4953 class G1ParCleanupCTTask : public AbstractGangTask {
4954   CardTableModRefBS* _ct_bs;
4955   G1CollectedHeap* _g1h;
4956   HeapRegion* volatile _su_head;
4957 public:
4958   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4959                      G1CollectedHeap* g1h,
4960                      HeapRegion* survivor_list) :
4961     AbstractGangTask("G1 Par Cleanup CT Task"),
4962     _ct_bs(ct_bs),
4963     _g1h(g1h),
4964     _su_head(survivor_list)
4965   { }
4966 
4967   void work(int i) {
4968     HeapRegion* r;
4969     while (r = _g1h->pop_dirty_cards_region()) {
4970       clear_cards(r);
4971     }
4972     // Redirty the cards of the survivor regions.
4973     dirty_list(&this->_su_head);
4974   }
4975 
4976   void clear_cards(HeapRegion* r) {
4977     // Cards for Survivor regions will be dirtied later.
4978     if (!r->is_survivor()) {
4979       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4980     }
4981   }
4982 
4983   void dirty_list(HeapRegion* volatile * head_ptr) {
4984     HeapRegion* head;
4985     do {
4986       // Pop region off the list.
4987       head = *head_ptr;
4988       if (head != NULL) {
4989         HeapRegion* r = (HeapRegion*)
4990           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
4991         if (r == head) {
4992           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
4993           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
4994         }
4995       }
4996     } while (*head_ptr != NULL);
4997   }
4998 };
4999 
5000 
5001 #ifndef PRODUCT
5002 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5003   G1CollectedHeap* _g1h;
5004   CardTableModRefBS* _ct_bs;
5005 public:
5006   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5007     : _g1h(g1h), _ct_bs(ct_bs) { }
5008   virtual bool doHeapRegion(HeapRegion* r) {
5009     if (r->is_survivor()) {
5010       _g1h->verify_dirty_region(r);
5011     } else {
5012       _g1h->verify_not_dirty_region(r);
5013     }
5014     return false;
5015   }
5016 };
5017 
5018 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5019   // All of the region should be clean.
5020   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5021   MemRegion mr(hr->bottom(), hr->end());
5022   ct_bs->verify_not_dirty_region(mr);
5023 }
5024 
5025 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5026   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5027   // dirty allocated blocks as they allocate them. The thread that
5028   // retires each region and replaces it with a new one will do a
5029   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5030   // not dirty that area (one less thing to have to do while holding
5031   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5032   // is dirty.
5033   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5034   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5035   ct_bs->verify_dirty_region(mr);
5036 }
5037 
5038 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5039   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5040   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5041     verify_dirty_region(hr);
5042   }
5043 }
5044 
5045 void G1CollectedHeap::verify_dirty_young_regions() {
5046   verify_dirty_young_list(_young_list->first_region());
5047   verify_dirty_young_list(_young_list->first_survivor_region());
5048 }
5049 #endif
5050 
5051 void G1CollectedHeap::cleanUpCardTable() {
5052   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5053   double start = os::elapsedTime();
5054 
5055   // Iterate over the dirty cards region list.
5056   G1ParCleanupCTTask cleanup_task(ct_bs, this,
5057                                   _young_list->first_survivor_region());
5058 
5059   if (ParallelGCThreads > 0) {
5060     set_par_threads(workers()->total_workers());
5061     workers()->run_task(&cleanup_task);
5062     set_par_threads(0);
5063   } else {
5064     while (_dirty_cards_region_list) {
5065       HeapRegion* r = _dirty_cards_region_list;
5066       cleanup_task.clear_cards(r);
5067       _dirty_cards_region_list = r->get_next_dirty_cards_region();
5068       if (_dirty_cards_region_list == r) {
5069         // The last region.
5070         _dirty_cards_region_list = NULL;
5071       }
5072       r->set_next_dirty_cards_region(NULL);
5073     }
5074     // now, redirty the cards of the survivor regions
5075     // (it seemed faster to do it this way, instead of iterating over
5076     // all regions and then clearing / dirtying as appropriate)
5077     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5078   }
5079 
5080   double elapsed = os::elapsedTime() - start;
5081   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
5082 #ifndef PRODUCT
5083   if (G1VerifyCTCleanup || VerifyAfterGC) {
5084     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5085     heap_region_iterate(&cleanup_verifier);
5086   }
5087 #endif
5088 }
5089 
5090 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5091   size_t pre_used = 0;
5092   FreeRegionList local_free_list("Local List for CSet Freeing");
5093 
5094   double young_time_ms     = 0.0;
5095   double non_young_time_ms = 0.0;
5096 
5097   // Since the collection set is a superset of the the young list,
5098   // all we need to do to clear the young list is clear its
5099   // head and length, and unlink any young regions in the code below
5100   _young_list->clear();
5101 
5102   G1CollectorPolicy* policy = g1_policy();
5103 
5104   double start_sec = os::elapsedTime();
5105   bool non_young = true;
5106 
5107   HeapRegion* cur = cs_head;
5108   int age_bound = -1;
5109   size_t rs_lengths = 0;
5110 
5111   while (cur != NULL) {
5112     assert(!is_on_master_free_list(cur), "sanity");
5113 
5114     if (non_young) {
5115       if (cur->is_young()) {
5116         double end_sec = os::elapsedTime();
5117         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5118         non_young_time_ms += elapsed_ms;
5119 
5120         start_sec = os::elapsedTime();
5121         non_young = false;
5122       }
5123     } else {
5124       double end_sec = os::elapsedTime();
5125       double elapsed_ms = (end_sec - start_sec) * 1000.0;
5126       young_time_ms += elapsed_ms;
5127 
5128       start_sec = os::elapsedTime();
5129       non_young = true;
5130     }
5131 
5132     rs_lengths += cur->rem_set()->occupied();
5133 
5134     HeapRegion* next = cur->next_in_collection_set();
5135     assert(cur->in_collection_set(), "bad CS");
5136     cur->set_next_in_collection_set(NULL);
5137     cur->set_in_collection_set(false);
5138 
5139     if (cur->is_young()) {
5140       int index = cur->young_index_in_cset();
5141       guarantee( index != -1, "invariant" );
5142       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
5143       size_t words_survived = _surviving_young_words[index];
5144       cur->record_surv_words_in_group(words_survived);
5145 
5146       // At this point the we have 'popped' cur from the collection set
5147       // (linked via next_in_collection_set()) but it is still in the
5148       // young list (linked via next_young_region()). Clear the
5149       // _next_young_region field.
5150       cur->set_next_young_region(NULL);
5151     } else {
5152       int index = cur->young_index_in_cset();
5153       guarantee( index == -1, "invariant" );
5154     }
5155 
5156     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5157             (!cur->is_young() && cur->young_index_in_cset() == -1),
5158             "invariant" );
5159 
5160     if (!cur->evacuation_failed()) {
5161       // And the region is empty.
5162       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
5163       free_region(cur, &pre_used, &local_free_list, false /* par */);
5164     } else {
5165       cur->uninstall_surv_rate_group();
5166       if (cur->is_young())
5167         cur->set_young_index_in_cset(-1);
5168       cur->set_not_young();
5169       cur->set_evacuation_failed(false);
5170     }
5171     cur = next;
5172   }
5173 
5174   policy->record_max_rs_lengths(rs_lengths);
5175   policy->cset_regions_freed();
5176 
5177   double end_sec = os::elapsedTime();
5178   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5179   if (non_young)
5180     non_young_time_ms += elapsed_ms;
5181   else
5182     young_time_ms += elapsed_ms;
5183 
5184   update_sets_after_freeing_regions(pre_used, &local_free_list,
5185                                     NULL /* humongous_proxy_set */,
5186                                     false /* par */);
5187   policy->record_young_free_cset_time_ms(young_time_ms);
5188   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5189 }
5190 
5191 // This routine is similar to the above but does not record
5192 // any policy statistics or update free lists; we are abandoning
5193 // the current incremental collection set in preparation of a
5194 // full collection. After the full GC we will start to build up
5195 // the incremental collection set again.
5196 // This is only called when we're doing a full collection
5197 // and is immediately followed by the tearing down of the young list.
5198 
5199 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5200   HeapRegion* cur = cs_head;
5201 
5202   while (cur != NULL) {
5203     HeapRegion* next = cur->next_in_collection_set();
5204     assert(cur->in_collection_set(), "bad CS");
5205     cur->set_next_in_collection_set(NULL);
5206     cur->set_in_collection_set(false);
5207     cur->set_young_index_in_cset(-1);
5208     cur = next;
5209   }
5210 }
5211 
5212 void G1CollectedHeap::set_free_regions_coming() {
5213   if (G1ConcRegionFreeingVerbose) {
5214     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5215                            "setting free regions coming");
5216   }
5217 
5218   assert(!free_regions_coming(), "pre-condition");
5219   _free_regions_coming = true;
5220 }
5221 
5222 void G1CollectedHeap::reset_free_regions_coming() {
5223   {
5224     assert(free_regions_coming(), "pre-condition");
5225     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5226     _free_regions_coming = false;
5227     SecondaryFreeList_lock->notify_all();
5228   }
5229 
5230   if (G1ConcRegionFreeingVerbose) {
5231     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5232                            "reset free regions coming");
5233   }
5234 }
5235 
5236 void G1CollectedHeap::wait_while_free_regions_coming() {
5237   // Most of the time we won't have to wait, so let's do a quick test
5238   // first before we take the lock.
5239   if (!free_regions_coming()) {
5240     return;
5241   }
5242 
5243   if (G1ConcRegionFreeingVerbose) {
5244     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5245                            "waiting for free regions");
5246   }
5247 
5248   {
5249     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5250     while (free_regions_coming()) {
5251       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5252     }
5253   }
5254 
5255   if (G1ConcRegionFreeingVerbose) {
5256     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5257                            "done waiting for free regions");
5258   }
5259 }
5260 
5261 size_t G1CollectedHeap::n_regions() {
5262   return _hrs->length();
5263 }
5264 
5265 size_t G1CollectedHeap::max_regions() {
5266   return
5267     (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
5268     HeapRegion::GrainBytes;
5269 }
5270 
5271 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5272   assert(heap_lock_held_for_gc(),
5273               "the heap lock should already be held by or for this thread");
5274   _young_list->push_region(hr);
5275   g1_policy()->set_region_short_lived(hr);
5276 }
5277 
5278 class NoYoungRegionsClosure: public HeapRegionClosure {
5279 private:
5280   bool _success;
5281 public:
5282   NoYoungRegionsClosure() : _success(true) { }
5283   bool doHeapRegion(HeapRegion* r) {
5284     if (r->is_young()) {
5285       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5286                              r->bottom(), r->end());
5287       _success = false;
5288     }
5289     return false;
5290   }
5291   bool success() { return _success; }
5292 };
5293 
5294 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5295   bool ret = _young_list->check_list_empty(check_sample);
5296 
5297   if (check_heap) {
5298     NoYoungRegionsClosure closure;
5299     heap_region_iterate(&closure);
5300     ret = ret && closure.success();
5301   }
5302 
5303   return ret;
5304 }
5305 
5306 void G1CollectedHeap::empty_young_list() {
5307   assert(heap_lock_held_for_gc(),
5308               "the heap lock should already be held by or for this thread");
5309   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
5310 
5311   _young_list->empty_list();
5312 }
5313 
5314 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
5315   bool no_allocs = true;
5316   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
5317     HeapRegion* r = _gc_alloc_regions[ap];
5318     no_allocs = r == NULL || r->saved_mark_at_top();
5319   }
5320   return no_allocs;
5321 }
5322 
5323 void G1CollectedHeap::retire_all_alloc_regions() {
5324   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
5325     HeapRegion* r = _gc_alloc_regions[ap];
5326     if (r != NULL) {
5327       // Check for aliases.
5328       bool has_processed_alias = false;
5329       for (int i = 0; i < ap; ++i) {
5330         if (_gc_alloc_regions[i] == r) {
5331           has_processed_alias = true;
5332           break;
5333         }
5334       }
5335       if (!has_processed_alias) {
5336         retire_alloc_region(r, false /* par */);
5337       }
5338     }
5339   }
5340 }
5341 
5342 // Done at the start of full GC.
5343 void G1CollectedHeap::tear_down_region_lists() {
5344   _free_list.remove_all();
5345 }
5346 
5347 class RegionResetter: public HeapRegionClosure {
5348   G1CollectedHeap* _g1h;
5349   FreeRegionList _local_free_list;
5350 
5351 public:
5352   RegionResetter() : _g1h(G1CollectedHeap::heap()),
5353                      _local_free_list("Local Free List for RegionResetter") { }
5354 
5355   bool doHeapRegion(HeapRegion* r) {
5356     if (r->continuesHumongous()) return false;
5357     if (r->top() > r->bottom()) {
5358       if (r->top() < r->end()) {
5359         Copy::fill_to_words(r->top(),
5360                           pointer_delta(r->end(), r->top()));
5361       }
5362     } else {
5363       assert(r->is_empty(), "tautology");
5364       _local_free_list.add_as_tail(r);
5365     }
5366     return false;
5367   }
5368 
5369   void update_free_lists() {
5370     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
5371                                             false /* par */);
5372   }
5373 };
5374 
5375 // Done at the end of full GC.
5376 void G1CollectedHeap::rebuild_region_lists() {
5377   // This needs to go at the end of the full GC.
5378   RegionResetter rs;
5379   heap_region_iterate(&rs);
5380   rs.update_free_lists();
5381 }
5382 
5383 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5384   _refine_cte_cl->set_concurrent(concurrent);
5385 }
5386 
5387 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5388   HeapRegion* hr = heap_region_containing(p);
5389   if (hr == NULL) {
5390     return is_in_permanent(p);
5391   } else {
5392     return hr->is_in(p);
5393   }
5394 }
5395 
5396 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5397                                                       bool force) {
5398   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5399   assert(!force || g1_policy()->can_expand_young_list(),
5400          "if force is true we should be able to expand the young list");
5401   if (force || !g1_policy()->is_young_list_full()) {
5402     HeapRegion* new_alloc_region = new_region(word_size,
5403                                               false /* do_expand */);
5404     if (new_alloc_region != NULL) {
5405       g1_policy()->update_region_num(true /* next_is_young */);
5406       set_region_short_lived_locked(new_alloc_region);
5407       g1mm()->update_eden_counters();
5408       return new_alloc_region;
5409     }
5410   }
5411   return NULL;
5412 }
5413 
5414 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5415                                                   size_t allocated_bytes) {
5416   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5417   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
5418 
5419   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5420   _summary_bytes_used += allocated_bytes;
5421 }
5422 
5423 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
5424                                                     bool force) {
5425   return _g1h->new_mutator_alloc_region(word_size, force);
5426 }
5427 
5428 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
5429                                        size_t allocated_bytes) {
5430   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
5431 }
5432 
5433 // Heap region set verification
5434 
5435 class VerifyRegionListsClosure : public HeapRegionClosure {
5436 private:
5437   HumongousRegionSet* _humongous_set;
5438   FreeRegionList*     _free_list;
5439   size_t              _region_count;
5440 
5441 public:
5442   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
5443                            FreeRegionList* free_list) :
5444     _humongous_set(humongous_set), _free_list(free_list),
5445     _region_count(0) { }
5446 
5447   size_t region_count()      { return _region_count;      }
5448 
5449   bool doHeapRegion(HeapRegion* hr) {
5450     _region_count += 1;
5451 
5452     if (hr->continuesHumongous()) {
5453       return false;
5454     }
5455 
5456     if (hr->is_young()) {
5457       // TODO
5458     } else if (hr->startsHumongous()) {
5459       _humongous_set->verify_next_region(hr);
5460     } else if (hr->is_empty()) {
5461       _free_list->verify_next_region(hr);
5462     }
5463     return false;
5464   }
5465 };
5466 
5467 void G1CollectedHeap::verify_region_sets() {
5468   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5469 
5470   // First, check the explicit lists.
5471   _free_list.verify();
5472   {
5473     // Given that a concurrent operation might be adding regions to
5474     // the secondary free list we have to take the lock before
5475     // verifying it.
5476     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5477     _secondary_free_list.verify();
5478   }
5479   _humongous_set.verify();
5480 
5481   // If a concurrent region freeing operation is in progress it will
5482   // be difficult to correctly attributed any free regions we come
5483   // across to the correct free list given that they might belong to
5484   // one of several (free_list, secondary_free_list, any local lists,
5485   // etc.). So, if that's the case we will skip the rest of the
5486   // verification operation. Alternatively, waiting for the concurrent
5487   // operation to complete will have a non-trivial effect on the GC's
5488   // operation (no concurrent operation will last longer than the
5489   // interval between two calls to verification) and it might hide
5490   // any issues that we would like to catch during testing.
5491   if (free_regions_coming()) {
5492     return;
5493   }
5494 
5495   // Make sure we append the secondary_free_list on the free_list so
5496   // that all free regions we will come across can be safely
5497   // attributed to the free_list.
5498   append_secondary_free_list_if_not_empty_with_lock();
5499 
5500   // Finally, make sure that the region accounting in the lists is
5501   // consistent with what we see in the heap.
5502   _humongous_set.verify_start();
5503   _free_list.verify_start();
5504 
5505   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
5506   heap_region_iterate(&cl);
5507 
5508   _humongous_set.verify_end();
5509   _free_list.verify_end();
5510 }