1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc_implementation/shared/liveRange.hpp"
  29 #include "gc_implementation/shared/markSweep.hpp"
  30 #include "gc_implementation/shared/spaceDecorator.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/defNewGeneration.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/safepoint.hpp"
  41 #include "utilities/copy.hpp"
  42 #include "utilities/globalDefinitions.hpp"
  43 
  44 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
  45 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
  46 
  47 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  48                                                 HeapWord* top_obj) {
  49   if (top_obj != NULL) {
  50     if (_sp->block_is_obj(top_obj)) {
  51       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
  52         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  53           // An arrayOop is starting on the dirty card - since we do exact
  54           // store checks for objArrays we are done.
  55         } else {
  56           // Otherwise, it is possible that the object starting on the dirty
  57           // card spans the entire card, and that the store happened on a
  58           // later card.  Figure out where the object ends.
  59           // Use the block_size() method of the space over which
  60           // the iteration is being done.  That space (e.g. CMS) may have
  61           // specific requirements on object sizes which will
  62           // be reflected in the block_size() method.
  63           top = top_obj + oop(top_obj)->size();
  64         }
  65       }
  66     } else {
  67       top = top_obj;
  68     }
  69   } else {
  70     assert(top == _sp->end(), "only case where top_obj == NULL");
  71   }
  72   return top;
  73 }
  74 
  75 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  76                                             HeapWord* bottom,
  77                                             HeapWord* top) {
  78   // 1. Blocks may or may not be objects.
  79   // 2. Even when a block_is_obj(), it may not entirely
  80   //    occupy the block if the block quantum is larger than
  81   //    the object size.
  82   // We can and should try to optimize by calling the non-MemRegion
  83   // version of oop_iterate() for all but the extremal objects
  84   // (for which we need to call the MemRegion version of
  85   // oop_iterate()) To be done post-beta XXX
  86   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  87     // As in the case of contiguous space above, we'd like to
  88     // just use the value returned by oop_iterate to increment the
  89     // current pointer; unfortunately, that won't work in CMS because
  90     // we'd need an interface change (it seems) to have the space
  91     // "adjust the object size" (for instance pad it up to its
  92     // block alignment or minimum block size restrictions. XXX
  93     if (_sp->block_is_obj(bottom) &&
  94         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  95       oop(bottom)->oop_iterate(_cl, mr);
  96     }
  97   }
  98 }
  99 
 100 // We get called with "mr" representing the dirty region
 101 // that we want to process. Because of imprecise marking,
 102 // we may need to extend the incoming "mr" to the right,
 103 // and scan more. However, because we may already have
 104 // scanned some of that extended region, we may need to
 105 // trim its right-end back some so we do not scan what
 106 // we (or another worker thread) may already have scanned
 107 // or planning to scan.
 108 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 109 
 110   // Some collectors need to do special things whenever their dirty
 111   // cards are processed. For instance, CMS must remember mutator updates
 112   // (i.e. dirty cards) so as to re-scan mutated objects.
 113   // Such work can be piggy-backed here on dirty card scanning, so as to make
 114   // it slightly more efficient than doing a complete non-detructive pre-scan
 115   // of the card table.
 116   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 117   if (pCl != NULL) {
 118     pCl->do_MemRegion(mr);
 119   }
 120 
 121   HeapWord* bottom = mr.start();
 122   HeapWord* last = mr.last();
 123   HeapWord* top = mr.end();
 124   HeapWord* bottom_obj;
 125   HeapWord* top_obj;
 126 
 127   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
 128          _precision == CardTableModRefBS::Precise,
 129          "Only ones we deal with for now.");
 130 
 131   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 132          _cl->idempotent() || _last_bottom == NULL ||
 133          top <= _last_bottom,
 134          "Not decreasing");
 135   NOT_PRODUCT(_last_bottom = mr.start());
 136 
 137   bottom_obj = _sp->block_start(bottom);
 138   top_obj    = _sp->block_start(last);
 139 
 140   assert(bottom_obj <= bottom, "just checking");
 141   assert(top_obj    <= top,    "just checking");
 142 
 143   // Given what we think is the top of the memory region and
 144   // the start of the object at the top, get the actual
 145   // value of the top.
 146   top = get_actual_top(top, top_obj);
 147 
 148   // If the previous call did some part of this region, don't redo.
 149   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
 150       _min_done != NULL &&
 151       _min_done < top) {
 152     top = _min_done;
 153   }
 154 
 155   // Top may have been reset, and in fact may be below bottom,
 156   // e.g. the dirty card region is entirely in a now free object
 157   // -- something that could happen with a concurrent sweeper.
 158   bottom = MIN2(bottom, top);
 159   MemRegion extended_mr = MemRegion(bottom, top);
 160   assert(bottom <= top &&
 161          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 162           _min_done == NULL ||
 163           top <= _min_done),
 164          "overlap!");
 165 
 166   // Walk the region if it is not empty; otherwise there is nothing to do.
 167   if (!extended_mr.is_empty()) {
 168     walk_mem_region(extended_mr, bottom_obj, top);
 169   }
 170 
 171   // An idempotent closure might be applied in any order, so we don't
 172   // record a _min_done for it.
 173   if (!_cl->idempotent()) {
 174     _min_done = bottom;
 175   } else {
 176     assert(_min_done == _last_explicit_min_done,
 177            "Don't update _min_done for idempotent cl");
 178   }
 179 }
 180 
 181 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 182                                           CardTableModRefBS::PrecisionStyle precision,
 183                                           HeapWord* boundary) {
 184   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 185 }
 186 
 187 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 188                                                HeapWord* top_obj) {
 189   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 190     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
 191       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 192         // An arrayOop is starting on the dirty card - since we do exact
 193         // store checks for objArrays we are done.
 194       } else {
 195         // Otherwise, it is possible that the object starting on the dirty
 196         // card spans the entire card, and that the store happened on a
 197         // later card.  Figure out where the object ends.
 198         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 199           "Block size and object size mismatch");
 200         top = top_obj + oop(top_obj)->size();
 201       }
 202     }
 203   } else {
 204     top = (_sp->toContiguousSpace())->top();
 205   }
 206   return top;
 207 }
 208 
 209 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
 210                                       HeapWord* bottom,
 211                                       HeapWord* top) {
 212   // Note that this assumption won't hold if we have a concurrent
 213   // collector in this space, which may have freed up objects after
 214   // they were dirtied and before the stop-the-world GC that is
 215   // examining cards here.
 216   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 217 
 218   if (_boundary != NULL) {
 219     // We have a boundary outside of which we don't want to look
 220     // at objects, so create a filtering closure around the
 221     // oop closure before walking the region.
 222     FilteringClosure filter(_boundary, _cl);
 223     walk_mem_region_with_cl(mr, bottom, top, &filter);
 224   } else {
 225     // No boundary, simply walk the heap with the oop closure.
 226     walk_mem_region_with_cl(mr, bottom, top, _cl);
 227   }
 228 
 229 }
 230 
 231 // We must replicate this so that the static type of "FilteringClosure"
 232 // (see above) is apparent at the oop_iterate calls.
 233 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 234 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 235                                                    HeapWord* bottom,    \
 236                                                    HeapWord* top,       \
 237                                                    ClosureType* cl) {   \
 238   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
 239   if (bottom < top) {                                                   \
 240     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 241     while (next_obj < top) {                                            \
 242       /* Bottom lies entirely below top, so we can call the */          \
 243       /* non-memRegion version of oop_iterate below. */                 \
 244       oop(bottom)->oop_iterate(cl);                                     \
 245       bottom = next_obj;                                                \
 246       next_obj = bottom + oop(bottom)->size();                          \
 247     }                                                                   \
 248     /* Last object. */                                                  \
 249     oop(bottom)->oop_iterate(cl, mr);                                   \
 250   }                                                                     \
 251 }
 252 
 253 // (There are only two of these, rather than N, because the split is due
 254 // only to the introduction of the FilteringClosure, a local part of the
 255 // impl of this abstraction.)
 256 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 258 
 259 DirtyCardToOopClosure*
 260 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 261                              CardTableModRefBS::PrecisionStyle precision,
 262                              HeapWord* boundary) {
 263   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 264 }
 265 
 266 void Space::initialize(MemRegion mr,
 267                        bool clear_space,
 268                        bool mangle_space) {
 269   HeapWord* bottom = mr.start();
 270   HeapWord* end    = mr.end();
 271   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 272          "invalid space boundaries");
 273   set_bottom(bottom);
 274   set_end(end);
 275   if (clear_space) clear(mangle_space);
 276 }
 277 
 278 void Space::clear(bool mangle_space) {
 279   if (ZapUnusedHeapArea && mangle_space) {
 280     mangle_unused_area();
 281   }
 282 }
 283 
 284 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 285     _concurrent_iteration_safe_limit(NULL) {
 286   _mangler = new GenSpaceMangler(this);
 287 }
 288 
 289 ContiguousSpace::~ContiguousSpace() {
 290   delete _mangler;
 291 }
 292 
 293 void ContiguousSpace::initialize(MemRegion mr,
 294                                  bool clear_space,
 295                                  bool mangle_space)
 296 {
 297   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 298   set_concurrent_iteration_safe_limit(top());
 299 }
 300 
 301 void ContiguousSpace::clear(bool mangle_space) {
 302   set_top(bottom());
 303   set_saved_mark();
 304   CompactibleSpace::clear(mangle_space);
 305 }
 306 
 307 bool ContiguousSpace::is_in(const void* p) const {
 308   return _bottom <= p && p < _top;
 309 }
 310 
 311 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 312   return p >= _top;
 313 }
 314 
 315 void OffsetTableContigSpace::clear(bool mangle_space) {
 316   ContiguousSpace::clear(mangle_space);
 317   _offsets.initialize_threshold();
 318 }
 319 
 320 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 321   Space::set_bottom(new_bottom);
 322   _offsets.set_bottom(new_bottom);
 323 }
 324 
 325 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 326   // Space should not advertize an increase in size
 327   // until after the underlying offest table has been enlarged.
 328   _offsets.resize(pointer_delta(new_end, bottom()));
 329   Space::set_end(new_end);
 330 }
 331 
 332 #ifndef PRODUCT
 333 
 334 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 335   mangler()->set_top_for_allocations(v);
 336 }
 337 void ContiguousSpace::set_top_for_allocations() {
 338   mangler()->set_top_for_allocations(top());
 339 }
 340 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 341   mangler()->check_mangled_unused_area(limit);
 342 }
 343 
 344 void ContiguousSpace::check_mangled_unused_area_complete() {
 345   mangler()->check_mangled_unused_area_complete();
 346 }
 347 
 348 // Mangled only the unused space that has not previously
 349 // been mangled and that has not been allocated since being
 350 // mangled.
 351 void ContiguousSpace::mangle_unused_area() {
 352   mangler()->mangle_unused_area();
 353 }
 354 void ContiguousSpace::mangle_unused_area_complete() {
 355   mangler()->mangle_unused_area_complete();
 356 }
 357 void ContiguousSpace::mangle_region(MemRegion mr) {
 358   // Although this method uses SpaceMangler::mangle_region() which
 359   // is not specific to a space, the when the ContiguousSpace version
 360   // is called, it is always with regard to a space and this
 361   // bounds checking is appropriate.
 362   MemRegion space_mr(bottom(), end());
 363   assert(space_mr.contains(mr), "Mangling outside space");
 364   SpaceMangler::mangle_region(mr);
 365 }
 366 #endif  // NOT_PRODUCT
 367 
 368 void CompactibleSpace::initialize(MemRegion mr,
 369                                   bool clear_space,
 370                                   bool mangle_space) {
 371   Space::initialize(mr, clear_space, mangle_space);
 372   set_compaction_top(bottom());
 373   _next_compaction_space = NULL;
 374 }
 375 
 376 void CompactibleSpace::clear(bool mangle_space) {
 377   Space::clear(mangle_space);
 378   _compaction_top = bottom();
 379 }
 380 
 381 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 382                                     CompactPoint* cp, HeapWord* compact_top) {
 383   // q is alive
 384   // First check if we should switch compaction space
 385   assert(this == cp->space, "'this' should be current compaction space.");
 386   size_t compaction_max_size = pointer_delta(end(), compact_top);
 387   while (size > compaction_max_size) {
 388     // switch to next compaction space
 389     cp->space->set_compaction_top(compact_top);
 390     cp->space = cp->space->next_compaction_space();
 391     if (cp->space == NULL) {
 392       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
 393       assert(cp->gen != NULL, "compaction must succeed");
 394       cp->space = cp->gen->first_compaction_space();
 395       assert(cp->space != NULL, "generation must have a first compaction space");
 396     }
 397     compact_top = cp->space->bottom();
 398     cp->space->set_compaction_top(compact_top);
 399     cp->threshold = cp->space->initialize_threshold();
 400     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 401   }
 402 
 403   // store the forwarding pointer into the mark word
 404   if ((HeapWord*)q != compact_top) {
 405     q->forward_to(oop(compact_top));
 406     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 407   } else {
 408     // if the object isn't moving we can just set the mark to the default
 409     // mark and handle it specially later on.
 410     q->init_mark();
 411     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 412   }
 413 
 414   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
 415   compact_top += size;
 416 
 417   // we need to update the offset table so that the beginnings of objects can be
 418   // found during scavenge.  Note that we are updating the offset table based on
 419   // where the object will be once the compaction phase finishes.
 420   if (compact_top > cp->threshold)
 421     cp->threshold =
 422       cp->space->cross_threshold(compact_top - size, compact_top);
 423   return compact_top;
 424 }
 425 
 426 
 427 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
 428                                         HeapWord* q, size_t deadlength) {
 429   if (allowed_deadspace_words >= deadlength) {
 430     allowed_deadspace_words -= deadlength;
 431     CollectedHeap::fill_with_object(q, deadlength);
 432     oop(q)->set_mark(oop(q)->mark()->set_marked());
 433     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 434     // Recall that we required "q == compaction_top".
 435     return true;
 436   } else {
 437     allowed_deadspace_words = 0;
 438     return false;
 439   }
 440 }
 441 
 442 #define block_is_always_obj(q) true
 443 #define obj_size(q) oop(q)->size()
 444 #define adjust_obj_size(s) s
 445 
 446 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
 447   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
 448 }
 449 
 450 // Faster object search.
 451 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 452   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
 453 }
 454 
 455 void Space::adjust_pointers() {
 456   // adjust all the interior pointers to point at the new locations of objects
 457   // Used by MarkSweep::mark_sweep_phase3()
 458 
 459   // First check to see if there is any work to be done.
 460   if (used() == 0) {
 461     return;  // Nothing to do.
 462   }
 463 
 464   // Otherwise...
 465   HeapWord* q = bottom();
 466   HeapWord* t = end();
 467 
 468   debug_only(HeapWord* prev_q = NULL);
 469   while (q < t) {
 470     if (oop(q)->is_gc_marked()) {
 471       // q is alive
 472 
 473       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
 474       // point all the oops to the new location
 475       size_t size = oop(q)->adjust_pointers();
 476       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
 477 
 478       debug_only(prev_q = q);
 479       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
 480 
 481       q += size;
 482     } else {
 483       // q is not a live object.  But we're not in a compactible space,
 484       // So we don't have live ranges.
 485       debug_only(prev_q = q);
 486       q += block_size(q);
 487       assert(q > prev_q, "we should be moving forward through memory");
 488     }
 489   }
 490   assert(q == t, "just checking");
 491 }
 492 
 493 void CompactibleSpace::adjust_pointers() {
 494   // Check first is there is any work to do.
 495   if (used() == 0) {
 496     return;   // Nothing to do.
 497   }
 498 
 499   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
 500 }
 501 
 502 void CompactibleSpace::compact() {
 503   SCAN_AND_COMPACT(obj_size);
 504 }
 505 
 506 void Space::print_short() const { print_short_on(tty); }
 507 
 508 void Space::print_short_on(outputStream* st) const {
 509   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 510               (int) ((double) used() * 100 / capacity()));
 511 }
 512 
 513 void Space::print() const { print_on(tty); }
 514 
 515 void Space::print_on(outputStream* st) const {
 516   print_short_on(st);
 517   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 518                 bottom(), end());
 519 }
 520 
 521 void ContiguousSpace::print_on(outputStream* st) const {
 522   print_short_on(st);
 523   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 524                 bottom(), top(), end());
 525 }
 526 
 527 void OffsetTableContigSpace::print_on(outputStream* st) const {
 528   print_short_on(st);
 529   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 530                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 531               bottom(), top(), _offsets.threshold(), end());
 532 }
 533 
 534 void ContiguousSpace::verify() const {
 535   HeapWord* p = bottom();
 536   HeapWord* t = top();
 537   HeapWord* prev_p = NULL;
 538   while (p < t) {
 539     oop(p)->verify();
 540     prev_p = p;
 541     p += oop(p)->size();
 542   }
 543   guarantee(p == top(), "end of last object must match end of space");
 544   if (top() != end()) {
 545     guarantee(top() == block_start_const(end()-1) &&
 546               top() == block_start_const(top()),
 547               "top should be start of unallocated block, if it exists");
 548   }
 549 }
 550 
 551 void Space::oop_iterate(ExtendedOopClosure* blk) {
 552   ObjectToOopClosure blk2(blk);
 553   object_iterate(&blk2);
 554 }
 555 
 556 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
 557   guarantee(false, "NYI");
 558   return bottom();
 559 }
 560 
 561 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
 562                                           ObjectClosureCareful* cl) {
 563   guarantee(false, "NYI");
 564   return bottom();
 565 }
 566 
 567 
 568 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
 569   assert(!mr.is_empty(), "Should be non-empty");
 570   // We use MemRegion(bottom(), end()) rather than used_region() below
 571   // because the two are not necessarily equal for some kinds of
 572   // spaces, in particular, certain kinds of free list spaces.
 573   // We could use the more complicated but more precise:
 574   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
 575   // but the slight imprecision seems acceptable in the assertion check.
 576   assert(MemRegion(bottom(), end()).contains(mr),
 577          "Should be within used space");
 578   HeapWord* prev = cl->previous();   // max address from last time
 579   if (prev >= mr.end()) { // nothing to do
 580     return;
 581   }
 582   // This assert will not work when we go from cms space to perm
 583   // space, and use same closure. Easy fix deferred for later. XXX YSR
 584   // assert(prev == NULL || contains(prev), "Should be within space");
 585 
 586   bool last_was_obj_array = false;
 587   HeapWord *blk_start_addr, *region_start_addr;
 588   if (prev > mr.start()) {
 589     region_start_addr = prev;
 590     blk_start_addr    = prev;
 591     // The previous invocation may have pushed "prev" beyond the
 592     // last allocated block yet there may be still be blocks
 593     // in this region due to a particular coalescing policy.
 594     // Relax the assertion so that the case where the unallocated
 595     // block is maintained and "prev" is beyond the unallocated
 596     // block does not cause the assertion to fire.
 597     assert((BlockOffsetArrayUseUnallocatedBlock &&
 598             (!is_in(prev))) ||
 599            (blk_start_addr == block_start(region_start_addr)), "invariant");
 600   } else {
 601     region_start_addr = mr.start();
 602     blk_start_addr    = block_start(region_start_addr);
 603   }
 604   HeapWord* region_end_addr = mr.end();
 605   MemRegion derived_mr(region_start_addr, region_end_addr);
 606   while (blk_start_addr < region_end_addr) {
 607     const size_t size = block_size(blk_start_addr);
 608     if (block_is_obj(blk_start_addr)) {
 609       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
 610     } else {
 611       last_was_obj_array = false;
 612     }
 613     blk_start_addr += size;
 614   }
 615   if (!last_was_obj_array) {
 616     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
 617            "Should be within (closed) used space");
 618     assert(blk_start_addr > prev, "Invariant");
 619     cl->set_previous(blk_start_addr); // min address for next time
 620   }
 621 }
 622 
 623 bool Space::obj_is_alive(const HeapWord* p) const {
 624   assert (block_is_obj(p), "The address should point to an object");
 625   return true;
 626 }
 627 
 628 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
 629   assert(!mr.is_empty(), "Should be non-empty");
 630   assert(used_region().contains(mr), "Should be within used space");
 631   HeapWord* prev = cl->previous();   // max address from last time
 632   if (prev >= mr.end()) { // nothing to do
 633     return;
 634   }
 635   // See comment above (in more general method above) in case you
 636   // happen to use this method.
 637   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
 638 
 639   bool last_was_obj_array = false;
 640   HeapWord *obj_start_addr, *region_start_addr;
 641   if (prev > mr.start()) {
 642     region_start_addr = prev;
 643     obj_start_addr    = prev;
 644     assert(obj_start_addr == block_start(region_start_addr), "invariant");
 645   } else {
 646     region_start_addr = mr.start();
 647     obj_start_addr    = block_start(region_start_addr);
 648   }
 649   HeapWord* region_end_addr = mr.end();
 650   MemRegion derived_mr(region_start_addr, region_end_addr);
 651   while (obj_start_addr < region_end_addr) {
 652     oop obj = oop(obj_start_addr);
 653     const size_t size = obj->size();
 654     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
 655     obj_start_addr += size;
 656   }
 657   if (!last_was_obj_array) {
 658     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
 659            "Should be within (closed) used space");
 660     assert(obj_start_addr > prev, "Invariant");
 661     cl->set_previous(obj_start_addr); // min address for next time
 662   }
 663 }
 664 
 665 #ifndef SERIALGC
 666 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 667                                                                             \
 668   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 669     HeapWord* obj_addr = mr.start();                                        \
 670     HeapWord* t = mr.end();                                                 \
 671     while (obj_addr < t) {                                                  \
 672       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
 673       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
 674     }                                                                       \
 675   }
 676 
 677   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 678 
 679 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 680 #endif // SERIALGC
 681 
 682 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 683   if (is_empty()) return;
 684   HeapWord* obj_addr = bottom();
 685   HeapWord* t = top();
 686   // Could call objects iterate, but this is easier.
 687   while (obj_addr < t) {
 688     obj_addr += oop(obj_addr)->oop_iterate(blk);
 689   }
 690 }
 691 
 692 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
 693   if (is_empty()) {
 694     return;
 695   }
 696   MemRegion cur = MemRegion(bottom(), top());
 697   mr = mr.intersection(cur);
 698   if (mr.is_empty()) {
 699     return;
 700   }
 701   if (mr.equals(cur)) {
 702     oop_iterate(blk);
 703     return;
 704   }
 705   assert(mr.end() <= top(), "just took an intersection above");
 706   HeapWord* obj_addr = block_start(mr.start());
 707   HeapWord* t = mr.end();
 708 
 709   // Handle first object specially.
 710   oop obj = oop(obj_addr);
 711   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
 712   obj_addr += obj->oop_iterate(&smr_blk);
 713   while (obj_addr < t) {
 714     oop obj = oop(obj_addr);
 715     assert(obj->is_oop(), "expected an oop");
 716     obj_addr += obj->size();
 717     // If "obj_addr" is not greater than top, then the
 718     // entire object "obj" is within the region.
 719     if (obj_addr <= t) {
 720       obj->oop_iterate(blk);
 721     } else {
 722       // "obj" extends beyond end of region
 723       obj->oop_iterate(&smr_blk);
 724       break;
 725     }
 726   };
 727 }
 728 
 729 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 730   if (is_empty()) return;
 731   WaterMark bm = bottom_mark();
 732   object_iterate_from(bm, blk);
 733 }
 734 
 735 // For a continguous space object_iterate() and safe_object_iterate()
 736 // are the same.
 737 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 738   object_iterate(blk);
 739 }
 740 
 741 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
 742   assert(mark.space() == this, "Mark does not match space");
 743   HeapWord* p = mark.point();
 744   while (p < top()) {
 745     blk->do_object(oop(p));
 746     p += oop(p)->size();
 747   }
 748 }
 749 
 750 HeapWord*
 751 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 752   HeapWord * limit = concurrent_iteration_safe_limit();
 753   assert(limit <= top(), "sanity check");
 754   for (HeapWord* p = bottom(); p < limit;) {
 755     size_t size = blk->do_object_careful(oop(p));
 756     if (size == 0) {
 757       return p;  // failed at p
 758     } else {
 759       p += size;
 760     }
 761   }
 762   return NULL; // all done
 763 }
 764 
 765 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 766                                                                           \
 767 void ContiguousSpace::                                                    \
 768 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 769   HeapWord* t;                                                            \
 770   HeapWord* p = saved_mark_word();                                        \
 771   assert(p != NULL, "expected saved mark");                               \
 772                                                                           \
 773   const intx interval = PrefetchScanIntervalInBytes;                      \
 774   do {                                                                    \
 775     t = top();                                                            \
 776     while (p < t) {                                                       \
 777       Prefetch::write(p, interval);                                       \
 778       debug_only(HeapWord* prev = p);                                     \
 779       oop m = oop(p);                                                     \
 780       p += m->oop_iterate(blk);                                           \
 781     }                                                                     \
 782   } while (t < top());                                                    \
 783                                                                           \
 784   set_saved_mark_word(p);                                                 \
 785 }
 786 
 787 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 788 
 789 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 790 
 791 // Very general, slow implementation.
 792 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 793   assert(MemRegion(bottom(), end()).contains(p),
 794          err_msg("p ("PTR_FORMAT") not in space ["PTR_FORMAT", "PTR_FORMAT")",
 795                   p, bottom(), end()));
 796   if (p >= top()) {
 797     return top();
 798   } else {
 799     HeapWord* last = bottom();
 800     HeapWord* cur = last;
 801     while (cur <= p) {
 802       last = cur;
 803       cur += oop(cur)->size();
 804     }
 805     assert(oop(last)->is_oop(),
 806            err_msg(PTR_FORMAT" should be an object start", last));
 807     return last;
 808   }
 809 }
 810 
 811 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 812   assert(MemRegion(bottom(), end()).contains(p),
 813          err_msg("p ("PTR_FORMAT") not in space ["PTR_FORMAT", "PTR_FORMAT")",
 814                   p, bottom(), end()));
 815   HeapWord* current_top = top();
 816   assert(p <= current_top,
 817          err_msg("p > current top - p: "PTR_FORMAT", current top: "PTR_FORMAT,
 818                   p, current_top));
 819   assert(p == current_top || oop(p)->is_oop(),
 820          err_msg("p ("PTR_FORMAT") is not a block start - "
 821                  "current_top: "PTR_FORMAT", is_oop: %s",
 822                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
 823   if (p < current_top) {
 824     return oop(p)->size();
 825   } else {
 826     assert(p == current_top, "just checking");
 827     return pointer_delta(end(), (HeapWord*) p);
 828   }
 829 }
 830 
 831 // This version requires locking.
 832 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
 833                                                 HeapWord* const end_value) {
 834   // In G1 there are places where a GC worker can allocates into a
 835   // region using this serial allocation code without being prone to a
 836   // race with other GC workers (we ensure that no other GC worker can
 837   // access the same region at the same time). So the assert below is
 838   // too strong in the case of G1.
 839   assert(Heap_lock->owned_by_self() ||
 840          (SafepointSynchronize::is_at_safepoint() &&
 841                                (Thread::current()->is_VM_thread() || UseG1GC)),
 842          "not locked");
 843   HeapWord* obj = top();
 844   if (pointer_delta(end_value, obj) >= size) {
 845     HeapWord* new_top = obj + size;
 846     set_top(new_top);
 847     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 848     return obj;
 849   } else {
 850     return NULL;
 851   }
 852 }
 853 
 854 // This version is lock-free.
 855 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
 856                                                     HeapWord* const end_value) {
 857   do {
 858     HeapWord* obj = top();
 859     if (pointer_delta(end_value, obj) >= size) {
 860       HeapWord* new_top = obj + size;
 861       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 862       // result can be one of two:
 863       //  the old top value: the exchange succeeded
 864       //  otherwise: the new value of the top is returned.
 865       if (result == obj) {
 866         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 867         return obj;
 868       }
 869     } else {
 870       return NULL;
 871     }
 872   } while (true);
 873 }
 874 
 875 // Requires locking.
 876 HeapWord* ContiguousSpace::allocate(size_t size) {
 877   return allocate_impl(size, end());
 878 }
 879 
 880 // Lock-free.
 881 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 882   return par_allocate_impl(size, end());
 883 }
 884 
 885 void ContiguousSpace::allocate_temporary_filler(int factor) {
 886   // allocate temporary type array decreasing free size with factor 'factor'
 887   assert(factor >= 0, "just checking");
 888   size_t size = pointer_delta(end(), top());
 889 
 890   // if space is full, return
 891   if (size == 0) return;
 892 
 893   if (factor > 0) {
 894     size -= size/factor;
 895   }
 896   size = align_object_size(size);
 897 
 898   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 899   if (size >= (size_t)align_object_size(array_header_size)) {
 900     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 901     // allocate uninitialized int array
 902     typeArrayOop t = (typeArrayOop) allocate(size);
 903     assert(t != NULL, "allocation should succeed");
 904     t->set_mark(markOopDesc::prototype());
 905     t->set_klass(Universe::intArrayKlassObj());
 906     t->set_length((int)length);
 907   } else {
 908     assert(size == CollectedHeap::min_fill_size(),
 909            "size for smallest fake object doesn't match");
 910     instanceOop obj = (instanceOop) allocate(size);
 911     obj->set_mark(markOopDesc::prototype());
 912     obj->set_klass_gap(0);
 913     obj->set_klass(SystemDictionary::Object_klass());
 914   }
 915 }
 916 
 917 void EdenSpace::clear(bool mangle_space) {
 918   ContiguousSpace::clear(mangle_space);
 919   set_soft_end(end());
 920 }
 921 
 922 // Requires locking.
 923 HeapWord* EdenSpace::allocate(size_t size) {
 924   return allocate_impl(size, soft_end());
 925 }
 926 
 927 // Lock-free.
 928 HeapWord* EdenSpace::par_allocate(size_t size) {
 929   return par_allocate_impl(size, soft_end());
 930 }
 931 
 932 HeapWord* ConcEdenSpace::par_allocate(size_t size)
 933 {
 934   do {
 935     // The invariant is top() should be read before end() because
 936     // top() can't be greater than end(), so if an update of _soft_end
 937     // occurs between 'end_val = end();' and 'top_val = top();' top()
 938     // also can grow up to the new end() and the condition
 939     // 'top_val > end_val' is true. To ensure the loading order
 940     // OrderAccess::loadload() is required after top() read.
 941     HeapWord* obj = top();
 942     OrderAccess::loadload();
 943     if (pointer_delta(*soft_end_addr(), obj) >= size) {
 944       HeapWord* new_top = obj + size;
 945       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 946       // result can be one of two:
 947       //  the old top value: the exchange succeeded
 948       //  otherwise: the new value of the top is returned.
 949       if (result == obj) {
 950         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 951         return obj;
 952       }
 953     } else {
 954       return NULL;
 955     }
 956   } while (true);
 957 }
 958 
 959 
 960 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 961   return _offsets.initialize_threshold();
 962 }
 963 
 964 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 965   _offsets.alloc_block(start, end);
 966   return _offsets.threshold();
 967 }
 968 
 969 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 970                                                MemRegion mr) :
 971   _offsets(sharedOffsetArray, mr),
 972   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 973 {
 974   _offsets.set_contig_space(this);
 975   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 976 }
 977 
 978 #define OBJ_SAMPLE_INTERVAL 0
 979 #define BLOCK_SAMPLE_INTERVAL 100
 980 
 981 void OffsetTableContigSpace::verify() const {
 982   HeapWord* p = bottom();
 983   HeapWord* prev_p = NULL;
 984   int objs = 0;
 985   int blocks = 0;
 986 
 987   if (VerifyObjectStartArray) {
 988     _offsets.verify();
 989   }
 990 
 991   while (p < top()) {
 992     size_t size = oop(p)->size();
 993     // For a sampling of objects in the space, find it using the
 994     // block offset table.
 995     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 996       guarantee(p == block_start_const(p + (size/2)),
 997                 "check offset computation");
 998       blocks = 0;
 999     } else {
1000       blocks++;
1001     }
1002 
1003     if (objs == OBJ_SAMPLE_INTERVAL) {
1004       oop(p)->verify();
1005       objs = 0;
1006     } else {
1007       objs++;
1008     }
1009     prev_p = p;
1010     p += size;
1011   }
1012   guarantee(p == top(), "end of last object must match end of space");
1013 }
1014 
1015 
1016 size_t TenuredSpace::allowed_dead_ratio() const {
1017   return MarkSweepDeadRatio;
1018 }