1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  34 #include "gc_implementation/g1/g1RemSet.hpp"
  35 #include "gc_implementation/g1/heapRegion.inline.hpp"
  36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  38 #include "gc_implementation/shared/vmGCOperations.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "services/memTracker.hpp"
  46 
  47 // Concurrent marking bit map wrapper
  48 
  49 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
  50   _bm((uintptr_t*)NULL, 0),
  51   _shifter(shifter) {
  52   _bmStartWord = (HeapWord*)(rs.base());
  53   _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  54   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  55                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  56 
  57   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  58 
  59   guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
  60   // For now we'll just commit all of the bit map up fromt.
  61   // Later on we'll try to be more parsimonious with swap.
  62   guarantee(_virtual_space.initialize(brs, brs.size()),
  63             "couldn't reseve backing store for concurrent marking bit map");
  64   assert(_virtual_space.committed_size() == brs.size(),
  65          "didn't reserve backing store for all of concurrent marking bit map?");
  66   _bm.set_map((uintptr_t*)_virtual_space.low());
  67   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  68          _bmWordSize, "inconsistency in bit map sizing");
  69   _bm.set_size(_bmWordSize >> _shifter);
  70 }
  71 
  72 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  73                                                HeapWord* limit) const {
  74   // First we must round addr *up* to a possible object boundary.
  75   addr = (HeapWord*)align_size_up((intptr_t)addr,
  76                                   HeapWordSize << _shifter);
  77   size_t addrOffset = heapWordToOffset(addr);
  78   if (limit == NULL) {
  79     limit = _bmStartWord + _bmWordSize;
  80   }
  81   size_t limitOffset = heapWordToOffset(limit);
  82   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  83   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  84   assert(nextAddr >= addr, "get_next_one postcondition");
  85   assert(nextAddr == limit || isMarked(nextAddr),
  86          "get_next_one postcondition");
  87   return nextAddr;
  88 }
  89 
  90 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  91                                                  HeapWord* limit) const {
  92   size_t addrOffset = heapWordToOffset(addr);
  93   if (limit == NULL) {
  94     limit = _bmStartWord + _bmWordSize;
  95   }
  96   size_t limitOffset = heapWordToOffset(limit);
  97   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  98   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  99   assert(nextAddr >= addr, "get_next_one postcondition");
 100   assert(nextAddr == limit || !isMarked(nextAddr),
 101          "get_next_one postcondition");
 102   return nextAddr;
 103 }
 104 
 105 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 106   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 107   return (int) (diff >> _shifter);
 108 }
 109 
 110 #ifndef PRODUCT
 111 bool CMBitMapRO::covers(ReservedSpace rs) const {
 112   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 113   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 114          "size inconsistency");
 115   return _bmStartWord == (HeapWord*)(rs.base()) &&
 116          _bmWordSize  == rs.size()>>LogHeapWordSize;
 117 }
 118 #endif
 119 
 120 void CMBitMap::clearAll() {
 121   _bm.clear();
 122   return;
 123 }
 124 
 125 void CMBitMap::markRange(MemRegion mr) {
 126   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 127   assert(!mr.is_empty(), "unexpected empty region");
 128   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 129           ((HeapWord *) mr.end())),
 130          "markRange memory region end is not card aligned");
 131   // convert address range into offset range
 132   _bm.at_put_range(heapWordToOffset(mr.start()),
 133                    heapWordToOffset(mr.end()), true);
 134 }
 135 
 136 void CMBitMap::clearRange(MemRegion mr) {
 137   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 138   assert(!mr.is_empty(), "unexpected empty region");
 139   // convert address range into offset range
 140   _bm.at_put_range(heapWordToOffset(mr.start()),
 141                    heapWordToOffset(mr.end()), false);
 142 }
 143 
 144 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 145                                             HeapWord* end_addr) {
 146   HeapWord* start = getNextMarkedWordAddress(addr);
 147   start = MIN2(start, end_addr);
 148   HeapWord* end   = getNextUnmarkedWordAddress(start);
 149   end = MIN2(end, end_addr);
 150   assert(start <= end, "Consistency check");
 151   MemRegion mr(start, end);
 152   if (!mr.is_empty()) {
 153     clearRange(mr);
 154   }
 155   return mr;
 156 }
 157 
 158 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 159   _base(NULL), _cm(cm)
 160 #ifdef ASSERT
 161   , _drain_in_progress(false)
 162   , _drain_in_progress_yields(false)
 163 #endif
 164 {}
 165 
 166 void CMMarkStack::allocate(size_t size) {
 167   size_t mark_stack_bytes = size * oopSize;
 168   size_t aligned_mark_stack_bytes =
 169         ReservedSpace::allocation_align_size_up(mark_stack_bytes);
 170 
 171   ReservedSpace ms_rs(aligned_mark_stack_bytes);
 172   if (!ms_rs.is_reserved()) {
 173     vm_exit_during_initialization("Failed to allocate CM mark stack");
 174   }
 175   if (!_virtual_space.initialize(ms_rs, ms_rs.size())) {
 176     vm_exit_during_initialization("Couldn't reseve backing store "
 177                                   "for CM mark stack");
 178   }
 179   guarantee(_virtual_space.committed_size() == ms_rs.size(),
 180             "Didn't reserve backing store for "
 181             "all of concurrent marking stack?");
 182 
 183   _base = (oop*) _virtual_space.low();
 184   _index = 0;
 185   _capacity = (jint) size;
 186   _saved_index = -1;
 187   NOT_PRODUCT(_max_depth = 0);
 188 }
 189 
 190 CMMarkStack::~CMMarkStack() {
 191   if (_base != NULL) {
 192     _base = NULL;
 193     _virtual_space.release();
 194   }
 195 }
 196 
 197 void CMMarkStack::par_push(oop ptr) {
 198   while (true) {
 199     if (isFull()) {
 200       _overflow = true;
 201       return;
 202     }
 203     // Otherwise...
 204     jint index = _index;
 205     jint next_index = index+1;
 206     jint res = Atomic::cmpxchg(next_index, &_index, index);
 207     if (res == index) {
 208       _base[index] = ptr;
 209       // Note that we don't maintain this atomically.  We could, but it
 210       // doesn't seem necessary.
 211       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 212       return;
 213     }
 214     // Otherwise, we need to try again.
 215   }
 216 }
 217 
 218 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 219   while (true) {
 220     if (isFull()) {
 221       _overflow = true;
 222       return;
 223     }
 224     // Otherwise...
 225     jint index = _index;
 226     jint next_index = index + n;
 227     if (next_index > _capacity) {
 228       _overflow = true;
 229       return;
 230     }
 231     jint res = Atomic::cmpxchg(next_index, &_index, index);
 232     if (res == index) {
 233       for (int i = 0; i < n; i++) {
 234         int ind = index + i;
 235         assert(ind < _capacity, "By overflow test above.");
 236         _base[ind] = ptr_arr[i];
 237       }
 238       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 239       return;
 240     }
 241     // Otherwise, we need to try again.
 242   }
 243 }
 244 
 245 
 246 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 247   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 248   jint start = _index;
 249   jint next_index = start + n;
 250   if (next_index > _capacity) {
 251     _overflow = true;
 252     return;
 253   }
 254   // Otherwise.
 255   _index = next_index;
 256   for (int i = 0; i < n; i++) {
 257     int ind = start + i;
 258     assert(ind < _capacity, "By overflow test above.");
 259     _base[ind] = ptr_arr[i];
 260   }
 261 }
 262 
 263 
 264 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 265   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 266   jint index = _index;
 267   if (index == 0) {
 268     *n = 0;
 269     return false;
 270   } else {
 271     int k = MIN2(max, index);
 272     jint new_ind = index - k;
 273     for (int j = 0; j < k; j++) {
 274       ptr_arr[j] = _base[new_ind + j];
 275     }
 276     _index = new_ind;
 277     *n = k;
 278     return true;
 279   }
 280 }
 281 
 282 template<class OopClosureClass>
 283 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 284   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 285          || SafepointSynchronize::is_at_safepoint(),
 286          "Drain recursion must be yield-safe.");
 287   bool res = true;
 288   debug_only(_drain_in_progress = true);
 289   debug_only(_drain_in_progress_yields = yield_after);
 290   while (!isEmpty()) {
 291     oop newOop = pop();
 292     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 293     assert(newOop->is_oop(), "Expected an oop");
 294     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 295            "only grey objects on this stack");
 296     newOop->oop_iterate(cl);
 297     if (yield_after && _cm->do_yield_check()) {
 298       res = false;
 299       break;
 300     }
 301   }
 302   debug_only(_drain_in_progress = false);
 303   return res;
 304 }
 305 
 306 void CMMarkStack::note_start_of_gc() {
 307   assert(_saved_index == -1,
 308          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 309   _saved_index = _index;
 310 }
 311 
 312 void CMMarkStack::note_end_of_gc() {
 313   // This is intentionally a guarantee, instead of an assert. If we
 314   // accidentally add something to the mark stack during GC, it
 315   // will be a correctness issue so it's better if we crash. we'll
 316   // only check this once per GC anyway, so it won't be a performance
 317   // issue in any way.
 318   guarantee(_saved_index == _index,
 319             err_msg("saved index: %d index: %d", _saved_index, _index));
 320   _saved_index = -1;
 321 }
 322 
 323 void CMMarkStack::oops_do(OopClosure* f) {
 324   assert(_saved_index == _index,
 325          err_msg("saved index: %d index: %d", _saved_index, _index));
 326   for (int i = 0; i < _index; i += 1) {
 327     f->do_oop(&_base[i]);
 328   }
 329 }
 330 
 331 bool ConcurrentMark::not_yet_marked(oop obj) const {
 332   return _g1h->is_obj_ill(obj);
 333 }
 334 
 335 CMRootRegions::CMRootRegions() :
 336   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 337   _should_abort(false),  _next_survivor(NULL) { }
 338 
 339 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 340   _young_list = g1h->young_list();
 341   _cm = cm;
 342 }
 343 
 344 void CMRootRegions::prepare_for_scan() {
 345   assert(!scan_in_progress(), "pre-condition");
 346 
 347   // Currently, only survivors can be root regions.
 348   assert(_next_survivor == NULL, "pre-condition");
 349   _next_survivor = _young_list->first_survivor_region();
 350   _scan_in_progress = (_next_survivor != NULL);
 351   _should_abort = false;
 352 }
 353 
 354 HeapRegion* CMRootRegions::claim_next() {
 355   if (_should_abort) {
 356     // If someone has set the should_abort flag, we return NULL to
 357     // force the caller to bail out of their loop.
 358     return NULL;
 359   }
 360 
 361   // Currently, only survivors can be root regions.
 362   HeapRegion* res = _next_survivor;
 363   if (res != NULL) {
 364     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 365     // Read it again in case it changed while we were waiting for the lock.
 366     res = _next_survivor;
 367     if (res != NULL) {
 368       if (res == _young_list->last_survivor_region()) {
 369         // We just claimed the last survivor so store NULL to indicate
 370         // that we're done.
 371         _next_survivor = NULL;
 372       } else {
 373         _next_survivor = res->get_next_young_region();
 374       }
 375     } else {
 376       // Someone else claimed the last survivor while we were trying
 377       // to take the lock so nothing else to do.
 378     }
 379   }
 380   assert(res == NULL || res->is_survivor(), "post-condition");
 381 
 382   return res;
 383 }
 384 
 385 void CMRootRegions::scan_finished() {
 386   assert(scan_in_progress(), "pre-condition");
 387 
 388   // Currently, only survivors can be root regions.
 389   if (!_should_abort) {
 390     assert(_next_survivor == NULL, "we should have claimed all survivors");
 391   }
 392   _next_survivor = NULL;
 393 
 394   {
 395     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 396     _scan_in_progress = false;
 397     RootRegionScan_lock->notify_all();
 398   }
 399 }
 400 
 401 bool CMRootRegions::wait_until_scan_finished() {
 402   if (!scan_in_progress()) return false;
 403 
 404   {
 405     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 406     while (scan_in_progress()) {
 407       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 408     }
 409   }
 410   return true;
 411 }
 412 
 413 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 414 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 415 #endif // _MSC_VER
 416 
 417 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 418   return MAX2((n_par_threads + 2) / 4, 1U);
 419 }
 420 
 421 ConcurrentMark::ConcurrentMark(ReservedSpace heap_rs, uint max_regions) :
 422   _markBitMap1(heap_rs, MinObjAlignment - 1),
 423   _markBitMap2(heap_rs, MinObjAlignment - 1),
 424 
 425   _parallel_marking_threads(0),
 426   _max_parallel_marking_threads(0),
 427   _sleep_factor(0.0),
 428   _marking_task_overhead(1.0),
 429   _cleanup_sleep_factor(0.0),
 430   _cleanup_task_overhead(1.0),
 431   _cleanup_list("Cleanup List"),
 432 
 433   _prevMarkBitMap(&_markBitMap1),
 434   _nextMarkBitMap(&_markBitMap2),
 435 
 436   _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
 437 
 438   _markStack(this),
 439   // _finger set in set_non_marking_state
 440 
 441   _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
 442   // _active_tasks set in set_non_marking_state
 443   // _tasks set inside the constructor
 444   _task_queues(new CMTaskQueueSet((int) _max_task_num)),
 445   _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
 446 
 447   _has_overflown(false),
 448   _concurrent(false),
 449   _has_aborted(false),
 450   _restart_for_overflow(false),
 451   _concurrent_marking_in_progress(false),
 452 
 453   // _verbose_level set below
 454 
 455   _init_times(),
 456   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 457   _cleanup_times(),
 458   _total_counting_time(0.0),
 459   _total_rs_scrub_time(0.0),
 460 
 461   _parallel_workers(NULL),
 462 
 463   _count_card_bitmaps(NULL),
 464   _count_marked_bytes(NULL) {
 465   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 466   if (verbose_level < no_verbose) {
 467     verbose_level = no_verbose;
 468   }
 469   if (verbose_level > high_verbose) {
 470     verbose_level = high_verbose;
 471   }
 472   _verbose_level = verbose_level;
 473 
 474   if (verbose_low()) {
 475     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 476                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 477   }
 478 
 479   _markStack.allocate(MarkStackSize);
 480 
 481   // Create & start a ConcurrentMark thread.
 482   _cmThread = new ConcurrentMarkThread(this);
 483   assert(cmThread() != NULL, "CM Thread should have been created");
 484   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 485 
 486   _g1h = G1CollectedHeap::heap();
 487   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 488   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 489   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 490 
 491   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 492   satb_qs.set_buffer_size(G1SATBBufferSize);
 493 
 494   _root_regions.init(_g1h, this);
 495 
 496   // Calculate the size of the memory that is needed for the backing store
 497   // (from which we "allocate" the global liveness card bitmap and the
 498   // liveness card bitmaps for the individual worker threads).
 499 
 500   // Card liveness bitmap size (in bits)
 501   BitMap::idx_t card_bm_size = (heap_rs.size() + CardTableModRefBS::card_size - 1)
 502                                 >> CardTableModRefBS::card_shift;
 503   // Card liveness bitmap size (in bytes)
 504   size_t card_bm_size_bytes = (card_bm_size + (BitsPerByte - 1)) / BitsPerByte;
 505 
 506   // Length of marked bytes array (one element per region)
 507   size_t marked_bytes_size = max_regions;
 508 
 509   // Size of marked bytes array (in bytes)
 510   size_t marked_bytes_size_bytes = marked_bytes_size * sizeof(size_t);
 511 
 512   // Now align up to whole number of bitmap words
 513   assert(sizeof(BitMap::bm_word_t) >= sizeof(size_t), "check this code");
 514   card_bm_size_bytes = align_size_up(card_bm_size_bytes, sizeof(BitMap::bm_word_t));
 515   marked_bytes_size_bytes = align_size_up(marked_bytes_size_bytes, sizeof(BitMap::bm_word_t));
 516 
 517   // The memory size is the size of the global card bitmap,
 518   // and the combined size of the card bitmaps and marked bytes
 519   // arrays for each of the worker threads.
 520   size_t mem_size_bytes = card_bm_size_bytes +
 521                           _max_task_num * (card_bm_size_bytes + marked_bytes_size_bytes);
 522 
 523   // Align the size up.
 524   size_t aligned_mem_size_bytes = ReservedSpace::allocation_align_size_up(mem_size_bytes);
 525 
 526   // Reserve the backing store
 527   ReservedSpace cm_rs(aligned_mem_size_bytes);
 528   if (!cm_rs.is_reserved()) {
 529     vm_exit_during_initialization("Failed to allocate CM backing store");
 530   }
 531   if (!_virtual_space.initialize(cm_rs, cm_rs.size())) {
 532     vm_exit_during_initialization("Couldn't reseve CM backing store");
 533   }
 534   guarantee(_virtual_space.committed_size() == cm_rs.size(),
 535             "didn't reserve all of CM backing store?");
 536   guarantee(_virtual_space.committed_size() >= mem_size_bytes, "sanity");
 537 
 538   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num, mtGC);
 539   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num, mtGC);
 540 
 541   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_task_num, mtGC);
 542   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num, mtGC);
 543 
 544   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 545   _active_tasks = _max_task_num;
 546 
 547   char* vaddr = _virtual_space.low();
 548   size_t incr_bytes = card_bm_size_bytes + marked_bytes_size_bytes;
 549 
 550   for (int i = 0; i < (int) _max_task_num; ++i) {
 551     CMTaskQueue* task_queue = new CMTaskQueue();
 552     task_queue->initialize();
 553     _task_queues->register_queue(i, task_queue);
 554    
 555     // "allocate" the card bitmap and live bytes array for current task.
 556     guarantee(_virtual_space.low() <= vaddr && vaddr < _virtual_space.high(), "oob");
 557     guarantee((vaddr + incr_bytes) < _virtual_space.high(), "overflow");
 558 
 559     char* card_bm_map_addr = vaddr;
 560     _count_card_bitmaps[i].set_map((BitMap::bm_word_t*) card_bm_map_addr);
 561     _count_card_bitmaps[i].set_size((BitMap::idx_t) card_bm_size);
 562 
 563     char* marked_bytes_addr = card_bm_map_addr + card_bm_size_bytes;
 564     _count_marked_bytes[i] = (size_t*) marked_bytes_addr;
 565 
 566     _tasks[i] = new CMTask(i, this,
 567                            _count_marked_bytes[i],
 568                            &_count_card_bitmaps[i],
 569                            task_queue, _task_queues);
 570 
 571     _accum_task_vtime[i] = 0.0;
 572 
 573     // Update pointer into virtual memory backing store
 574     vaddr += incr_bytes;
 575   }
 576 
 577   // Now "allocate" the global card bitmap.
 578   guarantee(_virtual_space.low() <= vaddr && vaddr < _virtual_space.high(), "oob");
 579   guarantee((vaddr + card_bm_size_bytes) <= _virtual_space.high(), "overflow");
 580   _card_bm.set_map((BitMap::bm_word_t*) vaddr);
 581   _card_bm.set_size((BitMap::idx_t) card_bm_size);
 582 
 583   // Calculate the card number for the bottom of the heap. Used
 584   // in biasing indexes into the accounting card bitmaps.
 585   _heap_bottom_card_num =
 586     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 587                                 CardTableModRefBS::card_shift);
 588 
 589   // Clear all the liveness counting data
 590   clear_all_count_data();
 591 
 592   if (ConcGCThreads > ParallelGCThreads) {
 593     vm_exit_during_initialization("Can't have more ConcGCThreads "
 594                                   "than ParallelGCThreads.");
 595   }
 596   if (ParallelGCThreads == 0) {
 597     // if we are not running with any parallel GC threads we will not
 598     // spawn any marking threads either
 599     _parallel_marking_threads =       0;
 600     _max_parallel_marking_threads =   0;
 601     _sleep_factor             =     0.0;
 602     _marking_task_overhead    =     1.0;
 603   } else {
 604     if (ConcGCThreads > 0) {
 605       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
 606       // if both are set
 607 
 608       _parallel_marking_threads = (uint) ConcGCThreads;
 609       _max_parallel_marking_threads = _parallel_marking_threads;
 610       _sleep_factor             = 0.0;
 611       _marking_task_overhead    = 1.0;
 612     } else if (G1MarkingOverheadPercent > 0) {
 613       // we will calculate the number of parallel marking threads
 614       // based on a target overhead with respect to the soft real-time
 615       // goal
 616 
 617       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 618       double overall_cm_overhead =
 619         (double) MaxGCPauseMillis * marking_overhead /
 620         (double) GCPauseIntervalMillis;
 621       double cpu_ratio = 1.0 / (double) os::processor_count();
 622       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 623       double marking_task_overhead =
 624         overall_cm_overhead / marking_thread_num *
 625                                                 (double) os::processor_count();
 626       double sleep_factor =
 627                          (1.0 - marking_task_overhead) / marking_task_overhead;
 628 
 629       _parallel_marking_threads = (uint) marking_thread_num;
 630       _max_parallel_marking_threads = _parallel_marking_threads;
 631       _sleep_factor             = sleep_factor;
 632       _marking_task_overhead    = marking_task_overhead;
 633     } else {
 634       _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
 635       _max_parallel_marking_threads = _parallel_marking_threads;
 636       _sleep_factor             = 0.0;
 637       _marking_task_overhead    = 1.0;
 638     }
 639 
 640     if (parallel_marking_threads() > 1) {
 641       _cleanup_task_overhead = 1.0;
 642     } else {
 643       _cleanup_task_overhead = marking_task_overhead();
 644     }
 645     _cleanup_sleep_factor =
 646                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 647 
 648 #if 0
 649     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 650     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 651     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 652     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 653     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 654 #endif
 655 
 656     guarantee(parallel_marking_threads() > 0, "peace of mind");
 657     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 658          _max_parallel_marking_threads, false, true);
 659     if (_parallel_workers == NULL) {
 660       vm_exit_during_initialization("Failed necessary allocation.");
 661     } else {
 662       _parallel_workers->initialize_workers();
 663     }
 664   }
 665 
 666   // so that the call below can read a sensible value
 667   _heap_start = (HeapWord*) heap_rs.base();
 668   set_non_marking_state();
 669 }
 670 
 671 void ConcurrentMark::update_g1_committed(bool force) {
 672   // If concurrent marking is not in progress, then we do not need to
 673   // update _heap_end.
 674   if (!concurrent_marking_in_progress() && !force) return;
 675 
 676   MemRegion committed = _g1h->g1_committed();
 677   assert(committed.start() == _heap_start, "start shouldn't change");
 678   HeapWord* new_end = committed.end();
 679   if (new_end > _heap_end) {
 680     // The heap has been expanded.
 681 
 682     _heap_end = new_end;
 683   }
 684   // Notice that the heap can also shrink. However, this only happens
 685   // during a Full GC (at least currently) and the entire marking
 686   // phase will bail out and the task will not be restarted. So, let's
 687   // do nothing.
 688 }
 689 
 690 void ConcurrentMark::reset() {
 691   // Starting values for these two. This should be called in a STW
 692   // phase. CM will be notified of any future g1_committed expansions
 693   // will be at the end of evacuation pauses, when tasks are
 694   // inactive.
 695   MemRegion committed = _g1h->g1_committed();
 696   _heap_start = committed.start();
 697   _heap_end   = committed.end();
 698 
 699   // Separated the asserts so that we know which one fires.
 700   assert(_heap_start != NULL, "heap bounds should look ok");
 701   assert(_heap_end != NULL, "heap bounds should look ok");
 702   assert(_heap_start < _heap_end, "heap bounds should look ok");
 703 
 704   // reset all the marking data structures and any necessary flags
 705   clear_marking_state();
 706 
 707   if (verbose_low()) {
 708     gclog_or_tty->print_cr("[global] resetting");
 709   }
 710 
 711   // We do reset all of them, since different phases will use
 712   // different number of active threads. So, it's easiest to have all
 713   // of them ready.
 714   for (int i = 0; i < (int) _max_task_num; ++i) {
 715     _tasks[i]->reset(_nextMarkBitMap);
 716   }
 717 
 718   // we need this to make sure that the flag is on during the evac
 719   // pause with initial mark piggy-backed
 720   set_concurrent_marking_in_progress();
 721 }
 722 
 723 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
 724   assert(active_tasks <= _max_task_num, "we should not have more");
 725 
 726   _active_tasks = active_tasks;
 727   // Need to update the three data structures below according to the
 728   // number of active threads for this phase.
 729   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 730   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 731   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 732 
 733   _concurrent = concurrent;
 734   // We propagate this to all tasks, not just the active ones.
 735   for (int i = 0; i < (int) _max_task_num; ++i)
 736     _tasks[i]->set_concurrent(concurrent);
 737 
 738   if (concurrent) {
 739     set_concurrent_marking_in_progress();
 740   } else {
 741     // We currently assume that the concurrent flag has been set to
 742     // false before we start remark. At this point we should also be
 743     // in a STW phase.
 744     assert(!concurrent_marking_in_progress(), "invariant");
 745     assert(_finger == _heap_end, "only way to get here");
 746     update_g1_committed(true);
 747   }
 748 }
 749 
 750 void ConcurrentMark::set_non_marking_state() {
 751   // We set the global marking state to some default values when we're
 752   // not doing marking.
 753   clear_marking_state();
 754   _active_tasks = 0;
 755   clear_concurrent_marking_in_progress();
 756 }
 757 
 758 ConcurrentMark::~ConcurrentMark() {
 759   // The ConcurrentMark instance is never freed.
 760   ShouldNotReachHere();
 761 }
 762 
 763 void ConcurrentMark::clearNextBitmap() {
 764   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 765   G1CollectorPolicy* g1p = g1h->g1_policy();
 766 
 767   // Make sure that the concurrent mark thread looks to still be in
 768   // the current cycle.
 769   guarantee(cmThread()->during_cycle(), "invariant");
 770 
 771   // We are finishing up the current cycle by clearing the next
 772   // marking bitmap and getting it ready for the next cycle. During
 773   // this time no other cycle can start. So, let's make sure that this
 774   // is the case.
 775   guarantee(!g1h->mark_in_progress(), "invariant");
 776 
 777   // clear the mark bitmap (no grey objects to start with).
 778   // We need to do this in chunks and offer to yield in between
 779   // each chunk.
 780   HeapWord* start  = _nextMarkBitMap->startWord();
 781   HeapWord* end    = _nextMarkBitMap->endWord();
 782   HeapWord* cur    = start;
 783   size_t chunkSize = M;
 784   while (cur < end) {
 785     HeapWord* next = cur + chunkSize;
 786     if (next > end) {
 787       next = end;
 788     }
 789     MemRegion mr(cur,next);
 790     _nextMarkBitMap->clearRange(mr);
 791     cur = next;
 792     do_yield_check();
 793 
 794     // Repeat the asserts from above. We'll do them as asserts here to
 795     // minimize their overhead on the product. However, we'll have
 796     // them as guarantees at the beginning / end of the bitmap
 797     // clearing to get some checking in the product.
 798     assert(cmThread()->during_cycle(), "invariant");
 799     assert(!g1h->mark_in_progress(), "invariant");
 800   }
 801 
 802   // Clear the liveness counting data
 803   clear_all_count_data();
 804 
 805   // Repeat the asserts from above.
 806   guarantee(cmThread()->during_cycle(), "invariant");
 807   guarantee(!g1h->mark_in_progress(), "invariant");
 808 }
 809 
 810 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 811 public:
 812   bool doHeapRegion(HeapRegion* r) {
 813     if (!r->continuesHumongous()) {
 814       r->note_start_of_marking();
 815     }
 816     return false;
 817   }
 818 };
 819 
 820 void ConcurrentMark::checkpointRootsInitialPre() {
 821   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 822   G1CollectorPolicy* g1p = g1h->g1_policy();
 823 
 824   _has_aborted = false;
 825 
 826 #ifndef PRODUCT
 827   if (G1PrintReachableAtInitialMark) {
 828     print_reachable("at-cycle-start",
 829                     VerifyOption_G1UsePrevMarking, true /* all */);
 830   }
 831 #endif
 832 
 833   // Initialise marking structures. This has to be done in a STW phase.
 834   reset();
 835 
 836   // For each region note start of marking.
 837   NoteStartOfMarkHRClosure startcl;
 838   g1h->heap_region_iterate(&startcl);
 839 }
 840 
 841 
 842 void ConcurrentMark::checkpointRootsInitialPost() {
 843   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 844 
 845   // If we force an overflow during remark, the remark operation will
 846   // actually abort and we'll restart concurrent marking. If we always
 847   // force an oveflow during remark we'll never actually complete the
 848   // marking phase. So, we initilize this here, at the start of the
 849   // cycle, so that at the remaining overflow number will decrease at
 850   // every remark and we'll eventually not need to cause one.
 851   force_overflow_stw()->init();
 852 
 853   // Start Concurrent Marking weak-reference discovery.
 854   ReferenceProcessor* rp = g1h->ref_processor_cm();
 855   // enable ("weak") refs discovery
 856   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 857   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 858 
 859   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 860   // This is the start of  the marking cycle, we're expected all
 861   // threads to have SATB queues with active set to false.
 862   satb_mq_set.set_active_all_threads(true, /* new active value */
 863                                      false /* expected_active */);
 864 
 865   _root_regions.prepare_for_scan();
 866 
 867   // update_g1_committed() will be called at the end of an evac pause
 868   // when marking is on. So, it's also called at the end of the
 869   // initial-mark pause to update the heap end, if the heap expands
 870   // during it. No need to call it here.
 871 }
 872 
 873 /*
 874  * Notice that in the next two methods, we actually leave the STS
 875  * during the barrier sync and join it immediately afterwards. If we
 876  * do not do this, the following deadlock can occur: one thread could
 877  * be in the barrier sync code, waiting for the other thread to also
 878  * sync up, whereas another one could be trying to yield, while also
 879  * waiting for the other threads to sync up too.
 880  *
 881  * Note, however, that this code is also used during remark and in
 882  * this case we should not attempt to leave / enter the STS, otherwise
 883  * we'll either hit an asseert (debug / fastdebug) or deadlock
 884  * (product). So we should only leave / enter the STS if we are
 885  * operating concurrently.
 886  *
 887  * Because the thread that does the sync barrier has left the STS, it
 888  * is possible to be suspended for a Full GC or an evacuation pause
 889  * could occur. This is actually safe, since the entering the sync
 890  * barrier is one of the last things do_marking_step() does, and it
 891  * doesn't manipulate any data structures afterwards.
 892  */
 893 
 894 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
 895   if (verbose_low()) {
 896     gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
 897   }
 898 
 899   if (concurrent()) {
 900     ConcurrentGCThread::stsLeave();
 901   }
 902   _first_overflow_barrier_sync.enter();
 903   if (concurrent()) {
 904     ConcurrentGCThread::stsJoin();
 905   }
 906   // at this point everyone should have synced up and not be doing any
 907   // more work
 908 
 909   if (verbose_low()) {
 910     gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
 911   }
 912 
 913   // let task 0 do this
 914   if (task_num == 0) {
 915     // task 0 is responsible for clearing the global data structures
 916     // We should be here because of an overflow. During STW we should
 917     // not clear the overflow flag since we rely on it being true when
 918     // we exit this method to abort the pause and restart concurent
 919     // marking.
 920     clear_marking_state(concurrent() /* clear_overflow */);
 921     force_overflow()->update();
 922 
 923     if (G1Log::fine()) {
 924       gclog_or_tty->date_stamp(PrintGCDateStamps);
 925       gclog_or_tty->stamp(PrintGCTimeStamps);
 926       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
 927     }
 928   }
 929 
 930   // after this, each task should reset its own data structures then
 931   // then go into the second barrier
 932 }
 933 
 934 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
 935   if (verbose_low()) {
 936     gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
 937   }
 938 
 939   if (concurrent()) {
 940     ConcurrentGCThread::stsLeave();
 941   }
 942   _second_overflow_barrier_sync.enter();
 943   if (concurrent()) {
 944     ConcurrentGCThread::stsJoin();
 945   }
 946   // at this point everything should be re-initialised and ready to go
 947 
 948   if (verbose_low()) {
 949     gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
 950   }
 951 }
 952 
 953 #ifndef PRODUCT
 954 void ForceOverflowSettings::init() {
 955   _num_remaining = G1ConcMarkForceOverflow;
 956   _force = false;
 957   update();
 958 }
 959 
 960 void ForceOverflowSettings::update() {
 961   if (_num_remaining > 0) {
 962     _num_remaining -= 1;
 963     _force = true;
 964   } else {
 965     _force = false;
 966   }
 967 }
 968 
 969 bool ForceOverflowSettings::should_force() {
 970   if (_force) {
 971     _force = false;
 972     return true;
 973   } else {
 974     return false;
 975   }
 976 }
 977 #endif // !PRODUCT
 978 
 979 class CMConcurrentMarkingTask: public AbstractGangTask {
 980 private:
 981   ConcurrentMark*       _cm;
 982   ConcurrentMarkThread* _cmt;
 983 
 984 public:
 985   void work(uint worker_id) {
 986     assert(Thread::current()->is_ConcurrentGC_thread(),
 987            "this should only be done by a conc GC thread");
 988     ResourceMark rm;
 989 
 990     double start_vtime = os::elapsedVTime();
 991 
 992     ConcurrentGCThread::stsJoin();
 993 
 994     assert(worker_id < _cm->active_tasks(), "invariant");
 995     CMTask* the_task = _cm->task(worker_id);
 996     the_task->record_start_time();
 997     if (!_cm->has_aborted()) {
 998       do {
 999         double start_vtime_sec = os::elapsedVTime();
1000         double start_time_sec = os::elapsedTime();
1001         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1002 
1003         the_task->do_marking_step(mark_step_duration_ms,
1004                                   true /* do_stealing    */,
1005                                   true /* do_termination */);
1006 
1007         double end_time_sec = os::elapsedTime();
1008         double end_vtime_sec = os::elapsedVTime();
1009         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1010         double elapsed_time_sec = end_time_sec - start_time_sec;
1011         _cm->clear_has_overflown();
1012 
1013         bool ret = _cm->do_yield_check(worker_id);
1014 
1015         jlong sleep_time_ms;
1016         if (!_cm->has_aborted() && the_task->has_aborted()) {
1017           sleep_time_ms =
1018             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1019           ConcurrentGCThread::stsLeave();
1020           os::sleep(Thread::current(), sleep_time_ms, false);
1021           ConcurrentGCThread::stsJoin();
1022         }
1023         double end_time2_sec = os::elapsedTime();
1024         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1025 
1026 #if 0
1027           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1028                                  "overhead %1.4lf",
1029                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1030                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1031           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1032                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1033 #endif
1034       } while (!_cm->has_aborted() && the_task->has_aborted());
1035     }
1036     the_task->record_end_time();
1037     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1038 
1039     ConcurrentGCThread::stsLeave();
1040 
1041     double end_vtime = os::elapsedVTime();
1042     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1043   }
1044 
1045   CMConcurrentMarkingTask(ConcurrentMark* cm,
1046                           ConcurrentMarkThread* cmt) :
1047       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1048 
1049   ~CMConcurrentMarkingTask() { }
1050 };
1051 
1052 // Calculates the number of active workers for a concurrent
1053 // phase.
1054 uint ConcurrentMark::calc_parallel_marking_threads() {
1055   if (G1CollectedHeap::use_parallel_gc_threads()) {
1056     uint n_conc_workers = 0;
1057     if (!UseDynamicNumberOfGCThreads ||
1058         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1059          !ForceDynamicNumberOfGCThreads)) {
1060       n_conc_workers = max_parallel_marking_threads();
1061     } else {
1062       n_conc_workers =
1063         AdaptiveSizePolicy::calc_default_active_workers(
1064                                      max_parallel_marking_threads(),
1065                                      1, /* Minimum workers */
1066                                      parallel_marking_threads(),
1067                                      Threads::number_of_non_daemon_threads());
1068       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1069       // that scaling has already gone into "_max_parallel_marking_threads".
1070     }
1071     assert(n_conc_workers > 0, "Always need at least 1");
1072     return n_conc_workers;
1073   }
1074   // If we are not running with any parallel GC threads we will not
1075   // have spawned any marking threads either. Hence the number of
1076   // concurrent workers should be 0.
1077   return 0;
1078 }
1079 
1080 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1081   // Currently, only survivors can be root regions.
1082   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1083   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1084 
1085   const uintx interval = PrefetchScanIntervalInBytes;
1086   HeapWord* curr = hr->bottom();
1087   const HeapWord* end = hr->top();
1088   while (curr < end) {
1089     Prefetch::read(curr, interval);
1090     oop obj = oop(curr);
1091     int size = obj->oop_iterate(&cl);
1092     assert(size == obj->size(), "sanity");
1093     curr += size;
1094   }
1095 }
1096 
1097 class CMRootRegionScanTask : public AbstractGangTask {
1098 private:
1099   ConcurrentMark* _cm;
1100 
1101 public:
1102   CMRootRegionScanTask(ConcurrentMark* cm) :
1103     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1104 
1105   void work(uint worker_id) {
1106     assert(Thread::current()->is_ConcurrentGC_thread(),
1107            "this should only be done by a conc GC thread");
1108 
1109     CMRootRegions* root_regions = _cm->root_regions();
1110     HeapRegion* hr = root_regions->claim_next();
1111     while (hr != NULL) {
1112       _cm->scanRootRegion(hr, worker_id);
1113       hr = root_regions->claim_next();
1114     }
1115   }
1116 };
1117 
1118 void ConcurrentMark::scanRootRegions() {
1119   // scan_in_progress() will have been set to true only if there was
1120   // at least one root region to scan. So, if it's false, we
1121   // should not attempt to do any further work.
1122   if (root_regions()->scan_in_progress()) {
1123     _parallel_marking_threads = calc_parallel_marking_threads();
1124     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1125            "Maximum number of marking threads exceeded");
1126     uint active_workers = MAX2(1U, parallel_marking_threads());
1127 
1128     CMRootRegionScanTask task(this);
1129     if (parallel_marking_threads() > 0) {
1130       _parallel_workers->set_active_workers((int) active_workers);
1131       _parallel_workers->run_task(&task);
1132     } else {
1133       task.work(0);
1134     }
1135 
1136     // It's possible that has_aborted() is true here without actually
1137     // aborting the survivor scan earlier. This is OK as it's
1138     // mainly used for sanity checking.
1139     root_regions()->scan_finished();
1140   }
1141 }
1142 
1143 void ConcurrentMark::markFromRoots() {
1144   // we might be tempted to assert that:
1145   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1146   //        "inconsistent argument?");
1147   // However that wouldn't be right, because it's possible that
1148   // a safepoint is indeed in progress as a younger generation
1149   // stop-the-world GC happens even as we mark in this generation.
1150 
1151   _restart_for_overflow = false;
1152   force_overflow_conc()->init();
1153 
1154   // _g1h has _n_par_threads
1155   _parallel_marking_threads = calc_parallel_marking_threads();
1156   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1157     "Maximum number of marking threads exceeded");
1158 
1159   uint active_workers = MAX2(1U, parallel_marking_threads());
1160 
1161   // Parallel task terminator is set in "set_phase()"
1162   set_phase(active_workers, true /* concurrent */);
1163 
1164   CMConcurrentMarkingTask markingTask(this, cmThread());
1165   if (parallel_marking_threads() > 0) {
1166     _parallel_workers->set_active_workers((int)active_workers);
1167     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
1168     // and the decisions on that MT processing is made elsewhere.
1169     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1170     _parallel_workers->run_task(&markingTask);
1171   } else {
1172     markingTask.work(0);
1173   }
1174   print_stats();
1175 }
1176 
1177 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1178   // world is stopped at this checkpoint
1179   assert(SafepointSynchronize::is_at_safepoint(),
1180          "world should be stopped");
1181 
1182   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1183 
1184   // If a full collection has happened, we shouldn't do this.
1185   if (has_aborted()) {
1186     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1187     return;
1188   }
1189 
1190   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1191 
1192   if (VerifyDuringGC) {
1193     HandleMark hm;  // handle scope
1194     gclog_or_tty->print(" VerifyDuringGC:(before)");
1195     Universe::heap()->prepare_for_verify();
1196     Universe::verify(/* silent      */ false,
1197                      /* option      */ VerifyOption_G1UsePrevMarking);
1198   }
1199 
1200   G1CollectorPolicy* g1p = g1h->g1_policy();
1201   g1p->record_concurrent_mark_remark_start();
1202 
1203   double start = os::elapsedTime();
1204 
1205   checkpointRootsFinalWork();
1206 
1207   double mark_work_end = os::elapsedTime();
1208 
1209   weakRefsWork(clear_all_soft_refs);
1210 
1211   if (has_overflown()) {
1212     // Oops.  We overflowed.  Restart concurrent marking.
1213     _restart_for_overflow = true;
1214     // Clear the flag. We do not need it any more.
1215     clear_has_overflown();
1216     if (G1TraceMarkStackOverflow) {
1217       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1218     }
1219   } else {
1220     // Aggregate the per-task counting data that we have accumulated
1221     // while marking.
1222     aggregate_count_data();
1223 
1224     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1225     // We're done with marking.
1226     // This is the end of  the marking cycle, we're expected all
1227     // threads to have SATB queues with active set to true.
1228     satb_mq_set.set_active_all_threads(false, /* new active value */
1229                                        true /* expected_active */);
1230 
1231     if (VerifyDuringGC) {
1232       HandleMark hm;  // handle scope
1233       gclog_or_tty->print(" VerifyDuringGC:(after)");
1234       Universe::heap()->prepare_for_verify();
1235       Universe::verify(/* silent      */ false,
1236                        /* option      */ VerifyOption_G1UseNextMarking);
1237     }
1238     assert(!restart_for_overflow(), "sanity");
1239   }
1240 
1241   // Reset the marking state if marking completed
1242   if (!restart_for_overflow()) {
1243     set_non_marking_state();
1244   }
1245 
1246 #if VERIFY_OBJS_PROCESSED
1247   _scan_obj_cl.objs_processed = 0;
1248   ThreadLocalObjQueue::objs_enqueued = 0;
1249 #endif
1250 
1251   // Statistics
1252   double now = os::elapsedTime();
1253   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1254   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1255   _remark_times.add((now - start) * 1000.0);
1256 
1257   g1p->record_concurrent_mark_remark_end();
1258 }
1259 
1260 // Base class of the closures that finalize and verify the
1261 // liveness counting data.
1262 class CMCountDataClosureBase: public HeapRegionClosure {
1263 protected:
1264   ConcurrentMark* _cm;
1265   BitMap* _region_bm;
1266   BitMap* _card_bm;
1267 
1268   void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
1269     assert(start_idx <= last_idx, "sanity");
1270 
1271     // Set the inclusive bit range [start_idx, last_idx].
1272     // For small ranges (up to 8 cards) use a simple loop; otherwise
1273     // use par_at_put_range.
1274     if ((last_idx - start_idx) < 8) {
1275       for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
1276         _card_bm->par_set_bit(i);
1277       }
1278     } else {
1279       assert(last_idx < _card_bm->size(), "sanity");
1280       // Note BitMap::par_at_put_range() is exclusive.
1281       BitMap::idx_t max_idx = MAX2(last_idx+1, _card_bm->size());
1282       _card_bm->par_at_put_range(start_idx, max_idx, true);
1283     }
1284   }
1285 
1286   // It takes a region that's not empty (i.e., it has at least one
1287   // live object in it and sets its corresponding bit on the region
1288   // bitmap to 1. If the region is "starts humongous" it will also set
1289   // to 1 the bits on the region bitmap that correspond to its
1290   // associated "continues humongous" regions.
1291   void set_bit_for_region(HeapRegion* hr) {
1292     assert(!hr->continuesHumongous(), "should have filtered those out");
1293 
1294     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1295     if (!hr->startsHumongous()) {
1296       // Normal (non-humongous) case: just set the bit.
1297       _region_bm->par_at_put(index, true);
1298     } else {
1299       // Starts humongous case: calculate how many regions are part of
1300       // this humongous region and then set the bit range.
1301       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1302       _region_bm->par_at_put_range(index, end_index, true);
1303     }
1304   }
1305 
1306 public:
1307   CMCountDataClosureBase(ConcurrentMark *cm,
1308                          BitMap* region_bm, BitMap* card_bm):
1309     _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
1310 };
1311 
1312 // Closure that calculates the # live objects per region. Used
1313 // for verification purposes during the cleanup pause.
1314 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1315   CMBitMapRO* _bm;
1316   size_t _region_marked_bytes;
1317 
1318 public:
1319   CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
1320                          BitMap* region_bm, BitMap* card_bm) :
1321     CMCountDataClosureBase(cm, region_bm, card_bm),
1322     _bm(bm), _region_marked_bytes(0) { }
1323 
1324   bool doHeapRegion(HeapRegion* hr) {
1325 
1326     if (hr->continuesHumongous()) {
1327       // We will ignore these here and process them when their
1328       // associated "starts humongous" region is processed (see
1329       // set_bit_for_heap_region()). Note that we cannot rely on their
1330       // associated "starts humongous" region to have their bit set to
1331       // 1 since, due to the region chunking in the parallel region
1332       // iteration, a "continues humongous" region might be visited
1333       // before its associated "starts humongous".
1334       return false;
1335     }
1336 
1337     HeapWord* nextTop = hr->next_top_at_mark_start();
1338     HeapWord* start   = hr->bottom();
1339 
1340     assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
1341            err_msg("Preconditions not met - "
1342                    "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
1343                    start, nextTop, hr->end()));
1344 
1345     // Find the first marked object at or after "start".
1346     start = _bm->getNextMarkedWordAddress(start, nextTop);
1347 
1348     size_t marked_bytes = 0;
1349 
1350     while (start < nextTop) {
1351       oop obj = oop(start);
1352       int obj_sz = obj->size();
1353       HeapWord* obj_last = start + obj_sz - 1;
1354 
1355       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1356       BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);
1357 
1358       // Set the bits in the card BM for this object (inclusive).
1359       set_card_bitmap_range(start_idx, last_idx);
1360 
1361       // Add the size of this object to the number of marked bytes.
1362       marked_bytes += (size_t)obj_sz * HeapWordSize;
1363 
1364       // Find the next marked object after this one.
1365       start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
1366     }
1367 
1368     // Mark the allocated-since-marking portion...
1369     HeapWord* top = hr->top();
1370     if (nextTop < top) {
1371       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
1372       BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
1373 
1374       set_card_bitmap_range(start_idx, last_idx);
1375 
1376       // This definitely means the region has live objects.
1377       set_bit_for_region(hr);
1378     }
1379 
1380     // Update the live region bitmap.
1381     if (marked_bytes > 0) {
1382       set_bit_for_region(hr);
1383     }
1384 
1385     // Set the marked bytes for the current region so that
1386     // it can be queried by a calling verificiation routine
1387     _region_marked_bytes = marked_bytes;
1388 
1389     return false;
1390   }
1391 
1392   size_t region_marked_bytes() const { return _region_marked_bytes; }
1393 };
1394 
1395 // Heap region closure used for verifying the counting data
1396 // that was accumulated concurrently and aggregated during
1397 // the remark pause. This closure is applied to the heap
1398 // regions during the STW cleanup pause.
1399 
1400 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1401   ConcurrentMark* _cm;
1402   CalcLiveObjectsClosure _calc_cl;
1403   BitMap* _region_bm;   // Region BM to be verified
1404   BitMap* _card_bm;     // Card BM to be verified
1405   bool _verbose;        // verbose output?
1406 
1407   BitMap* _exp_region_bm; // Expected Region BM values
1408   BitMap* _exp_card_bm;   // Expected card BM values
1409 
1410   int _failures;
1411 
1412 public:
1413   VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
1414                                 BitMap* region_bm,
1415                                 BitMap* card_bm,
1416                                 BitMap* exp_region_bm,
1417                                 BitMap* exp_card_bm,
1418                                 bool verbose) :
1419     _cm(cm),
1420     _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
1421     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1422     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1423     _failures(0) { }
1424 
1425   int failures() const { return _failures; }
1426 
1427   bool doHeapRegion(HeapRegion* hr) {
1428     if (hr->continuesHumongous()) {
1429       // We will ignore these here and process them when their
1430       // associated "starts humongous" region is processed (see
1431       // set_bit_for_heap_region()). Note that we cannot rely on their
1432       // associated "starts humongous" region to have their bit set to
1433       // 1 since, due to the region chunking in the parallel region
1434       // iteration, a "continues humongous" region might be visited
1435       // before its associated "starts humongous".
1436       return false;
1437     }
1438 
1439     int failures = 0;
1440 
1441     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1442     // this region and set the corresponding bits in the expected region
1443     // and card bitmaps.
1444     bool res = _calc_cl.doHeapRegion(hr);
1445     assert(res == false, "should be continuing");
1446 
1447     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1448                     Mutex::_no_safepoint_check_flag);
1449 
1450     // Verify the marked bytes for this region.
1451     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1452     size_t act_marked_bytes = hr->next_marked_bytes();
1453 
1454     // We're not OK if expected marked bytes > actual marked bytes. It means
1455     // we have missed accounting some objects during the actual marking.
1456     if (exp_marked_bytes > act_marked_bytes) {
1457       if (_verbose) {
1458         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1459                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1460                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1461       }
1462       failures += 1;
1463     }
1464 
1465     // Verify the bit, for this region, in the actual and expected
1466     // (which was just calculated) region bit maps.
1467     // We're not OK if the bit in the calculated expected region
1468     // bitmap is set and the bit in the actual region bitmap is not.
1469     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1470 
1471     bool expected = _exp_region_bm->at(index);
1472     bool actual = _region_bm->at(index);
1473     if (expected && !actual) {
1474       if (_verbose) {
1475         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1476                                "expected: %s, actual: %s",
1477                                hr->hrs_index(),
1478                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1479       }
1480       failures += 1;
1481     }
1482 
1483     // Verify that the card bit maps for the cards spanned by the current
1484     // region match. We have an error if we have a set bit in the expected
1485     // bit map and the corresponding bit in the actual bitmap is not set.
1486 
1487     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1488     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1489 
1490     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1491       expected = _exp_card_bm->at(i);
1492       actual = _card_bm->at(i);
1493 
1494       if (expected && !actual) {
1495         if (_verbose) {
1496           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1497                                  "expected: %s, actual: %s",
1498                                  hr->hrs_index(), i,
1499                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1500         }
1501         failures += 1;
1502       }
1503     }
1504 
1505     if (failures > 0 && _verbose)  {
1506       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1507                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1508                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
1509                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1510     }
1511 
1512     _failures += failures;
1513 
1514     // We could stop iteration over the heap when we
1515     // find the first violating region by returning true.
1516     return false;
1517   }
1518 };
1519 
1520 
1521 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1522 protected:
1523   G1CollectedHeap* _g1h;
1524   ConcurrentMark* _cm;
1525   BitMap* _actual_region_bm;
1526   BitMap* _actual_card_bm;
1527 
1528   uint    _n_workers;
1529 
1530   BitMap* _expected_region_bm;
1531   BitMap* _expected_card_bm;
1532 
1533   int  _failures;
1534   bool _verbose;
1535 
1536 public:
1537   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1538                             BitMap* region_bm, BitMap* card_bm,
1539                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1540     : AbstractGangTask("G1 verify final counting"),
1541       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1542       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1543       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1544       _failures(0), _verbose(false),
1545       _n_workers(0) {
1546     assert(VerifyDuringGC, "don't call this otherwise");
1547 
1548     // Use the value already set as the number of active threads
1549     // in the call to run_task().
1550     if (G1CollectedHeap::use_parallel_gc_threads()) {
1551       assert( _g1h->workers()->active_workers() > 0,
1552         "Should have been previously set");
1553       _n_workers = _g1h->workers()->active_workers();
1554     } else {
1555       _n_workers = 1;
1556     }
1557 
1558     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1559     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1560 
1561     _verbose = _cm->verbose_medium();
1562   }
1563 
1564   void work(uint worker_id) {
1565     assert(worker_id < _n_workers, "invariant");
1566 
1567     VerifyLiveObjectDataHRClosure verify_cl(_cm,
1568                                             _actual_region_bm, _actual_card_bm,
1569                                             _expected_region_bm,
1570                                             _expected_card_bm,
1571                                             _verbose);
1572 
1573     if (G1CollectedHeap::use_parallel_gc_threads()) {
1574       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1575                                             worker_id,
1576                                             _n_workers,
1577                                             HeapRegion::VerifyCountClaimValue);
1578     } else {
1579       _g1h->heap_region_iterate(&verify_cl);
1580     }
1581 
1582     Atomic::add(verify_cl.failures(), &_failures);
1583   }
1584 
1585   int failures() const { return _failures; }
1586 };
1587 
1588 // Closure that finalizes the liveness counting data.
1589 // Used during the cleanup pause.
1590 // Sets the bits corresponding to the interval [NTAMS, top]
1591 // (which contains the implicitly live objects) in the
1592 // card liveness bitmap. Also sets the bit for each region,
1593 // containing live data, in the region liveness bitmap.
1594 
1595 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1596  public:
1597   FinalCountDataUpdateClosure(ConcurrentMark* cm,
1598                               BitMap* region_bm,
1599                               BitMap* card_bm) :
1600     CMCountDataClosureBase(cm, region_bm, card_bm) { }
1601 
1602   bool doHeapRegion(HeapRegion* hr) {
1603 
1604     if (hr->continuesHumongous()) {
1605       // We will ignore these here and process them when their
1606       // associated "starts humongous" region is processed (see
1607       // set_bit_for_heap_region()). Note that we cannot rely on their
1608       // associated "starts humongous" region to have their bit set to
1609       // 1 since, due to the region chunking in the parallel region
1610       // iteration, a "continues humongous" region might be visited
1611       // before its associated "starts humongous".
1612       return false;
1613     }
1614 
1615     HeapWord* ntams = hr->next_top_at_mark_start();
1616     HeapWord* top   = hr->top();
1617 
1618     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1619 
1620     // Mark the allocated-since-marking portion...
1621     if (ntams < top) {
1622       // This definitely means the region has live objects.
1623       set_bit_for_region(hr);
1624     }
1625 
1626     // Now set the bits for [ntams, top]
1627     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1628     // set_card_bitmap_range() expects the last_idx to be with
1629     // the range of the bit map (see assertion in set_card_bitmap_range()),
1630     // so limit it to that range with this application of MIN2.
1631     BitMap::idx_t last_idx = MIN2(_cm->card_bitmap_index_for(top),
1632                                   _card_bm->size()-1);
1633     if (start_idx < _card_bm->size()) {
1634     set_card_bitmap_range(start_idx, last_idx);
1635     } else {
1636       // To reach here start_idx must be beyond the end of
1637       // the bit map and last_idx must have been limited by
1638       // the MIN2().
1639       assert(start_idx == last_idx + 1,
1640         err_msg("Not beyond end start_idx " SIZE_FORMAT " last_idx "
1641                 SIZE_FORMAT, start_idx, last_idx));
1642     }
1643 
1644     // Set the bit for the region if it contains live data
1645     if (hr->next_marked_bytes() > 0) {
1646       set_bit_for_region(hr);
1647     }
1648 
1649     return false;
1650   }
1651 };
1652 
1653 class G1ParFinalCountTask: public AbstractGangTask {
1654 protected:
1655   G1CollectedHeap* _g1h;
1656   ConcurrentMark* _cm;
1657   BitMap* _actual_region_bm;
1658   BitMap* _actual_card_bm;
1659 
1660   uint    _n_workers;
1661 
1662 public:
1663   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1664     : AbstractGangTask("G1 final counting"),
1665       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1666       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1667       _n_workers(0) {
1668     // Use the value already set as the number of active threads
1669     // in the call to run_task().
1670     if (G1CollectedHeap::use_parallel_gc_threads()) {
1671       assert( _g1h->workers()->active_workers() > 0,
1672         "Should have been previously set");
1673       _n_workers = _g1h->workers()->active_workers();
1674     } else {
1675       _n_workers = 1;
1676     }
1677   }
1678 
1679   void work(uint worker_id) {
1680     assert(worker_id < _n_workers, "invariant");
1681 
1682     FinalCountDataUpdateClosure final_update_cl(_cm,
1683                                                 _actual_region_bm,
1684                                                 _actual_card_bm);
1685 
1686     if (G1CollectedHeap::use_parallel_gc_threads()) {
1687       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1688                                             worker_id,
1689                                             _n_workers,
1690                                             HeapRegion::FinalCountClaimValue);
1691     } else {
1692       _g1h->heap_region_iterate(&final_update_cl);
1693     }
1694   }
1695 };
1696 
1697 class G1ParNoteEndTask;
1698 
1699 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1700   G1CollectedHeap* _g1;
1701   int _worker_num;
1702   size_t _max_live_bytes;
1703   uint _regions_claimed;
1704   size_t _freed_bytes;
1705   FreeRegionList* _local_cleanup_list;
1706   OldRegionSet* _old_proxy_set;
1707   HumongousRegionSet* _humongous_proxy_set;
1708   HRRSCleanupTask* _hrrs_cleanup_task;
1709   double _claimed_region_time;
1710   double _max_region_time;
1711 
1712 public:
1713   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1714                              int worker_num,
1715                              FreeRegionList* local_cleanup_list,
1716                              OldRegionSet* old_proxy_set,
1717                              HumongousRegionSet* humongous_proxy_set,
1718                              HRRSCleanupTask* hrrs_cleanup_task) :
1719     _g1(g1), _worker_num(worker_num),
1720     _max_live_bytes(0), _regions_claimed(0),
1721     _freed_bytes(0),
1722     _claimed_region_time(0.0), _max_region_time(0.0),
1723     _local_cleanup_list(local_cleanup_list),
1724     _old_proxy_set(old_proxy_set),
1725     _humongous_proxy_set(humongous_proxy_set),
1726     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1727 
1728   size_t freed_bytes() { return _freed_bytes; }
1729 
1730   bool doHeapRegion(HeapRegion *hr) {
1731     if (hr->continuesHumongous()) {
1732       return false;
1733     }
1734     // We use a claim value of zero here because all regions
1735     // were claimed with value 1 in the FinalCount task.
1736     _g1->reset_gc_time_stamps(hr);
1737     double start = os::elapsedTime();
1738     _regions_claimed++;
1739     hr->note_end_of_marking();
1740     _max_live_bytes += hr->max_live_bytes();
1741     _g1->free_region_if_empty(hr,
1742                               &_freed_bytes,
1743                               _local_cleanup_list,
1744                               _old_proxy_set,
1745                               _humongous_proxy_set,
1746                               _hrrs_cleanup_task,
1747                               true /* par */);
1748     double region_time = (os::elapsedTime() - start);
1749     _claimed_region_time += region_time;
1750     if (region_time > _max_region_time) {
1751       _max_region_time = region_time;
1752     }
1753     return false;
1754   }
1755 
1756   size_t max_live_bytes() { return _max_live_bytes; }
1757   uint regions_claimed() { return _regions_claimed; }
1758   double claimed_region_time_sec() { return _claimed_region_time; }
1759   double max_region_time_sec() { return _max_region_time; }
1760 };
1761 
1762 class G1ParNoteEndTask: public AbstractGangTask {
1763   friend class G1NoteEndOfConcMarkClosure;
1764 
1765 protected:
1766   G1CollectedHeap* _g1h;
1767   size_t _max_live_bytes;
1768   size_t _freed_bytes;
1769   FreeRegionList* _cleanup_list;
1770 
1771 public:
1772   G1ParNoteEndTask(G1CollectedHeap* g1h,
1773                    FreeRegionList* cleanup_list) :
1774     AbstractGangTask("G1 note end"), _g1h(g1h),
1775     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1776 
1777   void work(uint worker_id) {
1778     double start = os::elapsedTime();
1779     FreeRegionList local_cleanup_list("Local Cleanup List");
1780     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
1781     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
1782     HRRSCleanupTask hrrs_cleanup_task;
1783     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
1784                                            &old_proxy_set,
1785                                            &humongous_proxy_set,
1786                                            &hrrs_cleanup_task);
1787     if (G1CollectedHeap::use_parallel_gc_threads()) {
1788       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1789                                             _g1h->workers()->active_workers(),
1790                                             HeapRegion::NoteEndClaimValue);
1791     } else {
1792       _g1h->heap_region_iterate(&g1_note_end);
1793     }
1794     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1795 
1796     // Now update the lists
1797     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
1798                                             NULL /* free_list */,
1799                                             &old_proxy_set,
1800                                             &humongous_proxy_set,
1801                                             true /* par */);
1802     {
1803       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1804       _max_live_bytes += g1_note_end.max_live_bytes();
1805       _freed_bytes += g1_note_end.freed_bytes();
1806 
1807       // If we iterate over the global cleanup list at the end of
1808       // cleanup to do this printing we will not guarantee to only
1809       // generate output for the newly-reclaimed regions (the list
1810       // might not be empty at the beginning of cleanup; we might
1811       // still be working on its previous contents). So we do the
1812       // printing here, before we append the new regions to the global
1813       // cleanup list.
1814 
1815       G1HRPrinter* hr_printer = _g1h->hr_printer();
1816       if (hr_printer->is_active()) {
1817         HeapRegionLinkedListIterator iter(&local_cleanup_list);
1818         while (iter.more_available()) {
1819           HeapRegion* hr = iter.get_next();
1820           hr_printer->cleanup(hr);
1821         }
1822       }
1823 
1824       _cleanup_list->add_as_tail(&local_cleanup_list);
1825       assert(local_cleanup_list.is_empty(), "post-condition");
1826 
1827       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1828     }
1829   }
1830   size_t max_live_bytes() { return _max_live_bytes; }
1831   size_t freed_bytes() { return _freed_bytes; }
1832 };
1833 
1834 class G1ParScrubRemSetTask: public AbstractGangTask {
1835 protected:
1836   G1RemSet* _g1rs;
1837   BitMap* _region_bm;
1838   BitMap* _card_bm;
1839 public:
1840   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1841                        BitMap* region_bm, BitMap* card_bm) :
1842     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1843     _region_bm(region_bm), _card_bm(card_bm) { }
1844 
1845   void work(uint worker_id) {
1846     if (G1CollectedHeap::use_parallel_gc_threads()) {
1847       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1848                        HeapRegion::ScrubRemSetClaimValue);
1849     } else {
1850       _g1rs->scrub(_region_bm, _card_bm);
1851     }
1852   }
1853 
1854 };
1855 
1856 void ConcurrentMark::cleanup() {
1857   // world is stopped at this checkpoint
1858   assert(SafepointSynchronize::is_at_safepoint(),
1859          "world should be stopped");
1860   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1861 
1862   // If a full collection has happened, we shouldn't do this.
1863   if (has_aborted()) {
1864     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1865     return;
1866   }
1867 
1868   HRSPhaseSetter x(HRSPhaseCleanup);
1869   g1h->verify_region_sets_optional();
1870 
1871   if (VerifyDuringGC) {
1872     HandleMark hm;  // handle scope
1873     gclog_or_tty->print(" VerifyDuringGC:(before)");
1874     Universe::heap()->prepare_for_verify();
1875     Universe::verify(/* silent      */ false,
1876                      /* option      */ VerifyOption_G1UsePrevMarking);
1877   }
1878 
1879   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1880   g1p->record_concurrent_mark_cleanup_start();
1881 
1882   double start = os::elapsedTime();
1883 
1884   HeapRegionRemSet::reset_for_cleanup_tasks();
1885 
1886   uint n_workers;
1887 
1888   // Do counting once more with the world stopped for good measure.
1889   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1890 
1891   if (G1CollectedHeap::use_parallel_gc_threads()) {
1892    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1893            "sanity check");
1894 
1895     g1h->set_par_threads();
1896     n_workers = g1h->n_par_threads();
1897     assert(g1h->n_par_threads() == n_workers,
1898            "Should not have been reset");
1899     g1h->workers()->run_task(&g1_par_count_task);
1900     // Done with the parallel phase so reset to 0.
1901     g1h->set_par_threads(0);
1902 
1903     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1904            "sanity check");
1905   } else {
1906     n_workers = 1;
1907     g1_par_count_task.work(0);
1908   }
1909 
1910   if (VerifyDuringGC) {
1911     // Verify that the counting data accumulated during marking matches
1912     // that calculated by walking the marking bitmap.
1913 
1914     // Bitmaps to hold expected values
1915     BitMap expected_region_bm(_region_bm.size(), false);
1916     BitMap expected_card_bm(_card_bm.size(), false);
1917 
1918     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1919                                                  &_region_bm,
1920                                                  &_card_bm,
1921                                                  &expected_region_bm,
1922                                                  &expected_card_bm);
1923 
1924     if (G1CollectedHeap::use_parallel_gc_threads()) {
1925       g1h->set_par_threads((int)n_workers);
1926       g1h->workers()->run_task(&g1_par_verify_task);
1927       // Done with the parallel phase so reset to 0.
1928       g1h->set_par_threads(0);
1929 
1930       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
1931              "sanity check");
1932     } else {
1933       g1_par_verify_task.work(0);
1934     }
1935 
1936     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1937   }
1938 
1939   size_t start_used_bytes = g1h->used();
1940   g1h->set_marking_complete();
1941 
1942   double count_end = os::elapsedTime();
1943   double this_final_counting_time = (count_end - start);
1944   _total_counting_time += this_final_counting_time;
1945 
1946   if (G1PrintRegionLivenessInfo) {
1947     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
1948     _g1h->heap_region_iterate(&cl);
1949   }
1950 
1951   // Install newly created mark bitMap as "prev".
1952   swapMarkBitMaps();
1953 
1954   g1h->reset_gc_time_stamp();
1955 
1956   // Note end of marking in all heap regions.
1957   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1958   if (G1CollectedHeap::use_parallel_gc_threads()) {
1959     g1h->set_par_threads((int)n_workers);
1960     g1h->workers()->run_task(&g1_par_note_end_task);
1961     g1h->set_par_threads(0);
1962 
1963     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
1964            "sanity check");
1965   } else {
1966     g1_par_note_end_task.work(0);
1967   }
1968   g1h->check_gc_time_stamps();
1969 
1970   if (!cleanup_list_is_empty()) {
1971     // The cleanup list is not empty, so we'll have to process it
1972     // concurrently. Notify anyone else that might be wanting free
1973     // regions that there will be more free regions coming soon.
1974     g1h->set_free_regions_coming();
1975   }
1976 
1977   // call below, since it affects the metric by which we sort the heap
1978   // regions.
1979   if (G1ScrubRemSets) {
1980     double rs_scrub_start = os::elapsedTime();
1981     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1982     if (G1CollectedHeap::use_parallel_gc_threads()) {
1983       g1h->set_par_threads((int)n_workers);
1984       g1h->workers()->run_task(&g1_par_scrub_rs_task);
1985       g1h->set_par_threads(0);
1986 
1987       assert(g1h->check_heap_region_claim_values(
1988                                             HeapRegion::ScrubRemSetClaimValue),
1989              "sanity check");
1990     } else {
1991       g1_par_scrub_rs_task.work(0);
1992     }
1993 
1994     double rs_scrub_end = os::elapsedTime();
1995     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1996     _total_rs_scrub_time += this_rs_scrub_time;
1997   }
1998 
1999   // this will also free any regions totally full of garbage objects,
2000   // and sort the regions.
2001   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2002 
2003   // Statistics.
2004   double end = os::elapsedTime();
2005   _cleanup_times.add((end - start) * 1000.0);
2006 
2007   if (G1Log::fine()) {
2008     g1h->print_size_transition(gclog_or_tty,
2009                                start_used_bytes,
2010                                g1h->used(),
2011                                g1h->capacity());
2012   }
2013 
2014   // Clean up will have freed any regions completely full of garbage.
2015   // Update the soft reference policy with the new heap occupancy.
2016   Universe::update_heap_info_at_gc();
2017 
2018   // We need to make this be a "collection" so any collection pause that
2019   // races with it goes around and waits for completeCleanup to finish.
2020   g1h->increment_total_collections();
2021 
2022   // We reclaimed old regions so we should calculate the sizes to make
2023   // sure we update the old gen/space data.
2024   g1h->g1mm()->update_sizes();
2025 
2026   if (VerifyDuringGC) {
2027     HandleMark hm;  // handle scope
2028     gclog_or_tty->print(" VerifyDuringGC:(after)");
2029     Universe::heap()->prepare_for_verify();
2030     Universe::verify(/* silent      */ false,
2031                      /* option      */ VerifyOption_G1UsePrevMarking);
2032   }
2033 
2034   g1h->verify_region_sets_optional();
2035 }
2036 
2037 void ConcurrentMark::completeCleanup() {
2038   if (has_aborted()) return;
2039 
2040   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2041 
2042   _cleanup_list.verify_optional();
2043   FreeRegionList tmp_free_list("Tmp Free List");
2044 
2045   if (G1ConcRegionFreeingVerbose) {
2046     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2047                            "cleanup list has %u entries",
2048                            _cleanup_list.length());
2049   }
2050 
2051   // Noone else should be accessing the _cleanup_list at this point,
2052   // so it's not necessary to take any locks
2053   while (!_cleanup_list.is_empty()) {
2054     HeapRegion* hr = _cleanup_list.remove_head();
2055     assert(hr != NULL, "the list was not empty");
2056     hr->par_clear();
2057     tmp_free_list.add_as_tail(hr);
2058 
2059     // Instead of adding one region at a time to the secondary_free_list,
2060     // we accumulate them in the local list and move them a few at a
2061     // time. This also cuts down on the number of notify_all() calls
2062     // we do during this process. We'll also append the local list when
2063     // _cleanup_list is empty (which means we just removed the last
2064     // region from the _cleanup_list).
2065     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2066         _cleanup_list.is_empty()) {
2067       if (G1ConcRegionFreeingVerbose) {
2068         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2069                                "appending %u entries to the secondary_free_list, "
2070                                "cleanup list still has %u entries",
2071                                tmp_free_list.length(),
2072                                _cleanup_list.length());
2073       }
2074 
2075       {
2076         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2077         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2078         SecondaryFreeList_lock->notify_all();
2079       }
2080 
2081       if (G1StressConcRegionFreeing) {
2082         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2083           os::sleep(Thread::current(), (jlong) 1, false);
2084         }
2085       }
2086     }
2087   }
2088   assert(tmp_free_list.is_empty(), "post-condition");
2089 }
2090 
2091 // Support closures for reference procssing in G1
2092 
2093 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2094   HeapWord* addr = (HeapWord*)obj;
2095   return addr != NULL &&
2096          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2097 }
2098 
2099 class G1CMKeepAliveClosure: public ExtendedOopClosure {
2100   G1CollectedHeap* _g1;
2101   ConcurrentMark*  _cm;
2102  public:
2103   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
2104     _g1(g1), _cm(cm) {
2105     assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
2106   }
2107 
2108   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2109   virtual void do_oop(      oop* p) { do_oop_work(p); }
2110 
2111   template <class T> void do_oop_work(T* p) {
2112     oop obj = oopDesc::load_decode_heap_oop(p);
2113     HeapWord* addr = (HeapWord*)obj;
2114 
2115     if (_cm->verbose_high()) {
2116       gclog_or_tty->print_cr("\t[0] we're looking at location "
2117                              "*"PTR_FORMAT" = "PTR_FORMAT,
2118                              p, (void*) obj);
2119     }
2120 
2121     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2122       _cm->mark_and_count(obj);
2123       _cm->mark_stack_push(obj);
2124     }
2125   }
2126 };
2127 
2128 class G1CMDrainMarkingStackClosure: public VoidClosure {
2129   ConcurrentMark*               _cm;
2130   CMMarkStack*                  _markStack;
2131   G1CMKeepAliveClosure*         _oopClosure;
2132  public:
2133   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2134                                G1CMKeepAliveClosure* oopClosure) :
2135     _cm(cm),
2136     _markStack(markStack),
2137     _oopClosure(oopClosure) { }
2138 
2139   void do_void() {
2140     _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
2141   }
2142 };
2143 
2144 // 'Keep Alive' closure used by parallel reference processing.
2145 // An instance of this closure is used in the parallel reference processing
2146 // code rather than an instance of G1CMKeepAliveClosure. We could have used
2147 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
2148 // placed on to discovered ref lists once so we can mark and push with no
2149 // need to check whether the object has already been marked. Using the
2150 // G1CMKeepAliveClosure would mean, however, having all the worker threads
2151 // operating on the global mark stack. This means that an individual
2152 // worker would be doing lock-free pushes while it processes its own
2153 // discovered ref list followed by drain call. If the discovered ref lists
2154 // are unbalanced then this could cause interference with the other
2155 // workers. Using a CMTask (and its embedded local data structures)
2156 // avoids that potential interference.
2157 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
2158   ConcurrentMark*  _cm;
2159   CMTask*          _task;
2160   int              _ref_counter_limit;
2161   int              _ref_counter;
2162  public:
2163   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
2164     _cm(cm), _task(task),
2165     _ref_counter_limit(G1RefProcDrainInterval) {
2166     assert(_ref_counter_limit > 0, "sanity");
2167     _ref_counter = _ref_counter_limit;
2168   }
2169 
2170   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2171   virtual void do_oop(      oop* p) { do_oop_work(p); }
2172 
2173   template <class T> void do_oop_work(T* p) {
2174     if (!_cm->has_overflown()) {
2175       oop obj = oopDesc::load_decode_heap_oop(p);
2176       if (_cm->verbose_high()) {
2177         gclog_or_tty->print_cr("\t[%d] we're looking at location "
2178                                "*"PTR_FORMAT" = "PTR_FORMAT,
2179                                _task->task_id(), p, (void*) obj);
2180       }
2181 
2182       _task->deal_with_reference(obj);
2183       _ref_counter--;
2184 
2185       if (_ref_counter == 0) {
2186         // We have dealt with _ref_counter_limit references, pushing them and objects
2187         // reachable from them on to the local stack (and possibly the global stack).
2188         // Call do_marking_step() to process these entries. We call the routine in a
2189         // loop, which we'll exit if there's nothing more to do (i.e. we're done
2190         // with the entries that we've pushed as a result of the deal_with_reference
2191         // calls above) or we overflow.
2192         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2193         // while there may still be some work to do. (See the comment at the
2194         // beginning of CMTask::do_marking_step() for those conditions - one of which
2195         // is reaching the specified time target.) It is only when
2196         // CMTask::do_marking_step() returns without setting the has_aborted() flag
2197         // that the marking has completed.
2198         do {
2199           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2200           _task->do_marking_step(mark_step_duration_ms,
2201                                  false /* do_stealing    */,
2202                                  false /* do_termination */);
2203         } while (_task->has_aborted() && !_cm->has_overflown());
2204         _ref_counter = _ref_counter_limit;
2205       }
2206     } else {
2207       if (_cm->verbose_high()) {
2208          gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2209       }
2210     }
2211   }
2212 };
2213 
2214 class G1CMParDrainMarkingStackClosure: public VoidClosure {
2215   ConcurrentMark* _cm;
2216   CMTask* _task;
2217  public:
2218   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2219     _cm(cm), _task(task) { }
2220 
2221   void do_void() {
2222     do {
2223       if (_cm->verbose_high()) {
2224         gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
2225                                _task->task_id());
2226       }
2227 
2228       // We call CMTask::do_marking_step() to completely drain the local and
2229       // global marking stacks. The routine is called in a loop, which we'll
2230       // exit if there's nothing more to do (i.e. we'completely drained the
2231       // entries that were pushed as a result of applying the
2232       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
2233       // lists above) or we overflow the global marking stack.
2234       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2235       // while there may still be some work to do. (See the comment at the
2236       // beginning of CMTask::do_marking_step() for those conditions - one of which
2237       // is reaching the specified time target.) It is only when
2238       // CMTask::do_marking_step() returns without setting the has_aborted() flag
2239       // that the marking has completed.
2240 
2241       _task->do_marking_step(1000000000.0 /* something very large */,
2242                              true /* do_stealing    */,
2243                              true /* do_termination */);
2244     } while (_task->has_aborted() && !_cm->has_overflown());
2245   }
2246 };
2247 
2248 // Implementation of AbstractRefProcTaskExecutor for parallel
2249 // reference processing at the end of G1 concurrent marking
2250 
2251 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2252 private:
2253   G1CollectedHeap* _g1h;
2254   ConcurrentMark*  _cm;
2255   WorkGang*        _workers;
2256   int              _active_workers;
2257 
2258 public:
2259   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2260                         ConcurrentMark* cm,
2261                         WorkGang* workers,
2262                         int n_workers) :
2263     _g1h(g1h), _cm(cm),
2264     _workers(workers), _active_workers(n_workers) { }
2265 
2266   // Executes the given task using concurrent marking worker threads.
2267   virtual void execute(ProcessTask& task);
2268   virtual void execute(EnqueueTask& task);
2269 };
2270 
2271 class G1CMRefProcTaskProxy: public AbstractGangTask {
2272   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2273   ProcessTask&     _proc_task;
2274   G1CollectedHeap* _g1h;
2275   ConcurrentMark*  _cm;
2276 
2277 public:
2278   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2279                      G1CollectedHeap* g1h,
2280                      ConcurrentMark* cm) :
2281     AbstractGangTask("Process reference objects in parallel"),
2282     _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2283 
2284   virtual void work(uint worker_id) {
2285     CMTask* marking_task = _cm->task(worker_id);
2286     G1CMIsAliveClosure g1_is_alive(_g1h);
2287     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2288     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
2289 
2290     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2291   }
2292 };
2293 
2294 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2295   assert(_workers != NULL, "Need parallel worker threads.");
2296 
2297   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2298 
2299   // We need to reset the phase for each task execution so that
2300   // the termination protocol of CMTask::do_marking_step works.
2301   _cm->set_phase(_active_workers, false /* concurrent */);
2302   _g1h->set_par_threads(_active_workers);
2303   _workers->run_task(&proc_task_proxy);
2304   _g1h->set_par_threads(0);
2305 }
2306 
2307 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2308   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2309   EnqueueTask& _enq_task;
2310 
2311 public:
2312   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2313     AbstractGangTask("Enqueue reference objects in parallel"),
2314     _enq_task(enq_task) { }
2315 
2316   virtual void work(uint worker_id) {
2317     _enq_task.work(worker_id);
2318   }
2319 };
2320 
2321 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2322   assert(_workers != NULL, "Need parallel worker threads.");
2323 
2324   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2325 
2326   _g1h->set_par_threads(_active_workers);
2327   _workers->run_task(&enq_task_proxy);
2328   _g1h->set_par_threads(0);
2329 }
2330 
2331 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2332   ResourceMark rm;
2333   HandleMark   hm;
2334 
2335   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2336 
2337   // Is alive closure.
2338   G1CMIsAliveClosure g1_is_alive(g1h);
2339 
2340   // Inner scope to exclude the cleaning of the string and symbol
2341   // tables from the displayed time.
2342   {
2343     if (G1Log::finer()) {
2344       gclog_or_tty->put(' ');
2345     }
2346     TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2347 
2348     ReferenceProcessor* rp = g1h->ref_processor_cm();
2349 
2350     // See the comment in G1CollectedHeap::ref_processing_init()
2351     // about how reference processing currently works in G1.
2352 
2353     // Process weak references.
2354     rp->setup_policy(clear_all_soft_refs);
2355     assert(_markStack.isEmpty(), "mark stack should be empty");
2356 
2357     G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2358     G1CMDrainMarkingStackClosure
2359       g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2360 
2361     // We use the work gang from the G1CollectedHeap and we utilize all
2362     // the worker threads.
2363     uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
2364     active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
2365 
2366     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2367                                               g1h->workers(), active_workers);
2368 
2369     if (rp->processing_is_mt()) {
2370       // Set the degree of MT here.  If the discovery is done MT, there
2371       // may have been a different number of threads doing the discovery
2372       // and a different number of discovered lists may have Ref objects.
2373       // That is OK as long as the Reference lists are balanced (see
2374       // balance_all_queues() and balance_queues()).
2375       rp->set_active_mt_degree(active_workers);
2376 
2377       rp->process_discovered_references(&g1_is_alive,
2378                                       &g1_keep_alive,
2379                                       &g1_drain_mark_stack,
2380                                       &par_task_executor);
2381 
2382       // The work routines of the parallel keep_alive and drain_marking_stack
2383       // will set the has_overflown flag if we overflow the global marking
2384       // stack.
2385     } else {
2386       rp->process_discovered_references(&g1_is_alive,
2387                                         &g1_keep_alive,
2388                                         &g1_drain_mark_stack,
2389                                         NULL);
2390     }
2391 
2392     assert(_markStack.overflow() || _markStack.isEmpty(),
2393             "mark stack should be empty (unless it overflowed)");
2394     if (_markStack.overflow()) {
2395       // Should have been done already when we tried to push an
2396       // entry on to the global mark stack. But let's do it again.
2397       set_has_overflown();
2398     }
2399 
2400     if (rp->processing_is_mt()) {
2401       assert(rp->num_q() == active_workers, "why not");
2402       rp->enqueue_discovered_references(&par_task_executor);
2403     } else {
2404       rp->enqueue_discovered_references();
2405     }
2406 
2407     rp->verify_no_references_recorded();
2408     assert(!rp->discovery_enabled(), "Post condition");
2409   }
2410 
2411   // Now clean up stale oops in StringTable
2412   StringTable::unlink(&g1_is_alive);
2413   // Clean up unreferenced symbols in symbol table.
2414   SymbolTable::unlink();
2415 }
2416 
2417 void ConcurrentMark::swapMarkBitMaps() {
2418   CMBitMapRO* temp = _prevMarkBitMap;
2419   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2420   _nextMarkBitMap  = (CMBitMap*)  temp;
2421 }
2422 
2423 class CMRemarkTask: public AbstractGangTask {
2424 private:
2425   ConcurrentMark *_cm;
2426 
2427 public:
2428   void work(uint worker_id) {
2429     // Since all available tasks are actually started, we should
2430     // only proceed if we're supposed to be actived.
2431     if (worker_id < _cm->active_tasks()) {
2432       CMTask* task = _cm->task(worker_id);
2433       task->record_start_time();
2434       do {
2435         task->do_marking_step(1000000000.0 /* something very large */,
2436                               true /* do_stealing    */,
2437                               true /* do_termination */);
2438       } while (task->has_aborted() && !_cm->has_overflown());
2439       // If we overflow, then we do not want to restart. We instead
2440       // want to abort remark and do concurrent marking again.
2441       task->record_end_time();
2442     }
2443   }
2444 
2445   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2446     AbstractGangTask("Par Remark"), _cm(cm) {
2447     _cm->terminator()->reset_for_reuse(active_workers);
2448   }
2449 };
2450 
2451 void ConcurrentMark::checkpointRootsFinalWork() {
2452   ResourceMark rm;
2453   HandleMark   hm;
2454   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2455 
2456   g1h->ensure_parsability(false);
2457 
2458   if (G1CollectedHeap::use_parallel_gc_threads()) {
2459     G1CollectedHeap::StrongRootsScope srs(g1h);
2460     // this is remark, so we'll use up all active threads
2461     uint active_workers = g1h->workers()->active_workers();
2462     if (active_workers == 0) {
2463       assert(active_workers > 0, "Should have been set earlier");
2464       active_workers = (uint) ParallelGCThreads;
2465       g1h->workers()->set_active_workers(active_workers);
2466     }
2467     set_phase(active_workers, false /* concurrent */);
2468     // Leave _parallel_marking_threads at it's
2469     // value originally calculated in the ConcurrentMark
2470     // constructor and pass values of the active workers
2471     // through the gang in the task.
2472 
2473     CMRemarkTask remarkTask(this, active_workers);
2474     g1h->set_par_threads(active_workers);
2475     g1h->workers()->run_task(&remarkTask);
2476     g1h->set_par_threads(0);
2477   } else {
2478     G1CollectedHeap::StrongRootsScope srs(g1h);
2479     // this is remark, so we'll use up all available threads
2480     uint active_workers = 1;
2481     set_phase(active_workers, false /* concurrent */);
2482 
2483     CMRemarkTask remarkTask(this, active_workers);
2484     // We will start all available threads, even if we decide that the
2485     // active_workers will be fewer. The extra ones will just bail out
2486     // immediately.
2487     remarkTask.work(0);
2488   }
2489   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2490   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2491 
2492   print_stats();
2493 
2494 #if VERIFY_OBJS_PROCESSED
2495   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
2496     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
2497                            _scan_obj_cl.objs_processed,
2498                            ThreadLocalObjQueue::objs_enqueued);
2499     guarantee(_scan_obj_cl.objs_processed ==
2500               ThreadLocalObjQueue::objs_enqueued,
2501               "Different number of objs processed and enqueued.");
2502   }
2503 #endif
2504 }
2505 
2506 #ifndef PRODUCT
2507 
2508 class PrintReachableOopClosure: public OopClosure {
2509 private:
2510   G1CollectedHeap* _g1h;
2511   outputStream*    _out;
2512   VerifyOption     _vo;
2513   bool             _all;
2514 
2515 public:
2516   PrintReachableOopClosure(outputStream* out,
2517                            VerifyOption  vo,
2518                            bool          all) :
2519     _g1h(G1CollectedHeap::heap()),
2520     _out(out), _vo(vo), _all(all) { }
2521 
2522   void do_oop(narrowOop* p) { do_oop_work(p); }
2523   void do_oop(      oop* p) { do_oop_work(p); }
2524 
2525   template <class T> void do_oop_work(T* p) {
2526     oop         obj = oopDesc::load_decode_heap_oop(p);
2527     const char* str = NULL;
2528     const char* str2 = "";
2529 
2530     if (obj == NULL) {
2531       str = "";
2532     } else if (!_g1h->is_in_g1_reserved(obj)) {
2533       str = " O";
2534     } else {
2535       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2536       guarantee(hr != NULL, "invariant");
2537       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2538       bool marked = _g1h->is_marked(obj, _vo);
2539 
2540       if (over_tams) {
2541         str = " >";
2542         if (marked) {
2543           str2 = " AND MARKED";
2544         }
2545       } else if (marked) {
2546         str = " M";
2547       } else {
2548         str = " NOT";
2549       }
2550     }
2551 
2552     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2553                    p, (void*) obj, str, str2);
2554   }
2555 };
2556 
2557 class PrintReachableObjectClosure : public ObjectClosure {
2558 private:
2559   G1CollectedHeap* _g1h;
2560   outputStream*    _out;
2561   VerifyOption     _vo;
2562   bool             _all;
2563   HeapRegion*      _hr;
2564 
2565 public:
2566   PrintReachableObjectClosure(outputStream* out,
2567                               VerifyOption  vo,
2568                               bool          all,
2569                               HeapRegion*   hr) :
2570     _g1h(G1CollectedHeap::heap()),
2571     _out(out), _vo(vo), _all(all), _hr(hr) { }
2572 
2573   void do_object(oop o) {
2574     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2575     bool marked = _g1h->is_marked(o, _vo);
2576     bool print_it = _all || over_tams || marked;
2577 
2578     if (print_it) {
2579       _out->print_cr(" "PTR_FORMAT"%s",
2580                      o, (over_tams) ? " >" : (marked) ? " M" : "");
2581       PrintReachableOopClosure oopCl(_out, _vo, _all);
2582       o->oop_iterate_no_header(&oopCl);
2583     }
2584   }
2585 };
2586 
2587 class PrintReachableRegionClosure : public HeapRegionClosure {
2588 private:
2589   G1CollectedHeap* _g1h;
2590   outputStream*    _out;
2591   VerifyOption     _vo;
2592   bool             _all;
2593 
2594 public:
2595   bool doHeapRegion(HeapRegion* hr) {
2596     HeapWord* b = hr->bottom();
2597     HeapWord* e = hr->end();
2598     HeapWord* t = hr->top();
2599     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2600     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2601                    "TAMS: "PTR_FORMAT, b, e, t, p);
2602     _out->cr();
2603 
2604     HeapWord* from = b;
2605     HeapWord* to   = t;
2606 
2607     if (to > from) {
2608       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2609       _out->cr();
2610       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2611       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2612       _out->cr();
2613     }
2614 
2615     return false;
2616   }
2617 
2618   PrintReachableRegionClosure(outputStream* out,
2619                               VerifyOption  vo,
2620                               bool          all) :
2621     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2622 };
2623 
2624 void ConcurrentMark::print_reachable(const char* str,
2625                                      VerifyOption vo,
2626                                      bool all) {
2627   gclog_or_tty->cr();
2628   gclog_or_tty->print_cr("== Doing heap dump... ");
2629 
2630   if (G1PrintReachableBaseFile == NULL) {
2631     gclog_or_tty->print_cr("  #### error: no base file defined");
2632     return;
2633   }
2634 
2635   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2636       (JVM_MAXPATHLEN - 1)) {
2637     gclog_or_tty->print_cr("  #### error: file name too long");
2638     return;
2639   }
2640 
2641   char file_name[JVM_MAXPATHLEN];
2642   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2643   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2644 
2645   fileStream fout(file_name);
2646   if (!fout.is_open()) {
2647     gclog_or_tty->print_cr("  #### error: could not open file");
2648     return;
2649   }
2650 
2651   outputStream* out = &fout;
2652   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2653   out->cr();
2654 
2655   out->print_cr("--- ITERATING OVER REGIONS");
2656   out->cr();
2657   PrintReachableRegionClosure rcl(out, vo, all);
2658   _g1h->heap_region_iterate(&rcl);
2659   out->cr();
2660 
2661   gclog_or_tty->print_cr("  done");
2662   gclog_or_tty->flush();
2663 }
2664 
2665 #endif // PRODUCT
2666 
2667 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2668   // Note we are overriding the read-only view of the prev map here, via
2669   // the cast.
2670   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2671 }
2672 
2673 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2674   _nextMarkBitMap->clearRange(mr);
2675 }
2676 
2677 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2678   clearRangePrevBitmap(mr);
2679   clearRangeNextBitmap(mr);
2680 }
2681 
2682 HeapRegion*
2683 ConcurrentMark::claim_region(int task_num) {
2684   // "checkpoint" the finger
2685   HeapWord* finger = _finger;
2686 
2687   // _heap_end will not change underneath our feet; it only changes at
2688   // yield points.
2689   while (finger < _heap_end) {
2690     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2691 
2692     // Note on how this code handles humongous regions. In the
2693     // normal case the finger will reach the start of a "starts
2694     // humongous" (SH) region. Its end will either be the end of the
2695     // last "continues humongous" (CH) region in the sequence, or the
2696     // standard end of the SH region (if the SH is the only region in
2697     // the sequence). That way claim_region() will skip over the CH
2698     // regions. However, there is a subtle race between a CM thread
2699     // executing this method and a mutator thread doing a humongous
2700     // object allocation. The two are not mutually exclusive as the CM
2701     // thread does not need to hold the Heap_lock when it gets
2702     // here. So there is a chance that claim_region() will come across
2703     // a free region that's in the progress of becoming a SH or a CH
2704     // region. In the former case, it will either
2705     //   a) Miss the update to the region's end, in which case it will
2706     //      visit every subsequent CH region, will find their bitmaps
2707     //      empty, and do nothing, or
2708     //   b) Will observe the update of the region's end (in which case
2709     //      it will skip the subsequent CH regions).
2710     // If it comes across a region that suddenly becomes CH, the
2711     // scenario will be similar to b). So, the race between
2712     // claim_region() and a humongous object allocation might force us
2713     // to do a bit of unnecessary work (due to some unnecessary bitmap
2714     // iterations) but it should not introduce and correctness issues.
2715     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2716     HeapWord*   bottom        = curr_region->bottom();
2717     HeapWord*   end           = curr_region->end();
2718     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2719 
2720     if (verbose_low()) {
2721       gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
2722                              "["PTR_FORMAT", "PTR_FORMAT"), "
2723                              "limit = "PTR_FORMAT,
2724                              task_num, curr_region, bottom, end, limit);
2725     }
2726 
2727     // Is the gap between reading the finger and doing the CAS too long?
2728     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2729     if (res == finger) {
2730       // we succeeded
2731 
2732       // notice that _finger == end cannot be guaranteed here since,
2733       // someone else might have moved the finger even further
2734       assert(_finger >= end, "the finger should have moved forward");
2735 
2736       if (verbose_low()) {
2737         gclog_or_tty->print_cr("[%d] we were successful with region = "
2738                                PTR_FORMAT, task_num, curr_region);
2739       }
2740 
2741       if (limit > bottom) {
2742         if (verbose_low()) {
2743           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
2744                                  "returning it ", task_num, curr_region);
2745         }
2746         return curr_region;
2747       } else {
2748         assert(limit == bottom,
2749                "the region limit should be at bottom");
2750         if (verbose_low()) {
2751           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
2752                                  "returning NULL", task_num, curr_region);
2753         }
2754         // we return NULL and the caller should try calling
2755         // claim_region() again.
2756         return NULL;
2757       }
2758     } else {
2759       assert(_finger > finger, "the finger should have moved forward");
2760       if (verbose_low()) {
2761         gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
2762                                "global finger = "PTR_FORMAT", "
2763                                "our finger = "PTR_FORMAT,
2764                                task_num, _finger, finger);
2765       }
2766 
2767       // read it again
2768       finger = _finger;
2769     }
2770   }
2771 
2772   return NULL;
2773 }
2774 
2775 #ifndef PRODUCT
2776 enum VerifyNoCSetOopsPhase {
2777   VerifyNoCSetOopsStack,
2778   VerifyNoCSetOopsQueues,
2779   VerifyNoCSetOopsSATBCompleted,
2780   VerifyNoCSetOopsSATBThread
2781 };
2782 
2783 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2784 private:
2785   G1CollectedHeap* _g1h;
2786   VerifyNoCSetOopsPhase _phase;
2787   int _info;
2788 
2789   const char* phase_str() {
2790     switch (_phase) {
2791     case VerifyNoCSetOopsStack:         return "Stack";
2792     case VerifyNoCSetOopsQueues:        return "Queue";
2793     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2794     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2795     default:                            ShouldNotReachHere();
2796     }
2797     return NULL;
2798   }
2799 
2800   void do_object_work(oop obj) {
2801     guarantee(!_g1h->obj_in_cs(obj),
2802               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2803                       (void*) obj, phase_str(), _info));
2804   }
2805 
2806 public:
2807   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2808 
2809   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2810     _phase = phase;
2811     _info = info;
2812   }
2813 
2814   virtual void do_oop(oop* p) {
2815     oop obj = oopDesc::load_decode_heap_oop(p);
2816     do_object_work(obj);
2817   }
2818 
2819   virtual void do_oop(narrowOop* p) {
2820     // We should not come across narrow oops while scanning marking
2821     // stacks and SATB buffers.
2822     ShouldNotReachHere();
2823   }
2824 
2825   virtual void do_object(oop obj) {
2826     do_object_work(obj);
2827   }
2828 };
2829 
2830 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2831                                          bool verify_enqueued_buffers,
2832                                          bool verify_thread_buffers,
2833                                          bool verify_fingers) {
2834   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2835   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2836     return;
2837   }
2838 
2839   VerifyNoCSetOopsClosure cl;
2840 
2841   if (verify_stacks) {
2842     // Verify entries on the global mark stack
2843     cl.set_phase(VerifyNoCSetOopsStack);
2844     _markStack.oops_do(&cl);
2845 
2846     // Verify entries on the task queues
2847     for (int i = 0; i < (int) _max_task_num; i += 1) {
2848       cl.set_phase(VerifyNoCSetOopsQueues, i);
2849       OopTaskQueue* queue = _task_queues->queue(i);
2850       queue->oops_do(&cl);
2851     }
2852   }
2853 
2854   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2855 
2856   // Verify entries on the enqueued SATB buffers
2857   if (verify_enqueued_buffers) {
2858     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2859     satb_qs.iterate_completed_buffers_read_only(&cl);
2860   }
2861 
2862   // Verify entries on the per-thread SATB buffers
2863   if (verify_thread_buffers) {
2864     cl.set_phase(VerifyNoCSetOopsSATBThread);
2865     satb_qs.iterate_thread_buffers_read_only(&cl);
2866   }
2867 
2868   if (verify_fingers) {
2869     // Verify the global finger
2870     HeapWord* global_finger = finger();
2871     if (global_finger != NULL && global_finger < _heap_end) {
2872       // The global finger always points to a heap region boundary. We
2873       // use heap_region_containing_raw() to get the containing region
2874       // given that the global finger could be pointing to a free region
2875       // which subsequently becomes continues humongous. If that
2876       // happens, heap_region_containing() will return the bottom of the
2877       // corresponding starts humongous region and the check below will
2878       // not hold any more.
2879       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2880       guarantee(global_finger == global_hr->bottom(),
2881                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
2882                         global_finger, HR_FORMAT_PARAMS(global_hr)));
2883     }
2884 
2885     // Verify the task fingers
2886     assert(parallel_marking_threads() <= _max_task_num, "sanity");
2887     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
2888       CMTask* task = _tasks[i];
2889       HeapWord* task_finger = task->finger();
2890       if (task_finger != NULL && task_finger < _heap_end) {
2891         // See above note on the global finger verification.
2892         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2893         guarantee(task_finger == task_hr->bottom() ||
2894                   !task_hr->in_collection_set(),
2895                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
2896                           task_finger, HR_FORMAT_PARAMS(task_hr)));
2897       }
2898     }
2899   }
2900 }
2901 #endif // PRODUCT
2902 
2903 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2904   _markStack.setEmpty();
2905   _markStack.clear_overflow();
2906   if (clear_overflow) {
2907     clear_has_overflown();
2908   } else {
2909     assert(has_overflown(), "pre-condition");
2910   }
2911   _finger = _heap_start;
2912 
2913   for (int i = 0; i < (int)_max_task_num; ++i) {
2914     OopTaskQueue* queue = _task_queues->queue(i);
2915     queue->set_empty();
2916   }
2917 }
2918 
2919 // Aggregate the counting data that was constructed concurrently
2920 // with marking.
2921 class AggregateCountDataHRClosure: public HeapRegionClosure {
2922   ConcurrentMark* _cm;
2923   BitMap* _cm_card_bm;
2924   size_t _max_task_num;
2925 
2926  public:
2927   AggregateCountDataHRClosure(ConcurrentMark *cm,
2928                               BitMap* cm_card_bm,
2929                               size_t max_task_num) :
2930     _cm(cm), _cm_card_bm(cm_card_bm),
2931     _max_task_num(max_task_num) { }
2932 
2933   bool is_card_aligned(HeapWord* p) {
2934     return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
2935   }
2936 
2937   bool doHeapRegion(HeapRegion* hr) {
2938     if (hr->continuesHumongous()) {
2939       // We will ignore these here and process them when their
2940       // associated "starts humongous" region is processed.
2941       // Note that we cannot rely on their associated
2942       // "starts humongous" region to have their bit set to 1
2943       // since, due to the region chunking in the parallel region
2944       // iteration, a "continues humongous" region might be visited
2945       // before its associated "starts humongous".
2946       return false;
2947     }
2948 
2949     HeapWord* start = hr->bottom();
2950     HeapWord* limit = hr->next_top_at_mark_start();
2951     HeapWord* end = hr->end();
2952 
2953     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2954            err_msg("Preconditions not met - "
2955                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
2956                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
2957                    start, limit, hr->top(), hr->end()));
2958 
2959     assert(hr->next_marked_bytes() == 0, "Precondition");
2960 
2961     if (start == limit) {
2962       // NTAMS of this region has not been set so nothing to do.
2963       return false;
2964     }
2965 
2966     assert(is_card_aligned(start), "sanity");
2967     assert(is_card_aligned(end), "sanity");
2968 
2969     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2970     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2971     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2972 
2973     // If ntams is not card aligned then we bump the index for
2974     // limit so that we get the card spanning ntams.
2975     if (!is_card_aligned(limit)) {
2976       limit_idx += 1;
2977     }
2978 
2979     assert(limit_idx <= end_idx, "or else use atomics");
2980 
2981     // Aggregate the "stripe" in the count data associated with hr.
2982     uint hrs_index = hr->hrs_index();
2983     size_t marked_bytes = 0;
2984 
2985     for (int i = 0; (size_t)i < _max_task_num; i += 1) {
2986       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2987       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2988 
2989       // Fetch the marked_bytes in this region for task i and
2990       // add it to the running total for this region.
2991       marked_bytes += marked_bytes_array[hrs_index];
2992 
2993       // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
2994       // into the global card bitmap.
2995       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2996 
2997       while (scan_idx < limit_idx) {
2998         assert(task_card_bm->at(scan_idx) == true, "should be");
2999         _cm_card_bm->set_bit(scan_idx);
3000         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3001 
3002         // BitMap::get_next_one_offset() can handle the case when
3003         // its left_offset parameter is greater than its right_offset
3004         // parameter. If does, however, have an early exit if
3005         // left_offset == right_offset. So let's limit the value
3006         // passed in for left offset here.
3007         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3008         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3009       }
3010     }
3011 
3012     // Update the marked bytes for this region.
3013     hr->add_to_marked_bytes(marked_bytes);
3014 
3015     // Next heap region
3016     return false;
3017   }
3018 };
3019 
3020 class G1AggregateCountDataTask: public AbstractGangTask {
3021 protected:
3022   G1CollectedHeap* _g1h;
3023   ConcurrentMark* _cm;
3024   BitMap* _cm_card_bm;
3025   size_t _max_task_num;
3026   int _active_workers;
3027 
3028 public:
3029   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3030                            ConcurrentMark* cm,
3031                            BitMap* cm_card_bm,
3032                            size_t max_task_num,
3033                            int n_workers) :
3034     AbstractGangTask("Count Aggregation"),
3035     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3036     _max_task_num(max_task_num),
3037     _active_workers(n_workers) { }
3038 
3039   void work(uint worker_id) {
3040     AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);
3041 
3042     if (G1CollectedHeap::use_parallel_gc_threads()) {
3043       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3044                                             _active_workers,
3045                                             HeapRegion::AggregateCountClaimValue);
3046     } else {
3047       _g1h->heap_region_iterate(&cl);
3048     }
3049   }
3050 };
3051 
3052 
3053 void ConcurrentMark::aggregate_count_data() {
3054   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3055                         _g1h->workers()->active_workers() :
3056                         1);
3057 
3058   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3059                                            _max_task_num, n_workers);
3060 
3061   if (G1CollectedHeap::use_parallel_gc_threads()) {
3062     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3063            "sanity check");
3064     _g1h->set_par_threads(n_workers);
3065     _g1h->workers()->run_task(&g1_par_agg_task);
3066     _g1h->set_par_threads(0);
3067 
3068     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3069            "sanity check");
3070     _g1h->reset_heap_region_claim_values();
3071   } else {
3072     g1_par_agg_task.work(0);
3073   }
3074 }
3075 
3076 // Clear the per-worker arrays used to store the per-region counting data
3077 void ConcurrentMark::clear_all_count_data() {
3078   // Clear the global card bitmap - it will be filled during
3079   // liveness count aggregation (during remark) and the
3080   // final counting task.
3081   _card_bm.clear();
3082 
3083   // Clear the global region bitmap - it will be filled as part
3084   // of the final counting task.
3085   _region_bm.clear();
3086 
3087   uint max_regions = _g1h->max_regions();
3088   assert(_max_task_num != 0, "unitialized");
3089 
3090   for (int i = 0; (size_t) i < _max_task_num; i += 1) {
3091     BitMap* task_card_bm = count_card_bitmap_for(i);
3092     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3093 
3094     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3095     assert(marked_bytes_array != NULL, "uninitialized");
3096 
3097     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3098     task_card_bm->clear();
3099   }
3100 }
3101 
3102 void ConcurrentMark::print_stats() {
3103   if (verbose_stats()) {
3104     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3105     for (size_t i = 0; i < _active_tasks; ++i) {
3106       _tasks[i]->print_stats();
3107       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3108     }
3109   }
3110 }
3111 
3112 // abandon current marking iteration due to a Full GC
3113 void ConcurrentMark::abort() {
3114   // Clear all marks to force marking thread to do nothing
3115   _nextMarkBitMap->clearAll();
3116   // Clear the liveness counting data
3117   clear_all_count_data();
3118   // Empty mark stack
3119   clear_marking_state();
3120   for (int i = 0; i < (int)_max_task_num; ++i) {
3121     _tasks[i]->clear_region_fields();
3122   }
3123   _has_aborted = true;
3124 
3125   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3126   satb_mq_set.abandon_partial_marking();
3127   // This can be called either during or outside marking, we'll read
3128   // the expected_active value from the SATB queue set.
3129   satb_mq_set.set_active_all_threads(
3130                                  false, /* new active value */
3131                                  satb_mq_set.is_active() /* expected_active */);
3132 }
3133 
3134 static void print_ms_time_info(const char* prefix, const char* name,
3135                                NumberSeq& ns) {
3136   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3137                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3138   if (ns.num() > 0) {
3139     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3140                            prefix, ns.sd(), ns.maximum());
3141   }
3142 }
3143 
3144 void ConcurrentMark::print_summary_info() {
3145   gclog_or_tty->print_cr(" Concurrent marking:");
3146   print_ms_time_info("  ", "init marks", _init_times);
3147   print_ms_time_info("  ", "remarks", _remark_times);
3148   {
3149     print_ms_time_info("     ", "final marks", _remark_mark_times);
3150     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3151 
3152   }
3153   print_ms_time_info("  ", "cleanups", _cleanup_times);
3154   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3155                          _total_counting_time,
3156                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3157                           (double)_cleanup_times.num()
3158                          : 0.0));
3159   if (G1ScrubRemSets) {
3160     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3161                            _total_rs_scrub_time,
3162                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3163                             (double)_cleanup_times.num()
3164                            : 0.0));
3165   }
3166   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3167                          (_init_times.sum() + _remark_times.sum() +
3168                           _cleanup_times.sum())/1000.0);
3169   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3170                 "(%8.2f s marking).",
3171                 cmThread()->vtime_accum(),
3172                 cmThread()->vtime_mark_accum());
3173 }
3174 
3175 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3176   _parallel_workers->print_worker_threads_on(st);
3177 }
3178 
3179 // We take a break if someone is trying to stop the world.
3180 bool ConcurrentMark::do_yield_check(uint worker_id) {
3181   if (should_yield()) {
3182     if (worker_id == 0) {
3183       _g1h->g1_policy()->record_concurrent_pause();
3184     }
3185     cmThread()->yield();
3186     return true;
3187   } else {
3188     return false;
3189   }
3190 }
3191 
3192 bool ConcurrentMark::should_yield() {
3193   return cmThread()->should_yield();
3194 }
3195 
3196 bool ConcurrentMark::containing_card_is_marked(void* p) {
3197   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3198   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3199 }
3200 
3201 bool ConcurrentMark::containing_cards_are_marked(void* start,
3202                                                  void* last) {
3203   return containing_card_is_marked(start) &&
3204          containing_card_is_marked(last);
3205 }
3206 
3207 #ifndef PRODUCT
3208 // for debugging purposes
3209 void ConcurrentMark::print_finger() {
3210   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3211                          _heap_start, _heap_end, _finger);
3212   for (int i = 0; i < (int) _max_task_num; ++i) {
3213     gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
3214   }
3215   gclog_or_tty->print_cr("");
3216 }
3217 #endif
3218 
3219 void CMTask::scan_object(oop obj) {
3220   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3221 
3222   if (_cm->verbose_high()) {
3223     gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
3224                            _task_id, (void*) obj);
3225   }
3226 
3227   size_t obj_size = obj->size();
3228   _words_scanned += obj_size;
3229 
3230   obj->oop_iterate(_cm_oop_closure);
3231   statsOnly( ++_objs_scanned );
3232   check_limits();
3233 }
3234 
3235 // Closure for iteration over bitmaps
3236 class CMBitMapClosure : public BitMapClosure {
3237 private:
3238   // the bitmap that is being iterated over
3239   CMBitMap*                   _nextMarkBitMap;
3240   ConcurrentMark*             _cm;
3241   CMTask*                     _task;
3242 
3243 public:
3244   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3245     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3246 
3247   bool do_bit(size_t offset) {
3248     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3249     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3250     assert( addr < _cm->finger(), "invariant");
3251 
3252     statsOnly( _task->increase_objs_found_on_bitmap() );
3253     assert(addr >= _task->finger(), "invariant");
3254 
3255     // We move that task's local finger along.
3256     _task->move_finger_to(addr);
3257 
3258     _task->scan_object(oop(addr));
3259     // we only partially drain the local queue and global stack
3260     _task->drain_local_queue(true);
3261     _task->drain_global_stack(true);
3262 
3263     // if the has_aborted flag has been raised, we need to bail out of
3264     // the iteration
3265     return !_task->has_aborted();
3266   }
3267 };
3268 
3269 // Closure for iterating over objects, currently only used for
3270 // processing SATB buffers.
3271 class CMObjectClosure : public ObjectClosure {
3272 private:
3273   CMTask* _task;
3274 
3275 public:
3276   void do_object(oop obj) {
3277     _task->deal_with_reference(obj);
3278   }
3279 
3280   CMObjectClosure(CMTask* task) : _task(task) { }
3281 };
3282 
3283 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3284                                ConcurrentMark* cm,
3285                                CMTask* task)
3286   : _g1h(g1h), _cm(cm), _task(task) {
3287   assert(_ref_processor == NULL, "should be initialized to NULL");
3288 
3289   if (G1UseConcMarkReferenceProcessing) {
3290     _ref_processor = g1h->ref_processor_cm();
3291     assert(_ref_processor != NULL, "should not be NULL");
3292   }
3293 }
3294 
3295 void CMTask::setup_for_region(HeapRegion* hr) {
3296   // Separated the asserts so that we know which one fires.
3297   assert(hr != NULL,
3298         "claim_region() should have filtered out continues humongous regions");
3299   assert(!hr->continuesHumongous(),
3300         "claim_region() should have filtered out continues humongous regions");
3301 
3302   if (_cm->verbose_low()) {
3303     gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
3304                            _task_id, hr);
3305   }
3306 
3307   _curr_region  = hr;
3308   _finger       = hr->bottom();
3309   update_region_limit();
3310 }
3311 
3312 void CMTask::update_region_limit() {
3313   HeapRegion* hr            = _curr_region;
3314   HeapWord* bottom          = hr->bottom();
3315   HeapWord* limit           = hr->next_top_at_mark_start();
3316 
3317   if (limit == bottom) {
3318     if (_cm->verbose_low()) {
3319       gclog_or_tty->print_cr("[%d] found an empty region "
3320                              "["PTR_FORMAT", "PTR_FORMAT")",
3321                              _task_id, bottom, limit);
3322     }
3323     // The region was collected underneath our feet.
3324     // We set the finger to bottom to ensure that the bitmap
3325     // iteration that will follow this will not do anything.
3326     // (this is not a condition that holds when we set the region up,
3327     // as the region is not supposed to be empty in the first place)
3328     _finger = bottom;
3329   } else if (limit >= _region_limit) {
3330     assert(limit >= _finger, "peace of mind");
3331   } else {
3332     assert(limit < _region_limit, "only way to get here");
3333     // This can happen under some pretty unusual circumstances.  An
3334     // evacuation pause empties the region underneath our feet (NTAMS
3335     // at bottom). We then do some allocation in the region (NTAMS
3336     // stays at bottom), followed by the region being used as a GC
3337     // alloc region (NTAMS will move to top() and the objects
3338     // originally below it will be grayed). All objects now marked in
3339     // the region are explicitly grayed, if below the global finger,
3340     // and we do not need in fact to scan anything else. So, we simply
3341     // set _finger to be limit to ensure that the bitmap iteration
3342     // doesn't do anything.
3343     _finger = limit;
3344   }
3345 
3346   _region_limit = limit;
3347 }
3348 
3349 void CMTask::giveup_current_region() {
3350   assert(_curr_region != NULL, "invariant");
3351   if (_cm->verbose_low()) {
3352     gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
3353                            _task_id, _curr_region);
3354   }
3355   clear_region_fields();
3356 }
3357 
3358 void CMTask::clear_region_fields() {
3359   // Values for these three fields that indicate that we're not
3360   // holding on to a region.
3361   _curr_region   = NULL;
3362   _finger        = NULL;
3363   _region_limit  = NULL;
3364 }
3365 
3366 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3367   if (cm_oop_closure == NULL) {
3368     assert(_cm_oop_closure != NULL, "invariant");
3369   } else {
3370     assert(_cm_oop_closure == NULL, "invariant");
3371   }
3372   _cm_oop_closure = cm_oop_closure;
3373 }
3374 
3375 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3376   guarantee(nextMarkBitMap != NULL, "invariant");
3377 
3378   if (_cm->verbose_low()) {
3379     gclog_or_tty->print_cr("[%d] resetting", _task_id);
3380   }
3381 
3382   _nextMarkBitMap                = nextMarkBitMap;
3383   clear_region_fields();
3384 
3385   _calls                         = 0;
3386   _elapsed_time_ms               = 0.0;
3387   _termination_time_ms           = 0.0;
3388   _termination_start_time_ms     = 0.0;
3389 
3390 #if _MARKING_STATS_
3391   _local_pushes                  = 0;
3392   _local_pops                    = 0;
3393   _local_max_size                = 0;
3394   _objs_scanned                  = 0;
3395   _global_pushes                 = 0;
3396   _global_pops                   = 0;
3397   _global_max_size               = 0;
3398   _global_transfers_to           = 0;
3399   _global_transfers_from         = 0;
3400   _regions_claimed               = 0;
3401   _objs_found_on_bitmap          = 0;
3402   _satb_buffers_processed        = 0;
3403   _steal_attempts                = 0;
3404   _steals                        = 0;
3405   _aborted                       = 0;
3406   _aborted_overflow              = 0;
3407   _aborted_cm_aborted            = 0;
3408   _aborted_yield                 = 0;
3409   _aborted_timed_out             = 0;
3410   _aborted_satb                  = 0;
3411   _aborted_termination           = 0;
3412 #endif // _MARKING_STATS_
3413 }
3414 
3415 bool CMTask::should_exit_termination() {
3416   regular_clock_call();
3417   // This is called when we are in the termination protocol. We should
3418   // quit if, for some reason, this task wants to abort or the global
3419   // stack is not empty (this means that we can get work from it).
3420   return !_cm->mark_stack_empty() || has_aborted();
3421 }
3422 
3423 void CMTask::reached_limit() {
3424   assert(_words_scanned >= _words_scanned_limit ||
3425          _refs_reached >= _refs_reached_limit ,
3426          "shouldn't have been called otherwise");
3427   regular_clock_call();
3428 }
3429 
3430 void CMTask::regular_clock_call() {
3431   if (has_aborted()) return;
3432 
3433   // First, we need to recalculate the words scanned and refs reached
3434   // limits for the next clock call.
3435   recalculate_limits();
3436 
3437   // During the regular clock call we do the following
3438 
3439   // (1) If an overflow has been flagged, then we abort.
3440   if (_cm->has_overflown()) {
3441     set_has_aborted();
3442     return;
3443   }
3444 
3445   // If we are not concurrent (i.e. we're doing remark) we don't need
3446   // to check anything else. The other steps are only needed during
3447   // the concurrent marking phase.
3448   if (!concurrent()) return;
3449 
3450   // (2) If marking has been aborted for Full GC, then we also abort.
3451   if (_cm->has_aborted()) {
3452     set_has_aborted();
3453     statsOnly( ++_aborted_cm_aborted );
3454     return;
3455   }
3456 
3457   double curr_time_ms = os::elapsedVTime() * 1000.0;
3458 
3459   // (3) If marking stats are enabled, then we update the step history.
3460 #if _MARKING_STATS_
3461   if (_words_scanned >= _words_scanned_limit) {
3462     ++_clock_due_to_scanning;
3463   }
3464   if (_refs_reached >= _refs_reached_limit) {
3465     ++_clock_due_to_marking;
3466   }
3467 
3468   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3469   _interval_start_time_ms = curr_time_ms;
3470   _all_clock_intervals_ms.add(last_interval_ms);
3471 
3472   if (_cm->verbose_medium()) {
3473       gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
3474                         "scanned = %d%s, refs reached = %d%s",
3475                         _task_id, last_interval_ms,
3476                         _words_scanned,
3477                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3478                         _refs_reached,
3479                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3480   }
3481 #endif // _MARKING_STATS_
3482 
3483   // (4) We check whether we should yield. If we have to, then we abort.
3484   if (_cm->should_yield()) {
3485     // We should yield. To do this we abort the task. The caller is
3486     // responsible for yielding.
3487     set_has_aborted();
3488     statsOnly( ++_aborted_yield );
3489     return;
3490   }
3491 
3492   // (5) We check whether we've reached our time quota. If we have,
3493   // then we abort.
3494   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3495   if (elapsed_time_ms > _time_target_ms) {
3496     set_has_aborted();
3497     _has_timed_out = true;
3498     statsOnly( ++_aborted_timed_out );
3499     return;
3500   }
3501 
3502   // (6) Finally, we check whether there are enough completed STAB
3503   // buffers available for processing. If there are, we abort.
3504   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3505   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3506     if (_cm->verbose_low()) {
3507       gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
3508                              _task_id);
3509     }
3510     // we do need to process SATB buffers, we'll abort and restart
3511     // the marking task to do so
3512     set_has_aborted();
3513     statsOnly( ++_aborted_satb );
3514     return;
3515   }
3516 }
3517 
3518 void CMTask::recalculate_limits() {
3519   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3520   _words_scanned_limit      = _real_words_scanned_limit;
3521 
3522   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3523   _refs_reached_limit       = _real_refs_reached_limit;
3524 }
3525 
3526 void CMTask::decrease_limits() {
3527   // This is called when we believe that we're going to do an infrequent
3528   // operation which will increase the per byte scanned cost (i.e. move
3529   // entries to/from the global stack). It basically tries to decrease the
3530   // scanning limit so that the clock is called earlier.
3531 
3532   if (_cm->verbose_medium()) {
3533     gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3534   }
3535 
3536   _words_scanned_limit = _real_words_scanned_limit -
3537     3 * words_scanned_period / 4;
3538   _refs_reached_limit  = _real_refs_reached_limit -
3539     3 * refs_reached_period / 4;
3540 }
3541 
3542 void CMTask::move_entries_to_global_stack() {
3543   // local array where we'll store the entries that will be popped
3544   // from the local queue
3545   oop buffer[global_stack_transfer_size];
3546 
3547   int n = 0;
3548   oop obj;
3549   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3550     buffer[n] = obj;
3551     ++n;
3552   }
3553 
3554   if (n > 0) {
3555     // we popped at least one entry from the local queue
3556 
3557     statsOnly( ++_global_transfers_to; _local_pops += n );
3558 
3559     if (!_cm->mark_stack_push(buffer, n)) {
3560       if (_cm->verbose_low()) {
3561         gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
3562                                _task_id);
3563       }
3564       set_has_aborted();
3565     } else {
3566       // the transfer was successful
3567 
3568       if (_cm->verbose_medium()) {
3569         gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
3570                                _task_id, n);
3571       }
3572       statsOnly( int tmp_size = _cm->mark_stack_size();
3573                  if (tmp_size > _global_max_size) {
3574                    _global_max_size = tmp_size;
3575                  }
3576                  _global_pushes += n );
3577     }
3578   }
3579 
3580   // this operation was quite expensive, so decrease the limits
3581   decrease_limits();
3582 }
3583 
3584 void CMTask::get_entries_from_global_stack() {
3585   // local array where we'll store the entries that will be popped
3586   // from the global stack.
3587   oop buffer[global_stack_transfer_size];
3588   int n;
3589   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3590   assert(n <= global_stack_transfer_size,
3591          "we should not pop more than the given limit");
3592   if (n > 0) {
3593     // yes, we did actually pop at least one entry
3594 
3595     statsOnly( ++_global_transfers_from; _global_pops += n );
3596     if (_cm->verbose_medium()) {
3597       gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
3598                              _task_id, n);
3599     }
3600     for (int i = 0; i < n; ++i) {
3601       bool success = _task_queue->push(buffer[i]);
3602       // We only call this when the local queue is empty or under a
3603       // given target limit. So, we do not expect this push to fail.
3604       assert(success, "invariant");
3605     }
3606 
3607     statsOnly( int tmp_size = _task_queue->size();
3608                if (tmp_size > _local_max_size) {
3609                  _local_max_size = tmp_size;
3610                }
3611                _local_pushes += n );
3612   }
3613 
3614   // this operation was quite expensive, so decrease the limits
3615   decrease_limits();
3616 }
3617 
3618 void CMTask::drain_local_queue(bool partially) {
3619   if (has_aborted()) return;
3620 
3621   // Decide what the target size is, depending whether we're going to
3622   // drain it partially (so that other tasks can steal if they run out
3623   // of things to do) or totally (at the very end).
3624   size_t target_size;
3625   if (partially) {
3626     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3627   } else {
3628     target_size = 0;
3629   }
3630 
3631   if (_task_queue->size() > target_size) {
3632     if (_cm->verbose_high()) {
3633       gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
3634                              _task_id, target_size);
3635     }
3636 
3637     oop obj;
3638     bool ret = _task_queue->pop_local(obj);
3639     while (ret) {
3640       statsOnly( ++_local_pops );
3641 
3642       if (_cm->verbose_high()) {
3643         gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
3644                                (void*) obj);
3645       }
3646 
3647       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3648       assert(!_g1h->is_on_master_free_list(
3649                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3650 
3651       scan_object(obj);
3652 
3653       if (_task_queue->size() <= target_size || has_aborted()) {
3654         ret = false;
3655       } else {
3656         ret = _task_queue->pop_local(obj);
3657       }
3658     }
3659 
3660     if (_cm->verbose_high()) {
3661       gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
3662                              _task_id, _task_queue->size());
3663     }
3664   }
3665 }
3666 
3667 void CMTask::drain_global_stack(bool partially) {
3668   if (has_aborted()) return;
3669 
3670   // We have a policy to drain the local queue before we attempt to
3671   // drain the global stack.
3672   assert(partially || _task_queue->size() == 0, "invariant");
3673 
3674   // Decide what the target size is, depending whether we're going to
3675   // drain it partially (so that other tasks can steal if they run out
3676   // of things to do) or totally (at the very end).  Notice that,
3677   // because we move entries from the global stack in chunks or
3678   // because another task might be doing the same, we might in fact
3679   // drop below the target. But, this is not a problem.
3680   size_t target_size;
3681   if (partially) {
3682     target_size = _cm->partial_mark_stack_size_target();
3683   } else {
3684     target_size = 0;
3685   }
3686 
3687   if (_cm->mark_stack_size() > target_size) {
3688     if (_cm->verbose_low()) {
3689       gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
3690                              _task_id, target_size);
3691     }
3692 
3693     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3694       get_entries_from_global_stack();
3695       drain_local_queue(partially);
3696     }
3697 
3698     if (_cm->verbose_low()) {
3699       gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
3700                              _task_id, _cm->mark_stack_size());
3701     }
3702   }
3703 }
3704 
3705 // SATB Queue has several assumptions on whether to call the par or
3706 // non-par versions of the methods. this is why some of the code is
3707 // replicated. We should really get rid of the single-threaded version
3708 // of the code to simplify things.
3709 void CMTask::drain_satb_buffers() {
3710   if (has_aborted()) return;
3711 
3712   // We set this so that the regular clock knows that we're in the
3713   // middle of draining buffers and doesn't set the abort flag when it
3714   // notices that SATB buffers are available for draining. It'd be
3715   // very counter productive if it did that. :-)
3716   _draining_satb_buffers = true;
3717 
3718   CMObjectClosure oc(this);
3719   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3720   if (G1CollectedHeap::use_parallel_gc_threads()) {
3721     satb_mq_set.set_par_closure(_task_id, &oc);
3722   } else {
3723     satb_mq_set.set_closure(&oc);
3724   }
3725 
3726   // This keeps claiming and applying the closure to completed buffers
3727   // until we run out of buffers or we need to abort.
3728   if (G1CollectedHeap::use_parallel_gc_threads()) {
3729     while (!has_aborted() &&
3730            satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3731       if (_cm->verbose_medium()) {
3732         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3733       }
3734       statsOnly( ++_satb_buffers_processed );
3735       regular_clock_call();
3736     }
3737   } else {
3738     while (!has_aborted() &&
3739            satb_mq_set.apply_closure_to_completed_buffer()) {
3740       if (_cm->verbose_medium()) {
3741         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3742       }
3743       statsOnly( ++_satb_buffers_processed );
3744       regular_clock_call();
3745     }
3746   }
3747 
3748   if (!concurrent() && !has_aborted()) {
3749     // We should only do this during remark.
3750     if (G1CollectedHeap::use_parallel_gc_threads()) {
3751       satb_mq_set.par_iterate_closure_all_threads(_task_id);
3752     } else {
3753       satb_mq_set.iterate_closure_all_threads();
3754     }
3755   }
3756 
3757   _draining_satb_buffers = false;
3758 
3759   assert(has_aborted() ||
3760          concurrent() ||
3761          satb_mq_set.completed_buffers_num() == 0, "invariant");
3762 
3763   if (G1CollectedHeap::use_parallel_gc_threads()) {
3764     satb_mq_set.set_par_closure(_task_id, NULL);
3765   } else {
3766     satb_mq_set.set_closure(NULL);
3767   }
3768 
3769   // again, this was a potentially expensive operation, decrease the
3770   // limits to get the regular clock call early
3771   decrease_limits();
3772 }
3773 
3774 void CMTask::print_stats() {
3775   gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
3776                          _task_id, _calls);
3777   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3778                          _elapsed_time_ms, _termination_time_ms);
3779   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3780                          _step_times_ms.num(), _step_times_ms.avg(),
3781                          _step_times_ms.sd());
3782   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3783                          _step_times_ms.maximum(), _step_times_ms.sum());
3784 
3785 #if _MARKING_STATS_
3786   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3787                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3788                          _all_clock_intervals_ms.sd());
3789   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3790                          _all_clock_intervals_ms.maximum(),
3791                          _all_clock_intervals_ms.sum());
3792   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3793                          _clock_due_to_scanning, _clock_due_to_marking);
3794   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3795                          _objs_scanned, _objs_found_on_bitmap);
3796   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3797                          _local_pushes, _local_pops, _local_max_size);
3798   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3799                          _global_pushes, _global_pops, _global_max_size);
3800   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3801                          _global_transfers_to,_global_transfers_from);
3802   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3803   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3804   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3805                          _steal_attempts, _steals);
3806   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3807   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3808                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3809   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3810                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3811 #endif // _MARKING_STATS_
3812 }
3813 
3814 /*****************************************************************************
3815 
3816     The do_marking_step(time_target_ms) method is the building block
3817     of the parallel marking framework. It can be called in parallel
3818     with other invocations of do_marking_step() on different tasks
3819     (but only one per task, obviously) and concurrently with the
3820     mutator threads, or during remark, hence it eliminates the need
3821     for two versions of the code. When called during remark, it will
3822     pick up from where the task left off during the concurrent marking
3823     phase. Interestingly, tasks are also claimable during evacuation
3824     pauses too, since do_marking_step() ensures that it aborts before
3825     it needs to yield.
3826 
3827     The data structures that is uses to do marking work are the
3828     following:
3829 
3830       (1) Marking Bitmap. If there are gray objects that appear only
3831       on the bitmap (this happens either when dealing with an overflow
3832       or when the initial marking phase has simply marked the roots
3833       and didn't push them on the stack), then tasks claim heap
3834       regions whose bitmap they then scan to find gray objects. A
3835       global finger indicates where the end of the last claimed region
3836       is. A local finger indicates how far into the region a task has
3837       scanned. The two fingers are used to determine how to gray an
3838       object (i.e. whether simply marking it is OK, as it will be
3839       visited by a task in the future, or whether it needs to be also
3840       pushed on a stack).
3841 
3842       (2) Local Queue. The local queue of the task which is accessed
3843       reasonably efficiently by the task. Other tasks can steal from
3844       it when they run out of work. Throughout the marking phase, a
3845       task attempts to keep its local queue short but not totally
3846       empty, so that entries are available for stealing by other
3847       tasks. Only when there is no more work, a task will totally
3848       drain its local queue.
3849 
3850       (3) Global Mark Stack. This handles local queue overflow. During
3851       marking only sets of entries are moved between it and the local
3852       queues, as access to it requires a mutex and more fine-grain
3853       interaction with it which might cause contention. If it
3854       overflows, then the marking phase should restart and iterate
3855       over the bitmap to identify gray objects. Throughout the marking
3856       phase, tasks attempt to keep the global mark stack at a small
3857       length but not totally empty, so that entries are available for
3858       popping by other tasks. Only when there is no more work, tasks
3859       will totally drain the global mark stack.
3860 
3861       (4) SATB Buffer Queue. This is where completed SATB buffers are
3862       made available. Buffers are regularly removed from this queue
3863       and scanned for roots, so that the queue doesn't get too
3864       long. During remark, all completed buffers are processed, as
3865       well as the filled in parts of any uncompleted buffers.
3866 
3867     The do_marking_step() method tries to abort when the time target
3868     has been reached. There are a few other cases when the
3869     do_marking_step() method also aborts:
3870 
3871       (1) When the marking phase has been aborted (after a Full GC).
3872 
3873       (2) When a global overflow (on the global stack) has been
3874       triggered. Before the task aborts, it will actually sync up with
3875       the other tasks to ensure that all the marking data structures
3876       (local queues, stacks, fingers etc.)  are re-initialised so that
3877       when do_marking_step() completes, the marking phase can
3878       immediately restart.
3879 
3880       (3) When enough completed SATB buffers are available. The
3881       do_marking_step() method only tries to drain SATB buffers right
3882       at the beginning. So, if enough buffers are available, the
3883       marking step aborts and the SATB buffers are processed at
3884       the beginning of the next invocation.
3885 
3886       (4) To yield. when we have to yield then we abort and yield
3887       right at the end of do_marking_step(). This saves us from a lot
3888       of hassle as, by yielding we might allow a Full GC. If this
3889       happens then objects will be compacted underneath our feet, the
3890       heap might shrink, etc. We save checking for this by just
3891       aborting and doing the yield right at the end.
3892 
3893     From the above it follows that the do_marking_step() method should
3894     be called in a loop (or, otherwise, regularly) until it completes.
3895 
3896     If a marking step completes without its has_aborted() flag being
3897     true, it means it has completed the current marking phase (and
3898     also all other marking tasks have done so and have all synced up).
3899 
3900     A method called regular_clock_call() is invoked "regularly" (in
3901     sub ms intervals) throughout marking. It is this clock method that
3902     checks all the abort conditions which were mentioned above and
3903     decides when the task should abort. A work-based scheme is used to
3904     trigger this clock method: when the number of object words the
3905     marking phase has scanned or the number of references the marking
3906     phase has visited reach a given limit. Additional invocations to
3907     the method clock have been planted in a few other strategic places
3908     too. The initial reason for the clock method was to avoid calling
3909     vtime too regularly, as it is quite expensive. So, once it was in
3910     place, it was natural to piggy-back all the other conditions on it
3911     too and not constantly check them throughout the code.
3912 
3913  *****************************************************************************/
3914 
3915 void CMTask::do_marking_step(double time_target_ms,
3916                              bool do_stealing,
3917                              bool do_termination) {
3918   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3919   assert(concurrent() == _cm->concurrent(), "they should be the same");
3920 
3921   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3922   assert(_task_queues != NULL, "invariant");
3923   assert(_task_queue != NULL, "invariant");
3924   assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
3925 
3926   assert(!_claimed,
3927          "only one thread should claim this task at any one time");
3928 
3929   // OK, this doesn't safeguard again all possible scenarios, as it is
3930   // possible for two threads to set the _claimed flag at the same
3931   // time. But it is only for debugging purposes anyway and it will
3932   // catch most problems.
3933   _claimed = true;
3934 
3935   _start_time_ms = os::elapsedVTime() * 1000.0;
3936   statsOnly( _interval_start_time_ms = _start_time_ms );
3937 
3938   double diff_prediction_ms =
3939     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
3940   _time_target_ms = time_target_ms - diff_prediction_ms;
3941 
3942   // set up the variables that are used in the work-based scheme to
3943   // call the regular clock method
3944   _words_scanned = 0;
3945   _refs_reached  = 0;
3946   recalculate_limits();
3947 
3948   // clear all flags
3949   clear_has_aborted();
3950   _has_timed_out = false;
3951   _draining_satb_buffers = false;
3952 
3953   ++_calls;
3954 
3955   if (_cm->verbose_low()) {
3956     gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
3957                            "target = %1.2lfms >>>>>>>>>>",
3958                            _task_id, _calls, _time_target_ms);
3959   }
3960 
3961   // Set up the bitmap and oop closures. Anything that uses them is
3962   // eventually called from this method, so it is OK to allocate these
3963   // statically.
3964   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3965   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3966   set_cm_oop_closure(&cm_oop_closure);
3967 
3968   if (_cm->has_overflown()) {
3969     // This can happen if the mark stack overflows during a GC pause
3970     // and this task, after a yield point, restarts. We have to abort
3971     // as we need to get into the overflow protocol which happens
3972     // right at the end of this task.
3973     set_has_aborted();
3974   }
3975 
3976   // First drain any available SATB buffers. After this, we will not
3977   // look at SATB buffers before the next invocation of this method.
3978   // If enough completed SATB buffers are queued up, the regular clock
3979   // will abort this task so that it restarts.
3980   drain_satb_buffers();
3981   // ...then partially drain the local queue and the global stack
3982   drain_local_queue(true);
3983   drain_global_stack(true);
3984 
3985   do {
3986     if (!has_aborted() && _curr_region != NULL) {
3987       // This means that we're already holding on to a region.
3988       assert(_finger != NULL, "if region is not NULL, then the finger "
3989              "should not be NULL either");
3990 
3991       // We might have restarted this task after an evacuation pause
3992       // which might have evacuated the region we're holding on to
3993       // underneath our feet. Let's read its limit again to make sure
3994       // that we do not iterate over a region of the heap that
3995       // contains garbage (update_region_limit() will also move
3996       // _finger to the start of the region if it is found empty).
3997       update_region_limit();
3998       // We will start from _finger not from the start of the region,
3999       // as we might be restarting this task after aborting half-way
4000       // through scanning this region. In this case, _finger points to
4001       // the address where we last found a marked object. If this is a
4002       // fresh region, _finger points to start().
4003       MemRegion mr = MemRegion(_finger, _region_limit);
4004 
4005       if (_cm->verbose_low()) {
4006         gclog_or_tty->print_cr("[%d] we're scanning part "
4007                                "["PTR_FORMAT", "PTR_FORMAT") "
4008                                "of region "PTR_FORMAT,
4009                                _task_id, _finger, _region_limit, _curr_region);
4010       }
4011 
4012       // Let's iterate over the bitmap of the part of the
4013       // region that is left.
4014       if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4015         // We successfully completed iterating over the region. Now,
4016         // let's give up the region.
4017         giveup_current_region();
4018         regular_clock_call();
4019       } else {
4020         assert(has_aborted(), "currently the only way to do so");
4021         // The only way to abort the bitmap iteration is to return
4022         // false from the do_bit() method. However, inside the
4023         // do_bit() method we move the _finger to point to the
4024         // object currently being looked at. So, if we bail out, we
4025         // have definitely set _finger to something non-null.
4026         assert(_finger != NULL, "invariant");
4027 
4028         // Region iteration was actually aborted. So now _finger
4029         // points to the address of the object we last scanned. If we
4030         // leave it there, when we restart this task, we will rescan
4031         // the object. It is easy to avoid this. We move the finger by
4032         // enough to point to the next possible object header (the
4033         // bitmap knows by how much we need to move it as it knows its
4034         // granularity).
4035         assert(_finger < _region_limit, "invariant");
4036         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
4037         // Check if bitmap iteration was aborted while scanning the last object
4038         if (new_finger >= _region_limit) {
4039           giveup_current_region();
4040         } else {
4041           move_finger_to(new_finger);
4042         }
4043       }
4044     }
4045     // At this point we have either completed iterating over the
4046     // region we were holding on to, or we have aborted.
4047 
4048     // We then partially drain the local queue and the global stack.
4049     // (Do we really need this?)
4050     drain_local_queue(true);
4051     drain_global_stack(true);
4052 
4053     // Read the note on the claim_region() method on why it might
4054     // return NULL with potentially more regions available for
4055     // claiming and why we have to check out_of_regions() to determine
4056     // whether we're done or not.
4057     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4058       // We are going to try to claim a new region. We should have
4059       // given up on the previous one.
4060       // Separated the asserts so that we know which one fires.
4061       assert(_curr_region  == NULL, "invariant");
4062       assert(_finger       == NULL, "invariant");
4063       assert(_region_limit == NULL, "invariant");
4064       if (_cm->verbose_low()) {
4065         gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4066       }
4067       HeapRegion* claimed_region = _cm->claim_region(_task_id);
4068       if (claimed_region != NULL) {
4069         // Yes, we managed to claim one
4070         statsOnly( ++_regions_claimed );
4071 
4072         if (_cm->verbose_low()) {
4073           gclog_or_tty->print_cr("[%d] we successfully claimed "
4074                                  "region "PTR_FORMAT,
4075                                  _task_id, claimed_region);
4076         }
4077 
4078         setup_for_region(claimed_region);
4079         assert(_curr_region == claimed_region, "invariant");
4080       }
4081       // It is important to call the regular clock here. It might take
4082       // a while to claim a region if, for example, we hit a large
4083       // block of empty regions. So we need to call the regular clock
4084       // method once round the loop to make sure it's called
4085       // frequently enough.
4086       regular_clock_call();
4087     }
4088 
4089     if (!has_aborted() && _curr_region == NULL) {
4090       assert(_cm->out_of_regions(),
4091              "at this point we should be out of regions");
4092     }
4093   } while ( _curr_region != NULL && !has_aborted());
4094 
4095   if (!has_aborted()) {
4096     // We cannot check whether the global stack is empty, since other
4097     // tasks might be pushing objects to it concurrently.
4098     assert(_cm->out_of_regions(),
4099            "at this point we should be out of regions");
4100 
4101     if (_cm->verbose_low()) {
4102       gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4103     }
4104 
4105     // Try to reduce the number of available SATB buffers so that
4106     // remark has less work to do.
4107     drain_satb_buffers();
4108   }
4109 
4110   // Since we've done everything else, we can now totally drain the
4111   // local queue and global stack.
4112   drain_local_queue(false);
4113   drain_global_stack(false);
4114 
4115   // Attempt at work stealing from other task's queues.
4116   if (do_stealing && !has_aborted()) {
4117     // We have not aborted. This means that we have finished all that
4118     // we could. Let's try to do some stealing...
4119 
4120     // We cannot check whether the global stack is empty, since other
4121     // tasks might be pushing objects to it concurrently.
4122     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4123            "only way to reach here");
4124 
4125     if (_cm->verbose_low()) {
4126       gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4127     }
4128 
4129     while (!has_aborted()) {
4130       oop obj;
4131       statsOnly( ++_steal_attempts );
4132 
4133       if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4134         if (_cm->verbose_medium()) {
4135           gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
4136                                  _task_id, (void*) obj);
4137         }
4138 
4139         statsOnly( ++_steals );
4140 
4141         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4142                "any stolen object should be marked");
4143         scan_object(obj);
4144 
4145         // And since we're towards the end, let's totally drain the
4146         // local queue and global stack.
4147         drain_local_queue(false);
4148         drain_global_stack(false);
4149       } else {
4150         break;
4151       }
4152     }
4153   }
4154 
4155   // If we are about to wrap up and go into termination, check if we
4156   // should raise the overflow flag.
4157   if (do_termination && !has_aborted()) {
4158     if (_cm->force_overflow()->should_force()) {
4159       _cm->set_has_overflown();
4160       regular_clock_call();
4161     }
4162   }
4163 
4164   // We still haven't aborted. Now, let's try to get into the
4165   // termination protocol.
4166   if (do_termination && !has_aborted()) {
4167     // We cannot check whether the global stack is empty, since other
4168     // tasks might be concurrently pushing objects on it.
4169     // Separated the asserts so that we know which one fires.
4170     assert(_cm->out_of_regions(), "only way to reach here");
4171     assert(_task_queue->size() == 0, "only way to reach here");
4172 
4173     if (_cm->verbose_low()) {
4174       gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4175     }
4176 
4177     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4178     // The CMTask class also extends the TerminatorTerminator class,
4179     // hence its should_exit_termination() method will also decide
4180     // whether to exit the termination protocol or not.
4181     bool finished = _cm->terminator()->offer_termination(this);
4182     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4183     _termination_time_ms +=
4184       termination_end_time_ms - _termination_start_time_ms;
4185 
4186     if (finished) {
4187       // We're all done.
4188 
4189       if (_task_id == 0) {
4190         // let's allow task 0 to do this
4191         if (concurrent()) {
4192           assert(_cm->concurrent_marking_in_progress(), "invariant");
4193           // we need to set this to false before the next
4194           // safepoint. This way we ensure that the marking phase
4195           // doesn't observe any more heap expansions.
4196           _cm->clear_concurrent_marking_in_progress();
4197         }
4198       }
4199 
4200       // We can now guarantee that the global stack is empty, since
4201       // all other tasks have finished. We separated the guarantees so
4202       // that, if a condition is false, we can immediately find out
4203       // which one.
4204       guarantee(_cm->out_of_regions(), "only way to reach here");
4205       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4206       guarantee(_task_queue->size() == 0, "only way to reach here");
4207       guarantee(!_cm->has_overflown(), "only way to reach here");
4208       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4209 
4210       if (_cm->verbose_low()) {
4211         gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4212       }
4213     } else {
4214       // Apparently there's more work to do. Let's abort this task. It
4215       // will restart it and we can hopefully find more things to do.
4216 
4217       if (_cm->verbose_low()) {
4218         gclog_or_tty->print_cr("[%d] apparently there is more work to do",
4219                                _task_id);
4220       }
4221 
4222       set_has_aborted();
4223       statsOnly( ++_aborted_termination );
4224     }
4225   }
4226 
4227   // Mainly for debugging purposes to make sure that a pointer to the
4228   // closure which was statically allocated in this frame doesn't
4229   // escape it by accident.
4230   set_cm_oop_closure(NULL);
4231   double end_time_ms = os::elapsedVTime() * 1000.0;
4232   double elapsed_time_ms = end_time_ms - _start_time_ms;
4233   // Update the step history.
4234   _step_times_ms.add(elapsed_time_ms);
4235 
4236   if (has_aborted()) {
4237     // The task was aborted for some reason.
4238 
4239     statsOnly( ++_aborted );
4240 
4241     if (_has_timed_out) {
4242       double diff_ms = elapsed_time_ms - _time_target_ms;
4243       // Keep statistics of how well we did with respect to hitting
4244       // our target only if we actually timed out (if we aborted for
4245       // other reasons, then the results might get skewed).
4246       _marking_step_diffs_ms.add(diff_ms);
4247     }
4248 
4249     if (_cm->has_overflown()) {
4250       // This is the interesting one. We aborted because a global
4251       // overflow was raised. This means we have to restart the
4252       // marking phase and start iterating over regions. However, in
4253       // order to do this we have to make sure that all tasks stop
4254       // what they are doing and re-initialise in a safe manner. We
4255       // will achieve this with the use of two barrier sync points.
4256 
4257       if (_cm->verbose_low()) {
4258         gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4259       }
4260 
4261       _cm->enter_first_sync_barrier(_task_id);
4262       // When we exit this sync barrier we know that all tasks have
4263       // stopped doing marking work. So, it's now safe to
4264       // re-initialise our data structures. At the end of this method,
4265       // task 0 will clear the global data structures.
4266 
4267       statsOnly( ++_aborted_overflow );
4268 
4269       // We clear the local state of this task...
4270       clear_region_fields();
4271 
4272       // ...and enter the second barrier.
4273       _cm->enter_second_sync_barrier(_task_id);
4274       // At this point everything has bee re-initialised and we're
4275       // ready to restart.
4276     }
4277 
4278     if (_cm->verbose_low()) {
4279       gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4280                              "elapsed = %1.2lfms <<<<<<<<<<",
4281                              _task_id, _time_target_ms, elapsed_time_ms);
4282       if (_cm->has_aborted()) {
4283         gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
4284                                _task_id);
4285       }
4286     }
4287   } else {
4288     if (_cm->verbose_low()) {
4289       gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4290                              "elapsed = %1.2lfms <<<<<<<<<<",
4291                              _task_id, _time_target_ms, elapsed_time_ms);
4292     }
4293   }
4294 
4295   _claimed = false;
4296 }
4297 
4298 CMTask::CMTask(int task_id,
4299                ConcurrentMark* cm,
4300                size_t* marked_bytes,
4301                BitMap* card_bm,
4302                CMTaskQueue* task_queue,
4303                CMTaskQueueSet* task_queues)
4304   : _g1h(G1CollectedHeap::heap()),
4305     _task_id(task_id), _cm(cm),
4306     _claimed(false),
4307     _nextMarkBitMap(NULL), _hash_seed(17),
4308     _task_queue(task_queue),
4309     _task_queues(task_queues),
4310     _cm_oop_closure(NULL),
4311     _marked_bytes_array(marked_bytes),
4312     _card_bm(card_bm) {
4313   guarantee(task_queue != NULL, "invariant");
4314   guarantee(task_queues != NULL, "invariant");
4315 
4316   statsOnly( _clock_due_to_scanning = 0;
4317              _clock_due_to_marking  = 0 );
4318 
4319   _marking_step_diffs_ms.add(0.5);
4320 }
4321 
4322 // These are formatting macros that are used below to ensure
4323 // consistent formatting. The *_H_* versions are used to format the
4324 // header for a particular value and they should be kept consistent
4325 // with the corresponding macro. Also note that most of the macros add
4326 // the necessary white space (as a prefix) which makes them a bit
4327 // easier to compose.
4328 
4329 // All the output lines are prefixed with this string to be able to
4330 // identify them easily in a large log file.
4331 #define G1PPRL_LINE_PREFIX            "###"
4332 
4333 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4334 #ifdef _LP64
4335 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4336 #else // _LP64
4337 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4338 #endif // _LP64
4339 
4340 // For per-region info
4341 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4342 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4343 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4344 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4345 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4346 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4347 
4348 // For summary info
4349 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4350 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4351 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4352 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4353 
4354 G1PrintRegionLivenessInfoClosure::
4355 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4356   : _out(out),
4357     _total_used_bytes(0), _total_capacity_bytes(0),
4358     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4359     _hum_used_bytes(0), _hum_capacity_bytes(0),
4360     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
4361   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4362   MemRegion g1_committed = g1h->g1_committed();
4363   MemRegion g1_reserved = g1h->g1_reserved();
4364   double now = os::elapsedTime();
4365 
4366   // Print the header of the output.
4367   _out->cr();
4368   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4369   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4370                  G1PPRL_SUM_ADDR_FORMAT("committed")
4371                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4372                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4373                  g1_committed.start(), g1_committed.end(),
4374                  g1_reserved.start(), g1_reserved.end(),
4375                  HeapRegion::GrainBytes);
4376   _out->print_cr(G1PPRL_LINE_PREFIX);
4377   _out->print_cr(G1PPRL_LINE_PREFIX
4378                  G1PPRL_TYPE_H_FORMAT
4379                  G1PPRL_ADDR_BASE_H_FORMAT
4380                  G1PPRL_BYTE_H_FORMAT
4381                  G1PPRL_BYTE_H_FORMAT
4382                  G1PPRL_BYTE_H_FORMAT
4383                  G1PPRL_DOUBLE_H_FORMAT,
4384                  "type", "address-range",
4385                  "used", "prev-live", "next-live", "gc-eff");
4386   _out->print_cr(G1PPRL_LINE_PREFIX
4387                  G1PPRL_TYPE_H_FORMAT
4388                  G1PPRL_ADDR_BASE_H_FORMAT
4389                  G1PPRL_BYTE_H_FORMAT
4390                  G1PPRL_BYTE_H_FORMAT
4391                  G1PPRL_BYTE_H_FORMAT
4392                  G1PPRL_DOUBLE_H_FORMAT,
4393                  "", "",
4394                  "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4395 }
4396 
4397 // It takes as a parameter a reference to one of the _hum_* fields, it
4398 // deduces the corresponding value for a region in a humongous region
4399 // series (either the region size, or what's left if the _hum_* field
4400 // is < the region size), and updates the _hum_* field accordingly.
4401 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4402   size_t bytes = 0;
4403   // The > 0 check is to deal with the prev and next live bytes which
4404   // could be 0.
4405   if (*hum_bytes > 0) {
4406     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4407     *hum_bytes -= bytes;
4408   }
4409   return bytes;
4410 }
4411 
4412 // It deduces the values for a region in a humongous region series
4413 // from the _hum_* fields and updates those accordingly. It assumes
4414 // that that _hum_* fields have already been set up from the "starts
4415 // humongous" region and we visit the regions in address order.
4416 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4417                                                      size_t* capacity_bytes,
4418                                                      size_t* prev_live_bytes,
4419                                                      size_t* next_live_bytes) {
4420   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4421   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4422   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4423   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4424   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4425 }
4426 
4427 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4428   const char* type = "";
4429   HeapWord* bottom       = r->bottom();
4430   HeapWord* end          = r->end();
4431   size_t capacity_bytes  = r->capacity();
4432   size_t used_bytes      = r->used();
4433   size_t prev_live_bytes = r->live_bytes();
4434   size_t next_live_bytes = r->next_live_bytes();
4435   double gc_eff          = r->gc_efficiency();
4436   if (r->used() == 0) {
4437     type = "FREE";
4438   } else if (r->is_survivor()) {
4439     type = "SURV";
4440   } else if (r->is_young()) {
4441     type = "EDEN";
4442   } else if (r->startsHumongous()) {
4443     type = "HUMS";
4444 
4445     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4446            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4447            "they should have been zeroed after the last time we used them");
4448     // Set up the _hum_* fields.
4449     _hum_capacity_bytes  = capacity_bytes;
4450     _hum_used_bytes      = used_bytes;
4451     _hum_prev_live_bytes = prev_live_bytes;
4452     _hum_next_live_bytes = next_live_bytes;
4453     get_hum_bytes(&used_bytes, &capacity_bytes,
4454                   &prev_live_bytes, &next_live_bytes);
4455     end = bottom + HeapRegion::GrainWords;
4456   } else if (r->continuesHumongous()) {
4457     type = "HUMC";
4458     get_hum_bytes(&used_bytes, &capacity_bytes,
4459                   &prev_live_bytes, &next_live_bytes);
4460     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4461   } else {
4462     type = "OLD";
4463   }
4464 
4465   _total_used_bytes      += used_bytes;
4466   _total_capacity_bytes  += capacity_bytes;
4467   _total_prev_live_bytes += prev_live_bytes;
4468   _total_next_live_bytes += next_live_bytes;
4469 
4470   // Print a line for this particular region.
4471   _out->print_cr(G1PPRL_LINE_PREFIX
4472                  G1PPRL_TYPE_FORMAT
4473                  G1PPRL_ADDR_BASE_FORMAT
4474                  G1PPRL_BYTE_FORMAT
4475                  G1PPRL_BYTE_FORMAT
4476                  G1PPRL_BYTE_FORMAT
4477                  G1PPRL_DOUBLE_FORMAT,
4478                  type, bottom, end,
4479                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
4480 
4481   return false;
4482 }
4483 
4484 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4485   // Print the footer of the output.
4486   _out->print_cr(G1PPRL_LINE_PREFIX);
4487   _out->print_cr(G1PPRL_LINE_PREFIX
4488                  " SUMMARY"
4489                  G1PPRL_SUM_MB_FORMAT("capacity")
4490                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4491                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4492                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
4493                  bytes_to_mb(_total_capacity_bytes),
4494                  bytes_to_mb(_total_used_bytes),
4495                  perc(_total_used_bytes, _total_capacity_bytes),
4496                  bytes_to_mb(_total_prev_live_bytes),
4497                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4498                  bytes_to_mb(_total_next_live_bytes),
4499                  perc(_total_next_live_bytes, _total_capacity_bytes));
4500   _out->cr();
4501 }