1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegionSets.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  35 
  36 // Closure used by CM during concurrent reference discovery
  37 // and reference processing (during remarking) to determine
  38 // if a particular object is alive. It is primarily used
  39 // to determine if referents of discovered reference objects
  40 // are alive. An instance is also embedded into the
  41 // reference processor as the _is_alive_non_header field
  42 class G1CMIsAliveClosure: public BoolObjectClosure {
  43   G1CollectedHeap* _g1;
  44  public:
  45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  46 
  47   void do_object(oop obj) {
  48     ShouldNotCallThis();
  49   }
  50   bool do_object_b(oop obj);
  51 };
  52 
  53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  54 // class, with one bit per (1<<_shifter) HeapWords.
  55 
  56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  57  protected:
  58   HeapWord* _bmStartWord;      // base address of range covered by map
  59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  60   const int _shifter;          // map to char or bit
  61   VirtualSpace _virtual_space; // underlying the bit map
  62   BitMap    _bm;               // the bit map itself
  63 
  64  public:
  65   // constructor
  66   CMBitMapRO(int shifter);
  67 
  68   enum { do_yield = true };
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   size_t    sizeInWords() const { return _bmWordSize;  }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86   inline bool iterate(BitMapClosure* cl);
  87 
  88   // Return the address corresponding to the next marked bit at or after
  89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  92                                      HeapWord* limit = NULL) const;
  93   // Return the address corresponding to the next unmarked bit at or after
  94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  97                                        HeapWord* limit = NULL) const;
  98 
  99   // conversion utilities
 100   // XXX Fix these so that offsets are size_t's...
 101   HeapWord* offsetToHeapWord(size_t offset) const {
 102     return _bmStartWord + (offset << _shifter);
 103   }
 104   size_t heapWordToOffset(HeapWord* addr) const {
 105     return pointer_delta(addr, _bmStartWord) >> _shifter;
 106   }
 107   int heapWordDiffToOffsetDiff(size_t diff) const;
 108   HeapWord* nextWord(HeapWord* addr) {
 109     return offsetToHeapWord(heapWordToOffset(addr) + 1);
 110   }
 111 
 112   // debugging
 113   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 114 };
 115 
 116 class CMBitMap : public CMBitMapRO {
 117 
 118  public:
 119   // constructor
 120   CMBitMap(int shifter) :
 121     CMBitMapRO(shifter) {}
 122 
 123   // Allocates the back store for the marking bitmap
 124   bool allocate(ReservedSpace heap_rs);
 125 
 126   // write marks
 127   void mark(HeapWord* addr) {
 128     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 129            "outside underlying space?");
 130     _bm.set_bit(heapWordToOffset(addr));
 131   }
 132   void clear(HeapWord* addr) {
 133     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 134            "outside underlying space?");
 135     _bm.clear_bit(heapWordToOffset(addr));
 136   }
 137   bool parMark(HeapWord* addr) {
 138     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 139            "outside underlying space?");
 140     return _bm.par_set_bit(heapWordToOffset(addr));
 141   }
 142   bool parClear(HeapWord* addr) {
 143     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 144            "outside underlying space?");
 145     return _bm.par_clear_bit(heapWordToOffset(addr));
 146   }
 147   void markRange(MemRegion mr);
 148   void clearAll();
 149   void clearRange(MemRegion mr);
 150 
 151   // Starting at the bit corresponding to "addr" (inclusive), find the next
 152   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 153   // the end of this run (stopping at "end_addr").  Return the MemRegion
 154   // covering from the start of the region corresponding to the first bit
 155   // of the run to the end of the region corresponding to the last bit of
 156   // the run.  If there is no "1" bit at or after "addr", return an empty
 157   // MemRegion.
 158   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 159 };
 160 
 161 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 162 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 163   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 164   ConcurrentMark* _cm;
 165   oop*   _base;        // bottom of stack
 166   jint _index;       // one more than last occupied index
 167   jint _capacity;    // max #elements
 168   jint _saved_index; // value of _index saved at start of GC
 169   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
 170 
 171   bool  _overflow;
 172   bool  _should_expand;
 173   DEBUG_ONLY(bool _drain_in_progress;)
 174   DEBUG_ONLY(bool _drain_in_progress_yields;)
 175 
 176  public:
 177   CMMarkStack(ConcurrentMark* cm);
 178   ~CMMarkStack();
 179 
 180 #ifndef PRODUCT
 181   jint max_depth() const {
 182     return _max_depth;
 183   }
 184 #endif
 185 
 186   bool allocate(size_t capacity);
 187 
 188   oop pop() {
 189     if (!isEmpty()) {
 190       return _base[--_index] ;
 191     }
 192     return NULL;
 193   }
 194 
 195   // If overflow happens, don't do the push, and record the overflow.
 196   // *Requires* that "ptr" is already marked.
 197   void push(oop ptr) {
 198     if (isFull()) {
 199       // Record overflow.
 200       _overflow = true;
 201       return;
 202     } else {
 203       _base[_index++] = ptr;
 204       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 205     }
 206   }
 207   // Non-block impl.  Note: concurrency is allowed only with other
 208   // "par_push" operations, not with "pop" or "drain".  We would need
 209   // parallel versions of them if such concurrency was desired.
 210   void par_push(oop ptr);
 211 
 212   // Pushes the first "n" elements of "ptr_arr" on the stack.
 213   // Non-block impl.  Note: concurrency is allowed only with other
 214   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 215   void par_adjoin_arr(oop* ptr_arr, int n);
 216 
 217   // Pushes the first "n" elements of "ptr_arr" on the stack.
 218   // Locking impl: concurrency is allowed only with
 219   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 220   // locking strategy.
 221   void par_push_arr(oop* ptr_arr, int n);
 222 
 223   // If returns false, the array was empty.  Otherwise, removes up to "max"
 224   // elements from the stack, and transfers them to "ptr_arr" in an
 225   // unspecified order.  The actual number transferred is given in "n" ("n
 226   // == 0" is deliberately redundant with the return value.)  Locking impl:
 227   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 228   // operations, which use the same locking strategy.
 229   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 230 
 231   // Drain the mark stack, applying the given closure to all fields of
 232   // objects on the stack.  (That is, continue until the stack is empty,
 233   // even if closure applications add entries to the stack.)  The "bm"
 234   // argument, if non-null, may be used to verify that only marked objects
 235   // are on the mark stack.  If "yield_after" is "true", then the
 236   // concurrent marker performing the drain offers to yield after
 237   // processing each object.  If a yield occurs, stops the drain operation
 238   // and returns false.  Otherwise, returns true.
 239   template<class OopClosureClass>
 240   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 241 
 242   bool isEmpty()    { return _index == 0; }
 243   bool isFull()     { return _index == _capacity; }
 244   int  maxElems()   { return _capacity; }
 245 
 246   bool overflow() { return _overflow; }
 247   void clear_overflow() { _overflow = false; }
 248 
 249   bool should_expand() const { return _should_expand; }
 250   void set_should_expand();
 251 
 252   // Expand the stack, typically in response to an overflow condition
 253   void expand();
 254 
 255   int  size() { return _index; }
 256 
 257   void setEmpty()   { _index = 0; clear_overflow(); }
 258 
 259   // Record the current index.
 260   void note_start_of_gc();
 261 
 262   // Make sure that we have not added any entries to the stack during GC.
 263   void note_end_of_gc();
 264 
 265   // iterate over the oops in the mark stack, up to the bound recorded via
 266   // the call above.
 267   void oops_do(OopClosure* f);
 268 };
 269 
 270 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 271 private:
 272 #ifndef PRODUCT
 273   uintx _num_remaining;
 274   bool _force;
 275 #endif // !defined(PRODUCT)
 276 
 277 public:
 278   void init() PRODUCT_RETURN;
 279   void update() PRODUCT_RETURN;
 280   bool should_force() PRODUCT_RETURN_( return false; );
 281 };
 282 
 283 // this will enable a variety of different statistics per GC task
 284 #define _MARKING_STATS_       0
 285 // this will enable the higher verbose levels
 286 #define _MARKING_VERBOSE_     0
 287 
 288 #if _MARKING_STATS_
 289 #define statsOnly(statement)  \
 290 do {                          \
 291   statement ;                 \
 292 } while (0)
 293 #else // _MARKING_STATS_
 294 #define statsOnly(statement)  \
 295 do {                          \
 296 } while (0)
 297 #endif // _MARKING_STATS_
 298 
 299 typedef enum {
 300   no_verbose  = 0,   // verbose turned off
 301   stats_verbose,     // only prints stats at the end of marking
 302   low_verbose,       // low verbose, mostly per region and per major event
 303   medium_verbose,    // a bit more detailed than low
 304   high_verbose       // per object verbose
 305 } CMVerboseLevel;
 306 
 307 class YoungList;
 308 
 309 // Root Regions are regions that are not empty at the beginning of a
 310 // marking cycle and which we might collect during an evacuation pause
 311 // while the cycle is active. Given that, during evacuation pauses, we
 312 // do not copy objects that are explicitly marked, what we have to do
 313 // for the root regions is to scan them and mark all objects reachable
 314 // from them. According to the SATB assumptions, we only need to visit
 315 // each object once during marking. So, as long as we finish this scan
 316 // before the next evacuation pause, we can copy the objects from the
 317 // root regions without having to mark them or do anything else to them.
 318 //
 319 // Currently, we only support root region scanning once (at the start
 320 // of the marking cycle) and the root regions are all the survivor
 321 // regions populated during the initial-mark pause.
 322 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 323 private:
 324   YoungList*           _young_list;
 325   ConcurrentMark*      _cm;
 326 
 327   volatile bool        _scan_in_progress;
 328   volatile bool        _should_abort;
 329   HeapRegion* volatile _next_survivor;
 330 
 331 public:
 332   CMRootRegions();
 333   // We actually do most of the initialization in this method.
 334   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 335 
 336   // Reset the claiming / scanning of the root regions.
 337   void prepare_for_scan();
 338 
 339   // Forces get_next() to return NULL so that the iteration aborts early.
 340   void abort() { _should_abort = true; }
 341 
 342   // Return true if the CM thread are actively scanning root regions,
 343   // false otherwise.
 344   bool scan_in_progress() { return _scan_in_progress; }
 345 
 346   // Claim the next root region to scan atomically, or return NULL if
 347   // all have been claimed.
 348   HeapRegion* claim_next();
 349 
 350   // Flag that we're done with root region scanning and notify anyone
 351   // who's waiting on it. If aborted is false, assume that all regions
 352   // have been claimed.
 353   void scan_finished();
 354 
 355   // If CM threads are still scanning root regions, wait until they
 356   // are done. Return true if we had to wait, false otherwise.
 357   bool wait_until_scan_finished();
 358 };
 359 
 360 class ConcurrentMarkThread;
 361 
 362 class ConcurrentMark: public CHeapObj<mtGC> {
 363   friend class CMMarkStack;
 364   friend class ConcurrentMarkThread;
 365   friend class CMTask;
 366   friend class CMBitMapClosure;
 367   friend class CMGlobalObjectClosure;
 368   friend class CMRemarkTask;
 369   friend class CMConcurrentMarkingTask;
 370   friend class G1ParNoteEndTask;
 371   friend class CalcLiveObjectsClosure;
 372   friend class G1CMRefProcTaskProxy;
 373   friend class G1CMRefProcTaskExecutor;
 374   friend class G1CMParKeepAliveAndDrainClosure;
 375   friend class G1CMParDrainMarkingStackClosure;
 376 
 377 protected:
 378   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 379   G1CollectedHeap*      _g1h;        // the heap.
 380   uint                  _parallel_marking_threads; // the number of marking
 381                                                    // threads we're use
 382   uint                  _max_parallel_marking_threads; // max number of marking
 383                                                    // threads we'll ever use
 384   double                _sleep_factor; // how much we have to sleep, with
 385                                        // respect to the work we just did, to
 386                                        // meet the marking overhead goal
 387   double                _marking_task_overhead; // marking target overhead for
 388                                                 // a single task
 389 
 390   // same as the two above, but for the cleanup task
 391   double                _cleanup_sleep_factor;
 392   double                _cleanup_task_overhead;
 393 
 394   FreeRegionList        _cleanup_list;
 395 
 396   // Concurrent marking support structures
 397   CMBitMap                _markBitMap1;
 398   CMBitMap                _markBitMap2;
 399   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 400   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 401 
 402   BitMap                  _region_bm;
 403   BitMap                  _card_bm;
 404 
 405   // Heap bounds
 406   HeapWord*               _heap_start;
 407   HeapWord*               _heap_end;
 408 
 409   // Root region tracking and claiming.
 410   CMRootRegions           _root_regions;
 411 
 412   // For gray objects
 413   CMMarkStack             _markStack; // Grey objects behind global finger.
 414   HeapWord* volatile      _finger;  // the global finger, region aligned,
 415                                     // always points to the end of the
 416                                     // last claimed region
 417 
 418   // marking tasks
 419   uint                    _max_worker_id;// maximum worker id
 420   uint                    _active_tasks; // task num currently active
 421   CMTask**                _tasks;        // task queue array (max_worker_id len)
 422   CMTaskQueueSet*         _task_queues;  // task queue set
 423   ParallelTaskTerminator  _terminator;   // for termination
 424 
 425   // Two sync barriers that are used to synchronise tasks when an
 426   // overflow occurs. The algorithm is the following. All tasks enter
 427   // the first one to ensure that they have all stopped manipulating
 428   // the global data structures. After they exit it, they re-initialise
 429   // their data structures and task 0 re-initialises the global data
 430   // structures. Then, they enter the second sync barrier. This
 431   // ensure, that no task starts doing work before all data
 432   // structures (local and global) have been re-initialised. When they
 433   // exit it, they are free to start working again.
 434   WorkGangBarrierSync     _first_overflow_barrier_sync;
 435   WorkGangBarrierSync     _second_overflow_barrier_sync;
 436 
 437   // this is set by any task, when an overflow on the global data
 438   // structures is detected.
 439   volatile bool           _has_overflown;
 440   // true: marking is concurrent, false: we're in remark
 441   volatile bool           _concurrent;
 442   // set at the end of a Full GC so that marking aborts
 443   volatile bool           _has_aborted;
 444 
 445   // used when remark aborts due to an overflow to indicate that
 446   // another concurrent marking phase should start
 447   volatile bool           _restart_for_overflow;
 448 
 449   // This is true from the very start of concurrent marking until the
 450   // point when all the tasks complete their work. It is really used
 451   // to determine the points between the end of concurrent marking and
 452   // time of remark.
 453   volatile bool           _concurrent_marking_in_progress;
 454 
 455   // verbose level
 456   CMVerboseLevel          _verbose_level;
 457 
 458   // All of these times are in ms.
 459   NumberSeq _init_times;
 460   NumberSeq _remark_times;
 461   NumberSeq   _remark_mark_times;
 462   NumberSeq   _remark_weak_ref_times;
 463   NumberSeq _cleanup_times;
 464   double    _total_counting_time;
 465   double    _total_rs_scrub_time;
 466 
 467   double*   _accum_task_vtime;   // accumulated task vtime
 468 
 469   FlexibleWorkGang* _parallel_workers;
 470 
 471   ForceOverflowSettings _force_overflow_conc;
 472   ForceOverflowSettings _force_overflow_stw;
 473 
 474   void weakRefsWork(bool clear_all_soft_refs);
 475 
 476   void swapMarkBitMaps();
 477 
 478   // It resets the global marking data structures, as well as the
 479   // task local ones; should be called during initial mark.
 480   void reset();
 481   
 482   // Resets all the marking data structures. Called when we have to restart
 483   // marking or when marking completes (via set_non_marking_state below).
 484   void reset_marking_state(bool clear_overflow = true);
 485 
 486   // We do this after we're done with marking so that the marking data
 487   // structures are initialised to a sensible and predictable state.
 488   void set_non_marking_state();
 489 
 490   // It should be called to indicate which phase we're in (concurrent
 491   // mark or remark) and how many threads are currently active.
 492   void set_phase(uint active_tasks, bool concurrent);
 493 
 494   // prints all gathered CM-related statistics
 495   void print_stats();
 496 
 497   bool cleanup_list_is_empty() {
 498     return _cleanup_list.is_empty();
 499   }
 500 
 501   // accessor methods
 502   uint parallel_marking_threads() { return _parallel_marking_threads; }
 503   uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
 504   double sleep_factor()             { return _sleep_factor; }
 505   double marking_task_overhead()    { return _marking_task_overhead;}
 506   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
 507   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
 508 
 509   HeapWord*               finger()        { return _finger;   }
 510   bool                    concurrent()    { return _concurrent; }
 511   uint                    active_tasks()  { return _active_tasks; }
 512   ParallelTaskTerminator* terminator()    { return &_terminator; }
 513 
 514   // It claims the next available region to be scanned by a marking
 515   // task/thread. It might return NULL if the next region is empty or
 516   // we have run out of regions. In the latter case, out_of_regions()
 517   // determines whether we've really run out of regions or the task
 518   // should call claim_region() again. This might seem a bit
 519   // awkward. Originally, the code was written so that claim_region()
 520   // either successfully returned with a non-empty region or there
 521   // were no more regions to be claimed. The problem with this was
 522   // that, in certain circumstances, it iterated over large chunks of
 523   // the heap finding only empty regions and, while it was working, it
 524   // was preventing the calling task to call its regular clock
 525   // method. So, this way, each task will spend very little time in
 526   // claim_region() and is allowed to call the regular clock method
 527   // frequently.
 528   HeapRegion* claim_region(uint worker_id);
 529 
 530   // It determines whether we've run out of regions to scan.
 531   bool        out_of_regions() { return _finger == _heap_end; }
 532 
 533   // Returns the task with the given id
 534   CMTask* task(int id) {
 535     assert(0 <= id && id < (int) _active_tasks,
 536            "task id not within active bounds");
 537     return _tasks[id];
 538   }
 539 
 540   // Returns the task queue with the given id
 541   CMTaskQueue* task_queue(int id) {
 542     assert(0 <= id && id < (int) _active_tasks,
 543            "task queue id not within active bounds");
 544     return (CMTaskQueue*) _task_queues->queue(id);
 545   }
 546 
 547   // Returns the task queue set
 548   CMTaskQueueSet* task_queues()  { return _task_queues; }
 549 
 550   // Access / manipulation of the overflow flag which is set to
 551   // indicate that the global stack has overflown
 552   bool has_overflown()           { return _has_overflown; }
 553   void set_has_overflown()       { _has_overflown = true; }
 554   void clear_has_overflown()     { _has_overflown = false; }
 555   bool restart_for_overflow()    { return _restart_for_overflow; }
 556 
 557   bool has_aborted()             { return _has_aborted; }
 558 
 559   // Methods to enter the two overflow sync barriers
 560   void enter_first_sync_barrier(uint worker_id);
 561   void enter_second_sync_barrier(uint worker_id);
 562 
 563   ForceOverflowSettings* force_overflow_conc() {
 564     return &_force_overflow_conc;
 565   }
 566 
 567   ForceOverflowSettings* force_overflow_stw() {
 568     return &_force_overflow_stw;
 569   }
 570 
 571   ForceOverflowSettings* force_overflow() {
 572     if (concurrent()) {
 573       return force_overflow_conc();
 574     } else {
 575       return force_overflow_stw();
 576     }
 577   }
 578 
 579   // Live Data Counting data structures...
 580   // These data structures are initialized at the start of
 581   // marking. They are written to while marking is active.
 582   // They are aggregated during remark; the aggregated values
 583   // are then used to populate the _region_bm, _card_bm, and
 584   // the total live bytes, which are then subsequently updated
 585   // during cleanup.
 586 
 587   // An array of bitmaps (one bit map per task). Each bitmap
 588   // is used to record the cards spanned by the live objects
 589   // marked by that task/worker.
 590   BitMap*  _count_card_bitmaps;
 591 
 592   // Used to record the number of marked live bytes
 593   // (for each region, by worker thread).
 594   size_t** _count_marked_bytes;
 595 
 596   // Card index of the bottom of the G1 heap. Used for biasing indices into
 597   // the card bitmaps.
 598   intptr_t _heap_bottom_card_num;
 599 
 600   // Set to true when initialization is complete
 601   bool _completed_initialization;
 602 
 603 public:
 604   // Manipulation of the global mark stack.
 605   // Notice that the first mark_stack_push is CAS-based, whereas the
 606   // two below are Mutex-based. This is OK since the first one is only
 607   // called during evacuation pauses and doesn't compete with the
 608   // other two (which are called by the marking tasks during
 609   // concurrent marking or remark).
 610   bool mark_stack_push(oop p) {
 611     _markStack.par_push(p);
 612     if (_markStack.overflow()) {
 613       set_has_overflown();
 614       return false;
 615     }
 616     return true;
 617   }
 618   bool mark_stack_push(oop* arr, int n) {
 619     _markStack.par_push_arr(arr, n);
 620     if (_markStack.overflow()) {
 621       set_has_overflown();
 622       return false;
 623     }
 624     return true;
 625   }
 626   void mark_stack_pop(oop* arr, int max, int* n) {
 627     _markStack.par_pop_arr(arr, max, n);
 628   }
 629   size_t mark_stack_size()                { return _markStack.size(); }
 630   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 631   bool mark_stack_overflow()              { return _markStack.overflow(); }
 632   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 633 
 634   CMRootRegions* root_regions() { return &_root_regions; }
 635 
 636   bool concurrent_marking_in_progress() {
 637     return _concurrent_marking_in_progress;
 638   }
 639   void set_concurrent_marking_in_progress() {
 640     _concurrent_marking_in_progress = true;
 641   }
 642   void clear_concurrent_marking_in_progress() {
 643     _concurrent_marking_in_progress = false;
 644   }
 645 
 646   void update_accum_task_vtime(int i, double vtime) {
 647     _accum_task_vtime[i] += vtime;
 648   }
 649 
 650   double all_task_accum_vtime() {
 651     double ret = 0.0;
 652     for (uint i = 0; i < _max_worker_id; ++i)
 653       ret += _accum_task_vtime[i];
 654     return ret;
 655   }
 656 
 657   // Attempts to steal an object from the task queues of other tasks
 658   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
 659     return _task_queues->steal(worker_id, hash_seed, obj);
 660   }
 661 
 662   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
 663   ~ConcurrentMark();
 664 
 665   ConcurrentMarkThread* cmThread() { return _cmThread; }
 666 
 667   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 668   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 669 
 670   // Returns the number of GC threads to be used in a concurrent
 671   // phase based on the number of GC threads being used in a STW
 672   // phase.
 673   uint scale_parallel_threads(uint n_par_threads);
 674 
 675   // Calculates the number of GC threads to be used in a concurrent phase.
 676   uint calc_parallel_marking_threads();
 677 
 678   // The following three are interaction between CM and
 679   // G1CollectedHeap
 680 
 681   // This notifies CM that a root during initial-mark needs to be
 682   // grayed. It is MT-safe. word_size is the size of the object in
 683   // words. It is passed explicitly as sometimes we cannot calculate
 684   // it from the given object because it might be in an inconsistent
 685   // state (e.g., in to-space and being copied). So the caller is
 686   // responsible for dealing with this issue (e.g., get the size from
 687   // the from-space image when the to-space image might be
 688   // inconsistent) and always passing the size. hr is the region that
 689   // contains the object and it's passed optionally from callers who
 690   // might already have it (no point in recalculating it).
 691   inline void grayRoot(oop obj, size_t word_size,
 692                        uint worker_id, HeapRegion* hr = NULL);
 693 
 694   // It iterates over the heap and for each object it comes across it
 695   // will dump the contents of its reference fields, as well as
 696   // liveness information for the object and its referents. The dump
 697   // will be written to a file with the following name:
 698   // G1PrintReachableBaseFile + "." + str.
 699   // vo decides whether the prev (vo == UsePrevMarking), the next
 700   // (vo == UseNextMarking) marking information, or the mark word
 701   // (vo == UseMarkWord) will be used to determine the liveness of
 702   // each object / referent.
 703   // If all is true, all objects in the heap will be dumped, otherwise
 704   // only the live ones. In the dump the following symbols / breviations
 705   // are used:
 706   //   M : an explicitly live object (its bitmap bit is set)
 707   //   > : an implicitly live object (over tams)
 708   //   O : an object outside the G1 heap (typically: in the perm gen)
 709   //   NOT : a reference field whose referent is not live
 710   //   AND MARKED : indicates that an object is both explicitly and
 711   //   implicitly live (it should be one or the other, not both)
 712   void print_reachable(const char* str,
 713                        VerifyOption vo, bool all) PRODUCT_RETURN;
 714 
 715   // Clear the next marking bitmap (will be called concurrently).
 716   void clearNextBitmap();
 717 
 718   // These two do the work that needs to be done before and after the
 719   // initial root checkpoint. Since this checkpoint can be done at two
 720   // different points (i.e. an explicit pause or piggy-backed on a
 721   // young collection), then it's nice to be able to easily share the
 722   // pre/post code. It might be the case that we can put everything in
 723   // the post method. TP
 724   void checkpointRootsInitialPre();
 725   void checkpointRootsInitialPost();
 726 
 727   // Scan all the root regions and mark everything reachable from
 728   // them.
 729   void scanRootRegions();
 730 
 731   // Scan a single root region and mark everything reachable from it.
 732   void scanRootRegion(HeapRegion* hr, uint worker_id);
 733 
 734   // Do concurrent phase of marking, to a tentative transitive closure.
 735   void markFromRoots();
 736 
 737   void checkpointRootsFinal(bool clear_all_soft_refs);
 738   void checkpointRootsFinalWork();
 739   void cleanup();
 740   void completeCleanup();
 741 
 742   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 743   // this carefully!
 744   inline void markPrev(oop p);
 745 
 746   // Clears marks for all objects in the given range, for the prev,
 747   // next, or both bitmaps.  NB: the previous bitmap is usually
 748   // read-only, so use this carefully!
 749   void clearRangePrevBitmap(MemRegion mr);
 750   void clearRangeNextBitmap(MemRegion mr);
 751   void clearRangeBothBitmaps(MemRegion mr);
 752 
 753   // Notify data structures that a GC has started.
 754   void note_start_of_gc() {
 755     _markStack.note_start_of_gc();
 756   }
 757 
 758   // Notify data structures that a GC is finished.
 759   void note_end_of_gc() {
 760     _markStack.note_end_of_gc();
 761   }
 762 
 763   // Verify that there are no CSet oops on the stacks (taskqueues /
 764   // global mark stack), enqueued SATB buffers, per-thread SATB
 765   // buffers, and fingers (global / per-task). The boolean parameters
 766   // decide which of the above data structures to verify. If marking
 767   // is not in progress, it's a no-op.
 768   void verify_no_cset_oops(bool verify_stacks,
 769                            bool verify_enqueued_buffers,
 770                            bool verify_thread_buffers,
 771                            bool verify_fingers) PRODUCT_RETURN;
 772 
 773   // It is called at the end of an evacuation pause during marking so
 774   // that CM is notified of where the new end of the heap is. It
 775   // doesn't do anything if concurrent_marking_in_progress() is false,
 776   // unless the force parameter is true.
 777   void update_g1_committed(bool force = false);
 778 
 779   bool isMarked(oop p) const {
 780     assert(p != NULL && p->is_oop(), "expected an oop");
 781     HeapWord* addr = (HeapWord*)p;
 782     assert(addr >= _nextMarkBitMap->startWord() ||
 783            addr < _nextMarkBitMap->endWord(), "in a region");
 784 
 785     return _nextMarkBitMap->isMarked(addr);
 786   }
 787 
 788   inline bool not_yet_marked(oop p) const;
 789 
 790   // XXX Debug code
 791   bool containing_card_is_marked(void* p);
 792   bool containing_cards_are_marked(void* start, void* last);
 793 
 794   bool isPrevMarked(oop p) const {
 795     assert(p != NULL && p->is_oop(), "expected an oop");
 796     HeapWord* addr = (HeapWord*)p;
 797     assert(addr >= _prevMarkBitMap->startWord() ||
 798            addr < _prevMarkBitMap->endWord(), "in a region");
 799 
 800     return _prevMarkBitMap->isMarked(addr);
 801   }
 802 
 803   inline bool do_yield_check(uint worker_i = 0);
 804   inline bool should_yield();
 805 
 806   // Called to abort the marking cycle after a Full GC takes palce.
 807   void abort();
 808 
 809   // This prints the global/local fingers. It is used for debugging.
 810   NOT_PRODUCT(void print_finger();)
 811 
 812   void print_summary_info();
 813 
 814   void print_worker_threads_on(outputStream* st) const;
 815 
 816   // The following indicate whether a given verbose level has been
 817   // set. Notice that anything above stats is conditional to
 818   // _MARKING_VERBOSE_ having been set to 1
 819   bool verbose_stats() {
 820     return _verbose_level >= stats_verbose;
 821   }
 822   bool verbose_low() {
 823     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 824   }
 825   bool verbose_medium() {
 826     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 827   }
 828   bool verbose_high() {
 829     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 830   }
 831 
 832   // Liveness counting
 833 
 834   // Utility routine to set an exclusive range of cards on the given
 835   // card liveness bitmap
 836   inline void set_card_bitmap_range(BitMap* card_bm,
 837                                     BitMap::idx_t start_idx,
 838                                     BitMap::idx_t end_idx,
 839                                     bool is_par);
 840 
 841   // Returns the card number of the bottom of the G1 heap.
 842   // Used in biasing indices into accounting card bitmaps.
 843   intptr_t heap_bottom_card_num() const {
 844     return _heap_bottom_card_num;
 845   }
 846 
 847   // Returns the card bitmap for a given task or worker id.
 848   BitMap* count_card_bitmap_for(uint worker_id) {
 849     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
 850     assert(_count_card_bitmaps != NULL, "uninitialized");
 851     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 852     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 853     return task_card_bm;
 854   }
 855 
 856   // Returns the array containing the marked bytes for each region,
 857   // for the given worker or task id.
 858   size_t* count_marked_bytes_array_for(uint worker_id) {
 859     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
 860     assert(_count_marked_bytes != NULL, "uninitialized");
 861     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 862     assert(marked_bytes_array != NULL, "uninitialized");
 863     return marked_bytes_array;
 864   }
 865 
 866   // Returns the index in the liveness accounting card table bitmap
 867   // for the given address
 868   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 869 
 870   // Counts the size of the given memory region in the the given
 871   // marked_bytes array slot for the given HeapRegion.
 872   // Sets the bits in the given card bitmap that are associated with the
 873   // cards that are spanned by the memory region.
 874   inline void count_region(MemRegion mr, HeapRegion* hr,
 875                            size_t* marked_bytes_array,
 876                            BitMap* task_card_bm);
 877 
 878   // Counts the given memory region in the task/worker counting
 879   // data structures for the given worker id.
 880   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 881 
 882   // Counts the given memory region in the task/worker counting
 883   // data structures for the given worker id.
 884   inline void count_region(MemRegion mr, uint worker_id);
 885 
 886   // Counts the given object in the given task/worker counting
 887   // data structures.
 888   inline void count_object(oop obj, HeapRegion* hr,
 889                            size_t* marked_bytes_array,
 890                            BitMap* task_card_bm);
 891 
 892   // Counts the given object in the task/worker counting data
 893   // structures for the given worker id.
 894   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
 895 
 896   // Attempts to mark the given object and, if successful, counts
 897   // the object in the given task/worker counting structures.
 898   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
 899                                  size_t* marked_bytes_array,
 900                                  BitMap* task_card_bm);
 901 
 902   // Attempts to mark the given object and, if successful, counts
 903   // the object in the task/worker counting structures for the
 904   // given worker id.
 905   inline bool par_mark_and_count(oop obj, size_t word_size,
 906                                  HeapRegion* hr, uint worker_id);
 907 
 908   // Attempts to mark the given object and, if successful, counts
 909   // the object in the task/worker counting structures for the
 910   // given worker id.
 911   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
 912 
 913   // Similar to the above routine but we don't know the heap region that
 914   // contains the object to be marked/counted, which this routine looks up.
 915   inline bool par_mark_and_count(oop obj, uint worker_id);
 916 
 917   // Similar to the above routine but there are times when we cannot
 918   // safely calculate the size of obj due to races and we, therefore,
 919   // pass the size in as a parameter. It is the caller's reponsibility
 920   // to ensure that the size passed in for obj is valid.
 921   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
 922 
 923   // Unconditionally mark the given object, and unconditinally count
 924   // the object in the counting structures for worker id 0.
 925   // Should *not* be called from parallel code.
 926   inline bool mark_and_count(oop obj, HeapRegion* hr);
 927 
 928   // Similar to the above routine but we don't know the heap region that
 929   // contains the object to be marked/counted, which this routine looks up.
 930   // Should *not* be called from parallel code.
 931   inline bool mark_and_count(oop obj);
 932 
 933   // Returns true if initialization was successfully completed.
 934   bool completed_initialization() const {
 935     return _completed_initialization;
 936   }
 937 
 938 protected:
 939   // Clear all the per-task bitmaps and arrays used to store the
 940   // counting data.
 941   void clear_all_count_data();
 942 
 943   // Aggregates the counting data for each worker/task
 944   // that was constructed while marking. Also sets
 945   // the amount of marked bytes for each region and
 946   // the top at concurrent mark count.
 947   void aggregate_count_data();
 948 
 949   // Verification routine
 950   void verify_count_data();
 951 };
 952 
 953 // A class representing a marking task.
 954 class CMTask : public TerminatorTerminator {
 955 private:
 956   enum PrivateConstants {
 957     // the regular clock call is called once the scanned words reaches
 958     // this limit
 959     words_scanned_period          = 12*1024,
 960     // the regular clock call is called once the number of visited
 961     // references reaches this limit
 962     refs_reached_period           = 384,
 963     // initial value for the hash seed, used in the work stealing code
 964     init_hash_seed                = 17,
 965     // how many entries will be transferred between global stack and
 966     // local queues
 967     global_stack_transfer_size    = 16
 968   };
 969 
 970   uint                        _worker_id;
 971   G1CollectedHeap*            _g1h;
 972   ConcurrentMark*             _cm;
 973   CMBitMap*                   _nextMarkBitMap;
 974   // the task queue of this task
 975   CMTaskQueue*                _task_queue;
 976 private:
 977   // the task queue set---needed for stealing
 978   CMTaskQueueSet*             _task_queues;
 979   // indicates whether the task has been claimed---this is only  for
 980   // debugging purposes
 981   bool                        _claimed;
 982 
 983   // number of calls to this task
 984   int                         _calls;
 985 
 986   // when the virtual timer reaches this time, the marking step should
 987   // exit
 988   double                      _time_target_ms;
 989   // the start time of the current marking step
 990   double                      _start_time_ms;
 991 
 992   // the oop closure used for iterations over oops
 993   G1CMOopClosure*             _cm_oop_closure;
 994 
 995   // the region this task is scanning, NULL if we're not scanning any
 996   HeapRegion*                 _curr_region;
 997   // the local finger of this task, NULL if we're not scanning a region
 998   HeapWord*                   _finger;
 999   // limit of the region this task is scanning, NULL if we're not scanning one
1000   HeapWord*                   _region_limit;
1001 
1002   // the number of words this task has scanned
1003   size_t                      _words_scanned;
1004   // When _words_scanned reaches this limit, the regular clock is
1005   // called. Notice that this might be decreased under certain
1006   // circumstances (i.e. when we believe that we did an expensive
1007   // operation).
1008   size_t                      _words_scanned_limit;
1009   // the initial value of _words_scanned_limit (i.e. what it was
1010   // before it was decreased).
1011   size_t                      _real_words_scanned_limit;
1012 
1013   // the number of references this task has visited
1014   size_t                      _refs_reached;
1015   // When _refs_reached reaches this limit, the regular clock is
1016   // called. Notice this this might be decreased under certain
1017   // circumstances (i.e. when we believe that we did an expensive
1018   // operation).
1019   size_t                      _refs_reached_limit;
1020   // the initial value of _refs_reached_limit (i.e. what it was before
1021   // it was decreased).
1022   size_t                      _real_refs_reached_limit;
1023 
1024   // used by the work stealing stuff
1025   int                         _hash_seed;
1026   // if this is true, then the task has aborted for some reason
1027   bool                        _has_aborted;
1028   // set when the task aborts because it has met its time quota
1029   bool                        _has_timed_out;
1030   // true when we're draining SATB buffers; this avoids the task
1031   // aborting due to SATB buffers being available (as we're already
1032   // dealing with them)
1033   bool                        _draining_satb_buffers;
1034 
1035   // number sequence of past step times
1036   NumberSeq                   _step_times_ms;
1037   // elapsed time of this task
1038   double                      _elapsed_time_ms;
1039   // termination time of this task
1040   double                      _termination_time_ms;
1041   // when this task got into the termination protocol
1042   double                      _termination_start_time_ms;
1043 
1044   // true when the task is during a concurrent phase, false when it is
1045   // in the remark phase (so, in the latter case, we do not have to
1046   // check all the things that we have to check during the concurrent
1047   // phase, i.e. SATB buffer availability...)
1048   bool                        _concurrent;
1049 
1050   TruncatedSeq                _marking_step_diffs_ms;
1051 
1052   // Counting data structures. Embedding the task's marked_bytes_array
1053   // and card bitmap into the actual task saves having to go through
1054   // the ConcurrentMark object.
1055   size_t*                     _marked_bytes_array;
1056   BitMap*                     _card_bm;
1057 
1058   // LOTS of statistics related with this task
1059 #if _MARKING_STATS_
1060   NumberSeq                   _all_clock_intervals_ms;
1061   double                      _interval_start_time_ms;
1062 
1063   int                         _aborted;
1064   int                         _aborted_overflow;
1065   int                         _aborted_cm_aborted;
1066   int                         _aborted_yield;
1067   int                         _aborted_timed_out;
1068   int                         _aborted_satb;
1069   int                         _aborted_termination;
1070 
1071   int                         _steal_attempts;
1072   int                         _steals;
1073 
1074   int                         _clock_due_to_marking;
1075   int                         _clock_due_to_scanning;
1076 
1077   int                         _local_pushes;
1078   int                         _local_pops;
1079   int                         _local_max_size;
1080   int                         _objs_scanned;
1081 
1082   int                         _global_pushes;
1083   int                         _global_pops;
1084   int                         _global_max_size;
1085 
1086   int                         _global_transfers_to;
1087   int                         _global_transfers_from;
1088 
1089   int                         _regions_claimed;
1090   int                         _objs_found_on_bitmap;
1091 
1092   int                         _satb_buffers_processed;
1093 #endif // _MARKING_STATS_
1094 
1095   // it updates the local fields after this task has claimed
1096   // a new region to scan
1097   void setup_for_region(HeapRegion* hr);
1098   // it brings up-to-date the limit of the region
1099   void update_region_limit();
1100 
1101   // called when either the words scanned or the refs visited limit
1102   // has been reached
1103   void reached_limit();
1104   // recalculates the words scanned and refs visited limits
1105   void recalculate_limits();
1106   // decreases the words scanned and refs visited limits when we reach
1107   // an expensive operation
1108   void decrease_limits();
1109   // it checks whether the words scanned or refs visited reached their
1110   // respective limit and calls reached_limit() if they have
1111   void check_limits() {
1112     if (_words_scanned >= _words_scanned_limit ||
1113         _refs_reached >= _refs_reached_limit) {
1114       reached_limit();
1115     }
1116   }
1117   // this is supposed to be called regularly during a marking step as
1118   // it checks a bunch of conditions that might cause the marking step
1119   // to abort
1120   void regular_clock_call();
1121   bool concurrent() { return _concurrent; }
1122 
1123 public:
1124   // It resets the task; it should be called right at the beginning of
1125   // a marking phase.
1126   void reset(CMBitMap* _nextMarkBitMap);
1127   // it clears all the fields that correspond to a claimed region.
1128   void clear_region_fields();
1129 
1130   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1131 
1132   // The main method of this class which performs a marking step
1133   // trying not to exceed the given duration. However, it might exit
1134   // prematurely, according to some conditions (i.e. SATB buffers are
1135   // available for processing).
1136   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
1137 
1138   // These two calls start and stop the timer
1139   void record_start_time() {
1140     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1141   }
1142   void record_end_time() {
1143     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1144   }
1145 
1146   // returns the worker ID associated with this task.
1147   uint worker_id() { return _worker_id; }
1148 
1149   // From TerminatorTerminator. It determines whether this task should
1150   // exit the termination protocol after it's entered it.
1151   virtual bool should_exit_termination();
1152 
1153   // Resets the local region fields after a task has finished scanning a
1154   // region; or when they have become stale as a result of the region
1155   // being evacuated.
1156   void giveup_current_region();
1157 
1158   HeapWord* finger()            { return _finger; }
1159 
1160   bool has_aborted()            { return _has_aborted; }
1161   void set_has_aborted()        { _has_aborted = true; }
1162   void clear_has_aborted()      { _has_aborted = false; }
1163   bool has_timed_out()          { return _has_timed_out; }
1164   bool claimed()                { return _claimed; }
1165 
1166   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1167 
1168   // It grays the object by marking it and, if necessary, pushing it
1169   // on the local queue
1170   inline void deal_with_reference(oop obj);
1171 
1172   // It scans an object and visits its children.
1173   void scan_object(oop obj);
1174 
1175   // It pushes an object on the local queue.
1176   inline void push(oop obj);
1177 
1178   // These two move entries to/from the global stack.
1179   void move_entries_to_global_stack();
1180   void get_entries_from_global_stack();
1181 
1182   // It pops and scans objects from the local queue. If partially is
1183   // true, then it stops when the queue size is of a given limit. If
1184   // partially is false, then it stops when the queue is empty.
1185   void drain_local_queue(bool partially);
1186   // It moves entries from the global stack to the local queue and
1187   // drains the local queue. If partially is true, then it stops when
1188   // both the global stack and the local queue reach a given size. If
1189   // partially if false, it tries to empty them totally.
1190   void drain_global_stack(bool partially);
1191   // It keeps picking SATB buffers and processing them until no SATB
1192   // buffers are available.
1193   void drain_satb_buffers();
1194 
1195   // moves the local finger to a new location
1196   inline void move_finger_to(HeapWord* new_finger) {
1197     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1198     _finger = new_finger;
1199   }
1200 
1201   CMTask(uint worker_id, ConcurrentMark *cm,
1202          size_t* marked_bytes, BitMap* card_bm,
1203          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1204 
1205   // it prints statistics associated with this task
1206   void print_stats();
1207 
1208 #if _MARKING_STATS_
1209   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1210 #endif // _MARKING_STATS_
1211 };
1212 
1213 // Class that's used to to print out per-region liveness
1214 // information. It's currently used at the end of marking and also
1215 // after we sort the old regions at the end of the cleanup operation.
1216 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1217 private:
1218   outputStream* _out;
1219 
1220   // Accumulators for these values.
1221   size_t _total_used_bytes;
1222   size_t _total_capacity_bytes;
1223   size_t _total_prev_live_bytes;
1224   size_t _total_next_live_bytes;
1225 
1226   // These are set up when we come across a "stars humongous" region
1227   // (as this is where most of this information is stored, not in the
1228   // subsequent "continues humongous" regions). After that, for every
1229   // region in a given humongous region series we deduce the right
1230   // values for it by simply subtracting the appropriate amount from
1231   // these fields. All these values should reach 0 after we've visited
1232   // the last region in the series.
1233   size_t _hum_used_bytes;
1234   size_t _hum_capacity_bytes;
1235   size_t _hum_prev_live_bytes;
1236   size_t _hum_next_live_bytes;
1237 
1238   static double perc(size_t val, size_t total) {
1239     if (total == 0) {
1240       return 0.0;
1241     } else {
1242       return 100.0 * ((double) val / (double) total);
1243     }
1244   }
1245 
1246   static double bytes_to_mb(size_t val) {
1247     return (double) val / (double) M;
1248   }
1249 
1250   // See the .cpp file.
1251   size_t get_hum_bytes(size_t* hum_bytes);
1252   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1253                      size_t* prev_live_bytes, size_t* next_live_bytes);
1254 
1255 public:
1256   // The header and footer are printed in the constructor and
1257   // destructor respectively.
1258   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1259   virtual bool doHeapRegion(HeapRegion* r);
1260   ~G1PrintRegionLivenessInfoClosure();
1261 };
1262 
1263 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP