1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "memory/space.hpp"
  28 #include "oops/oop.inline.hpp"
  29 #include "runtime/java.hpp"
  30 #include "services/memTracker.hpp"
  31 
  32 //////////////////////////////////////////////////////////////////////
  33 // G1BlockOffsetSharedArray
  34 //////////////////////////////////////////////////////////////////////
  35 
  36 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
  37                                                    size_t init_word_size) :
  38   _reserved(reserved), _end(NULL)
  39 {
  40   size_t size = compute_size(reserved.word_size());
  41   ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
  42   if (!rs.is_reserved()) {
  43     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
  44   }
  45   if (!_vs.initialize(rs, 0)) {
  46     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
  47   }
  48 
  49   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  50 
  51   _offset_array = (u_char*)_vs.low_boundary();
  52   resize(init_word_size);
  53   if (TraceBlockOffsetTable) {
  54     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
  55     gclog_or_tty->print_cr("  "
  56                   "  rs.base(): " INTPTR_FORMAT
  57                   "  rs.size(): " INTPTR_FORMAT
  58                   "  rs end(): " INTPTR_FORMAT,
  59                   rs.base(), rs.size(), rs.base() + rs.size());
  60     gclog_or_tty->print_cr("  "
  61                   "  _vs.low_boundary(): " INTPTR_FORMAT
  62                   "  _vs.high_boundary(): " INTPTR_FORMAT,
  63                   _vs.low_boundary(),
  64                   _vs.high_boundary());
  65   }
  66 }
  67 
  68 void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
  69   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
  70   size_t new_size = compute_size(new_word_size);
  71   size_t old_size = _vs.committed_size();
  72   size_t delta;
  73   char* high = _vs.high();
  74   _end = _reserved.start() + new_word_size;
  75   if (new_size > old_size) {
  76     delta = ReservedSpace::page_align_size_up(new_size - old_size);
  77     assert(delta > 0, "just checking");
  78     if (!_vs.expand_by(delta)) {
  79       // Do better than this for Merlin
  80       vm_exit_out_of_memory(delta, "offset table expansion");
  81     }
  82     assert(_vs.high() == high + delta, "invalid expansion");
  83     // Initialization of the contents is left to the
  84     // G1BlockOffsetArray that uses it.
  85   } else {
  86     delta = ReservedSpace::page_align_size_down(old_size - new_size);
  87     if (delta == 0) return;
  88     _vs.shrink_by(delta);
  89     assert(_vs.high() == high - delta, "invalid expansion");
  90   }
  91 }
  92 
  93 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
  94   assert(p >= _reserved.start(), "just checking");
  95   size_t delta = pointer_delta(p, _reserved.start());
  96   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
  97 }
  98 
  99 
 100 //////////////////////////////////////////////////////////////////////
 101 // G1BlockOffsetArray
 102 //////////////////////////////////////////////////////////////////////
 103 
 104 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
 105                                        MemRegion mr, bool init_to_zero) :
 106   G1BlockOffsetTable(mr.start(), mr.end()),
 107   _unallocated_block(_bottom),
 108   _array(array), _csp(NULL),
 109   _init_to_zero(init_to_zero) {
 110   assert(_bottom <= _end, "arguments out of order");
 111   if (!_init_to_zero) {
 112     // initialize cards to point back to mr.start()
 113     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
 114     _array->set_offset_array(0, 0);  // set first card to 0
 115   }
 116 }
 117 
 118 void G1BlockOffsetArray::set_space(Space* sp) {
 119   _sp = sp;
 120   _csp = sp->toContiguousSpace();
 121 }
 122 
 123 // The arguments follow the normal convention of denoting
 124 // a right-open interval: [start, end)
 125 void
 126 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
 127 
 128   if (start >= end) {
 129     // The start address is equal to the end address (or to
 130     // the right of the end address) so there are not cards
 131     // that need to be updated..
 132     return;
 133   }
 134 
 135   // Write the backskip value for each region.
 136   //
 137   //    offset
 138   //    card             2nd                       3rd
 139   //     | +- 1st        |                         |
 140   //     v v             v                         v
 141   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
 142   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
 143   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
 144   //    11              19                        75
 145   //      12
 146   //
 147   //    offset card is the card that points to the start of an object
 148   //      x - offset value of offset card
 149   //    1st - start of first logarithmic region
 150   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
 151   //    2nd - start of second logarithmic region
 152   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
 153   //    3rd - start of third logarithmic region
 154   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
 155   //
 156   //    integer below the block offset entry is an example of
 157   //    the index of the entry
 158   //
 159   //    Given an address,
 160   //      Find the index for the address
 161   //      Find the block offset table entry
 162   //      Convert the entry to a back slide
 163   //        (e.g., with today's, offset = 0x81 =>
 164   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
 165   //      Move back N (e.g., 8) entries and repeat with the
 166   //        value of the new entry
 167   //
 168   size_t start_card = _array->index_for(start);
 169   size_t end_card = _array->index_for(end-1);
 170   assert(start ==_array->address_for_index(start_card), "Precondition");
 171   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
 172   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
 173 }
 174 
 175 // Unlike the normal convention in this code, the argument here denotes
 176 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
 177 // above.
 178 void
 179 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
 180   if (start_card > end_card) {
 181     return;
 182   }
 183   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
 184   assert(_array->offset_array(start_card-1) <= N_words,
 185          "Offset card has an unexpected value");
 186   size_t start_card_for_region = start_card;
 187   u_char offset = max_jubyte;
 188   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
 189     // -1 so that the the card with the actual offset is counted.  Another -1
 190     // so that the reach ends in this region and not at the start
 191     // of the next.
 192     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
 193     offset = N_words + i;
 194     if (reach >= end_card) {
 195       _array->set_offset_array(start_card_for_region, end_card, offset);
 196       start_card_for_region = reach + 1;
 197       break;
 198     }
 199     _array->set_offset_array(start_card_for_region, reach, offset);
 200     start_card_for_region = reach + 1;
 201   }
 202   assert(start_card_for_region > end_card, "Sanity check");
 203   DEBUG_ONLY(check_all_cards(start_card, end_card);)
 204 }
 205 
 206 // The block [blk_start, blk_end) has been allocated;
 207 // adjust the block offset table to represent this information;
 208 // right-open interval: [blk_start, blk_end)
 209 void
 210 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 211   mark_block(blk_start, blk_end);
 212   allocated(blk_start, blk_end);
 213 }
 214 
 215 // Adjust BOT to show that a previously whole block has been split
 216 // into two.
 217 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
 218                                      size_t left_blk_size) {
 219   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 220   verify_single_block(blk, blk_size);
 221   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
 222   // is one single block.
 223   mark_block(blk + left_blk_size, blk + blk_size);
 224 }
 225 
 226 
 227 // Action_mark - update the BOT for the block [blk_start, blk_end).
 228 //               Current typical use is for splitting a block.
 229 // Action_single - update the BOT for an allocation.
 230 // Action_verify - BOT verification.
 231 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
 232                                            HeapWord* blk_end,
 233                                            Action action) {
 234   assert(Universe::heap()->is_in_reserved(blk_start),
 235          "reference must be into the heap");
 236   assert(Universe::heap()->is_in_reserved(blk_end-1),
 237          "limit must be within the heap");
 238   // This is optimized to make the test fast, assuming we only rarely
 239   // cross boundaries.
 240   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
 241   uintptr_t start_ui = (uintptr_t)blk_start;
 242   // Calculate the last card boundary preceding end of blk
 243   intptr_t boundary_before_end = (intptr_t)end_ui;
 244   clear_bits(boundary_before_end, right_n_bits(LogN));
 245   if (start_ui <= (uintptr_t)boundary_before_end) {
 246     // blk starts at or crosses a boundary
 247     // Calculate index of card on which blk begins
 248     size_t    start_index = _array->index_for(blk_start);
 249     // Index of card on which blk ends
 250     size_t    end_index   = _array->index_for(blk_end - 1);
 251     // Start address of card on which blk begins
 252     HeapWord* boundary    = _array->address_for_index(start_index);
 253     assert(boundary <= blk_start, "blk should start at or after boundary");
 254     if (blk_start != boundary) {
 255       // blk starts strictly after boundary
 256       // adjust card boundary and start_index forward to next card
 257       boundary += N_words;
 258       start_index++;
 259     }
 260     assert(start_index <= end_index, "monotonicity of index_for()");
 261     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
 262     switch (action) {
 263       case Action_mark: {
 264         if (init_to_zero()) {
 265           _array->set_offset_array(start_index, boundary, blk_start);
 266           break;
 267         } // Else fall through to the next case
 268       }
 269       case Action_single: {
 270         _array->set_offset_array(start_index, boundary, blk_start);
 271         // We have finished marking the "offset card". We need to now
 272         // mark the subsequent cards that this blk spans.
 273         if (start_index < end_index) {
 274           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
 275           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
 276           set_remainder_to_point_to_start(rem_st, rem_end);
 277         }
 278         break;
 279       }
 280       case Action_check: {
 281         _array->check_offset_array(start_index, boundary, blk_start);
 282         // We have finished checking the "offset card". We need to now
 283         // check the subsequent cards that this blk spans.
 284         check_all_cards(start_index + 1, end_index);
 285         break;
 286       }
 287       default:
 288         ShouldNotReachHere();
 289     }
 290   }
 291 }
 292 
 293 // The card-interval [start_card, end_card] is a closed interval; this
 294 // is an expensive check -- use with care and only under protection of
 295 // suitable flag.
 296 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
 297 
 298   if (end_card < start_card) {
 299     return;
 300   }
 301   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
 302   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
 303     u_char entry = _array->offset_array(c);
 304     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
 305       guarantee(entry > N_words, "Should be in logarithmic region");
 306     }
 307     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 308     size_t landing_card = c - backskip;
 309     guarantee(landing_card >= (start_card - 1), "Inv");
 310     if (landing_card >= start_card) {
 311       guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
 312     } else {
 313       guarantee(landing_card == start_card - 1, "Tautology");
 314       guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
 315     }
 316   }
 317 }
 318 
 319 // The range [blk_start, blk_end) represents a single contiguous block
 320 // of storage; modify the block offset table to represent this
 321 // information; Right-open interval: [blk_start, blk_end)
 322 // NOTE: this method does _not_ adjust _unallocated_block.
 323 void
 324 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
 325   do_block_internal(blk_start, blk_end, Action_single);
 326 }
 327 
 328 // Mark the BOT such that if [blk_start, blk_end) straddles a card
 329 // boundary, the card following the first such boundary is marked
 330 // with the appropriate offset.
 331 // NOTE: this method does _not_ adjust _unallocated_block or
 332 // any cards subsequent to the first one.
 333 void
 334 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
 335   do_block_internal(blk_start, blk_end, Action_mark);
 336 }
 337 
 338 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
 339   assert(_bottom <= addr && addr < _end,
 340          "addr must be covered by this Array");
 341   // Must read this exactly once because it can be modified by parallel
 342   // allocation.
 343   HeapWord* ub = _unallocated_block;
 344   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 345     assert(ub < _end, "tautology (see above)");
 346     return ub;
 347   }
 348   // Otherwise, find the block start using the table.
 349   HeapWord* q = block_at_or_preceding(addr, false, 0);
 350   return forward_to_block_containing_addr(q, addr);
 351 }
 352 
 353 // This duplicates a little code from the above: unavoidable.
 354 HeapWord*
 355 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
 356   assert(_bottom <= addr && addr < _end,
 357          "addr must be covered by this Array");
 358   // Must read this exactly once because it can be modified by parallel
 359   // allocation.
 360   HeapWord* ub = _unallocated_block;
 361   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 362     assert(ub < _end, "tautology (see above)");
 363     return ub;
 364   }
 365   // Otherwise, find the block start using the table.
 366   HeapWord* q = block_at_or_preceding(addr, false, 0);
 367   HeapWord* n = q + _sp->block_size(q);
 368   return forward_to_block_containing_addr_const(q, n, addr);
 369 }
 370 
 371 
 372 HeapWord*
 373 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
 374                                                           HeapWord* n,
 375                                                           const void* addr) {
 376   // We're not in the normal case.  We need to handle an important subcase
 377   // here: LAB allocation.  An allocation previously recorded in the
 378   // offset table was actually a lab allocation, and was divided into
 379   // several objects subsequently.  Fix this situation as we answer the
 380   // query, by updating entries as we cross them.
 381 
 382   // If the fist object's end q is at the card boundary. Start refining
 383   // with the corresponding card (the value of the entry will be basically
 384   // set to 0). If the object crosses the boundary -- start from the next card.
 385   size_t n_index = _array->index_for(n);
 386   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
 387   // Calculate a consistent next boundary.  If "n" is not at the boundary
 388   // already, step to the boundary.
 389   HeapWord* next_boundary = _array->address_for_index(n_index) +
 390                             (n_index == next_index ? 0 : N_words);
 391   assert(next_boundary <= _array->_end,
 392          err_msg("next_boundary is beyond the end of the covered region "
 393                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
 394                  next_boundary, _array->_end));
 395   if (csp() != NULL) {
 396     if (addr >= csp()->top()) return csp()->top();
 397     while (next_boundary < addr) {
 398       while (n <= next_boundary) {
 399         q = n;
 400         oop obj = oop(q);
 401         if (obj->klass_or_null() == NULL) return q;
 402         n += obj->size();
 403       }
 404       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
 405       // [q, n) is the block that crosses the boundary.
 406       alloc_block_work2(&next_boundary, &next_index, q, n);
 407     }
 408   } else {
 409     while (next_boundary < addr) {
 410       while (n <= next_boundary) {
 411         q = n;
 412         oop obj = oop(q);
 413         if (obj->klass_or_null() == NULL) return q;
 414         n += _sp->block_size(q);
 415       }
 416       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
 417       // [q, n) is the block that crosses the boundary.
 418       alloc_block_work2(&next_boundary, &next_index, q, n);
 419     }
 420   }
 421   return forward_to_block_containing_addr_const(q, n, addr);
 422 }
 423 
 424 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
 425   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
 426 
 427   assert(_bottom <= addr && addr < _end,
 428          "addr must be covered by this Array");
 429   // Must read this exactly once because it can be modified by parallel
 430   // allocation.
 431   HeapWord* ub = _unallocated_block;
 432   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 433     assert(ub < _end, "tautology (see above)");
 434     return ub;
 435   }
 436 
 437   // Otherwise, find the block start using the table, but taking
 438   // care (cf block_start_unsafe() above) not to parse any objects/blocks
 439   // on the cards themsleves.
 440   size_t index = _array->index_for(addr);
 441   assert(_array->address_for_index(index) == addr,
 442          "arg should be start of card");
 443 
 444   HeapWord* q = (HeapWord*)addr;
 445   uint offset;
 446   do {
 447     offset = _array->offset_array(index--);
 448     q -= offset;
 449   } while (offset == N_words);
 450   assert(q <= addr, "block start should be to left of arg");
 451   return q;
 452 }
 453 
 454 // Note that the committed size of the covered space may have changed,
 455 // so the table size might also wish to change.
 456 void G1BlockOffsetArray::resize(size_t new_word_size) {
 457   HeapWord* new_end = _bottom + new_word_size;
 458   if (_end < new_end && !init_to_zero()) {
 459     // verify that the old and new boundaries are also card boundaries
 460     assert(_array->is_card_boundary(_end),
 461            "_end not a card boundary");
 462     assert(_array->is_card_boundary(new_end),
 463            "new _end would not be a card boundary");
 464     // set all the newly added cards
 465     _array->set_offset_array(_end, new_end, N_words);
 466   }
 467   _end = new_end;  // update _end
 468 }
 469 
 470 void G1BlockOffsetArray::set_region(MemRegion mr) {
 471   _bottom = mr.start();
 472   _end = mr.end();
 473 }
 474 
 475 //
 476 //              threshold_
 477 //              |   _index_
 478 //              v   v
 479 //      +-------+-------+-------+-------+-------+
 480 //      | i-1   |   i   | i+1   | i+2   | i+3   |
 481 //      +-------+-------+-------+-------+-------+
 482 //       ( ^    ]
 483 //         block-start
 484 //
 485 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
 486                                            HeapWord* blk_start, HeapWord* blk_end) {
 487   // For efficiency, do copy-in/copy-out.
 488   HeapWord* threshold = *threshold_;
 489   size_t    index = *index_;
 490 
 491   assert(blk_start != NULL && blk_end > blk_start,
 492          "phantom block");
 493   assert(blk_end > threshold, "should be past threshold");
 494   assert(blk_start <= threshold, "blk_start should be at or before threshold");
 495   assert(pointer_delta(threshold, blk_start) <= N_words,
 496          "offset should be <= BlockOffsetSharedArray::N");
 497   assert(Universe::heap()->is_in_reserved(blk_start),
 498          "reference must be into the heap");
 499   assert(Universe::heap()->is_in_reserved(blk_end-1),
 500          "limit must be within the heap");
 501   assert(threshold == _array->_reserved.start() + index*N_words,
 502          "index must agree with threshold");
 503 
 504   DEBUG_ONLY(size_t orig_index = index;)
 505 
 506   // Mark the card that holds the offset into the block.  Note
 507   // that _next_offset_index and _next_offset_threshold are not
 508   // updated until the end of this method.
 509   _array->set_offset_array(index, threshold, blk_start);
 510 
 511   // We need to now mark the subsequent cards that this blk spans.
 512 
 513   // Index of card on which blk ends.
 514   size_t end_index   = _array->index_for(blk_end - 1);
 515 
 516   // Are there more cards left to be updated?
 517   if (index + 1 <= end_index) {
 518     HeapWord* rem_st  = _array->address_for_index(index + 1);
 519     // Calculate rem_end this way because end_index
 520     // may be the last valid index in the covered region.
 521     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
 522     set_remainder_to_point_to_start(rem_st, rem_end);
 523   }
 524 
 525   index = end_index + 1;
 526   // Calculate threshold_ this way because end_index
 527   // may be the last valid index in the covered region.
 528   threshold = _array->address_for_index(end_index) + N_words;
 529   assert(threshold >= blk_end, "Incorrect offset threshold");
 530 
 531   // index_ and threshold_ updated here.
 532   *threshold_ = threshold;
 533   *index_ = index;
 534 
 535 #ifdef ASSERT
 536   // The offset can be 0 if the block starts on a boundary.  That
 537   // is checked by an assertion above.
 538   size_t start_index = _array->index_for(blk_start);
 539   HeapWord* boundary    = _array->address_for_index(start_index);
 540   assert((_array->offset_array(orig_index) == 0 &&
 541           blk_start == boundary) ||
 542           (_array->offset_array(orig_index) > 0 &&
 543          _array->offset_array(orig_index) <= N_words),
 544          "offset array should have been set");
 545   for (size_t j = orig_index + 1; j <= end_index; j++) {
 546     assert(_array->offset_array(j) > 0 &&
 547            _array->offset_array(j) <=
 548              (u_char) (N_words+BlockOffsetArray::N_powers-1),
 549            "offset array should have been set");
 550   }
 551 #endif
 552 }
 553 
 554 bool
 555 G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
 556                                       size_t word_size) const {
 557   size_t first_card = _array->index_for(obj_start);
 558   size_t last_card = _array->index_for(obj_start + word_size - 1);
 559   if (!_array->is_card_boundary(obj_start)) {
 560     // If the object is not on a card boundary the BOT entry of the
 561     // first card should point to another object so we should not
 562     // check that one.
 563     first_card += 1;
 564   }
 565   for (size_t card = first_card; card <= last_card; card += 1) {
 566     HeapWord* card_addr = _array->address_for_index(card);
 567     HeapWord* block_start = block_start_const(card_addr);
 568     if (block_start != obj_start) {
 569       gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
 570                              "card index: "SIZE_FORMAT" "
 571                              "card addr: "PTR_FORMAT" BOT entry: %u "
 572                              "obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
 573                              "cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
 574                              block_start, card, card_addr,
 575                              _array->offset_array(card),
 576                              obj_start, word_size, first_card, last_card);
 577       return false;
 578     }
 579   }
 580   return true;
 581 }
 582 
 583 #ifndef PRODUCT
 584 void
 585 G1BlockOffsetArray::print_on(outputStream* out) {
 586   size_t from_index = _array->index_for(_bottom);
 587   size_t to_index = _array->index_for(_end);
 588   out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
 589                 "cards ["SIZE_FORMAT","SIZE_FORMAT")",
 590                 _bottom, _end, from_index, to_index);
 591   for (size_t i = from_index; i < to_index; ++i) {
 592     out->print_cr("  entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
 593                   i, _array->address_for_index(i),
 594                   (uint) _array->offset_array(i));
 595   }
 596 }
 597 #endif // !PRODUCT
 598 
 599 //////////////////////////////////////////////////////////////////////
 600 // G1BlockOffsetArrayContigSpace
 601 //////////////////////////////////////////////////////////////////////
 602 
 603 HeapWord*
 604 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
 605   assert(_bottom <= addr && addr < _end,
 606          "addr must be covered by this Array");
 607   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
 608   return forward_to_block_containing_addr(q, addr);
 609 }
 610 
 611 HeapWord*
 612 G1BlockOffsetArrayContigSpace::
 613 block_start_unsafe_const(const void* addr) const {
 614   assert(_bottom <= addr && addr < _end,
 615          "addr must be covered by this Array");
 616   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
 617   HeapWord* n = q + _sp->block_size(q);
 618   return forward_to_block_containing_addr_const(q, n, addr);
 619 }
 620 
 621 G1BlockOffsetArrayContigSpace::
 622 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
 623                               MemRegion mr) :
 624   G1BlockOffsetArray(array, mr, true)
 625 {
 626   _next_offset_threshold = NULL;
 627   _next_offset_index = 0;
 628 }
 629 
 630 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
 631   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 632          "just checking");
 633   _next_offset_index = _array->index_for(_bottom);
 634   _next_offset_index++;
 635   _next_offset_threshold =
 636     _array->address_for_index(_next_offset_index);
 637   return _next_offset_threshold;
 638 }
 639 
 640 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
 641   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 642          "just checking");
 643   size_t bottom_index = _array->index_for(_bottom);
 644   assert(_array->address_for_index(bottom_index) == _bottom,
 645          "Precondition of call");
 646   _array->set_offset_array(bottom_index, 0);
 647 }
 648 
 649 void
 650 G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
 651   assert(new_top <= _end, "_end should have already been updated");
 652 
 653   // The first BOT entry should have offset 0.
 654   zero_bottom_entry();
 655   initialize_threshold();
 656   alloc_block(_bottom, new_top);
 657  }
 658 
 659 #ifndef PRODUCT
 660 void
 661 G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
 662   G1BlockOffsetArray::print_on(out);
 663   out->print_cr("  next offset threshold: "PTR_FORMAT, _next_offset_threshold);
 664   out->print_cr("  next offset index:     "SIZE_FORMAT, _next_offset_index);
 665 }
 666 #endif // !PRODUCT