1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  27 
  28 #include "gc_interface/gcCause.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/events.hpp"
  35 
  36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  37 // is an abstract class: there may be many different kinds of heaps.  This
  38 // class defines the functions that a heap must implement, and contains
  39 // infrastructure common to all heaps.
  40 
  41 class BarrierSet;
  42 class ThreadClosure;
  43 class AdaptiveSizePolicy;
  44 class Thread;
  45 class CollectorPolicy;
  46 
  47 class GCMessage : public FormatBuffer<1024> {
  48  public:
  49   bool is_before;
  50 
  51  public:
  52   GCMessage() {}
  53 };
  54 
  55 class GCHeapLog : public EventLogBase<GCMessage> {
  56  private:
  57   void log_heap(bool before);
  58 
  59  public:
  60   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  61 
  62   void log_heap_before() {
  63     log_heap(true);
  64   }
  65   void log_heap_after() {
  66     log_heap(false);
  67   }
  68 };
  69 
  70 //
  71 // CollectedHeap
  72 //   SharedHeap
  73 //     GenCollectedHeap
  74 //     G1CollectedHeap
  75 //   ParallelScavengeHeap
  76 //
  77 class CollectedHeap : public CHeapObj<mtInternal> {
  78   friend class VMStructs;
  79   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  80 
  81 #ifdef ASSERT
  82   static int       _fire_out_of_memory_count;
  83 #endif
  84 
  85   // Used for filler objects (static, but initialized in ctor).
  86   static size_t _filler_array_max_size;
  87 
  88   GCHeapLog* _gc_heap_log;
  89 
  90   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  91   bool _defer_initial_card_mark;
  92 
  93  protected:
  94   MemRegion _reserved;
  95   BarrierSet* _barrier_set;
  96   bool _is_gc_active;
  97   uint _n_par_threads;
  98 
  99   unsigned int _total_collections;          // ... started
 100   unsigned int _total_full_collections;     // ... started
 101   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 102   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 103 
 104   // Reason for current garbage collection.  Should be set to
 105   // a value reflecting no collection between collections.
 106   GCCause::Cause _gc_cause;
 107   GCCause::Cause _gc_lastcause;
 108   PerfStringVariable* _perf_gc_cause;
 109   PerfStringVariable* _perf_gc_lastcause;
 110 
 111   // Constructor
 112   CollectedHeap();
 113 
 114   // Do common initializations that must follow instance construction,
 115   // for example, those needing virtual calls.
 116   // This code could perhaps be moved into initialize() but would
 117   // be slightly more awkward because we want the latter to be a
 118   // pure virtual.
 119   void pre_initialize();
 120 
 121   // Create a new tlab. All TLAB allocations must go through this.
 122   virtual HeapWord* allocate_new_tlab(size_t size);
 123 
 124   // Accumulate statistics on all tlabs.
 125   virtual void accumulate_statistics_all_tlabs();
 126 
 127   // Reinitialize tlabs before resuming mutators.
 128   virtual void resize_all_tlabs();
 129 
 130   // Allocate from the current thread's TLAB, with broken-out slow path.
 131   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
 132   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
 133 
 134   // Allocate an uninitialized block of the given size, or returns NULL if
 135   // this is impossible.
 136   inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
 137 
 138   // Like allocate_init, but the block returned by a successful allocation
 139   // is guaranteed initialized to zeros.
 140   inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
 141 
 142   // Helper functions for (VM) allocation.
 143   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 144   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 145                                                             HeapWord* objPtr);
 146 
 147   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
 148 
 149   inline static void post_allocation_setup_array(KlassHandle klass,
 150                                                  HeapWord* obj, int length);
 151 
 152   // Clears an allocated object.
 153   inline static void init_obj(HeapWord* obj, size_t size);
 154 
 155   // Filler object utilities.
 156   static inline size_t filler_array_hdr_size();
 157   static inline size_t filler_array_min_size();
 158 
 159   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 160   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 161 
 162   // Fill with a single array; caller must ensure filler_array_min_size() <=
 163   // words <= filler_array_max_size().
 164   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 165 
 166   // Fill with a single object (either an int array or a java.lang.Object).
 167   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 168 
 169   // Verification functions
 170   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 171     PRODUCT_RETURN;
 172   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 173     PRODUCT_RETURN;
 174   debug_only(static void check_for_valid_allocation_state();)
 175 
 176  public:
 177   enum Name {
 178     Abstract,
 179     SharedHeap,
 180     GenCollectedHeap,
 181     ParallelScavengeHeap,
 182     G1CollectedHeap
 183   };
 184 
 185   static inline size_t filler_array_max_size() {
 186     return _filler_array_max_size;
 187   }
 188 
 189   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 190 
 191   /**
 192    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 193    * and JNI_OK on success.
 194    */
 195   virtual jint initialize() = 0;
 196 
 197   // In many heaps, there will be a need to perform some initialization activities
 198   // after the Universe is fully formed, but before general heap allocation is allowed.
 199   // This is the correct place to place such initialization methods.
 200   virtual void post_initialize() = 0;
 201 
 202   MemRegion reserved_region() const { return _reserved; }
 203   address base() const { return (address)reserved_region().start(); }
 204 
 205   // Future cleanup here. The following functions should specify bytes or
 206   // heapwords as part of their signature.
 207   virtual size_t capacity() const = 0;
 208   virtual size_t used() const = 0;
 209 
 210   // Return "true" if the part of the heap that allocates Java
 211   // objects has reached the maximal committed limit that it can
 212   // reach, without a garbage collection.
 213   virtual bool is_maximal_no_gc() const = 0;
 214 
 215   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 216   // memory that the vm could make available for storing 'normal' java objects.
 217   // This is based on the reserved address space, but should not include space
 218   // that the vm uses internally for bookkeeping or temporary storage
 219   // (e.g., in the case of the young gen, one of the survivor
 220   // spaces).
 221   virtual size_t max_capacity() const = 0;
 222 
 223   // Returns "TRUE" if "p" points into the reserved area of the heap.
 224   bool is_in_reserved(const void* p) const {
 225     return _reserved.contains(p);
 226   }
 227 
 228   bool is_in_reserved_or_null(const void* p) const {
 229     return p == NULL || is_in_reserved(p);
 230   }
 231 
 232   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 233   // Since this method can be expensive in general, we restrict its
 234   // use to assertion checking only.
 235   virtual bool is_in(const void* p) const = 0;
 236 
 237   bool is_in_or_null(const void* p) const {
 238     return p == NULL || is_in(p);
 239   }
 240 
 241   bool is_in_place(Metadata** p) {
 242     return !Universe::heap()->is_in(p);
 243   }
 244   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
 245   bool is_in_place(narrowOop* p) {
 246     oop o = oopDesc::load_decode_heap_oop_not_null(p);
 247     return Universe::heap()->is_in((const void*)o);
 248   }
 249 
 250   // Let's define some terms: a "closed" subset of a heap is one that
 251   //
 252   // 1) contains all currently-allocated objects, and
 253   //
 254   // 2) is closed under reference: no object in the closed subset
 255   //    references one outside the closed subset.
 256   //
 257   // Membership in a heap's closed subset is useful for assertions.
 258   // Clearly, the entire heap is a closed subset, so the default
 259   // implementation is to use "is_in_reserved".  But this may not be too
 260   // liberal to perform useful checking.  Also, the "is_in" predicate
 261   // defines a closed subset, but may be too expensive, since "is_in"
 262   // verifies that its argument points to an object head.  The
 263   // "closed_subset" method allows a heap to define an intermediate
 264   // predicate, allowing more precise checking than "is_in_reserved" at
 265   // lower cost than "is_in."
 266 
 267   // One important case is a heap composed of disjoint contiguous spaces,
 268   // such as the Garbage-First collector.  Such heaps have a convenient
 269   // closed subset consisting of the allocated portions of those
 270   // contiguous spaces.
 271 
 272   // Return "TRUE" iff the given pointer points into the heap's defined
 273   // closed subset (which defaults to the entire heap).
 274   virtual bool is_in_closed_subset(const void* p) const {
 275     return is_in_reserved(p);
 276   }
 277 
 278   bool is_in_closed_subset_or_null(const void* p) const {
 279     return p == NULL || is_in_closed_subset(p);
 280   }
 281 
 282 #ifdef ASSERT
 283   // Returns true if "p" is in the part of the
 284   // heap being collected.
 285   virtual bool is_in_partial_collection(const void *p) = 0;
 286 #endif
 287 
 288   // An object is scavengable if its location may move during a scavenge.
 289   // (A scavenge is a GC which is not a full GC.)
 290   virtual bool is_scavengable(const void *p) = 0;
 291 
 292   void set_gc_cause(GCCause::Cause v) {
 293      if (UsePerfData) {
 294        _gc_lastcause = _gc_cause;
 295        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 296        _perf_gc_cause->set_value(GCCause::to_string(v));
 297      }
 298     _gc_cause = v;
 299   }
 300   GCCause::Cause gc_cause() { return _gc_cause; }
 301 
 302   // Number of threads currently working on GC tasks.
 303   uint n_par_threads() { return _n_par_threads; }
 304 
 305   // May be overridden to set additional parallelism.
 306   virtual void set_par_threads(uint t) { _n_par_threads = t; };
 307 
 308   // Allocate and initialize instances of Class
 309   static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
 310 
 311   // General obj/array allocation facilities.
 312   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 313   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 314   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 315 
 316   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 317                                                        oop obj);
 318 
 319   // Raw memory allocation facilities
 320   // The obj and array allocate methods are covers for these methods.
 321   // mem_allocate() should never be
 322   // called to allocate TLABs, only individual objects.
 323   virtual HeapWord* mem_allocate(size_t size,
 324                                  bool* gc_overhead_limit_was_exceeded) = 0;
 325 
 326   // Utilities for turning raw memory into filler objects.
 327   //
 328   // min_fill_size() is the smallest region that can be filled.
 329   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 330   // multiple objects.  fill_with_object() is for regions known to be smaller
 331   // than the largest array of integers; it uses a single object to fill the
 332   // region and has slightly less overhead.
 333   static size_t min_fill_size() {
 334     return size_t(align_object_size(oopDesc::header_size()));
 335   }
 336 
 337   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 338 
 339   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 340   static void fill_with_object(MemRegion region, bool zap = true) {
 341     fill_with_object(region.start(), region.word_size(), zap);
 342   }
 343   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 344     fill_with_object(start, pointer_delta(end, start), zap);
 345   }
 346 
 347   // Some heaps may offer a contiguous region for shared non-blocking
 348   // allocation, via inlined code (by exporting the address of the top and
 349   // end fields defining the extent of the contiguous allocation region.)
 350 
 351   // This function returns "true" iff the heap supports this kind of
 352   // allocation.  (Default is "no".)
 353   virtual bool supports_inline_contig_alloc() const {
 354     return false;
 355   }
 356   // These functions return the addresses of the fields that define the
 357   // boundaries of the contiguous allocation area.  (These fields should be
 358   // physically near to one another.)
 359   virtual HeapWord** top_addr() const {
 360     guarantee(false, "inline contiguous allocation not supported");
 361     return NULL;
 362   }
 363   virtual HeapWord** end_addr() const {
 364     guarantee(false, "inline contiguous allocation not supported");
 365     return NULL;
 366   }
 367 
 368   // Some heaps may be in an unparseable state at certain times between
 369   // collections. This may be necessary for efficient implementation of
 370   // certain allocation-related activities. Calling this function before
 371   // attempting to parse a heap ensures that the heap is in a parsable
 372   // state (provided other concurrent activity does not introduce
 373   // unparsability). It is normally expected, therefore, that this
 374   // method is invoked with the world stopped.
 375   // NOTE: if you override this method, make sure you call
 376   // super::ensure_parsability so that the non-generational
 377   // part of the work gets done. See implementation of
 378   // CollectedHeap::ensure_parsability and, for instance,
 379   // that of GenCollectedHeap::ensure_parsability().
 380   // The argument "retire_tlabs" controls whether existing TLABs
 381   // are merely filled or also retired, thus preventing further
 382   // allocation from them and necessitating allocation of new TLABs.
 383   virtual void ensure_parsability(bool retire_tlabs);
 384 
 385   // Return an estimate of the maximum allocation that could be performed
 386   // without triggering any collection or expansion activity.  In a
 387   // generational collector, for example, this is probably the largest
 388   // allocation that could be supported (without expansion) in the youngest
 389   // generation.  It is "unsafe" because no locks are taken; the result
 390   // should be treated as an approximation, not a guarantee, for use in
 391   // heuristic resizing decisions.
 392   virtual size_t unsafe_max_alloc() = 0;
 393 
 394   // Section on thread-local allocation buffers (TLABs)
 395   // If the heap supports thread-local allocation buffers, it should override
 396   // the following methods:
 397   // Returns "true" iff the heap supports thread-local allocation buffers.
 398   // The default is "no".
 399   virtual bool supports_tlab_allocation() const {
 400     return false;
 401   }
 402   // The amount of space available for thread-local allocation buffers.
 403   virtual size_t tlab_capacity(Thread *thr) const {
 404     guarantee(false, "thread-local allocation buffers not supported");
 405     return 0;
 406   }
 407   // An estimate of the maximum allocation that could be performed
 408   // for thread-local allocation buffers without triggering any
 409   // collection or expansion activity.
 410   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 411     guarantee(false, "thread-local allocation buffers not supported");
 412     return 0;
 413   }
 414 
 415   // Can a compiler initialize a new object without store barriers?
 416   // This permission only extends from the creation of a new object
 417   // via a TLAB up to the first subsequent safepoint. If such permission
 418   // is granted for this heap type, the compiler promises to call
 419   // defer_store_barrier() below on any slow path allocation of
 420   // a new object for which such initializing store barriers will
 421   // have been elided.
 422   virtual bool can_elide_tlab_store_barriers() const = 0;
 423 
 424   // If a compiler is eliding store barriers for TLAB-allocated objects,
 425   // there is probably a corresponding slow path which can produce
 426   // an object allocated anywhere.  The compiler's runtime support
 427   // promises to call this function on such a slow-path-allocated
 428   // object before performing initializations that have elided
 429   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 430   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 431 
 432   // Answers whether an initializing store to a new object currently
 433   // allocated at the given address doesn't need a store
 434   // barrier. Returns "true" if it doesn't need an initializing
 435   // store barrier; answers "false" if it does.
 436   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 437 
 438   // If a compiler is eliding store barriers for TLAB-allocated objects,
 439   // we will be informed of a slow-path allocation by a call
 440   // to new_store_pre_barrier() above. Such a call precedes the
 441   // initialization of the object itself, and no post-store-barriers will
 442   // be issued. Some heap types require that the barrier strictly follows
 443   // the initializing stores. (This is currently implemented by deferring the
 444   // barrier until the next slow-path allocation or gc-related safepoint.)
 445   // This interface answers whether a particular heap type needs the card
 446   // mark to be thus strictly sequenced after the stores.
 447   virtual bool card_mark_must_follow_store() const = 0;
 448 
 449   // If the CollectedHeap was asked to defer a store barrier above,
 450   // this informs it to flush such a deferred store barrier to the
 451   // remembered set.
 452   virtual void flush_deferred_store_barrier(JavaThread* thread);
 453 
 454   // Does this heap support heap inspection (+PrintClassHistogram?)
 455   virtual bool supports_heap_inspection() const = 0;
 456 
 457   // Perform a collection of the heap; intended for use in implementing
 458   // "System.gc".  This probably implies as full a collection as the
 459   // "CollectedHeap" supports.
 460   virtual void collect(GCCause::Cause cause) = 0;
 461 
 462   // Perform a full collection
 463   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 464 
 465   // This interface assumes that it's being called by the
 466   // vm thread. It collects the heap assuming that the
 467   // heap lock is already held and that we are executing in
 468   // the context of the vm thread.
 469   virtual void collect_as_vm_thread(GCCause::Cause cause);
 470 
 471   // Callback from VM_CollectForMetadataAllocation operation.
 472   MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 473                                                size_t size,
 474                                                Metaspace::MetadataType mdtype);
 475 
 476   // Returns the barrier set for this heap
 477   BarrierSet* barrier_set() { return _barrier_set; }
 478 
 479   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 480   // that it should answer "false" for the concurrent part of a concurrent
 481   // collector -- dld).
 482   bool is_gc_active() const { return _is_gc_active; }
 483 
 484   // Total number of GC collections (started)
 485   unsigned int total_collections() const { return _total_collections; }
 486   unsigned int total_full_collections() const { return _total_full_collections;}
 487 
 488   // Increment total number of GC collections (started)
 489   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 490   void increment_total_collections(bool full = false) {
 491     _total_collections++;
 492     if (full) {
 493       increment_total_full_collections();
 494     }
 495   }
 496 
 497   void increment_total_full_collections() { _total_full_collections++; }
 498 
 499   // Return the AdaptiveSizePolicy for the heap.
 500   virtual AdaptiveSizePolicy* size_policy() = 0;
 501 
 502   // Return the CollectorPolicy for the heap
 503   virtual CollectorPolicy* collector_policy() const = 0;
 504 
 505   void oop_iterate_no_header(OopClosure* cl);
 506 
 507   // Iterate over all the ref-containing fields of all objects, calling
 508   // "cl.do_oop" on each.
 509   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
 510 
 511   // Iterate over all objects, calling "cl.do_object" on each.
 512   virtual void object_iterate(ObjectClosure* cl) = 0;
 513 
 514   // Similar to object_iterate() except iterates only
 515   // over live objects.
 516   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 517 
 518   // NOTE! There is no requirement that a collector implement these
 519   // functions.
 520   //
 521   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 522   // each address in the (reserved) heap is a member of exactly
 523   // one block.  The defining characteristic of a block is that it is
 524   // possible to find its size, and thus to progress forward to the next
 525   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 526   // represent Java objects, or they might be free blocks in a
 527   // free-list-based heap (or subheap), as long as the two kinds are
 528   // distinguishable and the size of each is determinable.
 529 
 530   // Returns the address of the start of the "block" that contains the
 531   // address "addr".  We say "blocks" instead of "object" since some heaps
 532   // may not pack objects densely; a chunk may either be an object or a
 533   // non-object.
 534   virtual HeapWord* block_start(const void* addr) const = 0;
 535 
 536   // Requires "addr" to be the start of a chunk, and returns its size.
 537   // "addr + size" is required to be the start of a new chunk, or the end
 538   // of the active area of the heap.
 539   virtual size_t block_size(const HeapWord* addr) const = 0;
 540 
 541   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 542   // the block is an object.
 543   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 544 
 545   // Returns the longest time (in ms) that has elapsed since the last
 546   // time that any part of the heap was examined by a garbage collection.
 547   virtual jlong millis_since_last_gc() = 0;
 548 
 549   // Perform any cleanup actions necessary before allowing a verification.
 550   virtual void prepare_for_verify() = 0;
 551 
 552   // Generate any dumps preceding or following a full gc
 553   void pre_full_gc_dump();
 554   void post_full_gc_dump();
 555 
 556   // Print heap information on the given outputStream.
 557   virtual void print_on(outputStream* st) const = 0;
 558   // The default behavior is to call print_on() on tty.
 559   virtual void print() const {
 560     print_on(tty);
 561   }
 562   // Print more detailed heap information on the given
 563   // outputStream. The default behaviour is to call print_on(). It is
 564   // up to each subclass to override it and add any additional output
 565   // it needs.
 566   virtual void print_extended_on(outputStream* st) const {
 567     print_on(st);
 568   }
 569 
 570   virtual void print_on_error(outputStream* st) const {
 571     st->print_cr("Heap:");
 572     print_extended_on(st);
 573     st->cr();
 574 
 575     _barrier_set->print_on(st);
 576   }
 577 
 578   // Print all GC threads (other than the VM thread)
 579   // used by this heap.
 580   virtual void print_gc_threads_on(outputStream* st) const = 0;
 581   // The default behavior is to call print_gc_threads_on() on tty.
 582   void print_gc_threads() {
 583     print_gc_threads_on(tty);
 584   }
 585   // Iterator for all GC threads (other than VM thread)
 586   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 587 
 588   // Print any relevant tracing info that flags imply.
 589   // Default implementation does nothing.
 590   virtual void print_tracing_info() const = 0;
 591 
 592   // If PrintHeapAtGC is set call the appropriate routi
 593   void print_heap_before_gc() {
 594     if (PrintHeapAtGC) {
 595       Universe::print_heap_before_gc();
 596     }
 597     if (_gc_heap_log != NULL) {
 598       _gc_heap_log->log_heap_before();
 599     }
 600   }
 601   void print_heap_after_gc() {
 602     if (PrintHeapAtGC) {
 603       Universe::print_heap_after_gc();
 604     }
 605     if (_gc_heap_log != NULL) {
 606       _gc_heap_log->log_heap_after();
 607     }
 608   }
 609 
 610   // Heap verification
 611   virtual void verify(bool silent, VerifyOption option) = 0;
 612 
 613   // Non product verification and debugging.
 614 #ifndef PRODUCT
 615   // Support for PromotionFailureALot.  Return true if it's time to cause a
 616   // promotion failure.  The no-argument version uses
 617   // this->_promotion_failure_alot_count as the counter.
 618   inline bool promotion_should_fail(volatile size_t* count);
 619   inline bool promotion_should_fail();
 620 
 621   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 622   // GC in which promotion failure ocurred.
 623   inline void reset_promotion_should_fail(volatile size_t* count);
 624   inline void reset_promotion_should_fail();
 625 #endif  // #ifndef PRODUCT
 626 
 627 #ifdef ASSERT
 628   static int fired_fake_oom() {
 629     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 630   }
 631 #endif
 632 
 633  public:
 634   // This is a convenience method that is used in cases where
 635   // the actual number of GC worker threads is not pertinent but
 636   // only whether there more than 0.  Use of this method helps
 637   // reduce the occurrence of ParallelGCThreads to uses where the
 638   // actual number may be germane.
 639   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
 640 
 641   /////////////// Unit tests ///////////////
 642 
 643   NOT_PRODUCT(static void test_is_in();)
 644 };
 645 
 646 // Class to set and reset the GC cause for a CollectedHeap.
 647 
 648 class GCCauseSetter : StackObj {
 649   CollectedHeap* _heap;
 650   GCCause::Cause _previous_cause;
 651  public:
 652   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 653     assert(SafepointSynchronize::is_at_safepoint(),
 654            "This method manipulates heap state without locking");
 655     _heap = heap;
 656     _previous_cause = _heap->gc_cause();
 657     _heap->set_gc_cause(cause);
 658   }
 659 
 660   ~GCCauseSetter() {
 661     assert(SafepointSynchronize::is_at_safepoint(),
 662           "This method manipulates heap state without locking");
 663     _heap->set_gc_cause(_previous_cause);
 664   }
 665 };
 666 
 667 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP