/* * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionary.hpp" #include "code/codeCache.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "memory/sharedHeap.hpp" #include "oops/oop.inline.hpp" #include "runtime/fprofiler.hpp" #include "runtime/java.hpp" #include "services/management.hpp" #include "utilities/copy.hpp" #include "utilities/workgroup.hpp" SharedHeap* SharedHeap::_sh; // The set of potentially parallel tasks in strong root scanning. enum SH_process_strong_roots_tasks { SH_PS_Universe_oops_do, SH_PS_JNIHandles_oops_do, SH_PS_ObjectSynchronizer_oops_do, SH_PS_FlatProfiler_oops_do, SH_PS_Management_oops_do, SH_PS_SystemDictionary_oops_do, SH_PS_jvmti_oops_do, SH_PS_CodeCache_oops_do, // Leave this one last. SH_PS_NumElements }; SharedHeap::SharedHeap(CollectorPolicy* policy_) : CollectedHeap(), _collector_policy(policy_), _perm_gen(NULL), _rem_set(NULL), _strong_roots_parity(0), _process_strong_tasks(new SubTasksDone(SH_PS_NumElements)), _workers(NULL) { if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { vm_exit_during_initialization("Failed necessary allocation."); } _sh = this; // ch is static, should be set only once. if ((UseParNewGC || (UseConcMarkSweepGC && CMSParallelRemarkEnabled) || UseG1GC) && ParallelGCThreads > 0) { _workers = new FlexibleWorkGang("Parallel GC Threads", ParallelGCThreads, /* are_GC_task_threads */true, /* are_ConcurrentGC_threads */false); if (_workers == NULL) { vm_exit_during_initialization("Failed necessary allocation."); } else { _workers->initialize_workers(); } } } int SharedHeap::n_termination() { return _process_strong_tasks->n_threads(); } void SharedHeap::set_n_termination(int t) { _process_strong_tasks->set_n_threads(t); } bool SharedHeap::heap_lock_held_for_gc() { Thread* t = Thread::current(); return Heap_lock->owned_by_self() || ( (t->is_GC_task_thread() || t->is_VM_thread()) && _thread_holds_heap_lock_for_gc); } void SharedHeap::set_par_threads(uint t) { assert(t == 0 || !UseSerialGC, "Cannot have parallel threads"); _n_par_threads = t; _process_strong_tasks->set_n_threads(t); } class AssertIsPermClosure: public OopClosure { public: virtual void do_oop(oop* p) { assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm."); } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; static AssertIsPermClosure assert_is_perm_closure; #ifdef ASSERT class AssertNonScavengableClosure: public OopClosure { public: virtual void do_oop(oop* p) { assert(!Universe::heap()->is_in_partial_collection(*p), "Referent should not be scavengable."); } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; static AssertNonScavengableClosure assert_is_non_scavengable_closure; #endif void SharedHeap::change_strong_roots_parity() { // Also set the new collection parity. assert(_strong_roots_parity >= 0 && _strong_roots_parity <= 2, "Not in range."); _strong_roots_parity++; if (_strong_roots_parity == 3) _strong_roots_parity = 1; assert(_strong_roots_parity >= 1 && _strong_roots_parity <= 2, "Not in range."); } SharedHeap::StrongRootsScope::StrongRootsScope(SharedHeap* outer, bool activate) : MarkScope(activate) { if (_active) { outer->change_strong_roots_parity(); // Zero the claimed high water mark in the StringTable StringTable::clear_parallel_claimed_index(); } } SharedHeap::StrongRootsScope::~StrongRootsScope() { // nothing particular } void SharedHeap::process_strong_roots(bool activate_scope, bool collecting_perm_gen, ScanningOption so, OopClosure* roots, CodeBlobClosure* code_roots, OopsInGenClosure* perm_blk) { StrongRootsScope srs(this, activate_scope); // General strong roots. assert(_strong_roots_parity != 0, "must have called prologue code"); // _n_termination for _process_strong_tasks should be set up stream // in a method not running in a GC worker. Otherwise the GC worker // could be trying to change the termination condition while the task // is executing in another GC worker. if (!_process_strong_tasks->is_task_claimed(SH_PS_Universe_oops_do)) { Universe::oops_do(roots); // Consider perm-gen discovered lists to be strong. perm_gen()->ref_processor()->weak_oops_do(roots); } // Global (strong) JNI handles if (!_process_strong_tasks->is_task_claimed(SH_PS_JNIHandles_oops_do)) JNIHandles::oops_do(roots); // All threads execute this; the individual threads are task groups. if (CollectedHeap::use_parallel_gc_threads()) { Threads::possibly_parallel_oops_do(roots, code_roots); } else { Threads::oops_do(roots, code_roots); } if (!_process_strong_tasks-> is_task_claimed(SH_PS_ObjectSynchronizer_oops_do)) ObjectSynchronizer::oops_do(roots); if (!_process_strong_tasks->is_task_claimed(SH_PS_FlatProfiler_oops_do)) FlatProfiler::oops_do(roots); if (!_process_strong_tasks->is_task_claimed(SH_PS_Management_oops_do)) Management::oops_do(roots); if (!_process_strong_tasks->is_task_claimed(SH_PS_jvmti_oops_do)) JvmtiExport::oops_do(roots); if (!_process_strong_tasks->is_task_claimed(SH_PS_SystemDictionary_oops_do)) { if (so & SO_AllClasses) { SystemDictionary::oops_do(roots); } else if (so & SO_SystemClasses) { SystemDictionary::always_strong_oops_do(roots); } } // All threads execute the following. A specific chunk of buckets // from the StringTable are the individual tasks. if (so & SO_Strings || (!collecting_perm_gen && !JavaObjectsInPerm)) { if (CollectedHeap::use_parallel_gc_threads()) { StringTable::possibly_parallel_oops_do(roots); } else { StringTable::oops_do(roots); } } if (JavaObjectsInPerm) { // Verify the string table contents are in the perm gen if (CollectedHeap::use_parallel_gc_threads()) { NOT_PRODUCT(StringTable::possibly_parallel_oops_do(&assert_is_perm_closure)); } else { NOT_PRODUCT(StringTable::oops_do(&assert_is_perm_closure)); } } if (!_process_strong_tasks->is_task_claimed(SH_PS_CodeCache_oops_do)) { if (so & SO_CodeCache) { // (Currently, CMSCollector uses this to do intermediate-strength collections.) assert(collecting_perm_gen, "scanning all of code cache"); assert(code_roots != NULL, "must supply closure for code cache"); if (code_roots != NULL) { CodeCache::blobs_do(code_roots); } } else if (so & (SO_SystemClasses|SO_AllClasses)) { if (!collecting_perm_gen) { // If we are collecting from class statics, but we are not going to // visit all of the CodeCache, collect from the non-perm roots if any. // This makes the code cache function temporarily as a source of strong // roots for oops, until the next major collection. // // If collecting_perm_gen is true, we require that this phase will call // CodeCache::do_unloading. This will kill off nmethods with expired // weak references, such as stale invokedynamic targets. CodeCache::scavenge_root_nmethods_do(code_roots); } } // Verify that the code cache contents are not subject to // movement by a scavenging collection. DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, /*do_marking=*/ false)); DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable)); } if (!collecting_perm_gen) { // All threads perform this; coordination is handled internally. rem_set()->younger_refs_iterate(perm_gen(), perm_blk); } _process_strong_tasks->all_tasks_completed(); } class AlwaysTrueClosure: public BoolObjectClosure { public: void do_object(oop p) { ShouldNotReachHere(); } bool do_object_b(oop p) { return true; } }; static AlwaysTrueClosure always_true; class SkipAdjustingSharedStrings: public OopClosure { OopClosure* _clo; public: SkipAdjustingSharedStrings(OopClosure* clo) : _clo(clo) {} virtual void do_oop(oop* p) { oop o = (*p); if (!o->is_shared_readwrite()) { _clo->do_oop(p); } } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; // Unmarked shared Strings in the StringTable (which got there due to // being in the constant pools of as-yet unloaded shared classes) were // not marked and therefore did not have their mark words preserved. // These entries are also deliberately not purged from the string // table during unloading of unmarked strings. If an identity hash // code was computed for any of these objects, it will not have been // cleared to zero during the forwarding process or by the // RecursiveAdjustSharedObjectClosure, and will be confused by the // adjusting process as a forwarding pointer. We need to skip // forwarding StringTable entries which contain unmarked shared // Strings. Actually, since shared strings won't be moving, we can // just skip adjusting any shared entries in the string table. void SharedHeap::process_weak_roots(OopClosure* root_closure, CodeBlobClosure* code_roots, OopClosure* non_root_closure) { // Global (weak) JNI handles JNIHandles::weak_oops_do(&always_true, root_closure); CodeCache::blobs_do(code_roots); if (UseSharedSpaces && !DumpSharedSpaces) { SkipAdjustingSharedStrings skip_closure(root_closure); StringTable::oops_do(&skip_closure); } else { StringTable::oops_do(root_closure); } } void SharedHeap::set_barrier_set(BarrierSet* bs) { _barrier_set = bs; // Cached barrier set for fast access in oops oopDesc::set_bs(bs); } void SharedHeap::post_initialize() { ref_processing_init(); } void SharedHeap::ref_processing_init() { perm_gen()->ref_processor_init(); } // Some utilities. void SharedHeap::print_size_transition(outputStream* out, size_t bytes_before, size_t bytes_after, size_t capacity) { out->print(" %d%s->%d%s(%d%s)", byte_size_in_proper_unit(bytes_before), proper_unit_for_byte_size(bytes_before), byte_size_in_proper_unit(bytes_after), proper_unit_for_byte_size(bytes_after), byte_size_in_proper_unit(capacity), proper_unit_for_byte_size(capacity)); }