1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "jvm_windows.h"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "mutex_windows.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_windows.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "thread_windows.inline.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/growableArray.hpp"
  67 #include "utilities/vmError.hpp"
  68 #ifdef TARGET_ARCH_x86
  69 # include "assembler_x86.inline.hpp"
  70 # include "nativeInst_x86.hpp"
  71 #endif
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 #ifdef COMPILER2
  76 #include "opto/runtime.hpp"
  77 #endif
  78 
  79 #ifdef _DEBUG
  80 #include <crtdbg.h>
  81 #endif
  82 
  83 
  84 #include <windows.h>
  85 #include <sys/types.h>
  86 #include <sys/stat.h>
  87 #include <sys/timeb.h>
  88 #include <objidl.h>
  89 #include <shlobj.h>
  90 
  91 #include <malloc.h>
  92 #include <signal.h>
  93 #include <direct.h>
  94 #include <errno.h>
  95 #include <fcntl.h>
  96 #include <io.h>
  97 #include <process.h>              // For _beginthreadex(), _endthreadex()
  98 #include <imagehlp.h>             // For os::dll_address_to_function_name
  99 
 100 /* for enumerating dll libraries */
 101 #include <vdmdbg.h>
 102 
 103 // for timer info max values which include all bits
 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 105 
 106 // For DLL loading/load error detection
 107 // Values of PE COFF
 108 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 109 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 110 
 111 static HANDLE main_process;
 112 static HANDLE main_thread;
 113 static int    main_thread_id;
 114 
 115 static FILETIME process_creation_time;
 116 static FILETIME process_exit_time;
 117 static FILETIME process_user_time;
 118 static FILETIME process_kernel_time;
 119 
 120 #ifdef _WIN64
 121 PVOID  topLevelVectoredExceptionHandler = NULL;
 122 #endif
 123 
 124 #ifdef _M_IA64
 125 #define __CPU__ ia64
 126 #elif _M_AMD64
 127 #define __CPU__ amd64
 128 #else
 129 #define __CPU__ i486
 130 #endif
 131 
 132 // save DLL module handle, used by GetModuleFileName
 133 
 134 HINSTANCE vm_lib_handle;
 135 static int getLastErrorString(char *buf, size_t len);
 136 
 137 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 138   switch (reason) {
 139     case DLL_PROCESS_ATTACH:
 140       vm_lib_handle = hinst;
 141       if(ForceTimeHighResolution)
 142         timeBeginPeriod(1L);
 143       break;
 144     case DLL_PROCESS_DETACH:
 145       if(ForceTimeHighResolution)
 146         timeEndPeriod(1L);
 147 #ifdef _WIN64
 148       if (topLevelVectoredExceptionHandler != NULL) {
 149         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 150         topLevelVectoredExceptionHandler = NULL;
 151       }
 152 #endif
 153       break;
 154     default:
 155       break;
 156   }
 157   return true;
 158 }
 159 
 160 static inline double fileTimeAsDouble(FILETIME* time) {
 161   const double high  = (double) ((unsigned int) ~0);
 162   const double split = 10000000.0;
 163   double result = (time->dwLowDateTime / split) +
 164                    time->dwHighDateTime * (high/split);
 165   return result;
 166 }
 167 
 168 // Implementation of os
 169 
 170 bool os::getenv(const char* name, char* buffer, int len) {
 171  int result = GetEnvironmentVariable(name, buffer, len);
 172  return result > 0 && result < len;
 173 }
 174 
 175 
 176 // No setuid programs under Windows.
 177 bool os::have_special_privileges() {
 178   return false;
 179 }
 180 
 181 
 182 // This method is  a periodic task to check for misbehaving JNI applications
 183 // under CheckJNI, we can add any periodic checks here.
 184 // For Windows at the moment does nothing
 185 void os::run_periodic_checks() {
 186   return;
 187 }
 188 
 189 #ifndef _WIN64
 190 // previous UnhandledExceptionFilter, if there is one
 191 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 192 
 193 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 194 #endif
 195 void os::init_system_properties_values() {
 196   /* sysclasspath, java_home, dll_dir */
 197   {
 198       char *home_path;
 199       char *dll_path;
 200       char *pslash;
 201       char *bin = "\\bin";
 202       char home_dir[MAX_PATH];
 203 
 204       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 205           os::jvm_path(home_dir, sizeof(home_dir));
 206           // Found the full path to jvm[_g].dll.
 207           // Now cut the path to <java_home>/jre if we can.
 208           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 209           pslash = strrchr(home_dir, '\\');
 210           if (pslash != NULL) {
 211               *pslash = '\0';                 /* get rid of \{client|server} */
 212               pslash = strrchr(home_dir, '\\');
 213               if (pslash != NULL)
 214                   *pslash = '\0';             /* get rid of \bin */
 215           }
 216       }
 217 
 218       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 219       if (home_path == NULL)
 220           return;
 221       strcpy(home_path, home_dir);
 222       Arguments::set_java_home(home_path);
 223 
 224       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 225       if (dll_path == NULL)
 226           return;
 227       strcpy(dll_path, home_dir);
 228       strcat(dll_path, bin);
 229       Arguments::set_dll_dir(dll_path);
 230 
 231       if (!set_boot_path('\\', ';'))
 232           return;
 233   }
 234 
 235   /* library_path */
 236   #define EXT_DIR "\\lib\\ext"
 237   #define BIN_DIR "\\bin"
 238   #define PACKAGE_DIR "\\Sun\\Java"
 239   {
 240     /* Win32 library search order (See the documentation for LoadLibrary):
 241      *
 242      * 1. The directory from which application is loaded.
 243      * 2. The system wide Java Extensions directory (Java only)
 244      * 3. System directory (GetSystemDirectory)
 245      * 4. Windows directory (GetWindowsDirectory)
 246      * 5. The PATH environment variable
 247      * 6. The current directory
 248      */
 249 
 250     char *library_path;
 251     char tmp[MAX_PATH];
 252     char *path_str = ::getenv("PATH");
 253 
 254     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 255         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 256 
 257     library_path[0] = '\0';
 258 
 259     GetModuleFileName(NULL, tmp, sizeof(tmp));
 260     *(strrchr(tmp, '\\')) = '\0';
 261     strcat(library_path, tmp);
 262 
 263     GetWindowsDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266     strcat(library_path, PACKAGE_DIR BIN_DIR);
 267 
 268     GetSystemDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     GetWindowsDirectory(tmp, sizeof(tmp));
 273     strcat(library_path, ";");
 274     strcat(library_path, tmp);
 275 
 276     if (path_str) {
 277         strcat(library_path, ";");
 278         strcat(library_path, path_str);
 279     }
 280 
 281     strcat(library_path, ";.");
 282 
 283     Arguments::set_library_path(library_path);
 284     FREE_C_HEAP_ARRAY(char, library_path);
 285   }
 286 
 287   /* Default extensions directory */
 288   {
 289     char path[MAX_PATH];
 290     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 291     GetWindowsDirectory(path, MAX_PATH);
 292     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 293         path, PACKAGE_DIR, EXT_DIR);
 294     Arguments::set_ext_dirs(buf);
 295   }
 296   #undef EXT_DIR
 297   #undef BIN_DIR
 298   #undef PACKAGE_DIR
 299 
 300   /* Default endorsed standards directory. */
 301   {
 302     #define ENDORSED_DIR "\\lib\\endorsed"
 303     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 304     char * buf = NEW_C_HEAP_ARRAY(char, len);
 305     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 306     Arguments::set_endorsed_dirs(buf);
 307     #undef ENDORSED_DIR
 308   }
 309 
 310 #ifndef _WIN64
 311   // set our UnhandledExceptionFilter and save any previous one
 312   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 313 #endif
 314 
 315   // Done
 316   return;
 317 }
 318 
 319 void os::breakpoint() {
 320   DebugBreak();
 321 }
 322 
 323 // Invoked from the BREAKPOINT Macro
 324 extern "C" void breakpoint() {
 325   os::breakpoint();
 326 }
 327 
 328 // Returns an estimate of the current stack pointer. Result must be guaranteed
 329 // to point into the calling threads stack, and be no lower than the current
 330 // stack pointer.
 331 
 332 address os::current_stack_pointer() {
 333   int dummy;
 334   address sp = (address)&dummy;
 335   return sp;
 336 }
 337 
 338 // os::current_stack_base()
 339 //
 340 //   Returns the base of the stack, which is the stack's
 341 //   starting address.  This function must be called
 342 //   while running on the stack of the thread being queried.
 343 
 344 address os::current_stack_base() {
 345   MEMORY_BASIC_INFORMATION minfo;
 346   address stack_bottom;
 347   size_t stack_size;
 348 
 349   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 350   stack_bottom =  (address)minfo.AllocationBase;
 351   stack_size = minfo.RegionSize;
 352 
 353   // Add up the sizes of all the regions with the same
 354   // AllocationBase.
 355   while( 1 )
 356   {
 357     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 358     if ( stack_bottom == (address)minfo.AllocationBase )
 359       stack_size += minfo.RegionSize;
 360     else
 361       break;
 362   }
 363 
 364 #ifdef _M_IA64
 365   // IA64 has memory and register stacks
 366   stack_size = stack_size / 2;
 367 #endif
 368   return stack_bottom + stack_size;
 369 }
 370 
 371 size_t os::current_stack_size() {
 372   size_t sz;
 373   MEMORY_BASIC_INFORMATION minfo;
 374   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 375   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 376   return sz;
 377 }
 378 
 379 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 380   const struct tm* time_struct_ptr = localtime(clock);
 381   if (time_struct_ptr != NULL) {
 382     *res = *time_struct_ptr;
 383     return res;
 384   }
 385   return NULL;
 386 }
 387 
 388 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 389 
 390 // Thread start routine for all new Java threads
 391 static unsigned __stdcall java_start(Thread* thread) {
 392   // Try to randomize the cache line index of hot stack frames.
 393   // This helps when threads of the same stack traces evict each other's
 394   // cache lines. The threads can be either from the same JVM instance, or
 395   // from different JVM instances. The benefit is especially true for
 396   // processors with hyperthreading technology.
 397   static int counter = 0;
 398   int pid = os::current_process_id();
 399   _alloca(((pid ^ counter++) & 7) * 128);
 400 
 401   OSThread* osthr = thread->osthread();
 402   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 403 
 404   if (UseNUMA) {
 405     int lgrp_id = os::numa_get_group_id();
 406     if (lgrp_id != -1) {
 407       thread->set_lgrp_id(lgrp_id);
 408     }
 409   }
 410 
 411 
 412   if (UseVectoredExceptions) {
 413     // If we are using vectored exception we don't need to set a SEH
 414     thread->run();
 415   }
 416   else {
 417     // Install a win32 structured exception handler around every thread created
 418     // by VM, so VM can genrate error dump when an exception occurred in non-
 419     // Java thread (e.g. VM thread).
 420     __try {
 421        thread->run();
 422     } __except(topLevelExceptionFilter(
 423                (_EXCEPTION_POINTERS*)_exception_info())) {
 424         // Nothing to do.
 425     }
 426   }
 427 
 428   // One less thread is executing
 429   // When the VMThread gets here, the main thread may have already exited
 430   // which frees the CodeHeap containing the Atomic::add code
 431   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 432     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 433   }
 434 
 435   return 0;
 436 }
 437 
 438 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 439   // Allocate the OSThread object
 440   OSThread* osthread = new OSThread(NULL, NULL);
 441   if (osthread == NULL) return NULL;
 442 
 443   // Initialize support for Java interrupts
 444   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 445   if (interrupt_event == NULL) {
 446     delete osthread;
 447     return NULL;
 448   }
 449   osthread->set_interrupt_event(interrupt_event);
 450 
 451   // Store info on the Win32 thread into the OSThread
 452   osthread->set_thread_handle(thread_handle);
 453   osthread->set_thread_id(thread_id);
 454 
 455   if (UseNUMA) {
 456     int lgrp_id = os::numa_get_group_id();
 457     if (lgrp_id != -1) {
 458       thread->set_lgrp_id(lgrp_id);
 459     }
 460   }
 461 
 462   // Initial thread state is INITIALIZED, not SUSPENDED
 463   osthread->set_state(INITIALIZED);
 464 
 465   return osthread;
 466 }
 467 
 468 
 469 bool os::create_attached_thread(JavaThread* thread) {
 470 #ifdef ASSERT
 471   thread->verify_not_published();
 472 #endif
 473   HANDLE thread_h;
 474   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 475                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 476     fatal("DuplicateHandle failed\n");
 477   }
 478   OSThread* osthread = create_os_thread(thread, thread_h,
 479                                         (int)current_thread_id());
 480   if (osthread == NULL) {
 481      return false;
 482   }
 483 
 484   // Initial thread state is RUNNABLE
 485   osthread->set_state(RUNNABLE);
 486 
 487   thread->set_osthread(osthread);
 488   return true;
 489 }
 490 
 491 bool os::create_main_thread(JavaThread* thread) {
 492 #ifdef ASSERT
 493   thread->verify_not_published();
 494 #endif
 495   if (_starting_thread == NULL) {
 496     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 497      if (_starting_thread == NULL) {
 498         return false;
 499      }
 500   }
 501 
 502   // The primordial thread is runnable from the start)
 503   _starting_thread->set_state(RUNNABLE);
 504 
 505   thread->set_osthread(_starting_thread);
 506   return true;
 507 }
 508 
 509 // Allocate and initialize a new OSThread
 510 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 511   unsigned thread_id;
 512 
 513   // Allocate the OSThread object
 514   OSThread* osthread = new OSThread(NULL, NULL);
 515   if (osthread == NULL) {
 516     return false;
 517   }
 518 
 519   // Initialize support for Java interrupts
 520   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 521   if (interrupt_event == NULL) {
 522     delete osthread;
 523     return NULL;
 524   }
 525   osthread->set_interrupt_event(interrupt_event);
 526   osthread->set_interrupted(false);
 527 
 528   thread->set_osthread(osthread);
 529 
 530   if (stack_size == 0) {
 531     switch (thr_type) {
 532     case os::java_thread:
 533       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 534       if (JavaThread::stack_size_at_create() > 0)
 535         stack_size = JavaThread::stack_size_at_create();
 536       break;
 537     case os::compiler_thread:
 538       if (CompilerThreadStackSize > 0) {
 539         stack_size = (size_t)(CompilerThreadStackSize * K);
 540         break;
 541       } // else fall through:
 542         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 543     case os::vm_thread:
 544     case os::pgc_thread:
 545     case os::cgc_thread:
 546     case os::watcher_thread:
 547       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 548       break;
 549     }
 550   }
 551 
 552   // Create the Win32 thread
 553   //
 554   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 555   // does not specify stack size. Instead, it specifies the size of
 556   // initially committed space. The stack size is determined by
 557   // PE header in the executable. If the committed "stack_size" is larger
 558   // than default value in the PE header, the stack is rounded up to the
 559   // nearest multiple of 1MB. For example if the launcher has default
 560   // stack size of 320k, specifying any size less than 320k does not
 561   // affect the actual stack size at all, it only affects the initial
 562   // commitment. On the other hand, specifying 'stack_size' larger than
 563   // default value may cause significant increase in memory usage, because
 564   // not only the stack space will be rounded up to MB, but also the
 565   // entire space is committed upfront.
 566   //
 567   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 568   // for CreateThread() that can treat 'stack_size' as stack size. However we
 569   // are not supposed to call CreateThread() directly according to MSDN
 570   // document because JVM uses C runtime library. The good news is that the
 571   // flag appears to work with _beginthredex() as well.
 572 
 573 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 574 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 575 #endif
 576 
 577   HANDLE thread_handle =
 578     (HANDLE)_beginthreadex(NULL,
 579                            (unsigned)stack_size,
 580                            (unsigned (__stdcall *)(void*)) java_start,
 581                            thread,
 582                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 583                            &thread_id);
 584   if (thread_handle == NULL) {
 585     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 586     // without the flag.
 587     thread_handle =
 588     (HANDLE)_beginthreadex(NULL,
 589                            (unsigned)stack_size,
 590                            (unsigned (__stdcall *)(void*)) java_start,
 591                            thread,
 592                            CREATE_SUSPENDED,
 593                            &thread_id);
 594   }
 595   if (thread_handle == NULL) {
 596     // Need to clean up stuff we've allocated so far
 597     CloseHandle(osthread->interrupt_event());
 598     thread->set_osthread(NULL);
 599     delete osthread;
 600     return NULL;
 601   }
 602 
 603   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 604 
 605   // Store info on the Win32 thread into the OSThread
 606   osthread->set_thread_handle(thread_handle);
 607   osthread->set_thread_id(thread_id);
 608 
 609   // Initial thread state is INITIALIZED, not SUSPENDED
 610   osthread->set_state(INITIALIZED);
 611 
 612   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 613   return true;
 614 }
 615 
 616 
 617 // Free Win32 resources related to the OSThread
 618 void os::free_thread(OSThread* osthread) {
 619   assert(osthread != NULL, "osthread not set");
 620   CloseHandle(osthread->thread_handle());
 621   CloseHandle(osthread->interrupt_event());
 622   delete osthread;
 623 }
 624 
 625 
 626 static int    has_performance_count = 0;
 627 static jlong first_filetime;
 628 static jlong initial_performance_count;
 629 static jlong performance_frequency;
 630 
 631 
 632 jlong as_long(LARGE_INTEGER x) {
 633   jlong result = 0; // initialization to avoid warning
 634   set_high(&result, x.HighPart);
 635   set_low(&result,  x.LowPart);
 636   return result;
 637 }
 638 
 639 
 640 jlong os::elapsed_counter() {
 641   LARGE_INTEGER count;
 642   if (has_performance_count) {
 643     QueryPerformanceCounter(&count);
 644     return as_long(count) - initial_performance_count;
 645   } else {
 646     FILETIME wt;
 647     GetSystemTimeAsFileTime(&wt);
 648     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 649   }
 650 }
 651 
 652 
 653 jlong os::elapsed_frequency() {
 654   if (has_performance_count) {
 655     return performance_frequency;
 656   } else {
 657    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 658    return 10000000;
 659   }
 660 }
 661 
 662 
 663 julong os::available_memory() {
 664   return win32::available_memory();
 665 }
 666 
 667 julong os::win32::available_memory() {
 668   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 669   // value if total memory is larger than 4GB
 670   MEMORYSTATUSEX ms;
 671   ms.dwLength = sizeof(ms);
 672   GlobalMemoryStatusEx(&ms);
 673 
 674   return (julong)ms.ullAvailPhys;
 675 }
 676 
 677 julong os::physical_memory() {
 678   return win32::physical_memory();
 679 }
 680 
 681 julong os::allocatable_physical_memory(julong size) {
 682 #ifdef _LP64
 683   return size;
 684 #else
 685   // Limit to 1400m because of the 2gb address space wall
 686   return MIN2(size, (julong)1400*M);
 687 #endif
 688 }
 689 
 690 // VC6 lacks DWORD_PTR
 691 #if _MSC_VER < 1300
 692 typedef UINT_PTR DWORD_PTR;
 693 #endif
 694 
 695 int os::active_processor_count() {
 696   DWORD_PTR lpProcessAffinityMask = 0;
 697   DWORD_PTR lpSystemAffinityMask = 0;
 698   int proc_count = processor_count();
 699   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 700       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 701     // Nof active processors is number of bits in process affinity mask
 702     int bitcount = 0;
 703     while (lpProcessAffinityMask != 0) {
 704       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 705       bitcount++;
 706     }
 707     return bitcount;
 708   } else {
 709     return proc_count;
 710   }
 711 }
 712 
 713 void os::set_native_thread_name(const char *name) {
 714   // Not yet implemented.
 715   return;
 716 }
 717 
 718 bool os::distribute_processes(uint length, uint* distribution) {
 719   // Not yet implemented.
 720   return false;
 721 }
 722 
 723 bool os::bind_to_processor(uint processor_id) {
 724   // Not yet implemented.
 725   return false;
 726 }
 727 
 728 static void initialize_performance_counter() {
 729   LARGE_INTEGER count;
 730   if (QueryPerformanceFrequency(&count)) {
 731     has_performance_count = 1;
 732     performance_frequency = as_long(count);
 733     QueryPerformanceCounter(&count);
 734     initial_performance_count = as_long(count);
 735   } else {
 736     has_performance_count = 0;
 737     FILETIME wt;
 738     GetSystemTimeAsFileTime(&wt);
 739     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 740   }
 741 }
 742 
 743 
 744 double os::elapsedTime() {
 745   return (double) elapsed_counter() / (double) elapsed_frequency();
 746 }
 747 
 748 
 749 // Windows format:
 750 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 751 // Java format:
 752 //   Java standards require the number of milliseconds since 1/1/1970
 753 
 754 // Constant offset - calculated using offset()
 755 static jlong  _offset   = 116444736000000000;
 756 // Fake time counter for reproducible results when debugging
 757 static jlong  fake_time = 0;
 758 
 759 #ifdef ASSERT
 760 // Just to be safe, recalculate the offset in debug mode
 761 static jlong _calculated_offset = 0;
 762 static int   _has_calculated_offset = 0;
 763 
 764 jlong offset() {
 765   if (_has_calculated_offset) return _calculated_offset;
 766   SYSTEMTIME java_origin;
 767   java_origin.wYear          = 1970;
 768   java_origin.wMonth         = 1;
 769   java_origin.wDayOfWeek     = 0; // ignored
 770   java_origin.wDay           = 1;
 771   java_origin.wHour          = 0;
 772   java_origin.wMinute        = 0;
 773   java_origin.wSecond        = 0;
 774   java_origin.wMilliseconds  = 0;
 775   FILETIME jot;
 776   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 777     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 778   }
 779   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 780   _has_calculated_offset = 1;
 781   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 782   return _calculated_offset;
 783 }
 784 #else
 785 jlong offset() {
 786   return _offset;
 787 }
 788 #endif
 789 
 790 jlong windows_to_java_time(FILETIME wt) {
 791   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 792   return (a - offset()) / 10000;
 793 }
 794 
 795 FILETIME java_to_windows_time(jlong l) {
 796   jlong a = (l * 10000) + offset();
 797   FILETIME result;
 798   result.dwHighDateTime = high(a);
 799   result.dwLowDateTime  = low(a);
 800   return result;
 801 }
 802 
 803 // For now, we say that Windows does not support vtime.  I have no idea
 804 // whether it can actually be made to (DLD, 9/13/05).
 805 
 806 bool os::supports_vtime() { return false; }
 807 bool os::enable_vtime() { return false; }
 808 bool os::vtime_enabled() { return false; }
 809 double os::elapsedVTime() {
 810   // better than nothing, but not much
 811   return elapsedTime();
 812 }
 813 
 814 jlong os::javaTimeMillis() {
 815   if (UseFakeTimers) {
 816     return fake_time++;
 817   } else {
 818     FILETIME wt;
 819     GetSystemTimeAsFileTime(&wt);
 820     return windows_to_java_time(wt);
 821   }
 822 }
 823 
 824 jlong os::javaTimeNanos() {
 825   if (!has_performance_count) {
 826     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 827   } else {
 828     LARGE_INTEGER current_count;
 829     QueryPerformanceCounter(&current_count);
 830     double current = as_long(current_count);
 831     double freq = performance_frequency;
 832     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 833     return time;
 834   }
 835 }
 836 
 837 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 838   if (!has_performance_count) {
 839     // javaTimeMillis() doesn't have much percision,
 840     // but it is not going to wrap -- so all 64 bits
 841     info_ptr->max_value = ALL_64_BITS;
 842 
 843     // this is a wall clock timer, so may skip
 844     info_ptr->may_skip_backward = true;
 845     info_ptr->may_skip_forward = true;
 846   } else {
 847     jlong freq = performance_frequency;
 848     if (freq < NANOSECS_PER_SEC) {
 849       // the performance counter is 64 bits and we will
 850       // be multiplying it -- so no wrap in 64 bits
 851       info_ptr->max_value = ALL_64_BITS;
 852     } else if (freq > NANOSECS_PER_SEC) {
 853       // use the max value the counter can reach to
 854       // determine the max value which could be returned
 855       julong max_counter = (julong)ALL_64_BITS;
 856       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 857     } else {
 858       // the performance counter is 64 bits and we will
 859       // be using it directly -- so no wrap in 64 bits
 860       info_ptr->max_value = ALL_64_BITS;
 861     }
 862 
 863     // using a counter, so no skipping
 864     info_ptr->may_skip_backward = false;
 865     info_ptr->may_skip_forward = false;
 866   }
 867   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 868 }
 869 
 870 char* os::local_time_string(char *buf, size_t buflen) {
 871   SYSTEMTIME st;
 872   GetLocalTime(&st);
 873   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 874                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 875   return buf;
 876 }
 877 
 878 bool os::getTimesSecs(double* process_real_time,
 879                      double* process_user_time,
 880                      double* process_system_time) {
 881   HANDLE h_process = GetCurrentProcess();
 882   FILETIME create_time, exit_time, kernel_time, user_time;
 883   BOOL result = GetProcessTimes(h_process,
 884                                &create_time,
 885                                &exit_time,
 886                                &kernel_time,
 887                                &user_time);
 888   if (result != 0) {
 889     FILETIME wt;
 890     GetSystemTimeAsFileTime(&wt);
 891     jlong rtc_millis = windows_to_java_time(wt);
 892     jlong user_millis = windows_to_java_time(user_time);
 893     jlong system_millis = windows_to_java_time(kernel_time);
 894     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 895     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 896     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 897     return true;
 898   } else {
 899     return false;
 900   }
 901 }
 902 
 903 void os::shutdown() {
 904 
 905   // allow PerfMemory to attempt cleanup of any persistent resources
 906   perfMemory_exit();
 907 
 908   // flush buffered output, finish log files
 909   ostream_abort();
 910 
 911   // Check for abort hook
 912   abort_hook_t abort_hook = Arguments::abort_hook();
 913   if (abort_hook != NULL) {
 914     abort_hook();
 915   }
 916 }
 917 
 918 
 919 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 920                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 921 
 922 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 923   HINSTANCE dbghelp;
 924   EXCEPTION_POINTERS ep;
 925   MINIDUMP_EXCEPTION_INFORMATION mei;
 926   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 927 
 928   HANDLE hProcess = GetCurrentProcess();
 929   DWORD processId = GetCurrentProcessId();
 930   HANDLE dumpFile;
 931   MINIDUMP_TYPE dumpType;
 932   static const char* cwd;
 933 
 934   // If running on a client version of Windows and user has not explicitly enabled dumping
 935   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 936     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 937     return;
 938     // If running on a server version of Windows and user has explictly disabled dumping
 939   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 940     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 941     return;
 942   }
 943 
 944   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 945 
 946   if (dbghelp == NULL) {
 947     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 948     return;
 949   }
 950 
 951   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 952     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 953     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 954     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 955 
 956   if (_MiniDumpWriteDump == NULL) {
 957     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 958     return;
 959   }
 960 
 961   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 962 
 963 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 964 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 965 #if API_VERSION_NUMBER >= 11
 966   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 967     MiniDumpWithUnloadedModules);
 968 #endif
 969 
 970   cwd = get_current_directory(NULL, 0);
 971   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 972   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 973 
 974   if (dumpFile == INVALID_HANDLE_VALUE) {
 975     VMError::report_coredump_status("Failed to create file for dumping", false);
 976     return;
 977   }
 978   if (exceptionRecord != NULL && contextRecord != NULL) {
 979     ep.ContextRecord = (PCONTEXT) contextRecord;
 980     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
 981 
 982     mei.ThreadId = GetCurrentThreadId();
 983     mei.ExceptionPointers = &ep;
 984     pmei = &mei;
 985   } else {
 986     pmei = NULL;
 987   }
 988 
 989 
 990   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
 991   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
 992   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
 993       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
 994     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
 995   } else {
 996     VMError::report_coredump_status(buffer, true);
 997   }
 998 
 999   CloseHandle(dumpFile);
1000 }
1001 
1002 
1003 
1004 void os::abort(bool dump_core)
1005 {
1006   os::shutdown();
1007   // no core dump on Windows
1008   ::exit(1);
1009 }
1010 
1011 // Die immediately, no exit hook, no abort hook, no cleanup.
1012 void os::die() {
1013   _exit(-1);
1014 }
1015 
1016 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1017 //  * dirent_md.c       1.15 00/02/02
1018 //
1019 // The declarations for DIR and struct dirent are in jvm_win32.h.
1020 
1021 /* Caller must have already run dirname through JVM_NativePath, which removes
1022    duplicate slashes and converts all instances of '/' into '\\'. */
1023 
1024 DIR *
1025 os::opendir(const char *dirname)
1026 {
1027     assert(dirname != NULL, "just checking");   // hotspot change
1028     DIR *dirp = (DIR *)malloc(sizeof(DIR));
1029     DWORD fattr;                                // hotspot change
1030     char alt_dirname[4] = { 0, 0, 0, 0 };
1031 
1032     if (dirp == 0) {
1033         errno = ENOMEM;
1034         return 0;
1035     }
1036 
1037     /*
1038      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1039      * as a directory in FindFirstFile().  We detect this case here and
1040      * prepend the current drive name.
1041      */
1042     if (dirname[1] == '\0' && dirname[0] == '\\') {
1043         alt_dirname[0] = _getdrive() + 'A' - 1;
1044         alt_dirname[1] = ':';
1045         alt_dirname[2] = '\\';
1046         alt_dirname[3] = '\0';
1047         dirname = alt_dirname;
1048     }
1049 
1050     dirp->path = (char *)malloc(strlen(dirname) + 5);
1051     if (dirp->path == 0) {
1052         free(dirp);
1053         errno = ENOMEM;
1054         return 0;
1055     }
1056     strcpy(dirp->path, dirname);
1057 
1058     fattr = GetFileAttributes(dirp->path);
1059     if (fattr == 0xffffffff) {
1060         free(dirp->path);
1061         free(dirp);
1062         errno = ENOENT;
1063         return 0;
1064     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1065         free(dirp->path);
1066         free(dirp);
1067         errno = ENOTDIR;
1068         return 0;
1069     }
1070 
1071     /* Append "*.*", or possibly "\\*.*", to path */
1072     if (dirp->path[1] == ':'
1073         && (dirp->path[2] == '\0'
1074             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1075         /* No '\\' needed for cases like "Z:" or "Z:\" */
1076         strcat(dirp->path, "*.*");
1077     } else {
1078         strcat(dirp->path, "\\*.*");
1079     }
1080 
1081     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1082     if (dirp->handle == INVALID_HANDLE_VALUE) {
1083         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1084             free(dirp->path);
1085             free(dirp);
1086             errno = EACCES;
1087             return 0;
1088         }
1089     }
1090     return dirp;
1091 }
1092 
1093 /* parameter dbuf unused on Windows */
1094 
1095 struct dirent *
1096 os::readdir(DIR *dirp, dirent *dbuf)
1097 {
1098     assert(dirp != NULL, "just checking");      // hotspot change
1099     if (dirp->handle == INVALID_HANDLE_VALUE) {
1100         return 0;
1101     }
1102 
1103     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1104 
1105     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1106         if (GetLastError() == ERROR_INVALID_HANDLE) {
1107             errno = EBADF;
1108             return 0;
1109         }
1110         FindClose(dirp->handle);
1111         dirp->handle = INVALID_HANDLE_VALUE;
1112     }
1113 
1114     return &dirp->dirent;
1115 }
1116 
1117 int
1118 os::closedir(DIR *dirp)
1119 {
1120     assert(dirp != NULL, "just checking");      // hotspot change
1121     if (dirp->handle != INVALID_HANDLE_VALUE) {
1122         if (!FindClose(dirp->handle)) {
1123             errno = EBADF;
1124             return -1;
1125         }
1126         dirp->handle = INVALID_HANDLE_VALUE;
1127     }
1128     free(dirp->path);
1129     free(dirp);
1130     return 0;
1131 }
1132 
1133 // This must be hard coded because it's the system's temporary
1134 // directory not the java application's temp directory, ala java.io.tmpdir.
1135 const char* os::get_temp_directory() {
1136   static char path_buf[MAX_PATH];
1137   if (GetTempPath(MAX_PATH, path_buf)>0)
1138     return path_buf;
1139   else{
1140     path_buf[0]='\0';
1141     return path_buf;
1142   }
1143 }
1144 
1145 static bool file_exists(const char* filename) {
1146   if (filename == NULL || strlen(filename) == 0) {
1147     return false;
1148   }
1149   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1150 }
1151 
1152 void os::dll_build_name(char *buffer, size_t buflen,
1153                         const char* pname, const char* fname) {
1154   const size_t pnamelen = pname ? strlen(pname) : 0;
1155   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1156 
1157   // Quietly truncates on buffer overflow. Should be an error.
1158   if (pnamelen + strlen(fname) + 10 > buflen) {
1159     *buffer = '\0';
1160     return;
1161   }
1162 
1163   if (pnamelen == 0) {
1164     jio_snprintf(buffer, buflen, "%s.dll", fname);
1165   } else if (c == ':' || c == '\\') {
1166     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1167   } else if (strchr(pname, *os::path_separator()) != NULL) {
1168     int n;
1169     char** pelements = split_path(pname, &n);
1170     for (int i = 0 ; i < n ; i++) {
1171       char* path = pelements[i];
1172       // Really shouldn't be NULL, but check can't hurt
1173       size_t plen = (path == NULL) ? 0 : strlen(path);
1174       if (plen == 0) {
1175         continue; // skip the empty path values
1176       }
1177       const char lastchar = path[plen - 1];
1178       if (lastchar == ':' || lastchar == '\\') {
1179         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1180       } else {
1181         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1182       }
1183       if (file_exists(buffer)) {
1184         break;
1185       }
1186     }
1187     // release the storage
1188     for (int i = 0 ; i < n ; i++) {
1189       if (pelements[i] != NULL) {
1190         FREE_C_HEAP_ARRAY(char, pelements[i]);
1191       }
1192     }
1193     if (pelements != NULL) {
1194       FREE_C_HEAP_ARRAY(char*, pelements);
1195     }
1196   } else {
1197     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1198   }
1199 }
1200 
1201 // Needs to be in os specific directory because windows requires another
1202 // header file <direct.h>
1203 const char* os::get_current_directory(char *buf, int buflen) {
1204   return _getcwd(buf, buflen);
1205 }
1206 
1207 //-----------------------------------------------------------
1208 // Helper functions for fatal error handler
1209 #ifdef _WIN64
1210 // Helper routine which returns true if address in
1211 // within the NTDLL address space.
1212 //
1213 static bool _addr_in_ntdll( address addr )
1214 {
1215   HMODULE hmod;
1216   MODULEINFO minfo;
1217 
1218   hmod = GetModuleHandle("NTDLL.DLL");
1219   if ( hmod == NULL ) return false;
1220   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1221                                &minfo, sizeof(MODULEINFO)) )
1222     return false;
1223 
1224   if ( (addr >= minfo.lpBaseOfDll) &&
1225        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1226     return true;
1227   else
1228     return false;
1229 }
1230 #endif
1231 
1232 
1233 // Enumerate all modules for a given process ID
1234 //
1235 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1236 // different API for doing this. We use PSAPI.DLL on NT based
1237 // Windows and ToolHelp on 95/98/Me.
1238 
1239 // Callback function that is called by enumerate_modules() on
1240 // every DLL module.
1241 // Input parameters:
1242 //    int       pid,
1243 //    char*     module_file_name,
1244 //    address   module_base_addr,
1245 //    unsigned  module_size,
1246 //    void*     param
1247 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1248 
1249 // enumerate_modules for Windows NT, using PSAPI
1250 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1251 {
1252   HANDLE   hProcess ;
1253 
1254 # define MAX_NUM_MODULES 128
1255   HMODULE     modules[MAX_NUM_MODULES];
1256   static char filename[ MAX_PATH ];
1257   int         result = 0;
1258 
1259   if (!os::PSApiDll::PSApiAvailable()) {
1260     return 0;
1261   }
1262 
1263   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1264                          FALSE, pid ) ;
1265   if (hProcess == NULL) return 0;
1266 
1267   DWORD size_needed;
1268   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1269                            sizeof(modules), &size_needed)) {
1270       CloseHandle( hProcess );
1271       return 0;
1272   }
1273 
1274   // number of modules that are currently loaded
1275   int num_modules = size_needed / sizeof(HMODULE);
1276 
1277   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1278     // Get Full pathname:
1279     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1280                              filename, sizeof(filename))) {
1281         filename[0] = '\0';
1282     }
1283 
1284     MODULEINFO modinfo;
1285     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1286                                &modinfo, sizeof(modinfo))) {
1287         modinfo.lpBaseOfDll = NULL;
1288         modinfo.SizeOfImage = 0;
1289     }
1290 
1291     // Invoke callback function
1292     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1293                   modinfo.SizeOfImage, param);
1294     if (result) break;
1295   }
1296 
1297   CloseHandle( hProcess ) ;
1298   return result;
1299 }
1300 
1301 
1302 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1303 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1304 {
1305   HANDLE                hSnapShot ;
1306   static MODULEENTRY32  modentry ;
1307   int                   result = 0;
1308 
1309   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1310     return 0;
1311   }
1312 
1313   // Get a handle to a Toolhelp snapshot of the system
1314   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1315   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1316       return FALSE ;
1317   }
1318 
1319   // iterate through all modules
1320   modentry.dwSize = sizeof(MODULEENTRY32) ;
1321   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1322 
1323   while( not_done ) {
1324     // invoke the callback
1325     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1326                 modentry.modBaseSize, param);
1327     if (result) break;
1328 
1329     modentry.dwSize = sizeof(MODULEENTRY32) ;
1330     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1331   }
1332 
1333   CloseHandle(hSnapShot);
1334   return result;
1335 }
1336 
1337 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1338 {
1339   // Get current process ID if caller doesn't provide it.
1340   if (!pid) pid = os::current_process_id();
1341 
1342   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1343   else                    return _enumerate_modules_windows(pid, func, param);
1344 }
1345 
1346 struct _modinfo {
1347    address addr;
1348    char*   full_path;   // point to a char buffer
1349    int     buflen;      // size of the buffer
1350    address base_addr;
1351 };
1352 
1353 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1354                                   unsigned size, void * param) {
1355    struct _modinfo *pmod = (struct _modinfo *)param;
1356    if (!pmod) return -1;
1357 
1358    if (base_addr     <= pmod->addr &&
1359        base_addr+size > pmod->addr) {
1360      // if a buffer is provided, copy path name to the buffer
1361      if (pmod->full_path) {
1362        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1363      }
1364      pmod->base_addr = base_addr;
1365      return 1;
1366    }
1367    return 0;
1368 }
1369 
1370 bool os::dll_address_to_library_name(address addr, char* buf,
1371                                      int buflen, int* offset) {
1372 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1373 //       return the full path to the DLL file, sometimes it returns path
1374 //       to the corresponding PDB file (debug info); sometimes it only
1375 //       returns partial path, which makes life painful.
1376 
1377    struct _modinfo mi;
1378    mi.addr      = addr;
1379    mi.full_path = buf;
1380    mi.buflen    = buflen;
1381    int pid = os::current_process_id();
1382    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1383       // buf already contains path name
1384       if (offset) *offset = addr - mi.base_addr;
1385       return true;
1386    } else {
1387       if (buf) buf[0] = '\0';
1388       if (offset) *offset = -1;
1389       return false;
1390    }
1391 }
1392 
1393 bool os::dll_address_to_function_name(address addr, char *buf,
1394                                       int buflen, int *offset) {
1395   if (Decoder::decode(addr, buf, buflen, offset) == Decoder::no_error) {
1396     return true;
1397   }
1398   if (offset != NULL)  *offset  = -1;
1399   if (buf != NULL) buf[0] = '\0';
1400   return false;
1401 }
1402 
1403 // save the start and end address of jvm.dll into param[0] and param[1]
1404 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1405                     unsigned size, void * param) {
1406    if (!param) return -1;
1407 
1408    if (base_addr     <= (address)_locate_jvm_dll &&
1409        base_addr+size > (address)_locate_jvm_dll) {
1410          ((address*)param)[0] = base_addr;
1411          ((address*)param)[1] = base_addr + size;
1412          return 1;
1413    }
1414    return 0;
1415 }
1416 
1417 address vm_lib_location[2];    // start and end address of jvm.dll
1418 
1419 // check if addr is inside jvm.dll
1420 bool os::address_is_in_vm(address addr) {
1421   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1422     int pid = os::current_process_id();
1423     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1424       assert(false, "Can't find jvm module.");
1425       return false;
1426     }
1427   }
1428 
1429   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1430 }
1431 
1432 // print module info; param is outputStream*
1433 static int _print_module(int pid, char* fname, address base,
1434                          unsigned size, void* param) {
1435    if (!param) return -1;
1436 
1437    outputStream* st = (outputStream*)param;
1438 
1439    address end_addr = base + size;
1440    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1441    return 0;
1442 }
1443 
1444 // Loads .dll/.so and
1445 // in case of error it checks if .dll/.so was built for the
1446 // same architecture as Hotspot is running on
1447 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1448 {
1449   void * result = LoadLibrary(name);
1450   if (result != NULL)
1451   {
1452     return result;
1453   }
1454 
1455   long errcode = GetLastError();
1456   if (errcode == ERROR_MOD_NOT_FOUND) {
1457     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1458     ebuf[ebuflen-1]='\0';
1459     return NULL;
1460   }
1461 
1462   // Parsing dll below
1463   // If we can read dll-info and find that dll was built
1464   // for an architecture other than Hotspot is running in
1465   // - then print to buffer "DLL was built for a different architecture"
1466   // else call getLastErrorString to obtain system error message
1467 
1468   // Read system error message into ebuf
1469   // It may or may not be overwritten below (in the for loop and just above)
1470   getLastErrorString(ebuf, (size_t) ebuflen);
1471   ebuf[ebuflen-1]='\0';
1472   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1473   if (file_descriptor<0)
1474   {
1475     return NULL;
1476   }
1477 
1478   uint32_t signature_offset;
1479   uint16_t lib_arch=0;
1480   bool failed_to_get_lib_arch=
1481   (
1482     //Go to position 3c in the dll
1483     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1484     ||
1485     // Read loacation of signature
1486     (sizeof(signature_offset)!=
1487       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1488     ||
1489     //Go to COFF File Header in dll
1490     //that is located after"signature" (4 bytes long)
1491     (os::seek_to_file_offset(file_descriptor,
1492       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1493     ||
1494     //Read field that contains code of architecture
1495     // that dll was build for
1496     (sizeof(lib_arch)!=
1497       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1498   );
1499 
1500   ::close(file_descriptor);
1501   if (failed_to_get_lib_arch)
1502   {
1503     // file i/o error - report getLastErrorString(...) msg
1504     return NULL;
1505   }
1506 
1507   typedef struct
1508   {
1509     uint16_t arch_code;
1510     char* arch_name;
1511   } arch_t;
1512 
1513   static const arch_t arch_array[]={
1514     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1515     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1516     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1517   };
1518   #if   (defined _M_IA64)
1519     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1520   #elif (defined _M_AMD64)
1521     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1522   #elif (defined _M_IX86)
1523     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1524   #else
1525     #error Method os::dll_load requires that one of following \
1526            is defined :_M_IA64,_M_AMD64 or _M_IX86
1527   #endif
1528 
1529 
1530   // Obtain a string for printf operation
1531   // lib_arch_str shall contain string what platform this .dll was built for
1532   // running_arch_str shall string contain what platform Hotspot was built for
1533   char *running_arch_str=NULL,*lib_arch_str=NULL;
1534   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1535   {
1536     if (lib_arch==arch_array[i].arch_code)
1537       lib_arch_str=arch_array[i].arch_name;
1538     if (running_arch==arch_array[i].arch_code)
1539       running_arch_str=arch_array[i].arch_name;
1540   }
1541 
1542   assert(running_arch_str,
1543     "Didn't find runing architecture code in arch_array");
1544 
1545   // If the architure is right
1546   // but some other error took place - report getLastErrorString(...) msg
1547   if (lib_arch == running_arch)
1548   {
1549     return NULL;
1550   }
1551 
1552   if (lib_arch_str!=NULL)
1553   {
1554     ::_snprintf(ebuf, ebuflen-1,
1555       "Can't load %s-bit .dll on a %s-bit platform",
1556       lib_arch_str,running_arch_str);
1557   }
1558   else
1559   {
1560     // don't know what architecture this dll was build for
1561     ::_snprintf(ebuf, ebuflen-1,
1562       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1563       lib_arch,running_arch_str);
1564   }
1565 
1566   return NULL;
1567 }
1568 
1569 
1570 void os::print_dll_info(outputStream *st) {
1571    int pid = os::current_process_id();
1572    st->print_cr("Dynamic libraries:");
1573    enumerate_modules(pid, _print_module, (void *)st);
1574 }
1575 
1576 void os::print_os_info(outputStream* st) {
1577   st->print("OS:");
1578 
1579   OSVERSIONINFOEX osvi;
1580   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1581   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1582 
1583   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1584     st->print_cr("N/A");
1585     return;
1586   }
1587 
1588   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1589   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1590     switch (os_vers) {
1591     case 3051: st->print(" Windows NT 3.51"); break;
1592     case 4000: st->print(" Windows NT 4.0"); break;
1593     case 5000: st->print(" Windows 2000"); break;
1594     case 5001: st->print(" Windows XP"); break;
1595     case 5002:
1596     case 6000:
1597     case 6001: {
1598       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1599       // find out whether we are running on 64 bit processor or not.
1600       SYSTEM_INFO si;
1601       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1602         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1603           GetSystemInfo(&si);
1604       } else {
1605         os::Kernel32Dll::GetNativeSystemInfo(&si);
1606       }
1607       if (os_vers == 5002) {
1608         if (osvi.wProductType == VER_NT_WORKSTATION &&
1609             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1610           st->print(" Windows XP x64 Edition");
1611         else
1612             st->print(" Windows Server 2003 family");
1613       } else if (os_vers == 6000) {
1614         if (osvi.wProductType == VER_NT_WORKSTATION)
1615             st->print(" Windows Vista");
1616         else
1617             st->print(" Windows Server 2008");
1618         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1619             st->print(" , 64 bit");
1620       } else if (os_vers == 6001) {
1621         if (osvi.wProductType == VER_NT_WORKSTATION) {
1622             st->print(" Windows 7");
1623         } else {
1624             // Unrecognized windows, print out its major and minor versions
1625             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1626         }
1627         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1628             st->print(" , 64 bit");
1629       } else { // future os
1630         // Unrecognized windows, print out its major and minor versions
1631         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1632         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1633             st->print(" , 64 bit");
1634       }
1635       break;
1636     }
1637     default: // future windows, print out its major and minor versions
1638       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1639     }
1640   } else {
1641     switch (os_vers) {
1642     case 4000: st->print(" Windows 95"); break;
1643     case 4010: st->print(" Windows 98"); break;
1644     case 4090: st->print(" Windows Me"); break;
1645     default: // future windows, print out its major and minor versions
1646       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1647     }
1648   }
1649   st->print(" Build %d", osvi.dwBuildNumber);
1650   st->print(" %s", osvi.szCSDVersion);           // service pack
1651   st->cr();
1652 }
1653 
1654 void os::pd_print_cpu_info(outputStream* st) {
1655   // Nothing to do for now.
1656 }
1657 
1658 void os::print_memory_info(outputStream* st) {
1659   st->print("Memory:");
1660   st->print(" %dk page", os::vm_page_size()>>10);
1661 
1662   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1663   // value if total memory is larger than 4GB
1664   MEMORYSTATUSEX ms;
1665   ms.dwLength = sizeof(ms);
1666   GlobalMemoryStatusEx(&ms);
1667 
1668   st->print(", physical %uk", os::physical_memory() >> 10);
1669   st->print("(%uk free)", os::available_memory() >> 10);
1670 
1671   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1672   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1673   st->cr();
1674 }
1675 
1676 void os::print_siginfo(outputStream *st, void *siginfo) {
1677   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1678   st->print("siginfo:");
1679   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1680 
1681   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1682       er->NumberParameters >= 2) {
1683       switch (er->ExceptionInformation[0]) {
1684       case 0: st->print(", reading address"); break;
1685       case 1: st->print(", writing address"); break;
1686       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1687                             er->ExceptionInformation[0]);
1688       }
1689       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1690   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1691              er->NumberParameters >= 2 && UseSharedSpaces) {
1692     FileMapInfo* mapinfo = FileMapInfo::current_info();
1693     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1694       st->print("\n\nError accessing class data sharing archive."       \
1695                 " Mapped file inaccessible during execution, "          \
1696                 " possible disk/network problem.");
1697     }
1698   } else {
1699     int num = er->NumberParameters;
1700     if (num > 0) {
1701       st->print(", ExceptionInformation=");
1702       for (int i = 0; i < num; i++) {
1703         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1704       }
1705     }
1706   }
1707   st->cr();
1708 }
1709 
1710 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1711   // do nothing
1712 }
1713 
1714 static char saved_jvm_path[MAX_PATH] = {0};
1715 
1716 // Find the full path to the current module, jvm.dll or jvm_g.dll
1717 void os::jvm_path(char *buf, jint buflen) {
1718   // Error checking.
1719   if (buflen < MAX_PATH) {
1720     assert(false, "must use a large-enough buffer");
1721     buf[0] = '\0';
1722     return;
1723   }
1724   // Lazy resolve the path to current module.
1725   if (saved_jvm_path[0] != 0) {
1726     strcpy(buf, saved_jvm_path);
1727     return;
1728   }
1729 
1730   buf[0] = '\0';
1731   if (Arguments::created_by_gamma_launcher()) {
1732      // Support for the gamma launcher. Check for an
1733      // JAVA_HOME environment variable
1734      // and fix up the path so it looks like
1735      // libjvm.so is installed there (append a fake suffix
1736      // hotspot/libjvm.so).
1737      char* java_home_var = ::getenv("JAVA_HOME");
1738      if (java_home_var != NULL && java_home_var[0] != 0) {
1739 
1740         strncpy(buf, java_home_var, buflen);
1741 
1742         // determine if this is a legacy image or modules image
1743         // modules image doesn't have "jre" subdirectory
1744         size_t len = strlen(buf);
1745         char* jrebin_p = buf + len;
1746         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1747         if (0 != _access(buf, 0)) {
1748           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1749         }
1750         len = strlen(buf);
1751         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1752      }
1753   }
1754 
1755   if(buf[0] == '\0') {
1756   GetModuleFileName(vm_lib_handle, buf, buflen);
1757   }
1758   strcpy(saved_jvm_path, buf);
1759 }
1760 
1761 
1762 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1763 #ifndef _WIN64
1764   st->print("_");
1765 #endif
1766 }
1767 
1768 
1769 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1770 #ifndef _WIN64
1771   st->print("@%d", args_size  * sizeof(int));
1772 #endif
1773 }
1774 
1775 // This method is a copy of JDK's sysGetLastErrorString
1776 // from src/windows/hpi/src/system_md.c
1777 
1778 size_t os::lasterror(char *buf, size_t len) {
1779   long errval;
1780 
1781   if ((errval = GetLastError()) != 0) {
1782       /* DOS error */
1783     int n = (int)FormatMessage(
1784           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1785           NULL,
1786           errval,
1787           0,
1788           buf,
1789           (DWORD)len,
1790           NULL);
1791     if (n > 3) {
1792       /* Drop final '.', CR, LF */
1793       if (buf[n - 1] == '\n') n--;
1794       if (buf[n - 1] == '\r') n--;
1795       if (buf[n - 1] == '.') n--;
1796       buf[n] = '\0';
1797     }
1798     return n;
1799   }
1800 
1801   if (errno != 0) {
1802     /* C runtime error that has no corresponding DOS error code */
1803     const char *s = strerror(errno);
1804     size_t n = strlen(s);
1805     if (n >= len) n = len - 1;
1806     strncpy(buf, s, n);
1807     buf[n] = '\0';
1808     return n;
1809   }
1810   return 0;
1811 }
1812 
1813 // sun.misc.Signal
1814 // NOTE that this is a workaround for an apparent kernel bug where if
1815 // a signal handler for SIGBREAK is installed then that signal handler
1816 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1817 // See bug 4416763.
1818 static void (*sigbreakHandler)(int) = NULL;
1819 
1820 static void UserHandler(int sig, void *siginfo, void *context) {
1821   os::signal_notify(sig);
1822   // We need to reinstate the signal handler each time...
1823   os::signal(sig, (void*)UserHandler);
1824 }
1825 
1826 void* os::user_handler() {
1827   return (void*) UserHandler;
1828 }
1829 
1830 void* os::signal(int signal_number, void* handler) {
1831   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1832     void (*oldHandler)(int) = sigbreakHandler;
1833     sigbreakHandler = (void (*)(int)) handler;
1834     return (void*) oldHandler;
1835   } else {
1836     return (void*)::signal(signal_number, (void (*)(int))handler);
1837   }
1838 }
1839 
1840 void os::signal_raise(int signal_number) {
1841   raise(signal_number);
1842 }
1843 
1844 // The Win32 C runtime library maps all console control events other than ^C
1845 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1846 // logoff, and shutdown events.  We therefore install our own console handler
1847 // that raises SIGTERM for the latter cases.
1848 //
1849 static BOOL WINAPI consoleHandler(DWORD event) {
1850   switch(event) {
1851     case CTRL_C_EVENT:
1852       if (is_error_reported()) {
1853         // Ctrl-C is pressed during error reporting, likely because the error
1854         // handler fails to abort. Let VM die immediately.
1855         os::die();
1856       }
1857 
1858       os::signal_raise(SIGINT);
1859       return TRUE;
1860       break;
1861     case CTRL_BREAK_EVENT:
1862       if (sigbreakHandler != NULL) {
1863         (*sigbreakHandler)(SIGBREAK);
1864       }
1865       return TRUE;
1866       break;
1867     case CTRL_CLOSE_EVENT:
1868     case CTRL_LOGOFF_EVENT:
1869     case CTRL_SHUTDOWN_EVENT:
1870       os::signal_raise(SIGTERM);
1871       return TRUE;
1872       break;
1873     default:
1874       break;
1875   }
1876   return FALSE;
1877 }
1878 
1879 /*
1880  * The following code is moved from os.cpp for making this
1881  * code platform specific, which it is by its very nature.
1882  */
1883 
1884 // Return maximum OS signal used + 1 for internal use only
1885 // Used as exit signal for signal_thread
1886 int os::sigexitnum_pd(){
1887   return NSIG;
1888 }
1889 
1890 // a counter for each possible signal value, including signal_thread exit signal
1891 static volatile jint pending_signals[NSIG+1] = { 0 };
1892 static HANDLE sig_sem;
1893 
1894 void os::signal_init_pd() {
1895   // Initialize signal structures
1896   memset((void*)pending_signals, 0, sizeof(pending_signals));
1897 
1898   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1899 
1900   // Programs embedding the VM do not want it to attempt to receive
1901   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1902   // shutdown hooks mechanism introduced in 1.3.  For example, when
1903   // the VM is run as part of a Windows NT service (i.e., a servlet
1904   // engine in a web server), the correct behavior is for any console
1905   // control handler to return FALSE, not TRUE, because the OS's
1906   // "final" handler for such events allows the process to continue if
1907   // it is a service (while terminating it if it is not a service).
1908   // To make this behavior uniform and the mechanism simpler, we
1909   // completely disable the VM's usage of these console events if -Xrs
1910   // (=ReduceSignalUsage) is specified.  This means, for example, that
1911   // the CTRL-BREAK thread dump mechanism is also disabled in this
1912   // case.  See bugs 4323062, 4345157, and related bugs.
1913 
1914   if (!ReduceSignalUsage) {
1915     // Add a CTRL-C handler
1916     SetConsoleCtrlHandler(consoleHandler, TRUE);
1917   }
1918 }
1919 
1920 void os::signal_notify(int signal_number) {
1921   BOOL ret;
1922 
1923   Atomic::inc(&pending_signals[signal_number]);
1924   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1925   assert(ret != 0, "ReleaseSemaphore() failed");
1926 }
1927 
1928 static int check_pending_signals(bool wait_for_signal) {
1929   DWORD ret;
1930   while (true) {
1931     for (int i = 0; i < NSIG + 1; i++) {
1932       jint n = pending_signals[i];
1933       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1934         return i;
1935       }
1936     }
1937     if (!wait_for_signal) {
1938       return -1;
1939     }
1940 
1941     JavaThread *thread = JavaThread::current();
1942 
1943     ThreadBlockInVM tbivm(thread);
1944 
1945     bool threadIsSuspended;
1946     do {
1947       thread->set_suspend_equivalent();
1948       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1949       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1950       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1951 
1952       // were we externally suspended while we were waiting?
1953       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1954       if (threadIsSuspended) {
1955         //
1956         // The semaphore has been incremented, but while we were waiting
1957         // another thread suspended us. We don't want to continue running
1958         // while suspended because that would surprise the thread that
1959         // suspended us.
1960         //
1961         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1962         assert(ret != 0, "ReleaseSemaphore() failed");
1963 
1964         thread->java_suspend_self();
1965       }
1966     } while (threadIsSuspended);
1967   }
1968 }
1969 
1970 int os::signal_lookup() {
1971   return check_pending_signals(false);
1972 }
1973 
1974 int os::signal_wait() {
1975   return check_pending_signals(true);
1976 }
1977 
1978 // Implicit OS exception handling
1979 
1980 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1981   JavaThread* thread = JavaThread::current();
1982   // Save pc in thread
1983 #ifdef _M_IA64
1984   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1985   // Set pc to handler
1986   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1987 #elif _M_AMD64
1988   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1989   // Set pc to handler
1990   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1991 #else
1992   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1993   // Set pc to handler
1994   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1995 #endif
1996 
1997   // Continue the execution
1998   return EXCEPTION_CONTINUE_EXECUTION;
1999 }
2000 
2001 
2002 // Used for PostMortemDump
2003 extern "C" void safepoints();
2004 extern "C" void find(int x);
2005 extern "C" void events();
2006 
2007 // According to Windows API documentation, an illegal instruction sequence should generate
2008 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2009 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2010 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2011 
2012 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2013 
2014 // From "Execution Protection in the Windows Operating System" draft 0.35
2015 // Once a system header becomes available, the "real" define should be
2016 // included or copied here.
2017 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2018 
2019 #define def_excpt(val) #val, val
2020 
2021 struct siglabel {
2022   char *name;
2023   int   number;
2024 };
2025 
2026 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2027 // C++ compiler contain this error code. Because this is a compiler-generated
2028 // error, the code is not listed in the Win32 API header files.
2029 // The code is actually a cryptic mnemonic device, with the initial "E"
2030 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2031 // ASCII values of "msc".
2032 
2033 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2034 
2035 
2036 struct siglabel exceptlabels[] = {
2037     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2038     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2039     def_excpt(EXCEPTION_BREAKPOINT),
2040     def_excpt(EXCEPTION_SINGLE_STEP),
2041     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2042     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2043     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2044     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2045     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2046     def_excpt(EXCEPTION_FLT_OVERFLOW),
2047     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2048     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2049     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2050     def_excpt(EXCEPTION_INT_OVERFLOW),
2051     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2052     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2053     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2054     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2055     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2056     def_excpt(EXCEPTION_STACK_OVERFLOW),
2057     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2058     def_excpt(EXCEPTION_GUARD_PAGE),
2059     def_excpt(EXCEPTION_INVALID_HANDLE),
2060     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2061     NULL, 0
2062 };
2063 
2064 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2065   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2066     if (exceptlabels[i].number == exception_code) {
2067        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2068        return buf;
2069     }
2070   }
2071 
2072   return NULL;
2073 }
2074 
2075 //-----------------------------------------------------------------------------
2076 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2077   // handle exception caused by idiv; should only happen for -MinInt/-1
2078   // (division by zero is handled explicitly)
2079 #ifdef _M_IA64
2080   assert(0, "Fix Handle_IDiv_Exception");
2081 #elif _M_AMD64
2082   PCONTEXT ctx = exceptionInfo->ContextRecord;
2083   address pc = (address)ctx->Rip;
2084   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2085   assert(pc[0] == 0xF7, "not an idiv opcode");
2086   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2087   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2088   // set correct result values and continue after idiv instruction
2089   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2090   ctx->Rax = (DWORD)min_jint;      // result
2091   ctx->Rdx = (DWORD)0;             // remainder
2092   // Continue the execution
2093 #else
2094   PCONTEXT ctx = exceptionInfo->ContextRecord;
2095   address pc = (address)ctx->Eip;
2096   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2097   assert(pc[0] == 0xF7, "not an idiv opcode");
2098   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2099   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2100   // set correct result values and continue after idiv instruction
2101   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2102   ctx->Eax = (DWORD)min_jint;      // result
2103   ctx->Edx = (DWORD)0;             // remainder
2104   // Continue the execution
2105 #endif
2106   return EXCEPTION_CONTINUE_EXECUTION;
2107 }
2108 
2109 #ifndef  _WIN64
2110 //-----------------------------------------------------------------------------
2111 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2112   // handle exception caused by native method modifying control word
2113   PCONTEXT ctx = exceptionInfo->ContextRecord;
2114   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2115 
2116   switch (exception_code) {
2117     case EXCEPTION_FLT_DENORMAL_OPERAND:
2118     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2119     case EXCEPTION_FLT_INEXACT_RESULT:
2120     case EXCEPTION_FLT_INVALID_OPERATION:
2121     case EXCEPTION_FLT_OVERFLOW:
2122     case EXCEPTION_FLT_STACK_CHECK:
2123     case EXCEPTION_FLT_UNDERFLOW:
2124       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2125       if (fp_control_word != ctx->FloatSave.ControlWord) {
2126         // Restore FPCW and mask out FLT exceptions
2127         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2128         // Mask out pending FLT exceptions
2129         ctx->FloatSave.StatusWord &=  0xffffff00;
2130         return EXCEPTION_CONTINUE_EXECUTION;
2131       }
2132   }
2133 
2134   if (prev_uef_handler != NULL) {
2135     // We didn't handle this exception so pass it to the previous
2136     // UnhandledExceptionFilter.
2137     return (prev_uef_handler)(exceptionInfo);
2138   }
2139 
2140   return EXCEPTION_CONTINUE_SEARCH;
2141 }
2142 #else //_WIN64
2143 /*
2144   On Windows, the mxcsr control bits are non-volatile across calls
2145   See also CR 6192333
2146   If EXCEPTION_FLT_* happened after some native method modified
2147   mxcsr - it is not a jvm fault.
2148   However should we decide to restore of mxcsr after a faulty
2149   native method we can uncomment following code
2150       jint MxCsr = INITIAL_MXCSR;
2151         // we can't use StubRoutines::addr_mxcsr_std()
2152         // because in Win64 mxcsr is not saved there
2153       if (MxCsr != ctx->MxCsr) {
2154         ctx->MxCsr = MxCsr;
2155         return EXCEPTION_CONTINUE_EXECUTION;
2156       }
2157 
2158 */
2159 #endif //_WIN64
2160 
2161 
2162 // Fatal error reporting is single threaded so we can make this a
2163 // static and preallocated.  If it's more than MAX_PATH silently ignore
2164 // it.
2165 static char saved_error_file[MAX_PATH] = {0};
2166 
2167 void os::set_error_file(const char *logfile) {
2168   if (strlen(logfile) <= MAX_PATH) {
2169     strncpy(saved_error_file, logfile, MAX_PATH);
2170   }
2171 }
2172 
2173 static inline void report_error(Thread* t, DWORD exception_code,
2174                                 address addr, void* siginfo, void* context) {
2175   VMError err(t, exception_code, addr, siginfo, context);
2176   err.report_and_die();
2177 
2178   // If UseOsErrorReporting, this will return here and save the error file
2179   // somewhere where we can find it in the minidump.
2180 }
2181 
2182 //-----------------------------------------------------------------------------
2183 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2184   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2185   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2186 #ifdef _M_IA64
2187   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2188 #elif _M_AMD64
2189   address pc = (address) exceptionInfo->ContextRecord->Rip;
2190 #else
2191   address pc = (address) exceptionInfo->ContextRecord->Eip;
2192 #endif
2193   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2194 
2195 #ifndef _WIN64
2196   // Execution protection violation - win32 running on AMD64 only
2197   // Handled first to avoid misdiagnosis as a "normal" access violation;
2198   // This is safe to do because we have a new/unique ExceptionInformation
2199   // code for this condition.
2200   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2201     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2202     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2203     address addr = (address) exceptionRecord->ExceptionInformation[1];
2204 
2205     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2206       int page_size = os::vm_page_size();
2207 
2208       // Make sure the pc and the faulting address are sane.
2209       //
2210       // If an instruction spans a page boundary, and the page containing
2211       // the beginning of the instruction is executable but the following
2212       // page is not, the pc and the faulting address might be slightly
2213       // different - we still want to unguard the 2nd page in this case.
2214       //
2215       // 15 bytes seems to be a (very) safe value for max instruction size.
2216       bool pc_is_near_addr =
2217         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2218       bool instr_spans_page_boundary =
2219         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2220                          (intptr_t) page_size) > 0);
2221 
2222       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2223         static volatile address last_addr =
2224           (address) os::non_memory_address_word();
2225 
2226         // In conservative mode, don't unguard unless the address is in the VM
2227         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2228             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2229 
2230           // Set memory to RWX and retry
2231           address page_start =
2232             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2233           bool res = os::protect_memory((char*) page_start, page_size,
2234                                         os::MEM_PROT_RWX);
2235 
2236           if (PrintMiscellaneous && Verbose) {
2237             char buf[256];
2238             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2239                          "at " INTPTR_FORMAT
2240                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2241                          page_start, (res ? "success" : strerror(errno)));
2242             tty->print_raw_cr(buf);
2243           }
2244 
2245           // Set last_addr so if we fault again at the same address, we don't
2246           // end up in an endless loop.
2247           //
2248           // There are two potential complications here.  Two threads trapping
2249           // at the same address at the same time could cause one of the
2250           // threads to think it already unguarded, and abort the VM.  Likely
2251           // very rare.
2252           //
2253           // The other race involves two threads alternately trapping at
2254           // different addresses and failing to unguard the page, resulting in
2255           // an endless loop.  This condition is probably even more unlikely
2256           // than the first.
2257           //
2258           // Although both cases could be avoided by using locks or thread
2259           // local last_addr, these solutions are unnecessary complication:
2260           // this handler is a best-effort safety net, not a complete solution.
2261           // It is disabled by default and should only be used as a workaround
2262           // in case we missed any no-execute-unsafe VM code.
2263 
2264           last_addr = addr;
2265 
2266           return EXCEPTION_CONTINUE_EXECUTION;
2267         }
2268       }
2269 
2270       // Last unguard failed or not unguarding
2271       tty->print_raw_cr("Execution protection violation");
2272       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2273                    exceptionInfo->ContextRecord);
2274       return EXCEPTION_CONTINUE_SEARCH;
2275     }
2276   }
2277 #endif // _WIN64
2278 
2279   // Check to see if we caught the safepoint code in the
2280   // process of write protecting the memory serialization page.
2281   // It write enables the page immediately after protecting it
2282   // so just return.
2283   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2284     JavaThread* thread = (JavaThread*) t;
2285     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2286     address addr = (address) exceptionRecord->ExceptionInformation[1];
2287     if ( os::is_memory_serialize_page(thread, addr) ) {
2288       // Block current thread until the memory serialize page permission restored.
2289       os::block_on_serialize_page_trap();
2290       return EXCEPTION_CONTINUE_EXECUTION;
2291     }
2292   }
2293 
2294   if (t != NULL && t->is_Java_thread()) {
2295     JavaThread* thread = (JavaThread*) t;
2296     bool in_java = thread->thread_state() == _thread_in_Java;
2297 
2298     // Handle potential stack overflows up front.
2299     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2300       if (os::uses_stack_guard_pages()) {
2301 #ifdef _M_IA64
2302         //
2303         // If it's a legal stack address continue, Windows will map it in.
2304         //
2305         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2306         address addr = (address) exceptionRecord->ExceptionInformation[1];
2307         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2308           return EXCEPTION_CONTINUE_EXECUTION;
2309 
2310         // The register save area is the same size as the memory stack
2311         // and starts at the page just above the start of the memory stack.
2312         // If we get a fault in this area, we've run out of register
2313         // stack.  If we are in java, try throwing a stack overflow exception.
2314         if (addr > thread->stack_base() &&
2315                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2316           char buf[256];
2317           jio_snprintf(buf, sizeof(buf),
2318                        "Register stack overflow, addr:%p, stack_base:%p\n",
2319                        addr, thread->stack_base() );
2320           tty->print_raw_cr(buf);
2321           // If not in java code, return and hope for the best.
2322           return in_java ? Handle_Exception(exceptionInfo,
2323             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2324             :  EXCEPTION_CONTINUE_EXECUTION;
2325         }
2326 #endif
2327         if (thread->stack_yellow_zone_enabled()) {
2328           // Yellow zone violation.  The o/s has unprotected the first yellow
2329           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2330           // update the enabled status, even if the zone contains only one page.
2331           thread->disable_stack_yellow_zone();
2332           // If not in java code, return and hope for the best.
2333           return in_java ? Handle_Exception(exceptionInfo,
2334             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2335             :  EXCEPTION_CONTINUE_EXECUTION;
2336         } else {
2337           // Fatal red zone violation.
2338           thread->disable_stack_red_zone();
2339           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2340           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2341                        exceptionInfo->ContextRecord);
2342           return EXCEPTION_CONTINUE_SEARCH;
2343         }
2344       } else if (in_java) {
2345         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2346         // a one-time-only guard page, which it has released to us.  The next
2347         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2348         return Handle_Exception(exceptionInfo,
2349           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2350       } else {
2351         // Can only return and hope for the best.  Further stack growth will
2352         // result in an ACCESS_VIOLATION.
2353         return EXCEPTION_CONTINUE_EXECUTION;
2354       }
2355     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2356       // Either stack overflow or null pointer exception.
2357       if (in_java) {
2358         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2359         address addr = (address) exceptionRecord->ExceptionInformation[1];
2360         address stack_end = thread->stack_base() - thread->stack_size();
2361         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2362           // Stack overflow.
2363           assert(!os::uses_stack_guard_pages(),
2364             "should be caught by red zone code above.");
2365           return Handle_Exception(exceptionInfo,
2366             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2367         }
2368         //
2369         // Check for safepoint polling and implicit null
2370         // We only expect null pointers in the stubs (vtable)
2371         // the rest are checked explicitly now.
2372         //
2373         CodeBlob* cb = CodeCache::find_blob(pc);
2374         if (cb != NULL) {
2375           if (os::is_poll_address(addr)) {
2376             address stub = SharedRuntime::get_poll_stub(pc);
2377             return Handle_Exception(exceptionInfo, stub);
2378           }
2379         }
2380         {
2381 #ifdef _WIN64
2382           //
2383           // If it's a legal stack address map the entire region in
2384           //
2385           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2386           address addr = (address) exceptionRecord->ExceptionInformation[1];
2387           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2388                   addr = (address)((uintptr_t)addr &
2389                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2390                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2391                                     false );
2392                   return EXCEPTION_CONTINUE_EXECUTION;
2393           }
2394           else
2395 #endif
2396           {
2397             // Null pointer exception.
2398 #ifdef _M_IA64
2399             // We catch register stack overflows in compiled code by doing
2400             // an explicit compare and executing a st8(G0, G0) if the
2401             // BSP enters into our guard area.  We test for the overflow
2402             // condition and fall into the normal null pointer exception
2403             // code if BSP hasn't overflowed.
2404             if ( in_java ) {
2405               if(thread->register_stack_overflow()) {
2406                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2407                                 thread->register_stack_limit(),
2408                                "GR7 doesn't contain register_stack_limit");
2409                 // Disable the yellow zone which sets the state that
2410                 // we've got a stack overflow problem.
2411                 if (thread->stack_yellow_zone_enabled()) {
2412                   thread->disable_stack_yellow_zone();
2413                 }
2414                 // Give us some room to process the exception
2415                 thread->disable_register_stack_guard();
2416                 // Update GR7 with the new limit so we can continue running
2417                 // compiled code.
2418                 exceptionInfo->ContextRecord->IntS3 =
2419                                (ULONGLONG)thread->register_stack_limit();
2420                 return Handle_Exception(exceptionInfo,
2421                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2422               } else {
2423                 //
2424                 // Check for implicit null
2425                 // We only expect null pointers in the stubs (vtable)
2426                 // the rest are checked explicitly now.
2427                 //
2428                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2429                   // an access to the first page of VM--assume it is a null pointer
2430                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2431                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2432                 }
2433               }
2434             } // in_java
2435 
2436             // IA64 doesn't use implicit null checking yet. So we shouldn't
2437             // get here.
2438             tty->print_raw_cr("Access violation, possible null pointer exception");
2439             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2440                          exceptionInfo->ContextRecord);
2441             return EXCEPTION_CONTINUE_SEARCH;
2442 #else /* !IA64 */
2443 
2444             // Windows 98 reports faulting addresses incorrectly
2445             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2446                 !os::win32::is_nt()) {
2447               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2448               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2449             }
2450             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2451                          exceptionInfo->ContextRecord);
2452             return EXCEPTION_CONTINUE_SEARCH;
2453 #endif
2454           }
2455         }
2456       }
2457 
2458 #ifdef _WIN64
2459       // Special care for fast JNI field accessors.
2460       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2461       // in and the heap gets shrunk before the field access.
2462       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2463         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2464         if (addr != (address)-1) {
2465           return Handle_Exception(exceptionInfo, addr);
2466         }
2467       }
2468 #endif
2469 
2470 #ifdef _WIN64
2471       // Windows will sometimes generate an access violation
2472       // when we call malloc.  Since we use VectoredExceptions
2473       // on 64 bit platforms, we see this exception.  We must
2474       // pass this exception on so Windows can recover.
2475       // We check to see if the pc of the fault is in NTDLL.DLL
2476       // if so, we pass control on to Windows for handling.
2477       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2478 #endif
2479 
2480       // Stack overflow or null pointer exception in native code.
2481       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2482                    exceptionInfo->ContextRecord);
2483       return EXCEPTION_CONTINUE_SEARCH;
2484     }
2485 
2486     if (in_java) {
2487       switch (exception_code) {
2488       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2489         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2490 
2491       case EXCEPTION_INT_OVERFLOW:
2492         return Handle_IDiv_Exception(exceptionInfo);
2493 
2494       } // switch
2495     }
2496 #ifndef _WIN64
2497     if (((thread->thread_state() == _thread_in_Java) ||
2498         (thread->thread_state() == _thread_in_native)) &&
2499         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2500     {
2501       LONG result=Handle_FLT_Exception(exceptionInfo);
2502       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2503     }
2504 #endif //_WIN64
2505   }
2506 
2507   if (exception_code != EXCEPTION_BREAKPOINT) {
2508 #ifndef _WIN64
2509     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2510                  exceptionInfo->ContextRecord);
2511 #else
2512     // Itanium Windows uses a VectoredExceptionHandler
2513     // Which means that C++ programatic exception handlers (try/except)
2514     // will get here.  Continue the search for the right except block if
2515     // the exception code is not a fatal code.
2516     switch ( exception_code ) {
2517       case EXCEPTION_ACCESS_VIOLATION:
2518       case EXCEPTION_STACK_OVERFLOW:
2519       case EXCEPTION_ILLEGAL_INSTRUCTION:
2520       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2521       case EXCEPTION_INT_OVERFLOW:
2522       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2523       case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
2524       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2525                        exceptionInfo->ContextRecord);
2526       }
2527         break;
2528       default:
2529         break;
2530     }
2531 #endif
2532   }
2533   return EXCEPTION_CONTINUE_SEARCH;
2534 }
2535 
2536 #ifndef _WIN64
2537 // Special care for fast JNI accessors.
2538 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2539 // the heap gets shrunk before the field access.
2540 // Need to install our own structured exception handler since native code may
2541 // install its own.
2542 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2543   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2544   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2545     address pc = (address) exceptionInfo->ContextRecord->Eip;
2546     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2547     if (addr != (address)-1) {
2548       return Handle_Exception(exceptionInfo, addr);
2549     }
2550   }
2551   return EXCEPTION_CONTINUE_SEARCH;
2552 }
2553 
2554 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2555 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2556   __try { \
2557     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2558   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2559   } \
2560   return 0; \
2561 }
2562 
2563 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2564 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2565 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2566 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2567 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2568 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2569 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2570 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2571 
2572 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2573   switch (type) {
2574     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2575     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2576     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2577     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2578     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2579     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2580     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2581     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2582     default:        ShouldNotReachHere();
2583   }
2584   return (address)-1;
2585 }
2586 #endif
2587 
2588 // Virtual Memory
2589 
2590 int os::vm_page_size() { return os::win32::vm_page_size(); }
2591 int os::vm_allocation_granularity() {
2592   return os::win32::vm_allocation_granularity();
2593 }
2594 
2595 // Windows large page support is available on Windows 2003. In order to use
2596 // large page memory, the administrator must first assign additional privilege
2597 // to the user:
2598 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2599 //   + select Local Policies -> User Rights Assignment
2600 //   + double click "Lock pages in memory", add users and/or groups
2601 //   + reboot
2602 // Note the above steps are needed for administrator as well, as administrators
2603 // by default do not have the privilege to lock pages in memory.
2604 //
2605 // Note about Windows 2003: although the API supports committing large page
2606 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2607 // scenario, I found through experiment it only uses large page if the entire
2608 // memory region is reserved and committed in a single VirtualAlloc() call.
2609 // This makes Windows large page support more or less like Solaris ISM, in
2610 // that the entire heap must be committed upfront. This probably will change
2611 // in the future, if so the code below needs to be revisited.
2612 
2613 #ifndef MEM_LARGE_PAGES
2614 #define MEM_LARGE_PAGES 0x20000000
2615 #endif
2616 
2617 static HANDLE    _hProcess;
2618 static HANDLE    _hToken;
2619 
2620 // Container for NUMA node list info
2621 class NUMANodeListHolder {
2622 private:
2623   int *_numa_used_node_list;  // allocated below
2624   int _numa_used_node_count;
2625 
2626   void free_node_list() {
2627     if (_numa_used_node_list != NULL) {
2628       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2629     }
2630   }
2631 
2632 public:
2633   NUMANodeListHolder() {
2634     _numa_used_node_count = 0;
2635     _numa_used_node_list = NULL;
2636     // do rest of initialization in build routine (after function pointers are set up)
2637   }
2638 
2639   ~NUMANodeListHolder() {
2640     free_node_list();
2641   }
2642 
2643   bool build() {
2644     DWORD_PTR proc_aff_mask;
2645     DWORD_PTR sys_aff_mask;
2646     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2647     ULONG highest_node_number;
2648     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2649     free_node_list();
2650     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1);
2651     for (unsigned int i = 0; i <= highest_node_number; i++) {
2652       ULONGLONG proc_mask_numa_node;
2653       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2654       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2655         _numa_used_node_list[_numa_used_node_count++] = i;
2656       }
2657     }
2658     return (_numa_used_node_count > 1);
2659   }
2660 
2661   int get_count() {return _numa_used_node_count;}
2662   int get_node_list_entry(int n) {
2663     // for indexes out of range, returns -1
2664     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2665   }
2666 
2667 } numa_node_list_holder;
2668 
2669 
2670 
2671 static size_t _large_page_size = 0;
2672 
2673 static bool resolve_functions_for_large_page_init() {
2674   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2675     os::Advapi32Dll::AdvapiAvailable();
2676 }
2677 
2678 static bool request_lock_memory_privilege() {
2679   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2680                                 os::current_process_id());
2681 
2682   LUID luid;
2683   if (_hProcess != NULL &&
2684       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2685       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2686 
2687     TOKEN_PRIVILEGES tp;
2688     tp.PrivilegeCount = 1;
2689     tp.Privileges[0].Luid = luid;
2690     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2691 
2692     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2693     // privilege. Check GetLastError() too. See MSDN document.
2694     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2695         (GetLastError() == ERROR_SUCCESS)) {
2696       return true;
2697     }
2698   }
2699 
2700   return false;
2701 }
2702 
2703 static void cleanup_after_large_page_init() {
2704   if (_hProcess) CloseHandle(_hProcess);
2705   _hProcess = NULL;
2706   if (_hToken) CloseHandle(_hToken);
2707   _hToken = NULL;
2708 }
2709 
2710 static bool numa_interleaving_init() {
2711   bool success = false;
2712   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2713 
2714   // print a warning if UseNUMAInterleaving flag is specified on command line
2715   bool warn_on_failure = use_numa_interleaving_specified;
2716 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2717 
2718   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2719   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2720   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2721 
2722   if (os::Kernel32Dll::NumaCallsAvailable()) {
2723     if (numa_node_list_holder.build()) {
2724       if (PrintMiscellaneous && Verbose) {
2725         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2726         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2727           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2728         }
2729         tty->print("\n");
2730       }
2731       success = true;
2732     } else {
2733       WARN("Process does not cover multiple NUMA nodes.");
2734     }
2735   } else {
2736     WARN("NUMA Interleaving is not supported by the operating system.");
2737   }
2738   if (!success) {
2739     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2740   }
2741   return success;
2742 #undef WARN
2743 }
2744 
2745 // this routine is used whenever we need to reserve a contiguous VA range
2746 // but we need to make separate VirtualAlloc calls for each piece of the range
2747 // Reasons for doing this:
2748 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2749 //  * UseNUMAInterleaving requires a separate node for each piece
2750 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2751                                          bool should_inject_error=false) {
2752   char * p_buf;
2753   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2754   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2755   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2756 
2757   // first reserve enough address space in advance since we want to be
2758   // able to break a single contiguous virtual address range into multiple
2759   // large page commits but WS2003 does not allow reserving large page space
2760   // so we just use 4K pages for reserve, this gives us a legal contiguous
2761   // address space. then we will deallocate that reservation, and re alloc
2762   // using large pages
2763   const size_t size_of_reserve = bytes + chunk_size;
2764   if (bytes > size_of_reserve) {
2765     // Overflowed.
2766     return NULL;
2767   }
2768   p_buf = (char *) VirtualAlloc(addr,
2769                                 size_of_reserve,  // size of Reserve
2770                                 MEM_RESERVE,
2771                                 PAGE_READWRITE);
2772   // If reservation failed, return NULL
2773   if (p_buf == NULL) return NULL;
2774 
2775   os::release_memory(p_buf, bytes + chunk_size);
2776 
2777   // we still need to round up to a page boundary (in case we are using large pages)
2778   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2779   // instead we handle this in the bytes_to_rq computation below
2780   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2781 
2782   // now go through and allocate one chunk at a time until all bytes are
2783   // allocated
2784   size_t  bytes_remaining = bytes;
2785   // An overflow of align_size_up() would have been caught above
2786   // in the calculation of size_of_reserve.
2787   char * next_alloc_addr = p_buf;
2788   HANDLE hProc = GetCurrentProcess();
2789 
2790 #ifdef ASSERT
2791   // Variable for the failure injection
2792   long ran_num = os::random();
2793   size_t fail_after = ran_num % bytes;
2794 #endif
2795 
2796   int count=0;
2797   while (bytes_remaining) {
2798     // select bytes_to_rq to get to the next chunk_size boundary
2799 
2800     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2801     // Note allocate and commit
2802     char * p_new;
2803 
2804 #ifdef ASSERT
2805     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2806 #else
2807     const bool inject_error_now = false;
2808 #endif
2809 
2810     if (inject_error_now) {
2811       p_new = NULL;
2812     } else {
2813       if (!UseNUMAInterleaving) {
2814         p_new = (char *) VirtualAlloc(next_alloc_addr,
2815                                       bytes_to_rq,
2816                                       flags,
2817                                       prot);
2818       } else {
2819         // get the next node to use from the used_node_list
2820         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2821         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2822         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2823                                                             next_alloc_addr,
2824                                                             bytes_to_rq,
2825                                                             flags,
2826                                                             prot,
2827                                                             node);
2828       }
2829     }
2830 
2831     if (p_new == NULL) {
2832       // Free any allocated pages
2833       if (next_alloc_addr > p_buf) {
2834         // Some memory was committed so release it.
2835         size_t bytes_to_release = bytes - bytes_remaining;
2836         os::release_memory(p_buf, bytes_to_release);
2837       }
2838 #ifdef ASSERT
2839       if (should_inject_error) {
2840         if (TracePageSizes && Verbose) {
2841           tty->print_cr("Reserving pages individually failed.");
2842         }
2843       }
2844 #endif
2845       return NULL;
2846     }
2847     bytes_remaining -= bytes_to_rq;
2848     next_alloc_addr += bytes_to_rq;
2849     count++;
2850   }
2851   // made it this far, success
2852   return p_buf;
2853 }
2854 
2855 
2856 
2857 void os::large_page_init() {
2858   if (!UseLargePages) return;
2859 
2860   // print a warning if any large page related flag is specified on command line
2861   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2862                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2863   bool success = false;
2864 
2865 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2866   if (resolve_functions_for_large_page_init()) {
2867     if (request_lock_memory_privilege()) {
2868       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2869       if (s) {
2870 #if defined(IA32) || defined(AMD64)
2871         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2872           WARN("JVM cannot use large pages bigger than 4mb.");
2873         } else {
2874 #endif
2875           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2876             _large_page_size = LargePageSizeInBytes;
2877           } else {
2878             _large_page_size = s;
2879           }
2880           success = true;
2881 #if defined(IA32) || defined(AMD64)
2882         }
2883 #endif
2884       } else {
2885         WARN("Large page is not supported by the processor.");
2886       }
2887     } else {
2888       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2889     }
2890   } else {
2891     WARN("Large page is not supported by the operating system.");
2892   }
2893 #undef WARN
2894 
2895   const size_t default_page_size = (size_t) vm_page_size();
2896   if (success && _large_page_size > default_page_size) {
2897     _page_sizes[0] = _large_page_size;
2898     _page_sizes[1] = default_page_size;
2899     _page_sizes[2] = 0;
2900   }
2901 
2902   cleanup_after_large_page_init();
2903   UseLargePages = success;
2904 }
2905 
2906 // On win32, one cannot release just a part of reserved memory, it's an
2907 // all or nothing deal.  When we split a reservation, we must break the
2908 // reservation into two reservations.
2909 void os::split_reserved_memory(char *base, size_t size, size_t split,
2910                               bool realloc) {
2911   if (size > 0) {
2912     release_memory(base, size);
2913     if (realloc) {
2914       reserve_memory(split, base);
2915     }
2916     if (size != split) {
2917       reserve_memory(size - split, base + split);
2918     }
2919   }
2920 }
2921 
2922 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2923   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2924          "reserve alignment");
2925   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2926   char* res;
2927   // note that if UseLargePages is on, all the areas that require interleaving
2928   // will go thru reserve_memory_special rather than thru here.
2929   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2930   if (!use_individual) {
2931     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2932   } else {
2933     elapsedTimer reserveTimer;
2934     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
2935     // in numa interleaving, we have to allocate pages individually
2936     // (well really chunks of NUMAInterleaveGranularity size)
2937     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2938     if (res == NULL) {
2939       warning("NUMA page allocation failed");
2940     }
2941     if( Verbose && PrintMiscellaneous ) {
2942       reserveTimer.stop();
2943       tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
2944                     reserveTimer.milliseconds(), reserveTimer.ticks());
2945     }
2946   }
2947   assert(res == NULL || addr == NULL || addr == res,
2948          "Unexpected address from reserve.");
2949 
2950   return res;
2951 }
2952 
2953 // Reserve memory at an arbitrary address, only if that area is
2954 // available (and not reserved for something else).
2955 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2956   // Windows os::reserve_memory() fails of the requested address range is
2957   // not avilable.
2958   return reserve_memory(bytes, requested_addr);
2959 }
2960 
2961 size_t os::large_page_size() {
2962   return _large_page_size;
2963 }
2964 
2965 bool os::can_commit_large_page_memory() {
2966   // Windows only uses large page memory when the entire region is reserved
2967   // and committed in a single VirtualAlloc() call. This may change in the
2968   // future, but with Windows 2003 it's not possible to commit on demand.
2969   return false;
2970 }
2971 
2972 bool os::can_execute_large_page_memory() {
2973   return true;
2974 }
2975 
2976 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2977 
2978   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2979   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2980 
2981   // with large pages, there are two cases where we need to use Individual Allocation
2982   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2983   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2984   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
2985     if (TracePageSizes && Verbose) {
2986        tty->print_cr("Reserving large pages individually.");
2987     }
2988     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
2989     if (p_buf == NULL) {
2990       // give an appropriate warning message
2991       if (UseNUMAInterleaving) {
2992         warning("NUMA large page allocation failed, UseLargePages flag ignored");
2993       }
2994       if (UseLargePagesIndividualAllocation) {
2995         warning("Individually allocated large pages failed, "
2996                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
2997       }
2998       return NULL;
2999     }
3000 
3001     return p_buf;
3002 
3003   } else {
3004     // normal policy just allocate it all at once
3005     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3006     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3007     return res;
3008   }
3009 }
3010 
3011 bool os::release_memory_special(char* base, size_t bytes) {
3012   return release_memory(base, bytes);
3013 }
3014 
3015 void os::print_statistics() {
3016 }
3017 
3018 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
3019   if (bytes == 0) {
3020     // Don't bother the OS with noops.
3021     return true;
3022   }
3023   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3024   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3025   // Don't attempt to print anything if the OS call fails. We're
3026   // probably low on resources, so the print itself may cause crashes.
3027 
3028   // unless we have NUMAInterleaving enabled, the range of a commit
3029   // is always within a reserve covered by a single VirtualAlloc
3030   // in that case we can just do a single commit for the requested size
3031   if (!UseNUMAInterleaving) {
3032     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3033     if (exec) {
3034       DWORD oldprot;
3035       // Windows doc says to use VirtualProtect to get execute permissions
3036       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3037     }
3038     return true;
3039   } else {
3040 
3041     // when NUMAInterleaving is enabled, the commit might cover a range that
3042     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3043     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3044     // returns represents the number of bytes that can be committed in one step.
3045     size_t bytes_remaining = bytes;
3046     char * next_alloc_addr = addr;
3047     while (bytes_remaining > 0) {
3048       MEMORY_BASIC_INFORMATION alloc_info;
3049       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3050       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3051       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3052         return false;
3053       if (exec) {
3054         DWORD oldprot;
3055         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3056           return false;
3057       }
3058       bytes_remaining -= bytes_to_rq;
3059       next_alloc_addr += bytes_to_rq;
3060     }
3061   }
3062   // if we made it this far, return true
3063   return true;
3064 }
3065 
3066 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
3067                        bool exec) {
3068   return commit_memory(addr, size, exec);
3069 }
3070 
3071 bool os::uncommit_memory(char* addr, size_t bytes) {
3072   if (bytes == 0) {
3073     // Don't bother the OS with noops.
3074     return true;
3075   }
3076   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3077   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3078   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
3079 }
3080 
3081 bool os::release_memory(char* addr, size_t bytes) {
3082   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3083 }
3084 
3085 bool os::create_stack_guard_pages(char* addr, size_t size) {
3086   return os::commit_memory(addr, size);
3087 }
3088 
3089 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3090   return os::uncommit_memory(addr, size);
3091 }
3092 
3093 // Set protections specified
3094 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3095                         bool is_committed) {
3096   unsigned int p = 0;
3097   switch (prot) {
3098   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3099   case MEM_PROT_READ: p = PAGE_READONLY; break;
3100   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3101   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3102   default:
3103     ShouldNotReachHere();
3104   }
3105 
3106   DWORD old_status;
3107 
3108   // Strange enough, but on Win32 one can change protection only for committed
3109   // memory, not a big deal anyway, as bytes less or equal than 64K
3110   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3111     fatal("cannot commit protection page");
3112   }
3113   // One cannot use os::guard_memory() here, as on Win32 guard page
3114   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3115   //
3116   // Pages in the region become guard pages. Any attempt to access a guard page
3117   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3118   // the guard page status. Guard pages thus act as a one-time access alarm.
3119   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3120 }
3121 
3122 bool os::guard_memory(char* addr, size_t bytes) {
3123   DWORD old_status;
3124   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3125 }
3126 
3127 bool os::unguard_memory(char* addr, size_t bytes) {
3128   DWORD old_status;
3129   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3130 }
3131 
3132 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3133 void os::free_memory(char *addr, size_t bytes)         { }
3134 void os::numa_make_global(char *addr, size_t bytes)    { }
3135 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3136 bool os::numa_topology_changed()                       { return false; }
3137 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3138 int os::numa_get_group_id()                            { return 0; }
3139 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3140   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3141     // Provide an answer for UMA systems
3142     ids[0] = 0;
3143     return 1;
3144   } else {
3145     // check for size bigger than actual groups_num
3146     size = MIN2(size, numa_get_groups_num());
3147     for (int i = 0; i < (int)size; i++) {
3148       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3149     }
3150     return size;
3151   }
3152 }
3153 
3154 bool os::get_page_info(char *start, page_info* info) {
3155   return false;
3156 }
3157 
3158 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3159   return end;
3160 }
3161 
3162 char* os::non_memory_address_word() {
3163   // Must never look like an address returned by reserve_memory,
3164   // even in its subfields (as defined by the CPU immediate fields,
3165   // if the CPU splits constants across multiple instructions).
3166   return (char*)-1;
3167 }
3168 
3169 #define MAX_ERROR_COUNT 100
3170 #define SYS_THREAD_ERROR 0xffffffffUL
3171 
3172 void os::pd_start_thread(Thread* thread) {
3173   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3174   // Returns previous suspend state:
3175   // 0:  Thread was not suspended
3176   // 1:  Thread is running now
3177   // >1: Thread is still suspended.
3178   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3179 }
3180 
3181 class HighResolutionInterval {
3182   // The default timer resolution seems to be 10 milliseconds.
3183   // (Where is this written down?)
3184   // If someone wants to sleep for only a fraction of the default,
3185   // then we set the timer resolution down to 1 millisecond for
3186   // the duration of their interval.
3187   // We carefully set the resolution back, since otherwise we
3188   // seem to incur an overhead (3%?) that we don't need.
3189   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3190   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3191   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3192   // timeBeginPeriod() if the relative error exceeded some threshold.
3193   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3194   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3195   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3196   // resolution timers running.
3197 private:
3198     jlong resolution;
3199 public:
3200   HighResolutionInterval(jlong ms) {
3201     resolution = ms % 10L;
3202     if (resolution != 0) {
3203       MMRESULT result = timeBeginPeriod(1L);
3204     }
3205   }
3206   ~HighResolutionInterval() {
3207     if (resolution != 0) {
3208       MMRESULT result = timeEndPeriod(1L);
3209     }
3210     resolution = 0L;
3211   }
3212 };
3213 
3214 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3215   jlong limit = (jlong) MAXDWORD;
3216 
3217   while(ms > limit) {
3218     int res;
3219     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3220       return res;
3221     ms -= limit;
3222   }
3223 
3224   assert(thread == Thread::current(),  "thread consistency check");
3225   OSThread* osthread = thread->osthread();
3226   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3227   int result;
3228   if (interruptable) {
3229     assert(thread->is_Java_thread(), "must be java thread");
3230     JavaThread *jt = (JavaThread *) thread;
3231     ThreadBlockInVM tbivm(jt);
3232 
3233     jt->set_suspend_equivalent();
3234     // cleared by handle_special_suspend_equivalent_condition() or
3235     // java_suspend_self() via check_and_wait_while_suspended()
3236 
3237     HANDLE events[1];
3238     events[0] = osthread->interrupt_event();
3239     HighResolutionInterval *phri=NULL;
3240     if(!ForceTimeHighResolution)
3241       phri = new HighResolutionInterval( ms );
3242     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3243       result = OS_TIMEOUT;
3244     } else {
3245       ResetEvent(osthread->interrupt_event());
3246       osthread->set_interrupted(false);
3247       result = OS_INTRPT;
3248     }
3249     delete phri; //if it is NULL, harmless
3250 
3251     // were we externally suspended while we were waiting?
3252     jt->check_and_wait_while_suspended();
3253   } else {
3254     assert(!thread->is_Java_thread(), "must not be java thread");
3255     Sleep((long) ms);
3256     result = OS_TIMEOUT;
3257   }
3258   return result;
3259 }
3260 
3261 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3262 void os::infinite_sleep() {
3263   while (true) {    // sleep forever ...
3264     Sleep(100000);  // ... 100 seconds at a time
3265   }
3266 }
3267 
3268 typedef BOOL (WINAPI * STTSignature)(void) ;
3269 
3270 os::YieldResult os::NakedYield() {
3271   // Use either SwitchToThread() or Sleep(0)
3272   // Consider passing back the return value from SwitchToThread().
3273   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3274     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3275   } else {
3276     Sleep(0);
3277   }
3278   return os::YIELD_UNKNOWN ;
3279 }
3280 
3281 void os::yield() {  os::NakedYield(); }
3282 
3283 void os::yield_all(int attempts) {
3284   // Yields to all threads, including threads with lower priorities
3285   Sleep(1);
3286 }
3287 
3288 // Win32 only gives you access to seven real priorities at a time,
3289 // so we compress Java's ten down to seven.  It would be better
3290 // if we dynamically adjusted relative priorities.
3291 
3292 int os::java_to_os_priority[MaxPriority + 1] = {
3293   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3294   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3295   THREAD_PRIORITY_LOWEST,                       // 2
3296   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3297   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3298   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3299   THREAD_PRIORITY_NORMAL,                       // 6
3300   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3301   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3302   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3303   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3304 };
3305 
3306 int prio_policy1[MaxPriority + 1] = {
3307   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3308   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3309   THREAD_PRIORITY_LOWEST,                       // 2
3310   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3311   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3312   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3313   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3314   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3315   THREAD_PRIORITY_HIGHEST,                      // 8
3316   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3317   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3318 };
3319 
3320 static int prio_init() {
3321   // If ThreadPriorityPolicy is 1, switch tables
3322   if (ThreadPriorityPolicy == 1) {
3323     int i;
3324     for (i = 0; i < MaxPriority + 1; i++) {
3325       os::java_to_os_priority[i] = prio_policy1[i];
3326     }
3327   }
3328   return 0;
3329 }
3330 
3331 OSReturn os::set_native_priority(Thread* thread, int priority) {
3332   if (!UseThreadPriorities) return OS_OK;
3333   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3334   return ret ? OS_OK : OS_ERR;
3335 }
3336 
3337 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3338   if ( !UseThreadPriorities ) {
3339     *priority_ptr = java_to_os_priority[NormPriority];
3340     return OS_OK;
3341   }
3342   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3343   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3344     assert(false, "GetThreadPriority failed");
3345     return OS_ERR;
3346   }
3347   *priority_ptr = os_prio;
3348   return OS_OK;
3349 }
3350 
3351 
3352 // Hint to the underlying OS that a task switch would not be good.
3353 // Void return because it's a hint and can fail.
3354 void os::hint_no_preempt() {}
3355 
3356 void os::interrupt(Thread* thread) {
3357   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3358          "possibility of dangling Thread pointer");
3359 
3360   OSThread* osthread = thread->osthread();
3361   osthread->set_interrupted(true);
3362   // More than one thread can get here with the same value of osthread,
3363   // resulting in multiple notifications.  We do, however, want the store
3364   // to interrupted() to be visible to other threads before we post
3365   // the interrupt event.
3366   OrderAccess::release();
3367   SetEvent(osthread->interrupt_event());
3368   // For JSR166:  unpark after setting status
3369   if (thread->is_Java_thread())
3370     ((JavaThread*)thread)->parker()->unpark();
3371 
3372   ParkEvent * ev = thread->_ParkEvent ;
3373   if (ev != NULL) ev->unpark() ;
3374 
3375 }
3376 
3377 
3378 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3379   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3380          "possibility of dangling Thread pointer");
3381 
3382   OSThread* osthread = thread->osthread();
3383   bool interrupted = osthread->interrupted();
3384   // There is no synchronization between the setting of the interrupt
3385   // and it being cleared here. It is critical - see 6535709 - that
3386   // we only clear the interrupt state, and reset the interrupt event,
3387   // if we are going to report that we were indeed interrupted - else
3388   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3389   // depending on the timing
3390   if (interrupted && clear_interrupted) {
3391     osthread->set_interrupted(false);
3392     ResetEvent(osthread->interrupt_event());
3393   } // Otherwise leave the interrupted state alone
3394 
3395   return interrupted;
3396 }
3397 
3398 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3399 ExtendedPC os::get_thread_pc(Thread* thread) {
3400   CONTEXT context;
3401   context.ContextFlags = CONTEXT_CONTROL;
3402   HANDLE handle = thread->osthread()->thread_handle();
3403 #ifdef _M_IA64
3404   assert(0, "Fix get_thread_pc");
3405   return ExtendedPC(NULL);
3406 #else
3407   if (GetThreadContext(handle, &context)) {
3408 #ifdef _M_AMD64
3409     return ExtendedPC((address) context.Rip);
3410 #else
3411     return ExtendedPC((address) context.Eip);
3412 #endif
3413   } else {
3414     return ExtendedPC(NULL);
3415   }
3416 #endif
3417 }
3418 
3419 // GetCurrentThreadId() returns DWORD
3420 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3421 
3422 static int _initial_pid = 0;
3423 
3424 int os::current_process_id()
3425 {
3426   return (_initial_pid ? _initial_pid : _getpid());
3427 }
3428 
3429 int    os::win32::_vm_page_size       = 0;
3430 int    os::win32::_vm_allocation_granularity = 0;
3431 int    os::win32::_processor_type     = 0;
3432 // Processor level is not available on non-NT systems, use vm_version instead
3433 int    os::win32::_processor_level    = 0;
3434 julong os::win32::_physical_memory    = 0;
3435 size_t os::win32::_default_stack_size = 0;
3436 
3437          intx os::win32::_os_thread_limit    = 0;
3438 volatile intx os::win32::_os_thread_count    = 0;
3439 
3440 bool   os::win32::_is_nt              = false;
3441 bool   os::win32::_is_windows_2003    = false;
3442 bool   os::win32::_is_windows_server  = false;
3443 
3444 void os::win32::initialize_system_info() {
3445   SYSTEM_INFO si;
3446   GetSystemInfo(&si);
3447   _vm_page_size    = si.dwPageSize;
3448   _vm_allocation_granularity = si.dwAllocationGranularity;
3449   _processor_type  = si.dwProcessorType;
3450   _processor_level = si.wProcessorLevel;
3451   set_processor_count(si.dwNumberOfProcessors);
3452 
3453   MEMORYSTATUSEX ms;
3454   ms.dwLength = sizeof(ms);
3455 
3456   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3457   // dwMemoryLoad (% of memory in use)
3458   GlobalMemoryStatusEx(&ms);
3459   _physical_memory = ms.ullTotalPhys;
3460 
3461   OSVERSIONINFOEX oi;
3462   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3463   GetVersionEx((OSVERSIONINFO*)&oi);
3464   switch(oi.dwPlatformId) {
3465     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3466     case VER_PLATFORM_WIN32_NT:
3467       _is_nt = true;
3468       {
3469         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3470         if (os_vers == 5002) {
3471           _is_windows_2003 = true;
3472         }
3473         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3474           oi.wProductType == VER_NT_SERVER) {
3475             _is_windows_server = true;
3476         }
3477       }
3478       break;
3479     default: fatal("Unknown platform");
3480   }
3481 
3482   _default_stack_size = os::current_stack_size();
3483   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3484   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3485     "stack size not a multiple of page size");
3486 
3487   initialize_performance_counter();
3488 
3489   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3490   // known to deadlock the system, if the VM issues to thread operations with
3491   // a too high frequency, e.g., such as changing the priorities.
3492   // The 6000 seems to work well - no deadlocks has been notices on the test
3493   // programs that we have seen experience this problem.
3494   if (!os::win32::is_nt()) {
3495     StarvationMonitorInterval = 6000;
3496   }
3497 }
3498 
3499 
3500 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3501   char path[MAX_PATH];
3502   DWORD size;
3503   DWORD pathLen = (DWORD)sizeof(path);
3504   HINSTANCE result = NULL;
3505 
3506   // only allow library name without path component
3507   assert(strchr(name, '\\') == NULL, "path not allowed");
3508   assert(strchr(name, ':') == NULL, "path not allowed");
3509   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3510     jio_snprintf(ebuf, ebuflen,
3511       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3512     return NULL;
3513   }
3514 
3515   // search system directory
3516   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3517     strcat(path, "\\");
3518     strcat(path, name);
3519     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3520       return result;
3521     }
3522   }
3523 
3524   // try Windows directory
3525   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3526     strcat(path, "\\");
3527     strcat(path, name);
3528     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3529       return result;
3530     }
3531   }
3532 
3533   jio_snprintf(ebuf, ebuflen,
3534     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3535   return NULL;
3536 }
3537 
3538 void os::win32::setmode_streams() {
3539   _setmode(_fileno(stdin), _O_BINARY);
3540   _setmode(_fileno(stdout), _O_BINARY);
3541   _setmode(_fileno(stderr), _O_BINARY);
3542 }
3543 
3544 
3545 bool os::is_debugger_attached() {
3546   return IsDebuggerPresent() ? true : false;
3547 }
3548 
3549 
3550 void os::wait_for_keypress_at_exit(void) {
3551   if (PauseAtExit) {
3552     fprintf(stderr, "Press any key to continue...\n");
3553     fgetc(stdin);
3554   }
3555 }
3556 
3557 
3558 int os::message_box(const char* title, const char* message) {
3559   int result = MessageBox(NULL, message, title,
3560                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3561   return result == IDYES;
3562 }
3563 
3564 int os::allocate_thread_local_storage() {
3565   return TlsAlloc();
3566 }
3567 
3568 
3569 void os::free_thread_local_storage(int index) {
3570   TlsFree(index);
3571 }
3572 
3573 
3574 void os::thread_local_storage_at_put(int index, void* value) {
3575   TlsSetValue(index, value);
3576   assert(thread_local_storage_at(index) == value, "Just checking");
3577 }
3578 
3579 
3580 void* os::thread_local_storage_at(int index) {
3581   return TlsGetValue(index);
3582 }
3583 
3584 
3585 #ifndef PRODUCT
3586 #ifndef _WIN64
3587 // Helpers to check whether NX protection is enabled
3588 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3589   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3590       pex->ExceptionRecord->NumberParameters > 0 &&
3591       pex->ExceptionRecord->ExceptionInformation[0] ==
3592       EXCEPTION_INFO_EXEC_VIOLATION) {
3593     return EXCEPTION_EXECUTE_HANDLER;
3594   }
3595   return EXCEPTION_CONTINUE_SEARCH;
3596 }
3597 
3598 void nx_check_protection() {
3599   // If NX is enabled we'll get an exception calling into code on the stack
3600   char code[] = { (char)0xC3 }; // ret
3601   void *code_ptr = (void *)code;
3602   __try {
3603     __asm call code_ptr
3604   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3605     tty->print_raw_cr("NX protection detected.");
3606   }
3607 }
3608 #endif // _WIN64
3609 #endif // PRODUCT
3610 
3611 // this is called _before_ the global arguments have been parsed
3612 void os::init(void) {
3613   _initial_pid = _getpid();
3614 
3615   init_random(1234567);
3616 
3617   win32::initialize_system_info();
3618   win32::setmode_streams();
3619   init_page_sizes((size_t) win32::vm_page_size());
3620 
3621   // For better scalability on MP systems (must be called after initialize_system_info)
3622 #ifndef PRODUCT
3623   if (is_MP()) {
3624     NoYieldsInMicrolock = true;
3625   }
3626 #endif
3627   // This may be overridden later when argument processing is done.
3628   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3629     os::win32::is_windows_2003());
3630 
3631   // Initialize main_process and main_thread
3632   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3633  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3634                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3635     fatal("DuplicateHandle failed\n");
3636   }
3637   main_thread_id = (int) GetCurrentThreadId();
3638 }
3639 
3640 // To install functions for atexit processing
3641 extern "C" {
3642   static void perfMemory_exit_helper() {
3643     perfMemory_exit();
3644   }
3645 }
3646 
3647 // this is called _after_ the global arguments have been parsed
3648 jint os::init_2(void) {
3649   // Allocate a single page and mark it as readable for safepoint polling
3650   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3651   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3652 
3653   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3654   guarantee( return_page != NULL, "Commit Failed for polling page");
3655 
3656   os::set_polling_page( polling_page );
3657 
3658 #ifndef PRODUCT
3659   if( Verbose && PrintMiscellaneous )
3660     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3661 #endif
3662 
3663   if (!UseMembar) {
3664     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3665     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3666 
3667     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3668     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3669 
3670     os::set_memory_serialize_page( mem_serialize_page );
3671 
3672 #ifndef PRODUCT
3673     if(Verbose && PrintMiscellaneous)
3674       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3675 #endif
3676   }
3677 
3678   os::large_page_init();
3679 
3680   // Setup Windows Exceptions
3681 
3682   // On Itanium systems, Structured Exception Handling does not
3683   // work since stack frames must be walkable by the OS.  Since
3684   // much of our code is dynamically generated, and we do not have
3685   // proper unwind .xdata sections, the system simply exits
3686   // rather than delivering the exception.  To work around
3687   // this we use VectorExceptions instead.
3688 #ifdef _WIN64
3689   if (UseVectoredExceptions) {
3690     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3691   }
3692 #endif
3693 
3694   // for debugging float code generation bugs
3695   if (ForceFloatExceptions) {
3696 #ifndef  _WIN64
3697     static long fp_control_word = 0;
3698     __asm { fstcw fp_control_word }
3699     // see Intel PPro Manual, Vol. 2, p 7-16
3700     const long precision = 0x20;
3701     const long underflow = 0x10;
3702     const long overflow  = 0x08;
3703     const long zero_div  = 0x04;
3704     const long denorm    = 0x02;
3705     const long invalid   = 0x01;
3706     fp_control_word |= invalid;
3707     __asm { fldcw fp_control_word }
3708 #endif
3709   }
3710 
3711   // If stack_commit_size is 0, windows will reserve the default size,
3712   // but only commit a small portion of it.
3713   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3714   size_t default_reserve_size = os::win32::default_stack_size();
3715   size_t actual_reserve_size = stack_commit_size;
3716   if (stack_commit_size < default_reserve_size) {
3717     // If stack_commit_size == 0, we want this too
3718     actual_reserve_size = default_reserve_size;
3719   }
3720 
3721   // Check minimum allowable stack size for thread creation and to initialize
3722   // the java system classes, including StackOverflowError - depends on page
3723   // size.  Add a page for compiler2 recursion in main thread.
3724   // Add in 2*BytesPerWord times page size to account for VM stack during
3725   // class initialization depending on 32 or 64 bit VM.
3726   size_t min_stack_allowed =
3727             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3728             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3729   if (actual_reserve_size < min_stack_allowed) {
3730     tty->print_cr("\nThe stack size specified is too small, "
3731                   "Specify at least %dk",
3732                   min_stack_allowed / K);
3733     return JNI_ERR;
3734   }
3735 
3736   JavaThread::set_stack_size_at_create(stack_commit_size);
3737 
3738   // Calculate theoretical max. size of Threads to guard gainst artifical
3739   // out-of-memory situations, where all available address-space has been
3740   // reserved by thread stacks.
3741   assert(actual_reserve_size != 0, "Must have a stack");
3742 
3743   // Calculate the thread limit when we should start doing Virtual Memory
3744   // banging. Currently when the threads will have used all but 200Mb of space.
3745   //
3746   // TODO: consider performing a similar calculation for commit size instead
3747   // as reserve size, since on a 64-bit platform we'll run into that more
3748   // often than running out of virtual memory space.  We can use the
3749   // lower value of the two calculations as the os_thread_limit.
3750   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3751   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3752 
3753   // at exit methods are called in the reverse order of their registration.
3754   // there is no limit to the number of functions registered. atexit does
3755   // not set errno.
3756 
3757   if (PerfAllowAtExitRegistration) {
3758     // only register atexit functions if PerfAllowAtExitRegistration is set.
3759     // atexit functions can be delayed until process exit time, which
3760     // can be problematic for embedded VM situations. Embedded VMs should
3761     // call DestroyJavaVM() to assure that VM resources are released.
3762 
3763     // note: perfMemory_exit_helper atexit function may be removed in
3764     // the future if the appropriate cleanup code can be added to the
3765     // VM_Exit VMOperation's doit method.
3766     if (atexit(perfMemory_exit_helper) != 0) {
3767       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3768     }
3769   }
3770 
3771 #ifndef _WIN64
3772   // Print something if NX is enabled (win32 on AMD64)
3773   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3774 #endif
3775 
3776   // initialize thread priority policy
3777   prio_init();
3778 
3779   if (UseNUMA && !ForceNUMA) {
3780     UseNUMA = false; // We don't fully support this yet
3781   }
3782 
3783   if (UseNUMAInterleaving) {
3784     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3785     bool success = numa_interleaving_init();
3786     if (!success) UseNUMAInterleaving = false;
3787   }
3788 
3789   return JNI_OK;
3790 }
3791 
3792 void os::init_3(void) {
3793   return;
3794 }
3795 
3796 // Mark the polling page as unreadable
3797 void os::make_polling_page_unreadable(void) {
3798   DWORD old_status;
3799   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3800     fatal("Could not disable polling page");
3801 };
3802 
3803 // Mark the polling page as readable
3804 void os::make_polling_page_readable(void) {
3805   DWORD old_status;
3806   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3807     fatal("Could not enable polling page");
3808 };
3809 
3810 
3811 int os::stat(const char *path, struct stat *sbuf) {
3812   char pathbuf[MAX_PATH];
3813   if (strlen(path) > MAX_PATH - 1) {
3814     errno = ENAMETOOLONG;
3815     return -1;
3816   }
3817   os::native_path(strcpy(pathbuf, path));
3818   int ret = ::stat(pathbuf, sbuf);
3819   if (sbuf != NULL && UseUTCFileTimestamp) {
3820     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3821     // the system timezone and so can return different values for the
3822     // same file if/when daylight savings time changes.  This adjustment
3823     // makes sure the same timestamp is returned regardless of the TZ.
3824     //
3825     // See:
3826     // http://msdn.microsoft.com/library/
3827     //   default.asp?url=/library/en-us/sysinfo/base/
3828     //   time_zone_information_str.asp
3829     // and
3830     // http://msdn.microsoft.com/library/default.asp?url=
3831     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3832     //
3833     // NOTE: there is a insidious bug here:  If the timezone is changed
3834     // after the call to stat() but before 'GetTimeZoneInformation()', then
3835     // the adjustment we do here will be wrong and we'll return the wrong
3836     // value (which will likely end up creating an invalid class data
3837     // archive).  Absent a better API for this, or some time zone locking
3838     // mechanism, we'll have to live with this risk.
3839     TIME_ZONE_INFORMATION tz;
3840     DWORD tzid = GetTimeZoneInformation(&tz);
3841     int daylightBias =
3842       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3843     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3844   }
3845   return ret;
3846 }
3847 
3848 
3849 #define FT2INT64(ft) \
3850   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3851 
3852 
3853 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3854 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3855 // of a thread.
3856 //
3857 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3858 // the fast estimate available on the platform.
3859 
3860 // current_thread_cpu_time() is not optimized for Windows yet
3861 jlong os::current_thread_cpu_time() {
3862   // return user + sys since the cost is the same
3863   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3864 }
3865 
3866 jlong os::thread_cpu_time(Thread* thread) {
3867   // consistent with what current_thread_cpu_time() returns.
3868   return os::thread_cpu_time(thread, true /* user+sys */);
3869 }
3870 
3871 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3872   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3873 }
3874 
3875 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3876   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3877   // If this function changes, os::is_thread_cpu_time_supported() should too
3878   if (os::win32::is_nt()) {
3879     FILETIME CreationTime;
3880     FILETIME ExitTime;
3881     FILETIME KernelTime;
3882     FILETIME UserTime;
3883 
3884     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3885                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3886       return -1;
3887     else
3888       if (user_sys_cpu_time) {
3889         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3890       } else {
3891         return FT2INT64(UserTime) * 100;
3892       }
3893   } else {
3894     return (jlong) timeGetTime() * 1000000;
3895   }
3896 }
3897 
3898 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3899   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3900   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3901   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3902   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3903 }
3904 
3905 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3906   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3907   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3908   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3909   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3910 }
3911 
3912 bool os::is_thread_cpu_time_supported() {
3913   // see os::thread_cpu_time
3914   if (os::win32::is_nt()) {
3915     FILETIME CreationTime;
3916     FILETIME ExitTime;
3917     FILETIME KernelTime;
3918     FILETIME UserTime;
3919 
3920     if ( GetThreadTimes(GetCurrentThread(),
3921                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3922       return false;
3923     else
3924       return true;
3925   } else {
3926     return false;
3927   }
3928 }
3929 
3930 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3931 // It does have primitives (PDH API) to get CPU usage and run queue length.
3932 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3933 // If we wanted to implement loadavg on Windows, we have a few options:
3934 //
3935 // a) Query CPU usage and run queue length and "fake" an answer by
3936 //    returning the CPU usage if it's under 100%, and the run queue
3937 //    length otherwise.  It turns out that querying is pretty slow
3938 //    on Windows, on the order of 200 microseconds on a fast machine.
3939 //    Note that on the Windows the CPU usage value is the % usage
3940 //    since the last time the API was called (and the first call
3941 //    returns 100%), so we'd have to deal with that as well.
3942 //
3943 // b) Sample the "fake" answer using a sampling thread and store
3944 //    the answer in a global variable.  The call to loadavg would
3945 //    just return the value of the global, avoiding the slow query.
3946 //
3947 // c) Sample a better answer using exponential decay to smooth the
3948 //    value.  This is basically the algorithm used by UNIX kernels.
3949 //
3950 // Note that sampling thread starvation could affect both (b) and (c).
3951 int os::loadavg(double loadavg[], int nelem) {
3952   return -1;
3953 }
3954 
3955 
3956 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3957 bool os::dont_yield() {
3958   return DontYieldALot;
3959 }
3960 
3961 // This method is a slightly reworked copy of JDK's sysOpen
3962 // from src/windows/hpi/src/sys_api_md.c
3963 
3964 int os::open(const char *path, int oflag, int mode) {
3965   char pathbuf[MAX_PATH];
3966 
3967   if (strlen(path) > MAX_PATH - 1) {
3968     errno = ENAMETOOLONG;
3969           return -1;
3970   }
3971   os::native_path(strcpy(pathbuf, path));
3972   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
3973 }
3974 
3975 // Is a (classpath) directory empty?
3976 bool os::dir_is_empty(const char* path) {
3977   WIN32_FIND_DATA fd;
3978   HANDLE f = FindFirstFile(path, &fd);
3979   if (f == INVALID_HANDLE_VALUE) {
3980     return true;
3981   }
3982   FindClose(f);
3983   return false;
3984 }
3985 
3986 // create binary file, rewriting existing file if required
3987 int os::create_binary_file(const char* path, bool rewrite_existing) {
3988   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3989   if (!rewrite_existing) {
3990     oflags |= _O_EXCL;
3991   }
3992   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3993 }
3994 
3995 // return current position of file pointer
3996 jlong os::current_file_offset(int fd) {
3997   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3998 }
3999 
4000 // move file pointer to the specified offset
4001 jlong os::seek_to_file_offset(int fd, jlong offset) {
4002   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4003 }
4004 
4005 
4006 jlong os::lseek(int fd, jlong offset, int whence) {
4007   return (jlong) ::_lseeki64(fd, offset, whence);
4008 }
4009 
4010 // This method is a slightly reworked copy of JDK's sysNativePath
4011 // from src/windows/hpi/src/path_md.c
4012 
4013 /* Convert a pathname to native format.  On win32, this involves forcing all
4014    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4015    sometimes rejects '/') and removing redundant separators.  The input path is
4016    assumed to have been converted into the character encoding used by the local
4017    system.  Because this might be a double-byte encoding, care is taken to
4018    treat double-byte lead characters correctly.
4019 
4020    This procedure modifies the given path in place, as the result is never
4021    longer than the original.  There is no error return; this operation always
4022    succeeds. */
4023 char * os::native_path(char *path) {
4024   char *src = path, *dst = path, *end = path;
4025   char *colon = NULL;           /* If a drive specifier is found, this will
4026                                         point to the colon following the drive
4027                                         letter */
4028 
4029   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4030   assert(((!::IsDBCSLeadByte('/'))
4031     && (!::IsDBCSLeadByte('\\'))
4032     && (!::IsDBCSLeadByte(':'))),
4033     "Illegal lead byte");
4034 
4035   /* Check for leading separators */
4036 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4037   while (isfilesep(*src)) {
4038     src++;
4039   }
4040 
4041   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4042     /* Remove leading separators if followed by drive specifier.  This
4043       hack is necessary to support file URLs containing drive
4044       specifiers (e.g., "file://c:/path").  As a side effect,
4045       "/c:/path" can be used as an alternative to "c:/path". */
4046     *dst++ = *src++;
4047     colon = dst;
4048     *dst++ = ':';
4049     src++;
4050   } else {
4051     src = path;
4052     if (isfilesep(src[0]) && isfilesep(src[1])) {
4053       /* UNC pathname: Retain first separator; leave src pointed at
4054          second separator so that further separators will be collapsed
4055          into the second separator.  The result will be a pathname
4056          beginning with "\\\\" followed (most likely) by a host name. */
4057       src = dst = path + 1;
4058       path[0] = '\\';     /* Force first separator to '\\' */
4059     }
4060   }
4061 
4062   end = dst;
4063 
4064   /* Remove redundant separators from remainder of path, forcing all
4065       separators to be '\\' rather than '/'. Also, single byte space
4066       characters are removed from the end of the path because those
4067       are not legal ending characters on this operating system.
4068   */
4069   while (*src != '\0') {
4070     if (isfilesep(*src)) {
4071       *dst++ = '\\'; src++;
4072       while (isfilesep(*src)) src++;
4073       if (*src == '\0') {
4074         /* Check for trailing separator */
4075         end = dst;
4076         if (colon == dst - 2) break;                      /* "z:\\" */
4077         if (dst == path + 1) break;                       /* "\\" */
4078         if (dst == path + 2 && isfilesep(path[0])) {
4079           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4080             beginning of a UNC pathname.  Even though it is not, by
4081             itself, a valid UNC pathname, we leave it as is in order
4082             to be consistent with the path canonicalizer as well
4083             as the win32 APIs, which treat this case as an invalid
4084             UNC pathname rather than as an alias for the root
4085             directory of the current drive. */
4086           break;
4087         }
4088         end = --dst;  /* Path does not denote a root directory, so
4089                                     remove trailing separator */
4090         break;
4091       }
4092       end = dst;
4093     } else {
4094       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4095         *dst++ = *src++;
4096         if (*src) *dst++ = *src++;
4097         end = dst;
4098       } else {         /* Copy a single-byte character */
4099         char c = *src++;
4100         *dst++ = c;
4101         /* Space is not a legal ending character */
4102         if (c != ' ') end = dst;
4103       }
4104     }
4105   }
4106 
4107   *end = '\0';
4108 
4109   /* For "z:", add "." to work around a bug in the C runtime library */
4110   if (colon == dst - 1) {
4111           path[2] = '.';
4112           path[3] = '\0';
4113   }
4114 
4115   #ifdef DEBUG
4116     jio_fprintf(stderr, "sysNativePath: %s\n", path);
4117   #endif DEBUG
4118   return path;
4119 }
4120 
4121 // This code is a copy of JDK's sysSetLength
4122 // from src/windows/hpi/src/sys_api_md.c
4123 
4124 int os::ftruncate(int fd, jlong length) {
4125   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4126   long high = (long)(length >> 32);
4127   DWORD ret;
4128 
4129   if (h == (HANDLE)(-1)) {
4130     return -1;
4131   }
4132 
4133   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4134   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4135       return -1;
4136   }
4137 
4138   if (::SetEndOfFile(h) == FALSE) {
4139     return -1;
4140   }
4141 
4142   return 0;
4143 }
4144 
4145 
4146 // This code is a copy of JDK's sysSync
4147 // from src/windows/hpi/src/sys_api_md.c
4148 // except for the legacy workaround for a bug in Win 98
4149 
4150 int os::fsync(int fd) {
4151   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4152 
4153   if ( (!::FlushFileBuffers(handle)) &&
4154          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4155     /* from winerror.h */
4156     return -1;
4157   }
4158   return 0;
4159 }
4160 
4161 static int nonSeekAvailable(int, long *);
4162 static int stdinAvailable(int, long *);
4163 
4164 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4165 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4166 
4167 // This code is a copy of JDK's sysAvailable
4168 // from src/windows/hpi/src/sys_api_md.c
4169 
4170 int os::available(int fd, jlong *bytes) {
4171   jlong cur, end;
4172   struct _stati64 stbuf64;
4173 
4174   if (::_fstati64(fd, &stbuf64) >= 0) {
4175     int mode = stbuf64.st_mode;
4176     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4177       int ret;
4178       long lpbytes;
4179       if (fd == 0) {
4180         ret = stdinAvailable(fd, &lpbytes);
4181       } else {
4182         ret = nonSeekAvailable(fd, &lpbytes);
4183       }
4184       (*bytes) = (jlong)(lpbytes);
4185       return ret;
4186     }
4187     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4188       return FALSE;
4189     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4190       return FALSE;
4191     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4192       return FALSE;
4193     }
4194     *bytes = end - cur;
4195     return TRUE;
4196   } else {
4197     return FALSE;
4198   }
4199 }
4200 
4201 // This code is a copy of JDK's nonSeekAvailable
4202 // from src/windows/hpi/src/sys_api_md.c
4203 
4204 static int nonSeekAvailable(int fd, long *pbytes) {
4205   /* This is used for available on non-seekable devices
4206     * (like both named and anonymous pipes, such as pipes
4207     *  connected to an exec'd process).
4208     * Standard Input is a special case.
4209     *
4210     */
4211   HANDLE han;
4212 
4213   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4214     return FALSE;
4215   }
4216 
4217   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4218         /* PeekNamedPipe fails when at EOF.  In that case we
4219          * simply make *pbytes = 0 which is consistent with the
4220          * behavior we get on Solaris when an fd is at EOF.
4221          * The only alternative is to raise an Exception,
4222          * which isn't really warranted.
4223          */
4224     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4225       return FALSE;
4226     }
4227     *pbytes = 0;
4228   }
4229   return TRUE;
4230 }
4231 
4232 #define MAX_INPUT_EVENTS 2000
4233 
4234 // This code is a copy of JDK's stdinAvailable
4235 // from src/windows/hpi/src/sys_api_md.c
4236 
4237 static int stdinAvailable(int fd, long *pbytes) {
4238   HANDLE han;
4239   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4240   DWORD numEvents = 0;  /* Number of events in buffer */
4241   DWORD i = 0;          /* Loop index */
4242   DWORD curLength = 0;  /* Position marker */
4243   DWORD actualLength = 0;       /* Number of bytes readable */
4244   BOOL error = FALSE;         /* Error holder */
4245   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4246 
4247   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4248         return FALSE;
4249   }
4250 
4251   /* Construct an array of input records in the console buffer */
4252   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4253   if (error == 0) {
4254     return nonSeekAvailable(fd, pbytes);
4255   }
4256 
4257   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4258   if (numEvents > MAX_INPUT_EVENTS) {
4259     numEvents = MAX_INPUT_EVENTS;
4260   }
4261 
4262   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
4263   if (lpBuffer == NULL) {
4264     return FALSE;
4265   }
4266 
4267   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4268   if (error == 0) {
4269     os::free(lpBuffer);
4270     return FALSE;
4271   }
4272 
4273   /* Examine input records for the number of bytes available */
4274   for(i=0; i<numEvents; i++) {
4275     if (lpBuffer[i].EventType == KEY_EVENT) {
4276 
4277       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4278                                       &(lpBuffer[i].Event);
4279       if (keyRecord->bKeyDown == TRUE) {
4280         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4281         curLength++;
4282         if (*keyPressed == '\r') {
4283           actualLength = curLength;
4284         }
4285       }
4286     }
4287   }
4288 
4289   if(lpBuffer != NULL) {
4290     os::free(lpBuffer);
4291   }
4292 
4293   *pbytes = (long) actualLength;
4294   return TRUE;
4295 }
4296 
4297 // Map a block of memory.
4298 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4299                      char *addr, size_t bytes, bool read_only,
4300                      bool allow_exec) {
4301   HANDLE hFile;
4302   char* base;
4303 
4304   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4305                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4306   if (hFile == NULL) {
4307     if (PrintMiscellaneous && Verbose) {
4308       DWORD err = GetLastError();
4309       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
4310     }
4311     return NULL;
4312   }
4313 
4314   if (allow_exec) {
4315     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4316     // unless it comes from a PE image (which the shared archive is not.)
4317     // Even VirtualProtect refuses to give execute access to mapped memory
4318     // that was not previously executable.
4319     //
4320     // Instead, stick the executable region in anonymous memory.  Yuck.
4321     // Penalty is that ~4 pages will not be shareable - in the future
4322     // we might consider DLLizing the shared archive with a proper PE
4323     // header so that mapping executable + sharing is possible.
4324 
4325     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4326                                 PAGE_READWRITE);
4327     if (base == NULL) {
4328       if (PrintMiscellaneous && Verbose) {
4329         DWORD err = GetLastError();
4330         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4331       }
4332       CloseHandle(hFile);
4333       return NULL;
4334     }
4335 
4336     DWORD bytes_read;
4337     OVERLAPPED overlapped;
4338     overlapped.Offset = (DWORD)file_offset;
4339     overlapped.OffsetHigh = 0;
4340     overlapped.hEvent = NULL;
4341     // ReadFile guarantees that if the return value is true, the requested
4342     // number of bytes were read before returning.
4343     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4344     if (!res) {
4345       if (PrintMiscellaneous && Verbose) {
4346         DWORD err = GetLastError();
4347         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4348       }
4349       release_memory(base, bytes);
4350       CloseHandle(hFile);
4351       return NULL;
4352     }
4353   } else {
4354     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4355                                     NULL /*file_name*/);
4356     if (hMap == NULL) {
4357       if (PrintMiscellaneous && Verbose) {
4358         DWORD err = GetLastError();
4359         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
4360       }
4361       CloseHandle(hFile);
4362       return NULL;
4363     }
4364 
4365     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4366     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4367                                   (DWORD)bytes, addr);
4368     if (base == NULL) {
4369       if (PrintMiscellaneous && Verbose) {
4370         DWORD err = GetLastError();
4371         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4372       }
4373       CloseHandle(hMap);
4374       CloseHandle(hFile);
4375       return NULL;
4376     }
4377 
4378     if (CloseHandle(hMap) == 0) {
4379       if (PrintMiscellaneous && Verbose) {
4380         DWORD err = GetLastError();
4381         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4382       }
4383       CloseHandle(hFile);
4384       return base;
4385     }
4386   }
4387 
4388   if (allow_exec) {
4389     DWORD old_protect;
4390     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4391     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4392 
4393     if (!res) {
4394       if (PrintMiscellaneous && Verbose) {
4395         DWORD err = GetLastError();
4396         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4397       }
4398       // Don't consider this a hard error, on IA32 even if the
4399       // VirtualProtect fails, we should still be able to execute
4400       CloseHandle(hFile);
4401       return base;
4402     }
4403   }
4404 
4405   if (CloseHandle(hFile) == 0) {
4406     if (PrintMiscellaneous && Verbose) {
4407       DWORD err = GetLastError();
4408       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4409     }
4410     return base;
4411   }
4412 
4413   return base;
4414 }
4415 
4416 
4417 // Remap a block of memory.
4418 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4419                        char *addr, size_t bytes, bool read_only,
4420                        bool allow_exec) {
4421   // This OS does not allow existing memory maps to be remapped so we
4422   // have to unmap the memory before we remap it.
4423   if (!os::unmap_memory(addr, bytes)) {
4424     return NULL;
4425   }
4426 
4427   // There is a very small theoretical window between the unmap_memory()
4428   // call above and the map_memory() call below where a thread in native
4429   // code may be able to access an address that is no longer mapped.
4430 
4431   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4432                         allow_exec);
4433 }
4434 
4435 
4436 // Unmap a block of memory.
4437 // Returns true=success, otherwise false.
4438 
4439 bool os::unmap_memory(char* addr, size_t bytes) {
4440   BOOL result = UnmapViewOfFile(addr);
4441   if (result == 0) {
4442     if (PrintMiscellaneous && Verbose) {
4443       DWORD err = GetLastError();
4444       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4445     }
4446     return false;
4447   }
4448   return true;
4449 }
4450 
4451 void os::pause() {
4452   char filename[MAX_PATH];
4453   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4454     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4455   } else {
4456     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4457   }
4458 
4459   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4460   if (fd != -1) {
4461     struct stat buf;
4462     ::close(fd);
4463     while (::stat(filename, &buf) == 0) {
4464       Sleep(100);
4465     }
4466   } else {
4467     jio_fprintf(stderr,
4468       "Could not open pause file '%s', continuing immediately.\n", filename);
4469   }
4470 }
4471 
4472 // An Event wraps a win32 "CreateEvent" kernel handle.
4473 //
4474 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4475 //
4476 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4477 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4478 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4479 //     In addition, an unpark() operation might fetch the handle field, but the
4480 //     event could recycle between the fetch and the SetEvent() operation.
4481 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4482 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4483 //     on an stale but recycled handle would be harmless, but in practice this might
4484 //     confuse other non-Sun code, so it's not a viable approach.
4485 //
4486 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4487 //     with the Event.  The event handle is never closed.  This could be construed
4488 //     as handle leakage, but only up to the maximum # of threads that have been extant
4489 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4490 //     permit a process to have hundreds of thousands of open handles.
4491 //
4492 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4493 //     and release unused handles.
4494 //
4495 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4496 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4497 //
4498 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4499 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4500 //
4501 // We use (2).
4502 //
4503 // TODO-FIXME:
4504 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4505 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4506 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4507 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4508 //     into a single win32 CreateEvent() handle.
4509 //
4510 // _Event transitions in park()
4511 //   -1 => -1 : illegal
4512 //    1 =>  0 : pass - return immediately
4513 //    0 => -1 : block
4514 //
4515 // _Event serves as a restricted-range semaphore :
4516 //    -1 : thread is blocked
4517 //     0 : neutral  - thread is running or ready
4518 //     1 : signaled - thread is running or ready
4519 //
4520 // Another possible encoding of _Event would be
4521 // with explicit "PARKED" and "SIGNALED" bits.
4522 
4523 int os::PlatformEvent::park (jlong Millis) {
4524     guarantee (_ParkHandle != NULL , "Invariant") ;
4525     guarantee (Millis > 0          , "Invariant") ;
4526     int v ;
4527 
4528     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4529     // the initial park() operation.
4530 
4531     for (;;) {
4532         v = _Event ;
4533         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4534     }
4535     guarantee ((v == 0) || (v == 1), "invariant") ;
4536     if (v != 0) return OS_OK ;
4537 
4538     // Do this the hard way by blocking ...
4539     // TODO: consider a brief spin here, gated on the success of recent
4540     // spin attempts by this thread.
4541     //
4542     // We decompose long timeouts into series of shorter timed waits.
4543     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4544     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4545     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4546     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4547     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4548     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4549     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4550     // for the already waited time.  This policy does not admit any new outcomes.
4551     // In the future, however, we might want to track the accumulated wait time and
4552     // adjust Millis accordingly if we encounter a spurious wakeup.
4553 
4554     const int MAXTIMEOUT = 0x10000000 ;
4555     DWORD rv = WAIT_TIMEOUT ;
4556     while (_Event < 0 && Millis > 0) {
4557        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4558        if (Millis > MAXTIMEOUT) {
4559           prd = MAXTIMEOUT ;
4560        }
4561        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4562        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4563        if (rv == WAIT_TIMEOUT) {
4564            Millis -= prd ;
4565        }
4566     }
4567     v = _Event ;
4568     _Event = 0 ;
4569     OrderAccess::fence() ;
4570     // If we encounter a nearly simultanous timeout expiry and unpark()
4571     // we return OS_OK indicating we awoke via unpark().
4572     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4573     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4574 }
4575 
4576 void os::PlatformEvent::park () {
4577     guarantee (_ParkHandle != NULL, "Invariant") ;
4578     // Invariant: Only the thread associated with the Event/PlatformEvent
4579     // may call park().
4580     int v ;
4581     for (;;) {
4582         v = _Event ;
4583         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4584     }
4585     guarantee ((v == 0) || (v == 1), "invariant") ;
4586     if (v != 0) return ;
4587 
4588     // Do this the hard way by blocking ...
4589     // TODO: consider a brief spin here, gated on the success of recent
4590     // spin attempts by this thread.
4591     while (_Event < 0) {
4592        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4593        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4594     }
4595 
4596     // Usually we'll find _Event == 0 at this point, but as
4597     // an optional optimization we clear it, just in case can
4598     // multiple unpark() operations drove _Event up to 1.
4599     _Event = 0 ;
4600     OrderAccess::fence() ;
4601     guarantee (_Event >= 0, "invariant") ;
4602 }
4603 
4604 void os::PlatformEvent::unpark() {
4605   guarantee (_ParkHandle != NULL, "Invariant") ;
4606   int v ;
4607   for (;;) {
4608       v = _Event ;      // Increment _Event if it's < 1.
4609       if (v > 0) {
4610          // If it's already signaled just return.
4611          // The LD of _Event could have reordered or be satisfied
4612          // by a read-aside from this processor's write buffer.
4613          // To avoid problems execute a barrier and then
4614          // ratify the value.  A degenerate CAS() would also work.
4615          // Viz., CAS (v+0, &_Event, v) == v).
4616          OrderAccess::fence() ;
4617          if (_Event == v) return ;
4618          continue ;
4619       }
4620       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4621   }
4622   if (v < 0) {
4623      ::SetEvent (_ParkHandle) ;
4624   }
4625 }
4626 
4627 
4628 // JSR166
4629 // -------------------------------------------------------
4630 
4631 /*
4632  * The Windows implementation of Park is very straightforward: Basic
4633  * operations on Win32 Events turn out to have the right semantics to
4634  * use them directly. We opportunistically resuse the event inherited
4635  * from Monitor.
4636  */
4637 
4638 
4639 void Parker::park(bool isAbsolute, jlong time) {
4640   guarantee (_ParkEvent != NULL, "invariant") ;
4641   // First, demultiplex/decode time arguments
4642   if (time < 0) { // don't wait
4643     return;
4644   }
4645   else if (time == 0 && !isAbsolute) {
4646     time = INFINITE;
4647   }
4648   else if  (isAbsolute) {
4649     time -= os::javaTimeMillis(); // convert to relative time
4650     if (time <= 0) // already elapsed
4651       return;
4652   }
4653   else { // relative
4654     time /= 1000000; // Must coarsen from nanos to millis
4655     if (time == 0)   // Wait for the minimal time unit if zero
4656       time = 1;
4657   }
4658 
4659   JavaThread* thread = (JavaThread*)(Thread::current());
4660   assert(thread->is_Java_thread(), "Must be JavaThread");
4661   JavaThread *jt = (JavaThread *)thread;
4662 
4663   // Don't wait if interrupted or already triggered
4664   if (Thread::is_interrupted(thread, false) ||
4665     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4666     ResetEvent(_ParkEvent);
4667     return;
4668   }
4669   else {
4670     ThreadBlockInVM tbivm(jt);
4671     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4672     jt->set_suspend_equivalent();
4673 
4674     WaitForSingleObject(_ParkEvent,  time);
4675     ResetEvent(_ParkEvent);
4676 
4677     // If externally suspended while waiting, re-suspend
4678     if (jt->handle_special_suspend_equivalent_condition()) {
4679       jt->java_suspend_self();
4680     }
4681   }
4682 }
4683 
4684 void Parker::unpark() {
4685   guarantee (_ParkEvent != NULL, "invariant") ;
4686   SetEvent(_ParkEvent);
4687 }
4688 
4689 // Run the specified command in a separate process. Return its exit value,
4690 // or -1 on failure (e.g. can't create a new process).
4691 int os::fork_and_exec(char* cmd) {
4692   STARTUPINFO si;
4693   PROCESS_INFORMATION pi;
4694 
4695   memset(&si, 0, sizeof(si));
4696   si.cb = sizeof(si);
4697   memset(&pi, 0, sizeof(pi));
4698   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4699                             cmd,    // command line
4700                             NULL,   // process security attribute
4701                             NULL,   // thread security attribute
4702                             TRUE,   // inherits system handles
4703                             0,      // no creation flags
4704                             NULL,   // use parent's environment block
4705                             NULL,   // use parent's starting directory
4706                             &si,    // (in) startup information
4707                             &pi);   // (out) process information
4708 
4709   if (rslt) {
4710     // Wait until child process exits.
4711     WaitForSingleObject(pi.hProcess, INFINITE);
4712 
4713     DWORD exit_code;
4714     GetExitCodeProcess(pi.hProcess, &exit_code);
4715 
4716     // Close process and thread handles.
4717     CloseHandle(pi.hProcess);
4718     CloseHandle(pi.hThread);
4719 
4720     return (int)exit_code;
4721   } else {
4722     return -1;
4723   }
4724 }
4725 
4726 //--------------------------------------------------------------------------------------------------
4727 // Non-product code
4728 
4729 static int mallocDebugIntervalCounter = 0;
4730 static int mallocDebugCounter = 0;
4731 bool os::check_heap(bool force) {
4732   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4733   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4734     // Note: HeapValidate executes two hardware breakpoints when it finds something
4735     // wrong; at these points, eax contains the address of the offending block (I think).
4736     // To get to the exlicit error message(s) below, just continue twice.
4737     HANDLE heap = GetProcessHeap();
4738     { HeapLock(heap);
4739       PROCESS_HEAP_ENTRY phe;
4740       phe.lpData = NULL;
4741       while (HeapWalk(heap, &phe) != 0) {
4742         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4743             !HeapValidate(heap, 0, phe.lpData)) {
4744           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4745           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4746           fatal("corrupted C heap");
4747         }
4748       }
4749       int err = GetLastError();
4750       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4751         fatal(err_msg("heap walk aborted with error %d", err));
4752       }
4753       HeapUnlock(heap);
4754     }
4755     mallocDebugIntervalCounter = 0;
4756   }
4757   return true;
4758 }
4759 
4760 
4761 bool os::find(address addr, outputStream* st) {
4762   // Nothing yet
4763   return false;
4764 }
4765 
4766 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4767   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4768 
4769   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4770     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4771     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4772     address addr = (address) exceptionRecord->ExceptionInformation[1];
4773 
4774     if (os::is_memory_serialize_page(thread, addr))
4775       return EXCEPTION_CONTINUE_EXECUTION;
4776   }
4777 
4778   return EXCEPTION_CONTINUE_SEARCH;
4779 }
4780 
4781 static int getLastErrorString(char *buf, size_t len)
4782 {
4783     long errval;
4784 
4785     if ((errval = GetLastError()) != 0)
4786     {
4787       /* DOS error */
4788       size_t n = (size_t)FormatMessage(
4789             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4790             NULL,
4791             errval,
4792             0,
4793             buf,
4794             (DWORD)len,
4795             NULL);
4796       if (n > 3) {
4797         /* Drop final '.', CR, LF */
4798         if (buf[n - 1] == '\n') n--;
4799         if (buf[n - 1] == '\r') n--;
4800         if (buf[n - 1] == '.') n--;
4801         buf[n] = '\0';
4802       }
4803       return (int)n;
4804     }
4805 
4806     if (errno != 0)
4807     {
4808       /* C runtime error that has no corresponding DOS error code */
4809       const char *s = strerror(errno);
4810       size_t n = strlen(s);
4811       if (n >= len) n = len - 1;
4812       strncpy(buf, s, n);
4813       buf[n] = '\0';
4814       return (int)n;
4815     }
4816     return 0;
4817 }
4818 
4819 
4820 // We don't build a headless jre for Windows
4821 bool os::is_headless_jre() { return false; }
4822 
4823 
4824 typedef CRITICAL_SECTION mutex_t;
4825 #define mutexInit(m)    InitializeCriticalSection(m)
4826 #define mutexDestroy(m) DeleteCriticalSection(m)
4827 #define mutexLock(m)    EnterCriticalSection(m)
4828 #define mutexUnlock(m)  LeaveCriticalSection(m)
4829 
4830 static bool sock_initialized = FALSE;
4831 static mutex_t sockFnTableMutex;
4832 
4833 static void initSock() {
4834   WSADATA wsadata;
4835 
4836   if (!os::WinSock2Dll::WinSock2Available()) {
4837     jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
4838       ::GetLastError());
4839     return;
4840   }
4841   if (sock_initialized == TRUE) return;
4842 
4843   ::mutexInit(&sockFnTableMutex);
4844   ::mutexLock(&sockFnTableMutex);
4845   if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
4846       jio_fprintf(stderr, "Could not initialize Winsock\n");
4847   }
4848   sock_initialized = TRUE;
4849   ::mutexUnlock(&sockFnTableMutex);
4850 }
4851 
4852 struct hostent*  os::get_host_by_name(char* name) {
4853   if (!sock_initialized) {
4854     initSock();
4855   }
4856   if (!os::WinSock2Dll::WinSock2Available()) {
4857     return NULL;
4858   }
4859   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4860 }
4861 
4862 
4863 int os::socket_close(int fd) {
4864   ShouldNotReachHere();
4865   return 0;
4866 }
4867 
4868 int os::socket_available(int fd, jint *pbytes) {
4869   ShouldNotReachHere();
4870   return 0;
4871 }
4872 
4873 int os::socket(int domain, int type, int protocol) {
4874   ShouldNotReachHere();
4875   return 0;
4876 }
4877 
4878 int os::listen(int fd, int count) {
4879   ShouldNotReachHere();
4880   return 0;
4881 }
4882 
4883 int os::connect(int fd, struct sockaddr *him, int len) {
4884   ShouldNotReachHere();
4885   return 0;
4886 }
4887 
4888 int os::accept(int fd, struct sockaddr *him, int *len) {
4889   ShouldNotReachHere();
4890   return 0;
4891 }
4892 
4893 int os::sendto(int fd, char *buf, int len, int flags,
4894                         struct sockaddr *to, int tolen) {
4895   ShouldNotReachHere();
4896   return 0;
4897 }
4898 
4899 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
4900                          sockaddr *from, int *fromlen) {
4901   ShouldNotReachHere();
4902   return 0;
4903 }
4904 
4905 int os::recv(int fd, char *buf, int nBytes, int flags) {
4906   ShouldNotReachHere();
4907   return 0;
4908 }
4909 
4910 int os::send(int fd, char *buf, int nBytes, int flags) {
4911   ShouldNotReachHere();
4912   return 0;
4913 }
4914 
4915 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
4916   ShouldNotReachHere();
4917   return 0;
4918 }
4919 
4920 int os::timeout(int fd, long timeout) {
4921   ShouldNotReachHere();
4922   return 0;
4923 }
4924 
4925 int os::get_host_name(char* name, int namelen) {
4926   ShouldNotReachHere();
4927   return 0;
4928 }
4929 
4930 int os::socket_shutdown(int fd, int howto) {
4931   ShouldNotReachHere();
4932   return 0;
4933 }
4934 
4935 int os::bind(int fd, struct sockaddr *him, int len) {
4936   ShouldNotReachHere();
4937   return 0;
4938 }
4939 
4940 int os::get_sock_name(int fd, struct sockaddr *him, int *len) {
4941   ShouldNotReachHere();
4942   return 0;
4943 }
4944 
4945 int os::get_sock_opt(int fd, int level, int optname,
4946                              char *optval, int* optlen) {
4947   ShouldNotReachHere();
4948   return 0;
4949 }
4950 
4951 int os::set_sock_opt(int fd, int level, int optname,
4952                              const char *optval, int optlen) {
4953   ShouldNotReachHere();
4954   return 0;
4955 }
4956 
4957 
4958 // Kernel32 API
4959 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
4960 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
4961 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
4962 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
4963 
4964 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
4965 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
4966 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
4967 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
4968 BOOL                        os::Kernel32Dll::initialized = FALSE;
4969 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
4970   assert(initialized && _GetLargePageMinimum != NULL,
4971     "GetLargePageMinimumAvailable() not yet called");
4972   return _GetLargePageMinimum();
4973 }
4974 
4975 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
4976   if (!initialized) {
4977     initialize();
4978   }
4979   return _GetLargePageMinimum != NULL;
4980 }
4981 
4982 BOOL os::Kernel32Dll::NumaCallsAvailable() {
4983   if (!initialized) {
4984     initialize();
4985   }
4986   return _VirtualAllocExNuma != NULL;
4987 }
4988 
4989 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
4990   assert(initialized && _VirtualAllocExNuma != NULL,
4991     "NUMACallsAvailable() not yet called");
4992 
4993   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
4994 }
4995 
4996 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
4997   assert(initialized && _GetNumaHighestNodeNumber != NULL,
4998     "NUMACallsAvailable() not yet called");
4999 
5000   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5001 }
5002 
5003 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5004   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5005     "NUMACallsAvailable() not yet called");
5006 
5007   return _GetNumaNodeProcessorMask(node, proc_mask);
5008 }
5009 
5010 
5011 void os::Kernel32Dll::initializeCommon() {
5012   if (!initialized) {
5013     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5014     assert(handle != NULL, "Just check");
5015     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5016     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5017     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5018     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5019     initialized = TRUE;
5020   }
5021 }
5022 
5023 
5024 
5025 #ifndef JDK6_OR_EARLIER
5026 
5027 void os::Kernel32Dll::initialize() {
5028   initializeCommon();
5029 }
5030 
5031 
5032 // Kernel32 API
5033 inline BOOL os::Kernel32Dll::SwitchToThread() {
5034   return ::SwitchToThread();
5035 }
5036 
5037 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5038   return true;
5039 }
5040 
5041   // Help tools
5042 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5043   return true;
5044 }
5045 
5046 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5047   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5048 }
5049 
5050 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5051   return ::Module32First(hSnapshot, lpme);
5052 }
5053 
5054 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5055   return ::Module32Next(hSnapshot, lpme);
5056 }
5057 
5058 
5059 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5060   return true;
5061 }
5062 
5063 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5064   ::GetNativeSystemInfo(lpSystemInfo);
5065 }
5066 
5067 // PSAPI API
5068 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5069   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5070 }
5071 
5072 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5073   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5074 }
5075 
5076 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5077   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5078 }
5079 
5080 inline BOOL os::PSApiDll::PSApiAvailable() {
5081   return true;
5082 }
5083 
5084 
5085 // WinSock2 API
5086 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5087   return ::WSAStartup(wVersionRequested, lpWSAData);
5088 }
5089 
5090 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5091   return ::gethostbyname(name);
5092 }
5093 
5094 inline BOOL os::WinSock2Dll::WinSock2Available() {
5095   return true;
5096 }
5097 
5098 // Advapi API
5099 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5100    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5101    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5102      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5103        BufferLength, PreviousState, ReturnLength);
5104 }
5105 
5106 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5107   PHANDLE TokenHandle) {
5108     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5109 }
5110 
5111 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5112   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5113 }
5114 
5115 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5116   return true;
5117 }
5118 
5119 #else
5120 // Kernel32 API
5121 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5122 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5123 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5124 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5125 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5126 
5127 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5128 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5129 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5130 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5131 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5132 
5133 
5134 void os::Kernel32Dll::initialize() {
5135   if (!initialized) {
5136     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5137     assert(handle != NULL, "Just check");
5138 
5139     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5140     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5141       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5142     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5143     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5144     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5145     initializeCommon();  // resolve the functions that always need resolving
5146 
5147     initialized = TRUE;
5148   }
5149 }
5150 
5151 BOOL os::Kernel32Dll::SwitchToThread() {
5152   assert(initialized && _SwitchToThread != NULL,
5153     "SwitchToThreadAvailable() not yet called");
5154   return _SwitchToThread();
5155 }
5156 
5157 
5158 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5159   if (!initialized) {
5160     initialize();
5161   }
5162   return _SwitchToThread != NULL;
5163 }
5164 
5165 // Help tools
5166 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5167   if (!initialized) {
5168     initialize();
5169   }
5170   return _CreateToolhelp32Snapshot != NULL &&
5171          _Module32First != NULL &&
5172          _Module32Next != NULL;
5173 }
5174 
5175 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5176   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5177     "HelpToolsAvailable() not yet called");
5178 
5179   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5180 }
5181 
5182 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5183   assert(initialized && _Module32First != NULL,
5184     "HelpToolsAvailable() not yet called");
5185 
5186   return _Module32First(hSnapshot, lpme);
5187 }
5188 
5189 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5190   assert(initialized && _Module32Next != NULL,
5191     "HelpToolsAvailable() not yet called");
5192 
5193   return _Module32Next(hSnapshot, lpme);
5194 }
5195 
5196 
5197 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5198   if (!initialized) {
5199     initialize();
5200   }
5201   return _GetNativeSystemInfo != NULL;
5202 }
5203 
5204 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5205   assert(initialized && _GetNativeSystemInfo != NULL,
5206     "GetNativeSystemInfoAvailable() not yet called");
5207 
5208   _GetNativeSystemInfo(lpSystemInfo);
5209 }
5210 
5211 
5212 
5213 // PSAPI API
5214 
5215 
5216 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5217 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5218 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5219 
5220 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5221 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5222 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5223 BOOL                    os::PSApiDll::initialized = FALSE;
5224 
5225 void os::PSApiDll::initialize() {
5226   if (!initialized) {
5227     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5228     if (handle != NULL) {
5229       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5230         "EnumProcessModules");
5231       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5232         "GetModuleFileNameExA");
5233       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5234         "GetModuleInformation");
5235     }
5236     initialized = TRUE;
5237   }
5238 }
5239 
5240 
5241 
5242 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5243   assert(initialized && _EnumProcessModules != NULL,
5244     "PSApiAvailable() not yet called");
5245   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5246 }
5247 
5248 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5249   assert(initialized && _GetModuleFileNameEx != NULL,
5250     "PSApiAvailable() not yet called");
5251   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5252 }
5253 
5254 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5255   assert(initialized && _GetModuleInformation != NULL,
5256     "PSApiAvailable() not yet called");
5257   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5258 }
5259 
5260 BOOL os::PSApiDll::PSApiAvailable() {
5261   if (!initialized) {
5262     initialize();
5263   }
5264   return _EnumProcessModules != NULL &&
5265     _GetModuleFileNameEx != NULL &&
5266     _GetModuleInformation != NULL;
5267 }
5268 
5269 
5270 // WinSock2 API
5271 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5272 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5273 
5274 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5275 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5276 BOOL             os::WinSock2Dll::initialized = FALSE;
5277 
5278 void os::WinSock2Dll::initialize() {
5279   if (!initialized) {
5280     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5281     if (handle != NULL) {
5282       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5283       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5284     }
5285     initialized = TRUE;
5286   }
5287 }
5288 
5289 
5290 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5291   assert(initialized && _WSAStartup != NULL,
5292     "WinSock2Available() not yet called");
5293   return _WSAStartup(wVersionRequested, lpWSAData);
5294 }
5295 
5296 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5297   assert(initialized && _gethostbyname != NULL,
5298     "WinSock2Available() not yet called");
5299   return _gethostbyname(name);
5300 }
5301 
5302 BOOL os::WinSock2Dll::WinSock2Available() {
5303   if (!initialized) {
5304     initialize();
5305   }
5306   return _WSAStartup != NULL &&
5307     _gethostbyname != NULL;
5308 }
5309 
5310 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5311 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5312 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5313 
5314 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5315 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5316 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5317 BOOL                     os::Advapi32Dll::initialized = FALSE;
5318 
5319 void os::Advapi32Dll::initialize() {
5320   if (!initialized) {
5321     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5322     if (handle != NULL) {
5323       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5324         "AdjustTokenPrivileges");
5325       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5326         "OpenProcessToken");
5327       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5328         "LookupPrivilegeValueA");
5329     }
5330     initialized = TRUE;
5331   }
5332 }
5333 
5334 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5335    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5336    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5337    assert(initialized && _AdjustTokenPrivileges != NULL,
5338      "AdvapiAvailable() not yet called");
5339    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5340        BufferLength, PreviousState, ReturnLength);
5341 }
5342 
5343 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5344   PHANDLE TokenHandle) {
5345    assert(initialized && _OpenProcessToken != NULL,
5346      "AdvapiAvailable() not yet called");
5347     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5348 }
5349 
5350 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5351    assert(initialized && _LookupPrivilegeValue != NULL,
5352      "AdvapiAvailable() not yet called");
5353   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5354 }
5355 
5356 BOOL os::Advapi32Dll::AdvapiAvailable() {
5357   if (!initialized) {
5358     initialize();
5359   }
5360   return _AdjustTokenPrivileges != NULL &&
5361     _OpenProcessToken != NULL &&
5362     _LookupPrivilegeValue != NULL;
5363 }
5364 
5365 #endif
5366