1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  40 
  41 void referenceProcessor_init() {
  42   ReferenceProcessor::init_statics();
  43 }
  44 
  45 void ReferenceProcessor::init_statics() {
  46   // os::javaTimeMillis() does not guarantee monotonicity.
  47   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  48 
  49   // Initialize the soft ref timestamp clock.
  50   _soft_ref_timestamp_clock = now;
  51   // Also update the soft ref clock in j.l.r.SoftReference
  52   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  53 
  54   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  55   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  56                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  57   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  58     vm_exit_during_initialization("Could not allocate reference policy object");
  59   }
  60   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  61             RefDiscoveryPolicy == ReferentBasedDiscovery,
  62             "Unrecongnized RefDiscoveryPolicy");
  63   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  64 }
  65 
  66 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
  67 #ifdef ASSERT
  68   // Verify that we're not currently discovering refs
  69   assert(!verify_disabled || !_discovering_refs, "nested call?");
  70 
  71   if (check_no_refs) {
  72     // Verify that the discovered lists are empty
  73     verify_no_references_recorded();
  74   }
  75 #endif // ASSERT
  76 
  77   // Someone could have modified the value of the static
  78   // field in the j.l.r.SoftReference class that holds the
  79   // soft reference timestamp clock using reflection or
  80   // Unsafe between GCs. Unconditionally update the static
  81   // field in ReferenceProcessor here so that we use the new
  82   // value during reference discovery.
  83 
  84   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  85   _discovering_refs = true;
  86 }
  87 
  88 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  89                                        bool      mt_processing,
  90                                        int       mt_processing_degree,
  91                                        bool      mt_discovery,
  92                                        int       mt_discovery_degree,
  93                                        bool      atomic_discovery,
  94                                        BoolObjectClosure* is_alive_non_header,
  95                                        bool      discovered_list_needs_barrier)  :
  96   _discovering_refs(false),
  97   _enqueuing_is_done(false),
  98   _is_alive_non_header(is_alive_non_header),
  99   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 100   _bs(NULL),
 101   _processing_is_mt(mt_processing),
 102   _next_id(0)
 103 {
 104   _span = span;
 105   _discovery_is_atomic = atomic_discovery;
 106   _discovery_is_mt     = mt_discovery;
 107   _num_q               = MAX2(1, mt_processing_degree);
 108   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 109   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 110                                           _max_num_q * number_of_subclasses_of_ref());
 111   if (_discovered_refs == NULL) {
 112     vm_exit_during_initialization("Could not allocated RefProc Array");
 113   }
 114   _discoveredSoftRefs    = &_discovered_refs[0];
 115   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 116   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 117   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 118 
 119   // Initialize all entries to NULL
 120   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 121     _discovered_refs[i].set_head(NULL);
 122     _discovered_refs[i].set_length(0);
 123   }
 124 
 125   // If we do barriers, cache a copy of the barrier set.
 126   if (discovered_list_needs_barrier) {
 127     _bs = Universe::heap()->barrier_set();
 128   }
 129   setup_policy(false /* default soft ref policy */);
 130 }
 131 
 132 #ifndef PRODUCT
 133 void ReferenceProcessor::verify_no_references_recorded() {
 134   guarantee(!_discovering_refs, "Discovering refs?");
 135   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 136     guarantee(_discovered_refs[i].is_empty(),
 137               "Found non-empty discovered list");
 138   }
 139 }
 140 #endif
 141 
 142 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 143   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 144     if (UseCompressedOops) {
 145       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 146     } else {
 147       f->do_oop((oop*)_discovered_refs[i].adr_head());
 148     }
 149   }
 150 }
 151 
 152 void ReferenceProcessor::update_soft_ref_master_clock() {
 153   // Update (advance) the soft ref master clock field. This must be done
 154   // after processing the soft ref list.
 155 
 156   // os::javaTimeMillis() does not guarantee monotonicity.
 157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 160 
 161   NOT_PRODUCT(
 162   if (now < _soft_ref_timestamp_clock) {
 163     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
 164             _soft_ref_timestamp_clock, now);
 165   }
 166   )
 167   // In product mode, protect ourselves from system time being adjusted
 168   // externally and going backward; see note in the implementation of
 169   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 170   // this uniformly throughout the VM; see bug-id 4741166. XXX
 171   if (now > _soft_ref_timestamp_clock) {
 172     _soft_ref_timestamp_clock = now;
 173     java_lang_ref_SoftReference::set_clock(now);
 174   }
 175   // Else leave clock stalled at its old value until time progresses
 176   // past clock value.
 177 }
 178 
 179 void ReferenceProcessor::process_discovered_references(
 180   BoolObjectClosure*           is_alive,
 181   OopClosure*                  keep_alive,
 182   VoidClosure*                 complete_gc,
 183   AbstractRefProcTaskExecutor* task_executor) {
 184   NOT_PRODUCT(verify_ok_to_handle_reflists());
 185 
 186   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 187   // Stop treating discovered references specially.
 188   disable_discovery();
 189 
 190   // If discovery was concurrent, someone could have modified
 191   // the value of the static field in the j.l.r.SoftReference
 192   // class that holds the soft reference timestamp clock using
 193   // reflection or Unsafe between when discovery was enabled and
 194   // now. Unconditionally update the static field in ReferenceProcessor
 195   // here so that we use the new value during processing of the
 196   // discovered soft refs.
 197 
 198   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 199 
 200   bool trace_time = PrintGCDetails && PrintReferenceGC;
 201   // Soft references
 202   {
 203     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 204     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 205                                is_alive, keep_alive, complete_gc, task_executor);
 206   }
 207 
 208   update_soft_ref_master_clock();
 209 
 210   // Weak references
 211   {
 212     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 213     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 214                                is_alive, keep_alive, complete_gc, task_executor);
 215   }
 216 
 217   // Final references
 218   {
 219     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 220     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 221                                is_alive, keep_alive, complete_gc, task_executor);
 222   }
 223 
 224   // Phantom references
 225   {
 226     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 227     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 228                                is_alive, keep_alive, complete_gc, task_executor);
 229   }
 230 
 231   // Weak global JNI references. It would make more sense (semantically) to
 232   // traverse these simultaneously with the regular weak references above, but
 233   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 234   // thus use JNI weak references to circumvent the phantom references and
 235   // resurrect a "post-mortem" object.
 236   {
 237     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 238     if (task_executor != NULL) {
 239       task_executor->set_single_threaded_mode();
 240     }
 241     process_phaseJNI(is_alive, keep_alive, complete_gc);
 242   }
 243 }
 244 
 245 #ifndef PRODUCT
 246 // Calculate the number of jni handles.
 247 uint ReferenceProcessor::count_jni_refs() {
 248   class AlwaysAliveClosure: public BoolObjectClosure {
 249   public:
 250     virtual bool do_object_b(oop obj) { return true; }
 251     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 252   };
 253 
 254   class CountHandleClosure: public OopClosure {
 255   private:
 256     int _count;
 257   public:
 258     CountHandleClosure(): _count(0) {}
 259     void do_oop(oop* unused)       { _count++; }
 260     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 261     int count() { return _count; }
 262   };
 263   CountHandleClosure global_handle_count;
 264   AlwaysAliveClosure always_alive;
 265   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 266   return global_handle_count.count();
 267 }
 268 #endif
 269 
 270 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 271                                           OopClosure*        keep_alive,
 272                                           VoidClosure*       complete_gc) {
 273 #ifndef PRODUCT
 274   if (PrintGCDetails && PrintReferenceGC) {
 275     unsigned int count = count_jni_refs();
 276     gclog_or_tty->print(", %u refs", count);
 277   }
 278 #endif
 279   JNIHandles::weak_oops_do(is_alive, keep_alive);
 280   complete_gc->do_void();
 281 }
 282 
 283 
 284 template <class T>
 285 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 286                                    AbstractRefProcTaskExecutor* task_executor) {
 287 
 288   // Remember old value of pending references list
 289   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 290   T old_pending_list_value = *pending_list_addr;
 291 
 292   // Enqueue references that are not made active again, and
 293   // clear the decks for the next collection (cycle).
 294   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 295   // Do the oop-check on pending_list_addr missed in
 296   // enqueue_discovered_reflist. We should probably
 297   // do a raw oop_check so that future such idempotent
 298   // oop_stores relying on the oop-check side-effect
 299   // may be elided automatically and safely without
 300   // affecting correctness.
 301   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 302 
 303   // Stop treating discovered references specially.
 304   ref->disable_discovery();
 305 
 306   // Return true if new pending references were added
 307   return old_pending_list_value != *pending_list_addr;
 308 }
 309 
 310 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 311   NOT_PRODUCT(verify_ok_to_handle_reflists());
 312   if (UseCompressedOops) {
 313     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 314   } else {
 315     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 316   }
 317 }
 318 
 319 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 320                                                     HeapWord* pending_list_addr) {
 321   // Given a list of refs linked through the "discovered" field
 322   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 323   // thus distinguishing them from active References, then
 324   // prepend them to the pending list.
 325   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 326   // the "next" field is used to chain the pending list, not the discovered
 327   // field.
 328 
 329   if (TraceReferenceGC && PrintGCDetails) {
 330     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 331                            INTPTR_FORMAT, (address)refs_list.head());
 332   }
 333 
 334   oop obj = NULL;
 335   oop next_d = refs_list.head();
 336   if (pending_list_uses_discovered_field()) { // New behaviour
 337     // Walk down the list, self-looping the next field
 338     // so that the References are not considered active.
 339     while (obj != next_d) {
 340       obj = next_d;
 341       assert(obj->is_instanceRef(), "should be reference object");
 342       next_d = java_lang_ref_Reference::discovered(obj);
 343       if (TraceReferenceGC && PrintGCDetails) {
 344         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 345                                obj, next_d);
 346       }
 347       assert(java_lang_ref_Reference::next(obj) == NULL,
 348              "Reference not active; should not be discovered");
 349       // Self-loop next, so as to make Ref not active.
 350       java_lang_ref_Reference::set_next(obj, obj);
 351       if (next_d == obj) {  // obj is last
 352         // Swap refs_list into pendling_list_addr and
 353         // set obj's discovered to what we read from pending_list_addr.
 354         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 355         // Need oop_check on pending_list_addr above;
 356         // see special oop-check code at the end of
 357         // enqueue_discovered_reflists() further below.
 358         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
 359       }
 360     }
 361   } else { // Old behaviour
 362     // Walk down the list, copying the discovered field into
 363     // the next field and clearing the discovered field.
 364     while (obj != next_d) {
 365       obj = next_d;
 366       assert(obj->is_instanceRef(), "should be reference object");
 367       next_d = java_lang_ref_Reference::discovered(obj);
 368       if (TraceReferenceGC && PrintGCDetails) {
 369         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 370                                obj, next_d);
 371       }
 372       assert(java_lang_ref_Reference::next(obj) == NULL,
 373              "The reference should not be enqueued");
 374       if (next_d == obj) {  // obj is last
 375         // Swap refs_list into pendling_list_addr and
 376         // set obj's next to what we read from pending_list_addr.
 377         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 378         // Need oop_check on pending_list_addr above;
 379         // see special oop-check code at the end of
 380         // enqueue_discovered_reflists() further below.
 381         if (old == NULL) {
 382           // obj should be made to point to itself, since
 383           // pending list was empty.
 384           java_lang_ref_Reference::set_next(obj, obj);
 385         } else {
 386           java_lang_ref_Reference::set_next(obj, old);
 387         }
 388       } else {
 389         java_lang_ref_Reference::set_next(obj, next_d);
 390       }
 391       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 392     }
 393   }
 394 }
 395 
 396 // Parallel enqueue task
 397 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 398 public:
 399   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 400                      DiscoveredList      discovered_refs[],
 401                      HeapWord*           pending_list_addr,
 402                      int                 n_queues)
 403     : EnqueueTask(ref_processor, discovered_refs,
 404                   pending_list_addr, n_queues)
 405   { }
 406 
 407   virtual void work(unsigned int work_id) {
 408     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 409     // Simplest first cut: static partitioning.
 410     int index = work_id;
 411     // The increment on "index" must correspond to the maximum number of queues
 412     // (n_queues) with which that ReferenceProcessor was created.  That
 413     // is because of the "clever" way the discovered references lists were
 414     // allocated and are indexed into.
 415     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 416     for (int j = 0;
 417          j < ReferenceProcessor::number_of_subclasses_of_ref();
 418          j++, index += _n_queues) {
 419       _ref_processor.enqueue_discovered_reflist(
 420         _refs_lists[index], _pending_list_addr);
 421       _refs_lists[index].set_head(NULL);
 422       _refs_lists[index].set_length(0);
 423     }
 424   }
 425 };
 426 
 427 // Enqueue references that are not made active again
 428 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 429   AbstractRefProcTaskExecutor* task_executor) {
 430   if (_processing_is_mt && task_executor != NULL) {
 431     // Parallel code
 432     RefProcEnqueueTask tsk(*this, _discovered_refs,
 433                            pending_list_addr, _max_num_q);
 434     task_executor->execute(tsk);
 435   } else {
 436     // Serial code: call the parent class's implementation
 437     for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 438       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 439       _discovered_refs[i].set_head(NULL);
 440       _discovered_refs[i].set_length(0);
 441     }
 442   }
 443 }
 444 
 445 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 446   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 447   oop discovered = java_lang_ref_Reference::discovered(_ref);
 448   assert(_discovered_addr && discovered->is_oop_or_null(),
 449          "discovered field is bad");
 450   _next = discovered;
 451   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 452   _referent = java_lang_ref_Reference::referent(_ref);
 453   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 454          "Wrong oop found in java.lang.Reference object");
 455   assert(allow_null_referent ?
 456              _referent->is_oop_or_null()
 457            : _referent->is_oop(),
 458          "bad referent");
 459 }
 460 
 461 void DiscoveredListIterator::remove() {
 462   assert(_ref->is_oop(), "Dropping a bad reference");
 463   oop_store_raw(_discovered_addr, NULL);
 464 
 465   // First _prev_next ref actually points into DiscoveredList (gross).
 466   oop new_next;
 467   if (_next == _ref) {
 468     // At the end of the list, we should make _prev point to itself.
 469     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 470     // and _prev will be NULL.
 471     new_next = _prev;
 472   } else {
 473     new_next = _next;
 474   }
 475 
 476   if (UseCompressedOops) {
 477     // Remove Reference object from list.
 478     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 479   } else {
 480     // Remove Reference object from list.
 481     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 482   }
 483   NOT_PRODUCT(_removed++);
 484   _refs_list.dec_length(1);
 485 }
 486 
 487 // Make the Reference object active again.
 488 void DiscoveredListIterator::make_active() {
 489   // For G1 we don't want to use set_next - it
 490   // will dirty the card for the next field of
 491   // the reference object and will fail
 492   // CT verification.
 493   if (UseG1GC) {
 494     BarrierSet* bs = oopDesc::bs();
 495     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 496 
 497     if (UseCompressedOops) {
 498       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
 499     } else {
 500       bs->write_ref_field_pre((oop*)next_addr, NULL);
 501     }
 502     java_lang_ref_Reference::set_next_raw(_ref, NULL);
 503   } else {
 504     java_lang_ref_Reference::set_next(_ref, NULL);
 505   }
 506 }
 507 
 508 void DiscoveredListIterator::clear_referent() {
 509   oop_store_raw(_referent_addr, NULL);
 510 }
 511 
 512 // NOTE: process_phase*() are largely similar, and at a high level
 513 // merely iterate over the extant list applying a predicate to
 514 // each of its elements and possibly removing that element from the
 515 // list and applying some further closures to that element.
 516 // We should consider the possibility of replacing these
 517 // process_phase*() methods by abstracting them into
 518 // a single general iterator invocation that receives appropriate
 519 // closures that accomplish this work.
 520 
 521 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 522 // referents are not alive, but that should be kept alive for policy reasons.
 523 // Keep alive the transitive closure of all such referents.
 524 void
 525 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 526                                    ReferencePolicy*   policy,
 527                                    BoolObjectClosure* is_alive,
 528                                    OopClosure*        keep_alive,
 529                                    VoidClosure*       complete_gc) {
 530   assert(policy != NULL, "Must have a non-NULL policy");
 531   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 532   // Decide which softly reachable refs should be kept alive.
 533   while (iter.has_next()) {
 534     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 535     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 536     if (referent_is_dead &&
 537         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 538       if (TraceReferenceGC) {
 539         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 540                                iter.obj(), iter.obj()->blueprint()->internal_name());
 541       }
 542       // Remove Reference object from list
 543       iter.remove();
 544       // Make the Reference object active again
 545       iter.make_active();
 546       // keep the referent around
 547       iter.make_referent_alive();
 548       iter.move_to_next();
 549     } else {
 550       iter.next();
 551     }
 552   }
 553   // Close the reachable set
 554   complete_gc->do_void();
 555   NOT_PRODUCT(
 556     if (PrintGCDetails && TraceReferenceGC) {
 557       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 558         "discovered Refs by policy, from list " INTPTR_FORMAT,
 559         iter.removed(), iter.processed(), (address)refs_list.head());
 560     }
 561   )
 562 }
 563 
 564 // Traverse the list and remove any Refs that are not active, or
 565 // whose referents are either alive or NULL.
 566 void
 567 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 568                              BoolObjectClosure* is_alive,
 569                              OopClosure*        keep_alive) {
 570   assert(discovery_is_atomic(), "Error");
 571   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 572   while (iter.has_next()) {
 573     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 574     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 575     assert(next == NULL, "Should not discover inactive Reference");
 576     if (iter.is_referent_alive()) {
 577       if (TraceReferenceGC) {
 578         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 579                                iter.obj(), iter.obj()->blueprint()->internal_name());
 580       }
 581       // The referent is reachable after all.
 582       // Remove Reference object from list.
 583       iter.remove();
 584       // Update the referent pointer as necessary: Note that this
 585       // should not entail any recursive marking because the
 586       // referent must already have been traversed.
 587       iter.make_referent_alive();
 588       iter.move_to_next();
 589     } else {
 590       iter.next();
 591     }
 592   }
 593   NOT_PRODUCT(
 594     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 595       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 596         "Refs in discovered list " INTPTR_FORMAT,
 597         iter.removed(), iter.processed(), (address)refs_list.head());
 598     }
 599   )
 600 }
 601 
 602 void
 603 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 604                                                   BoolObjectClosure* is_alive,
 605                                                   OopClosure*        keep_alive,
 606                                                   VoidClosure*       complete_gc) {
 607   assert(!discovery_is_atomic(), "Error");
 608   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 609   while (iter.has_next()) {
 610     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 611     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 612     oop next = java_lang_ref_Reference::next(iter.obj());
 613     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 614          next != NULL)) {
 615       assert(next->is_oop_or_null(), "bad next field");
 616       // Remove Reference object from list
 617       iter.remove();
 618       // Trace the cohorts
 619       iter.make_referent_alive();
 620       if (UseCompressedOops) {
 621         keep_alive->do_oop((narrowOop*)next_addr);
 622       } else {
 623         keep_alive->do_oop((oop*)next_addr);
 624       }
 625       iter.move_to_next();
 626     } else {
 627       iter.next();
 628     }
 629   }
 630   // Now close the newly reachable set
 631   complete_gc->do_void();
 632   NOT_PRODUCT(
 633     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 634       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 635         "Refs in discovered list " INTPTR_FORMAT,
 636         iter.removed(), iter.processed(), (address)refs_list.head());
 637     }
 638   )
 639 }
 640 
 641 // Traverse the list and process the referents, by either
 642 // clearing them or keeping them (and their reachable
 643 // closure) alive.
 644 void
 645 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 646                                    bool               clear_referent,
 647                                    BoolObjectClosure* is_alive,
 648                                    OopClosure*        keep_alive,
 649                                    VoidClosure*       complete_gc) {
 650   ResourceMark rm;
 651   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 652   while (iter.has_next()) {
 653     iter.update_discovered();
 654     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 655     if (clear_referent) {
 656       // NULL out referent pointer
 657       iter.clear_referent();
 658     } else {
 659       // keep the referent around
 660       iter.make_referent_alive();
 661     }
 662     if (TraceReferenceGC) {
 663       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 664                              clear_referent ? "cleared " : "",
 665                              iter.obj(), iter.obj()->blueprint()->internal_name());
 666     }
 667     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 668     iter.next();
 669   }
 670   // Remember to update the next pointer of the last ref.
 671   iter.update_discovered();
 672   // Close the reachable set
 673   complete_gc->do_void();
 674 }
 675 
 676 void
 677 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 678   oop obj = NULL;
 679   oop next = refs_list.head();
 680   while (next != obj) {
 681     obj = next;
 682     next = java_lang_ref_Reference::discovered(obj);
 683     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 684   }
 685   refs_list.set_head(NULL);
 686   refs_list.set_length(0);
 687 }
 688 
 689 void
 690 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 691   clear_discovered_references(refs_list);
 692 }
 693 
 694 void ReferenceProcessor::abandon_partial_discovery() {
 695   // loop over the lists
 696   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 697     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 698       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 699     }
 700     abandon_partial_discovered_list(_discovered_refs[i]);
 701   }
 702 }
 703 
 704 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 705 public:
 706   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 707                     DiscoveredList      refs_lists[],
 708                     ReferencePolicy*    policy,
 709                     bool                marks_oops_alive)
 710     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 711       _policy(policy)
 712   { }
 713   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 714                     OopClosure& keep_alive,
 715                     VoidClosure& complete_gc)
 716   {
 717     Thread* thr = Thread::current();
 718     int refs_list_index = ((WorkerThread*)thr)->id();
 719     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 720                                   &is_alive, &keep_alive, &complete_gc);
 721   }
 722 private:
 723   ReferencePolicy* _policy;
 724 };
 725 
 726 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 727 public:
 728   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 729                     DiscoveredList      refs_lists[],
 730                     bool                marks_oops_alive)
 731     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 732   { }
 733   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 734                     OopClosure& keep_alive,
 735                     VoidClosure& complete_gc)
 736   {
 737     _ref_processor.process_phase2(_refs_lists[i],
 738                                   &is_alive, &keep_alive, &complete_gc);
 739   }
 740 };
 741 
 742 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 743 public:
 744   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 745                     DiscoveredList      refs_lists[],
 746                     bool                clear_referent,
 747                     bool                marks_oops_alive)
 748     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 749       _clear_referent(clear_referent)
 750   { }
 751   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 752                     OopClosure& keep_alive,
 753                     VoidClosure& complete_gc)
 754   {
 755     // Don't use "refs_list_index" calculated in this way because
 756     // balance_queues() has moved the Ref's into the first n queues.
 757     // Thread* thr = Thread::current();
 758     // int refs_list_index = ((WorkerThread*)thr)->id();
 759     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 760     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 761                                   &is_alive, &keep_alive, &complete_gc);
 762   }
 763 private:
 764   bool _clear_referent;
 765 };
 766 
 767 void ReferenceProcessor::set_discovered(oop ref, oop value) {
 768   if (_discovered_list_needs_barrier) {
 769     java_lang_ref_Reference::set_discovered(ref, value);
 770   } else {
 771     java_lang_ref_Reference::set_discovered_raw(ref, value);
 772   }
 773 }
 774 
 775 // Balances reference queues.
 776 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 777 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 778 // corresponding to the active workers will be processed.
 779 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 780 {
 781   // calculate total length
 782   size_t total_refs = 0;
 783   if (TraceReferenceGC && PrintGCDetails) {
 784     gclog_or_tty->print_cr("\nBalance ref_lists ");
 785   }
 786 
 787   for (int i = 0; i < _max_num_q; ++i) {
 788     total_refs += ref_lists[i].length();
 789     if (TraceReferenceGC && PrintGCDetails) {
 790       gclog_or_tty->print("%d ", ref_lists[i].length());
 791     }
 792   }
 793   if (TraceReferenceGC && PrintGCDetails) {
 794     gclog_or_tty->print_cr(" = %d", total_refs);
 795   }
 796   size_t avg_refs = total_refs / _num_q + 1;
 797   int to_idx = 0;
 798   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 799     bool move_all = false;
 800     if (from_idx >= _num_q) {
 801       move_all = ref_lists[from_idx].length() > 0;
 802     }
 803     while ((ref_lists[from_idx].length() > avg_refs) ||
 804            move_all) {
 805       assert(to_idx < _num_q, "Sanity Check!");
 806       if (ref_lists[to_idx].length() < avg_refs) {
 807         // move superfluous refs
 808         size_t refs_to_move;
 809         // Move all the Ref's if the from queue will not be processed.
 810         if (move_all) {
 811           refs_to_move = MIN2(ref_lists[from_idx].length(),
 812                               avg_refs - ref_lists[to_idx].length());
 813         } else {
 814           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 815                               avg_refs - ref_lists[to_idx].length());
 816         }
 817 
 818         assert(refs_to_move > 0, "otherwise the code below will fail");
 819 
 820         oop move_head = ref_lists[from_idx].head();
 821         oop move_tail = move_head;
 822         oop new_head  = move_head;
 823         // find an element to split the list on
 824         for (size_t j = 0; j < refs_to_move; ++j) {
 825           move_tail = new_head;
 826           new_head = java_lang_ref_Reference::discovered(new_head);
 827         }
 828 
 829         // Add the chain to the to list.
 830         if (ref_lists[to_idx].head() == NULL) {
 831           // to list is empty. Make a loop at the end.
 832           set_discovered(move_tail, move_tail);
 833         } else {
 834           set_discovered(move_tail, ref_lists[to_idx].head());
 835         }
 836         ref_lists[to_idx].set_head(move_head);
 837         ref_lists[to_idx].inc_length(refs_to_move);
 838 
 839         // Remove the chain from the from list.
 840         if (move_tail == new_head) {
 841           // We found the end of the from list.
 842           ref_lists[from_idx].set_head(NULL);
 843         } else {
 844           ref_lists[from_idx].set_head(new_head);
 845         }
 846         ref_lists[from_idx].dec_length(refs_to_move);
 847         if (ref_lists[from_idx].length() == 0) {
 848           break;
 849         }
 850       } else {
 851         to_idx = (to_idx + 1) % _num_q;
 852       }
 853     }
 854   }
 855 #ifdef ASSERT
 856   size_t balanced_total_refs = 0;
 857   for (int i = 0; i < _max_num_q; ++i) {
 858     balanced_total_refs += ref_lists[i].length();
 859     if (TraceReferenceGC && PrintGCDetails) {
 860       gclog_or_tty->print("%d ", ref_lists[i].length());
 861     }
 862   }
 863   if (TraceReferenceGC && PrintGCDetails) {
 864     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 865     gclog_or_tty->flush();
 866   }
 867   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 868 #endif
 869 }
 870 
 871 void ReferenceProcessor::balance_all_queues() {
 872   balance_queues(_discoveredSoftRefs);
 873   balance_queues(_discoveredWeakRefs);
 874   balance_queues(_discoveredFinalRefs);
 875   balance_queues(_discoveredPhantomRefs);
 876 }
 877 
 878 void
 879 ReferenceProcessor::process_discovered_reflist(
 880   DiscoveredList               refs_lists[],
 881   ReferencePolicy*             policy,
 882   bool                         clear_referent,
 883   BoolObjectClosure*           is_alive,
 884   OopClosure*                  keep_alive,
 885   VoidClosure*                 complete_gc,
 886   AbstractRefProcTaskExecutor* task_executor)
 887 {
 888   bool mt_processing = task_executor != NULL && _processing_is_mt;
 889   // If discovery used MT and a dynamic number of GC threads, then
 890   // the queues must be balanced for correctness if fewer than the
 891   // maximum number of queues were used.  The number of queue used
 892   // during discovery may be different than the number to be used
 893   // for processing so don't depend of _num_q < _max_num_q as part
 894   // of the test.
 895   bool must_balance = _discovery_is_mt;
 896 
 897   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 898       must_balance) {
 899     balance_queues(refs_lists);
 900   }
 901   if (PrintReferenceGC && PrintGCDetails) {
 902     size_t total = 0;
 903     for (int i = 0; i < _max_num_q; ++i) {
 904       total += refs_lists[i].length();
 905     }
 906     gclog_or_tty->print(", %u refs", total);
 907   }
 908 
 909   // Phase 1 (soft refs only):
 910   // . Traverse the list and remove any SoftReferences whose
 911   //   referents are not alive, but that should be kept alive for
 912   //   policy reasons. Keep alive the transitive closure of all
 913   //   such referents.
 914   if (policy != NULL) {
 915     if (mt_processing) {
 916       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 917       task_executor->execute(phase1);
 918     } else {
 919       for (int i = 0; i < _max_num_q; i++) {
 920         process_phase1(refs_lists[i], policy,
 921                        is_alive, keep_alive, complete_gc);
 922       }
 923     }
 924   } else { // policy == NULL
 925     assert(refs_lists != _discoveredSoftRefs,
 926            "Policy must be specified for soft references.");
 927   }
 928 
 929   // Phase 2:
 930   // . Traverse the list and remove any refs whose referents are alive.
 931   if (mt_processing) {
 932     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 933     task_executor->execute(phase2);
 934   } else {
 935     for (int i = 0; i < _max_num_q; i++) {
 936       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 937     }
 938   }
 939 
 940   // Phase 3:
 941   // . Traverse the list and process referents as appropriate.
 942   if (mt_processing) {
 943     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 944     task_executor->execute(phase3);
 945   } else {
 946     for (int i = 0; i < _max_num_q; i++) {
 947       process_phase3(refs_lists[i], clear_referent,
 948                      is_alive, keep_alive, complete_gc);
 949     }
 950   }
 951 }
 952 
 953 void ReferenceProcessor::clean_up_discovered_references() {
 954   // loop over the lists
 955   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 956     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 957       gclog_or_tty->print_cr(
 958         "\nScrubbing %s discovered list of Null referents",
 959         list_name(i));
 960     }
 961     clean_up_discovered_reflist(_discovered_refs[i]);
 962   }
 963 }
 964 
 965 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 966   assert(!discovery_is_atomic(), "Else why call this method?");
 967   DiscoveredListIterator iter(refs_list, NULL, NULL);
 968   while (iter.has_next()) {
 969     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 970     oop next = java_lang_ref_Reference::next(iter.obj());
 971     assert(next->is_oop_or_null(), "bad next field");
 972     // If referent has been cleared or Reference is not active,
 973     // drop it.
 974     if (iter.referent() == NULL || next != NULL) {
 975       debug_only(
 976         if (PrintGCDetails && TraceReferenceGC) {
 977           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 978             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 979             " and referent: " INTPTR_FORMAT,
 980             iter.obj(), next, iter.referent());
 981         }
 982       )
 983       // Remove Reference object from list
 984       iter.remove();
 985       iter.move_to_next();
 986     } else {
 987       iter.next();
 988     }
 989   }
 990   NOT_PRODUCT(
 991     if (PrintGCDetails && TraceReferenceGC) {
 992       gclog_or_tty->print(
 993         " Removed %d Refs with NULL referents out of %d discovered Refs",
 994         iter.removed(), iter.processed());
 995     }
 996   )
 997 }
 998 
 999 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1000   int id = 0;
1001   // Determine the queue index to use for this object.
1002   if (_discovery_is_mt) {
1003     // During a multi-threaded discovery phase,
1004     // each thread saves to its "own" list.
1005     Thread* thr = Thread::current();
1006     id = thr->as_Worker_thread()->id();
1007   } else {
1008     // single-threaded discovery, we save in round-robin
1009     // fashion to each of the lists.
1010     if (_processing_is_mt) {
1011       id = next_id();
1012     }
1013   }
1014   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1015 
1016   // Get the discovered queue to which we will add
1017   DiscoveredList* list = NULL;
1018   switch (rt) {
1019     case REF_OTHER:
1020       // Unknown reference type, no special treatment
1021       break;
1022     case REF_SOFT:
1023       list = &_discoveredSoftRefs[id];
1024       break;
1025     case REF_WEAK:
1026       list = &_discoveredWeakRefs[id];
1027       break;
1028     case REF_FINAL:
1029       list = &_discoveredFinalRefs[id];
1030       break;
1031     case REF_PHANTOM:
1032       list = &_discoveredPhantomRefs[id];
1033       break;
1034     case REF_NONE:
1035       // we should not reach here if we are an instanceRefKlass
1036     default:
1037       ShouldNotReachHere();
1038   }
1039   if (TraceReferenceGC && PrintGCDetails) {
1040     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1041   }
1042   return list;
1043 }
1044 
1045 inline void
1046 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1047                                               oop             obj,
1048                                               HeapWord*       discovered_addr) {
1049   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1050   // First we must make sure this object is only enqueued once. CAS in a non null
1051   // discovered_addr.
1052   oop current_head = refs_list.head();
1053   // The last ref must have its discovered field pointing to itself.
1054   oop next_discovered = (current_head != NULL) ? current_head : obj;
1055 
1056   // Note: In the case of G1, this specific pre-barrier is strictly
1057   // not necessary because the only case we are interested in
1058   // here is when *discovered_addr is NULL (see the CAS further below),
1059   // so this will expand to nothing. As a result, we have manually
1060   // elided this out for G1, but left in the test for some future
1061   // collector that might have need for a pre-barrier here, e.g.:-
1062   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1063   assert(!_discovered_list_needs_barrier || UseG1GC,
1064          "Need to check non-G1 collector: "
1065          "may need a pre-write-barrier for CAS from NULL below");
1066   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1067                                                     NULL);
1068   if (retest == NULL) {
1069     // This thread just won the right to enqueue the object.
1070     // We have separate lists for enqueueing, so no synchronization
1071     // is necessary.
1072     refs_list.set_head(obj);
1073     refs_list.inc_length(1);
1074     if (_discovered_list_needs_barrier) {
1075       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1076     }
1077 
1078     if (TraceReferenceGC) {
1079       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1080                              obj, obj->blueprint()->internal_name());
1081     }
1082   } else {
1083     // If retest was non NULL, another thread beat us to it:
1084     // The reference has already been discovered...
1085     if (TraceReferenceGC) {
1086       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1087                              obj, obj->blueprint()->internal_name());
1088     }
1089   }
1090 }
1091 
1092 #ifndef PRODUCT
1093 // Non-atomic (i.e. concurrent) discovery might allow us
1094 // to observe j.l.References with NULL referents, being those
1095 // cleared concurrently by mutators during (or after) discovery.
1096 void ReferenceProcessor::verify_referent(oop obj) {
1097   bool da = discovery_is_atomic();
1098   oop referent = java_lang_ref_Reference::referent(obj);
1099   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1100          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1101                  INTPTR_FORMAT " during %satomic discovery ",
1102                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1103 }
1104 #endif
1105 
1106 // We mention two of several possible choices here:
1107 // #0: if the reference object is not in the "originating generation"
1108 //     (or part of the heap being collected, indicated by our "span"
1109 //     we don't treat it specially (i.e. we scan it as we would
1110 //     a normal oop, treating its references as strong references).
1111 //     This means that references can't be discovered unless their
1112 //     referent is also in the same span. This is the simplest,
1113 //     most "local" and most conservative approach, albeit one
1114 //     that may cause weak references to be enqueued least promptly.
1115 //     We call this choice the "ReferenceBasedDiscovery" policy.
1116 // #1: the reference object may be in any generation (span), but if
1117 //     the referent is in the generation (span) being currently collected
1118 //     then we can discover the reference object, provided
1119 //     the object has not already been discovered by
1120 //     a different concurrently running collector (as may be the
1121 //     case, for instance, if the reference object is in CMS and
1122 //     the referent in DefNewGeneration), and provided the processing
1123 //     of this reference object by the current collector will
1124 //     appear atomic to every other collector in the system.
1125 //     (Thus, for instance, a concurrent collector may not
1126 //     discover references in other generations even if the
1127 //     referent is in its own generation). This policy may,
1128 //     in certain cases, enqueue references somewhat sooner than
1129 //     might Policy #0 above, but at marginally increased cost
1130 //     and complexity in processing these references.
1131 //     We call this choice the "RefeferentBasedDiscovery" policy.
1132 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1133   // Make sure we are discovering refs (rather than processing discovered refs).
1134   if (!_discovering_refs || !RegisterReferences) {
1135     return false;
1136   }
1137   // We only discover active references.
1138   oop next = java_lang_ref_Reference::next(obj);
1139   if (next != NULL) {   // Ref is no longer active
1140     return false;
1141   }
1142 
1143   HeapWord* obj_addr = (HeapWord*)obj;
1144   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1145       !_span.contains(obj_addr)) {
1146     // Reference is not in the originating generation;
1147     // don't treat it specially (i.e. we want to scan it as a normal
1148     // object with strong references).
1149     return false;
1150   }
1151 
1152   // We only discover references whose referents are not (yet)
1153   // known to be strongly reachable.
1154   if (is_alive_non_header() != NULL) {
1155     verify_referent(obj);
1156     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1157       return false;  // referent is reachable
1158     }
1159   }
1160   if (rt == REF_SOFT) {
1161     // For soft refs we can decide now if these are not
1162     // current candidates for clearing, in which case we
1163     // can mark through them now, rather than delaying that
1164     // to the reference-processing phase. Since all current
1165     // time-stamp policies advance the soft-ref clock only
1166     // at a major collection cycle, this is always currently
1167     // accurate.
1168     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1169       return false;
1170     }
1171   }
1172 
1173   ResourceMark rm;      // Needed for tracing.
1174 
1175   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1176   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1177   assert(discovered->is_oop_or_null(), "bad discovered field");
1178   if (discovered != NULL) {
1179     // The reference has already been discovered...
1180     if (TraceReferenceGC) {
1181       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1182                              obj, obj->blueprint()->internal_name());
1183     }
1184     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1185       // assumes that an object is not processed twice;
1186       // if it's been already discovered it must be on another
1187       // generation's discovered list; so we won't discover it.
1188       return false;
1189     } else {
1190       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1191              "Unrecognized policy");
1192       // Check assumption that an object is not potentially
1193       // discovered twice except by concurrent collectors that potentially
1194       // trace the same Reference object twice.
1195       assert(UseConcMarkSweepGC || UseG1GC,
1196              "Only possible with a concurrent marking collector");
1197       return true;
1198     }
1199   }
1200 
1201   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1202     verify_referent(obj);
1203     // Discover if and only if EITHER:
1204     // .. reference is in our span, OR
1205     // .. we are an atomic collector and referent is in our span
1206     if (_span.contains(obj_addr) ||
1207         (discovery_is_atomic() &&
1208          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1209       // should_enqueue = true;
1210     } else {
1211       return false;
1212     }
1213   } else {
1214     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1215            _span.contains(obj_addr), "code inconsistency");
1216   }
1217 
1218   // Get the right type of discovered queue head.
1219   DiscoveredList* list = get_discovered_list(rt);
1220   if (list == NULL) {
1221     return false;   // nothing special needs to be done
1222   }
1223 
1224   if (_discovery_is_mt) {
1225     add_to_discovered_list_mt(*list, obj, discovered_addr);
1226   } else {
1227     // If "_discovered_list_needs_barrier", we do write barriers when
1228     // updating the discovered reference list.  Otherwise, we do a raw store
1229     // here: the field will be visited later when processing the discovered
1230     // references.
1231     oop current_head = list->head();
1232     // The last ref must have its discovered field pointing to itself.
1233     oop next_discovered = (current_head != NULL) ? current_head : obj;
1234 
1235     // As in the case further above, since we are over-writing a NULL
1236     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1237     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1238     assert(discovered == NULL, "control point invariant");
1239     assert(!_discovered_list_needs_barrier || UseG1GC,
1240            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
1241     oop_store_raw(discovered_addr, next_discovered);
1242     if (_discovered_list_needs_barrier) {
1243       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1244     }
1245     list->set_head(obj);
1246     list->inc_length(1);
1247 
1248     if (TraceReferenceGC) {
1249       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1250                                 obj, obj->blueprint()->internal_name());
1251     }
1252   }
1253   assert(obj->is_oop(), "Discovered a bad reference");
1254   verify_referent(obj);
1255   return true;
1256 }
1257 
1258 // Preclean the discovered references by removing those
1259 // whose referents are alive, and by marking from those that
1260 // are not active. These lists can be handled here
1261 // in any order and, indeed, concurrently.
1262 void ReferenceProcessor::preclean_discovered_references(
1263   BoolObjectClosure* is_alive,
1264   OopClosure* keep_alive,
1265   VoidClosure* complete_gc,
1266   YieldClosure* yield,
1267   bool should_unload_classes) {
1268 
1269   NOT_PRODUCT(verify_ok_to_handle_reflists());
1270 
1271 #ifdef ASSERT
1272   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1273                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1274                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1275                                  UseConcMarkSweepGC && should_unload_classes;
1276   RememberKlassesChecker mx(must_remember_klasses);
1277 #endif
1278   // Soft references
1279   {
1280     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1281               false, gclog_or_tty);
1282     for (int i = 0; i < _max_num_q; i++) {
1283       if (yield->should_return()) {
1284         return;
1285       }
1286       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1287                                   keep_alive, complete_gc, yield);
1288     }
1289   }
1290 
1291   // Weak references
1292   {
1293     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1294               false, gclog_or_tty);
1295     for (int i = 0; i < _max_num_q; i++) {
1296       if (yield->should_return()) {
1297         return;
1298       }
1299       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1300                                   keep_alive, complete_gc, yield);
1301     }
1302   }
1303 
1304   // Final references
1305   {
1306     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1307               false, gclog_or_tty);
1308     for (int i = 0; i < _max_num_q; i++) {
1309       if (yield->should_return()) {
1310         return;
1311       }
1312       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1313                                   keep_alive, complete_gc, yield);
1314     }
1315   }
1316 
1317   // Phantom references
1318   {
1319     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1320               false, gclog_or_tty);
1321     for (int i = 0; i < _max_num_q; i++) {
1322       if (yield->should_return()) {
1323         return;
1324       }
1325       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1326                                   keep_alive, complete_gc, yield);
1327     }
1328   }
1329 }
1330 
1331 // Walk the given discovered ref list, and remove all reference objects
1332 // whose referents are still alive, whose referents are NULL or which
1333 // are not active (have a non-NULL next field). NOTE: When we are
1334 // thus precleaning the ref lists (which happens single-threaded today),
1335 // we do not disable refs discovery to honour the correct semantics of
1336 // java.lang.Reference. As a result, we need to be careful below
1337 // that ref removal steps interleave safely with ref discovery steps
1338 // (in this thread).
1339 void
1340 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1341                                                 BoolObjectClosure* is_alive,
1342                                                 OopClosure*        keep_alive,
1343                                                 VoidClosure*       complete_gc,
1344                                                 YieldClosure*      yield) {
1345   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1346   while (iter.has_next()) {
1347     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1348     oop obj = iter.obj();
1349     oop next = java_lang_ref_Reference::next(obj);
1350     if (iter.referent() == NULL || iter.is_referent_alive() ||
1351         next != NULL) {
1352       // The referent has been cleared, or is alive, or the Reference is not
1353       // active; we need to trace and mark its cohort.
1354       if (TraceReferenceGC) {
1355         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1356                                iter.obj(), iter.obj()->blueprint()->internal_name());
1357       }
1358       // Remove Reference object from list
1359       iter.remove();
1360       // Keep alive its cohort.
1361       iter.make_referent_alive();
1362       if (UseCompressedOops) {
1363         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1364         keep_alive->do_oop(next_addr);
1365       } else {
1366         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1367         keep_alive->do_oop(next_addr);
1368       }
1369       iter.move_to_next();
1370     } else {
1371       iter.next();
1372     }
1373   }
1374   // Close the reachable set
1375   complete_gc->do_void();
1376 
1377   NOT_PRODUCT(
1378     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1379       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1380         "Refs in discovered list " INTPTR_FORMAT,
1381         iter.removed(), iter.processed(), (address)refs_list.head());
1382     }
1383   )
1384 }
1385 
1386 const char* ReferenceProcessor::list_name(int i) {
1387    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1388           "Out of bounds index");
1389 
1390    int j = i / _max_num_q;
1391    switch (j) {
1392      case 0: return "SoftRef";
1393      case 1: return "WeakRef";
1394      case 2: return "FinalRef";
1395      case 3: return "PhantomRef";
1396    }
1397    ShouldNotReachHere();
1398    return NULL;
1399 }
1400 
1401 #ifndef PRODUCT
1402 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1403   // empty for now
1404 }
1405 #endif
1406 
1407 #ifndef PRODUCT
1408 void ReferenceProcessor::clear_discovered_references() {
1409   guarantee(!_discovering_refs, "Discovering refs?");
1410   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1411     clear_discovered_references(_discovered_refs[i]);
1412   }
1413 }
1414 
1415 #endif // PRODUCT