1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 
  42 #include "utilities/macros.hpp"
  43 
  44 // This file holds all globally used constants & types, class (forward)
  45 // declarations and a few frequently used utility functions.
  46 
  47 //----------------------------------------------------------------------------------------------------
  48 // Constants
  49 
  50 const int LogBytesPerShort   = 1;
  51 const int LogBytesPerInt     = 2;
  52 #ifdef _LP64
  53 const int LogBytesPerWord    = 3;
  54 #else
  55 const int LogBytesPerWord    = 2;
  56 #endif
  57 const int LogBytesPerLong    = 3;
  58 
  59 const int BytesPerShort      = 1 << LogBytesPerShort;
  60 const int BytesPerInt        = 1 << LogBytesPerInt;
  61 const int BytesPerWord       = 1 << LogBytesPerWord;
  62 const int BytesPerLong       = 1 << LogBytesPerLong;
  63 
  64 const int LogBitsPerByte     = 3;
  65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  69 
  70 const int BitsPerByte        = 1 << LogBitsPerByte;
  71 const int BitsPerShort       = 1 << LogBitsPerShort;
  72 const int BitsPerInt         = 1 << LogBitsPerInt;
  73 const int BitsPerWord        = 1 << LogBitsPerWord;
  74 const int BitsPerLong        = 1 << LogBitsPerLong;
  75 
  76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  78 
  79 const int WordsPerLong       = 2;       // Number of stack entries for longs
  80 
  81 const int oopSize            = sizeof(char*); // Full-width oop
  82 extern int heapOopSize;                       // Oop within a java object
  83 const int wordSize           = sizeof(char*);
  84 const int longSize           = sizeof(jlong);
  85 const int jintSize           = sizeof(jint);
  86 const int size_tSize         = sizeof(size_t);
  87 
  88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  89 
  90 extern int LogBytesPerHeapOop;                // Oop within a java object
  91 extern int LogBitsPerHeapOop;
  92 extern int BytesPerHeapOop;
  93 extern int BitsPerHeapOop;
  94 
  95 // Oop encoding heap max
  96 extern uint64_t OopEncodingHeapMax;
  97 
  98 const int BitsPerJavaInteger = 32;
  99 const int BitsPerJavaLong    = 64;
 100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 101 
 102 // Size of a char[] needed to represent a jint as a string in decimal.
 103 const int jintAsStringSize = 12;
 104 
 105 // In fact this should be
 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 107 // see os::set_memory_serialize_page()
 108 #ifdef _LP64
 109 const int SerializePageShiftCount = 4;
 110 #else
 111 const int SerializePageShiftCount = 3;
 112 #endif
 113 
 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 115 // pointer into the heap.  We require that object sizes be measured in
 116 // units of heap words, so that that
 117 //   HeapWord* hw;
 118 //   hw += oop(hw)->foo();
 119 // works, where foo is a method (like size or scavenge) that returns the
 120 // object size.
 121 class HeapWord {
 122   friend class VMStructs;
 123  private:
 124   char* i;
 125 #ifndef PRODUCT
 126  public:
 127   char* value() { return i; }
 128 #endif
 129 };
 130 
 131 // HeapWordSize must be 2^LogHeapWordSize.
 132 const int HeapWordSize        = sizeof(HeapWord);
 133 #ifdef _LP64
 134 const int LogHeapWordSize     = 3;
 135 #else
 136 const int LogHeapWordSize     = 2;
 137 #endif
 138 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 139 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 140 
 141 // The larger HeapWordSize for 64bit requires larger heaps
 142 // for the same application running in 64bit.  See bug 4967770.
 143 // The minimum alignment to a heap word size is done.  Other
 144 // parts of the memory system may required additional alignment
 145 // and are responsible for those alignments.
 146 #ifdef _LP64
 147 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 148 #else
 149 #define ScaleForWordSize(x) (x)
 150 #endif
 151 
 152 // The minimum number of native machine words necessary to contain "byte_size"
 153 // bytes.
 154 inline size_t heap_word_size(size_t byte_size) {
 155   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 156 }
 157 
 158 
 159 const size_t K                  = 1024;
 160 const size_t M                  = K*K;
 161 const size_t G                  = M*K;
 162 const size_t HWperKB            = K / sizeof(HeapWord);
 163 
 164 const size_t LOG_K              = 10;
 165 const size_t LOG_M              = 2 * LOG_K;
 166 const size_t LOG_G              = 2 * LOG_M;
 167 
 168 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 169 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 170 
 171 // Constants for converting from a base unit to milli-base units.  For
 172 // example from seconds to milliseconds and microseconds
 173 
 174 const int MILLIUNITS    = 1000;         // milli units per base unit
 175 const int MICROUNITS    = 1000000;      // micro units per base unit
 176 const int NANOUNITS     = 1000000000;   // nano units per base unit
 177 
 178 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 179 const jint  NANOSECS_PER_MILLISEC = 1000000;
 180 
 181 inline const char* proper_unit_for_byte_size(size_t s) {
 182   if (s >= 10*M) {
 183     return "M";
 184   } else if (s >= 10*K) {
 185     return "K";
 186   } else {
 187     return "B";
 188   }
 189 }
 190 
 191 inline size_t byte_size_in_proper_unit(size_t s) {
 192   if (s >= 10*M) {
 193     return s/M;
 194   } else if (s >= 10*K) {
 195     return s/K;
 196   } else {
 197     return s;
 198   }
 199 }
 200 
 201 
 202 //----------------------------------------------------------------------------------------------------
 203 // VM type definitions
 204 
 205 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 206 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 207 
 208 typedef intptr_t  intx;
 209 typedef uintptr_t uintx;
 210 
 211 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 212 const intx  max_intx  = (uintx)min_intx - 1;
 213 const uintx max_uintx = (uintx)-1;
 214 
 215 // Table of values:
 216 //      sizeof intx         4               8
 217 // min_intx             0x80000000      0x8000000000000000
 218 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 219 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 220 
 221 typedef unsigned int uint;   NEEDS_CLEANUP
 222 
 223 
 224 //----------------------------------------------------------------------------------------------------
 225 // Java type definitions
 226 
 227 // All kinds of 'plain' byte addresses
 228 typedef   signed char s_char;
 229 typedef unsigned char u_char;
 230 typedef u_char*       address;
 231 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 232                                     // except for some implementations of a C++
 233                                     // linkage pointer to function. Should never
 234                                     // need one of those to be placed in this
 235                                     // type anyway.
 236 
 237 //  Utility functions to "portably" (?) bit twiddle pointers
 238 //  Where portable means keep ANSI C++ compilers quiet
 239 
 240 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 241 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 242 
 243 //  Utility functions to "portably" make cast to/from function pointers.
 244 
 245 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 246 inline address_word  castable_address(address x)              { return address_word(x) ; }
 247 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 248 
 249 // Pointer subtraction.
 250 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 251 // the range we might need to find differences from one end of the heap
 252 // to the other.
 253 // A typical use might be:
 254 //     if (pointer_delta(end(), top()) >= size) {
 255 //       // enough room for an object of size
 256 //       ...
 257 // and then additions like
 258 //       ... top() + size ...
 259 // are safe because we know that top() is at least size below end().
 260 inline size_t pointer_delta(const void* left,
 261                             const void* right,
 262                             size_t element_size) {
 263   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 264 }
 265 // A version specialized for HeapWord*'s.
 266 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 267   return pointer_delta(left, right, sizeof(HeapWord));
 268 }
 269 
 270 //
 271 // ANSI C++ does not allow casting from one pointer type to a function pointer
 272 // directly without at best a warning. This macro accomplishes it silently
 273 // In every case that is present at this point the value be cast is a pointer
 274 // to a C linkage function. In somecase the type used for the cast reflects
 275 // that linkage and a picky compiler would not complain. In other cases because
 276 // there is no convenient place to place a typedef with extern C linkage (i.e
 277 // a platform dependent header file) it doesn't. At this point no compiler seems
 278 // picky enough to catch these instances (which are few). It is possible that
 279 // using templates could fix these for all cases. This use of templates is likely
 280 // so far from the middle of the road that it is likely to be problematic in
 281 // many C++ compilers.
 282 //
 283 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 284 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 285 
 286 // Unsigned byte types for os and stream.hpp
 287 
 288 // Unsigned one, two, four and eigth byte quantities used for describing
 289 // the .class file format. See JVM book chapter 4.
 290 
 291 typedef jubyte  u1;
 292 typedef jushort u2;
 293 typedef juint   u4;
 294 typedef julong  u8;
 295 
 296 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 297 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 298 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 299 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 300 
 301 //----------------------------------------------------------------------------------------------------
 302 // JVM spec restrictions
 303 
 304 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 305 
 306 
 307 //----------------------------------------------------------------------------------------------------
 308 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 309 //
 310 // Determines whether on-the-fly class replacement and frame popping are enabled.
 311 
 312 #define HOTSWAP
 313 
 314 //----------------------------------------------------------------------------------------------------
 315 // Object alignment, in units of HeapWords.
 316 //
 317 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 318 // reference fields can be naturally aligned.
 319 
 320 extern int MinObjAlignment;
 321 extern int MinObjAlignmentInBytes;
 322 extern int MinObjAlignmentInBytesMask;
 323 
 324 extern int LogMinObjAlignment;
 325 extern int LogMinObjAlignmentInBytes;
 326 
 327 // Machine dependent stuff
 328 
 329 #ifdef TARGET_ARCH_x86
 330 # include "globalDefinitions_x86.hpp"
 331 #endif
 332 #ifdef TARGET_ARCH_sparc
 333 # include "globalDefinitions_sparc.hpp"
 334 #endif
 335 #ifdef TARGET_ARCH_zero
 336 # include "globalDefinitions_zero.hpp"
 337 #endif
 338 #ifdef TARGET_ARCH_arm
 339 # include "globalDefinitions_arm.hpp"
 340 #endif
 341 #ifdef TARGET_ARCH_ppc
 342 # include "globalDefinitions_ppc.hpp"
 343 #endif
 344 
 345 
 346 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 347 // Note: this value must be a power of 2
 348 
 349 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 350 
 351 // Signed variants of alignment helpers.  There are two versions of each, a macro
 352 // for use in places like enum definitions that require compile-time constant
 353 // expressions and a function for all other places so as to get type checking.
 354 
 355 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 356 
 357 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 358   return align_size_up_(size, alignment);
 359 }
 360 
 361 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 362 
 363 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 364   return align_size_down_(size, alignment);
 365 }
 366 
 367 // Align objects by rounding up their size, in HeapWord units.
 368 
 369 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 370 
 371 inline intptr_t align_object_size(intptr_t size) {
 372   return align_size_up(size, MinObjAlignment);
 373 }
 374 
 375 inline bool is_object_aligned(intptr_t addr) {
 376   return addr == align_object_size(addr);
 377 }
 378 
 379 // Pad out certain offsets to jlong alignment, in HeapWord units.
 380 
 381 inline intptr_t align_object_offset(intptr_t offset) {
 382   return align_size_up(offset, HeapWordsPerLong);
 383 }
 384 
 385 // The expected size in bytes of a cache line, used to pad data structures.
 386 #define DEFAULT_CACHE_LINE_SIZE 64
 387 
 388 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 389 // expected cache line size (a power of two).  The first addend avoids sharing
 390 // when the start address is not a multiple of alignment; the second maintains
 391 // alignment of starting addresses that happen to be a multiple.
 392 #define PADDING_SIZE(type, alignment)                           \
 393   ((alignment) + align_size_up_(sizeof(type), alignment))
 394 
 395 // Templates to create a subclass padded to avoid cache line sharing.  These are
 396 // effective only when applied to derived-most (leaf) classes.
 397 
 398 // When no args are passed to the base ctor.
 399 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 400 class Padded: public T {
 401 private:
 402   char _pad_buf_[PADDING_SIZE(T, alignment)];
 403 };
 404 
 405 // When either 0 or 1 args may be passed to the base ctor.
 406 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 407 class Padded01: public T {
 408 public:
 409   Padded01(): T() { }
 410   Padded01(Arg1T arg1): T(arg1) { }
 411 private:
 412   char _pad_buf_[PADDING_SIZE(T, alignment)];
 413 };
 414 
 415 //----------------------------------------------------------------------------------------------------
 416 // Utility macros for compilers
 417 // used to silence compiler warnings
 418 
 419 #define Unused_Variable(var) var
 420 
 421 
 422 //----------------------------------------------------------------------------------------------------
 423 // Miscellaneous
 424 
 425 // 6302670 Eliminate Hotspot __fabsf dependency
 426 // All fabs() callers should call this function instead, which will implicitly
 427 // convert the operand to double, avoiding a dependency on __fabsf which
 428 // doesn't exist in early versions of Solaris 8.
 429 inline double fabsd(double value) {
 430   return fabs(value);
 431 }
 432 
 433 inline jint low (jlong value)                    { return jint(value); }
 434 inline jint high(jlong value)                    { return jint(value >> 32); }
 435 
 436 // the fancy casts are a hopefully portable way
 437 // to do unsigned 32 to 64 bit type conversion
 438 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 439                                                    *value |= (jlong)(julong)(juint)low; }
 440 
 441 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 442                                                    *value |= (jlong)high       << 32; }
 443 
 444 inline jlong jlong_from(jint h, jint l) {
 445   jlong result = 0; // initialization to avoid warning
 446   set_high(&result, h);
 447   set_low(&result,  l);
 448   return result;
 449 }
 450 
 451 union jlong_accessor {
 452   jint  words[2];
 453   jlong long_value;
 454 };
 455 
 456 void basic_types_init(); // cannot define here; uses assert
 457 
 458 
 459 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 460 enum BasicType {
 461   T_BOOLEAN  =  4,
 462   T_CHAR     =  5,
 463   T_FLOAT    =  6,
 464   T_DOUBLE   =  7,
 465   T_BYTE     =  8,
 466   T_SHORT    =  9,
 467   T_INT      = 10,
 468   T_LONG     = 11,
 469   T_OBJECT   = 12,
 470   T_ARRAY    = 13,
 471   T_VOID     = 14,
 472   T_ADDRESS  = 15,
 473   T_NARROWOOP= 16,
 474   T_CONFLICT = 17, // for stack value type with conflicting contents
 475   T_ILLEGAL  = 99
 476 };
 477 
 478 inline bool is_java_primitive(BasicType t) {
 479   return T_BOOLEAN <= t && t <= T_LONG;
 480 }
 481 
 482 inline bool is_subword_type(BasicType t) {
 483   // these guys are processed exactly like T_INT in calling sequences:
 484   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 485 }
 486 
 487 inline bool is_signed_subword_type(BasicType t) {
 488   return (t == T_BYTE || t == T_SHORT);
 489 }
 490 
 491 // Convert a char from a classfile signature to a BasicType
 492 inline BasicType char2type(char c) {
 493   switch( c ) {
 494   case 'B': return T_BYTE;
 495   case 'C': return T_CHAR;
 496   case 'D': return T_DOUBLE;
 497   case 'F': return T_FLOAT;
 498   case 'I': return T_INT;
 499   case 'J': return T_LONG;
 500   case 'S': return T_SHORT;
 501   case 'Z': return T_BOOLEAN;
 502   case 'V': return T_VOID;
 503   case 'L': return T_OBJECT;
 504   case '[': return T_ARRAY;
 505   }
 506   return T_ILLEGAL;
 507 }
 508 
 509 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 510 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 511 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 512 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 513 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 514 extern BasicType name2type(const char* name);
 515 
 516 // Auxilary math routines
 517 // least common multiple
 518 extern size_t lcm(size_t a, size_t b);
 519 
 520 
 521 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 522 enum BasicTypeSize {
 523   T_BOOLEAN_size = 1,
 524   T_CHAR_size    = 1,
 525   T_FLOAT_size   = 1,
 526   T_DOUBLE_size  = 2,
 527   T_BYTE_size    = 1,
 528   T_SHORT_size   = 1,
 529   T_INT_size     = 1,
 530   T_LONG_size    = 2,
 531   T_OBJECT_size  = 1,
 532   T_ARRAY_size   = 1,
 533   T_NARROWOOP_size = 1,
 534   T_VOID_size    = 0
 535 };
 536 
 537 
 538 // maps a BasicType to its instance field storage type:
 539 // all sub-word integral types are widened to T_INT
 540 extern BasicType type2field[T_CONFLICT+1];
 541 extern BasicType type2wfield[T_CONFLICT+1];
 542 
 543 
 544 // size in bytes
 545 enum ArrayElementSize {
 546   T_BOOLEAN_aelem_bytes = 1,
 547   T_CHAR_aelem_bytes    = 2,
 548   T_FLOAT_aelem_bytes   = 4,
 549   T_DOUBLE_aelem_bytes  = 8,
 550   T_BYTE_aelem_bytes    = 1,
 551   T_SHORT_aelem_bytes   = 2,
 552   T_INT_aelem_bytes     = 4,
 553   T_LONG_aelem_bytes    = 8,
 554 #ifdef _LP64
 555   T_OBJECT_aelem_bytes  = 8,
 556   T_ARRAY_aelem_bytes   = 8,
 557 #else
 558   T_OBJECT_aelem_bytes  = 4,
 559   T_ARRAY_aelem_bytes   = 4,
 560 #endif
 561   T_NARROWOOP_aelem_bytes = 4,
 562   T_VOID_aelem_bytes    = 0
 563 };
 564 
 565 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 566 #ifdef ASSERT
 567 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 568 #else
 569 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 570 #endif
 571 
 572 
 573 // JavaValue serves as a container for arbitrary Java values.
 574 
 575 class JavaValue {
 576 
 577  public:
 578   typedef union JavaCallValue {
 579     jfloat   f;
 580     jdouble  d;
 581     jint     i;
 582     jlong    l;
 583     jobject  h;
 584   } JavaCallValue;
 585 
 586  private:
 587   BasicType _type;
 588   JavaCallValue _value;
 589 
 590  public:
 591   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 592 
 593   JavaValue(jfloat value) {
 594     _type    = T_FLOAT;
 595     _value.f = value;
 596   }
 597 
 598   JavaValue(jdouble value) {
 599     _type    = T_DOUBLE;
 600     _value.d = value;
 601   }
 602 
 603  jfloat get_jfloat() const { return _value.f; }
 604  jdouble get_jdouble() const { return _value.d; }
 605  jint get_jint() const { return _value.i; }
 606  jlong get_jlong() const { return _value.l; }
 607  jobject get_jobject() const { return _value.h; }
 608  JavaCallValue* get_value_addr() { return &_value; }
 609  BasicType get_type() const { return _type; }
 610 
 611  void set_jfloat(jfloat f) { _value.f = f;}
 612  void set_jdouble(jdouble d) { _value.d = d;}
 613  void set_jint(jint i) { _value.i = i;}
 614  void set_jlong(jlong l) { _value.l = l;}
 615  void set_jobject(jobject h) { _value.h = h;}
 616  void set_type(BasicType t) { _type = t; }
 617 
 618  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 619  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 620  jchar get_jchar() const { return (jchar) (_value.i);}
 621  jshort get_jshort() const { return (jshort) (_value.i);}
 622 
 623 };
 624 
 625 
 626 #define STACK_BIAS      0
 627 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 628 // in order to extend the reach of the stack pointer.
 629 #if defined(SPARC) && defined(_LP64)
 630 #undef STACK_BIAS
 631 #define STACK_BIAS      0x7ff
 632 #endif
 633 
 634 
 635 // TosState describes the top-of-stack state before and after the execution of
 636 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 637 // registers. The TosState corresponds to the 'machine represention' of this cached
 638 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 639 // as well as a 5th state in case the top-of-stack value is actually on the top
 640 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 641 // state when it comes to machine representation but is used separately for (oop)
 642 // type specific operations (e.g. verification code).
 643 
 644 enum TosState {         // describes the tos cache contents
 645   btos = 0,             // byte, bool tos cached
 646   ctos = 1,             // char tos cached
 647   stos = 2,             // short tos cached
 648   itos = 3,             // int tos cached
 649   ltos = 4,             // long tos cached
 650   ftos = 5,             // float tos cached
 651   dtos = 6,             // double tos cached
 652   atos = 7,             // object cached
 653   vtos = 8,             // tos not cached
 654   number_of_states,
 655   ilgl                  // illegal state: should not occur
 656 };
 657 
 658 
 659 inline TosState as_TosState(BasicType type) {
 660   switch (type) {
 661     case T_BYTE   : return btos;
 662     case T_BOOLEAN: return btos; // FIXME: Add ztos
 663     case T_CHAR   : return ctos;
 664     case T_SHORT  : return stos;
 665     case T_INT    : return itos;
 666     case T_LONG   : return ltos;
 667     case T_FLOAT  : return ftos;
 668     case T_DOUBLE : return dtos;
 669     case T_VOID   : return vtos;
 670     case T_ARRAY  : // fall through
 671     case T_OBJECT : return atos;
 672   }
 673   return ilgl;
 674 }
 675 
 676 inline BasicType as_BasicType(TosState state) {
 677   switch (state) {
 678     //case ztos: return T_BOOLEAN;//FIXME
 679     case btos : return T_BYTE;
 680     case ctos : return T_CHAR;
 681     case stos : return T_SHORT;
 682     case itos : return T_INT;
 683     case ltos : return T_LONG;
 684     case ftos : return T_FLOAT;
 685     case dtos : return T_DOUBLE;
 686     case atos : return T_OBJECT;
 687     case vtos : return T_VOID;
 688   }
 689   return T_ILLEGAL;
 690 }
 691 
 692 
 693 // Helper function to convert BasicType info into TosState
 694 // Note: Cannot define here as it uses global constant at the time being.
 695 TosState as_TosState(BasicType type);
 696 
 697 
 698 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 699 
 700 enum ReferenceType {
 701  REF_NONE,      // Regular class
 702  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 703  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 704  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 705  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 706  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 707 };
 708 
 709 
 710 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 711 // information is needed by the safepoint code.
 712 //
 713 // There are 4 essential states:
 714 //
 715 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 716 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 717 //  _thread_in_vm       : Executing in the vm
 718 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 719 //
 720 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 721 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 722 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 723 //
 724 // Given a state, the xxx_trans state can always be found by adding 1.
 725 //
 726 enum JavaThreadState {
 727   _thread_uninitialized     =  0, // should never happen (missing initialization)
 728   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 729   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 730   _thread_in_native         =  4, // running in native code
 731   _thread_in_native_trans   =  5, // corresponding transition state
 732   _thread_in_vm             =  6, // running in VM
 733   _thread_in_vm_trans       =  7, // corresponding transition state
 734   _thread_in_Java           =  8, // running in Java or in stub code
 735   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 736   _thread_blocked           = 10, // blocked in vm
 737   _thread_blocked_trans     = 11, // corresponding transition state
 738   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 739 };
 740 
 741 
 742 // Handy constants for deciding which compiler mode to use.
 743 enum MethodCompilation {
 744   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 745   InvalidOSREntryBci = -2
 746 };
 747 
 748 // Enumeration to distinguish tiers of compilation
 749 enum CompLevel {
 750   CompLevel_any               = -1,
 751   CompLevel_all               = -1,
 752   CompLevel_none              = 0,         // Interpreter
 753   CompLevel_simple            = 1,         // C1
 754   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 755   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 756   CompLevel_full_optimization = 4,         // C2 or Shark
 757 
 758 #if defined(COMPILER2) || defined(SHARK)
 759   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 760 #elif defined(COMPILER1)
 761   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 762 #else
 763   CompLevel_highest_tier      = CompLevel_none,
 764 #endif
 765 
 766 #if defined(TIERED)
 767   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 768 #elif defined(COMPILER1)
 769   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 770 #elif defined(COMPILER2) || defined(SHARK)
 771   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 772 #else
 773   CompLevel_initial_compile   = CompLevel_none
 774 #endif
 775 };
 776 
 777 inline bool is_c1_compile(int comp_level) {
 778   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 779 }
 780 
 781 inline bool is_c2_compile(int comp_level) {
 782   return comp_level == CompLevel_full_optimization;
 783 }
 784 
 785 inline bool is_highest_tier_compile(int comp_level) {
 786   return comp_level == CompLevel_highest_tier;
 787 }
 788 
 789 //----------------------------------------------------------------------------------------------------
 790 // 'Forward' declarations of frequently used classes
 791 // (in order to reduce interface dependencies & reduce
 792 // number of unnecessary compilations after changes)
 793 
 794 class symbolTable;
 795 class ClassFileStream;
 796 
 797 class Event;
 798 
 799 class Thread;
 800 class  VMThread;
 801 class  JavaThread;
 802 class Threads;
 803 
 804 class VM_Operation;
 805 class VMOperationQueue;
 806 
 807 class CodeBlob;
 808 class  nmethod;
 809 class  OSRAdapter;
 810 class  I2CAdapter;
 811 class  C2IAdapter;
 812 class CompiledIC;
 813 class relocInfo;
 814 class ScopeDesc;
 815 class PcDesc;
 816 
 817 class Recompiler;
 818 class Recompilee;
 819 class RecompilationPolicy;
 820 class RFrame;
 821 class  CompiledRFrame;
 822 class  InterpretedRFrame;
 823 
 824 class frame;
 825 
 826 class vframe;
 827 class   javaVFrame;
 828 class     interpretedVFrame;
 829 class     compiledVFrame;
 830 class     deoptimizedVFrame;
 831 class   externalVFrame;
 832 class     entryVFrame;
 833 
 834 class RegisterMap;
 835 
 836 class Mutex;
 837 class Monitor;
 838 class BasicLock;
 839 class BasicObjectLock;
 840 
 841 class PeriodicTask;
 842 
 843 class JavaCallWrapper;
 844 
 845 class   oopDesc;
 846 
 847 class NativeCall;
 848 
 849 class zone;
 850 
 851 class StubQueue;
 852 
 853 class outputStream;
 854 
 855 class ResourceArea;
 856 
 857 class DebugInformationRecorder;
 858 class ScopeValue;
 859 class CompressedStream;
 860 class   DebugInfoReadStream;
 861 class   DebugInfoWriteStream;
 862 class LocationValue;
 863 class ConstantValue;
 864 class IllegalValue;
 865 
 866 class PrivilegedElement;
 867 class MonitorArray;
 868 
 869 class MonitorInfo;
 870 
 871 class OffsetClosure;
 872 class OopMapCache;
 873 class InterpreterOopMap;
 874 class OopMapCacheEntry;
 875 class OSThread;
 876 
 877 typedef int (*OSThreadStartFunc)(void*);
 878 
 879 class Space;
 880 
 881 class JavaValue;
 882 class methodHandle;
 883 class JavaCallArguments;
 884 
 885 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 886 
 887 extern void basic_fatal(const char* msg);
 888 
 889 
 890 //----------------------------------------------------------------------------------------------------
 891 // Special constants for debugging
 892 
 893 const jint     badInt           = -3;                       // generic "bad int" value
 894 const long     badAddressVal    = -2;                       // generic "bad address" value
 895 const long     badOopVal        = -1;                       // generic "bad oop" value
 896 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 897 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 898 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 899 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 900 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 901 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 902 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 903 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 904 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 905 
 906 
 907 // (These must be implemented as #defines because C++ compilers are
 908 // not obligated to inline non-integral constants!)
 909 #define       badAddress        ((address)::badAddressVal)
 910 #define       badOop            ((oop)::badOopVal)
 911 #define       badHeapWord       (::badHeapWordVal)
 912 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 913 
 914 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 915 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 916 
 917 //----------------------------------------------------------------------------------------------------
 918 // Utility functions for bitfield manipulations
 919 
 920 const intptr_t AllBits    = ~0; // all bits set in a word
 921 const intptr_t NoBits     =  0; // no bits set in a word
 922 const jlong    NoLongBits =  0; // no bits set in a long
 923 const intptr_t OneBit     =  1; // only right_most bit set in a word
 924 
 925 // get a word with the n.th or the right-most or left-most n bits set
 926 // (note: #define used only so that they can be used in enum constant definitions)
 927 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 928 #define right_n_bits(n)   (nth_bit(n) - 1)
 929 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 930 
 931 // bit-operations using a mask m
 932 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 933 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 934 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 935 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 936 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 937 
 938 // bit-operations using the n.th bit
 939 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 940 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 941 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 942 
 943 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 944 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 945   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 946 }
 947 
 948 
 949 //----------------------------------------------------------------------------------------------------
 950 // Utility functions for integers
 951 
 952 // Avoid use of global min/max macros which may cause unwanted double
 953 // evaluation of arguments.
 954 #ifdef max
 955 #undef max
 956 #endif
 957 
 958 #ifdef min
 959 #undef min
 960 #endif
 961 
 962 #define max(a,b) Do_not_use_max_use_MAX2_instead
 963 #define min(a,b) Do_not_use_min_use_MIN2_instead
 964 
 965 // It is necessary to use templates here. Having normal overloaded
 966 // functions does not work because it is necessary to provide both 32-
 967 // and 64-bit overloaded functions, which does not work, and having
 968 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 969 // will be even more error-prone than macros.
 970 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 971 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 972 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 973 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 974 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 975 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 976 
 977 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 978 
 979 // true if x is a power of 2, false otherwise
 980 inline bool is_power_of_2(intptr_t x) {
 981   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 982 }
 983 
 984 // long version of is_power_of_2
 985 inline bool is_power_of_2_long(jlong x) {
 986   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 987 }
 988 
 989 //* largest i such that 2^i <= x
 990 //  A negative value of 'x' will return '31'
 991 inline int log2_intptr(intptr_t x) {
 992   int i = -1;
 993   uintptr_t p =  1;
 994   while (p != 0 && p <= (uintptr_t)x) {
 995     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 996     i++; p *= 2;
 997   }
 998   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 999   // (if p = 0 then overflow occurred and i = 31)
1000   return i;
1001 }
1002 
1003 //* largest i such that 2^i <= x
1004 //  A negative value of 'x' will return '63'
1005 inline int log2_long(jlong x) {
1006   int i = -1;
1007   julong p =  1;
1008   while (p != 0 && p <= (julong)x) {
1009     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1010     i++; p *= 2;
1011   }
1012   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1013   // (if p = 0 then overflow occurred and i = 63)
1014   return i;
1015 }
1016 
1017 //* the argument must be exactly a power of 2
1018 inline int exact_log2(intptr_t x) {
1019   #ifdef ASSERT
1020     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1021   #endif
1022   return log2_intptr(x);
1023 }
1024 
1025 //* the argument must be exactly a power of 2
1026 inline int exact_log2_long(jlong x) {
1027   #ifdef ASSERT
1028     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1029   #endif
1030   return log2_long(x);
1031 }
1032 
1033 
1034 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1035 inline intptr_t round_to(intptr_t x, uintx s) {
1036   #ifdef ASSERT
1037     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1038   #endif
1039   const uintx m = s - 1;
1040   return mask_bits(x + m, ~m);
1041 }
1042 
1043 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1044 inline intptr_t round_down(intptr_t x, uintx s) {
1045   #ifdef ASSERT
1046     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1047   #endif
1048   const uintx m = s - 1;
1049   return mask_bits(x, ~m);
1050 }
1051 
1052 
1053 inline bool is_odd (intx x) { return x & 1;      }
1054 inline bool is_even(intx x) { return !is_odd(x); }
1055 
1056 // "to" should be greater than "from."
1057 inline intx byte_size(void* from, void* to) {
1058   return (address)to - (address)from;
1059 }
1060 
1061 //----------------------------------------------------------------------------------------------------
1062 // Avoid non-portable casts with these routines (DEPRECATED)
1063 
1064 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1065 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1066 
1067 // Given sequence of four bytes, build into a 32-bit word
1068 // following the conventions used in class files.
1069 // On the 386, this could be realized with a simple address cast.
1070 //
1071 
1072 // This routine takes eight bytes:
1073 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1074   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1075        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1076        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1077        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1078        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1079        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1080        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1081        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1082 }
1083 
1084 // This routine takes four bytes:
1085 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1086   return  (( u4(c1) << 24 )  &  0xff000000)
1087        |  (( u4(c2) << 16 )  &  0x00ff0000)
1088        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1089        |  (( u4(c4) <<  0 )  &  0x000000ff);
1090 }
1091 
1092 // And this one works if the four bytes are contiguous in memory:
1093 inline u4 build_u4_from( u1* p ) {
1094   return  build_u4_from( p[0], p[1], p[2], p[3] );
1095 }
1096 
1097 // Ditto for two-byte ints:
1098 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1099   return  u2((( u2(c1) <<  8 )  &  0xff00)
1100           |  (( u2(c2) <<  0 )  &  0x00ff));
1101 }
1102 
1103 // And this one works if the two bytes are contiguous in memory:
1104 inline u2 build_u2_from( u1* p ) {
1105   return  build_u2_from( p[0], p[1] );
1106 }
1107 
1108 // Ditto for floats:
1109 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1110   u4 u = build_u4_from( c1, c2, c3, c4 );
1111   return  *(jfloat*)&u;
1112 }
1113 
1114 inline jfloat build_float_from( u1* p ) {
1115   u4 u = build_u4_from( p );
1116   return  *(jfloat*)&u;
1117 }
1118 
1119 
1120 // now (64-bit) longs
1121 
1122 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1123   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1124        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1125        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1126        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1127        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1128        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1129        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1130        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1131 }
1132 
1133 inline jlong build_long_from( u1* p ) {
1134   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1135 }
1136 
1137 
1138 // Doubles, too!
1139 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1140   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1141   return  *(jdouble*)&u;
1142 }
1143 
1144 inline jdouble build_double_from( u1* p ) {
1145   jlong u = build_long_from( p );
1146   return  *(jdouble*)&u;
1147 }
1148 
1149 
1150 // Portable routines to go the other way:
1151 
1152 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1153   c1 = u1(x >> 8);
1154   c2 = u1(x);
1155 }
1156 
1157 inline void explode_short_to( u2 x, u1* p ) {
1158   explode_short_to( x, p[0], p[1]);
1159 }
1160 
1161 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1162   c1 = u1(x >> 24);
1163   c2 = u1(x >> 16);
1164   c3 = u1(x >>  8);
1165   c4 = u1(x);
1166 }
1167 
1168 inline void explode_int_to( u4 x, u1* p ) {
1169   explode_int_to( x, p[0], p[1], p[2], p[3]);
1170 }
1171 
1172 
1173 // Pack and extract shorts to/from ints:
1174 
1175 inline int extract_low_short_from_int(jint x) {
1176   return x & 0xffff;
1177 }
1178 
1179 inline int extract_high_short_from_int(jint x) {
1180   return (x >> 16) & 0xffff;
1181 }
1182 
1183 inline int build_int_from_shorts( jushort low, jushort high ) {
1184   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1185 }
1186 
1187 // Printf-style formatters for fixed- and variable-width types as pointers and
1188 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1189 // doesn't provide appropriate definitions, they should be provided in
1190 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1191 
1192 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1193 
1194 // Format 32-bit quantities.
1195 #define INT32_FORMAT           "%" PRId32
1196 #define UINT32_FORMAT          "%" PRIu32
1197 #define INT32_FORMAT_W(width)  "%" #width PRId32
1198 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1199 
1200 #define PTR32_FORMAT           "0x%08" PRIx32
1201 
1202 // Format 64-bit quantities.
1203 #define INT64_FORMAT           "%" PRId64
1204 #define UINT64_FORMAT          "%" PRIu64
1205 #define INT64_FORMAT_W(width)  "%" #width PRId64
1206 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1207 
1208 #define PTR64_FORMAT           "0x%016" PRIx64
1209 
1210 // Format pointers which change size between 32- and 64-bit.
1211 #ifdef  _LP64
1212 #define INTPTR_FORMAT "0x%016" PRIxPTR
1213 #define PTR_FORMAT    "0x%016" PRIxPTR
1214 #else   // !_LP64
1215 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1216 #define PTR_FORMAT    "0x%08"  PRIxPTR
1217 #endif  // _LP64
1218 
1219 #define SSIZE_FORMAT          "%" PRIdPTR
1220 #define SIZE_FORMAT           "%" PRIuPTR
1221 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1222 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1223 
1224 #define INTX_FORMAT           "%" PRIdPTR
1225 #define UINTX_FORMAT          "%" PRIuPTR
1226 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1227 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1228 
1229 
1230 // Enable zap-a-lot if in debug version.
1231 
1232 # ifdef ASSERT
1233 # ifdef COMPILER2
1234 #   define ENABLE_ZAP_DEAD_LOCALS
1235 #endif /* COMPILER2 */
1236 # endif /* ASSERT */
1237 
1238 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1239 
1240 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP