1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  29 #include "gc_implementation/g1/heapRegion.inline.hpp"
  30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/iterator.hpp"
  34 #include "oops/oop.inline.hpp"
  35 
  36 int    HeapRegion::LogOfHRGrainBytes = 0;
  37 int    HeapRegion::LogOfHRGrainWords = 0;
  38 size_t HeapRegion::GrainBytes        = 0;
  39 size_t HeapRegion::GrainWords        = 0;
  40 size_t HeapRegion::CardsPerRegion    = 0;
  41 
  42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  43                                  HeapRegion* hr, ExtendedOopClosure* cl,
  44                                  CardTableModRefBS::PrecisionStyle precision,
  45                                  FilterKind fk) :
  46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  47   _hr(hr), _fk(fk), _g1(g1) { }
  48 
  49 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  50                                                    OopClosure* oc) :
  51   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  52 
  53 template<class ClosureType>
  54 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  55                                HeapRegion* hr,
  56                                HeapWord* cur, HeapWord* top) {
  57   oop cur_oop = oop(cur);
  58   int oop_size = cur_oop->size();
  59   HeapWord* next_obj = cur + oop_size;
  60   while (next_obj < top) {
  61     // Keep filtering the remembered set.
  62     if (!g1h->is_obj_dead(cur_oop, hr)) {
  63       // Bottom lies entirely below top, so we can call the
  64       // non-memRegion version of oop_iterate below.
  65       cur_oop->oop_iterate(cl);
  66     }
  67     cur = next_obj;
  68     cur_oop = oop(cur);
  69     oop_size = cur_oop->size();
  70     next_obj = cur + oop_size;
  71   }
  72   return cur;
  73 }
  74 
  75 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
  76                                               HeapWord* bottom,
  77                                               HeapWord* top,
  78                                               ExtendedOopClosure* cl) {
  79   G1CollectedHeap* g1h = _g1;
  80   int oop_size;
  81   ExtendedOopClosure* cl2 = NULL;
  82 
  83   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  84   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  85 
  86   switch (_fk) {
  87   case NoFilterKind:          cl2 = cl; break;
  88   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  89   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  90   default:                    ShouldNotReachHere();
  91   }
  92 
  93   // Start filtering what we add to the remembered set. If the object is
  94   // not considered dead, either because it is marked (in the mark bitmap)
  95   // or it was allocated after marking finished, then we add it. Otherwise
  96   // we can safely ignore the object.
  97   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
  98     oop_size = oop(bottom)->oop_iterate(cl2, mr);
  99   } else {
 100     oop_size = oop(bottom)->size();
 101   }
 102 
 103   bottom += oop_size;
 104 
 105   if (bottom < top) {
 106     // We replicate the loop below for several kinds of possible filters.
 107     switch (_fk) {
 108     case NoFilterKind:
 109       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 110       break;
 111 
 112     case IntoCSFilterKind: {
 113       FilterIntoCSClosure filt(this, g1h, cl);
 114       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 115       break;
 116     }
 117 
 118     case OutOfRegionFilterKind: {
 119       FilterOutOfRegionClosure filt(_hr, cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     default:
 125       ShouldNotReachHere();
 126     }
 127 
 128     // Last object. Need to do dead-obj filtering here too.
 129     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 130       oop(bottom)->oop_iterate(cl2, mr);
 131     }
 132   }
 133 }
 134 
 135 // Minimum region size; we won't go lower than that.
 136 // We might want to decrease this in the future, to deal with small
 137 // heaps a bit more efficiently.
 138 #define MIN_REGION_SIZE  (      1024 * 1024 )
 139 
 140 // Maximum region size; we don't go higher than that. There's a good
 141 // reason for having an upper bound. We don't want regions to get too
 142 // large, otherwise cleanup's effectiveness would decrease as there
 143 // will be fewer opportunities to find totally empty regions after
 144 // marking.
 145 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 146 
 147 // The automatic region size calculation will try to have around this
 148 // many regions in the heap (based on the min heap size).
 149 #define TARGET_REGION_NUMBER          2048
 150 
 151 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 152   // region_size in bytes
 153   uintx region_size = G1HeapRegionSize;
 154   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 155     // We base the automatic calculation on the min heap size. This
 156     // can be problematic if the spread between min and max is quite
 157     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 158     // the max size, the region size might be way too large for the
 159     // min size. Either way, some users might have to set the region
 160     // size manually for some -Xms / -Xmx combos.
 161 
 162     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 163                        (uintx) MIN_REGION_SIZE);
 164   }
 165 
 166   int region_size_log = log2_long((jlong) region_size);
 167   // Recalculate the region size to make sure it's a power of
 168   // 2. This means that region_size is the largest power of 2 that's
 169   // <= what we've calculated so far.
 170   region_size = ((uintx)1 << region_size_log);
 171 
 172   // Now make sure that we don't go over or under our limits.
 173   if (region_size < MIN_REGION_SIZE) {
 174     region_size = MIN_REGION_SIZE;
 175   } else if (region_size > MAX_REGION_SIZE) {
 176     region_size = MAX_REGION_SIZE;
 177   }
 178 
 179   // And recalculate the log.
 180   region_size_log = log2_long((jlong) region_size);
 181 
 182   // Now, set up the globals.
 183   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 184   LogOfHRGrainBytes = region_size_log;
 185 
 186   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 187   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 188 
 189   guarantee(GrainBytes == 0, "we should only set it once");
 190   // The cast to int is safe, given that we've bounded region_size by
 191   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 192   GrainBytes = (size_t)region_size;
 193 
 194   guarantee(GrainWords == 0, "we should only set it once");
 195   GrainWords = GrainBytes >> LogHeapWordSize;
 196   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 197 
 198   guarantee(CardsPerRegion == 0, "we should only set it once");
 199   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 200 }
 201 
 202 void HeapRegion::reset_after_compaction() {
 203   G1OffsetTableContigSpace::reset_after_compaction();
 204   // After a compaction the mark bitmap is invalid, so we must
 205   // treat all objects as being inside the unmarked area.
 206   zero_marked_bytes();
 207   init_top_at_mark_start();
 208 }
 209 
 210 void HeapRegion::hr_clear(bool par, bool clear_space) {
 211   assert(_humongous_type == NotHumongous,
 212          "we should have already filtered out humongous regions");
 213   assert(_humongous_start_region == NULL,
 214          "we should have already filtered out humongous regions");
 215   assert(_end == _orig_end,
 216          "we should have already filtered out humongous regions");
 217 
 218   _in_collection_set = false;
 219 
 220   set_young_index_in_cset(-1);
 221   uninstall_surv_rate_group();
 222   set_young_type(NotYoung);
 223   reset_pre_dummy_top();
 224 
 225   if (!par) {
 226     // If this is parallel, this will be done later.
 227     HeapRegionRemSet* hrrs = rem_set();
 228     if (hrrs != NULL) hrrs->clear();
 229     _claimed = InitialClaimValue;
 230   }
 231   zero_marked_bytes();
 232 
 233   _offsets.resize(HeapRegion::GrainWords);
 234   init_top_at_mark_start();
 235   if (clear_space) clear(SpaceDecorator::Mangle);
 236 }
 237 
 238 void HeapRegion::par_clear() {
 239   assert(used() == 0, "the region should have been already cleared");
 240   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 241   HeapRegionRemSet* hrrs = rem_set();
 242   hrrs->clear();
 243   CardTableModRefBS* ct_bs =
 244                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 245   ct_bs->clear(MemRegion(bottom(), end()));
 246 }
 247 
 248 void HeapRegion::calc_gc_efficiency() {
 249   // GC efficiency is the ratio of how much space would be
 250   // reclaimed over how long we predict it would take to reclaim it.
 251   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 252   G1CollectorPolicy* g1p = g1h->g1_policy();
 253 
 254   // Retrieve a prediction of the elapsed time for this region for
 255   // a mixed gc because the region will only be evacuated during a
 256   // mixed gc.
 257   double region_elapsed_time_ms =
 258     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 259   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 260 }
 261 
 262 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 263   assert(!isHumongous(), "sanity / pre-condition");
 264   assert(end() == _orig_end,
 265          "Should be normal before the humongous object allocation");
 266   assert(top() == bottom(), "should be empty");
 267   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 268 
 269   _humongous_type = StartsHumongous;
 270   _humongous_start_region = this;
 271 
 272   set_end(new_end);
 273   _offsets.set_for_starts_humongous(new_top);
 274 }
 275 
 276 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 277   assert(!isHumongous(), "sanity / pre-condition");
 278   assert(end() == _orig_end,
 279          "Should be normal before the humongous object allocation");
 280   assert(top() == bottom(), "should be empty");
 281   assert(first_hr->startsHumongous(), "pre-condition");
 282 
 283   _humongous_type = ContinuesHumongous;
 284   _humongous_start_region = first_hr;
 285 }
 286 
 287 void HeapRegion::set_notHumongous() {
 288   assert(isHumongous(), "pre-condition");
 289 
 290   if (startsHumongous()) {
 291     assert(top() <= end(), "pre-condition");
 292     set_end(_orig_end);
 293     if (top() > end()) {
 294       // at least one "continues humongous" region after it
 295       set_top(end());
 296     }
 297   } else {
 298     // continues humongous
 299     assert(end() == _orig_end, "sanity");
 300   }
 301 
 302   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 303   _humongous_type = NotHumongous;
 304   _humongous_start_region = NULL;
 305 }
 306 
 307 bool HeapRegion::claimHeapRegion(jint claimValue) {
 308   jint current = _claimed;
 309   if (current != claimValue) {
 310     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 311     if (res == current) {
 312       return true;
 313     }
 314   }
 315   return false;
 316 }
 317 
 318 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 319   HeapWord* low = addr;
 320   HeapWord* high = end();
 321   while (low < high) {
 322     size_t diff = pointer_delta(high, low);
 323     // Must add one below to bias toward the high amount.  Otherwise, if
 324   // "high" were at the desired value, and "low" were one less, we
 325     // would not converge on "high".  This is not symmetric, because
 326     // we set "high" to a block start, which might be the right one,
 327     // which we don't do for "low".
 328     HeapWord* middle = low + (diff+1)/2;
 329     if (middle == high) return high;
 330     HeapWord* mid_bs = block_start_careful(middle);
 331     if (mid_bs < addr) {
 332       low = middle;
 333     } else {
 334       high = mid_bs;
 335     }
 336   }
 337   assert(low == high && low >= addr, "Didn't work.");
 338   return low;
 339 }
 340 
 341 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 342 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 343 #endif // _MSC_VER
 344 
 345 
 346 HeapRegion::HeapRegion(uint hrs_index,
 347                        G1BlockOffsetSharedArray* sharedOffsetArray,
 348                        MemRegion mr) :
 349     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 350     _hrs_index(hrs_index),
 351     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 352     _in_collection_set(false),
 353     _next_in_special_set(NULL), _orig_end(NULL),
 354     _claimed(InitialClaimValue), _evacuation_failed(false),
 355     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 356     _young_type(NotYoung), _next_young_region(NULL),
 357     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 358 #ifdef ASSERT
 359     _containing_set(NULL),
 360 #endif // ASSERT
 361      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 362     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 363     _predicted_bytes_to_copy(0)
 364 {
 365   _orig_end = mr.end();
 366   // Note that initialize() will set the start of the unmarked area of the
 367   // region.
 368   hr_clear(false /*par*/, false /*clear_space*/);
 369   set_top(bottom());
 370   set_saved_mark();
 371 
 372   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
 373 
 374   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 375 }
 376 
 377 CompactibleSpace* HeapRegion::next_compaction_space() const {
 378   // We're not using an iterator given that it will wrap around when
 379   // it reaches the last region and this is not what we want here.
 380   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 381   uint index = hrs_index() + 1;
 382   while (index < g1h->n_regions()) {
 383     HeapRegion* hr = g1h->region_at(index);
 384     if (!hr->isHumongous()) {
 385       return hr;
 386     }
 387     index += 1;
 388   }
 389   return NULL;
 390 }
 391 
 392 void HeapRegion::save_marks() {
 393   set_saved_mark();
 394 }
 395 
 396 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 397   HeapWord* p = mr.start();
 398   HeapWord* e = mr.end();
 399   oop obj;
 400   while (p < e) {
 401     obj = oop(p);
 402     p += obj->oop_iterate(cl);
 403   }
 404   assert(p == e, "bad memregion: doesn't end on obj boundary");
 405 }
 406 
 407 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 408 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 409   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 410 }
 411 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 412 
 413 
 414 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 415   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 416 }
 417 
 418 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 419                                                     bool during_conc_mark) {
 420   // We always recreate the prev marking info and we'll explicitly
 421   // mark all objects we find to be self-forwarded on the prev
 422   // bitmap. So all objects need to be below PTAMS.
 423   _prev_top_at_mark_start = top();
 424   _prev_marked_bytes = 0;
 425 
 426   if (during_initial_mark) {
 427     // During initial-mark, we'll also explicitly mark all objects
 428     // we find to be self-forwarded on the next bitmap. So all
 429     // objects need to be below NTAMS.
 430     _next_top_at_mark_start = top();
 431     _next_marked_bytes = 0;
 432   } else if (during_conc_mark) {
 433     // During concurrent mark, all objects in the CSet (including
 434     // the ones we find to be self-forwarded) are implicitly live.
 435     // So all objects need to be above NTAMS.
 436     _next_top_at_mark_start = bottom();
 437     _next_marked_bytes = 0;
 438   }
 439 }
 440 
 441 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 442                                                   bool during_conc_mark,
 443                                                   size_t marked_bytes) {
 444   assert(0 <= marked_bytes && marked_bytes <= used(),
 445          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 446                  marked_bytes, used()));
 447   _prev_marked_bytes = marked_bytes;
 448 }
 449 
 450 HeapWord*
 451 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 452                                                  ObjectClosure* cl) {
 453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 454   // We used to use "block_start_careful" here.  But we're actually happy
 455   // to update the BOT while we do this...
 456   HeapWord* cur = block_start(mr.start());
 457   mr = mr.intersection(used_region());
 458   if (mr.is_empty()) return NULL;
 459   // Otherwise, find the obj that extends onto mr.start().
 460 
 461   assert(cur <= mr.start()
 462          && (oop(cur)->klass_or_null() == NULL ||
 463              cur + oop(cur)->size() > mr.start()),
 464          "postcondition of block_start");
 465   oop obj;
 466   while (cur < mr.end()) {
 467     obj = oop(cur);
 468     if (obj->klass_or_null() == NULL) {
 469       // Ran into an unparseable point.
 470       return cur;
 471     } else if (!g1h->is_obj_dead(obj)) {
 472       cl->do_object(obj);
 473     }
 474     if (cl->abort()) return cur;
 475     // The check above must occur before the operation below, since an
 476     // abort might invalidate the "size" operation.
 477     cur += obj->size();
 478   }
 479   return NULL;
 480 }
 481 
 482 HeapWord*
 483 HeapRegion::
 484 oops_on_card_seq_iterate_careful(MemRegion mr,
 485                                  FilterOutOfRegionClosure* cl,
 486                                  bool filter_young,
 487                                  jbyte* card_ptr) {
 488   // Currently, we should only have to clean the card if filter_young
 489   // is true and vice versa.
 490   if (filter_young) {
 491     assert(card_ptr != NULL, "pre-condition");
 492   } else {
 493     assert(card_ptr == NULL, "pre-condition");
 494   }
 495   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 496 
 497   // If we're within a stop-world GC, then we might look at a card in a
 498   // GC alloc region that extends onto a GC LAB, which may not be
 499   // parseable.  Stop such at the "saved_mark" of the region.
 500   if (g1h->is_gc_active()) {
 501     mr = mr.intersection(used_region_at_save_marks());
 502   } else {
 503     mr = mr.intersection(used_region());
 504   }
 505   if (mr.is_empty()) return NULL;
 506   // Otherwise, find the obj that extends onto mr.start().
 507 
 508   // The intersection of the incoming mr (for the card) and the
 509   // allocated part of the region is non-empty. This implies that
 510   // we have actually allocated into this region. The code in
 511   // G1CollectedHeap.cpp that allocates a new region sets the
 512   // is_young tag on the region before allocating. Thus we
 513   // safely know if this region is young.
 514   if (is_young() && filter_young) {
 515     return NULL;
 516   }
 517 
 518   assert(!is_young(), "check value of filter_young");
 519 
 520   // We can only clean the card here, after we make the decision that
 521   // the card is not young. And we only clean the card if we have been
 522   // asked to (i.e., card_ptr != NULL).
 523   if (card_ptr != NULL) {
 524     *card_ptr = CardTableModRefBS::clean_card_val();
 525     // We must complete this write before we do any of the reads below.
 526     OrderAccess::storeload();
 527   }
 528 
 529   // Cache the boundaries of the memory region in some const locals
 530   HeapWord* const start = mr.start();
 531   HeapWord* const end = mr.end();
 532 
 533   // We used to use "block_start_careful" here.  But we're actually happy
 534   // to update the BOT while we do this...
 535   HeapWord* cur = block_start(start);
 536   assert(cur <= start, "Postcondition");
 537 
 538   oop obj;
 539 
 540   HeapWord* next = cur;
 541   while (next <= start) {
 542     cur = next;
 543     obj = oop(cur);
 544     if (obj->klass_or_null() == NULL) {
 545       // Ran into an unparseable point.
 546       return cur;
 547     }
 548     // Otherwise...
 549     next = (cur + obj->size());
 550   }
 551 
 552   // If we finish the above loop...We have a parseable object that
 553   // begins on or before the start of the memory region, and ends
 554   // inside or spans the entire region.
 555 
 556   assert(obj == oop(cur), "sanity");
 557   assert(cur <= start &&
 558          obj->klass_or_null() != NULL &&
 559          (cur + obj->size()) > start,
 560          "Loop postcondition");
 561 
 562   if (!g1h->is_obj_dead(obj)) {
 563     obj->oop_iterate(cl, mr);
 564   }
 565 
 566   while (cur < end) {
 567     obj = oop(cur);
 568     if (obj->klass_or_null() == NULL) {
 569       // Ran into an unparseable point.
 570       return cur;
 571     };
 572 
 573     // Otherwise:
 574     next = (cur + obj->size());
 575 
 576     if (!g1h->is_obj_dead(obj)) {
 577       if (next < end || !obj->is_objArray()) {
 578         // This object either does not span the MemRegion
 579         // boundary, or if it does it's not an array.
 580         // Apply closure to whole object.
 581         obj->oop_iterate(cl);
 582       } else {
 583         // This obj is an array that spans the boundary.
 584         // Stop at the boundary.
 585         obj->oop_iterate(cl, mr);
 586       }
 587     }
 588     cur = next;
 589   }
 590   return NULL;
 591 }
 592 
 593 void HeapRegion::print() const { print_on(gclog_or_tty); }
 594 void HeapRegion::print_on(outputStream* st) const {
 595   if (isHumongous()) {
 596     if (startsHumongous())
 597       st->print(" HS");
 598     else
 599       st->print(" HC");
 600   } else {
 601     st->print("   ");
 602   }
 603   if (in_collection_set())
 604     st->print(" CS");
 605   else
 606     st->print("   ");
 607   if (is_young())
 608     st->print(is_survivor() ? " SU" : " Y ");
 609   else
 610     st->print("   ");
 611   if (is_empty())
 612     st->print(" F");
 613   else
 614     st->print("  ");
 615   st->print(" TS %5d", _gc_time_stamp);
 616   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 617             prev_top_at_mark_start(), next_top_at_mark_start());
 618   G1OffsetTableContigSpace::print_on(st);
 619 }
 620 
 621 class VerifyLiveClosure: public OopClosure {
 622 private:
 623   G1CollectedHeap* _g1h;
 624   CardTableModRefBS* _bs;
 625   oop _containing_obj;
 626   bool _failures;
 627   int _n_failures;
 628   VerifyOption _vo;
 629 public:
 630   // _vo == UsePrevMarking -> use "prev" marking information,
 631   // _vo == UseNextMarking -> use "next" marking information,
 632   // _vo == UseMarkWord    -> use mark word from object header.
 633   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 634     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 635     _failures(false), _n_failures(0), _vo(vo)
 636   {
 637     BarrierSet* bs = _g1h->barrier_set();
 638     if (bs->is_a(BarrierSet::CardTableModRef))
 639       _bs = (CardTableModRefBS*)bs;
 640   }
 641 
 642   void set_containing_obj(oop obj) {
 643     _containing_obj = obj;
 644   }
 645 
 646   bool failures() { return _failures; }
 647   int n_failures() { return _n_failures; }
 648 
 649   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 650   virtual void do_oop(      oop* p) { do_oop_work(p); }
 651 
 652   void print_object(outputStream* out, oop obj) {
 653 #ifdef PRODUCT
 654     Klass* k = obj->klass();
 655     const char* class_name = InstanceKlass::cast(k)->external_name();
 656     out->print_cr("class name %s", class_name);
 657 #else // PRODUCT
 658     obj->print_on(out);
 659 #endif // PRODUCT
 660   }
 661 
 662   template <class T>
 663   void do_oop_work(T* p) {
 664     assert(_containing_obj != NULL, "Precondition");
 665     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 666            "Precondition");
 667     T heap_oop = oopDesc::load_heap_oop(p);
 668     if (!oopDesc::is_null(heap_oop)) {
 669       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 670       bool failed = false;
 671       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 672         MutexLockerEx x(ParGCRareEvent_lock,
 673                         Mutex::_no_safepoint_check_flag);
 674 
 675         if (!_failures) {
 676           gclog_or_tty->print_cr("");
 677           gclog_or_tty->print_cr("----------");
 678         }
 679         if (!_g1h->is_in_closed_subset(obj)) {
 680           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 681           gclog_or_tty->print_cr("Field "PTR_FORMAT
 682                                  " of live obj "PTR_FORMAT" in region "
 683                                  "["PTR_FORMAT", "PTR_FORMAT")",
 684                                  p, (void*) _containing_obj,
 685                                  from->bottom(), from->end());
 686           print_object(gclog_or_tty, _containing_obj);
 687           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 688                                  (void*) obj);
 689         } else {
 690           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 691           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 692           gclog_or_tty->print_cr("Field "PTR_FORMAT
 693                                  " of live obj "PTR_FORMAT" in region "
 694                                  "["PTR_FORMAT", "PTR_FORMAT")",
 695                                  p, (void*) _containing_obj,
 696                                  from->bottom(), from->end());
 697           print_object(gclog_or_tty, _containing_obj);
 698           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 699                                  "["PTR_FORMAT", "PTR_FORMAT")",
 700                                  (void*) obj, to->bottom(), to->end());
 701           print_object(gclog_or_tty, obj);
 702         }
 703         gclog_or_tty->print_cr("----------");
 704         gclog_or_tty->flush();
 705         _failures = true;
 706         failed = true;
 707         _n_failures++;
 708       }
 709 
 710       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 711         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 712         HeapRegion* to   = _g1h->heap_region_containing(obj);
 713         if (from != NULL && to != NULL &&
 714             from != to &&
 715             !to->isHumongous()) {
 716           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 717           jbyte cv_field = *_bs->byte_for_const(p);
 718           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 719 
 720           bool is_bad = !(from->is_young()
 721                           || to->rem_set()->contains_reference(p)
 722                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 723                               (_containing_obj->is_objArray() ?
 724                                   cv_field == dirty
 725                                : cv_obj == dirty || cv_field == dirty));
 726           if (is_bad) {
 727             MutexLockerEx x(ParGCRareEvent_lock,
 728                             Mutex::_no_safepoint_check_flag);
 729 
 730             if (!_failures) {
 731               gclog_or_tty->print_cr("");
 732               gclog_or_tty->print_cr("----------");
 733             }
 734             gclog_or_tty->print_cr("Missing rem set entry:");
 735             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 736                                    "of obj "PTR_FORMAT", "
 737                                    "in region "HR_FORMAT,
 738                                    p, (void*) _containing_obj,
 739                                    HR_FORMAT_PARAMS(from));
 740             _containing_obj->print_on(gclog_or_tty);
 741             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 742                                    "in region "HR_FORMAT,
 743                                    (void*) obj,
 744                                    HR_FORMAT_PARAMS(to));
 745             obj->print_on(gclog_or_tty);
 746             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 747                           cv_obj, cv_field);
 748             gclog_or_tty->print_cr("----------");
 749             gclog_or_tty->flush();
 750             _failures = true;
 751             if (!failed) _n_failures++;
 752           }
 753         }
 754       }
 755     }
 756   }
 757 };
 758 
 759 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 760 // We would need a mechanism to make that code skip dead objects.
 761 
 762 void HeapRegion::verify(VerifyOption vo,
 763                         bool* failures) const {
 764   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 765   *failures = false;
 766   HeapWord* p = bottom();
 767   HeapWord* prev_p = NULL;
 768   VerifyLiveClosure vl_cl(g1, vo);
 769   bool is_humongous = isHumongous();
 770   bool do_bot_verify = !is_young();
 771   size_t object_num = 0;
 772   while (p < top()) {
 773     oop obj = oop(p);
 774     size_t obj_size = obj->size();
 775     object_num += 1;
 776 
 777     if (is_humongous != g1->isHumongous(obj_size)) {
 778       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 779                              SIZE_FORMAT" words) in a %shumongous region",
 780                              p, g1->isHumongous(obj_size) ? "" : "non-",
 781                              obj_size, is_humongous ? "" : "non-");
 782        *failures = true;
 783        return;
 784     }
 785 
 786     // If it returns false, verify_for_object() will output the
 787     // appropriate messasge.
 788     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 789       *failures = true;
 790       return;
 791     }
 792 
 793     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 794       if (obj->is_oop()) {
 795         Klass* klass = obj->klass();
 796         if (!klass->is_metadata()) {
 797           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 798                                  "not metadata", klass, obj);
 799           *failures = true;
 800           return;
 801         } else if (!klass->is_klass()) {
 802           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 803                                  "not a klass", klass, obj);
 804           *failures = true;
 805           return;
 806         } else {
 807           vl_cl.set_containing_obj(obj);
 808           obj->oop_iterate_no_header(&vl_cl);
 809           if (vl_cl.failures()) {
 810             *failures = true;
 811           }
 812           if (G1MaxVerifyFailures >= 0 &&
 813               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 814             return;
 815           }
 816         }
 817       } else {
 818         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 819         *failures = true;
 820         return;
 821       }
 822     }
 823     prev_p = p;
 824     p += obj_size;
 825   }
 826 
 827   if (p != top()) {
 828     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 829                            "does not match top "PTR_FORMAT, p, top());
 830     *failures = true;
 831     return;
 832   }
 833 
 834   HeapWord* the_end = end();
 835   assert(p == top(), "it should still hold");
 836   // Do some extra BOT consistency checking for addresses in the
 837   // range [top, end). BOT look-ups in this range should yield
 838   // top. No point in doing that if top == end (there's nothing there).
 839   if (p < the_end) {
 840     // Look up top
 841     HeapWord* addr_1 = p;
 842     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 843     if (b_start_1 != p) {
 844       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 845                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 846                              addr_1, b_start_1, p);
 847       *failures = true;
 848       return;
 849     }
 850 
 851     // Look up top + 1
 852     HeapWord* addr_2 = p + 1;
 853     if (addr_2 < the_end) {
 854       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 855       if (b_start_2 != p) {
 856         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 857                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 858                                addr_2, b_start_2, p);
 859         *failures = true;
 860         return;
 861       }
 862     }
 863 
 864     // Look up an address between top and end
 865     size_t diff = pointer_delta(the_end, p) / 2;
 866     HeapWord* addr_3 = p + diff;
 867     if (addr_3 < the_end) {
 868       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 869       if (b_start_3 != p) {
 870         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 871                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 872                                addr_3, b_start_3, p);
 873         *failures = true;
 874         return;
 875       }
 876     }
 877 
 878     // Loook up end - 1
 879     HeapWord* addr_4 = the_end - 1;
 880     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 881     if (b_start_4 != p) {
 882       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 883                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 884                              addr_4, b_start_4, p);
 885       *failures = true;
 886       return;
 887     }
 888   }
 889 
 890   if (is_humongous && object_num > 1) {
 891     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 892                            "but has "SIZE_FORMAT", objects",
 893                            bottom(), end(), object_num);
 894     *failures = true;
 895     return;
 896   }
 897 }
 898 
 899 void HeapRegion::verify() const {
 900   bool dummy = false;
 901   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 902 }
 903 
 904 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 905 // away eventually.
 906 
 907 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 908   ContiguousSpace::clear(mangle_space);
 909   _offsets.zero_bottom_entry();
 910   _offsets.initialize_threshold();
 911 }
 912 
 913 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 914   Space::set_bottom(new_bottom);
 915   _offsets.set_bottom(new_bottom);
 916 }
 917 
 918 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 919   Space::set_end(new_end);
 920   _offsets.resize(new_end - bottom());
 921 }
 922 
 923 void G1OffsetTableContigSpace::print() const {
 924   print_short();
 925   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 926                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 927                 bottom(), top(), _offsets.threshold(), end());
 928 }
 929 
 930 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 931   return _offsets.initialize_threshold();
 932 }
 933 
 934 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 935                                                     HeapWord* end) {
 936   _offsets.alloc_block(start, end);
 937   return _offsets.threshold();
 938 }
 939 
 940 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
 941   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 942   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
 943   if (_gc_time_stamp < g1h->get_gc_time_stamp())
 944     return top();
 945   else
 946     return ContiguousSpace::saved_mark_word();
 947 }
 948 
 949 void G1OffsetTableContigSpace::set_saved_mark() {
 950   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 951   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 952 
 953   if (_gc_time_stamp < curr_gc_time_stamp) {
 954     // The order of these is important, as another thread might be
 955     // about to start scanning this region. If it does so after
 956     // set_saved_mark and before _gc_time_stamp = ..., then the latter
 957     // will be false, and it will pick up top() as the high water mark
 958     // of region. If it does so after _gc_time_stamp = ..., then it
 959     // will pick up the right saved_mark_word() as the high water mark
 960     // of the region. Either way, the behaviour will be correct.
 961     ContiguousSpace::set_saved_mark();
 962     OrderAccess::storestore();
 963     _gc_time_stamp = curr_gc_time_stamp;
 964     // No need to do another barrier to flush the writes above. If
 965     // this is called in parallel with other threads trying to
 966     // allocate into the region, the caller should call this while
 967     // holding a lock and when the lock is released the writes will be
 968     // flushed.
 969   }
 970 }
 971 
 972 G1OffsetTableContigSpace::
 973 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 974                          MemRegion mr) :
 975   _offsets(sharedOffsetArray, mr),
 976   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 977   _gc_time_stamp(0)
 978 {
 979   _offsets.set_space(this);
 980   // false ==> we'll do the clearing if there's clearing to be done.
 981   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
 982   _offsets.zero_bottom_entry();
 983   _offsets.initialize_threshold();
 984 }