1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegionSets.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  35 
  36 // Closure used by CM during concurrent reference discovery
  37 // and reference processing (during remarking) to determine
  38 // if a particular object is alive. It is primarily used
  39 // to determine if referents of discovered reference objects
  40 // are alive. An instance is also embedded into the
  41 // reference processor as the _is_alive_non_header field
  42 class G1CMIsAliveClosure: public BoolObjectClosure {
  43   G1CollectedHeap* _g1;
  44  public:
  45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  46 
  47   void do_object(oop obj) {
  48     ShouldNotCallThis();
  49   }
  50   bool do_object_b(oop obj);
  51 };
  52 
  53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  54 // class, with one bit per (1<<_shifter) HeapWords.
  55 
  56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  57  protected:
  58   HeapWord* _bmStartWord;      // base address of range covered by map
  59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  60   const int _shifter;          // map to char or bit
  61   VirtualSpace _virtual_space; // underlying the bit map
  62   BitMap    _bm;               // the bit map itself
  63 
  64  public:
  65   // constructor
  66   CMBitMapRO(ReservedSpace rs, int shifter);
  67 
  68   enum { do_yield = true };
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   size_t    sizeInWords() const { return _bmWordSize;  }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86   inline bool iterate(BitMapClosure* cl);
  87 
  88   // Return the address corresponding to the next marked bit at or after
  89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  92                                      HeapWord* limit = NULL) const;
  93   // Return the address corresponding to the next unmarked bit at or after
  94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  97                                        HeapWord* limit = NULL) const;
  98 
  99   // conversion utilities
 100   // XXX Fix these so that offsets are size_t's...
 101   HeapWord* offsetToHeapWord(size_t offset) const {
 102     return _bmStartWord + (offset << _shifter);
 103   }
 104   size_t heapWordToOffset(HeapWord* addr) const {
 105     return pointer_delta(addr, _bmStartWord) >> _shifter;
 106   }
 107   int heapWordDiffToOffsetDiff(size_t diff) const;
 108   HeapWord* nextWord(HeapWord* addr) {
 109     return offsetToHeapWord(heapWordToOffset(addr) + 1);
 110   }
 111 
 112   // debugging
 113   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 114 };
 115 
 116 class CMBitMap : public CMBitMapRO {
 117 
 118  public:
 119   // constructor
 120   CMBitMap(ReservedSpace rs, int shifter) :
 121     CMBitMapRO(rs, shifter) {}
 122 
 123   // write marks
 124   void mark(HeapWord* addr) {
 125     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 126            "outside underlying space?");
 127     _bm.set_bit(heapWordToOffset(addr));
 128   }
 129   void clear(HeapWord* addr) {
 130     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 131            "outside underlying space?");
 132     _bm.clear_bit(heapWordToOffset(addr));
 133   }
 134   bool parMark(HeapWord* addr) {
 135     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 136            "outside underlying space?");
 137     return _bm.par_set_bit(heapWordToOffset(addr));
 138   }
 139   bool parClear(HeapWord* addr) {
 140     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 141            "outside underlying space?");
 142     return _bm.par_clear_bit(heapWordToOffset(addr));
 143   }
 144   void markRange(MemRegion mr);
 145   void clearAll();
 146   void clearRange(MemRegion mr);
 147 
 148   // Starting at the bit corresponding to "addr" (inclusive), find the next
 149   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 150   // the end of this run (stopping at "end_addr").  Return the MemRegion
 151   // covering from the start of the region corresponding to the first bit
 152   // of the run to the end of the region corresponding to the last bit of
 153   // the run.  If there is no "1" bit at or after "addr", return an empty
 154   // MemRegion.
 155   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 156 };
 157 
 158 // Represents a marking stack used by the CM collector.
 159 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 160 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 161   ConcurrentMark* _cm;
 162   oop*   _base;        // bottom of stack
 163   jint   _index;       // one more than last occupied index
 164   jint   _capacity;    // max #elements
 165   jint   _saved_index; // value of _index saved at start of GC
 166   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
 167   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 168 
 169   bool   _overflow;
 170   DEBUG_ONLY(bool _drain_in_progress;)
 171   DEBUG_ONLY(bool _drain_in_progress_yields;)
 172 
 173  public:
 174   CMMarkStack(ConcurrentMark* cm);
 175   ~CMMarkStack();
 176 
 177   void allocate(size_t size);
 178 
 179   oop pop() {
 180     if (!isEmpty()) {
 181       return _base[--_index] ;
 182     }
 183     return NULL;
 184   }
 185 
 186   // If overflow happens, don't do the push, and record the overflow.
 187   // *Requires* that "ptr" is already marked.
 188   void push(oop ptr) {
 189     if (isFull()) {
 190       // Record overflow.
 191       _overflow = true;
 192       return;
 193     } else {
 194       _base[_index++] = ptr;
 195       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 196     }
 197   }
 198   // Non-block impl.  Note: concurrency is allowed only with other
 199   // "par_push" operations, not with "pop" or "drain".  We would need
 200   // parallel versions of them if such concurrency was desired.
 201   void par_push(oop ptr);
 202 
 203   // Pushes the first "n" elements of "ptr_arr" on the stack.
 204   // Non-block impl.  Note: concurrency is allowed only with other
 205   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 206   void par_adjoin_arr(oop* ptr_arr, int n);
 207 
 208   // Pushes the first "n" elements of "ptr_arr" on the stack.
 209   // Locking impl: concurrency is allowed only with
 210   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 211   // locking strategy.
 212   void par_push_arr(oop* ptr_arr, int n);
 213 
 214   // If returns false, the array was empty.  Otherwise, removes up to "max"
 215   // elements from the stack, and transfers them to "ptr_arr" in an
 216   // unspecified order.  The actual number transferred is given in "n" ("n
 217   // == 0" is deliberately redundant with the return value.)  Locking impl:
 218   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 219   // operations, which use the same locking strategy.
 220   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 221 
 222   // Drain the mark stack, applying the given closure to all fields of
 223   // objects on the stack.  (That is, continue until the stack is empty,
 224   // even if closure applications add entries to the stack.)  The "bm"
 225   // argument, if non-null, may be used to verify that only marked objects
 226   // are on the mark stack.  If "yield_after" is "true", then the
 227   // concurrent marker performing the drain offers to yield after
 228   // processing each object.  If a yield occurs, stops the drain operation
 229   // and returns false.  Otherwise, returns true.
 230   template<class OopClosureClass>
 231   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 232 
 233   bool isEmpty()    { return _index == 0; }
 234   bool isFull()     { return _index == _capacity; }
 235   int maxElems()    { return _capacity; }
 236 
 237   bool overflow() { return _overflow; }
 238   void clear_overflow() { _overflow = false; }
 239 
 240   int  size() { return _index; }
 241 
 242   void setEmpty()   { _index = 0; clear_overflow(); }
 243 
 244   // Record the current index.
 245   void note_start_of_gc();
 246 
 247   // Make sure that we have not added any entries to the stack during GC.
 248   void note_end_of_gc();
 249 
 250   // iterate over the oops in the mark stack, up to the bound recorded via
 251   // the call above.
 252   void oops_do(OopClosure* f);
 253 };
 254 
 255 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 256 private:
 257 #ifndef PRODUCT
 258   uintx _num_remaining;
 259   bool _force;
 260 #endif // !defined(PRODUCT)
 261 
 262 public:
 263   void init() PRODUCT_RETURN;
 264   void update() PRODUCT_RETURN;
 265   bool should_force() PRODUCT_RETURN_( return false; );
 266 };
 267 
 268 // this will enable a variety of different statistics per GC task
 269 #define _MARKING_STATS_       0
 270 // this will enable the higher verbose levels
 271 #define _MARKING_VERBOSE_     0
 272 
 273 #if _MARKING_STATS_
 274 #define statsOnly(statement)  \
 275 do {                          \
 276   statement ;                 \
 277 } while (0)
 278 #else // _MARKING_STATS_
 279 #define statsOnly(statement)  \
 280 do {                          \
 281 } while (0)
 282 #endif // _MARKING_STATS_
 283 
 284 typedef enum {
 285   no_verbose  = 0,   // verbose turned off
 286   stats_verbose,     // only prints stats at the end of marking
 287   low_verbose,       // low verbose, mostly per region and per major event
 288   medium_verbose,    // a bit more detailed than low
 289   high_verbose       // per object verbose
 290 } CMVerboseLevel;
 291 
 292 class YoungList;
 293 
 294 // Root Regions are regions that are not empty at the beginning of a
 295 // marking cycle and which we might collect during an evacuation pause
 296 // while the cycle is active. Given that, during evacuation pauses, we
 297 // do not copy objects that are explicitly marked, what we have to do
 298 // for the root regions is to scan them and mark all objects reachable
 299 // from them. According to the SATB assumptions, we only need to visit
 300 // each object once during marking. So, as long as we finish this scan
 301 // before the next evacuation pause, we can copy the objects from the
 302 // root regions without having to mark them or do anything else to them.
 303 //
 304 // Currently, we only support root region scanning once (at the start
 305 // of the marking cycle) and the root regions are all the survivor
 306 // regions populated during the initial-mark pause.
 307 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 308 private:
 309   YoungList*           _young_list;
 310   ConcurrentMark*      _cm;
 311 
 312   volatile bool        _scan_in_progress;
 313   volatile bool        _should_abort;
 314   HeapRegion* volatile _next_survivor;
 315 
 316 public:
 317   CMRootRegions();
 318   // We actually do most of the initialization in this method.
 319   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 320 
 321   // Reset the claiming / scanning of the root regions.
 322   void prepare_for_scan();
 323 
 324   // Forces get_next() to return NULL so that the iteration aborts early.
 325   void abort() { _should_abort = true; }
 326 
 327   // Return true if the CM thread are actively scanning root regions,
 328   // false otherwise.
 329   bool scan_in_progress() { return _scan_in_progress; }
 330 
 331   // Claim the next root region to scan atomically, or return NULL if
 332   // all have been claimed.
 333   HeapRegion* claim_next();
 334 
 335   // Flag that we're done with root region scanning and notify anyone
 336   // who's waiting on it. If aborted is false, assume that all regions
 337   // have been claimed.
 338   void scan_finished();
 339 
 340   // If CM threads are still scanning root regions, wait until they
 341   // are done. Return true if we had to wait, false otherwise.
 342   bool wait_until_scan_finished();
 343 };
 344 
 345 class ConcurrentMarkThread;
 346 
 347 class ConcurrentMark: public CHeapObj<mtGC> {
 348   friend class ConcurrentMarkThread;
 349   friend class CMTask;
 350   friend class CMBitMapClosure;
 351   friend class CMGlobalObjectClosure;
 352   friend class CMRemarkTask;
 353   friend class CMConcurrentMarkingTask;
 354   friend class G1ParNoteEndTask;
 355   friend class CalcLiveObjectsClosure;
 356   friend class G1CMRefProcTaskProxy;
 357   friend class G1CMRefProcTaskExecutor;
 358   friend class G1CMParKeepAliveAndDrainClosure;
 359   friend class G1CMParDrainMarkingStackClosure;
 360 
 361 protected:
 362   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 363   G1CollectedHeap*      _g1h;        // the heap.
 364   uint                  _parallel_marking_threads; // the number of marking
 365                                                    // threads we're use
 366   uint                  _max_parallel_marking_threads; // max number of marking
 367                                                    // threads we'll ever use
 368   double                _sleep_factor; // how much we have to sleep, with
 369                                        // respect to the work we just did, to
 370                                        // meet the marking overhead goal
 371   double                _marking_task_overhead; // marking target overhead for
 372                                                 // a single task
 373 
 374   // same as the two above, but for the cleanup task
 375   double                _cleanup_sleep_factor;
 376   double                _cleanup_task_overhead;
 377 
 378   FreeRegionList        _cleanup_list;
 379 
 380   // Concurrent marking support structures
 381   CMBitMap                _markBitMap1;
 382   CMBitMap                _markBitMap2;
 383   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 384   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 385 
 386   BitMap                  _region_bm;
 387   BitMap                  _card_bm;
 388 
 389   VirtualSpace            _virtual_space; // Backing store for worker liveness
 390                                           // counting structures
 391 
 392   // Heap bounds
 393   HeapWord*               _heap_start;
 394   HeapWord*               _heap_end;
 395 
 396   // Root region tracking and claiming.
 397   CMRootRegions           _root_regions;
 398 
 399   // For gray objects
 400   CMMarkStack             _markStack; // Grey objects behind global finger.
 401   HeapWord* volatile      _finger;  // the global finger, region aligned,
 402                                     // always points to the end of the
 403                                     // last claimed region
 404 
 405   // marking tasks
 406   uint                    _max_task_num; // maximum task number
 407   uint                    _active_tasks; // task num currently active
 408   CMTask**                _tasks;        // task queue array (max_task_num len)
 409   CMTaskQueueSet*         _task_queues;  // task queue set
 410   ParallelTaskTerminator  _terminator;   // for termination
 411 
 412   // Two sync barriers that are used to synchronise tasks when an
 413   // overflow occurs. The algorithm is the following. All tasks enter
 414   // the first one to ensure that they have all stopped manipulating
 415   // the global data structures. After they exit it, they re-initialise
 416   // their data structures and task 0 re-initialises the global data
 417   // structures. Then, they enter the second sync barrier. This
 418   // ensure, that no task starts doing work before all data
 419   // structures (local and global) have been re-initialised. When they
 420   // exit it, they are free to start working again.
 421   WorkGangBarrierSync     _first_overflow_barrier_sync;
 422   WorkGangBarrierSync     _second_overflow_barrier_sync;
 423 
 424   // this is set by any task, when an overflow on the global data
 425   // structures is detected.
 426   volatile bool           _has_overflown;
 427   // true: marking is concurrent, false: we're in remark
 428   volatile bool           _concurrent;
 429   // set at the end of a Full GC so that marking aborts
 430   volatile bool           _has_aborted;
 431 
 432   // used when remark aborts due to an overflow to indicate that
 433   // another concurrent marking phase should start
 434   volatile bool           _restart_for_overflow;
 435 
 436   // This is true from the very start of concurrent marking until the
 437   // point when all the tasks complete their work. It is really used
 438   // to determine the points between the end of concurrent marking and
 439   // time of remark.
 440   volatile bool           _concurrent_marking_in_progress;
 441 
 442   // verbose level
 443   CMVerboseLevel          _verbose_level;
 444 
 445   // All of these times are in ms.
 446   NumberSeq _init_times;
 447   NumberSeq _remark_times;
 448   NumberSeq   _remark_mark_times;
 449   NumberSeq   _remark_weak_ref_times;
 450   NumberSeq _cleanup_times;
 451   double    _total_counting_time;
 452   double    _total_rs_scrub_time;
 453 
 454   double*   _accum_task_vtime;   // accumulated task vtime
 455 
 456   FlexibleWorkGang* _parallel_workers;
 457 
 458   ForceOverflowSettings _force_overflow_conc;
 459   ForceOverflowSettings _force_overflow_stw;
 460 
 461   void weakRefsWork(bool clear_all_soft_refs);
 462 
 463   void swapMarkBitMaps();
 464 
 465   // It resets the global marking data structures, as well as the
 466   // task local ones; should be called during initial mark.
 467   void reset();
 468   // It resets all the marking data structures.
 469   void clear_marking_state(bool clear_overflow = true);
 470 
 471   // It should be called to indicate which phase we're in (concurrent
 472   // mark or remark) and how many threads are currently active.
 473   void set_phase(uint active_tasks, bool concurrent);
 474   // We do this after we're done with marking so that the marking data
 475   // structures are initialised to a sensible and predictable state.
 476   void set_non_marking_state();
 477 
 478   // prints all gathered CM-related statistics
 479   void print_stats();
 480 
 481   bool cleanup_list_is_empty() {
 482     return _cleanup_list.is_empty();
 483   }
 484 
 485   // accessor methods
 486   uint parallel_marking_threads() { return _parallel_marking_threads; }
 487   uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
 488   double sleep_factor()             { return _sleep_factor; }
 489   double marking_task_overhead()    { return _marking_task_overhead;}
 490   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
 491   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
 492 
 493   HeapWord*               finger()        { return _finger;   }
 494   bool                    concurrent()    { return _concurrent; }
 495   uint                    active_tasks()  { return _active_tasks; }
 496   ParallelTaskTerminator* terminator()    { return &_terminator; }
 497 
 498   // It claims the next available region to be scanned by a marking
 499   // task. It might return NULL if the next region is empty or we have
 500   // run out of regions. In the latter case, out_of_regions()
 501   // determines whether we've really run out of regions or the task
 502   // should call claim_region() again.  This might seem a bit
 503   // awkward. Originally, the code was written so that claim_region()
 504   // either successfully returned with a non-empty region or there
 505   // were no more regions to be claimed. The problem with this was
 506   // that, in certain circumstances, it iterated over large chunks of
 507   // the heap finding only empty regions and, while it was working, it
 508   // was preventing the calling task to call its regular clock
 509   // method. So, this way, each task will spend very little time in
 510   // claim_region() and is allowed to call the regular clock method
 511   // frequently.
 512   HeapRegion* claim_region(int task);
 513 
 514   // It determines whether we've run out of regions to scan.
 515   bool        out_of_regions() { return _finger == _heap_end; }
 516 
 517   // Returns the task with the given id
 518   CMTask* task(int id) {
 519     assert(0 <= id && id < (int) _active_tasks,
 520            "task id not within active bounds");
 521     return _tasks[id];
 522   }
 523 
 524   // Returns the task queue with the given id
 525   CMTaskQueue* task_queue(int id) {
 526     assert(0 <= id && id < (int) _active_tasks,
 527            "task queue id not within active bounds");
 528     return (CMTaskQueue*) _task_queues->queue(id);
 529   }
 530 
 531   // Returns the task queue set
 532   CMTaskQueueSet* task_queues()  { return _task_queues; }
 533 
 534   // Access / manipulation of the overflow flag which is set to
 535   // indicate that the global stack has overflown
 536   bool has_overflown()           { return _has_overflown; }
 537   void set_has_overflown()       { _has_overflown = true; }
 538   void clear_has_overflown()     { _has_overflown = false; }
 539   bool restart_for_overflow()    { return _restart_for_overflow; }
 540 
 541   bool has_aborted()             { return _has_aborted; }
 542 
 543   // Methods to enter the two overflow sync barriers
 544   void enter_first_sync_barrier(int task_num);
 545   void enter_second_sync_barrier(int task_num);
 546 
 547   ForceOverflowSettings* force_overflow_conc() {
 548     return &_force_overflow_conc;
 549   }
 550 
 551   ForceOverflowSettings* force_overflow_stw() {
 552     return &_force_overflow_stw;
 553   }
 554 
 555   ForceOverflowSettings* force_overflow() {
 556     if (concurrent()) {
 557       return force_overflow_conc();
 558     } else {
 559       return force_overflow_stw();
 560     }
 561   }
 562 
 563   // Live Data Counting data structures...
 564   // These data structures are initialized at the start of
 565   // marking. They are written to while marking is active.
 566   // They are aggregated during remark; the aggregated values
 567   // are then used to populate the _region_bm, _card_bm, and
 568   // the total live bytes, which are then subsequently updated
 569   // during cleanup.
 570 
 571   // An array of bitmaps (one bit map per task). Each bitmap
 572   // is used to record the cards spanned by the live objects
 573   // marked by that task/worker.
 574   BitMap*  _count_card_bitmaps;
 575 
 576   // Used to record the number of marked live bytes
 577   // (for each region, by worker thread).
 578   size_t** _count_marked_bytes;
 579 
 580   // Card index of the bottom of the G1 heap. Used for biasing indices into
 581   // the card bitmaps.
 582   intptr_t _heap_bottom_card_num;
 583 
 584 public:
 585   // Manipulation of the global mark stack.
 586   // Notice that the first mark_stack_push is CAS-based, whereas the
 587   // two below are Mutex-based. This is OK since the first one is only
 588   // called during evacuation pauses and doesn't compete with the
 589   // other two (which are called by the marking tasks during
 590   // concurrent marking or remark).
 591   bool mark_stack_push(oop p) {
 592     _markStack.par_push(p);
 593     if (_markStack.overflow()) {
 594       set_has_overflown();
 595       return false;
 596     }
 597     return true;
 598   }
 599   bool mark_stack_push(oop* arr, int n) {
 600     _markStack.par_push_arr(arr, n);
 601     if (_markStack.overflow()) {
 602       set_has_overflown();
 603       return false;
 604     }
 605     return true;
 606   }
 607   void mark_stack_pop(oop* arr, int max, int* n) {
 608     _markStack.par_pop_arr(arr, max, n);
 609   }
 610   size_t mark_stack_size()                { return _markStack.size(); }
 611   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 612   bool mark_stack_overflow()              { return _markStack.overflow(); }
 613   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 614 
 615   CMRootRegions* root_regions() { return &_root_regions; }
 616 
 617   bool concurrent_marking_in_progress() {
 618     return _concurrent_marking_in_progress;
 619   }
 620   void set_concurrent_marking_in_progress() {
 621     _concurrent_marking_in_progress = true;
 622   }
 623   void clear_concurrent_marking_in_progress() {
 624     _concurrent_marking_in_progress = false;
 625   }
 626 
 627   void update_accum_task_vtime(int i, double vtime) {
 628     _accum_task_vtime[i] += vtime;
 629   }
 630 
 631   double all_task_accum_vtime() {
 632     double ret = 0.0;
 633     for (int i = 0; i < (int)_max_task_num; ++i)
 634       ret += _accum_task_vtime[i];
 635     return ret;
 636   }
 637 
 638   // Attempts to steal an object from the task queues of other tasks
 639   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
 640     return _task_queues->steal(task_num, hash_seed, obj);
 641   }
 642 
 643   ConcurrentMark(ReservedSpace heap_rs, uint max_regions);
 644   ~ConcurrentMark();
 645 
 646   ConcurrentMarkThread* cmThread() { return _cmThread; }
 647 
 648   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 649   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 650 
 651   // Returns the number of GC threads to be used in a concurrent
 652   // phase based on the number of GC threads being used in a STW
 653   // phase.
 654   uint scale_parallel_threads(uint n_par_threads);
 655 
 656   // Calculates the number of GC threads to be used in a concurrent phase.
 657   uint calc_parallel_marking_threads();
 658 
 659   // The following three are interaction between CM and
 660   // G1CollectedHeap
 661 
 662   // This notifies CM that a root during initial-mark needs to be
 663   // grayed. It is MT-safe. word_size is the size of the object in
 664   // words. It is passed explicitly as sometimes we cannot calculate
 665   // it from the given object because it might be in an inconsistent
 666   // state (e.g., in to-space and being copied). So the caller is
 667   // responsible for dealing with this issue (e.g., get the size from
 668   // the from-space image when the to-space image might be
 669   // inconsistent) and always passing the size. hr is the region that
 670   // contains the object and it's passed optionally from callers who
 671   // might already have it (no point in recalculating it).
 672   inline void grayRoot(oop obj, size_t word_size,
 673                        uint worker_id, HeapRegion* hr = NULL);
 674 
 675   // It iterates over the heap and for each object it comes across it
 676   // will dump the contents of its reference fields, as well as
 677   // liveness information for the object and its referents. The dump
 678   // will be written to a file with the following name:
 679   // G1PrintReachableBaseFile + "." + str.
 680   // vo decides whether the prev (vo == UsePrevMarking), the next
 681   // (vo == UseNextMarking) marking information, or the mark word
 682   // (vo == UseMarkWord) will be used to determine the liveness of
 683   // each object / referent.
 684   // If all is true, all objects in the heap will be dumped, otherwise
 685   // only the live ones. In the dump the following symbols / breviations
 686   // are used:
 687   //   M : an explicitly live object (its bitmap bit is set)
 688   //   > : an implicitly live object (over tams)
 689   //   O : an object outside the G1 heap (typically: in the perm gen)
 690   //   NOT : a reference field whose referent is not live
 691   //   AND MARKED : indicates that an object is both explicitly and
 692   //   implicitly live (it should be one or the other, not both)
 693   void print_reachable(const char* str,
 694                        VerifyOption vo, bool all) PRODUCT_RETURN;
 695 
 696   // Clear the next marking bitmap (will be called concurrently).
 697   void clearNextBitmap();
 698 
 699   // These two do the work that needs to be done before and after the
 700   // initial root checkpoint. Since this checkpoint can be done at two
 701   // different points (i.e. an explicit pause or piggy-backed on a
 702   // young collection), then it's nice to be able to easily share the
 703   // pre/post code. It might be the case that we can put everything in
 704   // the post method. TP
 705   void checkpointRootsInitialPre();
 706   void checkpointRootsInitialPost();
 707 
 708   // Scan all the root regions and mark everything reachable from
 709   // them.
 710   void scanRootRegions();
 711 
 712   // Scan a single root region and mark everything reachable from it.
 713   void scanRootRegion(HeapRegion* hr, uint worker_id);
 714 
 715   // Do concurrent phase of marking, to a tentative transitive closure.
 716   void markFromRoots();
 717 
 718   void checkpointRootsFinal(bool clear_all_soft_refs);
 719   void checkpointRootsFinalWork();
 720   void cleanup();
 721   void completeCleanup();
 722 
 723   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 724   // this carefully!
 725   inline void markPrev(oop p);
 726 
 727   // Clears marks for all objects in the given range, for the prev,
 728   // next, or both bitmaps.  NB: the previous bitmap is usually
 729   // read-only, so use this carefully!
 730   void clearRangePrevBitmap(MemRegion mr);
 731   void clearRangeNextBitmap(MemRegion mr);
 732   void clearRangeBothBitmaps(MemRegion mr);
 733 
 734   // Notify data structures that a GC has started.
 735   void note_start_of_gc() {
 736     _markStack.note_start_of_gc();
 737   }
 738 
 739   // Notify data structures that a GC is finished.
 740   void note_end_of_gc() {
 741     _markStack.note_end_of_gc();
 742   }
 743 
 744   // Verify that there are no CSet oops on the stacks (taskqueues /
 745   // global mark stack), enqueued SATB buffers, per-thread SATB
 746   // buffers, and fingers (global / per-task). The boolean parameters
 747   // decide which of the above data structures to verify. If marking
 748   // is not in progress, it's a no-op.
 749   void verify_no_cset_oops(bool verify_stacks,
 750                            bool verify_enqueued_buffers,
 751                            bool verify_thread_buffers,
 752                            bool verify_fingers) PRODUCT_RETURN;
 753 
 754   // It is called at the end of an evacuation pause during marking so
 755   // that CM is notified of where the new end of the heap is. It
 756   // doesn't do anything if concurrent_marking_in_progress() is false,
 757   // unless the force parameter is true.
 758   void update_g1_committed(bool force = false);
 759 
 760   bool isMarked(oop p) const {
 761     assert(p != NULL && p->is_oop(), "expected an oop");
 762     HeapWord* addr = (HeapWord*)p;
 763     assert(addr >= _nextMarkBitMap->startWord() ||
 764            addr < _nextMarkBitMap->endWord(), "in a region");
 765 
 766     return _nextMarkBitMap->isMarked(addr);
 767   }
 768 
 769   inline bool not_yet_marked(oop p) const;
 770 
 771   // XXX Debug code
 772   bool containing_card_is_marked(void* p);
 773   bool containing_cards_are_marked(void* start, void* last);
 774 
 775   bool isPrevMarked(oop p) const {
 776     assert(p != NULL && p->is_oop(), "expected an oop");
 777     HeapWord* addr = (HeapWord*)p;
 778     assert(addr >= _prevMarkBitMap->startWord() ||
 779            addr < _prevMarkBitMap->endWord(), "in a region");
 780 
 781     return _prevMarkBitMap->isMarked(addr);
 782   }
 783 
 784   inline bool do_yield_check(uint worker_i = 0);
 785   inline bool should_yield();
 786 
 787   // Called to abort the marking cycle after a Full GC takes palce.
 788   void abort();
 789 
 790   // This prints the global/local fingers. It is used for debugging.
 791   NOT_PRODUCT(void print_finger();)
 792 
 793   void print_summary_info();
 794 
 795   void print_worker_threads_on(outputStream* st) const;
 796 
 797   // The following indicate whether a given verbose level has been
 798   // set. Notice that anything above stats is conditional to
 799   // _MARKING_VERBOSE_ having been set to 1
 800   bool verbose_stats() {
 801     return _verbose_level >= stats_verbose;
 802   }
 803   bool verbose_low() {
 804     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 805   }
 806   bool verbose_medium() {
 807     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 808   }
 809   bool verbose_high() {
 810     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 811   }
 812 
 813   // Counting data structure accessors
 814 
 815   // Returns the card number of the bottom of the G1 heap.
 816   // Used in biasing indices into accounting card bitmaps.
 817   intptr_t heap_bottom_card_num() const {
 818     return _heap_bottom_card_num;
 819   }
 820 
 821   // Returns the card bitmap for a given task or worker id.
 822   BitMap* count_card_bitmap_for(uint worker_id) {
 823     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
 824     assert(_count_card_bitmaps != NULL, "uninitialized");
 825     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 826     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 827     return task_card_bm;
 828   }
 829 
 830   // Returns the array containing the marked bytes for each region,
 831   // for the given worker or task id.
 832   size_t* count_marked_bytes_array_for(uint worker_id) {
 833     assert(0 <= worker_id && worker_id < _max_task_num, "oob");
 834     assert(_count_marked_bytes != NULL, "uninitialized");
 835     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 836     assert(marked_bytes_array != NULL, "uninitialized");
 837     return marked_bytes_array;
 838   }
 839 
 840   // Returns the index in the liveness accounting card table bitmap
 841   // for the given address
 842   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 843 
 844   // Counts the size of the given memory region in the the given
 845   // marked_bytes array slot for the given HeapRegion.
 846   // Sets the bits in the given card bitmap that are associated with the
 847   // cards that are spanned by the memory region.
 848   inline void count_region(MemRegion mr, HeapRegion* hr,
 849                            size_t* marked_bytes_array,
 850                            BitMap* task_card_bm);
 851 
 852   // Counts the given memory region in the task/worker counting
 853   // data structures for the given worker id.
 854   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 855 
 856   // Counts the given memory region in the task/worker counting
 857   // data structures for the given worker id.
 858   inline void count_region(MemRegion mr, uint worker_id);
 859 
 860   // Counts the given object in the given task/worker counting
 861   // data structures.
 862   inline void count_object(oop obj, HeapRegion* hr,
 863                            size_t* marked_bytes_array,
 864                            BitMap* task_card_bm);
 865 
 866   // Counts the given object in the task/worker counting data
 867   // structures for the given worker id.
 868   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
 869 
 870   // Attempts to mark the given object and, if successful, counts
 871   // the object in the given task/worker counting structures.
 872   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
 873                                  size_t* marked_bytes_array,
 874                                  BitMap* task_card_bm);
 875 
 876   // Attempts to mark the given object and, if successful, counts
 877   // the object in the task/worker counting structures for the
 878   // given worker id.
 879   inline bool par_mark_and_count(oop obj, size_t word_size,
 880                                  HeapRegion* hr, uint worker_id);
 881 
 882   // Attempts to mark the given object and, if successful, counts
 883   // the object in the task/worker counting structures for the
 884   // given worker id.
 885   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
 886 
 887   // Similar to the above routine but we don't know the heap region that
 888   // contains the object to be marked/counted, which this routine looks up.
 889   inline bool par_mark_and_count(oop obj, uint worker_id);
 890 
 891   // Similar to the above routine but there are times when we cannot
 892   // safely calculate the size of obj due to races and we, therefore,
 893   // pass the size in as a parameter. It is the caller's reponsibility
 894   // to ensure that the size passed in for obj is valid.
 895   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
 896 
 897   // Unconditionally mark the given object, and unconditinally count
 898   // the object in the counting structures for worker id 0.
 899   // Should *not* be called from parallel code.
 900   inline bool mark_and_count(oop obj, HeapRegion* hr);
 901 
 902   // Similar to the above routine but we don't know the heap region that
 903   // contains the object to be marked/counted, which this routine looks up.
 904   // Should *not* be called from parallel code.
 905   inline bool mark_and_count(oop obj);
 906 
 907 protected:
 908   // Clear all the per-task bitmaps and arrays used to store the
 909   // counting data.
 910   void clear_all_count_data();
 911 
 912   // Aggregates the counting data for each worker/task
 913   // that was constructed while marking. Also sets
 914   // the amount of marked bytes for each region and
 915   // the top at concurrent mark count.
 916   void aggregate_count_data();
 917 
 918   // Verification routine
 919   void verify_count_data();
 920 };
 921 
 922 // A class representing a marking task.
 923 class CMTask : public TerminatorTerminator {
 924 private:
 925   enum PrivateConstants {
 926     // the regular clock call is called once the scanned words reaches
 927     // this limit
 928     words_scanned_period          = 12*1024,
 929     // the regular clock call is called once the number of visited
 930     // references reaches this limit
 931     refs_reached_period           = 384,
 932     // initial value for the hash seed, used in the work stealing code
 933     init_hash_seed                = 17,
 934     // how many entries will be transferred between global stack and
 935     // local queues
 936     global_stack_transfer_size    = 16
 937   };
 938 
 939   int                         _task_id;
 940   G1CollectedHeap*            _g1h;
 941   ConcurrentMark*             _cm;
 942   CMBitMap*                   _nextMarkBitMap;
 943   // the task queue of this task
 944   CMTaskQueue*                _task_queue;
 945 private:
 946   // the task queue set---needed for stealing
 947   CMTaskQueueSet*             _task_queues;
 948   // indicates whether the task has been claimed---this is only  for
 949   // debugging purposes
 950   bool                        _claimed;
 951 
 952   // number of calls to this task
 953   int                         _calls;
 954 
 955   // when the virtual timer reaches this time, the marking step should
 956   // exit
 957   double                      _time_target_ms;
 958   // the start time of the current marking step
 959   double                      _start_time_ms;
 960 
 961   // the oop closure used for iterations over oops
 962   G1CMOopClosure*             _cm_oop_closure;
 963 
 964   // the region this task is scanning, NULL if we're not scanning any
 965   HeapRegion*                 _curr_region;
 966   // the local finger of this task, NULL if we're not scanning a region
 967   HeapWord*                   _finger;
 968   // limit of the region this task is scanning, NULL if we're not scanning one
 969   HeapWord*                   _region_limit;
 970 
 971   // the number of words this task has scanned
 972   size_t                      _words_scanned;
 973   // When _words_scanned reaches this limit, the regular clock is
 974   // called. Notice that this might be decreased under certain
 975   // circumstances (i.e. when we believe that we did an expensive
 976   // operation).
 977   size_t                      _words_scanned_limit;
 978   // the initial value of _words_scanned_limit (i.e. what it was
 979   // before it was decreased).
 980   size_t                      _real_words_scanned_limit;
 981 
 982   // the number of references this task has visited
 983   size_t                      _refs_reached;
 984   // When _refs_reached reaches this limit, the regular clock is
 985   // called. Notice this this might be decreased under certain
 986   // circumstances (i.e. when we believe that we did an expensive
 987   // operation).
 988   size_t                      _refs_reached_limit;
 989   // the initial value of _refs_reached_limit (i.e. what it was before
 990   // it was decreased).
 991   size_t                      _real_refs_reached_limit;
 992 
 993   // used by the work stealing stuff
 994   int                         _hash_seed;
 995   // if this is true, then the task has aborted for some reason
 996   bool                        _has_aborted;
 997   // set when the task aborts because it has met its time quota
 998   bool                        _has_timed_out;
 999   // true when we're draining SATB buffers; this avoids the task
1000   // aborting due to SATB buffers being available (as we're already
1001   // dealing with them)
1002   bool                        _draining_satb_buffers;
1003 
1004   // number sequence of past step times
1005   NumberSeq                   _step_times_ms;
1006   // elapsed time of this task
1007   double                      _elapsed_time_ms;
1008   // termination time of this task
1009   double                      _termination_time_ms;
1010   // when this task got into the termination protocol
1011   double                      _termination_start_time_ms;
1012 
1013   // true when the task is during a concurrent phase, false when it is
1014   // in the remark phase (so, in the latter case, we do not have to
1015   // check all the things that we have to check during the concurrent
1016   // phase, i.e. SATB buffer availability...)
1017   bool                        _concurrent;
1018 
1019   TruncatedSeq                _marking_step_diffs_ms;
1020 
1021   // Counting data structures. Embedding the task's marked_bytes_array
1022   // and card bitmap into the actual task saves having to go through
1023   // the ConcurrentMark object.
1024   size_t*                     _marked_bytes_array;
1025   BitMap*                     _card_bm;
1026 
1027   // LOTS of statistics related with this task
1028 #if _MARKING_STATS_
1029   NumberSeq                   _all_clock_intervals_ms;
1030   double                      _interval_start_time_ms;
1031 
1032   int                         _aborted;
1033   int                         _aborted_overflow;
1034   int                         _aborted_cm_aborted;
1035   int                         _aborted_yield;
1036   int                         _aborted_timed_out;
1037   int                         _aborted_satb;
1038   int                         _aborted_termination;
1039 
1040   int                         _steal_attempts;
1041   int                         _steals;
1042 
1043   int                         _clock_due_to_marking;
1044   int                         _clock_due_to_scanning;
1045 
1046   int                         _local_pushes;
1047   int                         _local_pops;
1048   int                         _local_max_size;
1049   int                         _objs_scanned;
1050 
1051   int                         _global_pushes;
1052   int                         _global_pops;
1053   int                         _global_max_size;
1054 
1055   int                         _global_transfers_to;
1056   int                         _global_transfers_from;
1057 
1058   int                         _regions_claimed;
1059   int                         _objs_found_on_bitmap;
1060 
1061   int                         _satb_buffers_processed;
1062 #endif // _MARKING_STATS_
1063 
1064   // it updates the local fields after this task has claimed
1065   // a new region to scan
1066   void setup_for_region(HeapRegion* hr);
1067   // it brings up-to-date the limit of the region
1068   void update_region_limit();
1069 
1070   // called when either the words scanned or the refs visited limit
1071   // has been reached
1072   void reached_limit();
1073   // recalculates the words scanned and refs visited limits
1074   void recalculate_limits();
1075   // decreases the words scanned and refs visited limits when we reach
1076   // an expensive operation
1077   void decrease_limits();
1078   // it checks whether the words scanned or refs visited reached their
1079   // respective limit and calls reached_limit() if they have
1080   void check_limits() {
1081     if (_words_scanned >= _words_scanned_limit ||
1082         _refs_reached >= _refs_reached_limit) {
1083       reached_limit();
1084     }
1085   }
1086   // this is supposed to be called regularly during a marking step as
1087   // it checks a bunch of conditions that might cause the marking step
1088   // to abort
1089   void regular_clock_call();
1090   bool concurrent() { return _concurrent; }
1091 
1092 public:
1093   // It resets the task; it should be called right at the beginning of
1094   // a marking phase.
1095   void reset(CMBitMap* _nextMarkBitMap);
1096   // it clears all the fields that correspond to a claimed region.
1097   void clear_region_fields();
1098 
1099   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1100 
1101   // The main method of this class which performs a marking step
1102   // trying not to exceed the given duration. However, it might exit
1103   // prematurely, according to some conditions (i.e. SATB buffers are
1104   // available for processing).
1105   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
1106 
1107   // These two calls start and stop the timer
1108   void record_start_time() {
1109     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1110   }
1111   void record_end_time() {
1112     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1113   }
1114 
1115   // returns the task ID
1116   int task_id() { return _task_id; }
1117 
1118   // From TerminatorTerminator. It determines whether this task should
1119   // exit the termination protocol after it's entered it.
1120   virtual bool should_exit_termination();
1121 
1122   // Resets the local region fields after a task has finished scanning a
1123   // region; or when they have become stale as a result of the region
1124   // being evacuated.
1125   void giveup_current_region();
1126 
1127   HeapWord* finger()            { return _finger; }
1128 
1129   bool has_aborted()            { return _has_aborted; }
1130   void set_has_aborted()        { _has_aborted = true; }
1131   void clear_has_aborted()      { _has_aborted = false; }
1132   bool has_timed_out()          { return _has_timed_out; }
1133   bool claimed()                { return _claimed; }
1134 
1135   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1136 
1137   // It grays the object by marking it and, if necessary, pushing it
1138   // on the local queue
1139   inline void deal_with_reference(oop obj);
1140 
1141   // It scans an object and visits its children.
1142   void scan_object(oop obj);
1143 
1144   // It pushes an object on the local queue.
1145   inline void push(oop obj);
1146 
1147   // These two move entries to/from the global stack.
1148   void move_entries_to_global_stack();
1149   void get_entries_from_global_stack();
1150 
1151   // It pops and scans objects from the local queue. If partially is
1152   // true, then it stops when the queue size is of a given limit. If
1153   // partially is false, then it stops when the queue is empty.
1154   void drain_local_queue(bool partially);
1155   // It moves entries from the global stack to the local queue and
1156   // drains the local queue. If partially is true, then it stops when
1157   // both the global stack and the local queue reach a given size. If
1158   // partially if false, it tries to empty them totally.
1159   void drain_global_stack(bool partially);
1160   // It keeps picking SATB buffers and processing them until no SATB
1161   // buffers are available.
1162   void drain_satb_buffers();
1163 
1164   // moves the local finger to a new location
1165   inline void move_finger_to(HeapWord* new_finger) {
1166     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1167     _finger = new_finger;
1168   }
1169 
1170   CMTask(int task_num, ConcurrentMark *cm,
1171          size_t* marked_bytes, BitMap* card_bm,
1172          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1173 
1174   // it prints statistics associated with this task
1175   void print_stats();
1176 
1177 #if _MARKING_STATS_
1178   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1179 #endif // _MARKING_STATS_
1180 };
1181 
1182 // Class that's used to to print out per-region liveness
1183 // information. It's currently used at the end of marking and also
1184 // after we sort the old regions at the end of the cleanup operation.
1185 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1186 private:
1187   outputStream* _out;
1188 
1189   // Accumulators for these values.
1190   size_t _total_used_bytes;
1191   size_t _total_capacity_bytes;
1192   size_t _total_prev_live_bytes;
1193   size_t _total_next_live_bytes;
1194 
1195   // These are set up when we come across a "stars humongous" region
1196   // (as this is where most of this information is stored, not in the
1197   // subsequent "continues humongous" regions). After that, for every
1198   // region in a given humongous region series we deduce the right
1199   // values for it by simply subtracting the appropriate amount from
1200   // these fields. All these values should reach 0 after we've visited
1201   // the last region in the series.
1202   size_t _hum_used_bytes;
1203   size_t _hum_capacity_bytes;
1204   size_t _hum_prev_live_bytes;
1205   size_t _hum_next_live_bytes;
1206 
1207   static double perc(size_t val, size_t total) {
1208     if (total == 0) {
1209       return 0.0;
1210     } else {
1211       return 100.0 * ((double) val / (double) total);
1212     }
1213   }
1214 
1215   static double bytes_to_mb(size_t val) {
1216     return (double) val / (double) M;
1217   }
1218 
1219   // See the .cpp file.
1220   size_t get_hum_bytes(size_t* hum_bytes);
1221   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1222                      size_t* prev_live_bytes, size_t* next_live_bytes);
1223 
1224 public:
1225   // The header and footer are printed in the constructor and
1226   // destructor respectively.
1227   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1228   virtual bool doHeapRegion(HeapRegion* r);
1229   ~G1PrintRegionLivenessInfoClosure();
1230 };
1231 
1232 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP