1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/traceEventTypes.hpp"
  80 #include "utilities/defaultStream.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/preserveException.hpp"
  84 #ifdef TARGET_OS_FAMILY_linux
  85 # include "os_linux.inline.hpp"
  86 # include "thread_linux.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_solaris
  89 # include "os_solaris.inline.hpp"
  90 # include "thread_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 # include "thread_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 # include "thread_bsd.inline.hpp"
  99 #endif
 100 #ifndef SERIALGC
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117 #ifndef USDT2
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 123   intptr_t, intptr_t, bool);
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 132       name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else /* USDT2 */
 139 
 140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 142 
 143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 144   {                                                                        \
 145     ResourceMark rm(this);                                                 \
 146     int len = 0;                                                           \
 147     const char* name = (javathread)->get_thread_name();                    \
 148     len = strlen(name);                                                    \
 149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 150       (char *) name, len,                                                           \
 151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 154   }
 155 
 156 #endif /* USDT2 */
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160 #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : os::malloc(aligned_size, flags, CURRENT_PC);
 181     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (TraceBiasedLocking) {
 186       if (aligned_addr != real_malloc_addr)
 187         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                       real_malloc_addr, aligned_addr);
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : os::malloc(size, flags, CURRENT_PC);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 201     FreeHeap(real_malloc_addr, mtThread);
 202   } else {
 203     FreeHeap(p, mtThread);
 204   }
 205 }
 206 
 207 
 208 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 209 // JavaThread
 210 
 211 
 212 Thread::Thread() {
 213   // stack and get_thread
 214   set_stack_base(NULL);
 215   set_stack_size(0);
 216   set_self_raw_id(0);
 217   set_lgrp_id(-1);
 218 
 219   // allocated data structures
 220   set_osthread(NULL);
 221   set_resource_area(new (mtThread)ResourceArea());
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 224   set_active_handles(NULL);
 225   set_free_handle_block(NULL);
 226   set_last_handle_mark(NULL);
 227 
 228   // This initial value ==> never claimed.
 229   _oops_do_parity = 0;
 230 
 231   // the handle mark links itself to last_handle_mark
 232   new HandleMark(this);
 233 
 234   // plain initialization
 235   debug_only(_owned_locks = NULL;)
 236   debug_only(_allow_allocation_count = 0;)
 237   NOT_PRODUCT(_allow_safepoint_count = 0;)
 238   NOT_PRODUCT(_skip_gcalot = false;)
 239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 240   _jvmti_env_iteration_count = 0;
 241   set_allocated_bytes(0);
 242   set_trace_buffer(NULL);
 243   _vm_operation_started_count = 0;
 244   _vm_operation_completed_count = 0;
 245   _current_pending_monitor = NULL;
 246   _current_pending_monitor_is_from_java = true;
 247   _current_waiting_monitor = NULL;
 248   _num_nested_signal = 0;
 249   omFreeList = NULL ;
 250   omFreeCount = 0 ;
 251   omFreeProvision = 32 ;
 252   omInUseList = NULL ;
 253   omInUseCount = 0 ;
 254 
 255 #ifdef ASSERT
 256   _visited_for_critical_count = false;
 257 #endif
 258 
 259   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 260   _suspend_flags = 0;
 261 
 262   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 263   _hashStateX = os::random() ;
 264   _hashStateY = 842502087 ;
 265   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 266   _hashStateW = 273326509 ;
 267 
 268   _OnTrap   = 0 ;
 269   _schedctl = NULL ;
 270   _Stalled  = 0 ;
 271   _TypeTag  = 0x2BAD ;
 272 
 273   // Many of the following fields are effectively final - immutable
 274   // Note that nascent threads can't use the Native Monitor-Mutex
 275   // construct until the _MutexEvent is initialized ...
 276   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 277   // we might instead use a stack of ParkEvents that we could provision on-demand.
 278   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 279   // and ::Release()
 280   _ParkEvent   = ParkEvent::Allocate (this) ;
 281   _SleepEvent  = ParkEvent::Allocate (this) ;
 282   _MutexEvent  = ParkEvent::Allocate (this) ;
 283   _MuxEvent    = ParkEvent::Allocate (this) ;
 284 
 285 #ifdef CHECK_UNHANDLED_OOPS
 286   if (CheckUnhandledOops) {
 287     _unhandled_oops = new UnhandledOops(this);
 288   }
 289 #endif // CHECK_UNHANDLED_OOPS
 290 #ifdef ASSERT
 291   if (UseBiasedLocking) {
 292     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 293     assert(this == _real_malloc_address ||
 294            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 295            "bug in forced alignment of thread objects");
 296   }
 297 #endif /* ASSERT */
 298 }
 299 
 300 void Thread::initialize_thread_local_storage() {
 301   // Note: Make sure this method only calls
 302   // non-blocking operations. Otherwise, it might not work
 303   // with the thread-startup/safepoint interaction.
 304 
 305   // During Java thread startup, safepoint code should allow this
 306   // method to complete because it may need to allocate memory to
 307   // store information for the new thread.
 308 
 309   // initialize structure dependent on thread local storage
 310   ThreadLocalStorage::set_thread(this);
 311 
 312   // set up any platform-specific state.
 313   os::initialize_thread();
 314 }
 315 
 316 void Thread::record_stack_base_and_size() {
 317   set_stack_base(os::current_stack_base());
 318   set_stack_size(os::current_stack_size());
 319 
 320   // record thread's native stack, stack grows downward
 321   address low_stack_addr = stack_base() - stack_size();
 322   MemTracker::record_thread_stack(low_stack_addr, stack_size(), this,
 323              CURRENT_PC);
 324 }
 325 
 326 
 327 Thread::~Thread() {
 328   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 329   ObjectSynchronizer::omFlush (this) ;
 330 
 331   // stack_base can be NULL if the thread is never started or exited before
 332   // record_stack_base_and_size called. Although, we would like to ensure
 333   // that all started threads do call record_stack_base_and_size(), there is
 334   // not proper way to enforce that.
 335   if (_stack_base != NULL) {
 336     address low_stack_addr = stack_base() - stack_size();
 337     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 338   }
 339 
 340   // deallocate data structures
 341   delete resource_area();
 342   // since the handle marks are using the handle area, we have to deallocated the root
 343   // handle mark before deallocating the thread's handle area,
 344   assert(last_handle_mark() != NULL, "check we have an element");
 345   delete last_handle_mark();
 346   assert(last_handle_mark() == NULL, "check we have reached the end");
 347 
 348   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 349   // We NULL out the fields for good hygiene.
 350   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 351   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 352   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 353   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 354 
 355   delete handle_area();
 356   delete metadata_handles();
 357 
 358   // osthread() can be NULL, if creation of thread failed.
 359   if (osthread() != NULL) os::free_thread(osthread());
 360 
 361   delete _SR_lock;
 362 
 363   // clear thread local storage if the Thread is deleting itself
 364   if (this == Thread::current()) {
 365     ThreadLocalStorage::set_thread(NULL);
 366   } else {
 367     // In the case where we're not the current thread, invalidate all the
 368     // caches in case some code tries to get the current thread or the
 369     // thread that was destroyed, and gets stale information.
 370     ThreadLocalStorage::invalidate_all();
 371   }
 372   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 373 }
 374 
 375 // NOTE: dummy function for assertion purpose.
 376 void Thread::run() {
 377   ShouldNotReachHere();
 378 }
 379 
 380 #ifdef ASSERT
 381 // Private method to check for dangling thread pointer
 382 void check_for_dangling_thread_pointer(Thread *thread) {
 383  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 384          "possibility of dangling Thread pointer");
 385 }
 386 #endif
 387 
 388 
 389 #ifndef PRODUCT
 390 // Tracing method for basic thread operations
 391 void Thread::trace(const char* msg, const Thread* const thread) {
 392   if (!TraceThreadEvents) return;
 393   ResourceMark rm;
 394   ThreadCritical tc;
 395   const char *name = "non-Java thread";
 396   int prio = -1;
 397   if (thread->is_Java_thread()
 398       && !thread->is_Compiler_thread()) {
 399     // The Threads_lock must be held to get information about
 400     // this thread but may not be in some situations when
 401     // tracing  thread events.
 402     bool release_Threads_lock = false;
 403     if (!Threads_lock->owned_by_self()) {
 404       Threads_lock->lock();
 405       release_Threads_lock = true;
 406     }
 407     JavaThread* jt = (JavaThread *)thread;
 408     name = (char *)jt->get_thread_name();
 409     oop thread_oop = jt->threadObj();
 410     if (thread_oop != NULL) {
 411       prio = java_lang_Thread::priority(thread_oop);
 412     }
 413     if (release_Threads_lock) {
 414       Threads_lock->unlock();
 415     }
 416   }
 417   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 418 }
 419 #endif
 420 
 421 
 422 ThreadPriority Thread::get_priority(const Thread* const thread) {
 423   trace("get priority", thread);
 424   ThreadPriority priority;
 425   // Can return an error!
 426   (void)os::get_priority(thread, priority);
 427   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 428   return priority;
 429 }
 430 
 431 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 432   trace("set priority", thread);
 433   debug_only(check_for_dangling_thread_pointer(thread);)
 434   // Can return an error!
 435   (void)os::set_priority(thread, priority);
 436 }
 437 
 438 
 439 void Thread::start(Thread* thread) {
 440   trace("start", thread);
 441   // Start is different from resume in that its safety is guaranteed by context or
 442   // being called from a Java method synchronized on the Thread object.
 443   if (!DisableStartThread) {
 444     if (thread->is_Java_thread()) {
 445       // Initialize the thread state to RUNNABLE before starting this thread.
 446       // Can not set it after the thread started because we do not know the
 447       // exact thread state at that time. It could be in MONITOR_WAIT or
 448       // in SLEEPING or some other state.
 449       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 450                                           java_lang_Thread::RUNNABLE);
 451     }
 452     os::start_thread(thread);
 453   }
 454 }
 455 
 456 // Enqueue a VM_Operation to do the job for us - sometime later
 457 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 458   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 459   VMThread::execute(vm_stop);
 460 }
 461 
 462 
 463 //
 464 // Check if an external suspend request has completed (or has been
 465 // cancelled). Returns true if the thread is externally suspended and
 466 // false otherwise.
 467 //
 468 // The bits parameter returns information about the code path through
 469 // the routine. Useful for debugging:
 470 //
 471 // set in is_ext_suspend_completed():
 472 // 0x00000001 - routine was entered
 473 // 0x00000010 - routine return false at end
 474 // 0x00000100 - thread exited (return false)
 475 // 0x00000200 - suspend request cancelled (return false)
 476 // 0x00000400 - thread suspended (return true)
 477 // 0x00001000 - thread is in a suspend equivalent state (return true)
 478 // 0x00002000 - thread is native and walkable (return true)
 479 // 0x00004000 - thread is native_trans and walkable (needed retry)
 480 //
 481 // set in wait_for_ext_suspend_completion():
 482 // 0x00010000 - routine was entered
 483 // 0x00020000 - suspend request cancelled before loop (return false)
 484 // 0x00040000 - thread suspended before loop (return true)
 485 // 0x00080000 - suspend request cancelled in loop (return false)
 486 // 0x00100000 - thread suspended in loop (return true)
 487 // 0x00200000 - suspend not completed during retry loop (return false)
 488 //
 489 
 490 // Helper class for tracing suspend wait debug bits.
 491 //
 492 // 0x00000100 indicates that the target thread exited before it could
 493 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 494 // 0x00080000 each indicate a cancelled suspend request so they don't
 495 // count as wait failures either.
 496 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 497 
 498 class TraceSuspendDebugBits : public StackObj {
 499  private:
 500   JavaThread * jt;
 501   bool         is_wait;
 502   bool         called_by_wait;  // meaningful when !is_wait
 503   uint32_t *   bits;
 504 
 505  public:
 506   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 507                         uint32_t *_bits) {
 508     jt             = _jt;
 509     is_wait        = _is_wait;
 510     called_by_wait = _called_by_wait;
 511     bits           = _bits;
 512   }
 513 
 514   ~TraceSuspendDebugBits() {
 515     if (!is_wait) {
 516 #if 1
 517       // By default, don't trace bits for is_ext_suspend_completed() calls.
 518       // That trace is very chatty.
 519       return;
 520 #else
 521       if (!called_by_wait) {
 522         // If tracing for is_ext_suspend_completed() is enabled, then only
 523         // trace calls to it from wait_for_ext_suspend_completion()
 524         return;
 525       }
 526 #endif
 527     }
 528 
 529     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 530       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 531         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 532         ResourceMark rm;
 533 
 534         tty->print_cr(
 535             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 536             jt->get_thread_name(), *bits);
 537 
 538         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 539       }
 540     }
 541   }
 542 };
 543 #undef DEBUG_FALSE_BITS
 544 
 545 
 546 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 547   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 548 
 549   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 550   bool do_trans_retry;           // flag to force the retry
 551 
 552   *bits |= 0x00000001;
 553 
 554   do {
 555     do_trans_retry = false;
 556 
 557     if (is_exiting()) {
 558       // Thread is in the process of exiting. This is always checked
 559       // first to reduce the risk of dereferencing a freed JavaThread.
 560       *bits |= 0x00000100;
 561       return false;
 562     }
 563 
 564     if (!is_external_suspend()) {
 565       // Suspend request is cancelled. This is always checked before
 566       // is_ext_suspended() to reduce the risk of a rogue resume
 567       // confusing the thread that made the suspend request.
 568       *bits |= 0x00000200;
 569       return false;
 570     }
 571 
 572     if (is_ext_suspended()) {
 573       // thread is suspended
 574       *bits |= 0x00000400;
 575       return true;
 576     }
 577 
 578     // Now that we no longer do hard suspends of threads running
 579     // native code, the target thread can be changing thread state
 580     // while we are in this routine:
 581     //
 582     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 583     //
 584     // We save a copy of the thread state as observed at this moment
 585     // and make our decision about suspend completeness based on the
 586     // copy. This closes the race where the thread state is seen as
 587     // _thread_in_native_trans in the if-thread_blocked check, but is
 588     // seen as _thread_blocked in if-thread_in_native_trans check.
 589     JavaThreadState save_state = thread_state();
 590 
 591     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 592       // If the thread's state is _thread_blocked and this blocking
 593       // condition is known to be equivalent to a suspend, then we can
 594       // consider the thread to be externally suspended. This means that
 595       // the code that sets _thread_blocked has been modified to do
 596       // self-suspension if the blocking condition releases. We also
 597       // used to check for CONDVAR_WAIT here, but that is now covered by
 598       // the _thread_blocked with self-suspension check.
 599       //
 600       // Return true since we wouldn't be here unless there was still an
 601       // external suspend request.
 602       *bits |= 0x00001000;
 603       return true;
 604     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 605       // Threads running native code will self-suspend on native==>VM/Java
 606       // transitions. If its stack is walkable (should always be the case
 607       // unless this function is called before the actual java_suspend()
 608       // call), then the wait is done.
 609       *bits |= 0x00002000;
 610       return true;
 611     } else if (!called_by_wait && !did_trans_retry &&
 612                save_state == _thread_in_native_trans &&
 613                frame_anchor()->walkable()) {
 614       // The thread is transitioning from thread_in_native to another
 615       // thread state. check_safepoint_and_suspend_for_native_trans()
 616       // will force the thread to self-suspend. If it hasn't gotten
 617       // there yet we may have caught the thread in-between the native
 618       // code check above and the self-suspend. Lucky us. If we were
 619       // called by wait_for_ext_suspend_completion(), then it
 620       // will be doing the retries so we don't have to.
 621       //
 622       // Since we use the saved thread state in the if-statement above,
 623       // there is a chance that the thread has already transitioned to
 624       // _thread_blocked by the time we get here. In that case, we will
 625       // make a single unnecessary pass through the logic below. This
 626       // doesn't hurt anything since we still do the trans retry.
 627 
 628       *bits |= 0x00004000;
 629 
 630       // Once the thread leaves thread_in_native_trans for another
 631       // thread state, we break out of this retry loop. We shouldn't
 632       // need this flag to prevent us from getting back here, but
 633       // sometimes paranoia is good.
 634       did_trans_retry = true;
 635 
 636       // We wait for the thread to transition to a more usable state.
 637       for (int i = 1; i <= SuspendRetryCount; i++) {
 638         // We used to do an "os::yield_all(i)" call here with the intention
 639         // that yielding would increase on each retry. However, the parameter
 640         // is ignored on Linux which means the yield didn't scale up. Waiting
 641         // on the SR_lock below provides a much more predictable scale up for
 642         // the delay. It also provides a simple/direct point to check for any
 643         // safepoint requests from the VMThread
 644 
 645         // temporarily drops SR_lock while doing wait with safepoint check
 646         // (if we're a JavaThread - the WatcherThread can also call this)
 647         // and increase delay with each retry
 648         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 649 
 650         // check the actual thread state instead of what we saved above
 651         if (thread_state() != _thread_in_native_trans) {
 652           // the thread has transitioned to another thread state so
 653           // try all the checks (except this one) one more time.
 654           do_trans_retry = true;
 655           break;
 656         }
 657       } // end retry loop
 658 
 659 
 660     }
 661   } while (do_trans_retry);
 662 
 663   *bits |= 0x00000010;
 664   return false;
 665 }
 666 
 667 //
 668 // Wait for an external suspend request to complete (or be cancelled).
 669 // Returns true if the thread is externally suspended and false otherwise.
 670 //
 671 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 672        uint32_t *bits) {
 673   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 674                              false /* !called_by_wait */, bits);
 675 
 676   // local flag copies to minimize SR_lock hold time
 677   bool is_suspended;
 678   bool pending;
 679   uint32_t reset_bits;
 680 
 681   // set a marker so is_ext_suspend_completed() knows we are the caller
 682   *bits |= 0x00010000;
 683 
 684   // We use reset_bits to reinitialize the bits value at the top of
 685   // each retry loop. This allows the caller to make use of any
 686   // unused bits for their own marking purposes.
 687   reset_bits = *bits;
 688 
 689   {
 690     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 691     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                             delay, bits);
 693     pending = is_external_suspend();
 694   }
 695   // must release SR_lock to allow suspension to complete
 696 
 697   if (!pending) {
 698     // A cancelled suspend request is the only false return from
 699     // is_ext_suspend_completed() that keeps us from entering the
 700     // retry loop.
 701     *bits |= 0x00020000;
 702     return false;
 703   }
 704 
 705   if (is_suspended) {
 706     *bits |= 0x00040000;
 707     return true;
 708   }
 709 
 710   for (int i = 1; i <= retries; i++) {
 711     *bits = reset_bits;  // reinit to only track last retry
 712 
 713     // We used to do an "os::yield_all(i)" call here with the intention
 714     // that yielding would increase on each retry. However, the parameter
 715     // is ignored on Linux which means the yield didn't scale up. Waiting
 716     // on the SR_lock below provides a much more predictable scale up for
 717     // the delay. It also provides a simple/direct point to check for any
 718     // safepoint requests from the VMThread
 719 
 720     {
 721       MutexLocker ml(SR_lock());
 722       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 723       // can also call this)  and increase delay with each retry
 724       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 725 
 726       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 727                                               delay, bits);
 728 
 729       // It is possible for the external suspend request to be cancelled
 730       // (by a resume) before the actual suspend operation is completed.
 731       // Refresh our local copy to see if we still need to wait.
 732       pending = is_external_suspend();
 733     }
 734 
 735     if (!pending) {
 736       // A cancelled suspend request is the only false return from
 737       // is_ext_suspend_completed() that keeps us from staying in the
 738       // retry loop.
 739       *bits |= 0x00080000;
 740       return false;
 741     }
 742 
 743     if (is_suspended) {
 744       *bits |= 0x00100000;
 745       return true;
 746     }
 747   } // end retry loop
 748 
 749   // thread did not suspend after all our retries
 750   *bits |= 0x00200000;
 751   return false;
 752 }
 753 
 754 #ifndef PRODUCT
 755 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 756 
 757   // This should not need to be atomic as the only way for simultaneous
 758   // updates is via interrupts. Even then this should be rare or non-existant
 759   // and we don't care that much anyway.
 760 
 761   int index = _jmp_ring_index;
 762   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 763   _jmp_ring[index]._target = (intptr_t) target;
 764   _jmp_ring[index]._instruction = (intptr_t) instr;
 765   _jmp_ring[index]._file = file;
 766   _jmp_ring[index]._line = line;
 767 }
 768 #endif /* PRODUCT */
 769 
 770 // Called by flat profiler
 771 // Callers have already called wait_for_ext_suspend_completion
 772 // The assertion for that is currently too complex to put here:
 773 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 774   bool gotframe = false;
 775   // self suspension saves needed state.
 776   if (has_last_Java_frame() && _anchor.walkable()) {
 777      *_fr = pd_last_frame();
 778      gotframe = true;
 779   }
 780   return gotframe;
 781 }
 782 
 783 void Thread::interrupt(Thread* thread) {
 784   trace("interrupt", thread);
 785   debug_only(check_for_dangling_thread_pointer(thread);)
 786   os::interrupt(thread);
 787 }
 788 
 789 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 790   trace("is_interrupted", thread);
 791   debug_only(check_for_dangling_thread_pointer(thread);)
 792   // Note:  If clear_interrupted==false, this simply fetches and
 793   // returns the value of the field osthread()->interrupted().
 794   return os::is_interrupted(thread, clear_interrupted);
 795 }
 796 
 797 
 798 // GC Support
 799 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 800   jint thread_parity = _oops_do_parity;
 801   if (thread_parity != strong_roots_parity) {
 802     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 803     if (res == thread_parity) {
 804       return true;
 805     } else {
 806       guarantee(res == strong_roots_parity, "Or else what?");
 807       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 808          "Should only fail when parallel.");
 809       return false;
 810     }
 811   }
 812   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 813          "Should only fail when parallel.");
 814   return false;
 815 }
 816 
 817 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 818   active_handles()->oops_do(f);
 819   // Do oop for ThreadShadow
 820   f->do_oop((oop*)&_pending_exception);
 821   handle_area()->oops_do(f);
 822 }
 823 
 824 void Thread::nmethods_do(CodeBlobClosure* cf) {
 825   // no nmethods in a generic thread...
 826 }
 827 
 828 void Thread::metadata_do(void f(Metadata*)) {
 829   if (metadata_handles() != NULL) {
 830     for (int i = 0; i< metadata_handles()->length(); i++) {
 831       f(metadata_handles()->at(i));
 832     }
 833   }
 834 }
 835 
 836 void Thread::print_on(outputStream* st) const {
 837   // get_priority assumes osthread initialized
 838   if (osthread() != NULL) {
 839     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 840     osthread()->print_on(st);
 841   }
 842   debug_only(if (WizardMode) print_owned_locks_on(st);)
 843 }
 844 
 845 // Thread::print_on_error() is called by fatal error handler. Don't use
 846 // any lock or allocate memory.
 847 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 848   if      (is_VM_thread())                  st->print("VMThread");
 849   else if (is_Compiler_thread())            st->print("CompilerThread");
 850   else if (is_Java_thread())                st->print("JavaThread");
 851   else if (is_GC_task_thread())             st->print("GCTaskThread");
 852   else if (is_Watcher_thread())             st->print("WatcherThread");
 853   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 854   else st->print("Thread");
 855 
 856   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 857             _stack_base - _stack_size, _stack_base);
 858 
 859   if (osthread()) {
 860     st->print(" [id=%d]", osthread()->thread_id());
 861   }
 862 }
 863 
 864 #ifdef ASSERT
 865 void Thread::print_owned_locks_on(outputStream* st) const {
 866   Monitor *cur = _owned_locks;
 867   if (cur == NULL) {
 868     st->print(" (no locks) ");
 869   } else {
 870     st->print_cr(" Locks owned:");
 871     while(cur) {
 872       cur->print_on(st);
 873       cur = cur->next();
 874     }
 875   }
 876 }
 877 
 878 static int ref_use_count  = 0;
 879 
 880 bool Thread::owns_locks_but_compiled_lock() const {
 881   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 882     if (cur != Compile_lock) return true;
 883   }
 884   return false;
 885 }
 886 
 887 
 888 #endif
 889 
 890 #ifndef PRODUCT
 891 
 892 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 893 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 894 // no threads which allow_vm_block's are held
 895 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 896     // Check if current thread is allowed to block at a safepoint
 897     if (!(_allow_safepoint_count == 0))
 898       fatal("Possible safepoint reached by thread that does not allow it");
 899     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 900       fatal("LEAF method calling lock?");
 901     }
 902 
 903 #ifdef ASSERT
 904     if (potential_vm_operation && is_Java_thread()
 905         && !Universe::is_bootstrapping()) {
 906       // Make sure we do not hold any locks that the VM thread also uses.
 907       // This could potentially lead to deadlocks
 908       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 909         // Threads_lock is special, since the safepoint synchronization will not start before this is
 910         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 911         // since it is used to transfer control between JavaThreads and the VMThread
 912         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 913         if ( (cur->allow_vm_block() &&
 914               cur != Threads_lock &&
 915               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 916               cur != VMOperationRequest_lock &&
 917               cur != VMOperationQueue_lock) ||
 918               cur->rank() == Mutex::special) {
 919           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 920         }
 921       }
 922     }
 923 
 924     if (GCALotAtAllSafepoints) {
 925       // We could enter a safepoint here and thus have a gc
 926       InterfaceSupport::check_gc_alot();
 927     }
 928 #endif
 929 }
 930 #endif
 931 
 932 bool Thread::is_in_stack(address adr) const {
 933   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 934   address end = os::current_stack_pointer();
 935   // Allow non Java threads to call this without stack_base
 936   if (_stack_base == NULL) return true;
 937   if (stack_base() >= adr && adr >= end) return true;
 938 
 939   return false;
 940 }
 941 
 942 
 943 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 944 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 945 // used for compilation in the future. If that change is made, the need for these methods
 946 // should be revisited, and they should be removed if possible.
 947 
 948 bool Thread::is_lock_owned(address adr) const {
 949   return on_local_stack(adr);
 950 }
 951 
 952 bool Thread::set_as_starting_thread() {
 953  // NOTE: this must be called inside the main thread.
 954   return os::create_main_thread((JavaThread*)this);
 955 }
 956 
 957 static void initialize_class(Symbol* class_name, TRAPS) {
 958   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 959   InstanceKlass::cast(klass)->initialize(CHECK);
 960 }
 961 
 962 
 963 // Creates the initial ThreadGroup
 964 static Handle create_initial_thread_group(TRAPS) {
 965   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 966   instanceKlassHandle klass (THREAD, k);
 967 
 968   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 969   {
 970     JavaValue result(T_VOID);
 971     JavaCalls::call_special(&result,
 972                             system_instance,
 973                             klass,
 974                             vmSymbols::object_initializer_name(),
 975                             vmSymbols::void_method_signature(),
 976                             CHECK_NH);
 977   }
 978   Universe::set_system_thread_group(system_instance());
 979 
 980   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 981   {
 982     JavaValue result(T_VOID);
 983     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 984     JavaCalls::call_special(&result,
 985                             main_instance,
 986                             klass,
 987                             vmSymbols::object_initializer_name(),
 988                             vmSymbols::threadgroup_string_void_signature(),
 989                             system_instance,
 990                             string,
 991                             CHECK_NH);
 992   }
 993   return main_instance;
 994 }
 995 
 996 // Creates the initial Thread
 997 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 998   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 999   instanceKlassHandle klass (THREAD, k);
1000   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1001 
1002   java_lang_Thread::set_thread(thread_oop(), thread);
1003   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1004   thread->set_threadObj(thread_oop());
1005 
1006   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1007 
1008   JavaValue result(T_VOID);
1009   JavaCalls::call_special(&result, thread_oop,
1010                                    klass,
1011                                    vmSymbols::object_initializer_name(),
1012                                    vmSymbols::threadgroup_string_void_signature(),
1013                                    thread_group,
1014                                    string,
1015                                    CHECK_NULL);
1016   return thread_oop();
1017 }
1018 
1019 static void call_initializeSystemClass(TRAPS) {
1020   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1021   instanceKlassHandle klass (THREAD, k);
1022 
1023   JavaValue result(T_VOID);
1024   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1025                                          vmSymbols::void_method_signature(), CHECK);
1026 }
1027 
1028 char java_runtime_name[128] = "";
1029 
1030 // extract the JRE name from sun.misc.Version.java_runtime_name
1031 static const char* get_java_runtime_name(TRAPS) {
1032   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1033                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034   fieldDescriptor fd;
1035   bool found = k != NULL &&
1036                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1037                                                         vmSymbols::string_signature(), &fd);
1038   if (found) {
1039     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040     if (name_oop == NULL)
1041       return NULL;
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_name,
1044                                                         sizeof(java_runtime_name));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::PostVMInitHook_klass();
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                                            vmSymbols::void_method_signature(),
1060                                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1092   assert(thread_group.not_null(), "thread group should be specified");
1093   assert(threadObj() == NULL, "should only create Java thread object once");
1094 
1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1098 
1099   java_lang_Thread::set_thread(thread_oop(), this);
1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1101   set_threadObj(thread_oop());
1102 
1103   JavaValue result(T_VOID);
1104   if (thread_name != NULL) {
1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1106     // Thread gets assigned specified name and null target
1107     JavaCalls::call_special(&result,
1108                             thread_oop,
1109                             klass,
1110                             vmSymbols::object_initializer_name(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             thread_group, // Argument 1
1113                             name,         // Argument 2
1114                             THREAD);
1115   } else {
1116     // Thread gets assigned name "Thread-nnn" and null target
1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1118     JavaCalls::call_special(&result,
1119                             thread_oop,
1120                             klass,
1121                             vmSymbols::object_initializer_name(),
1122                             vmSymbols::threadgroup_runnable_void_signature(),
1123                             thread_group, // Argument 1
1124                             Handle(),     // Argument 2
1125                             THREAD);
1126   }
1127 
1128 
1129   if (daemon) {
1130       java_lang_Thread::set_daemon(thread_oop());
1131   }
1132 
1133   if (HAS_PENDING_EXCEPTION) {
1134     return;
1135   }
1136 
1137   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1138   Handle threadObj(this, this->threadObj());
1139 
1140   JavaCalls::call_special(&result,
1141                          thread_group,
1142                          group,
1143                          vmSymbols::add_method_name(),
1144                          vmSymbols::thread_void_signature(),
1145                          threadObj,          // Arg 1
1146                          THREAD);
1147 
1148 
1149 }
1150 
1151 // NamedThread --  non-JavaThread subclasses with multiple
1152 // uniquely named instances should derive from this.
1153 NamedThread::NamedThread() : Thread() {
1154   _name = NULL;
1155   _processed_thread = NULL;
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 // ======= WatcherThread ========
1176 
1177 // The watcher thread exists to simulate timer interrupts.  It should
1178 // be replaced by an abstraction over whatever native support for
1179 // timer interrupts exists on the platform.
1180 
1181 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1182 volatile bool  WatcherThread::_should_terminate = false;
1183 
1184 WatcherThread::WatcherThread() : Thread() {
1185   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1186   if (os::create_thread(this, os::watcher_thread)) {
1187     _watcher_thread = this;
1188 
1189     // Set the watcher thread to the highest OS priority which should not be
1190     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1191     // is created. The only normal thread using this priority is the reference
1192     // handler thread, which runs for very short intervals only.
1193     // If the VMThread's priority is not lower than the WatcherThread profiling
1194     // will be inaccurate.
1195     os::set_priority(this, MaxPriority);
1196     if (!DisableStartThread) {
1197       os::start_thread(this);
1198     }
1199   }
1200 }
1201 
1202 void WatcherThread::run() {
1203   assert(this == watcher_thread(), "just checking");
1204 
1205   this->record_stack_base_and_size();
1206   this->initialize_thread_local_storage();
1207   this->set_active_handles(JNIHandleBlock::allocate_block());
1208   while(!_should_terminate) {
1209     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1210     assert(watcher_thread() == this,  "thread consistency check");
1211 
1212     // Calculate how long it'll be until the next PeriodicTask work
1213     // should be done, and sleep that amount of time.
1214     size_t time_to_wait = PeriodicTask::time_to_wait();
1215 
1216     // we expect this to timeout - we only ever get unparked when
1217     // we should terminate
1218     {
1219       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1220 
1221       jlong prev_time = os::javaTimeNanos();
1222       for (;;) {
1223         int res= _SleepEvent->park(time_to_wait);
1224         if (res == OS_TIMEOUT || _should_terminate)
1225           break;
1226         // spurious wakeup of some kind
1227         jlong now = os::javaTimeNanos();
1228         time_to_wait -= (now - prev_time) / 1000000;
1229         if (time_to_wait <= 0)
1230           break;
1231         prev_time = now;
1232       }
1233     }
1234 
1235     if (is_error_reported()) {
1236       // A fatal error has happened, the error handler(VMError::report_and_die)
1237       // should abort JVM after creating an error log file. However in some
1238       // rare cases, the error handler itself might deadlock. Here we try to
1239       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1240       //
1241       // This code is in WatcherThread because WatcherThread wakes up
1242       // periodically so the fatal error handler doesn't need to do anything;
1243       // also because the WatcherThread is less likely to crash than other
1244       // threads.
1245 
1246       for (;;) {
1247         if (!ShowMessageBoxOnError
1248          && (OnError == NULL || OnError[0] == '\0')
1249          && Arguments::abort_hook() == NULL) {
1250              os::sleep(this, 2 * 60 * 1000, false);
1251              fdStream err(defaultStream::output_fd());
1252              err.print_raw_cr("# [ timer expired, abort... ]");
1253              // skip atexit/vm_exit/vm_abort hooks
1254              os::die();
1255         }
1256 
1257         // Wake up 5 seconds later, the fatal handler may reset OnError or
1258         // ShowMessageBoxOnError when it is ready to abort.
1259         os::sleep(this, 5 * 1000, false);
1260       }
1261     }
1262 
1263     PeriodicTask::real_time_tick(time_to_wait);
1264 
1265     // If we have no more tasks left due to dynamic disenrollment,
1266     // shut down the thread since we don't currently support dynamic enrollment
1267     if (PeriodicTask::num_tasks() == 0) {
1268       _should_terminate = true;
1269     }
1270   }
1271 
1272   // Signal that it is terminated
1273   {
1274     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1275     _watcher_thread = NULL;
1276     Terminator_lock->notify();
1277   }
1278 
1279   // Thread destructor usually does this..
1280   ThreadLocalStorage::set_thread(NULL);
1281 }
1282 
1283 void WatcherThread::start() {
1284   if (watcher_thread() == NULL) {
1285     _should_terminate = false;
1286     // Create the single instance of WatcherThread
1287     new WatcherThread();
1288   }
1289 }
1290 
1291 void WatcherThread::stop() {
1292   // it is ok to take late safepoints here, if needed
1293   MutexLocker mu(Terminator_lock);
1294   _should_terminate = true;
1295   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1296 
1297   Thread* watcher = watcher_thread();
1298   if (watcher != NULL)
1299     watcher->_SleepEvent->unpark();
1300 
1301   while(watcher_thread() != NULL) {
1302     // This wait should make safepoint checks, wait without a timeout,
1303     // and wait as a suspend-equivalent condition.
1304     //
1305     // Note: If the FlatProfiler is running, then this thread is waiting
1306     // for the WatcherThread to terminate and the WatcherThread, via the
1307     // FlatProfiler task, is waiting for the external suspend request on
1308     // this thread to complete. wait_for_ext_suspend_completion() will
1309     // eventually timeout, but that takes time. Making this wait a
1310     // suspend-equivalent condition solves that timeout problem.
1311     //
1312     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1313                           Mutex::_as_suspend_equivalent_flag);
1314   }
1315 }
1316 
1317 void WatcherThread::print_on(outputStream* st) const {
1318   st->print("\"%s\" ", name());
1319   Thread::print_on(st);
1320   st->cr();
1321 }
1322 
1323 // ======= JavaThread ========
1324 
1325 // A JavaThread is a normal Java thread
1326 
1327 void JavaThread::initialize() {
1328   // Initialize fields
1329 
1330   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1331   set_claimed_par_id(-1);
1332 
1333   set_saved_exception_pc(NULL);
1334   set_threadObj(NULL);
1335   _anchor.clear();
1336   set_entry_point(NULL);
1337   set_jni_functions(jni_functions());
1338   set_callee_target(NULL);
1339   set_vm_result(NULL);
1340   set_vm_result_2(NULL);
1341   set_vframe_array_head(NULL);
1342   set_vframe_array_last(NULL);
1343   set_deferred_locals(NULL);
1344   set_deopt_mark(NULL);
1345   set_deopt_nmethod(NULL);
1346   clear_must_deopt_id();
1347   set_monitor_chunks(NULL);
1348   set_next(NULL);
1349   set_thread_state(_thread_new);
1350   set_recorder(NULL);
1351   _terminated = _not_terminated;
1352   _privileged_stack_top = NULL;
1353   _array_for_gc = NULL;
1354   _suspend_equivalent = false;
1355   _in_deopt_handler = 0;
1356   _doing_unsafe_access = false;
1357   _stack_guard_state = stack_guard_unused;
1358   _exception_oop = NULL;
1359   _exception_pc  = 0;
1360   _exception_handler_pc = 0;
1361   _is_method_handle_return = 0;
1362   _jvmti_thread_state= NULL;
1363   _should_post_on_exceptions_flag = JNI_FALSE;
1364   _jvmti_get_loaded_classes_closure = NULL;
1365   _interp_only_mode    = 0;
1366   _special_runtime_exit_condition = _no_async_condition;
1367   _pending_async_exception = NULL;
1368   _is_compiling = false;
1369   _thread_stat = NULL;
1370   _thread_stat = new ThreadStatistics();
1371   _blocked_on_compilation = false;
1372   _jni_active_critical = 0;
1373   _do_not_unlock_if_synchronized = false;
1374   _cached_monitor_info = NULL;
1375   _parker = Parker::Allocate(this) ;
1376 
1377 #ifndef PRODUCT
1378   _jmp_ring_index = 0;
1379   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1380     record_jump(NULL, NULL, NULL, 0);
1381   }
1382 #endif /* PRODUCT */
1383 
1384   set_thread_profiler(NULL);
1385   if (FlatProfiler::is_active()) {
1386     // This is where we would decide to either give each thread it's own profiler
1387     // or use one global one from FlatProfiler,
1388     // or up to some count of the number of profiled threads, etc.
1389     ThreadProfiler* pp = new ThreadProfiler();
1390     pp->engage();
1391     set_thread_profiler(pp);
1392   }
1393 
1394   // Setup safepoint state info for this thread
1395   ThreadSafepointState::create(this);
1396 
1397   debug_only(_java_call_counter = 0);
1398 
1399   // JVMTI PopFrame support
1400   _popframe_condition = popframe_inactive;
1401   _popframe_preserved_args = NULL;
1402   _popframe_preserved_args_size = 0;
1403 
1404   pd_initialize();
1405 }
1406 
1407 #ifndef SERIALGC
1408 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1409 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1410 #endif // !SERIALGC
1411 
1412 JavaThread::JavaThread(bool is_attaching_via_jni) :
1413   Thread()
1414 #ifndef SERIALGC
1415   , _satb_mark_queue(&_satb_mark_queue_set),
1416   _dirty_card_queue(&_dirty_card_queue_set)
1417 #endif // !SERIALGC
1418 {
1419   initialize();
1420   if (is_attaching_via_jni) {
1421     _jni_attach_state = _attaching_via_jni;
1422   } else {
1423     _jni_attach_state = _not_attaching_via_jni;
1424   }
1425   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1426   _safepoint_visible = false;
1427 }
1428 
1429 bool JavaThread::reguard_stack(address cur_sp) {
1430   if (_stack_guard_state != stack_guard_yellow_disabled) {
1431     return true; // Stack already guarded or guard pages not needed.
1432   }
1433 
1434   if (register_stack_overflow()) {
1435     // For those architectures which have separate register and
1436     // memory stacks, we must check the register stack to see if
1437     // it has overflowed.
1438     return false;
1439   }
1440 
1441   // Java code never executes within the yellow zone: the latter is only
1442   // there to provoke an exception during stack banging.  If java code
1443   // is executing there, either StackShadowPages should be larger, or
1444   // some exception code in c1, c2 or the interpreter isn't unwinding
1445   // when it should.
1446   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1447 
1448   enable_stack_yellow_zone();
1449   return true;
1450 }
1451 
1452 bool JavaThread::reguard_stack(void) {
1453   return reguard_stack(os::current_stack_pointer());
1454 }
1455 
1456 
1457 void JavaThread::block_if_vm_exited() {
1458   if (_terminated == _vm_exited) {
1459     // _vm_exited is set at safepoint, and Threads_lock is never released
1460     // we will block here forever
1461     Threads_lock->lock_without_safepoint_check();
1462     ShouldNotReachHere();
1463   }
1464 }
1465 
1466 
1467 // Remove this ifdef when C1 is ported to the compiler interface.
1468 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1469 
1470 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1471   Thread()
1472 #ifndef SERIALGC
1473   , _satb_mark_queue(&_satb_mark_queue_set),
1474   _dirty_card_queue(&_dirty_card_queue_set)
1475 #endif // !SERIALGC
1476 {
1477   if (TraceThreadEvents) {
1478     tty->print_cr("creating thread %p", this);
1479   }
1480   initialize();
1481   _jni_attach_state = _not_attaching_via_jni;
1482   set_entry_point(entry_point);
1483   // Create the native thread itself.
1484   // %note runtime_23
1485   os::ThreadType thr_type = os::java_thread;
1486   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1487                                                      os::java_thread;
1488   os::create_thread(this, thr_type, stack_sz);
1489   _safepoint_visible = false;
1490   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1491   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1492   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1493   // the exception consists of creating the exception object & initializing it, initialization
1494   // will leave the VM via a JavaCall and then all locks must be unlocked).
1495   //
1496   // The thread is still suspended when we reach here. Thread must be explicit started
1497   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1498   // by calling Threads:add. The reason why this is not done here, is because the thread
1499   // object must be fully initialized (take a look at JVM_Start)
1500 }
1501 
1502 JavaThread::~JavaThread() {
1503   if (TraceThreadEvents) {
1504       tty->print_cr("terminate thread %p", this);
1505   }
1506 
1507   // Info NMT that this JavaThread is exiting, its memory
1508   // recorder should be collected
1509   assert(!is_safepoint_visible(), "wrong state");
1510   MemTracker::thread_exiting(this);
1511 
1512   // JSR166 -- return the parker to the free list
1513   Parker::Release(_parker);
1514   _parker = NULL ;
1515 
1516   // Free any remaining  previous UnrollBlock
1517   vframeArray* old_array = vframe_array_last();
1518 
1519   if (old_array != NULL) {
1520     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1521     old_array->set_unroll_block(NULL);
1522     delete old_info;
1523     delete old_array;
1524   }
1525 
1526   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1527   if (deferred != NULL) {
1528     // This can only happen if thread is destroyed before deoptimization occurs.
1529     assert(deferred->length() != 0, "empty array!");
1530     do {
1531       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1532       deferred->remove_at(0);
1533       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1534       delete dlv;
1535     } while (deferred->length() != 0);
1536     delete deferred;
1537   }
1538 
1539   // All Java related clean up happens in exit
1540   ThreadSafepointState::destroy(this);
1541   if (_thread_profiler != NULL) delete _thread_profiler;
1542   if (_thread_stat != NULL) delete _thread_stat;
1543 }
1544 
1545 
1546 // The first routine called by a new Java thread
1547 void JavaThread::run() {
1548   // initialize thread-local alloc buffer related fields
1549   this->initialize_tlab();
1550 
1551   // used to test validitity of stack trace backs
1552   this->record_base_of_stack_pointer();
1553 
1554   // Record real stack base and size.
1555   this->record_stack_base_and_size();
1556 
1557   // Initialize thread local storage; set before calling MutexLocker
1558   this->initialize_thread_local_storage();
1559 
1560   this->create_stack_guard_pages();
1561 
1562   this->cache_global_variables();
1563 
1564   // Thread is now sufficient initialized to be handled by the safepoint code as being
1565   // in the VM. Change thread state from _thread_new to _thread_in_vm
1566   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1567 
1568   assert(JavaThread::current() == this, "sanity check");
1569   assert(!Thread::current()->owns_locks(), "sanity check");
1570 
1571   DTRACE_THREAD_PROBE(start, this);
1572 
1573   // This operation might block. We call that after all safepoint checks for a new thread has
1574   // been completed.
1575   this->set_active_handles(JNIHandleBlock::allocate_block());
1576 
1577   if (JvmtiExport::should_post_thread_life()) {
1578     JvmtiExport::post_thread_start(this);
1579   }
1580 
1581   EVENT_BEGIN(TraceEventThreadStart, event);
1582   EVENT_COMMIT(event,
1583      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1584 
1585   // We call another function to do the rest so we are sure that the stack addresses used
1586   // from there will be lower than the stack base just computed
1587   thread_main_inner();
1588 
1589   // Note, thread is no longer valid at this point!
1590 }
1591 
1592 
1593 void JavaThread::thread_main_inner() {
1594   assert(JavaThread::current() == this, "sanity check");
1595   assert(this->threadObj() != NULL, "just checking");
1596 
1597   // Execute thread entry point unless this thread has a pending exception
1598   // or has been stopped before starting.
1599   // Note: Due to JVM_StopThread we can have pending exceptions already!
1600   if (!this->has_pending_exception() &&
1601       !java_lang_Thread::is_stillborn(this->threadObj())) {
1602     {
1603       ResourceMark rm(this);
1604       this->set_native_thread_name(this->get_thread_name());
1605     }
1606     HandleMark hm(this);
1607     this->entry_point()(this, this);
1608   }
1609 
1610   DTRACE_THREAD_PROBE(stop, this);
1611 
1612   this->exit(false);
1613   delete this;
1614 }
1615 
1616 
1617 static void ensure_join(JavaThread* thread) {
1618   // We do not need to grap the Threads_lock, since we are operating on ourself.
1619   Handle threadObj(thread, thread->threadObj());
1620   assert(threadObj.not_null(), "java thread object must exist");
1621   ObjectLocker lock(threadObj, thread);
1622   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1623   thread->clear_pending_exception();
1624   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1625   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1626   // Clear the native thread instance - this makes isAlive return false and allows the join()
1627   // to complete once we've done the notify_all below
1628   java_lang_Thread::set_thread(threadObj(), NULL);
1629   lock.notify_all(thread);
1630   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1631   thread->clear_pending_exception();
1632 }
1633 
1634 
1635 // For any new cleanup additions, please check to see if they need to be applied to
1636 // cleanup_failed_attach_current_thread as well.
1637 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1638   assert(this == JavaThread::current(),  "thread consistency check");
1639   if (!InitializeJavaLangSystem) return;
1640 
1641   HandleMark hm(this);
1642   Handle uncaught_exception(this, this->pending_exception());
1643   this->clear_pending_exception();
1644   Handle threadObj(this, this->threadObj());
1645   assert(threadObj.not_null(), "Java thread object should be created");
1646 
1647   if (get_thread_profiler() != NULL) {
1648     get_thread_profiler()->disengage();
1649     ResourceMark rm;
1650     get_thread_profiler()->print(get_thread_name());
1651   }
1652 
1653 
1654   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1655   {
1656     EXCEPTION_MARK;
1657 
1658     CLEAR_PENDING_EXCEPTION;
1659   }
1660   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1661   // has to be fixed by a runtime query method
1662   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1663     // JSR-166: change call from from ThreadGroup.uncaughtException to
1664     // java.lang.Thread.dispatchUncaughtException
1665     if (uncaught_exception.not_null()) {
1666       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1667       {
1668         EXCEPTION_MARK;
1669         // Check if the method Thread.dispatchUncaughtException() exists. If so
1670         // call it.  Otherwise we have an older library without the JSR-166 changes,
1671         // so call ThreadGroup.uncaughtException()
1672         KlassHandle recvrKlass(THREAD, threadObj->klass());
1673         CallInfo callinfo;
1674         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1675         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1676                                            vmSymbols::dispatchUncaughtException_name(),
1677                                            vmSymbols::throwable_void_signature(),
1678                                            KlassHandle(), false, false, THREAD);
1679         CLEAR_PENDING_EXCEPTION;
1680         methodHandle method = callinfo.selected_method();
1681         if (method.not_null()) {
1682           JavaValue result(T_VOID);
1683           JavaCalls::call_virtual(&result,
1684                                   threadObj, thread_klass,
1685                                   vmSymbols::dispatchUncaughtException_name(),
1686                                   vmSymbols::throwable_void_signature(),
1687                                   uncaught_exception,
1688                                   THREAD);
1689         } else {
1690           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1691           JavaValue result(T_VOID);
1692           JavaCalls::call_virtual(&result,
1693                                   group, thread_group,
1694                                   vmSymbols::uncaughtException_name(),
1695                                   vmSymbols::thread_throwable_void_signature(),
1696                                   threadObj,           // Arg 1
1697                                   uncaught_exception,  // Arg 2
1698                                   THREAD);
1699         }
1700         if (HAS_PENDING_EXCEPTION) {
1701           ResourceMark rm(this);
1702           jio_fprintf(defaultStream::error_stream(),
1703                 "\nException: %s thrown from the UncaughtExceptionHandler"
1704                 " in thread \"%s\"\n",
1705                 Klass::cast(pending_exception()->klass())->external_name(),
1706                 get_thread_name());
1707           CLEAR_PENDING_EXCEPTION;
1708         }
1709       }
1710     }
1711 
1712     // Called before the java thread exit since we want to read info
1713     // from java_lang_Thread object
1714     EVENT_BEGIN(TraceEventThreadEnd, event);
1715     EVENT_COMMIT(event,
1716         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1717 
1718     // Call after last event on thread
1719     EVENT_THREAD_EXIT(this);
1720 
1721     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1722     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1723     // is deprecated anyhow.
1724     { int count = 3;
1725       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1726         EXCEPTION_MARK;
1727         JavaValue result(T_VOID);
1728         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1729         JavaCalls::call_virtual(&result,
1730                               threadObj, thread_klass,
1731                               vmSymbols::exit_method_name(),
1732                               vmSymbols::void_method_signature(),
1733                               THREAD);
1734         CLEAR_PENDING_EXCEPTION;
1735       }
1736     }
1737 
1738     // notify JVMTI
1739     if (JvmtiExport::should_post_thread_life()) {
1740       JvmtiExport::post_thread_end(this);
1741     }
1742 
1743     // We have notified the agents that we are exiting, before we go on,
1744     // we must check for a pending external suspend request and honor it
1745     // in order to not surprise the thread that made the suspend request.
1746     while (true) {
1747       {
1748         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1749         if (!is_external_suspend()) {
1750           set_terminated(_thread_exiting);
1751           ThreadService::current_thread_exiting(this);
1752           break;
1753         }
1754         // Implied else:
1755         // Things get a little tricky here. We have a pending external
1756         // suspend request, but we are holding the SR_lock so we
1757         // can't just self-suspend. So we temporarily drop the lock
1758         // and then self-suspend.
1759       }
1760 
1761       ThreadBlockInVM tbivm(this);
1762       java_suspend_self();
1763 
1764       // We're done with this suspend request, but we have to loop around
1765       // and check again. Eventually we will get SR_lock without a pending
1766       // external suspend request and will be able to mark ourselves as
1767       // exiting.
1768     }
1769     // no more external suspends are allowed at this point
1770   } else {
1771     // before_exit() has already posted JVMTI THREAD_END events
1772   }
1773 
1774   // Notify waiters on thread object. This has to be done after exit() is called
1775   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1776   // group should have the destroyed bit set before waiters are notified).
1777   ensure_join(this);
1778   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1779 
1780   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1781   // held by this thread must be released.  A detach operation must only
1782   // get here if there are no Java frames on the stack.  Therefore, any
1783   // owned monitors at this point MUST be JNI-acquired monitors which are
1784   // pre-inflated and in the monitor cache.
1785   //
1786   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1787   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1788     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1789     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1790     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1791   }
1792 
1793   // These things needs to be done while we are still a Java Thread. Make sure that thread
1794   // is in a consistent state, in case GC happens
1795   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1796 
1797   if (active_handles() != NULL) {
1798     JNIHandleBlock* block = active_handles();
1799     set_active_handles(NULL);
1800     JNIHandleBlock::release_block(block);
1801   }
1802 
1803   if (free_handle_block() != NULL) {
1804     JNIHandleBlock* block = free_handle_block();
1805     set_free_handle_block(NULL);
1806     JNIHandleBlock::release_block(block);
1807   }
1808 
1809   // These have to be removed while this is still a valid thread.
1810   remove_stack_guard_pages();
1811 
1812   if (UseTLAB) {
1813     tlab().make_parsable(true);  // retire TLAB
1814   }
1815 
1816   if (JvmtiEnv::environments_might_exist()) {
1817     JvmtiExport::cleanup_thread(this);
1818   }
1819 
1820 #ifndef SERIALGC
1821   // We must flush G1-related buffers before removing a thread from
1822   // the list of active threads.
1823   if (UseG1GC) {
1824     flush_barrier_queues();
1825   }
1826 #endif
1827 
1828   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1829   Threads::remove(this);
1830 }
1831 
1832 #ifndef SERIALGC
1833 // Flush G1-related queues.
1834 void JavaThread::flush_barrier_queues() {
1835   satb_mark_queue().flush();
1836   dirty_card_queue().flush();
1837 }
1838 
1839 void JavaThread::initialize_queues() {
1840   assert(!SafepointSynchronize::is_at_safepoint(),
1841          "we should not be at a safepoint");
1842 
1843   ObjPtrQueue& satb_queue = satb_mark_queue();
1844   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1845   // The SATB queue should have been constructed with its active
1846   // field set to false.
1847   assert(!satb_queue.is_active(), "SATB queue should not be active");
1848   assert(satb_queue.is_empty(), "SATB queue should be empty");
1849   // If we are creating the thread during a marking cycle, we should
1850   // set the active field of the SATB queue to true.
1851   if (satb_queue_set.is_active()) {
1852     satb_queue.set_active(true);
1853   }
1854 
1855   DirtyCardQueue& dirty_queue = dirty_card_queue();
1856   // The dirty card queue should have been constructed with its
1857   // active field set to true.
1858   assert(dirty_queue.is_active(), "dirty card queue should be active");
1859 }
1860 #endif // !SERIALGC
1861 
1862 void JavaThread::cleanup_failed_attach_current_thread() {
1863   if (get_thread_profiler() != NULL) {
1864     get_thread_profiler()->disengage();
1865     ResourceMark rm;
1866     get_thread_profiler()->print(get_thread_name());
1867   }
1868 
1869   if (active_handles() != NULL) {
1870     JNIHandleBlock* block = active_handles();
1871     set_active_handles(NULL);
1872     JNIHandleBlock::release_block(block);
1873   }
1874 
1875   if (free_handle_block() != NULL) {
1876     JNIHandleBlock* block = free_handle_block();
1877     set_free_handle_block(NULL);
1878     JNIHandleBlock::release_block(block);
1879   }
1880 
1881   // These have to be removed while this is still a valid thread.
1882   remove_stack_guard_pages();
1883 
1884   if (UseTLAB) {
1885     tlab().make_parsable(true);  // retire TLAB, if any
1886   }
1887 
1888 #ifndef SERIALGC
1889   if (UseG1GC) {
1890     flush_barrier_queues();
1891   }
1892 #endif
1893 
1894   Threads::remove(this);
1895   delete this;
1896 }
1897 
1898 
1899 
1900 
1901 JavaThread* JavaThread::active() {
1902   Thread* thread = ThreadLocalStorage::thread();
1903   assert(thread != NULL, "just checking");
1904   if (thread->is_Java_thread()) {
1905     return (JavaThread*) thread;
1906   } else {
1907     assert(thread->is_VM_thread(), "this must be a vm thread");
1908     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1909     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1910     assert(ret->is_Java_thread(), "must be a Java thread");
1911     return ret;
1912   }
1913 }
1914 
1915 bool JavaThread::is_lock_owned(address adr) const {
1916   if (Thread::is_lock_owned(adr)) return true;
1917 
1918   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1919     if (chunk->contains(adr)) return true;
1920   }
1921 
1922   return false;
1923 }
1924 
1925 
1926 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1927   chunk->set_next(monitor_chunks());
1928   set_monitor_chunks(chunk);
1929 }
1930 
1931 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1932   guarantee(monitor_chunks() != NULL, "must be non empty");
1933   if (monitor_chunks() == chunk) {
1934     set_monitor_chunks(chunk->next());
1935   } else {
1936     MonitorChunk* prev = monitor_chunks();
1937     while (prev->next() != chunk) prev = prev->next();
1938     prev->set_next(chunk->next());
1939   }
1940 }
1941 
1942 // JVM support.
1943 
1944 // Note: this function shouldn't block if it's called in
1945 // _thread_in_native_trans state (such as from
1946 // check_special_condition_for_native_trans()).
1947 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1948 
1949   if (has_last_Java_frame() && has_async_condition()) {
1950     // If we are at a polling page safepoint (not a poll return)
1951     // then we must defer async exception because live registers
1952     // will be clobbered by the exception path. Poll return is
1953     // ok because the call we a returning from already collides
1954     // with exception handling registers and so there is no issue.
1955     // (The exception handling path kills call result registers but
1956     //  this is ok since the exception kills the result anyway).
1957 
1958     if (is_at_poll_safepoint()) {
1959       // if the code we are returning to has deoptimized we must defer
1960       // the exception otherwise live registers get clobbered on the
1961       // exception path before deoptimization is able to retrieve them.
1962       //
1963       RegisterMap map(this, false);
1964       frame caller_fr = last_frame().sender(&map);
1965       assert(caller_fr.is_compiled_frame(), "what?");
1966       if (caller_fr.is_deoptimized_frame()) {
1967         if (TraceExceptions) {
1968           ResourceMark rm;
1969           tty->print_cr("deferred async exception at compiled safepoint");
1970         }
1971         return;
1972       }
1973     }
1974   }
1975 
1976   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1977   if (condition == _no_async_condition) {
1978     // Conditions have changed since has_special_runtime_exit_condition()
1979     // was called:
1980     // - if we were here only because of an external suspend request,
1981     //   then that was taken care of above (or cancelled) so we are done
1982     // - if we were here because of another async request, then it has
1983     //   been cleared between the has_special_runtime_exit_condition()
1984     //   and now so again we are done
1985     return;
1986   }
1987 
1988   // Check for pending async. exception
1989   if (_pending_async_exception != NULL) {
1990     // Only overwrite an already pending exception, if it is not a threadDeath.
1991     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1992 
1993       // We cannot call Exceptions::_throw(...) here because we cannot block
1994       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1995 
1996       if (TraceExceptions) {
1997         ResourceMark rm;
1998         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1999         if (has_last_Java_frame() ) {
2000           frame f = last_frame();
2001           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2002         }
2003         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2004       }
2005       _pending_async_exception = NULL;
2006       clear_has_async_exception();
2007     }
2008   }
2009 
2010   if (check_unsafe_error &&
2011       condition == _async_unsafe_access_error && !has_pending_exception()) {
2012     condition = _no_async_condition;  // done
2013     switch (thread_state()) {
2014     case _thread_in_vm:
2015       {
2016         JavaThread* THREAD = this;
2017         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2018       }
2019     case _thread_in_native:
2020       {
2021         ThreadInVMfromNative tiv(this);
2022         JavaThread* THREAD = this;
2023         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2024       }
2025     case _thread_in_Java:
2026       {
2027         ThreadInVMfromJava tiv(this);
2028         JavaThread* THREAD = this;
2029         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2030       }
2031     default:
2032       ShouldNotReachHere();
2033     }
2034   }
2035 
2036   assert(condition == _no_async_condition || has_pending_exception() ||
2037          (!check_unsafe_error && condition == _async_unsafe_access_error),
2038          "must have handled the async condition, if no exception");
2039 }
2040 
2041 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2042   //
2043   // Check for pending external suspend. Internal suspend requests do
2044   // not use handle_special_runtime_exit_condition().
2045   // If JNIEnv proxies are allowed, don't self-suspend if the target
2046   // thread is not the current thread. In older versions of jdbx, jdbx
2047   // threads could call into the VM with another thread's JNIEnv so we
2048   // can be here operating on behalf of a suspended thread (4432884).
2049   bool do_self_suspend = is_external_suspend_with_lock();
2050   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2051     //
2052     // Because thread is external suspended the safepoint code will count
2053     // thread as at a safepoint. This can be odd because we can be here
2054     // as _thread_in_Java which would normally transition to _thread_blocked
2055     // at a safepoint. We would like to mark the thread as _thread_blocked
2056     // before calling java_suspend_self like all other callers of it but
2057     // we must then observe proper safepoint protocol. (We can't leave
2058     // _thread_blocked with a safepoint in progress). However we can be
2059     // here as _thread_in_native_trans so we can't use a normal transition
2060     // constructor/destructor pair because they assert on that type of
2061     // transition. We could do something like:
2062     //
2063     // JavaThreadState state = thread_state();
2064     // set_thread_state(_thread_in_vm);
2065     // {
2066     //   ThreadBlockInVM tbivm(this);
2067     //   java_suspend_self()
2068     // }
2069     // set_thread_state(_thread_in_vm_trans);
2070     // if (safepoint) block;
2071     // set_thread_state(state);
2072     //
2073     // but that is pretty messy. Instead we just go with the way the
2074     // code has worked before and note that this is the only path to
2075     // java_suspend_self that doesn't put the thread in _thread_blocked
2076     // mode.
2077 
2078     frame_anchor()->make_walkable(this);
2079     java_suspend_self();
2080 
2081     // We might be here for reasons in addition to the self-suspend request
2082     // so check for other async requests.
2083   }
2084 
2085   if (check_asyncs) {
2086     check_and_handle_async_exceptions();
2087   }
2088 }
2089 
2090 void JavaThread::send_thread_stop(oop java_throwable)  {
2091   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2092   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2093   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2094 
2095   // Do not throw asynchronous exceptions against the compiler thread
2096   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2097   if (is_Compiler_thread()) return;
2098 
2099   {
2100     // Actually throw the Throwable against the target Thread - however
2101     // only if there is no thread death exception installed already.
2102     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2103       // If the topmost frame is a runtime stub, then we are calling into
2104       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2105       // must deoptimize the caller before continuing, as the compiled  exception handler table
2106       // may not be valid
2107       if (has_last_Java_frame()) {
2108         frame f = last_frame();
2109         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2110           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2111           RegisterMap reg_map(this, UseBiasedLocking);
2112           frame compiled_frame = f.sender(&reg_map);
2113           if (compiled_frame.can_be_deoptimized()) {
2114             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2115           }
2116         }
2117       }
2118 
2119       // Set async. pending exception in thread.
2120       set_pending_async_exception(java_throwable);
2121 
2122       if (TraceExceptions) {
2123        ResourceMark rm;
2124        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2125       }
2126       // for AbortVMOnException flag
2127       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2128     }
2129   }
2130 
2131 
2132   // Interrupt thread so it will wake up from a potential wait()
2133   Thread::interrupt(this);
2134 }
2135 
2136 // External suspension mechanism.
2137 //
2138 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2139 // to any VM_locks and it is at a transition
2140 // Self-suspension will happen on the transition out of the vm.
2141 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2142 //
2143 // Guarantees on return:
2144 //   + Target thread will not execute any new bytecode (that's why we need to
2145 //     force a safepoint)
2146 //   + Target thread will not enter any new monitors
2147 //
2148 void JavaThread::java_suspend() {
2149   { MutexLocker mu(Threads_lock);
2150     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2151        return;
2152     }
2153   }
2154 
2155   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2156     if (!is_external_suspend()) {
2157       // a racing resume has cancelled us; bail out now
2158       return;
2159     }
2160 
2161     // suspend is done
2162     uint32_t debug_bits = 0;
2163     // Warning: is_ext_suspend_completed() may temporarily drop the
2164     // SR_lock to allow the thread to reach a stable thread state if
2165     // it is currently in a transient thread state.
2166     if (is_ext_suspend_completed(false /* !called_by_wait */,
2167                                  SuspendRetryDelay, &debug_bits) ) {
2168       return;
2169     }
2170   }
2171 
2172   VM_ForceSafepoint vm_suspend;
2173   VMThread::execute(&vm_suspend);
2174 }
2175 
2176 // Part II of external suspension.
2177 // A JavaThread self suspends when it detects a pending external suspend
2178 // request. This is usually on transitions. It is also done in places
2179 // where continuing to the next transition would surprise the caller,
2180 // e.g., monitor entry.
2181 //
2182 // Returns the number of times that the thread self-suspended.
2183 //
2184 // Note: DO NOT call java_suspend_self() when you just want to block current
2185 //       thread. java_suspend_self() is the second stage of cooperative
2186 //       suspension for external suspend requests and should only be used
2187 //       to complete an external suspend request.
2188 //
2189 int JavaThread::java_suspend_self() {
2190   int ret = 0;
2191 
2192   // we are in the process of exiting so don't suspend
2193   if (is_exiting()) {
2194      clear_external_suspend();
2195      return ret;
2196   }
2197 
2198   assert(_anchor.walkable() ||
2199     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2200     "must have walkable stack");
2201 
2202   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2203 
2204   assert(!this->is_ext_suspended(),
2205     "a thread trying to self-suspend should not already be suspended");
2206 
2207   if (this->is_suspend_equivalent()) {
2208     // If we are self-suspending as a result of the lifting of a
2209     // suspend equivalent condition, then the suspend_equivalent
2210     // flag is not cleared until we set the ext_suspended flag so
2211     // that wait_for_ext_suspend_completion() returns consistent
2212     // results.
2213     this->clear_suspend_equivalent();
2214   }
2215 
2216   // A racing resume may have cancelled us before we grabbed SR_lock
2217   // above. Or another external suspend request could be waiting for us
2218   // by the time we return from SR_lock()->wait(). The thread
2219   // that requested the suspension may already be trying to walk our
2220   // stack and if we return now, we can change the stack out from under
2221   // it. This would be a "bad thing (TM)" and cause the stack walker
2222   // to crash. We stay self-suspended until there are no more pending
2223   // external suspend requests.
2224   while (is_external_suspend()) {
2225     ret++;
2226     this->set_ext_suspended();
2227 
2228     // _ext_suspended flag is cleared by java_resume()
2229     while (is_ext_suspended()) {
2230       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2231     }
2232   }
2233 
2234   return ret;
2235 }
2236 
2237 #ifdef ASSERT
2238 // verify the JavaThread has not yet been published in the Threads::list, and
2239 // hence doesn't need protection from concurrent access at this stage
2240 void JavaThread::verify_not_published() {
2241   if (!Threads_lock->owned_by_self()) {
2242    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2243    assert( !Threads::includes(this),
2244            "java thread shouldn't have been published yet!");
2245   }
2246   else {
2247    assert( !Threads::includes(this),
2248            "java thread shouldn't have been published yet!");
2249   }
2250 }
2251 #endif
2252 
2253 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2254 // progress or when _suspend_flags is non-zero.
2255 // Current thread needs to self-suspend if there is a suspend request and/or
2256 // block if a safepoint is in progress.
2257 // Async exception ISN'T checked.
2258 // Note only the ThreadInVMfromNative transition can call this function
2259 // directly and when thread state is _thread_in_native_trans
2260 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2261   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2262 
2263   JavaThread *curJT = JavaThread::current();
2264   bool do_self_suspend = thread->is_external_suspend();
2265 
2266   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2267 
2268   // If JNIEnv proxies are allowed, don't self-suspend if the target
2269   // thread is not the current thread. In older versions of jdbx, jdbx
2270   // threads could call into the VM with another thread's JNIEnv so we
2271   // can be here operating on behalf of a suspended thread (4432884).
2272   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2273     JavaThreadState state = thread->thread_state();
2274 
2275     // We mark this thread_blocked state as a suspend-equivalent so
2276     // that a caller to is_ext_suspend_completed() won't be confused.
2277     // The suspend-equivalent state is cleared by java_suspend_self().
2278     thread->set_suspend_equivalent();
2279 
2280     // If the safepoint code sees the _thread_in_native_trans state, it will
2281     // wait until the thread changes to other thread state. There is no
2282     // guarantee on how soon we can obtain the SR_lock and complete the
2283     // self-suspend request. It would be a bad idea to let safepoint wait for
2284     // too long. Temporarily change the state to _thread_blocked to
2285     // let the VM thread know that this thread is ready for GC. The problem
2286     // of changing thread state is that safepoint could happen just after
2287     // java_suspend_self() returns after being resumed, and VM thread will
2288     // see the _thread_blocked state. We must check for safepoint
2289     // after restoring the state and make sure we won't leave while a safepoint
2290     // is in progress.
2291     thread->set_thread_state(_thread_blocked);
2292     thread->java_suspend_self();
2293     thread->set_thread_state(state);
2294     // Make sure new state is seen by VM thread
2295     if (os::is_MP()) {
2296       if (UseMembar) {
2297         // Force a fence between the write above and read below
2298         OrderAccess::fence();
2299       } else {
2300         // Must use this rather than serialization page in particular on Windows
2301         InterfaceSupport::serialize_memory(thread);
2302       }
2303     }
2304   }
2305 
2306   if (SafepointSynchronize::do_call_back()) {
2307     // If we are safepointing, then block the caller which may not be
2308     // the same as the target thread (see above).
2309     SafepointSynchronize::block(curJT);
2310   }
2311 
2312   if (thread->is_deopt_suspend()) {
2313     thread->clear_deopt_suspend();
2314     RegisterMap map(thread, false);
2315     frame f = thread->last_frame();
2316     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2317       f = f.sender(&map);
2318     }
2319     if (f.id() == thread->must_deopt_id()) {
2320       thread->clear_must_deopt_id();
2321       f.deoptimize(thread);
2322     } else {
2323       fatal("missed deoptimization!");
2324     }
2325   }
2326 }
2327 
2328 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2329 // progress or when _suspend_flags is non-zero.
2330 // Current thread needs to self-suspend if there is a suspend request and/or
2331 // block if a safepoint is in progress.
2332 // Also check for pending async exception (not including unsafe access error).
2333 // Note only the native==>VM/Java barriers can call this function and when
2334 // thread state is _thread_in_native_trans.
2335 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2336   check_safepoint_and_suspend_for_native_trans(thread);
2337 
2338   if (thread->has_async_exception()) {
2339     // We are in _thread_in_native_trans state, don't handle unsafe
2340     // access error since that may block.
2341     thread->check_and_handle_async_exceptions(false);
2342   }
2343 }
2344 
2345 // This is a variant of the normal
2346 // check_special_condition_for_native_trans with slightly different
2347 // semantics for use by critical native wrappers.  It does all the
2348 // normal checks but also performs the transition back into
2349 // thread_in_Java state.  This is required so that critical natives
2350 // can potentially block and perform a GC if they are the last thread
2351 // exiting the GC_locker.
2352 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2353   check_special_condition_for_native_trans(thread);
2354 
2355   // Finish the transition
2356   thread->set_thread_state(_thread_in_Java);
2357 
2358   if (thread->do_critical_native_unlock()) {
2359     ThreadInVMfromJavaNoAsyncException tiv(thread);
2360     GC_locker::unlock_critical(thread);
2361     thread->clear_critical_native_unlock();
2362   }
2363 }
2364 
2365 // We need to guarantee the Threads_lock here, since resumes are not
2366 // allowed during safepoint synchronization
2367 // Can only resume from an external suspension
2368 void JavaThread::java_resume() {
2369   assert_locked_or_safepoint(Threads_lock);
2370 
2371   // Sanity check: thread is gone, has started exiting or the thread
2372   // was not externally suspended.
2373   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2374     return;
2375   }
2376 
2377   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2378 
2379   clear_external_suspend();
2380 
2381   if (is_ext_suspended()) {
2382     clear_ext_suspended();
2383     SR_lock()->notify_all();
2384   }
2385 }
2386 
2387 void JavaThread::create_stack_guard_pages() {
2388   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2389   address low_addr = stack_base() - stack_size();
2390   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2391 
2392   int allocate = os::allocate_stack_guard_pages();
2393   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2394 
2395   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2396     warning("Attempt to allocate stack guard pages failed.");
2397     return;
2398   }
2399 
2400   if (os::guard_memory((char *) low_addr, len)) {
2401     _stack_guard_state = stack_guard_enabled;
2402   } else {
2403     warning("Attempt to protect stack guard pages failed.");
2404     if (os::uncommit_memory((char *) low_addr, len)) {
2405       warning("Attempt to deallocate stack guard pages failed.");
2406     }
2407   }
2408 }
2409 
2410 void JavaThread::remove_stack_guard_pages() {
2411   if (_stack_guard_state == stack_guard_unused) return;
2412   address low_addr = stack_base() - stack_size();
2413   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2414 
2415   if (os::allocate_stack_guard_pages()) {
2416     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2417       _stack_guard_state = stack_guard_unused;
2418     } else {
2419       warning("Attempt to deallocate stack guard pages failed.");
2420     }
2421   } else {
2422     if (_stack_guard_state == stack_guard_unused) return;
2423     if (os::unguard_memory((char *) low_addr, len)) {
2424       _stack_guard_state = stack_guard_unused;
2425     } else {
2426         warning("Attempt to unprotect stack guard pages failed.");
2427     }
2428   }
2429 }
2430 
2431 void JavaThread::enable_stack_yellow_zone() {
2432   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2433   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2434 
2435   // The base notation is from the stacks point of view, growing downward.
2436   // We need to adjust it to work correctly with guard_memory()
2437   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2438 
2439   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2440   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2441 
2442   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2443     _stack_guard_state = stack_guard_enabled;
2444   } else {
2445     warning("Attempt to guard stack yellow zone failed.");
2446   }
2447   enable_register_stack_guard();
2448 }
2449 
2450 void JavaThread::disable_stack_yellow_zone() {
2451   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2452   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2453 
2454   // Simply return if called for a thread that does not use guard pages.
2455   if (_stack_guard_state == stack_guard_unused) return;
2456 
2457   // The base notation is from the stacks point of view, growing downward.
2458   // We need to adjust it to work correctly with guard_memory()
2459   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2460 
2461   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2462     _stack_guard_state = stack_guard_yellow_disabled;
2463   } else {
2464     warning("Attempt to unguard stack yellow zone failed.");
2465   }
2466   disable_register_stack_guard();
2467 }
2468 
2469 void JavaThread::enable_stack_red_zone() {
2470   // The base notation is from the stacks point of view, growing downward.
2471   // We need to adjust it to work correctly with guard_memory()
2472   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2473   address base = stack_red_zone_base() - stack_red_zone_size();
2474 
2475   guarantee(base < stack_base(),"Error calculating stack red zone");
2476   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2477 
2478   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2479     warning("Attempt to guard stack red zone failed.");
2480   }
2481 }
2482 
2483 void JavaThread::disable_stack_red_zone() {
2484   // The base notation is from the stacks point of view, growing downward.
2485   // We need to adjust it to work correctly with guard_memory()
2486   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2487   address base = stack_red_zone_base() - stack_red_zone_size();
2488   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2489     warning("Attempt to unguard stack red zone failed.");
2490   }
2491 }
2492 
2493 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2494   // ignore is there is no stack
2495   if (!has_last_Java_frame()) return;
2496   // traverse the stack frames. Starts from top frame.
2497   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2498     frame* fr = fst.current();
2499     f(fr, fst.register_map());
2500   }
2501 }
2502 
2503 
2504 #ifndef PRODUCT
2505 // Deoptimization
2506 // Function for testing deoptimization
2507 void JavaThread::deoptimize() {
2508   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2509   StackFrameStream fst(this, UseBiasedLocking);
2510   bool deopt = false;           // Dump stack only if a deopt actually happens.
2511   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2512   // Iterate over all frames in the thread and deoptimize
2513   for(; !fst.is_done(); fst.next()) {
2514     if(fst.current()->can_be_deoptimized()) {
2515 
2516       if (only_at) {
2517         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2518         // consists of comma or carriage return separated numbers so
2519         // search for the current bci in that string.
2520         address pc = fst.current()->pc();
2521         nmethod* nm =  (nmethod*) fst.current()->cb();
2522         ScopeDesc* sd = nm->scope_desc_at( pc);
2523         char buffer[8];
2524         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2525         size_t len = strlen(buffer);
2526         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2527         while (found != NULL) {
2528           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2529               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2530             // Check that the bci found is bracketed by terminators.
2531             break;
2532           }
2533           found = strstr(found + 1, buffer);
2534         }
2535         if (!found) {
2536           continue;
2537         }
2538       }
2539 
2540       if (DebugDeoptimization && !deopt) {
2541         deopt = true; // One-time only print before deopt
2542         tty->print_cr("[BEFORE Deoptimization]");
2543         trace_frames();
2544         trace_stack();
2545       }
2546       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2547     }
2548   }
2549 
2550   if (DebugDeoptimization && deopt) {
2551     tty->print_cr("[AFTER Deoptimization]");
2552     trace_frames();
2553   }
2554 }
2555 
2556 
2557 // Make zombies
2558 void JavaThread::make_zombies() {
2559   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2560     if (fst.current()->can_be_deoptimized()) {
2561       // it is a Java nmethod
2562       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2563       nm->make_not_entrant();
2564     }
2565   }
2566 }
2567 #endif // PRODUCT
2568 
2569 
2570 void JavaThread::deoptimized_wrt_marked_nmethods() {
2571   if (!has_last_Java_frame()) return;
2572   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2573   StackFrameStream fst(this, UseBiasedLocking);
2574   for(; !fst.is_done(); fst.next()) {
2575     if (fst.current()->should_be_deoptimized()) {
2576       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2577     }
2578   }
2579 }
2580 
2581 
2582 // GC support
2583 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2584 
2585 void JavaThread::gc_epilogue() {
2586   frames_do(frame_gc_epilogue);
2587 }
2588 
2589 
2590 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2591 
2592 void JavaThread::gc_prologue() {
2593   frames_do(frame_gc_prologue);
2594 }
2595 
2596 // If the caller is a NamedThread, then remember, in the current scope,
2597 // the given JavaThread in its _processed_thread field.
2598 class RememberProcessedThread: public StackObj {
2599   NamedThread* _cur_thr;
2600 public:
2601   RememberProcessedThread(JavaThread* jthr) {
2602     Thread* thread = Thread::current();
2603     if (thread->is_Named_thread()) {
2604       _cur_thr = (NamedThread *)thread;
2605       _cur_thr->set_processed_thread(jthr);
2606     } else {
2607       _cur_thr = NULL;
2608     }
2609   }
2610 
2611   ~RememberProcessedThread() {
2612     if (_cur_thr) {
2613       _cur_thr->set_processed_thread(NULL);
2614     }
2615   }
2616 };
2617 
2618 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2619   // Verify that the deferred card marks have been flushed.
2620   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2621 
2622   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2623   // since there may be more than one thread using each ThreadProfiler.
2624 
2625   // Traverse the GCHandles
2626   Thread::oops_do(f, cf);
2627 
2628   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2629           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2630 
2631   if (has_last_Java_frame()) {
2632     // Record JavaThread to GC thread
2633     RememberProcessedThread rpt(this);
2634 
2635     // Traverse the privileged stack
2636     if (_privileged_stack_top != NULL) {
2637       _privileged_stack_top->oops_do(f);
2638     }
2639 
2640     // traverse the registered growable array
2641     if (_array_for_gc != NULL) {
2642       for (int index = 0; index < _array_for_gc->length(); index++) {
2643         f->do_oop(_array_for_gc->adr_at(index));
2644       }
2645     }
2646 
2647     // Traverse the monitor chunks
2648     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2649       chunk->oops_do(f);
2650     }
2651 
2652     // Traverse the execution stack
2653     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2654       fst.current()->oops_do(f, cf, fst.register_map());
2655     }
2656   }
2657 
2658   // callee_target is never live across a gc point so NULL it here should
2659   // it still contain a methdOop.
2660 
2661   set_callee_target(NULL);
2662 
2663   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2664   // If we have deferred set_locals there might be oops waiting to be
2665   // written
2666   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2667   if (list != NULL) {
2668     for (int i = 0; i < list->length(); i++) {
2669       list->at(i)->oops_do(f);
2670     }
2671   }
2672 
2673   // Traverse instance variables at the end since the GC may be moving things
2674   // around using this function
2675   f->do_oop((oop*) &_threadObj);
2676   f->do_oop((oop*) &_vm_result);
2677   f->do_oop((oop*) &_exception_oop);
2678   f->do_oop((oop*) &_pending_async_exception);
2679 
2680   if (jvmti_thread_state() != NULL) {
2681     jvmti_thread_state()->oops_do(f);
2682   }
2683 }
2684 
2685 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2686   Thread::nmethods_do(cf);  // (super method is a no-op)
2687 
2688   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2689           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2690 
2691   if (has_last_Java_frame()) {
2692     // Traverse the execution stack
2693     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2694       fst.current()->nmethods_do(cf);
2695     }
2696   }
2697 }
2698 
2699 void JavaThread::metadata_do(void f(Metadata*)) {
2700   Thread::metadata_do(f);
2701   if (has_last_Java_frame()) {
2702     // Traverse the execution stack to call f() on the methods in the stack
2703     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2704       fst.current()->metadata_do(f);
2705     }
2706   } else if (is_Compiler_thread()) {
2707     // need to walk ciMetadata in current compile tasks to keep alive.
2708     CompilerThread* ct = (CompilerThread*)this;
2709     if (ct->env() != NULL) {
2710       ct->env()->metadata_do(f);
2711     }
2712   }
2713 }
2714 
2715 // Printing
2716 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2717   switch (_thread_state) {
2718   case _thread_uninitialized:     return "_thread_uninitialized";
2719   case _thread_new:               return "_thread_new";
2720   case _thread_new_trans:         return "_thread_new_trans";
2721   case _thread_in_native:         return "_thread_in_native";
2722   case _thread_in_native_trans:   return "_thread_in_native_trans";
2723   case _thread_in_vm:             return "_thread_in_vm";
2724   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2725   case _thread_in_Java:           return "_thread_in_Java";
2726   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2727   case _thread_blocked:           return "_thread_blocked";
2728   case _thread_blocked_trans:     return "_thread_blocked_trans";
2729   default:                        return "unknown thread state";
2730   }
2731 }
2732 
2733 #ifndef PRODUCT
2734 void JavaThread::print_thread_state_on(outputStream *st) const {
2735   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2736 };
2737 void JavaThread::print_thread_state() const {
2738   print_thread_state_on(tty);
2739 };
2740 #endif // PRODUCT
2741 
2742 // Called by Threads::print() for VM_PrintThreads operation
2743 void JavaThread::print_on(outputStream *st) const {
2744   st->print("\"%s\" ", get_thread_name());
2745   oop thread_oop = threadObj();
2746   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2747   Thread::print_on(st);
2748   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2749   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2750   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2751     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2752   }
2753 #ifndef PRODUCT
2754   print_thread_state_on(st);
2755   _safepoint_state->print_on(st);
2756 #endif // PRODUCT
2757 }
2758 
2759 // Called by fatal error handler. The difference between this and
2760 // JavaThread::print() is that we can't grab lock or allocate memory.
2761 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2762   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2763   oop thread_obj = threadObj();
2764   if (thread_obj != NULL) {
2765      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2766   }
2767   st->print(" [");
2768   st->print("%s", _get_thread_state_name(_thread_state));
2769   if (osthread()) {
2770     st->print(", id=%d", osthread()->thread_id());
2771   }
2772   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2773             _stack_base - _stack_size, _stack_base);
2774   st->print("]");
2775   return;
2776 }
2777 
2778 // Verification
2779 
2780 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2781 
2782 void JavaThread::verify() {
2783   // Verify oops in the thread.
2784   oops_do(&VerifyOopClosure::verify_oop, NULL);
2785 
2786   // Verify the stack frames.
2787   frames_do(frame_verify);
2788 }
2789 
2790 // CR 6300358 (sub-CR 2137150)
2791 // Most callers of this method assume that it can't return NULL but a
2792 // thread may not have a name whilst it is in the process of attaching to
2793 // the VM - see CR 6412693, and there are places where a JavaThread can be
2794 // seen prior to having it's threadObj set (eg JNI attaching threads and
2795 // if vm exit occurs during initialization). These cases can all be accounted
2796 // for such that this method never returns NULL.
2797 const char* JavaThread::get_thread_name() const {
2798 #ifdef ASSERT
2799   // early safepoints can hit while current thread does not yet have TLS
2800   if (!SafepointSynchronize::is_at_safepoint()) {
2801     Thread *cur = Thread::current();
2802     if (!(cur->is_Java_thread() && cur == this)) {
2803       // Current JavaThreads are allowed to get their own name without
2804       // the Threads_lock.
2805       assert_locked_or_safepoint(Threads_lock);
2806     }
2807   }
2808 #endif // ASSERT
2809     return get_thread_name_string();
2810 }
2811 
2812 // Returns a non-NULL representation of this thread's name, or a suitable
2813 // descriptive string if there is no set name
2814 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2815   const char* name_str;
2816   oop thread_obj = threadObj();
2817   if (thread_obj != NULL) {
2818     typeArrayOop name = java_lang_Thread::name(thread_obj);
2819     if (name != NULL) {
2820       if (buf == NULL) {
2821         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2822       }
2823       else {
2824         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2825       }
2826     }
2827     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2828       name_str = "<no-name - thread is attaching>";
2829     }
2830     else {
2831       name_str = Thread::name();
2832     }
2833   }
2834   else {
2835     name_str = Thread::name();
2836   }
2837   assert(name_str != NULL, "unexpected NULL thread name");
2838   return name_str;
2839 }
2840 
2841 
2842 const char* JavaThread::get_threadgroup_name() const {
2843   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2844   oop thread_obj = threadObj();
2845   if (thread_obj != NULL) {
2846     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2847     if (thread_group != NULL) {
2848       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2849       // ThreadGroup.name can be null
2850       if (name != NULL) {
2851         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2852         return str;
2853       }
2854     }
2855   }
2856   return NULL;
2857 }
2858 
2859 const char* JavaThread::get_parent_name() const {
2860   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2861   oop thread_obj = threadObj();
2862   if (thread_obj != NULL) {
2863     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2864     if (thread_group != NULL) {
2865       oop parent = java_lang_ThreadGroup::parent(thread_group);
2866       if (parent != NULL) {
2867         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2868         // ThreadGroup.name can be null
2869         if (name != NULL) {
2870           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2871           return str;
2872         }
2873       }
2874     }
2875   }
2876   return NULL;
2877 }
2878 
2879 ThreadPriority JavaThread::java_priority() const {
2880   oop thr_oop = threadObj();
2881   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2882   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2883   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2884   return priority;
2885 }
2886 
2887 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2888 
2889   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2890   // Link Java Thread object <-> C++ Thread
2891 
2892   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2893   // and put it into a new Handle.  The Handle "thread_oop" can then
2894   // be used to pass the C++ thread object to other methods.
2895 
2896   // Set the Java level thread object (jthread) field of the
2897   // new thread (a JavaThread *) to C++ thread object using the
2898   // "thread_oop" handle.
2899 
2900   // Set the thread field (a JavaThread *) of the
2901   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2902 
2903   Handle thread_oop(Thread::current(),
2904                     JNIHandles::resolve_non_null(jni_thread));
2905   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2906     "must be initialized");
2907   set_threadObj(thread_oop());
2908   java_lang_Thread::set_thread(thread_oop(), this);
2909 
2910   if (prio == NoPriority) {
2911     prio = java_lang_Thread::priority(thread_oop());
2912     assert(prio != NoPriority, "A valid priority should be present");
2913   }
2914 
2915   // Push the Java priority down to the native thread; needs Threads_lock
2916   Thread::set_priority(this, prio);
2917 
2918   // Add the new thread to the Threads list and set it in motion.
2919   // We must have threads lock in order to call Threads::add.
2920   // It is crucial that we do not block before the thread is
2921   // added to the Threads list for if a GC happens, then the java_thread oop
2922   // will not be visited by GC.
2923   Threads::add(this);
2924 }
2925 
2926 oop JavaThread::current_park_blocker() {
2927   // Support for JSR-166 locks
2928   oop thread_oop = threadObj();
2929   if (thread_oop != NULL &&
2930       JDK_Version::current().supports_thread_park_blocker()) {
2931     return java_lang_Thread::park_blocker(thread_oop);
2932   }
2933   return NULL;
2934 }
2935 
2936 
2937 void JavaThread::print_stack_on(outputStream* st) {
2938   if (!has_last_Java_frame()) return;
2939   ResourceMark rm;
2940   HandleMark   hm;
2941 
2942   RegisterMap reg_map(this);
2943   vframe* start_vf = last_java_vframe(&reg_map);
2944   int count = 0;
2945   for (vframe* f = start_vf; f; f = f->sender() ) {
2946     if (f->is_java_frame()) {
2947       javaVFrame* jvf = javaVFrame::cast(f);
2948       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2949 
2950       // Print out lock information
2951       if (JavaMonitorsInStackTrace) {
2952         jvf->print_lock_info_on(st, count);
2953       }
2954     } else {
2955       // Ignore non-Java frames
2956     }
2957 
2958     // Bail-out case for too deep stacks
2959     count++;
2960     if (MaxJavaStackTraceDepth == count) return;
2961   }
2962 }
2963 
2964 
2965 // JVMTI PopFrame support
2966 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2967   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2968   if (in_bytes(size_in_bytes) != 0) {
2969     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2970     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2971     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2972   }
2973 }
2974 
2975 void* JavaThread::popframe_preserved_args() {
2976   return _popframe_preserved_args;
2977 }
2978 
2979 ByteSize JavaThread::popframe_preserved_args_size() {
2980   return in_ByteSize(_popframe_preserved_args_size);
2981 }
2982 
2983 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2984   int sz = in_bytes(popframe_preserved_args_size());
2985   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2986   return in_WordSize(sz / wordSize);
2987 }
2988 
2989 void JavaThread::popframe_free_preserved_args() {
2990   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2991   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
2992   _popframe_preserved_args = NULL;
2993   _popframe_preserved_args_size = 0;
2994 }
2995 
2996 #ifndef PRODUCT
2997 
2998 void JavaThread::trace_frames() {
2999   tty->print_cr("[Describe stack]");
3000   int frame_no = 1;
3001   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3002     tty->print("  %d. ", frame_no++);
3003     fst.current()->print_value_on(tty,this);
3004     tty->cr();
3005   }
3006 }
3007 
3008 class PrintAndVerifyOopClosure: public OopClosure {
3009  protected:
3010   template <class T> inline void do_oop_work(T* p) {
3011     oop obj = oopDesc::load_decode_heap_oop(p);
3012     if (obj == NULL) return;
3013     tty->print(INTPTR_FORMAT ": ", p);
3014     if (obj->is_oop_or_null()) {
3015       if (obj->is_objArray()) {
3016         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3017       } else {
3018         obj->print();
3019       }
3020     } else {
3021       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3022     }
3023     tty->cr();
3024   }
3025  public:
3026   virtual void do_oop(oop* p) { do_oop_work(p); }
3027   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3028 };
3029 
3030 
3031 static void oops_print(frame* f, const RegisterMap *map) {
3032   PrintAndVerifyOopClosure print;
3033   f->print_value();
3034   f->oops_do(&print, NULL, (RegisterMap*)map);
3035 }
3036 
3037 // Print our all the locations that contain oops and whether they are
3038 // valid or not.  This useful when trying to find the oldest frame
3039 // where an oop has gone bad since the frame walk is from youngest to
3040 // oldest.
3041 void JavaThread::trace_oops() {
3042   tty->print_cr("[Trace oops]");
3043   frames_do(oops_print);
3044 }
3045 
3046 
3047 #ifdef ASSERT
3048 // Print or validate the layout of stack frames
3049 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3050   ResourceMark rm;
3051   PRESERVE_EXCEPTION_MARK;
3052   FrameValues values;
3053   int frame_no = 0;
3054   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3055     fst.current()->describe(values, ++frame_no);
3056     if (depth == frame_no) break;
3057   }
3058   if (validate_only) {
3059     values.validate();
3060   } else {
3061     tty->print_cr("[Describe stack layout]");
3062     values.print(this);
3063   }
3064 }
3065 #endif
3066 
3067 void JavaThread::trace_stack_from(vframe* start_vf) {
3068   ResourceMark rm;
3069   int vframe_no = 1;
3070   for (vframe* f = start_vf; f; f = f->sender() ) {
3071     if (f->is_java_frame()) {
3072       javaVFrame::cast(f)->print_activation(vframe_no++);
3073     } else {
3074       f->print();
3075     }
3076     if (vframe_no > StackPrintLimit) {
3077       tty->print_cr("...<more frames>...");
3078       return;
3079     }
3080   }
3081 }
3082 
3083 
3084 void JavaThread::trace_stack() {
3085   if (!has_last_Java_frame()) return;
3086   ResourceMark rm;
3087   HandleMark   hm;
3088   RegisterMap reg_map(this);
3089   trace_stack_from(last_java_vframe(&reg_map));
3090 }
3091 
3092 
3093 #endif // PRODUCT
3094 
3095 
3096 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3097   assert(reg_map != NULL, "a map must be given");
3098   frame f = last_frame();
3099   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3100     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3101   }
3102   return NULL;
3103 }
3104 
3105 
3106 Klass* JavaThread::security_get_caller_class(int depth) {
3107   vframeStream vfst(this);
3108   vfst.security_get_caller_frame(depth);
3109   if (!vfst.at_end()) {
3110     return vfst.method()->method_holder();
3111   }
3112   return NULL;
3113 }
3114 
3115 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3116   assert(thread->is_Compiler_thread(), "must be compiler thread");
3117   CompileBroker::compiler_thread_loop();
3118 }
3119 
3120 // Create a CompilerThread
3121 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3122 : JavaThread(&compiler_thread_entry) {
3123   _env   = NULL;
3124   _log   = NULL;
3125   _task  = NULL;
3126   _queue = queue;
3127   _counters = counters;
3128   _buffer_blob = NULL;
3129   _scanned_nmethod = NULL;
3130 
3131 #ifndef PRODUCT
3132   _ideal_graph_printer = NULL;
3133 #endif
3134 }
3135 
3136 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3137   JavaThread::oops_do(f, cf);
3138   if (_scanned_nmethod != NULL && cf != NULL) {
3139     // Safepoints can occur when the sweeper is scanning an nmethod so
3140     // process it here to make sure it isn't unloaded in the middle of
3141     // a scan.
3142     cf->do_code_blob(_scanned_nmethod);
3143   }
3144 }
3145 
3146 // ======= Threads ========
3147 
3148 // The Threads class links together all active threads, and provides
3149 // operations over all threads.  It is protected by its own Mutex
3150 // lock, which is also used in other contexts to protect thread
3151 // operations from having the thread being operated on from exiting
3152 // and going away unexpectedly (e.g., safepoint synchronization)
3153 
3154 JavaThread* Threads::_thread_list = NULL;
3155 int         Threads::_number_of_threads = 0;
3156 int         Threads::_number_of_non_daemon_threads = 0;
3157 int         Threads::_return_code = 0;
3158 size_t      JavaThread::_stack_size_at_create = 0;
3159 #ifdef ASSERT
3160 bool        Threads::_vm_complete = false;
3161 #endif
3162 
3163 // All JavaThreads
3164 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3165 
3166 void os_stream();
3167 
3168 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3169 void Threads::threads_do(ThreadClosure* tc) {
3170   assert_locked_or_safepoint(Threads_lock);
3171   // ALL_JAVA_THREADS iterates through all JavaThreads
3172   ALL_JAVA_THREADS(p) {
3173     tc->do_thread(p);
3174   }
3175   // Someday we could have a table or list of all non-JavaThreads.
3176   // For now, just manually iterate through them.
3177   tc->do_thread(VMThread::vm_thread());
3178   Universe::heap()->gc_threads_do(tc);
3179   WatcherThread *wt = WatcherThread::watcher_thread();
3180   // Strictly speaking, the following NULL check isn't sufficient to make sure
3181   // the data for WatcherThread is still valid upon being examined. However,
3182   // considering that WatchThread terminates when the VM is on the way to
3183   // exit at safepoint, the chance of the above is extremely small. The right
3184   // way to prevent termination of WatcherThread would be to acquire
3185   // Terminator_lock, but we can't do that without violating the lock rank
3186   // checking in some cases.
3187   if (wt != NULL)
3188     tc->do_thread(wt);
3189 
3190   // If CompilerThreads ever become non-JavaThreads, add them here
3191 }
3192 
3193 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3194 
3195   extern void JDK_Version_init();
3196 
3197   // Check version
3198   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3199 
3200   // Initialize the output stream module
3201   ostream_init();
3202 
3203   // Process java launcher properties.
3204   Arguments::process_sun_java_launcher_properties(args);
3205 
3206   // Initialize the os module before using TLS
3207   os::init();
3208 
3209   // Initialize system properties.
3210   Arguments::init_system_properties();
3211 
3212   // So that JDK version can be used as a discrimintor when parsing arguments
3213   JDK_Version_init();
3214 
3215   // Update/Initialize System properties after JDK version number is known
3216   Arguments::init_version_specific_system_properties();
3217 
3218   // Parse arguments
3219   jint parse_result = Arguments::parse(args);
3220   if (parse_result != JNI_OK) return parse_result;
3221 
3222   if (PauseAtStartup) {
3223     os::pause();
3224   }
3225 
3226 #ifndef USDT2
3227   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3228 #else /* USDT2 */
3229   HOTSPOT_VM_INIT_BEGIN();
3230 #endif /* USDT2 */
3231 
3232   // Record VM creation timing statistics
3233   TraceVmCreationTime create_vm_timer;
3234   create_vm_timer.start();
3235 
3236   // Timing (must come after argument parsing)
3237   TraceTime timer("Create VM", TraceStartupTime);
3238 
3239   // Initialize the os module after parsing the args
3240   jint os_init_2_result = os::init_2();
3241   if (os_init_2_result != JNI_OK) return os_init_2_result;
3242 
3243   // intialize TLS
3244   ThreadLocalStorage::init();
3245 
3246   // Bootstrap native memory tracking, so it can start recording memory
3247   // activities before worker thread is started. This is the first phase
3248   // of bootstrapping, VM is currently running in single-thread mode.
3249   MemTracker::bootstrap_single_thread();
3250 
3251   // Initialize output stream logging
3252   ostream_init_log();
3253 
3254   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3255   // Must be before create_vm_init_agents()
3256   if (Arguments::init_libraries_at_startup()) {
3257     convert_vm_init_libraries_to_agents();
3258   }
3259 
3260   // Launch -agentlib/-agentpath and converted -Xrun agents
3261   if (Arguments::init_agents_at_startup()) {
3262     create_vm_init_agents();
3263   }
3264 
3265   // Initialize Threads state
3266   _thread_list = NULL;
3267   _number_of_threads = 0;
3268   _number_of_non_daemon_threads = 0;
3269 
3270   // Initialize global data structures and create system classes in heap
3271   vm_init_globals();
3272 
3273   // Attach the main thread to this os thread
3274   JavaThread* main_thread = new JavaThread();
3275   main_thread->set_thread_state(_thread_in_vm);
3276   // must do this before set_active_handles and initialize_thread_local_storage
3277   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3278   // change the stack size recorded here to one based on the java thread
3279   // stacksize. This adjusted size is what is used to figure the placement
3280   // of the guard pages.
3281   main_thread->record_stack_base_and_size();
3282   main_thread->initialize_thread_local_storage();
3283 
3284   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3285 
3286   if (!main_thread->set_as_starting_thread()) {
3287     vm_shutdown_during_initialization(
3288       "Failed necessary internal allocation. Out of swap space");
3289     delete main_thread;
3290     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3291     return JNI_ENOMEM;
3292   }
3293 
3294   // Enable guard page *after* os::create_main_thread(), otherwise it would
3295   // crash Linux VM, see notes in os_linux.cpp.
3296   main_thread->create_stack_guard_pages();
3297 
3298   // Initialize Java-Level synchronization subsystem
3299   ObjectMonitor::Initialize() ;
3300 
3301   // Second phase of bootstrapping, VM is about entering multi-thread mode
3302   MemTracker::bootstrap_multi_thread();
3303 
3304   // Initialize global modules
3305   jint status = init_globals();
3306   if (status != JNI_OK) {
3307     delete main_thread;
3308     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3309     return status;
3310   }
3311 
3312   // Should be done after the heap is fully created
3313   main_thread->cache_global_variables();
3314 
3315   HandleMark hm;
3316 
3317   { MutexLocker mu(Threads_lock);
3318     Threads::add(main_thread);
3319   }
3320 
3321   // Any JVMTI raw monitors entered in onload will transition into
3322   // real raw monitor. VM is setup enough here for raw monitor enter.
3323   JvmtiExport::transition_pending_onload_raw_monitors();
3324 
3325   if (VerifyBeforeGC &&
3326       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3327     Universe::heap()->prepare_for_verify();
3328     Universe::verify();   // make sure we're starting with a clean slate
3329   }
3330 
3331   // Fully start NMT
3332   MemTracker::start();
3333 
3334   // Create the VMThread
3335   { TraceTime timer("Start VMThread", TraceStartupTime);
3336     VMThread::create();
3337     Thread* vmthread = VMThread::vm_thread();
3338 
3339     if (!os::create_thread(vmthread, os::vm_thread))
3340       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3341 
3342     // Wait for the VM thread to become ready, and VMThread::run to initialize
3343     // Monitors can have spurious returns, must always check another state flag
3344     {
3345       MutexLocker ml(Notify_lock);
3346       os::start_thread(vmthread);
3347       while (vmthread->active_handles() == NULL) {
3348         Notify_lock->wait();
3349       }
3350     }
3351   }
3352 
3353   assert (Universe::is_fully_initialized(), "not initialized");
3354   EXCEPTION_MARK;
3355 
3356   // At this point, the Universe is initialized, but we have not executed
3357   // any byte code.  Now is a good time (the only time) to dump out the
3358   // internal state of the JVM for sharing.
3359   if (DumpSharedSpaces) {
3360     MetaspaceShared::preload_and_dump(CHECK_0);
3361     ShouldNotReachHere();
3362   }
3363 
3364   // Always call even when there are not JVMTI environments yet, since environments
3365   // may be attached late and JVMTI must track phases of VM execution
3366   JvmtiExport::enter_start_phase();
3367 
3368   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3369   JvmtiExport::post_vm_start();
3370 
3371   {
3372     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3373 
3374     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3375       create_vm_init_libraries();
3376     }
3377 
3378     if (InitializeJavaLangString) {
3379       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3380     } else {
3381       warning("java.lang.String not initialized");
3382     }
3383 
3384     if (AggressiveOpts) {
3385       {
3386         // Forcibly initialize java/util/HashMap and mutate the private
3387         // static final "frontCacheEnabled" field before we start creating instances
3388 #ifdef ASSERT
3389         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3390         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3391 #endif
3392         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3393         KlassHandle k = KlassHandle(THREAD, k_o);
3394         guarantee(k.not_null(), "Must find java/util/HashMap");
3395         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3396         ik->initialize(CHECK_0);
3397         fieldDescriptor fd;
3398         // Possible we might not find this field; if so, don't break
3399         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3400           k()->java_mirror()->bool_field_put(fd.offset(), true);
3401         }
3402       }
3403 
3404       if (UseStringCache) {
3405         // Forcibly initialize java/lang/StringValue and mutate the private
3406         // static final "stringCacheEnabled" field before we start creating instances
3407         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3408         // Possible that StringValue isn't present: if so, silently don't break
3409         if (k_o != NULL) {
3410           KlassHandle k = KlassHandle(THREAD, k_o);
3411           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3412           ik->initialize(CHECK_0);
3413           fieldDescriptor fd;
3414           // Possible we might not find this field: if so, silently don't break
3415           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3416             k()->java_mirror()->bool_field_put(fd.offset(), true);
3417           }
3418         }
3419       }
3420     }
3421 
3422     // Initialize java_lang.System (needed before creating the thread)
3423     if (InitializeJavaLangSystem) {
3424       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3425       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3426       Handle thread_group = create_initial_thread_group(CHECK_0);
3427       Universe::set_main_thread_group(thread_group());
3428       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3429       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3430       main_thread->set_threadObj(thread_object);
3431       // Set thread status to running since main thread has
3432       // been started and running.
3433       java_lang_Thread::set_thread_status(thread_object,
3434                                           java_lang_Thread::RUNNABLE);
3435 
3436       // The VM preresolve methods to these classes. Make sure that get initialized
3437       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3438       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3439       // The VM creates & returns objects of this class. Make sure it's initialized.
3440       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3441       call_initializeSystemClass(CHECK_0);
3442 
3443       // get the Java runtime name after java.lang.System is initialized
3444       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3445     } else {
3446       warning("java.lang.System not initialized");
3447     }
3448 
3449     // an instance of OutOfMemory exception has been allocated earlier
3450     if (InitializeJavaLangExceptionsErrors) {
3451       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3452       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3453       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3454       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3455       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3456       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3457       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3458       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3459     } else {
3460       warning("java.lang.OutOfMemoryError has not been initialized");
3461       warning("java.lang.NullPointerException has not been initialized");
3462       warning("java.lang.ClassCastException has not been initialized");
3463       warning("java.lang.ArrayStoreException has not been initialized");
3464       warning("java.lang.ArithmeticException has not been initialized");
3465       warning("java.lang.StackOverflowError has not been initialized");
3466       warning("java.lang.IllegalArgumentException has not been initialized");
3467     }
3468   }
3469 
3470   // See        : bugid 4211085.
3471   // Background : the static initializer of java.lang.Compiler tries to read
3472   //              property"java.compiler" and read & write property "java.vm.info".
3473   //              When a security manager is installed through the command line
3474   //              option "-Djava.security.manager", the above properties are not
3475   //              readable and the static initializer for java.lang.Compiler fails
3476   //              resulting in a NoClassDefFoundError.  This can happen in any
3477   //              user code which calls methods in java.lang.Compiler.
3478   // Hack :       the hack is to pre-load and initialize this class, so that only
3479   //              system domains are on the stack when the properties are read.
3480   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3481   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3482   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3483   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3484   //              Once that is done, we should remove this hack.
3485   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3486 
3487   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3488   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3489   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3490   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3491   // This should also be taken out as soon as 4211383 gets fixed.
3492   reset_vm_info_property(CHECK_0);
3493 
3494   quicken_jni_functions();
3495 
3496   // Must be run after init_ft which initializes ft_enabled
3497   if (TRACE_INITIALIZE() != JNI_OK) {
3498     vm_exit_during_initialization("Failed to initialize tracing backend");
3499   }
3500 
3501   // Set flag that basic initialization has completed. Used by exceptions and various
3502   // debug stuff, that does not work until all basic classes have been initialized.
3503   set_init_completed();
3504 
3505 #ifndef USDT2
3506   HS_DTRACE_PROBE(hotspot, vm__init__end);
3507 #else /* USDT2 */
3508   HOTSPOT_VM_INIT_END();
3509 #endif /* USDT2 */
3510 
3511   // record VM initialization completion time
3512   Management::record_vm_init_completed();
3513 
3514   // Compute system loader. Note that this has to occur after set_init_completed, since
3515   // valid exceptions may be thrown in the process.
3516   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3517   // set_init_completed has just been called, causing exceptions not to be shortcut
3518   // anymore. We call vm_exit_during_initialization directly instead.
3519   SystemDictionary::compute_java_system_loader(THREAD);
3520   if (HAS_PENDING_EXCEPTION) {
3521     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3522   }
3523 
3524 #ifndef SERIALGC
3525   // Support for ConcurrentMarkSweep. This should be cleaned up
3526   // and better encapsulated. The ugly nested if test would go away
3527   // once things are properly refactored. XXX YSR
3528   if (UseConcMarkSweepGC || UseG1GC) {
3529     if (UseConcMarkSweepGC) {
3530       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3531     } else {
3532       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3533     }
3534     if (HAS_PENDING_EXCEPTION) {
3535       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3536     }
3537   }
3538 #endif // SERIALGC
3539 
3540   // Always call even when there are not JVMTI environments yet, since environments
3541   // may be attached late and JVMTI must track phases of VM execution
3542   JvmtiExport::enter_live_phase();
3543 
3544   // Signal Dispatcher needs to be started before VMInit event is posted
3545   os::signal_init();
3546 
3547   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3548   if (!DisableAttachMechanism) {
3549     if (StartAttachListener || AttachListener::init_at_startup()) {
3550       AttachListener::init();
3551     }
3552   }
3553 
3554   // Launch -Xrun agents
3555   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3556   // back-end can launch with -Xdebug -Xrunjdwp.
3557   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3558     create_vm_init_libraries();
3559   }
3560 
3561   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3562   JvmtiExport::post_vm_initialized();
3563 
3564   if (!TRACE_START()) {
3565     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3566   }
3567 
3568   if (CleanChunkPoolAsync) {
3569     Chunk::start_chunk_pool_cleaner_task();
3570   }
3571 
3572   // initialize compiler(s)
3573   CompileBroker::compilation_init();
3574 
3575   Management::initialize(THREAD);
3576   if (HAS_PENDING_EXCEPTION) {
3577     // management agent fails to start possibly due to
3578     // configuration problem and is responsible for printing
3579     // stack trace if appropriate. Simply exit VM.
3580     vm_exit(1);
3581   }
3582 
3583   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3584   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3585   if (MemProfiling)                   MemProfiler::engage();
3586   StatSampler::engage();
3587   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3588 
3589   BiasedLocking::init();
3590 
3591   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3592     call_postVMInitHook(THREAD);
3593     // The Java side of PostVMInitHook.run must deal with all
3594     // exceptions and provide means of diagnosis.
3595     if (HAS_PENDING_EXCEPTION) {
3596       CLEAR_PENDING_EXCEPTION;
3597     }
3598   }
3599 
3600   // Start up the WatcherThread if there are any periodic tasks
3601   // NOTE:  All PeriodicTasks should be registered by now. If they
3602   //   aren't, late joiners might appear to start slowly (we might
3603   //   take a while to process their first tick).
3604   if (PeriodicTask::num_tasks() > 0) {
3605     WatcherThread::start();
3606   }
3607 
3608   // Give os specific code one last chance to start
3609   os::init_3();
3610 
3611   create_vm_timer.end();
3612 #ifdef ASSERT
3613   _vm_complete = true;
3614 #endif
3615   return JNI_OK;
3616 }
3617 
3618 // type for the Agent_OnLoad and JVM_OnLoad entry points
3619 extern "C" {
3620   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3621 }
3622 // Find a command line agent library and return its entry point for
3623 //         -agentlib:  -agentpath:   -Xrun
3624 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3625 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3626   OnLoadEntry_t on_load_entry = NULL;
3627   void *library = agent->os_lib();  // check if we have looked it up before
3628 
3629   if (library == NULL) {
3630     char buffer[JVM_MAXPATHLEN];
3631     char ebuf[1024];
3632     const char *name = agent->name();
3633     const char *msg = "Could not find agent library ";
3634 
3635     if (agent->is_absolute_path()) {
3636       library = os::dll_load(name, ebuf, sizeof ebuf);
3637       if (library == NULL) {
3638         const char *sub_msg = " in absolute path, with error: ";
3639         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3640         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3641         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3642         // If we can't find the agent, exit.
3643         vm_exit_during_initialization(buf, NULL);
3644         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3645       }
3646     } else {
3647       // Try to load the agent from the standard dll directory
3648       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3649       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3650 #ifdef KERNEL
3651       // Download instrument dll
3652       if (library == NULL && strcmp(name, "instrument") == 0) {
3653         char *props = Arguments::get_kernel_properties();
3654         char *home  = Arguments::get_java_home();
3655         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3656                       " sun.jkernel.DownloadManager -download client_jvm";
3657         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3658         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3659         jio_snprintf(cmd, length, fmt, home, props);
3660         int status = os::fork_and_exec(cmd);
3661         FreeHeap(props);
3662         if (status == -1) {
3663           warning(cmd);
3664           vm_exit_during_initialization("fork_and_exec failed: %s",
3665                                          strerror(errno));
3666         }
3667         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3668         // when this comes back the instrument.dll should be where it belongs.
3669         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670       }
3671 #endif // KERNEL
3672       if (library == NULL) { // Try the local directory
3673         char ns[1] = {0};
3674         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3675         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3676         if (library == NULL) {
3677           const char *sub_msg = " on the library path, with error: ";
3678           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3679           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3680           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3681           // If we can't find the agent, exit.
3682           vm_exit_during_initialization(buf, NULL);
3683           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3684         }
3685       }
3686     }
3687     agent->set_os_lib(library);
3688   }
3689 
3690   // Find the OnLoad function.
3691   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3692     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3693     if (on_load_entry != NULL) break;
3694   }
3695   return on_load_entry;
3696 }
3697 
3698 // Find the JVM_OnLoad entry point
3699 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3700   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3701   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3702 }
3703 
3704 // Find the Agent_OnLoad entry point
3705 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3706   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3707   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3708 }
3709 
3710 // For backwards compatibility with -Xrun
3711 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3712 // treated like -agentpath:
3713 // Must be called before agent libraries are created
3714 void Threads::convert_vm_init_libraries_to_agents() {
3715   AgentLibrary* agent;
3716   AgentLibrary* next;
3717 
3718   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3719     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3720     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3721 
3722     // If there is an JVM_OnLoad function it will get called later,
3723     // otherwise see if there is an Agent_OnLoad
3724     if (on_load_entry == NULL) {
3725       on_load_entry = lookup_agent_on_load(agent);
3726       if (on_load_entry != NULL) {
3727         // switch it to the agent list -- so that Agent_OnLoad will be called,
3728         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3729         Arguments::convert_library_to_agent(agent);
3730       } else {
3731         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3732       }
3733     }
3734   }
3735 }
3736 
3737 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3738 // Invokes Agent_OnLoad
3739 // Called very early -- before JavaThreads exist
3740 void Threads::create_vm_init_agents() {
3741   extern struct JavaVM_ main_vm;
3742   AgentLibrary* agent;
3743 
3744   JvmtiExport::enter_onload_phase();
3745   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3746     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3747 
3748     if (on_load_entry != NULL) {
3749       // Invoke the Agent_OnLoad function
3750       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3751       if (err != JNI_OK) {
3752         vm_exit_during_initialization("agent library failed to init", agent->name());
3753       }
3754     } else {
3755       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3756     }
3757   }
3758   JvmtiExport::enter_primordial_phase();
3759 }
3760 
3761 extern "C" {
3762   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3763 }
3764 
3765 void Threads::shutdown_vm_agents() {
3766   // Send any Agent_OnUnload notifications
3767   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3768   extern struct JavaVM_ main_vm;
3769   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3770 
3771     // Find the Agent_OnUnload function.
3772     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3773       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3774                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3775 
3776       // Invoke the Agent_OnUnload function
3777       if (unload_entry != NULL) {
3778         JavaThread* thread = JavaThread::current();
3779         ThreadToNativeFromVM ttn(thread);
3780         HandleMark hm(thread);
3781         (*unload_entry)(&main_vm);
3782         break;
3783       }
3784     }
3785   }
3786 }
3787 
3788 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3789 // Invokes JVM_OnLoad
3790 void Threads::create_vm_init_libraries() {
3791   extern struct JavaVM_ main_vm;
3792   AgentLibrary* agent;
3793 
3794   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3795     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3796 
3797     if (on_load_entry != NULL) {
3798       // Invoke the JVM_OnLoad function
3799       JavaThread* thread = JavaThread::current();
3800       ThreadToNativeFromVM ttn(thread);
3801       HandleMark hm(thread);
3802       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3803       if (err != JNI_OK) {
3804         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3805       }
3806     } else {
3807       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3808     }
3809   }
3810 }
3811 
3812 // Last thread running calls java.lang.Shutdown.shutdown()
3813 void JavaThread::invoke_shutdown_hooks() {
3814   HandleMark hm(this);
3815 
3816   // We could get here with a pending exception, if so clear it now.
3817   if (this->has_pending_exception()) {
3818     this->clear_pending_exception();
3819   }
3820 
3821   EXCEPTION_MARK;
3822   Klass* k =
3823     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3824                                       THREAD);
3825   if (k != NULL) {
3826     // SystemDictionary::resolve_or_null will return null if there was
3827     // an exception.  If we cannot load the Shutdown class, just don't
3828     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3829     // and finalizers (if runFinalizersOnExit is set) won't be run.
3830     // Note that if a shutdown hook was registered or runFinalizersOnExit
3831     // was called, the Shutdown class would have already been loaded
3832     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3833     instanceKlassHandle shutdown_klass (THREAD, k);
3834     JavaValue result(T_VOID);
3835     JavaCalls::call_static(&result,
3836                            shutdown_klass,
3837                            vmSymbols::shutdown_method_name(),
3838                            vmSymbols::void_method_signature(),
3839                            THREAD);
3840   }
3841   CLEAR_PENDING_EXCEPTION;
3842 }
3843 
3844 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3845 // the program falls off the end of main(). Another VM exit path is through
3846 // vm_exit() when the program calls System.exit() to return a value or when
3847 // there is a serious error in VM. The two shutdown paths are not exactly
3848 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3849 // and VM_Exit op at VM level.
3850 //
3851 // Shutdown sequence:
3852 //   + Shutdown native memory tracking if it is on
3853 //   + Wait until we are the last non-daemon thread to execute
3854 //     <-- every thing is still working at this moment -->
3855 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3856 //        shutdown hooks, run finalizers if finalization-on-exit
3857 //   + Call before_exit(), prepare for VM exit
3858 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3859 //        currently the only user of this mechanism is File.deleteOnExit())
3860 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3861 //        post thread end and vm death events to JVMTI,
3862 //        stop signal thread
3863 //   + Call JavaThread::exit(), it will:
3864 //      > release JNI handle blocks, remove stack guard pages
3865 //      > remove this thread from Threads list
3866 //     <-- no more Java code from this thread after this point -->
3867 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3868 //     the compiler threads at safepoint
3869 //     <-- do not use anything that could get blocked by Safepoint -->
3870 //   + Disable tracing at JNI/JVM barriers
3871 //   + Set _vm_exited flag for threads that are still running native code
3872 //   + Delete this thread
3873 //   + Call exit_globals()
3874 //      > deletes tty
3875 //      > deletes PerfMemory resources
3876 //   + Return to caller
3877 
3878 bool Threads::destroy_vm() {
3879   JavaThread* thread = JavaThread::current();
3880 
3881 #ifdef ASSERT
3882   _vm_complete = false;
3883 #endif
3884   // Wait until we are the last non-daemon thread to execute
3885   { MutexLocker nu(Threads_lock);
3886     while (Threads::number_of_non_daemon_threads() > 1 )
3887       // This wait should make safepoint checks, wait without a timeout,
3888       // and wait as a suspend-equivalent condition.
3889       //
3890       // Note: If the FlatProfiler is running and this thread is waiting
3891       // for another non-daemon thread to finish, then the FlatProfiler
3892       // is waiting for the external suspend request on this thread to
3893       // complete. wait_for_ext_suspend_completion() will eventually
3894       // timeout, but that takes time. Making this wait a suspend-
3895       // equivalent condition solves that timeout problem.
3896       //
3897       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3898                          Mutex::_as_suspend_equivalent_flag);
3899   }
3900 
3901   // Shutdown NMT before exit. Otherwise,
3902   // it will run into trouble when system destroys static variables.
3903   MemTracker::shutdown(MemTracker::NMT_normal);
3904 
3905   // Hang forever on exit if we are reporting an error.
3906   if (ShowMessageBoxOnError && is_error_reported()) {
3907     os::infinite_sleep();
3908   }
3909   os::wait_for_keypress_at_exit();
3910 
3911   if (JDK_Version::is_jdk12x_version()) {
3912     // We are the last thread running, so check if finalizers should be run.
3913     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3914     HandleMark rm(thread);
3915     Universe::run_finalizers_on_exit();
3916   } else {
3917     // run Java level shutdown hooks
3918     thread->invoke_shutdown_hooks();
3919   }
3920 
3921   before_exit(thread);
3922 
3923   thread->exit(true);
3924 
3925   // Stop VM thread.
3926   {
3927     // 4945125 The vm thread comes to a safepoint during exit.
3928     // GC vm_operations can get caught at the safepoint, and the
3929     // heap is unparseable if they are caught. Grab the Heap_lock
3930     // to prevent this. The GC vm_operations will not be able to
3931     // queue until after the vm thread is dead.
3932     // After this point, we'll never emerge out of the safepoint before
3933     // the VM exits, so concurrent GC threads do not need to be explicitly
3934     // stopped; they remain inactive until the process exits.
3935     // Note: some concurrent G1 threads may be running during a safepoint,
3936     // but these will not be accessing the heap, just some G1-specific side
3937     // data structures that are not accessed by any other threads but them
3938     // after this point in a terminal safepoint.
3939 
3940     MutexLocker ml(Heap_lock);
3941 
3942     VMThread::wait_for_vm_thread_exit();
3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944     VMThread::destroy();
3945   }
3946 
3947   // clean up ideal graph printers
3948 #if defined(COMPILER2) && !defined(PRODUCT)
3949   IdealGraphPrinter::clean_up();
3950 #endif
3951 
3952   // Now, all Java threads are gone except daemon threads. Daemon threads
3953   // running Java code or in VM are stopped by the Safepoint. However,
3954   // daemon threads executing native code are still running.  But they
3955   // will be stopped at native=>Java/VM barriers. Note that we can't
3956   // simply kill or suspend them, as it is inherently deadlock-prone.
3957 
3958 #ifndef PRODUCT
3959   // disable function tracing at JNI/JVM barriers
3960   TraceJNICalls = false;
3961   TraceJVMCalls = false;
3962   TraceRuntimeCalls = false;
3963 #endif
3964 
3965   VM_Exit::set_vm_exited();
3966 
3967   notify_vm_shutdown();
3968 
3969   delete thread;
3970 
3971   // exit_globals() will delete tty
3972   exit_globals();
3973 
3974   return true;
3975 }
3976 
3977 
3978 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3979   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3980   return is_supported_jni_version(version);
3981 }
3982 
3983 
3984 jboolean Threads::is_supported_jni_version(jint version) {
3985   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3987   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3988   return JNI_FALSE;
3989 }
3990 
3991 
3992 void Threads::add(JavaThread* p, bool force_daemon) {
3993   // The threads lock must be owned at this point
3994   assert_locked_or_safepoint(Threads_lock);
3995 
3996   // See the comment for this method in thread.hpp for its purpose and
3997   // why it is called here.
3998   p->initialize_queues();
3999   p->set_next(_thread_list);
4000   _thread_list = p;
4001   _number_of_threads++;
4002   oop threadObj = p->threadObj();
4003   bool daemon = true;
4004   // Bootstrapping problem: threadObj can be null for initial
4005   // JavaThread (or for threads attached via JNI)
4006   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4007     _number_of_non_daemon_threads++;
4008     daemon = false;
4009   }
4010 
4011   p->set_safepoint_visible(true);
4012 
4013   ThreadService::add_thread(p, daemon);
4014 
4015   // Possible GC point.
4016   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4017 }
4018 
4019 void Threads::remove(JavaThread* p) {
4020   // Extra scope needed for Thread_lock, so we can check
4021   // that we do not remove thread without safepoint code notice
4022   { MutexLocker ml(Threads_lock);
4023 
4024     assert(includes(p), "p must be present");
4025 
4026     JavaThread* current = _thread_list;
4027     JavaThread* prev    = NULL;
4028 
4029     while (current != p) {
4030       prev    = current;
4031       current = current->next();
4032     }
4033 
4034     if (prev) {
4035       prev->set_next(current->next());
4036     } else {
4037       _thread_list = p->next();
4038     }
4039     _number_of_threads--;
4040     oop threadObj = p->threadObj();
4041     bool daemon = true;
4042     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4043       _number_of_non_daemon_threads--;
4044       daemon = false;
4045 
4046       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4047       // on destroy_vm will wake up.
4048       if (number_of_non_daemon_threads() == 1)
4049         Threads_lock->notify_all();
4050     }
4051     ThreadService::remove_thread(p, daemon);
4052 
4053     // Make sure that safepoint code disregard this thread. This is needed since
4054     // the thread might mess around with locks after this point. This can cause it
4055     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4056     // of this thread since it is removed from the queue.
4057     p->set_terminated_value();
4058 
4059     // Now, this thread is not visible to safepoint
4060     p->set_safepoint_visible(false);
4061 
4062   } // unlock Threads_lock
4063 
4064   // Since Events::log uses a lock, we grab it outside the Threads_lock
4065   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4066 }
4067 
4068 // Threads_lock must be held when this is called (or must be called during a safepoint)
4069 bool Threads::includes(JavaThread* p) {
4070   assert(Threads_lock->is_locked(), "sanity check");
4071   ALL_JAVA_THREADS(q) {
4072     if (q == p ) {
4073       return true;
4074     }
4075   }
4076   return false;
4077 }
4078 
4079 // Operations on the Threads list for GC.  These are not explicitly locked,
4080 // but the garbage collector must provide a safe context for them to run.
4081 // In particular, these things should never be called when the Threads_lock
4082 // is held by some other thread. (Note: the Safepoint abstraction also
4083 // uses the Threads_lock to gurantee this property. It also makes sure that
4084 // all threads gets blocked when exiting or starting).
4085 
4086 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4087   ALL_JAVA_THREADS(p) {
4088     p->oops_do(f, cf);
4089   }
4090   VMThread::vm_thread()->oops_do(f, cf);
4091 }
4092 
4093 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4094   // Introduce a mechanism allowing parallel threads to claim threads as
4095   // root groups.  Overhead should be small enough to use all the time,
4096   // even in sequential code.
4097   SharedHeap* sh = SharedHeap::heap();
4098   // Cannot yet substitute active_workers for n_par_threads
4099   // because of G1CollectedHeap::verify() use of
4100   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4101   // turn off parallelism in process_strong_roots while active_workers
4102   // is being used for parallelism elsewhere.
4103   bool is_par = sh->n_par_threads() > 0;
4104   assert(!is_par ||
4105          (SharedHeap::heap()->n_par_threads() ==
4106           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4107   int cp = SharedHeap::heap()->strong_roots_parity();
4108   ALL_JAVA_THREADS(p) {
4109     if (p->claim_oops_do(is_par, cp)) {
4110       p->oops_do(f, cf);
4111     }
4112   }
4113   VMThread* vmt = VMThread::vm_thread();
4114   if (vmt->claim_oops_do(is_par, cp)) {
4115     vmt->oops_do(f, cf);
4116   }
4117 }
4118 
4119 #ifndef SERIALGC
4120 // Used by ParallelScavenge
4121 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4122   ALL_JAVA_THREADS(p) {
4123     q->enqueue(new ThreadRootsTask(p));
4124   }
4125   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4126 }
4127 
4128 // Used by Parallel Old
4129 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4130   ALL_JAVA_THREADS(p) {
4131     q->enqueue(new ThreadRootsMarkingTask(p));
4132   }
4133   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4134 }
4135 #endif // SERIALGC
4136 
4137 void Threads::nmethods_do(CodeBlobClosure* cf) {
4138   ALL_JAVA_THREADS(p) {
4139     p->nmethods_do(cf);
4140   }
4141   VMThread::vm_thread()->nmethods_do(cf);
4142 }
4143 
4144 void Threads::metadata_do(void f(Metadata*)) {
4145   ALL_JAVA_THREADS(p) {
4146     p->metadata_do(f);
4147   }
4148 }
4149 
4150 void Threads::gc_epilogue() {
4151   ALL_JAVA_THREADS(p) {
4152     p->gc_epilogue();
4153   }
4154 }
4155 
4156 void Threads::gc_prologue() {
4157   ALL_JAVA_THREADS(p) {
4158     p->gc_prologue();
4159   }
4160 }
4161 
4162 void Threads::deoptimized_wrt_marked_nmethods() {
4163   ALL_JAVA_THREADS(p) {
4164     p->deoptimized_wrt_marked_nmethods();
4165   }
4166 }
4167 
4168 
4169 // Get count Java threads that are waiting to enter the specified monitor.
4170 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4171   address monitor, bool doLock) {
4172   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4173     "must grab Threads_lock or be at safepoint");
4174   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4175 
4176   int i = 0;
4177   {
4178     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4179     ALL_JAVA_THREADS(p) {
4180       if (p->is_Compiler_thread()) continue;
4181 
4182       address pending = (address)p->current_pending_monitor();
4183       if (pending == monitor) {             // found a match
4184         if (i < count) result->append(p);   // save the first count matches
4185         i++;
4186       }
4187     }
4188   }
4189   return result;
4190 }
4191 
4192 
4193 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4194   assert(doLock ||
4195          Threads_lock->owned_by_self() ||
4196          SafepointSynchronize::is_at_safepoint(),
4197          "must grab Threads_lock or be at safepoint");
4198 
4199   // NULL owner means not locked so we can skip the search
4200   if (owner == NULL) return NULL;
4201 
4202   {
4203     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4204     ALL_JAVA_THREADS(p) {
4205       // first, see if owner is the address of a Java thread
4206       if (owner == (address)p) return p;
4207     }
4208   }
4209   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4210   if (UseHeavyMonitors) return NULL;
4211 
4212   //
4213   // If we didn't find a matching Java thread and we didn't force use of
4214   // heavyweight monitors, then the owner is the stack address of the
4215   // Lock Word in the owning Java thread's stack.
4216   //
4217   JavaThread* the_owner = NULL;
4218   {
4219     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4220     ALL_JAVA_THREADS(q) {
4221       if (q->is_lock_owned(owner)) {
4222         the_owner = q;
4223         break;
4224       }
4225     }
4226   }
4227   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4228   return the_owner;
4229 }
4230 
4231 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4232 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4233   char buf[32];
4234   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4235 
4236   st->print_cr("Full thread dump %s (%s %s):",
4237                 Abstract_VM_Version::vm_name(),
4238                 Abstract_VM_Version::vm_release(),
4239                 Abstract_VM_Version::vm_info_string()
4240                );
4241   st->cr();
4242 
4243 #ifndef SERIALGC
4244   // Dump concurrent locks
4245   ConcurrentLocksDump concurrent_locks;
4246   if (print_concurrent_locks) {
4247     concurrent_locks.dump_at_safepoint();
4248   }
4249 #endif // SERIALGC
4250 
4251   ALL_JAVA_THREADS(p) {
4252     ResourceMark rm;
4253     p->print_on(st);
4254     if (print_stacks) {
4255       if (internal_format) {
4256         p->trace_stack();
4257       } else {
4258         p->print_stack_on(st);
4259       }
4260     }
4261     st->cr();
4262 #ifndef SERIALGC
4263     if (print_concurrent_locks) {
4264       concurrent_locks.print_locks_on(p, st);
4265     }
4266 #endif // SERIALGC
4267   }
4268 
4269   VMThread::vm_thread()->print_on(st);
4270   st->cr();
4271   Universe::heap()->print_gc_threads_on(st);
4272   WatcherThread* wt = WatcherThread::watcher_thread();
4273   if (wt != NULL) wt->print_on(st);
4274   st->cr();
4275   CompileBroker::print_compiler_threads_on(st);
4276   st->flush();
4277 }
4278 
4279 // Threads::print_on_error() is called by fatal error handler. It's possible
4280 // that VM is not at safepoint and/or current thread is inside signal handler.
4281 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4282 // memory (even in resource area), it might deadlock the error handler.
4283 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4284   bool found_current = false;
4285   st->print_cr("Java Threads: ( => current thread )");
4286   ALL_JAVA_THREADS(thread) {
4287     bool is_current = (current == thread);
4288     found_current = found_current || is_current;
4289 
4290     st->print("%s", is_current ? "=>" : "  ");
4291 
4292     st->print(PTR_FORMAT, thread);
4293     st->print(" ");
4294     thread->print_on_error(st, buf, buflen);
4295     st->cr();
4296   }
4297   st->cr();
4298 
4299   st->print_cr("Other Threads:");
4300   if (VMThread::vm_thread()) {
4301     bool is_current = (current == VMThread::vm_thread());
4302     found_current = found_current || is_current;
4303     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4304 
4305     st->print(PTR_FORMAT, VMThread::vm_thread());
4306     st->print(" ");
4307     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4308     st->cr();
4309   }
4310   WatcherThread* wt = WatcherThread::watcher_thread();
4311   if (wt != NULL) {
4312     bool is_current = (current == wt);
4313     found_current = found_current || is_current;
4314     st->print("%s", is_current ? "=>" : "  ");
4315 
4316     st->print(PTR_FORMAT, wt);
4317     st->print(" ");
4318     wt->print_on_error(st, buf, buflen);
4319     st->cr();
4320   }
4321   if (!found_current) {
4322     st->cr();
4323     st->print("=>" PTR_FORMAT " (exited) ", current);
4324     current->print_on_error(st, buf, buflen);
4325     st->cr();
4326   }
4327 }
4328 
4329 // Internal SpinLock and Mutex
4330 // Based on ParkEvent
4331 
4332 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4333 //
4334 // We employ SpinLocks _only for low-contention, fixed-length
4335 // short-duration critical sections where we're concerned
4336 // about native mutex_t or HotSpot Mutex:: latency.
4337 // The mux construct provides a spin-then-block mutual exclusion
4338 // mechanism.
4339 //
4340 // Testing has shown that contention on the ListLock guarding gFreeList
4341 // is common.  If we implement ListLock as a simple SpinLock it's common
4342 // for the JVM to devolve to yielding with little progress.  This is true
4343 // despite the fact that the critical sections protected by ListLock are
4344 // extremely short.
4345 //
4346 // TODO-FIXME: ListLock should be of type SpinLock.
4347 // We should make this a 1st-class type, integrated into the lock
4348 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4349 // should have sufficient padding to avoid false-sharing and excessive
4350 // cache-coherency traffic.
4351 
4352 
4353 typedef volatile int SpinLockT ;
4354 
4355 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4356   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4357      return ;   // normal fast-path return
4358   }
4359 
4360   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4361   TEVENT (SpinAcquire - ctx) ;
4362   int ctr = 0 ;
4363   int Yields = 0 ;
4364   for (;;) {
4365      while (*adr != 0) {
4366         ++ctr ;
4367         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4368            if (Yields > 5) {
4369              // Consider using a simple NakedSleep() instead.
4370              // Then SpinAcquire could be called by non-JVM threads
4371              Thread::current()->_ParkEvent->park(1) ;
4372            } else {
4373              os::NakedYield() ;
4374              ++Yields ;
4375            }
4376         } else {
4377            SpinPause() ;
4378         }
4379      }
4380      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4381   }
4382 }
4383 
4384 void Thread::SpinRelease (volatile int * adr) {
4385   assert (*adr != 0, "invariant") ;
4386   OrderAccess::fence() ;      // guarantee at least release consistency.
4387   // Roach-motel semantics.
4388   // It's safe if subsequent LDs and STs float "up" into the critical section,
4389   // but prior LDs and STs within the critical section can't be allowed
4390   // to reorder or float past the ST that releases the lock.
4391   *adr = 0 ;
4392 }
4393 
4394 // muxAcquire and muxRelease:
4395 //
4396 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4397 //    The LSB of the word is set IFF the lock is held.
4398 //    The remainder of the word points to the head of a singly-linked list
4399 //    of threads blocked on the lock.
4400 //
4401 // *  The current implementation of muxAcquire-muxRelease uses its own
4402 //    dedicated Thread._MuxEvent instance.  If we're interested in
4403 //    minimizing the peak number of extant ParkEvent instances then
4404 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4405 //    as certain invariants were satisfied.  Specifically, care would need
4406 //    to be taken with regards to consuming unpark() "permits".
4407 //    A safe rule of thumb is that a thread would never call muxAcquire()
4408 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4409 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4410 //    consume an unpark() permit intended for monitorenter, for instance.
4411 //    One way around this would be to widen the restricted-range semaphore
4412 //    implemented in park().  Another alternative would be to provide
4413 //    multiple instances of the PlatformEvent() for each thread.  One
4414 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4415 //
4416 // *  Usage:
4417 //    -- Only as leaf locks
4418 //    -- for short-term locking only as muxAcquire does not perform
4419 //       thread state transitions.
4420 //
4421 // Alternatives:
4422 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4423 //    but with parking or spin-then-park instead of pure spinning.
4424 // *  Use Taura-Oyama-Yonenzawa locks.
4425 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4426 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4427 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4428 //    acquiring threads use timers (ParkTimed) to detect and recover from
4429 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4430 //    boundaries by using placement-new.
4431 // *  Augment MCS with advisory back-link fields maintained with CAS().
4432 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4433 //    The validity of the backlinks must be ratified before we trust the value.
4434 //    If the backlinks are invalid the exiting thread must back-track through the
4435 //    the forward links, which are always trustworthy.
4436 // *  Add a successor indication.  The LockWord is currently encoded as
4437 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4438 //    to provide the usual futile-wakeup optimization.
4439 //    See RTStt for details.
4440 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4441 //
4442 
4443 
4444 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4445 enum MuxBits { LOCKBIT = 1 } ;
4446 
4447 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4448   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4449   if (w == 0) return ;
4450   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4451      return ;
4452   }
4453 
4454   TEVENT (muxAcquire - Contention) ;
4455   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4456   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4457   for (;;) {
4458      int its = (os::is_MP() ? 100 : 0) + 1 ;
4459 
4460      // Optional spin phase: spin-then-park strategy
4461      while (--its >= 0) {
4462        w = *Lock ;
4463        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4464           return ;
4465        }
4466      }
4467 
4468      Self->reset() ;
4469      Self->OnList = intptr_t(Lock) ;
4470      // The following fence() isn't _strictly necessary as the subsequent
4471      // CAS() both serializes execution and ratifies the fetched *Lock value.
4472      OrderAccess::fence();
4473      for (;;) {
4474         w = *Lock ;
4475         if ((w & LOCKBIT) == 0) {
4476             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4477                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4478                 return ;
4479             }
4480             continue ;      // Interference -- *Lock changed -- Just retry
4481         }
4482         assert (w & LOCKBIT, "invariant") ;
4483         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4484         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4485      }
4486 
4487      while (Self->OnList != 0) {
4488         Self->park() ;
4489      }
4490   }
4491 }
4492 
4493 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4494   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4495   if (w == 0) return ;
4496   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4497     return ;
4498   }
4499 
4500   TEVENT (muxAcquire - Contention) ;
4501   ParkEvent * ReleaseAfter = NULL ;
4502   if (ev == NULL) {
4503     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4504   }
4505   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4506   for (;;) {
4507     guarantee (ev->OnList == 0, "invariant") ;
4508     int its = (os::is_MP() ? 100 : 0) + 1 ;
4509 
4510     // Optional spin phase: spin-then-park strategy
4511     while (--its >= 0) {
4512       w = *Lock ;
4513       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4514         if (ReleaseAfter != NULL) {
4515           ParkEvent::Release (ReleaseAfter) ;
4516         }
4517         return ;
4518       }
4519     }
4520 
4521     ev->reset() ;
4522     ev->OnList = intptr_t(Lock) ;
4523     // The following fence() isn't _strictly necessary as the subsequent
4524     // CAS() both serializes execution and ratifies the fetched *Lock value.
4525     OrderAccess::fence();
4526     for (;;) {
4527       w = *Lock ;
4528       if ((w & LOCKBIT) == 0) {
4529         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4530           ev->OnList = 0 ;
4531           // We call ::Release while holding the outer lock, thus
4532           // artificially lengthening the critical section.
4533           // Consider deferring the ::Release() until the subsequent unlock(),
4534           // after we've dropped the outer lock.
4535           if (ReleaseAfter != NULL) {
4536             ParkEvent::Release (ReleaseAfter) ;
4537           }
4538           return ;
4539         }
4540         continue ;      // Interference -- *Lock changed -- Just retry
4541       }
4542       assert (w & LOCKBIT, "invariant") ;
4543       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4544       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4545     }
4546 
4547     while (ev->OnList != 0) {
4548       ev->park() ;
4549     }
4550   }
4551 }
4552 
4553 // Release() must extract a successor from the list and then wake that thread.
4554 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4555 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4556 // Release() would :
4557 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4558 // (B) Extract a successor from the private list "in-hand"
4559 // (C) attempt to CAS() the residual back into *Lock over null.
4560 //     If there were any newly arrived threads and the CAS() would fail.
4561 //     In that case Release() would detach the RATs, re-merge the list in-hand
4562 //     with the RATs and repeat as needed.  Alternately, Release() might
4563 //     detach and extract a successor, but then pass the residual list to the wakee.
4564 //     The wakee would be responsible for reattaching and remerging before it
4565 //     competed for the lock.
4566 //
4567 // Both "pop" and DMR are immune from ABA corruption -- there can be
4568 // multiple concurrent pushers, but only one popper or detacher.
4569 // This implementation pops from the head of the list.  This is unfair,
4570 // but tends to provide excellent throughput as hot threads remain hot.
4571 // (We wake recently run threads first).
4572 
4573 void Thread::muxRelease (volatile intptr_t * Lock)  {
4574   for (;;) {
4575     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4576     assert (w & LOCKBIT, "invariant") ;
4577     if (w == LOCKBIT) return ;
4578     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4579     assert (List != NULL, "invariant") ;
4580     assert (List->OnList == intptr_t(Lock), "invariant") ;
4581     ParkEvent * nxt = List->ListNext ;
4582 
4583     // The following CAS() releases the lock and pops the head element.
4584     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4585       continue ;
4586     }
4587     List->OnList = 0 ;
4588     OrderAccess::fence() ;
4589     List->unpark () ;
4590     return ;
4591   }
4592 }
4593 
4594 
4595 void Threads::verify() {
4596   ALL_JAVA_THREADS(p) {
4597     p->verify();
4598   }
4599   VMThread* thread = VMThread::vm_thread();
4600   if (thread != NULL) thread->verify();
4601 }