1 /*
   2  * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 #include "precompiled.hpp"
  25 #include "gc_interface/collectedHeap.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/binaryTreeDictionary.hpp"
  28 #include "memory/freeList.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/filemap.hpp"
  31 #include "memory/freeList.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/metachunk.hpp"
  34 #include "memory/metaspace.hpp"
  35 #include "memory/metaspaceGCThresholdUpdater.hpp"
  36 #include "memory/metaspaceShared.hpp"
  37 #include "memory/metaspaceTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.hpp"
  40 #include "runtime/atomic.inline.hpp"
  41 #include "runtime/globals.hpp"
  42 #include "runtime/init.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/mutex.hpp"
  45 #include "runtime/orderAccess.inline.hpp"
  46 #include "services/memTracker.hpp"
  47 #include "services/memoryService.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
  53 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
  54 
  55 // Set this constant to enable slow integrity checking of the free chunk lists
  56 const bool metaspace_slow_verify = false;
  57 
  58 size_t const allocation_from_dictionary_limit = 4 * K;
  59 
  60 MetaWord* last_allocated = 0;
  61 
  62 size_t Metaspace::_compressed_class_space_size;
  63 const MetaspaceTracer* Metaspace::_tracer = NULL;
  64 
  65 // Used in declarations in SpaceManager and ChunkManager
  66 enum ChunkIndex {
  67   ZeroIndex = 0,
  68   SpecializedIndex = ZeroIndex,
  69   SmallIndex = SpecializedIndex + 1,
  70   MediumIndex = SmallIndex + 1,
  71   HumongousIndex = MediumIndex + 1,
  72   NumberOfFreeLists = 3,
  73   NumberOfInUseLists = 4
  74 };
  75 
  76 enum ChunkSizes {    // in words.
  77   ClassSpecializedChunk = 128,
  78   SpecializedChunk = 128,
  79   ClassSmallChunk = 256,
  80   SmallChunk = 512,
  81   ClassMediumChunk = 4 * K,
  82   MediumChunk = 8 * K
  83 };
  84 
  85 static ChunkIndex next_chunk_index(ChunkIndex i) {
  86   assert(i < NumberOfInUseLists, "Out of bound");
  87   return (ChunkIndex) (i+1);
  88 }
  89 
  90 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
  91 uint MetaspaceGC::_shrink_factor = 0;
  92 bool MetaspaceGC::_should_concurrent_collect = false;
  93 
  94 typedef class FreeList<Metachunk> ChunkList;
  95 
  96 // Manages the global free lists of chunks.
  97 class ChunkManager : public CHeapObj<mtInternal> {
  98   friend class TestVirtualSpaceNodeTest;
  99 
 100   // Free list of chunks of different sizes.
 101   //   SpecializedChunk
 102   //   SmallChunk
 103   //   MediumChunk
 104   //   HumongousChunk
 105   ChunkList _free_chunks[NumberOfFreeLists];
 106 
 107   //   HumongousChunk
 108   ChunkTreeDictionary _humongous_dictionary;
 109 
 110   // ChunkManager in all lists of this type
 111   size_t _free_chunks_total;
 112   size_t _free_chunks_count;
 113 
 114   void dec_free_chunks_total(size_t v) {
 115     assert(_free_chunks_count > 0 &&
 116              _free_chunks_total > 0,
 117              "About to go negative");
 118     Atomic::add_ptr(-1, &_free_chunks_count);
 119     jlong minus_v = (jlong) - (jlong) v;
 120     Atomic::add_ptr(minus_v, &_free_chunks_total);
 121   }
 122 
 123   // Debug support
 124 
 125   size_t sum_free_chunks();
 126   size_t sum_free_chunks_count();
 127 
 128   void locked_verify_free_chunks_total();
 129   void slow_locked_verify_free_chunks_total() {
 130     if (metaspace_slow_verify) {
 131       locked_verify_free_chunks_total();
 132     }
 133   }
 134   void locked_verify_free_chunks_count();
 135   void slow_locked_verify_free_chunks_count() {
 136     if (metaspace_slow_verify) {
 137       locked_verify_free_chunks_count();
 138     }
 139   }
 140   void verify_free_chunks_count();
 141 
 142  public:
 143 
 144   ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
 145       : _free_chunks_total(0), _free_chunks_count(0) {
 146     _free_chunks[SpecializedIndex].set_size(specialized_size);
 147     _free_chunks[SmallIndex].set_size(small_size);
 148     _free_chunks[MediumIndex].set_size(medium_size);
 149   }
 150 
 151   // add or delete (return) a chunk to the global freelist.
 152   Metachunk* chunk_freelist_allocate(size_t word_size);
 153 
 154   // Map a size to a list index assuming that there are lists
 155   // for special, small, medium, and humongous chunks.
 156   static ChunkIndex list_index(size_t size);
 157 
 158   // Remove the chunk from its freelist.  It is
 159   // expected to be on one of the _free_chunks[] lists.
 160   void remove_chunk(Metachunk* chunk);
 161 
 162   // Add the simple linked list of chunks to the freelist of chunks
 163   // of type index.
 164   void return_chunks(ChunkIndex index, Metachunk* chunks);
 165 
 166   // Total of the space in the free chunks list
 167   size_t free_chunks_total_words();
 168   size_t free_chunks_total_bytes();
 169 
 170   // Number of chunks in the free chunks list
 171   size_t free_chunks_count();
 172 
 173   void inc_free_chunks_total(size_t v, size_t count = 1) {
 174     Atomic::add_ptr(count, &_free_chunks_count);
 175     Atomic::add_ptr(v, &_free_chunks_total);
 176   }
 177   ChunkTreeDictionary* humongous_dictionary() {
 178     return &_humongous_dictionary;
 179   }
 180 
 181   ChunkList* free_chunks(ChunkIndex index);
 182 
 183   // Returns the list for the given chunk word size.
 184   ChunkList* find_free_chunks_list(size_t word_size);
 185 
 186   // Remove from a list by size.  Selects list based on size of chunk.
 187   Metachunk* free_chunks_get(size_t chunk_word_size);
 188 
 189 #define index_bounds_check(index)                                         \
 190   assert(index == SpecializedIndex ||                                     \
 191          index == SmallIndex ||                                           \
 192          index == MediumIndex ||                                          \
 193          index == HumongousIndex, err_msg("Bad index: %d", (int) index))
 194 
 195   size_t num_free_chunks(ChunkIndex index) const {
 196     index_bounds_check(index);
 197 
 198     if (index == HumongousIndex) {
 199       return _humongous_dictionary.total_free_blocks();
 200     }
 201 
 202     ssize_t count = _free_chunks[index].count();
 203     return count == -1 ? 0 : (size_t) count;
 204   }
 205 
 206   size_t size_free_chunks_in_bytes(ChunkIndex index) const {
 207     index_bounds_check(index);
 208 
 209     size_t word_size = 0;
 210     if (index == HumongousIndex) {
 211       word_size = _humongous_dictionary.total_size();
 212     } else {
 213       const size_t size_per_chunk_in_words = _free_chunks[index].size();
 214       word_size = size_per_chunk_in_words * num_free_chunks(index);
 215     }
 216 
 217     return word_size * BytesPerWord;
 218   }
 219 
 220   MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
 221     return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
 222                                          num_free_chunks(SmallIndex),
 223                                          num_free_chunks(MediumIndex),
 224                                          num_free_chunks(HumongousIndex),
 225                                          size_free_chunks_in_bytes(SpecializedIndex),
 226                                          size_free_chunks_in_bytes(SmallIndex),
 227                                          size_free_chunks_in_bytes(MediumIndex),
 228                                          size_free_chunks_in_bytes(HumongousIndex));
 229   }
 230 
 231   // Debug support
 232   void verify();
 233   void slow_verify() {
 234     if (metaspace_slow_verify) {
 235       verify();
 236     }
 237   }
 238   void locked_verify();
 239   void slow_locked_verify() {
 240     if (metaspace_slow_verify) {
 241       locked_verify();
 242     }
 243   }
 244   void verify_free_chunks_total();
 245 
 246   void locked_print_free_chunks(outputStream* st);
 247   void locked_print_sum_free_chunks(outputStream* st);
 248 
 249   void print_on(outputStream* st) const;
 250 };
 251 
 252 // Used to manage the free list of Metablocks (a block corresponds
 253 // to the allocation of a quantum of metadata).
 254 class BlockFreelist VALUE_OBJ_CLASS_SPEC {
 255   BlockTreeDictionary* const _dictionary;
 256 
 257   // Only allocate and split from freelist if the size of the allocation
 258   // is at least 1/4th the size of the available block.
 259   const static int WasteMultiplier = 4;
 260 
 261   // Accessors
 262   BlockTreeDictionary* dictionary() const { return _dictionary; }
 263 
 264  public:
 265   BlockFreelist();
 266   ~BlockFreelist();
 267 
 268   // Get and return a block to the free list
 269   MetaWord* get_block(size_t word_size);
 270   void return_block(MetaWord* p, size_t word_size);
 271 
 272   size_t total_size() { return dictionary()->total_size(); }
 273 
 274   void print_on(outputStream* st) const;
 275 };
 276 
 277 // A VirtualSpaceList node.
 278 class VirtualSpaceNode : public CHeapObj<mtClass> {
 279   friend class VirtualSpaceList;
 280 
 281   // Link to next VirtualSpaceNode
 282   VirtualSpaceNode* _next;
 283 
 284   // total in the VirtualSpace
 285   MemRegion _reserved;
 286   ReservedSpace _rs;
 287   VirtualSpace _virtual_space;
 288   MetaWord* _top;
 289   // count of chunks contained in this VirtualSpace
 290   uintx _container_count;
 291 
 292   // Convenience functions to access the _virtual_space
 293   char* low()  const { return virtual_space()->low(); }
 294   char* high() const { return virtual_space()->high(); }
 295 
 296   // The first Metachunk will be allocated at the bottom of the
 297   // VirtualSpace
 298   Metachunk* first_chunk() { return (Metachunk*) bottom(); }
 299 
 300   // Committed but unused space in the virtual space
 301   size_t free_words_in_vs() const;
 302  public:
 303 
 304   VirtualSpaceNode(size_t byte_size);
 305   VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
 306   ~VirtualSpaceNode();
 307 
 308   // Convenience functions for logical bottom and end
 309   MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
 310   MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
 311 
 312   bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
 313 
 314   size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
 315   size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
 316 
 317   bool is_pre_committed() const { return _virtual_space.special(); }
 318 
 319   // address of next available space in _virtual_space;
 320   // Accessors
 321   VirtualSpaceNode* next() { return _next; }
 322   void set_next(VirtualSpaceNode* v) { _next = v; }
 323 
 324   void set_reserved(MemRegion const v) { _reserved = v; }
 325   void set_top(MetaWord* v) { _top = v; }
 326 
 327   // Accessors
 328   MemRegion* reserved() { return &_reserved; }
 329   VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
 330 
 331   // Returns true if "word_size" is available in the VirtualSpace
 332   bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
 333 
 334   MetaWord* top() const { return _top; }
 335   void inc_top(size_t word_size) { _top += word_size; }
 336 
 337   uintx container_count() { return _container_count; }
 338   void inc_container_count();
 339   void dec_container_count();
 340 #ifdef ASSERT
 341   uintx container_count_slow();
 342   void verify_container_count();
 343 #endif
 344 
 345   // used and capacity in this single entry in the list
 346   size_t used_words_in_vs() const;
 347   size_t capacity_words_in_vs() const;
 348 
 349   bool initialize();
 350 
 351   // get space from the virtual space
 352   Metachunk* take_from_committed(size_t chunk_word_size);
 353 
 354   // Allocate a chunk from the virtual space and return it.
 355   Metachunk* get_chunk_vs(size_t chunk_word_size);
 356 
 357   // Expands/shrinks the committed space in a virtual space.  Delegates
 358   // to Virtualspace
 359   bool expand_by(size_t min_words, size_t preferred_words);
 360 
 361   // In preparation for deleting this node, remove all the chunks
 362   // in the node from any freelist.
 363   void purge(ChunkManager* chunk_manager);
 364 
 365   // If an allocation doesn't fit in the current node a new node is created.
 366   // Allocate chunks out of the remaining committed space in this node
 367   // to avoid wasting that memory.
 368   // This always adds up because all the chunk sizes are multiples of
 369   // the smallest chunk size.
 370   void retire(ChunkManager* chunk_manager);
 371 
 372 #ifdef ASSERT
 373   // Debug support
 374   void mangle();
 375 #endif
 376 
 377   void print_on(outputStream* st) const;
 378 };
 379 
 380 #define assert_is_ptr_aligned(ptr, alignment) \
 381   assert(is_ptr_aligned(ptr, alignment),      \
 382     err_msg(PTR_FORMAT " is not aligned to "  \
 383       SIZE_FORMAT, p2i(ptr), alignment))
 384 
 385 #define assert_is_size_aligned(size, alignment) \
 386   assert(is_size_aligned(size, alignment),      \
 387     err_msg(SIZE_FORMAT " is not aligned to "   \
 388        SIZE_FORMAT, size, alignment))
 389 
 390 
 391 // Decide if large pages should be committed when the memory is reserved.
 392 static bool should_commit_large_pages_when_reserving(size_t bytes) {
 393   if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
 394     size_t words = bytes / BytesPerWord;
 395     bool is_class = false; // We never reserve large pages for the class space.
 396     if (MetaspaceGC::can_expand(words, is_class) &&
 397         MetaspaceGC::allowed_expansion() >= words) {
 398       return true;
 399     }
 400   }
 401 
 402   return false;
 403 }
 404 
 405   // byte_size is the size of the associated virtualspace.
 406 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
 407   assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
 408 
 409 #if INCLUDE_CDS
 410   // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
 411   // configurable address, generally at the top of the Java heap so other
 412   // memory addresses don't conflict.
 413   if (DumpSharedSpaces) {
 414     bool large_pages = false; // No large pages when dumping the CDS archive.
 415     char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
 416 
 417     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base);
 418     if (_rs.is_reserved()) {
 419       assert(shared_base == 0 || _rs.base() == shared_base, "should match");
 420     } else {
 421       // Get a mmap region anywhere if the SharedBaseAddress fails.
 422       _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 423     }
 424     MetaspaceShared::set_shared_rs(&_rs);
 425   } else
 426 #endif
 427   {
 428     bool large_pages = should_commit_large_pages_when_reserving(bytes);
 429 
 430     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 431   }
 432 
 433   if (_rs.is_reserved()) {
 434     assert(_rs.base() != NULL, "Catch if we get a NULL address");
 435     assert(_rs.size() != 0, "Catch if we get a 0 size");
 436     assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
 437     assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
 438 
 439     MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
 440   }
 441 }
 442 
 443 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
 444   Metachunk* chunk = first_chunk();
 445   Metachunk* invalid_chunk = (Metachunk*) top();
 446   while (chunk < invalid_chunk ) {
 447     assert(chunk->is_tagged_free(), "Should be tagged free");
 448     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 449     chunk_manager->remove_chunk(chunk);
 450     assert(chunk->next() == NULL &&
 451            chunk->prev() == NULL,
 452            "Was not removed from its list");
 453     chunk = (Metachunk*) next;
 454   }
 455 }
 456 
 457 #ifdef ASSERT
 458 uintx VirtualSpaceNode::container_count_slow() {
 459   uintx count = 0;
 460   Metachunk* chunk = first_chunk();
 461   Metachunk* invalid_chunk = (Metachunk*) top();
 462   while (chunk < invalid_chunk ) {
 463     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 464     // Don't count the chunks on the free lists.  Those are
 465     // still part of the VirtualSpaceNode but not currently
 466     // counted.
 467     if (!chunk->is_tagged_free()) {
 468       count++;
 469     }
 470     chunk = (Metachunk*) next;
 471   }
 472   return count;
 473 }
 474 #endif
 475 
 476 // List of VirtualSpaces for metadata allocation.
 477 class VirtualSpaceList : public CHeapObj<mtClass> {
 478   friend class VirtualSpaceNode;
 479 
 480   enum VirtualSpaceSizes {
 481     VirtualSpaceSize = 256 * K
 482   };
 483 
 484   // Head of the list
 485   VirtualSpaceNode* _virtual_space_list;
 486   // virtual space currently being used for allocations
 487   VirtualSpaceNode* _current_virtual_space;
 488 
 489   // Is this VirtualSpaceList used for the compressed class space
 490   bool _is_class;
 491 
 492   // Sum of reserved and committed memory in the virtual spaces
 493   size_t _reserved_words;
 494   size_t _committed_words;
 495 
 496   // Number of virtual spaces
 497   size_t _virtual_space_count;
 498 
 499   ~VirtualSpaceList();
 500 
 501   VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
 502 
 503   void set_virtual_space_list(VirtualSpaceNode* v) {
 504     _virtual_space_list = v;
 505   }
 506   void set_current_virtual_space(VirtualSpaceNode* v) {
 507     _current_virtual_space = v;
 508   }
 509 
 510   void link_vs(VirtualSpaceNode* new_entry);
 511 
 512   // Get another virtual space and add it to the list.  This
 513   // is typically prompted by a failed attempt to allocate a chunk
 514   // and is typically followed by the allocation of a chunk.
 515   bool create_new_virtual_space(size_t vs_word_size);
 516 
 517   // Chunk up the unused committed space in the current
 518   // virtual space and add the chunks to the free list.
 519   void retire_current_virtual_space();
 520 
 521  public:
 522   VirtualSpaceList(size_t word_size);
 523   VirtualSpaceList(ReservedSpace rs);
 524 
 525   size_t free_bytes();
 526 
 527   Metachunk* get_new_chunk(size_t word_size,
 528                            size_t grow_chunks_by_words,
 529                            size_t medium_chunk_bunch);
 530 
 531   bool expand_node_by(VirtualSpaceNode* node,
 532                       size_t min_words,
 533                       size_t preferred_words);
 534 
 535   bool expand_by(size_t min_words,
 536                  size_t preferred_words);
 537 
 538   VirtualSpaceNode* current_virtual_space() {
 539     return _current_virtual_space;
 540   }
 541 
 542   bool is_class() const { return _is_class; }
 543 
 544   bool initialization_succeeded() { return _virtual_space_list != NULL; }
 545 
 546   size_t reserved_words()  { return _reserved_words; }
 547   size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
 548   size_t committed_words() { return _committed_words; }
 549   size_t committed_bytes() { return committed_words() * BytesPerWord; }
 550 
 551   void inc_reserved_words(size_t v);
 552   void dec_reserved_words(size_t v);
 553   void inc_committed_words(size_t v);
 554   void dec_committed_words(size_t v);
 555   void inc_virtual_space_count();
 556   void dec_virtual_space_count();
 557 
 558   bool contains(const void* ptr);
 559 
 560   // Unlink empty VirtualSpaceNodes and free it.
 561   void purge(ChunkManager* chunk_manager);
 562 
 563   void print_on(outputStream* st) const;
 564 
 565   class VirtualSpaceListIterator : public StackObj {
 566     VirtualSpaceNode* _virtual_spaces;
 567    public:
 568     VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
 569       _virtual_spaces(virtual_spaces) {}
 570 
 571     bool repeat() {
 572       return _virtual_spaces != NULL;
 573     }
 574 
 575     VirtualSpaceNode* get_next() {
 576       VirtualSpaceNode* result = _virtual_spaces;
 577       if (_virtual_spaces != NULL) {
 578         _virtual_spaces = _virtual_spaces->next();
 579       }
 580       return result;
 581     }
 582   };
 583 };
 584 
 585 class Metadebug : AllStatic {
 586   // Debugging support for Metaspaces
 587   static int _allocation_fail_alot_count;
 588 
 589  public:
 590 
 591   static void init_allocation_fail_alot_count();
 592 #ifdef ASSERT
 593   static bool test_metadata_failure();
 594 #endif
 595 };
 596 
 597 int Metadebug::_allocation_fail_alot_count = 0;
 598 
 599 //  SpaceManager - used by Metaspace to handle allocations
 600 class SpaceManager : public CHeapObj<mtClass> {
 601   friend class Metaspace;
 602   friend class Metadebug;
 603 
 604  private:
 605 
 606   // protects allocations
 607   Mutex* const _lock;
 608 
 609   // Type of metadata allocated.
 610   Metaspace::MetadataType _mdtype;
 611 
 612   // List of chunks in use by this SpaceManager.  Allocations
 613   // are done from the current chunk.  The list is used for deallocating
 614   // chunks when the SpaceManager is freed.
 615   Metachunk* _chunks_in_use[NumberOfInUseLists];
 616   Metachunk* _current_chunk;
 617 
 618   // Maximum number of small chunks to allocate to a SpaceManager
 619   static uint const _small_chunk_limit;
 620 
 621   // Sum of all space in allocated chunks
 622   size_t _allocated_blocks_words;
 623 
 624   // Sum of all allocated chunks
 625   size_t _allocated_chunks_words;
 626   size_t _allocated_chunks_count;
 627 
 628   // Free lists of blocks are per SpaceManager since they
 629   // are assumed to be in chunks in use by the SpaceManager
 630   // and all chunks in use by a SpaceManager are freed when
 631   // the class loader using the SpaceManager is collected.
 632   BlockFreelist _block_freelists;
 633 
 634   // protects virtualspace and chunk expansions
 635   static const char*  _expand_lock_name;
 636   static const int    _expand_lock_rank;
 637   static Mutex* const _expand_lock;
 638 
 639  private:
 640   // Accessors
 641   Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
 642   void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
 643     _chunks_in_use[index] = v;
 644   }
 645 
 646   BlockFreelist* block_freelists() const {
 647     return (BlockFreelist*) &_block_freelists;
 648   }
 649 
 650   Metaspace::MetadataType mdtype() { return _mdtype; }
 651 
 652   VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
 653   ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
 654 
 655   Metachunk* current_chunk() const { return _current_chunk; }
 656   void set_current_chunk(Metachunk* v) {
 657     _current_chunk = v;
 658   }
 659 
 660   Metachunk* find_current_chunk(size_t word_size);
 661 
 662   // Add chunk to the list of chunks in use
 663   void add_chunk(Metachunk* v, bool make_current);
 664   void retire_current_chunk();
 665 
 666   Mutex* lock() const { return _lock; }
 667 
 668   const char* chunk_size_name(ChunkIndex index) const;
 669 
 670  protected:
 671   void initialize();
 672 
 673  public:
 674   SpaceManager(Metaspace::MetadataType mdtype,
 675                Mutex* lock);
 676   ~SpaceManager();
 677 
 678   enum ChunkMultiples {
 679     MediumChunkMultiple = 4
 680   };
 681 
 682   bool is_class() { return _mdtype == Metaspace::ClassType; }
 683 
 684   // Accessors
 685   size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
 686   size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
 687   size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
 688   size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }
 689 
 690   size_t smallest_chunk_size()  { return specialized_chunk_size(); }
 691 
 692   size_t allocated_blocks_words() const { return _allocated_blocks_words; }
 693   size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
 694   size_t allocated_chunks_words() const { return _allocated_chunks_words; }
 695   size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
 696   size_t allocated_chunks_count() const { return _allocated_chunks_count; }
 697 
 698   bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
 699 
 700   static Mutex* expand_lock() { return _expand_lock; }
 701 
 702   // Increment the per Metaspace and global running sums for Metachunks
 703   // by the given size.  This is used when a Metachunk to added to
 704   // the in-use list.
 705   void inc_size_metrics(size_t words);
 706   // Increment the per Metaspace and global running sums Metablocks by the given
 707   // size.  This is used when a Metablock is allocated.
 708   void inc_used_metrics(size_t words);
 709   // Delete the portion of the running sums for this SpaceManager. That is,
 710   // the globals running sums for the Metachunks and Metablocks are
 711   // decremented for all the Metachunks in-use by this SpaceManager.
 712   void dec_total_from_size_metrics();
 713 
 714   // Set the sizes for the initial chunks.
 715   void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
 716                                size_t* chunk_word_size,
 717                                size_t* class_chunk_word_size);
 718 
 719   size_t sum_capacity_in_chunks_in_use() const;
 720   size_t sum_used_in_chunks_in_use() const;
 721   size_t sum_free_in_chunks_in_use() const;
 722   size_t sum_waste_in_chunks_in_use() const;
 723   size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
 724 
 725   size_t sum_count_in_chunks_in_use();
 726   size_t sum_count_in_chunks_in_use(ChunkIndex i);
 727 
 728   Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
 729 
 730   // Block allocation and deallocation.
 731   // Allocates a block from the current chunk
 732   MetaWord* allocate(size_t word_size);
 733 
 734   // Helper for allocations
 735   MetaWord* allocate_work(size_t word_size);
 736 
 737   // Returns a block to the per manager freelist
 738   void deallocate(MetaWord* p, size_t word_size);
 739 
 740   // Based on the allocation size and a minimum chunk size,
 741   // returned chunk size (for expanding space for chunk allocation).
 742   size_t calc_chunk_size(size_t allocation_word_size);
 743 
 744   // Called when an allocation from the current chunk fails.
 745   // Gets a new chunk (may require getting a new virtual space),
 746   // and allocates from that chunk.
 747   MetaWord* grow_and_allocate(size_t word_size);
 748 
 749   // Notify memory usage to MemoryService.
 750   void track_metaspace_memory_usage();
 751 
 752   // debugging support.
 753 
 754   void dump(outputStream* const out) const;
 755   void print_on(outputStream* st) const;
 756   void locked_print_chunks_in_use_on(outputStream* st) const;
 757 
 758   void verify();
 759   void verify_chunk_size(Metachunk* chunk);
 760   NOT_PRODUCT(void mangle_freed_chunks();)
 761 #ifdef ASSERT
 762   void verify_allocated_blocks_words();
 763 #endif
 764 
 765   size_t get_raw_word_size(size_t word_size) {
 766     size_t byte_size = word_size * BytesPerWord;
 767 
 768     size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
 769     raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
 770 
 771     size_t raw_word_size = raw_bytes_size / BytesPerWord;
 772     assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
 773 
 774     return raw_word_size;
 775   }
 776 };
 777 
 778 uint const SpaceManager::_small_chunk_limit = 4;
 779 
 780 const char* SpaceManager::_expand_lock_name =
 781   "SpaceManager chunk allocation lock";
 782 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
 783 Mutex* const SpaceManager::_expand_lock =
 784   new Mutex(SpaceManager::_expand_lock_rank,
 785             SpaceManager::_expand_lock_name,
 786             Mutex::_allow_vm_block_flag,
 787             Monitor::_safepoint_check_never);
 788 
 789 void VirtualSpaceNode::inc_container_count() {
 790   assert_lock_strong(SpaceManager::expand_lock());
 791   _container_count++;
 792   DEBUG_ONLY(verify_container_count();)
 793 }
 794 
 795 void VirtualSpaceNode::dec_container_count() {
 796   assert_lock_strong(SpaceManager::expand_lock());
 797   _container_count--;
 798 }
 799 
 800 #ifdef ASSERT
 801 void VirtualSpaceNode::verify_container_count() {
 802   assert(_container_count == container_count_slow(),
 803     err_msg("Inconsistency in container_count _container_count " UINTX_FORMAT
 804             " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow()));
 805 }
 806 #endif
 807 
 808 // BlockFreelist methods
 809 
 810 BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()) {}
 811 
 812 BlockFreelist::~BlockFreelist() {
 813   if (Verbose && TraceMetadataChunkAllocation) {
 814     dictionary()->print_free_lists(gclog_or_tty);
 815   }
 816   delete _dictionary;
 817 }
 818 
 819 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
 820   Metablock* free_chunk = ::new (p) Metablock(word_size);
 821   dictionary()->return_chunk(free_chunk);
 822 }
 823 
 824 MetaWord* BlockFreelist::get_block(size_t word_size) {
 825   if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
 826     // Dark matter.  Too small for dictionary.
 827     return NULL;
 828   }
 829 
 830   Metablock* free_block =
 831     dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
 832   if (free_block == NULL) {
 833     return NULL;
 834   }
 835 
 836   const size_t block_size = free_block->size();
 837   if (block_size > WasteMultiplier * word_size) {
 838     return_block((MetaWord*)free_block, block_size);
 839     return NULL;
 840   }
 841 
 842   MetaWord* new_block = (MetaWord*)free_block;
 843   assert(block_size >= word_size, "Incorrect size of block from freelist");
 844   const size_t unused = block_size - word_size;
 845   if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
 846     return_block(new_block + word_size, unused);
 847   }
 848 
 849   return new_block;
 850 }
 851 
 852 void BlockFreelist::print_on(outputStream* st) const {
 853   dictionary()->print_free_lists(st);
 854 }
 855 
 856 // VirtualSpaceNode methods
 857 
 858 VirtualSpaceNode::~VirtualSpaceNode() {
 859   _rs.release();
 860 #ifdef ASSERT
 861   size_t word_size = sizeof(*this) / BytesPerWord;
 862   Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
 863 #endif
 864 }
 865 
 866 size_t VirtualSpaceNode::used_words_in_vs() const {
 867   return pointer_delta(top(), bottom(), sizeof(MetaWord));
 868 }
 869 
 870 // Space committed in the VirtualSpace
 871 size_t VirtualSpaceNode::capacity_words_in_vs() const {
 872   return pointer_delta(end(), bottom(), sizeof(MetaWord));
 873 }
 874 
 875 size_t VirtualSpaceNode::free_words_in_vs() const {
 876   return pointer_delta(end(), top(), sizeof(MetaWord));
 877 }
 878 
 879 // Allocates the chunk from the virtual space only.
 880 // This interface is also used internally for debugging.  Not all
 881 // chunks removed here are necessarily used for allocation.
 882 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
 883   // Bottom of the new chunk
 884   MetaWord* chunk_limit = top();
 885   assert(chunk_limit != NULL, "Not safe to call this method");
 886 
 887   // The virtual spaces are always expanded by the
 888   // commit granularity to enforce the following condition.
 889   // Without this the is_available check will not work correctly.
 890   assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
 891       "The committed memory doesn't match the expanded memory.");
 892 
 893   if (!is_available(chunk_word_size)) {
 894     if (TraceMetadataChunkAllocation) {
 895       gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
 896       // Dump some information about the virtual space that is nearly full
 897       print_on(gclog_or_tty);
 898     }
 899     return NULL;
 900   }
 901 
 902   // Take the space  (bump top on the current virtual space).
 903   inc_top(chunk_word_size);
 904 
 905   // Initialize the chunk
 906   Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
 907   return result;
 908 }
 909 
 910 
 911 // Expand the virtual space (commit more of the reserved space)
 912 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
 913   size_t min_bytes = min_words * BytesPerWord;
 914   size_t preferred_bytes = preferred_words * BytesPerWord;
 915 
 916   size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
 917 
 918   if (uncommitted < min_bytes) {
 919     return false;
 920   }
 921 
 922   size_t commit = MIN2(preferred_bytes, uncommitted);
 923   bool result = virtual_space()->expand_by(commit, false);
 924 
 925   assert(result, "Failed to commit memory");
 926 
 927   return result;
 928 }
 929 
 930 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
 931   assert_lock_strong(SpaceManager::expand_lock());
 932   Metachunk* result = take_from_committed(chunk_word_size);
 933   if (result != NULL) {
 934     inc_container_count();
 935   }
 936   return result;
 937 }
 938 
 939 bool VirtualSpaceNode::initialize() {
 940 
 941   if (!_rs.is_reserved()) {
 942     return false;
 943   }
 944 
 945   // These are necessary restriction to make sure that the virtual space always
 946   // grows in steps of Metaspace::commit_alignment(). If both base and size are
 947   // aligned only the middle alignment of the VirtualSpace is used.
 948   assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
 949   assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
 950 
 951   // ReservedSpaces marked as special will have the entire memory
 952   // pre-committed. Setting a committed size will make sure that
 953   // committed_size and actual_committed_size agrees.
 954   size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
 955 
 956   bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
 957                                             Metaspace::commit_alignment());
 958   if (result) {
 959     assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
 960         "Checking that the pre-committed memory was registered by the VirtualSpace");
 961 
 962     set_top((MetaWord*)virtual_space()->low());
 963     set_reserved(MemRegion((HeapWord*)_rs.base(),
 964                  (HeapWord*)(_rs.base() + _rs.size())));
 965 
 966     assert(reserved()->start() == (HeapWord*) _rs.base(),
 967       err_msg("Reserved start was not set properly " PTR_FORMAT
 968         " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base())));
 969     assert(reserved()->word_size() == _rs.size() / BytesPerWord,
 970       err_msg("Reserved size was not set properly " SIZE_FORMAT
 971         " != " SIZE_FORMAT, reserved()->word_size(),
 972         _rs.size() / BytesPerWord));
 973   }
 974 
 975   return result;
 976 }
 977 
 978 void VirtualSpaceNode::print_on(outputStream* st) const {
 979   size_t used = used_words_in_vs();
 980   size_t capacity = capacity_words_in_vs();
 981   VirtualSpace* vs = virtual_space();
 982   st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
 983            "[" PTR_FORMAT ", " PTR_FORMAT ", "
 984            PTR_FORMAT ", " PTR_FORMAT ")",
 985            p2i(vs), capacity / K,
 986            capacity == 0 ? 0 : used * 100 / capacity,
 987            p2i(bottom()), p2i(top()), p2i(end()),
 988            p2i(vs->high_boundary()));
 989 }
 990 
 991 #ifdef ASSERT
 992 void VirtualSpaceNode::mangle() {
 993   size_t word_size = capacity_words_in_vs();
 994   Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
 995 }
 996 #endif // ASSERT
 997 
 998 // VirtualSpaceList methods
 999 // Space allocated from the VirtualSpace
1000 
1001 VirtualSpaceList::~VirtualSpaceList() {
1002   VirtualSpaceListIterator iter(virtual_space_list());
1003   while (iter.repeat()) {
1004     VirtualSpaceNode* vsl = iter.get_next();
1005     delete vsl;
1006   }
1007 }
1008 
1009 void VirtualSpaceList::inc_reserved_words(size_t v) {
1010   assert_lock_strong(SpaceManager::expand_lock());
1011   _reserved_words = _reserved_words + v;
1012 }
1013 void VirtualSpaceList::dec_reserved_words(size_t v) {
1014   assert_lock_strong(SpaceManager::expand_lock());
1015   _reserved_words = _reserved_words - v;
1016 }
1017 
1018 #define assert_committed_below_limit()                             \
1019   assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize,      \
1020       err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
1021               " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
1022           MetaspaceAux::committed_bytes(), MaxMetaspaceSize));
1023 
1024 void VirtualSpaceList::inc_committed_words(size_t v) {
1025   assert_lock_strong(SpaceManager::expand_lock());
1026   _committed_words = _committed_words + v;
1027 
1028   assert_committed_below_limit();
1029 }
1030 void VirtualSpaceList::dec_committed_words(size_t v) {
1031   assert_lock_strong(SpaceManager::expand_lock());
1032   _committed_words = _committed_words - v;
1033 
1034   assert_committed_below_limit();
1035 }
1036 
1037 void VirtualSpaceList::inc_virtual_space_count() {
1038   assert_lock_strong(SpaceManager::expand_lock());
1039   _virtual_space_count++;
1040 }
1041 void VirtualSpaceList::dec_virtual_space_count() {
1042   assert_lock_strong(SpaceManager::expand_lock());
1043   _virtual_space_count--;
1044 }
1045 
1046 void ChunkManager::remove_chunk(Metachunk* chunk) {
1047   size_t word_size = chunk->word_size();
1048   ChunkIndex index = list_index(word_size);
1049   if (index != HumongousIndex) {
1050     free_chunks(index)->remove_chunk(chunk);
1051   } else {
1052     humongous_dictionary()->remove_chunk(chunk);
1053   }
1054 
1055   // Chunk is being removed from the chunks free list.
1056   dec_free_chunks_total(chunk->word_size());
1057 }
1058 
1059 // Walk the list of VirtualSpaceNodes and delete
1060 // nodes with a 0 container_count.  Remove Metachunks in
1061 // the node from their respective freelists.
1062 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1063   assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1064   assert_lock_strong(SpaceManager::expand_lock());
1065   // Don't use a VirtualSpaceListIterator because this
1066   // list is being changed and a straightforward use of an iterator is not safe.
1067   VirtualSpaceNode* purged_vsl = NULL;
1068   VirtualSpaceNode* prev_vsl = virtual_space_list();
1069   VirtualSpaceNode* next_vsl = prev_vsl;
1070   while (next_vsl != NULL) {
1071     VirtualSpaceNode* vsl = next_vsl;
1072     next_vsl = vsl->next();
1073     // Don't free the current virtual space since it will likely
1074     // be needed soon.
1075     if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1076       // Unlink it from the list
1077       if (prev_vsl == vsl) {
1078         // This is the case of the current node being the first node.
1079         assert(vsl == virtual_space_list(), "Expected to be the first node");
1080         set_virtual_space_list(vsl->next());
1081       } else {
1082         prev_vsl->set_next(vsl->next());
1083       }
1084 
1085       vsl->purge(chunk_manager);
1086       dec_reserved_words(vsl->reserved_words());
1087       dec_committed_words(vsl->committed_words());
1088       dec_virtual_space_count();
1089       purged_vsl = vsl;
1090       delete vsl;
1091     } else {
1092       prev_vsl = vsl;
1093     }
1094   }
1095 #ifdef ASSERT
1096   if (purged_vsl != NULL) {
1097     // List should be stable enough to use an iterator here.
1098     VirtualSpaceListIterator iter(virtual_space_list());
1099     while (iter.repeat()) {
1100       VirtualSpaceNode* vsl = iter.get_next();
1101       assert(vsl != purged_vsl, "Purge of vsl failed");
1102     }
1103   }
1104 #endif
1105 }
1106 
1107 
1108 // This function looks at the mmap regions in the metaspace without locking.
1109 // The chunks are added with store ordering and not deleted except for at
1110 // unloading time during a safepoint.
1111 bool VirtualSpaceList::contains(const void* ptr) {
1112   // List should be stable enough to use an iterator here because removing virtual
1113   // space nodes is only allowed at a safepoint.
1114   VirtualSpaceListIterator iter(virtual_space_list());
1115   while (iter.repeat()) {
1116     VirtualSpaceNode* vsn = iter.get_next();
1117     if (vsn->contains(ptr)) {
1118       return true;
1119     }
1120   }
1121   return false;
1122 }
1123 
1124 void VirtualSpaceList::retire_current_virtual_space() {
1125   assert_lock_strong(SpaceManager::expand_lock());
1126 
1127   VirtualSpaceNode* vsn = current_virtual_space();
1128 
1129   ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1130                                   Metaspace::chunk_manager_metadata();
1131 
1132   vsn->retire(cm);
1133 }
1134 
1135 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1136   for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1137     ChunkIndex index = (ChunkIndex)i;
1138     size_t chunk_size = chunk_manager->free_chunks(index)->size();
1139 
1140     while (free_words_in_vs() >= chunk_size) {
1141       DEBUG_ONLY(verify_container_count();)
1142       Metachunk* chunk = get_chunk_vs(chunk_size);
1143       assert(chunk != NULL, "allocation should have been successful");
1144 
1145       chunk_manager->return_chunks(index, chunk);
1146       chunk_manager->inc_free_chunks_total(chunk_size);
1147       DEBUG_ONLY(verify_container_count();)
1148     }
1149   }
1150   assert(free_words_in_vs() == 0, "should be empty now");
1151 }
1152 
1153 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1154                                    _is_class(false),
1155                                    _virtual_space_list(NULL),
1156                                    _current_virtual_space(NULL),
1157                                    _reserved_words(0),
1158                                    _committed_words(0),
1159                                    _virtual_space_count(0) {
1160   MutexLockerEx cl(SpaceManager::expand_lock(),
1161                    Mutex::_no_safepoint_check_flag);
1162   create_new_virtual_space(word_size);
1163 }
1164 
1165 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1166                                    _is_class(true),
1167                                    _virtual_space_list(NULL),
1168                                    _current_virtual_space(NULL),
1169                                    _reserved_words(0),
1170                                    _committed_words(0),
1171                                    _virtual_space_count(0) {
1172   MutexLockerEx cl(SpaceManager::expand_lock(),
1173                    Mutex::_no_safepoint_check_flag);
1174   VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1175   bool succeeded = class_entry->initialize();
1176   if (succeeded) {
1177     link_vs(class_entry);
1178   }
1179 }
1180 
1181 size_t VirtualSpaceList::free_bytes() {
1182   return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1183 }
1184 
1185 // Allocate another meta virtual space and add it to the list.
1186 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1187   assert_lock_strong(SpaceManager::expand_lock());
1188 
1189   if (is_class()) {
1190     assert(false, "We currently don't support more than one VirtualSpace for"
1191                   " the compressed class space. The initialization of the"
1192                   " CCS uses another code path and should not hit this path.");
1193     return false;
1194   }
1195 
1196   if (vs_word_size == 0) {
1197     assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1198     return false;
1199   }
1200 
1201   // Reserve the space
1202   size_t vs_byte_size = vs_word_size * BytesPerWord;
1203   assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1204 
1205   // Allocate the meta virtual space and initialize it.
1206   VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1207   if (!new_entry->initialize()) {
1208     delete new_entry;
1209     return false;
1210   } else {
1211     assert(new_entry->reserved_words() == vs_word_size,
1212         "Reserved memory size differs from requested memory size");
1213     // ensure lock-free iteration sees fully initialized node
1214     OrderAccess::storestore();
1215     link_vs(new_entry);
1216     return true;
1217   }
1218 }
1219 
1220 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1221   if (virtual_space_list() == NULL) {
1222       set_virtual_space_list(new_entry);
1223   } else {
1224     current_virtual_space()->set_next(new_entry);
1225   }
1226   set_current_virtual_space(new_entry);
1227   inc_reserved_words(new_entry->reserved_words());
1228   inc_committed_words(new_entry->committed_words());
1229   inc_virtual_space_count();
1230 #ifdef ASSERT
1231   new_entry->mangle();
1232 #endif
1233   if (TraceMetavirtualspaceAllocation && Verbose) {
1234     VirtualSpaceNode* vsl = current_virtual_space();
1235     vsl->print_on(gclog_or_tty);
1236   }
1237 }
1238 
1239 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1240                                       size_t min_words,
1241                                       size_t preferred_words) {
1242   size_t before = node->committed_words();
1243 
1244   bool result = node->expand_by(min_words, preferred_words);
1245 
1246   size_t after = node->committed_words();
1247 
1248   // after and before can be the same if the memory was pre-committed.
1249   assert(after >= before, "Inconsistency");
1250   inc_committed_words(after - before);
1251 
1252   return result;
1253 }
1254 
1255 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1256   assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
1257   assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1258   assert(min_words <= preferred_words, "Invalid arguments");
1259 
1260   if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1261     return  false;
1262   }
1263 
1264   size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1265   if (allowed_expansion_words < min_words) {
1266     return false;
1267   }
1268 
1269   size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1270 
1271   // Commit more memory from the the current virtual space.
1272   bool vs_expanded = expand_node_by(current_virtual_space(),
1273                                     min_words,
1274                                     max_expansion_words);
1275   if (vs_expanded) {
1276     return true;
1277   }
1278   retire_current_virtual_space();
1279 
1280   // Get another virtual space.
1281   size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1282   grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1283 
1284   if (create_new_virtual_space(grow_vs_words)) {
1285     if (current_virtual_space()->is_pre_committed()) {
1286       // The memory was pre-committed, so we are done here.
1287       assert(min_words <= current_virtual_space()->committed_words(),
1288           "The new VirtualSpace was pre-committed, so it"
1289           "should be large enough to fit the alloc request.");
1290       return true;
1291     }
1292 
1293     return expand_node_by(current_virtual_space(),
1294                           min_words,
1295                           max_expansion_words);
1296   }
1297 
1298   return false;
1299 }
1300 
1301 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1302                                            size_t grow_chunks_by_words,
1303                                            size_t medium_chunk_bunch) {
1304 
1305   // Allocate a chunk out of the current virtual space.
1306   Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1307 
1308   if (next != NULL) {
1309     return next;
1310   }
1311 
1312   // The expand amount is currently only determined by the requested sizes
1313   // and not how much committed memory is left in the current virtual space.
1314 
1315   size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1316   size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
1317   if (min_word_size >= preferred_word_size) {
1318     // Can happen when humongous chunks are allocated.
1319     preferred_word_size = min_word_size;
1320   }
1321 
1322   bool expanded = expand_by(min_word_size, preferred_word_size);
1323   if (expanded) {
1324     next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1325     assert(next != NULL, "The allocation was expected to succeed after the expansion");
1326   }
1327 
1328    return next;
1329 }
1330 
1331 void VirtualSpaceList::print_on(outputStream* st) const {
1332   if (TraceMetadataChunkAllocation && Verbose) {
1333     VirtualSpaceListIterator iter(virtual_space_list());
1334     while (iter.repeat()) {
1335       VirtualSpaceNode* node = iter.get_next();
1336       node->print_on(st);
1337     }
1338   }
1339 }
1340 
1341 // MetaspaceGC methods
1342 
1343 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1344 // Within the VM operation after the GC the attempt to allocate the metadata
1345 // should succeed.  If the GC did not free enough space for the metaspace
1346 // allocation, the HWM is increased so that another virtualspace will be
1347 // allocated for the metadata.  With perm gen the increase in the perm
1348 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1349 // metaspace policy uses those as the small and large steps for the HWM.
1350 //
1351 // After the GC the compute_new_size() for MetaspaceGC is called to
1352 // resize the capacity of the metaspaces.  The current implementation
1353 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1354 // to resize the Java heap by some GC's.  New flags can be implemented
1355 // if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1356 // free space is desirable in the metaspace capacity to decide how much
1357 // to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1358 // free space is desirable in the metaspace capacity before decreasing
1359 // the HWM.
1360 
1361 // Calculate the amount to increase the high water mark (HWM).
1362 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1363 // another expansion is not requested too soon.  If that is not
1364 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1365 // If that is still not enough, expand by the size of the allocation
1366 // plus some.
1367 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1368   size_t min_delta = MinMetaspaceExpansion;
1369   size_t max_delta = MaxMetaspaceExpansion;
1370   size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1371 
1372   if (delta <= min_delta) {
1373     delta = min_delta;
1374   } else if (delta <= max_delta) {
1375     // Don't want to hit the high water mark on the next
1376     // allocation so make the delta greater than just enough
1377     // for this allocation.
1378     delta = max_delta;
1379   } else {
1380     // This allocation is large but the next ones are probably not
1381     // so increase by the minimum.
1382     delta = delta + min_delta;
1383   }
1384 
1385   assert_is_size_aligned(delta, Metaspace::commit_alignment());
1386 
1387   return delta;
1388 }
1389 
1390 size_t MetaspaceGC::capacity_until_GC() {
1391   size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1392   assert(value >= MetaspaceSize, "Not initialized properly?");
1393   return value;
1394 }
1395 
1396 bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1397   assert_is_size_aligned(v, Metaspace::commit_alignment());
1398 
1399   size_t capacity_until_GC = (size_t) _capacity_until_GC;
1400   size_t new_value = capacity_until_GC + v;
1401 
1402   if (new_value < capacity_until_GC) {
1403     // The addition wrapped around, set new_value to aligned max value.
1404     new_value = align_size_down(max_uintx, Metaspace::commit_alignment());
1405   }
1406 
1407   intptr_t expected = (intptr_t) capacity_until_GC;
1408   intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
1409 
1410   if (expected != actual) {
1411     return false;
1412   }
1413 
1414   if (new_cap_until_GC != NULL) {
1415     *new_cap_until_GC = new_value;
1416   }
1417   if (old_cap_until_GC != NULL) {
1418     *old_cap_until_GC = capacity_until_GC;
1419   }
1420   return true;
1421 }
1422 
1423 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1424   assert_is_size_aligned(v, Metaspace::commit_alignment());
1425 
1426   return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1427 }
1428 
1429 void MetaspaceGC::initialize() {
1430   // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1431   // we can't do a GC during initialization.
1432   _capacity_until_GC = MaxMetaspaceSize;
1433 }
1434 
1435 void MetaspaceGC::post_initialize() {
1436   // Reset the high-water mark once the VM initialization is done.
1437   _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1438 }
1439 
1440 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1441   // Check if the compressed class space is full.
1442   if (is_class && Metaspace::using_class_space()) {
1443     size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1444     if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1445       return false;
1446     }
1447   }
1448 
1449   // Check if the user has imposed a limit on the metaspace memory.
1450   size_t committed_bytes = MetaspaceAux::committed_bytes();
1451   if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1452     return false;
1453   }
1454 
1455   return true;
1456 }
1457 
1458 size_t MetaspaceGC::allowed_expansion() {
1459   size_t committed_bytes = MetaspaceAux::committed_bytes();
1460   size_t capacity_until_gc = capacity_until_GC();
1461 
1462   assert(capacity_until_gc >= committed_bytes,
1463         err_msg("capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1464                 capacity_until_gc, committed_bytes));
1465 
1466   size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1467   size_t left_until_GC = capacity_until_gc - committed_bytes;
1468   size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1469 
1470   return left_to_commit / BytesPerWord;
1471 }
1472 
1473 void MetaspaceGC::compute_new_size() {
1474   assert(_shrink_factor <= 100, "invalid shrink factor");
1475   uint current_shrink_factor = _shrink_factor;
1476   _shrink_factor = 0;
1477 
1478   // Using committed_bytes() for used_after_gc is an overestimation, since the
1479   // chunk free lists are included in committed_bytes() and the memory in an
1480   // un-fragmented chunk free list is available for future allocations.
1481   // However, if the chunk free lists becomes fragmented, then the memory may
1482   // not be available for future allocations and the memory is therefore "in use".
1483   // Including the chunk free lists in the definition of "in use" is therefore
1484   // necessary. Not including the chunk free lists can cause capacity_until_GC to
1485   // shrink below committed_bytes() and this has caused serious bugs in the past.
1486   const size_t used_after_gc = MetaspaceAux::committed_bytes();
1487   const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1488 
1489   const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1490   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1491 
1492   const double min_tmp = used_after_gc / maximum_used_percentage;
1493   size_t minimum_desired_capacity =
1494     (size_t)MIN2(min_tmp, double(max_uintx));
1495   // Don't shrink less than the initial generation size
1496   minimum_desired_capacity = MAX2(minimum_desired_capacity,
1497                                   MetaspaceSize);
1498 
1499   if (PrintGCDetails && Verbose) {
1500     gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
1501     gclog_or_tty->print_cr("  "
1502                   "  minimum_free_percentage: %6.2f"
1503                   "  maximum_used_percentage: %6.2f",
1504                   minimum_free_percentage,
1505                   maximum_used_percentage);
1506     gclog_or_tty->print_cr("  "
1507                   "   used_after_gc       : %6.1fKB",
1508                   used_after_gc / (double) K);
1509   }
1510 
1511 
1512   size_t shrink_bytes = 0;
1513   if (capacity_until_GC < minimum_desired_capacity) {
1514     // If we have less capacity below the metaspace HWM, then
1515     // increment the HWM.
1516     size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1517     expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1518     // Don't expand unless it's significant
1519     if (expand_bytes >= MinMetaspaceExpansion) {
1520       size_t new_capacity_until_GC = 0;
1521       bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
1522       assert(succeeded, "Should always succesfully increment HWM when at safepoint");
1523 
1524       Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1525                                                new_capacity_until_GC,
1526                                                MetaspaceGCThresholdUpdater::ComputeNewSize);
1527       if (PrintGCDetails && Verbose) {
1528         gclog_or_tty->print_cr("    expanding:"
1529                       "  minimum_desired_capacity: %6.1fKB"
1530                       "  expand_bytes: %6.1fKB"
1531                       "  MinMetaspaceExpansion: %6.1fKB"
1532                       "  new metaspace HWM:  %6.1fKB",
1533                       minimum_desired_capacity / (double) K,
1534                       expand_bytes / (double) K,
1535                       MinMetaspaceExpansion / (double) K,
1536                       new_capacity_until_GC / (double) K);
1537       }
1538     }
1539     return;
1540   }
1541 
1542   // No expansion, now see if we want to shrink
1543   // We would never want to shrink more than this
1544   assert(capacity_until_GC >= minimum_desired_capacity,
1545          err_msg(SIZE_FORMAT " >= " SIZE_FORMAT,
1546                  capacity_until_GC, minimum_desired_capacity));
1547   size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1548 
1549   // Should shrinking be considered?
1550   if (MaxMetaspaceFreeRatio < 100) {
1551     const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1552     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1553     const double max_tmp = used_after_gc / minimum_used_percentage;
1554     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1555     maximum_desired_capacity = MAX2(maximum_desired_capacity,
1556                                     MetaspaceSize);
1557     if (PrintGCDetails && Verbose) {
1558       gclog_or_tty->print_cr("  "
1559                              "  maximum_free_percentage: %6.2f"
1560                              "  minimum_used_percentage: %6.2f",
1561                              maximum_free_percentage,
1562                              minimum_used_percentage);
1563       gclog_or_tty->print_cr("  "
1564                              "  minimum_desired_capacity: %6.1fKB"
1565                              "  maximum_desired_capacity: %6.1fKB",
1566                              minimum_desired_capacity / (double) K,
1567                              maximum_desired_capacity / (double) K);
1568     }
1569 
1570     assert(minimum_desired_capacity <= maximum_desired_capacity,
1571            "sanity check");
1572 
1573     if (capacity_until_GC > maximum_desired_capacity) {
1574       // Capacity too large, compute shrinking size
1575       shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1576       // We don't want shrink all the way back to initSize if people call
1577       // System.gc(), because some programs do that between "phases" and then
1578       // we'd just have to grow the heap up again for the next phase.  So we
1579       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1580       // on the third call, and 100% by the fourth call.  But if we recompute
1581       // size without shrinking, it goes back to 0%.
1582       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1583 
1584       shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1585 
1586       assert(shrink_bytes <= max_shrink_bytes,
1587         err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1588           shrink_bytes, max_shrink_bytes));
1589       if (current_shrink_factor == 0) {
1590         _shrink_factor = 10;
1591       } else {
1592         _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1593       }
1594       if (PrintGCDetails && Verbose) {
1595         gclog_or_tty->print_cr("  "
1596                       "  shrinking:"
1597                       "  initSize: %.1fK"
1598                       "  maximum_desired_capacity: %.1fK",
1599                       MetaspaceSize / (double) K,
1600                       maximum_desired_capacity / (double) K);
1601         gclog_or_tty->print_cr("  "
1602                       "  shrink_bytes: %.1fK"
1603                       "  current_shrink_factor: %d"
1604                       "  new shrink factor: %d"
1605                       "  MinMetaspaceExpansion: %.1fK",
1606                       shrink_bytes / (double) K,
1607                       current_shrink_factor,
1608                       _shrink_factor,
1609                       MinMetaspaceExpansion / (double) K);
1610       }
1611     }
1612   }
1613 
1614   // Don't shrink unless it's significant
1615   if (shrink_bytes >= MinMetaspaceExpansion &&
1616       ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1617     size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1618     Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1619                                              new_capacity_until_GC,
1620                                              MetaspaceGCThresholdUpdater::ComputeNewSize);
1621   }
1622 }
1623 
1624 // Metadebug methods
1625 
1626 void Metadebug::init_allocation_fail_alot_count() {
1627   if (MetadataAllocationFailALot) {
1628     _allocation_fail_alot_count =
1629       1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1630   }
1631 }
1632 
1633 #ifdef ASSERT
1634 bool Metadebug::test_metadata_failure() {
1635   if (MetadataAllocationFailALot &&
1636       Threads::is_vm_complete()) {
1637     if (_allocation_fail_alot_count > 0) {
1638       _allocation_fail_alot_count--;
1639     } else {
1640       if (TraceMetadataChunkAllocation && Verbose) {
1641         gclog_or_tty->print_cr("Metadata allocation failing for "
1642                                "MetadataAllocationFailALot");
1643       }
1644       init_allocation_fail_alot_count();
1645       return true;
1646     }
1647   }
1648   return false;
1649 }
1650 #endif
1651 
1652 // ChunkManager methods
1653 
1654 size_t ChunkManager::free_chunks_total_words() {
1655   return _free_chunks_total;
1656 }
1657 
1658 size_t ChunkManager::free_chunks_total_bytes() {
1659   return free_chunks_total_words() * BytesPerWord;
1660 }
1661 
1662 size_t ChunkManager::free_chunks_count() {
1663 #ifdef ASSERT
1664   if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1665     MutexLockerEx cl(SpaceManager::expand_lock(),
1666                      Mutex::_no_safepoint_check_flag);
1667     // This lock is only needed in debug because the verification
1668     // of the _free_chunks_totals walks the list of free chunks
1669     slow_locked_verify_free_chunks_count();
1670   }
1671 #endif
1672   return _free_chunks_count;
1673 }
1674 
1675 void ChunkManager::locked_verify_free_chunks_total() {
1676   assert_lock_strong(SpaceManager::expand_lock());
1677   assert(sum_free_chunks() == _free_chunks_total,
1678     err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
1679            " same as sum " SIZE_FORMAT, _free_chunks_total,
1680            sum_free_chunks()));
1681 }
1682 
1683 void ChunkManager::verify_free_chunks_total() {
1684   MutexLockerEx cl(SpaceManager::expand_lock(),
1685                      Mutex::_no_safepoint_check_flag);
1686   locked_verify_free_chunks_total();
1687 }
1688 
1689 void ChunkManager::locked_verify_free_chunks_count() {
1690   assert_lock_strong(SpaceManager::expand_lock());
1691   assert(sum_free_chunks_count() == _free_chunks_count,
1692     err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
1693            " same as sum " SIZE_FORMAT, _free_chunks_count,
1694            sum_free_chunks_count()));
1695 }
1696 
1697 void ChunkManager::verify_free_chunks_count() {
1698 #ifdef ASSERT
1699   MutexLockerEx cl(SpaceManager::expand_lock(),
1700                      Mutex::_no_safepoint_check_flag);
1701   locked_verify_free_chunks_count();
1702 #endif
1703 }
1704 
1705 void ChunkManager::verify() {
1706   MutexLockerEx cl(SpaceManager::expand_lock(),
1707                      Mutex::_no_safepoint_check_flag);
1708   locked_verify();
1709 }
1710 
1711 void ChunkManager::locked_verify() {
1712   locked_verify_free_chunks_count();
1713   locked_verify_free_chunks_total();
1714 }
1715 
1716 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1717   assert_lock_strong(SpaceManager::expand_lock());
1718   st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1719                 _free_chunks_total, _free_chunks_count);
1720 }
1721 
1722 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1723   assert_lock_strong(SpaceManager::expand_lock());
1724   st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1725                 sum_free_chunks(), sum_free_chunks_count());
1726 }
1727 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1728   return &_free_chunks[index];
1729 }
1730 
1731 // These methods that sum the free chunk lists are used in printing
1732 // methods that are used in product builds.
1733 size_t ChunkManager::sum_free_chunks() {
1734   assert_lock_strong(SpaceManager::expand_lock());
1735   size_t result = 0;
1736   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1737     ChunkList* list = free_chunks(i);
1738 
1739     if (list == NULL) {
1740       continue;
1741     }
1742 
1743     result = result + list->count() * list->size();
1744   }
1745   result = result + humongous_dictionary()->total_size();
1746   return result;
1747 }
1748 
1749 size_t ChunkManager::sum_free_chunks_count() {
1750   assert_lock_strong(SpaceManager::expand_lock());
1751   size_t count = 0;
1752   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1753     ChunkList* list = free_chunks(i);
1754     if (list == NULL) {
1755       continue;
1756     }
1757     count = count + list->count();
1758   }
1759   count = count + humongous_dictionary()->total_free_blocks();
1760   return count;
1761 }
1762 
1763 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1764   ChunkIndex index = list_index(word_size);
1765   assert(index < HumongousIndex, "No humongous list");
1766   return free_chunks(index);
1767 }
1768 
1769 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1770   assert_lock_strong(SpaceManager::expand_lock());
1771 
1772   slow_locked_verify();
1773 
1774   Metachunk* chunk = NULL;
1775   if (list_index(word_size) != HumongousIndex) {
1776     ChunkList* free_list = find_free_chunks_list(word_size);
1777     assert(free_list != NULL, "Sanity check");
1778 
1779     chunk = free_list->head();
1780 
1781     if (chunk == NULL) {
1782       return NULL;
1783     }
1784 
1785     // Remove the chunk as the head of the list.
1786     free_list->remove_chunk(chunk);
1787 
1788     if (TraceMetadataChunkAllocation && Verbose) {
1789       gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
1790                              PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1791                              p2i(free_list), p2i(chunk), chunk->word_size());
1792     }
1793   } else {
1794     chunk = humongous_dictionary()->get_chunk(
1795       word_size,
1796       FreeBlockDictionary<Metachunk>::atLeast);
1797 
1798     if (chunk == NULL) {
1799       return NULL;
1800     }
1801 
1802     if (TraceMetadataHumongousAllocation) {
1803       size_t waste = chunk->word_size() - word_size;
1804       gclog_or_tty->print_cr("Free list allocate humongous chunk size "
1805                              SIZE_FORMAT " for requested size " SIZE_FORMAT
1806                              " waste " SIZE_FORMAT,
1807                              chunk->word_size(), word_size, waste);
1808     }
1809   }
1810 
1811   // Chunk is being removed from the chunks free list.
1812   dec_free_chunks_total(chunk->word_size());
1813 
1814   // Remove it from the links to this freelist
1815   chunk->set_next(NULL);
1816   chunk->set_prev(NULL);
1817 #ifdef ASSERT
1818   // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1819   // work.
1820   chunk->set_is_tagged_free(false);
1821 #endif
1822   chunk->container()->inc_container_count();
1823 
1824   slow_locked_verify();
1825   return chunk;
1826 }
1827 
1828 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1829   assert_lock_strong(SpaceManager::expand_lock());
1830   slow_locked_verify();
1831 
1832   // Take from the beginning of the list
1833   Metachunk* chunk = free_chunks_get(word_size);
1834   if (chunk == NULL) {
1835     return NULL;
1836   }
1837 
1838   assert((word_size <= chunk->word_size()) ||
1839          list_index(chunk->word_size() == HumongousIndex),
1840          "Non-humongous variable sized chunk");
1841   if (TraceMetadataChunkAllocation) {
1842     size_t list_count;
1843     if (list_index(word_size) < HumongousIndex) {
1844       ChunkList* list = find_free_chunks_list(word_size);
1845       list_count = list->count();
1846     } else {
1847       list_count = humongous_dictionary()->total_count();
1848     }
1849     gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
1850                         PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1851                         p2i(this), p2i(chunk), chunk->word_size(), list_count);
1852     locked_print_free_chunks(gclog_or_tty);
1853   }
1854 
1855   return chunk;
1856 }
1857 
1858 void ChunkManager::print_on(outputStream* out) const {
1859   if (PrintFLSStatistics != 0) {
1860     const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1861   }
1862 }
1863 
1864 // SpaceManager methods
1865 
1866 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1867                                            size_t* chunk_word_size,
1868                                            size_t* class_chunk_word_size) {
1869   switch (type) {
1870   case Metaspace::BootMetaspaceType:
1871     *chunk_word_size = Metaspace::first_chunk_word_size();
1872     *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1873     break;
1874   case Metaspace::ROMetaspaceType:
1875     *chunk_word_size = SharedReadOnlySize / wordSize;
1876     *class_chunk_word_size = ClassSpecializedChunk;
1877     break;
1878   case Metaspace::ReadWriteMetaspaceType:
1879     *chunk_word_size = SharedReadWriteSize / wordSize;
1880     *class_chunk_word_size = ClassSpecializedChunk;
1881     break;
1882   case Metaspace::AnonymousMetaspaceType:
1883   case Metaspace::ReflectionMetaspaceType:
1884     *chunk_word_size = SpecializedChunk;
1885     *class_chunk_word_size = ClassSpecializedChunk;
1886     break;
1887   default:
1888     *chunk_word_size = SmallChunk;
1889     *class_chunk_word_size = ClassSmallChunk;
1890     break;
1891   }
1892   assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1893     err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
1894             " class " SIZE_FORMAT,
1895             *chunk_word_size, *class_chunk_word_size));
1896 }
1897 
1898 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1899   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1900   size_t free = 0;
1901   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1902     Metachunk* chunk = chunks_in_use(i);
1903     while (chunk != NULL) {
1904       free += chunk->free_word_size();
1905       chunk = chunk->next();
1906     }
1907   }
1908   return free;
1909 }
1910 
1911 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1912   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1913   size_t result = 0;
1914   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1915    result += sum_waste_in_chunks_in_use(i);
1916   }
1917 
1918   return result;
1919 }
1920 
1921 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1922   size_t result = 0;
1923   Metachunk* chunk = chunks_in_use(index);
1924   // Count the free space in all the chunk but not the
1925   // current chunk from which allocations are still being done.
1926   while (chunk != NULL) {
1927     if (chunk != current_chunk()) {
1928       result += chunk->free_word_size();
1929     }
1930     chunk = chunk->next();
1931   }
1932   return result;
1933 }
1934 
1935 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1936   // For CMS use "allocated_chunks_words()" which does not need the
1937   // Metaspace lock.  For the other collectors sum over the
1938   // lists.  Use both methods as a check that "allocated_chunks_words()"
1939   // is correct.  That is, sum_capacity_in_chunks() is too expensive
1940   // to use in the product and allocated_chunks_words() should be used
1941   // but allow for  checking that allocated_chunks_words() returns the same
1942   // value as sum_capacity_in_chunks_in_use() which is the definitive
1943   // answer.
1944   if (UseConcMarkSweepGC) {
1945     return allocated_chunks_words();
1946   } else {
1947     MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1948     size_t sum = 0;
1949     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1950       Metachunk* chunk = chunks_in_use(i);
1951       while (chunk != NULL) {
1952         sum += chunk->word_size();
1953         chunk = chunk->next();
1954       }
1955     }
1956   return sum;
1957   }
1958 }
1959 
1960 size_t SpaceManager::sum_count_in_chunks_in_use() {
1961   size_t count = 0;
1962   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1963     count = count + sum_count_in_chunks_in_use(i);
1964   }
1965 
1966   return count;
1967 }
1968 
1969 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
1970   size_t count = 0;
1971   Metachunk* chunk = chunks_in_use(i);
1972   while (chunk != NULL) {
1973     count++;
1974     chunk = chunk->next();
1975   }
1976   return count;
1977 }
1978 
1979 
1980 size_t SpaceManager::sum_used_in_chunks_in_use() const {
1981   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1982   size_t used = 0;
1983   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1984     Metachunk* chunk = chunks_in_use(i);
1985     while (chunk != NULL) {
1986       used += chunk->used_word_size();
1987       chunk = chunk->next();
1988     }
1989   }
1990   return used;
1991 }
1992 
1993 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
1994 
1995   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1996     Metachunk* chunk = chunks_in_use(i);
1997     st->print("SpaceManager: %s " PTR_FORMAT,
1998                  chunk_size_name(i), p2i(chunk));
1999     if (chunk != NULL) {
2000       st->print_cr(" free " SIZE_FORMAT,
2001                    chunk->free_word_size());
2002     } else {
2003       st->cr();
2004     }
2005   }
2006 
2007   chunk_manager()->locked_print_free_chunks(st);
2008   chunk_manager()->locked_print_sum_free_chunks(st);
2009 }
2010 
2011 size_t SpaceManager::calc_chunk_size(size_t word_size) {
2012 
2013   // Decide between a small chunk and a medium chunk.  Up to
2014   // _small_chunk_limit small chunks can be allocated.
2015   // After that a medium chunk is preferred.
2016   size_t chunk_word_size;
2017   if (chunks_in_use(MediumIndex) == NULL &&
2018       sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2019     chunk_word_size = (size_t) small_chunk_size();
2020     if (word_size + Metachunk::overhead() > small_chunk_size()) {
2021       chunk_word_size = medium_chunk_size();
2022     }
2023   } else {
2024     chunk_word_size = medium_chunk_size();
2025   }
2026 
2027   // Might still need a humongous chunk.  Enforce
2028   // humongous allocations sizes to be aligned up to
2029   // the smallest chunk size.
2030   size_t if_humongous_sized_chunk =
2031     align_size_up(word_size + Metachunk::overhead(),
2032                   smallest_chunk_size());
2033   chunk_word_size =
2034     MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2035 
2036   assert(!SpaceManager::is_humongous(word_size) ||
2037          chunk_word_size == if_humongous_sized_chunk,
2038          err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
2039                  " chunk_word_size " SIZE_FORMAT,
2040                  word_size, chunk_word_size));
2041   if (TraceMetadataHumongousAllocation &&
2042       SpaceManager::is_humongous(word_size)) {
2043     gclog_or_tty->print_cr("Metadata humongous allocation:");
2044     gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
2045     gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
2046                            chunk_word_size);
2047     gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
2048                            Metachunk::overhead());
2049   }
2050   return chunk_word_size;
2051 }
2052 
2053 void SpaceManager::track_metaspace_memory_usage() {
2054   if (is_init_completed()) {
2055     if (is_class()) {
2056       MemoryService::track_compressed_class_memory_usage();
2057     }
2058     MemoryService::track_metaspace_memory_usage();
2059   }
2060 }
2061 
2062 /*
2063  * The policy is to allocate up to _small_chunk_limit small chunks
2064  * after which only medium chunks are allocated.  This is done to
2065  * reduce fragmentation.  In some cases, this can result in a lot
2066  * of small chunks being allocated to the point where it's not
2067  * possible to expand.  If this happens, there may be no medium chunks
2068  * available and OOME would be thrown.  Instead of doing that,
2069  * if the allocation request size fits in a small chunk, an attempt
2070  * will be made to allocate a small chunk.
2071  */
2072 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2073   assert(vs_list()->current_virtual_space() != NULL,
2074          "Should have been set");
2075   assert(current_chunk() == NULL ||
2076          current_chunk()->allocate(word_size) == NULL,
2077          "Don't need to expand");
2078   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2079 
2080   if (TraceMetadataChunkAllocation && Verbose) {
2081     size_t words_left = 0;
2082     size_t words_used = 0;
2083     if (current_chunk() != NULL) {
2084       words_left = current_chunk()->free_word_size();
2085       words_used = current_chunk()->used_word_size();
2086     }
2087     gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2088                            " words " SIZE_FORMAT " words used " SIZE_FORMAT
2089                            " words left",
2090                             word_size, words_used, words_left);
2091   }
2092 
2093   // Get another chunk
2094   size_t grow_chunks_by_words = calc_chunk_size(word_size);
2095   Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2096 
2097   MetaWord* mem = NULL;
2098 
2099   if (next == NULL &&
2100       word_size + Metachunk::overhead() <= small_chunk_size() &&
2101       grow_chunks_by_words == medium_chunk_size()) {
2102     /*
2103      * There are no medium chunks available but a small chunk is big enough.
2104      * See if a small chunk is available.
2105      */
2106     next = get_new_chunk(word_size, small_chunk_size());
2107   }
2108 
2109   // If a chunk was available, add it to the in-use chunk list
2110   // and do an allocation from it.
2111   if (next != NULL) {
2112     // Add to this manager's list of chunks in use.
2113     add_chunk(next, false);
2114     mem = next->allocate(word_size);
2115   }
2116 
2117   // Track metaspace memory usage statistic.
2118   track_metaspace_memory_usage();
2119 
2120   return mem;
2121 }
2122 
2123 void SpaceManager::print_on(outputStream* st) const {
2124 
2125   for (ChunkIndex i = ZeroIndex;
2126        i < NumberOfInUseLists ;
2127        i = next_chunk_index(i) ) {
2128     st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
2129                  p2i(chunks_in_use(i)),
2130                  chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2131   }
2132   st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2133                " Humongous " SIZE_FORMAT,
2134                sum_waste_in_chunks_in_use(SmallIndex),
2135                sum_waste_in_chunks_in_use(MediumIndex),
2136                sum_waste_in_chunks_in_use(HumongousIndex));
2137   // block free lists
2138   if (block_freelists() != NULL) {
2139     st->print_cr("total in block free lists " SIZE_FORMAT,
2140       block_freelists()->total_size());
2141   }
2142 }
2143 
2144 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2145                            Mutex* lock) :
2146   _mdtype(mdtype),
2147   _allocated_blocks_words(0),
2148   _allocated_chunks_words(0),
2149   _allocated_chunks_count(0),
2150   _lock(lock)
2151 {
2152   initialize();
2153 }
2154 
2155 void SpaceManager::inc_size_metrics(size_t words) {
2156   assert_lock_strong(SpaceManager::expand_lock());
2157   // Total of allocated Metachunks and allocated Metachunks count
2158   // for each SpaceManager
2159   _allocated_chunks_words = _allocated_chunks_words + words;
2160   _allocated_chunks_count++;
2161   // Global total of capacity in allocated Metachunks
2162   MetaspaceAux::inc_capacity(mdtype(), words);
2163   // Global total of allocated Metablocks.
2164   // used_words_slow() includes the overhead in each
2165   // Metachunk so include it in the used when the
2166   // Metachunk is first added (so only added once per
2167   // Metachunk).
2168   MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2169 }
2170 
2171 void SpaceManager::inc_used_metrics(size_t words) {
2172   // Add to the per SpaceManager total
2173   Atomic::add_ptr(words, &_allocated_blocks_words);
2174   // Add to the global total
2175   MetaspaceAux::inc_used(mdtype(), words);
2176 }
2177 
2178 void SpaceManager::dec_total_from_size_metrics() {
2179   MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2180   MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2181   // Also deduct the overhead per Metachunk
2182   MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2183 }
2184 
2185 void SpaceManager::initialize() {
2186   Metadebug::init_allocation_fail_alot_count();
2187   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2188     _chunks_in_use[i] = NULL;
2189   }
2190   _current_chunk = NULL;
2191   if (TraceMetadataChunkAllocation && Verbose) {
2192     gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, p2i(this));
2193   }
2194 }
2195 
2196 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2197   if (chunks == NULL) {
2198     return;
2199   }
2200   ChunkList* list = free_chunks(index);
2201   assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2202   assert_lock_strong(SpaceManager::expand_lock());
2203   Metachunk* cur = chunks;
2204 
2205   // This returns chunks one at a time.  If a new
2206   // class List can be created that is a base class
2207   // of FreeList then something like FreeList::prepend()
2208   // can be used in place of this loop
2209   while (cur != NULL) {
2210     assert(cur->container() != NULL, "Container should have been set");
2211     cur->container()->dec_container_count();
2212     // Capture the next link before it is changed
2213     // by the call to return_chunk_at_head();
2214     Metachunk* next = cur->next();
2215     DEBUG_ONLY(cur->set_is_tagged_free(true);)
2216     list->return_chunk_at_head(cur);
2217     cur = next;
2218   }
2219 }
2220 
2221 SpaceManager::~SpaceManager() {
2222   // This call this->_lock which can't be done while holding expand_lock()
2223   assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2224     err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2225             " allocated_chunks_words() " SIZE_FORMAT,
2226             sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2227 
2228   MutexLockerEx fcl(SpaceManager::expand_lock(),
2229                     Mutex::_no_safepoint_check_flag);
2230 
2231   chunk_manager()->slow_locked_verify();
2232 
2233   dec_total_from_size_metrics();
2234 
2235   if (TraceMetadataChunkAllocation && Verbose) {
2236     gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, p2i(this));
2237     locked_print_chunks_in_use_on(gclog_or_tty);
2238   }
2239 
2240   // Do not mangle freed Metachunks.  The chunk size inside Metachunks
2241   // is during the freeing of a VirtualSpaceNodes.
2242 
2243   // Have to update before the chunks_in_use lists are emptied
2244   // below.
2245   chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2246                                          sum_count_in_chunks_in_use());
2247 
2248   // Add all the chunks in use by this space manager
2249   // to the global list of free chunks.
2250 
2251   // Follow each list of chunks-in-use and add them to the
2252   // free lists.  Each list is NULL terminated.
2253 
2254   for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2255     if (TraceMetadataChunkAllocation && Verbose) {
2256       gclog_or_tty->print_cr("returned " SIZE_FORMAT " %s chunks to freelist",
2257                              sum_count_in_chunks_in_use(i),
2258                              chunk_size_name(i));
2259     }
2260     Metachunk* chunks = chunks_in_use(i);
2261     chunk_manager()->return_chunks(i, chunks);
2262     set_chunks_in_use(i, NULL);
2263     if (TraceMetadataChunkAllocation && Verbose) {
2264       gclog_or_tty->print_cr("updated freelist count " SSIZE_FORMAT " %s",
2265                              chunk_manager()->free_chunks(i)->count(),
2266                              chunk_size_name(i));
2267     }
2268     assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2269   }
2270 
2271   // The medium chunk case may be optimized by passing the head and
2272   // tail of the medium chunk list to add_at_head().  The tail is often
2273   // the current chunk but there are probably exceptions.
2274 
2275   // Humongous chunks
2276   if (TraceMetadataChunkAllocation && Verbose) {
2277     gclog_or_tty->print_cr("returned " SIZE_FORMAT " %s humongous chunks to dictionary",
2278                             sum_count_in_chunks_in_use(HumongousIndex),
2279                             chunk_size_name(HumongousIndex));
2280     gclog_or_tty->print("Humongous chunk dictionary: ");
2281   }
2282   // Humongous chunks are never the current chunk.
2283   Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2284 
2285   while (humongous_chunks != NULL) {
2286 #ifdef ASSERT
2287     humongous_chunks->set_is_tagged_free(true);
2288 #endif
2289     if (TraceMetadataChunkAllocation && Verbose) {
2290       gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
2291                           p2i(humongous_chunks),
2292                           humongous_chunks->word_size());
2293     }
2294     assert(humongous_chunks->word_size() == (size_t)
2295            align_size_up(humongous_chunks->word_size(),
2296                              smallest_chunk_size()),
2297            err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2298                    " granularity " SIZE_FORMAT,
2299                    humongous_chunks->word_size(), smallest_chunk_size()));
2300     Metachunk* next_humongous_chunks = humongous_chunks->next();
2301     humongous_chunks->container()->dec_container_count();
2302     chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2303     humongous_chunks = next_humongous_chunks;
2304   }
2305   if (TraceMetadataChunkAllocation && Verbose) {
2306     gclog_or_tty->cr();
2307     gclog_or_tty->print_cr("updated dictionary count " SIZE_FORMAT " %s",
2308                      chunk_manager()->humongous_dictionary()->total_count(),
2309                      chunk_size_name(HumongousIndex));
2310   }
2311   chunk_manager()->slow_locked_verify();
2312 }
2313 
2314 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2315   switch (index) {
2316     case SpecializedIndex:
2317       return "Specialized";
2318     case SmallIndex:
2319       return "Small";
2320     case MediumIndex:
2321       return "Medium";
2322     case HumongousIndex:
2323       return "Humongous";
2324     default:
2325       return NULL;
2326   }
2327 }
2328 
2329 ChunkIndex ChunkManager::list_index(size_t size) {
2330   switch (size) {
2331     case SpecializedChunk:
2332       assert(SpecializedChunk == ClassSpecializedChunk,
2333              "Need branch for ClassSpecializedChunk");
2334       return SpecializedIndex;
2335     case SmallChunk:
2336     case ClassSmallChunk:
2337       return SmallIndex;
2338     case MediumChunk:
2339     case ClassMediumChunk:
2340       return MediumIndex;
2341     default:
2342       assert(size > MediumChunk || size > ClassMediumChunk,
2343              "Not a humongous chunk");
2344       return HumongousIndex;
2345   }
2346 }
2347 
2348 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2349   assert_lock_strong(_lock);
2350   size_t raw_word_size = get_raw_word_size(word_size);
2351   size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2352   assert(raw_word_size >= min_size,
2353          err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2354   block_freelists()->return_block(p, raw_word_size);
2355 }
2356 
2357 // Adds a chunk to the list of chunks in use.
2358 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2359 
2360   assert(new_chunk != NULL, "Should not be NULL");
2361   assert(new_chunk->next() == NULL, "Should not be on a list");
2362 
2363   new_chunk->reset_empty();
2364 
2365   // Find the correct list and and set the current
2366   // chunk for that list.
2367   ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2368 
2369   if (index != HumongousIndex) {
2370     retire_current_chunk();
2371     set_current_chunk(new_chunk);
2372     new_chunk->set_next(chunks_in_use(index));
2373     set_chunks_in_use(index, new_chunk);
2374   } else {
2375     // For null class loader data and DumpSharedSpaces, the first chunk isn't
2376     // small, so small will be null.  Link this first chunk as the current
2377     // chunk.
2378     if (make_current) {
2379       // Set as the current chunk but otherwise treat as a humongous chunk.
2380       set_current_chunk(new_chunk);
2381     }
2382     // Link at head.  The _current_chunk only points to a humongous chunk for
2383     // the null class loader metaspace (class and data virtual space managers)
2384     // any humongous chunks so will not point to the tail
2385     // of the humongous chunks list.
2386     new_chunk->set_next(chunks_in_use(HumongousIndex));
2387     set_chunks_in_use(HumongousIndex, new_chunk);
2388 
2389     assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2390   }
2391 
2392   // Add to the running sum of capacity
2393   inc_size_metrics(new_chunk->word_size());
2394 
2395   assert(new_chunk->is_empty(), "Not ready for reuse");
2396   if (TraceMetadataChunkAllocation && Verbose) {
2397     gclog_or_tty->print("SpaceManager::add_chunk: " SIZE_FORMAT ") ",
2398                         sum_count_in_chunks_in_use());
2399     new_chunk->print_on(gclog_or_tty);
2400     chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2401   }
2402 }
2403 
2404 void SpaceManager::retire_current_chunk() {
2405   if (current_chunk() != NULL) {
2406     size_t remaining_words = current_chunk()->free_word_size();
2407     if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2408       block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
2409       inc_used_metrics(remaining_words);
2410     }
2411   }
2412 }
2413 
2414 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2415                                        size_t grow_chunks_by_words) {
2416   // Get a chunk from the chunk freelist
2417   Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2418 
2419   if (next == NULL) {
2420     next = vs_list()->get_new_chunk(word_size,
2421                                     grow_chunks_by_words,
2422                                     medium_chunk_bunch());
2423   }
2424 
2425   if (TraceMetadataHumongousAllocation && next != NULL &&
2426       SpaceManager::is_humongous(next->word_size())) {
2427     gclog_or_tty->print_cr("  new humongous chunk word size "
2428                            PTR_FORMAT, next->word_size());
2429   }
2430 
2431   return next;
2432 }
2433 
2434 MetaWord* SpaceManager::allocate(size_t word_size) {
2435   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2436 
2437   size_t raw_word_size = get_raw_word_size(word_size);
2438   BlockFreelist* fl =  block_freelists();
2439   MetaWord* p = NULL;
2440   // Allocation from the dictionary is expensive in the sense that
2441   // the dictionary has to be searched for a size.  Don't allocate
2442   // from the dictionary until it starts to get fat.  Is this
2443   // a reasonable policy?  Maybe an skinny dictionary is fast enough
2444   // for allocations.  Do some profiling.  JJJ
2445   if (fl->total_size() > allocation_from_dictionary_limit) {
2446     p = fl->get_block(raw_word_size);
2447   }
2448   if (p == NULL) {
2449     p = allocate_work(raw_word_size);
2450   }
2451 
2452   return p;
2453 }
2454 
2455 // Returns the address of spaced allocated for "word_size".
2456 // This methods does not know about blocks (Metablocks)
2457 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2458   assert_lock_strong(_lock);
2459 #ifdef ASSERT
2460   if (Metadebug::test_metadata_failure()) {
2461     return NULL;
2462   }
2463 #endif
2464   // Is there space in the current chunk?
2465   MetaWord* result = NULL;
2466 
2467   // For DumpSharedSpaces, only allocate out of the current chunk which is
2468   // never null because we gave it the size we wanted.   Caller reports out
2469   // of memory if this returns null.
2470   if (DumpSharedSpaces) {
2471     assert(current_chunk() != NULL, "should never happen");
2472     inc_used_metrics(word_size);
2473     return current_chunk()->allocate(word_size); // caller handles null result
2474   }
2475 
2476   if (current_chunk() != NULL) {
2477     result = current_chunk()->allocate(word_size);
2478   }
2479 
2480   if (result == NULL) {
2481     result = grow_and_allocate(word_size);
2482   }
2483 
2484   if (result != NULL) {
2485     inc_used_metrics(word_size);
2486     assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2487            "Head of the list is being allocated");
2488   }
2489 
2490   return result;
2491 }
2492 
2493 void SpaceManager::verify() {
2494   // If there are blocks in the dictionary, then
2495   // verification of chunks does not work since
2496   // being in the dictionary alters a chunk.
2497   if (block_freelists()->total_size() == 0) {
2498     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2499       Metachunk* curr = chunks_in_use(i);
2500       while (curr != NULL) {
2501         curr->verify();
2502         verify_chunk_size(curr);
2503         curr = curr->next();
2504       }
2505     }
2506   }
2507 }
2508 
2509 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2510   assert(is_humongous(chunk->word_size()) ||
2511          chunk->word_size() == medium_chunk_size() ||
2512          chunk->word_size() == small_chunk_size() ||
2513          chunk->word_size() == specialized_chunk_size(),
2514          "Chunk size is wrong");
2515   return;
2516 }
2517 
2518 #ifdef ASSERT
2519 void SpaceManager::verify_allocated_blocks_words() {
2520   // Verification is only guaranteed at a safepoint.
2521   assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2522     "Verification can fail if the applications is running");
2523   assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2524     err_msg("allocation total is not consistent " SIZE_FORMAT
2525             " vs " SIZE_FORMAT,
2526             allocated_blocks_words(), sum_used_in_chunks_in_use()));
2527 }
2528 
2529 #endif
2530 
2531 void SpaceManager::dump(outputStream* const out) const {
2532   size_t curr_total = 0;
2533   size_t waste = 0;
2534   uint i = 0;
2535   size_t used = 0;
2536   size_t capacity = 0;
2537 
2538   // Add up statistics for all chunks in this SpaceManager.
2539   for (ChunkIndex index = ZeroIndex;
2540        index < NumberOfInUseLists;
2541        index = next_chunk_index(index)) {
2542     for (Metachunk* curr = chunks_in_use(index);
2543          curr != NULL;
2544          curr = curr->next()) {
2545       out->print("%d) ", i++);
2546       curr->print_on(out);
2547       curr_total += curr->word_size();
2548       used += curr->used_word_size();
2549       capacity += curr->word_size();
2550       waste += curr->free_word_size() + curr->overhead();;
2551     }
2552   }
2553 
2554   if (TraceMetadataChunkAllocation && Verbose) {
2555     block_freelists()->print_on(out);
2556   }
2557 
2558   size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2559   // Free space isn't wasted.
2560   waste -= free;
2561 
2562   out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2563                 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2564                 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2565 }
2566 
2567 #ifndef PRODUCT
2568 void SpaceManager::mangle_freed_chunks() {
2569   for (ChunkIndex index = ZeroIndex;
2570        index < NumberOfInUseLists;
2571        index = next_chunk_index(index)) {
2572     for (Metachunk* curr = chunks_in_use(index);
2573          curr != NULL;
2574          curr = curr->next()) {
2575       curr->mangle();
2576     }
2577   }
2578 }
2579 #endif // PRODUCT
2580 
2581 // MetaspaceAux
2582 
2583 
2584 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2585 size_t MetaspaceAux::_used_words[] = {0, 0};
2586 
2587 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2588   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2589   return list == NULL ? 0 : list->free_bytes();
2590 }
2591 
2592 size_t MetaspaceAux::free_bytes() {
2593   return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2594 }
2595 
2596 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2597   assert_lock_strong(SpaceManager::expand_lock());
2598   assert(words <= capacity_words(mdtype),
2599     err_msg("About to decrement below 0: words " SIZE_FORMAT
2600             " is greater than _capacity_words[%u] " SIZE_FORMAT,
2601             words, mdtype, capacity_words(mdtype)));
2602   _capacity_words[mdtype] -= words;
2603 }
2604 
2605 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2606   assert_lock_strong(SpaceManager::expand_lock());
2607   // Needs to be atomic
2608   _capacity_words[mdtype] += words;
2609 }
2610 
2611 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2612   assert(words <= used_words(mdtype),
2613     err_msg("About to decrement below 0: words " SIZE_FORMAT
2614             " is greater than _used_words[%u] " SIZE_FORMAT,
2615             words, mdtype, used_words(mdtype)));
2616   // For CMS deallocation of the Metaspaces occurs during the
2617   // sweep which is a concurrent phase.  Protection by the expand_lock()
2618   // is not enough since allocation is on a per Metaspace basis
2619   // and protected by the Metaspace lock.
2620   jlong minus_words = (jlong) - (jlong) words;
2621   Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2622 }
2623 
2624 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2625   // _used_words tracks allocations for
2626   // each piece of metadata.  Those allocations are
2627   // generally done concurrently by different application
2628   // threads so must be done atomically.
2629   Atomic::add_ptr(words, &_used_words[mdtype]);
2630 }
2631 
2632 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2633   size_t used = 0;
2634   ClassLoaderDataGraphMetaspaceIterator iter;
2635   while (iter.repeat()) {
2636     Metaspace* msp = iter.get_next();
2637     // Sum allocated_blocks_words for each metaspace
2638     if (msp != NULL) {
2639       used += msp->used_words_slow(mdtype);
2640     }
2641   }
2642   return used * BytesPerWord;
2643 }
2644 
2645 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2646   size_t free = 0;
2647   ClassLoaderDataGraphMetaspaceIterator iter;
2648   while (iter.repeat()) {
2649     Metaspace* msp = iter.get_next();
2650     if (msp != NULL) {
2651       free += msp->free_words_slow(mdtype);
2652     }
2653   }
2654   return free * BytesPerWord;
2655 }
2656 
2657 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2658   if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2659     return 0;
2660   }
2661   // Don't count the space in the freelists.  That space will be
2662   // added to the capacity calculation as needed.
2663   size_t capacity = 0;
2664   ClassLoaderDataGraphMetaspaceIterator iter;
2665   while (iter.repeat()) {
2666     Metaspace* msp = iter.get_next();
2667     if (msp != NULL) {
2668       capacity += msp->capacity_words_slow(mdtype);
2669     }
2670   }
2671   return capacity * BytesPerWord;
2672 }
2673 
2674 size_t MetaspaceAux::capacity_bytes_slow() {
2675 #ifdef PRODUCT
2676   // Use capacity_bytes() in PRODUCT instead of this function.
2677   guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2678 #endif
2679   size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2680   size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2681   assert(capacity_bytes() == class_capacity + non_class_capacity,
2682       err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
2683         " class_capacity + non_class_capacity " SIZE_FORMAT
2684         " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2685         capacity_bytes(), class_capacity + non_class_capacity,
2686         class_capacity, non_class_capacity));
2687 
2688   return class_capacity + non_class_capacity;
2689 }
2690 
2691 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2692   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2693   return list == NULL ? 0 : list->reserved_bytes();
2694 }
2695 
2696 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2697   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2698   return list == NULL ? 0 : list->committed_bytes();
2699 }
2700 
2701 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2702 
2703 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2704   ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2705   if (chunk_manager == NULL) {
2706     return 0;
2707   }
2708   chunk_manager->slow_verify();
2709   return chunk_manager->free_chunks_total_words();
2710 }
2711 
2712 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2713   return free_chunks_total_words(mdtype) * BytesPerWord;
2714 }
2715 
2716 size_t MetaspaceAux::free_chunks_total_words() {
2717   return free_chunks_total_words(Metaspace::ClassType) +
2718          free_chunks_total_words(Metaspace::NonClassType);
2719 }
2720 
2721 size_t MetaspaceAux::free_chunks_total_bytes() {
2722   return free_chunks_total_words() * BytesPerWord;
2723 }
2724 
2725 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2726   return Metaspace::get_chunk_manager(mdtype) != NULL;
2727 }
2728 
2729 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2730   if (!has_chunk_free_list(mdtype)) {
2731     return MetaspaceChunkFreeListSummary();
2732   }
2733 
2734   const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2735   return cm->chunk_free_list_summary();
2736 }
2737 
2738 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2739   gclog_or_tty->print(", [Metaspace:");
2740   if (PrintGCDetails && Verbose) {
2741     gclog_or_tty->print(" "  SIZE_FORMAT
2742                         "->" SIZE_FORMAT
2743                         "("  SIZE_FORMAT ")",
2744                         prev_metadata_used,
2745                         used_bytes(),
2746                         reserved_bytes());
2747   } else {
2748     gclog_or_tty->print(" "  SIZE_FORMAT "K"
2749                         "->" SIZE_FORMAT "K"
2750                         "("  SIZE_FORMAT "K)",
2751                         prev_metadata_used/K,
2752                         used_bytes()/K,
2753                         reserved_bytes()/K);
2754   }
2755 
2756   gclog_or_tty->print("]");
2757 }
2758 
2759 // This is printed when PrintGCDetails
2760 void MetaspaceAux::print_on(outputStream* out) {
2761   Metaspace::MetadataType nct = Metaspace::NonClassType;
2762 
2763   out->print_cr(" Metaspace       "
2764                 "used "      SIZE_FORMAT "K, "
2765                 "capacity "  SIZE_FORMAT "K, "
2766                 "committed " SIZE_FORMAT "K, "
2767                 "reserved "  SIZE_FORMAT "K",
2768                 used_bytes()/K,
2769                 capacity_bytes()/K,
2770                 committed_bytes()/K,
2771                 reserved_bytes()/K);
2772 
2773   if (Metaspace::using_class_space()) {
2774     Metaspace::MetadataType ct = Metaspace::ClassType;
2775     out->print_cr("  class space    "
2776                   "used "      SIZE_FORMAT "K, "
2777                   "capacity "  SIZE_FORMAT "K, "
2778                   "committed " SIZE_FORMAT "K, "
2779                   "reserved "  SIZE_FORMAT "K",
2780                   used_bytes(ct)/K,
2781                   capacity_bytes(ct)/K,
2782                   committed_bytes(ct)/K,
2783                   reserved_bytes(ct)/K);
2784   }
2785 }
2786 
2787 // Print information for class space and data space separately.
2788 // This is almost the same as above.
2789 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2790   size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2791   size_t capacity_bytes = capacity_bytes_slow(mdtype);
2792   size_t used_bytes = used_bytes_slow(mdtype);
2793   size_t free_bytes = free_bytes_slow(mdtype);
2794   size_t used_and_free = used_bytes + free_bytes +
2795                            free_chunks_capacity_bytes;
2796   out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2797              "K + unused in chunks " SIZE_FORMAT "K  + "
2798              " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2799              "K  capacity in allocated chunks " SIZE_FORMAT "K",
2800              used_bytes / K,
2801              free_bytes / K,
2802              free_chunks_capacity_bytes / K,
2803              used_and_free / K,
2804              capacity_bytes / K);
2805   // Accounting can only be correct if we got the values during a safepoint
2806   assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2807 }
2808 
2809 // Print total fragmentation for class metaspaces
2810 void MetaspaceAux::print_class_waste(outputStream* out) {
2811   assert(Metaspace::using_class_space(), "class metaspace not used");
2812   size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2813   size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2814   ClassLoaderDataGraphMetaspaceIterator iter;
2815   while (iter.repeat()) {
2816     Metaspace* msp = iter.get_next();
2817     if (msp != NULL) {
2818       cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2819       cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2820       cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2821       cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2822       cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2823       cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2824       cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2825     }
2826   }
2827   out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2828                 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2829                 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2830                 "large count " SIZE_FORMAT,
2831                 cls_specialized_count, cls_specialized_waste,
2832                 cls_small_count, cls_small_waste,
2833                 cls_medium_count, cls_medium_waste, cls_humongous_count);
2834 }
2835 
2836 // Print total fragmentation for data and class metaspaces separately
2837 void MetaspaceAux::print_waste(outputStream* out) {
2838   size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2839   size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2840 
2841   ClassLoaderDataGraphMetaspaceIterator iter;
2842   while (iter.repeat()) {
2843     Metaspace* msp = iter.get_next();
2844     if (msp != NULL) {
2845       specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2846       specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2847       small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2848       small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2849       medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2850       medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2851       humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2852     }
2853   }
2854   out->print_cr("Total fragmentation waste (words) doesn't count free space");
2855   out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2856                         SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2857                         SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2858                         "large count " SIZE_FORMAT,
2859              specialized_count, specialized_waste, small_count,
2860              small_waste, medium_count, medium_waste, humongous_count);
2861   if (Metaspace::using_class_space()) {
2862     print_class_waste(out);
2863   }
2864 }
2865 
2866 // Dump global metaspace things from the end of ClassLoaderDataGraph
2867 void MetaspaceAux::dump(outputStream* out) {
2868   out->print_cr("All Metaspace:");
2869   out->print("data space: "); print_on(out, Metaspace::NonClassType);
2870   out->print("class space: "); print_on(out, Metaspace::ClassType);
2871   print_waste(out);
2872 }
2873 
2874 void MetaspaceAux::verify_free_chunks() {
2875   Metaspace::chunk_manager_metadata()->verify();
2876   if (Metaspace::using_class_space()) {
2877     Metaspace::chunk_manager_class()->verify();
2878   }
2879 }
2880 
2881 void MetaspaceAux::verify_capacity() {
2882 #ifdef ASSERT
2883   size_t running_sum_capacity_bytes = capacity_bytes();
2884   // For purposes of the running sum of capacity, verify against capacity
2885   size_t capacity_in_use_bytes = capacity_bytes_slow();
2886   assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2887     err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2888             " capacity_bytes_slow()" SIZE_FORMAT,
2889             running_sum_capacity_bytes, capacity_in_use_bytes));
2890   for (Metaspace::MetadataType i = Metaspace::ClassType;
2891        i < Metaspace:: MetadataTypeCount;
2892        i = (Metaspace::MetadataType)(i + 1)) {
2893     size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2894     assert(capacity_bytes(i) == capacity_in_use_bytes,
2895       err_msg("capacity_bytes(%u) " SIZE_FORMAT
2896               " capacity_bytes_slow(%u)" SIZE_FORMAT,
2897               i, capacity_bytes(i), i, capacity_in_use_bytes));
2898   }
2899 #endif
2900 }
2901 
2902 void MetaspaceAux::verify_used() {
2903 #ifdef ASSERT
2904   size_t running_sum_used_bytes = used_bytes();
2905   // For purposes of the running sum of used, verify against used
2906   size_t used_in_use_bytes = used_bytes_slow();
2907   assert(used_bytes() == used_in_use_bytes,
2908     err_msg("used_bytes() " SIZE_FORMAT
2909             " used_bytes_slow()" SIZE_FORMAT,
2910             used_bytes(), used_in_use_bytes));
2911   for (Metaspace::MetadataType i = Metaspace::ClassType;
2912        i < Metaspace:: MetadataTypeCount;
2913        i = (Metaspace::MetadataType)(i + 1)) {
2914     size_t used_in_use_bytes = used_bytes_slow(i);
2915     assert(used_bytes(i) == used_in_use_bytes,
2916       err_msg("used_bytes(%u) " SIZE_FORMAT
2917               " used_bytes_slow(%u)" SIZE_FORMAT,
2918               i, used_bytes(i), i, used_in_use_bytes));
2919   }
2920 #endif
2921 }
2922 
2923 void MetaspaceAux::verify_metrics() {
2924   verify_capacity();
2925   verify_used();
2926 }
2927 
2928 
2929 // Metaspace methods
2930 
2931 size_t Metaspace::_first_chunk_word_size = 0;
2932 size_t Metaspace::_first_class_chunk_word_size = 0;
2933 
2934 size_t Metaspace::_commit_alignment = 0;
2935 size_t Metaspace::_reserve_alignment = 0;
2936 
2937 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
2938   initialize(lock, type);
2939 }
2940 
2941 Metaspace::~Metaspace() {
2942   delete _vsm;
2943   if (using_class_space()) {
2944     delete _class_vsm;
2945   }
2946 }
2947 
2948 VirtualSpaceList* Metaspace::_space_list = NULL;
2949 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2950 
2951 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
2952 ChunkManager* Metaspace::_chunk_manager_class = NULL;
2953 
2954 #define VIRTUALSPACEMULTIPLIER 2
2955 
2956 #ifdef _LP64
2957 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
2958 
2959 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
2960   // Figure out the narrow_klass_base and the narrow_klass_shift.  The
2961   // narrow_klass_base is the lower of the metaspace base and the cds base
2962   // (if cds is enabled).  The narrow_klass_shift depends on the distance
2963   // between the lower base and higher address.
2964   address lower_base;
2965   address higher_address;
2966 #if INCLUDE_CDS
2967   if (UseSharedSpaces) {
2968     higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2969                           (address)(metaspace_base + compressed_class_space_size()));
2970     lower_base = MIN2(metaspace_base, cds_base);
2971   } else
2972 #endif
2973   {
2974     higher_address = metaspace_base + compressed_class_space_size();
2975     lower_base = metaspace_base;
2976 
2977     uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
2978     // If compressed class space fits in lower 32G, we don't need a base.
2979     if (higher_address <= (address)klass_encoding_max) {
2980       lower_base = 0; // Effectively lower base is zero.
2981     }
2982   }
2983 
2984   Universe::set_narrow_klass_base(lower_base);
2985 
2986   if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2987     Universe::set_narrow_klass_shift(0);
2988   } else {
2989     assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
2990     Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
2991   }
2992 }
2993 
2994 #if INCLUDE_CDS
2995 // Return TRUE if the specified metaspace_base and cds_base are close enough
2996 // to work with compressed klass pointers.
2997 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
2998   assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2999   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3000   address lower_base = MIN2((address)metaspace_base, cds_base);
3001   address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3002                                 (address)(metaspace_base + compressed_class_space_size()));
3003   return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3004 }
3005 #endif
3006 
3007 // Try to allocate the metaspace at the requested addr.
3008 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
3009   assert(using_class_space(), "called improperly");
3010   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3011   assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3012          "Metaspace size is too big");
3013   assert_is_ptr_aligned(requested_addr, _reserve_alignment);
3014   assert_is_ptr_aligned(cds_base, _reserve_alignment);
3015   assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
3016 
3017   // Don't use large pages for the class space.
3018   bool large_pages = false;
3019 
3020 #ifndef AARCH64
3021   ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3022                                              _reserve_alignment,
3023                                              large_pages,
3024                                              requested_addr);
3025 #else // AARCH64
3026   ReservedSpace metaspace_rs;
3027 
3028   // Our compressed klass pointers may fit nicely into the lower 32
3029   // bits.
3030   if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
3031     metaspace_rs = ReservedSpace(compressed_class_space_size(),
3032                                              _reserve_alignment,
3033                                              large_pages,
3034                                              requested_addr);
3035   }
3036 
3037   if (! metaspace_rs.is_reserved()) {
3038     // Try to align metaspace so that we can decode a compressed klass
3039     // with a single MOVK instruction.  We can do this iff the
3040     // compressed class base is a multiple of 4G.
3041     for (char *a = (char*)align_ptr_up(requested_addr, 4*G);
3042          a < (char*)(1024*G);
3043          a += 4*G) {
3044 
3045 #if INCLUDE_CDS
3046       if (UseSharedSpaces
3047           && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
3048         // We failed to find an aligned base that will reach.  Fall
3049         // back to using our requested addr.
3050         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3051                                      _reserve_alignment,
3052                                      large_pages,
3053                                      requested_addr);
3054         break;
3055       }
3056 #endif
3057 
3058       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3059                                    _reserve_alignment,
3060                                    large_pages,
3061                                    a);
3062       if (metaspace_rs.is_reserved())
3063         break;
3064     }
3065   }
3066 
3067 #endif // AARCH64
3068 
3069   if (!metaspace_rs.is_reserved()) {
3070 #if INCLUDE_CDS
3071     if (UseSharedSpaces) {
3072       size_t increment = align_size_up(1*G, _reserve_alignment);
3073 
3074       // Keep trying to allocate the metaspace, increasing the requested_addr
3075       // by 1GB each time, until we reach an address that will no longer allow
3076       // use of CDS with compressed klass pointers.
3077       char *addr = requested_addr;
3078       while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3079              can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3080         addr = addr + increment;
3081         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3082                                      _reserve_alignment, large_pages, addr);
3083       }
3084     }
3085 #endif
3086     // If no successful allocation then try to allocate the space anywhere.  If
3087     // that fails then OOM doom.  At this point we cannot try allocating the
3088     // metaspace as if UseCompressedClassPointers is off because too much
3089     // initialization has happened that depends on UseCompressedClassPointers.
3090     // So, UseCompressedClassPointers cannot be turned off at this point.
3091     if (!metaspace_rs.is_reserved()) {
3092       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3093                                    _reserve_alignment, large_pages);
3094       if (!metaspace_rs.is_reserved()) {
3095         vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
3096                                               compressed_class_space_size()));
3097       }
3098     }
3099   }
3100 
3101   // If we got here then the metaspace got allocated.
3102   MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3103 
3104 #if INCLUDE_CDS
3105   // Verify that we can use shared spaces.  Otherwise, turn off CDS.
3106   if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3107     FileMapInfo::stop_sharing_and_unmap(
3108         "Could not allocate metaspace at a compatible address");
3109   }
3110 #endif
3111   set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3112                                   UseSharedSpaces ? (address)cds_base : 0);
3113 
3114   initialize_class_space(metaspace_rs);
3115 
3116   if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
3117     gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
3118                             p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
3119     gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
3120                            compressed_class_space_size(), p2i(metaspace_rs.base()), p2i(requested_addr));
3121   }
3122 }
3123 
3124 // For UseCompressedClassPointers the class space is reserved above the top of
3125 // the Java heap.  The argument passed in is at the base of the compressed space.
3126 void Metaspace::initialize_class_space(ReservedSpace rs) {
3127   // The reserved space size may be bigger because of alignment, esp with UseLargePages
3128   assert(rs.size() >= CompressedClassSpaceSize,
3129          err_msg(SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize));
3130   assert(using_class_space(), "Must be using class space");
3131   _class_space_list = new VirtualSpaceList(rs);
3132   _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3133 
3134   if (!_class_space_list->initialization_succeeded()) {
3135     vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3136   }
3137 }
3138 
3139 #endif
3140 
3141 void Metaspace::ergo_initialize() {
3142   if (DumpSharedSpaces) {
3143     // Using large pages when dumping the shared archive is currently not implemented.
3144     FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3145   }
3146 
3147   size_t page_size = os::vm_page_size();
3148   if (UseLargePages && UseLargePagesInMetaspace) {
3149     page_size = os::large_page_size();
3150   }
3151 
3152   _commit_alignment  = page_size;
3153   _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3154 
3155   // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3156   // override if MaxMetaspaceSize was set on the command line or not.
3157   // This information is needed later to conform to the specification of the
3158   // java.lang.management.MemoryUsage API.
3159   //
3160   // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3161   // globals.hpp to the aligned value, but this is not possible, since the
3162   // alignment depends on other flags being parsed.
3163   MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3164 
3165   if (MetaspaceSize > MaxMetaspaceSize) {
3166     MetaspaceSize = MaxMetaspaceSize;
3167   }
3168 
3169   MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3170 
3171   assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3172 
3173   if (MetaspaceSize < 256*K) {
3174     vm_exit_during_initialization("Too small initial Metaspace size");
3175   }
3176 
3177   MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3178   MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3179 
3180   CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3181   set_compressed_class_space_size(CompressedClassSpaceSize);
3182 }
3183 
3184 void Metaspace::global_initialize() {
3185   MetaspaceGC::initialize();
3186 
3187   // Initialize the alignment for shared spaces.
3188   int max_alignment = os::vm_allocation_granularity();
3189   size_t cds_total = 0;
3190 
3191   MetaspaceShared::set_max_alignment(max_alignment);
3192 
3193   if (DumpSharedSpaces) {
3194 #if INCLUDE_CDS
3195     MetaspaceShared::estimate_regions_size();
3196 
3197     SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3198     SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3199     SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
3200     SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3201 
3202     // make sure SharedReadOnlySize and SharedReadWriteSize are not less than
3203     // the minimum values.
3204     if (SharedReadOnlySize < MetaspaceShared::min_ro_size){
3205       report_out_of_shared_space(SharedReadOnly);
3206     }
3207 
3208     if (SharedReadWriteSize < MetaspaceShared::min_rw_size){
3209       report_out_of_shared_space(SharedReadWrite);
3210     }
3211 
3212     // the min_misc_data_size and min_misc_code_size estimates are based on
3213     // MetaspaceShared::generate_vtable_methods().
3214     // The minimum size only accounts for the vtable methods. Any size less than the
3215     // minimum required size would cause vm crash when allocating the vtable methods.
3216     uint min_misc_data_size = align_size_up(
3217       MetaspaceShared::num_virtuals * MetaspaceShared::vtbl_list_size * sizeof(void*), max_alignment);
3218 
3219     if (SharedMiscDataSize < min_misc_data_size) {
3220       report_out_of_shared_space(SharedMiscData);
3221     }
3222 
3223     uintx min_misc_code_size = align_size_up(
3224       (MetaspaceShared::num_virtuals * MetaspaceShared::vtbl_list_size) *
3225         (sizeof(void*) + MetaspaceShared::vtbl_method_size) + MetaspaceShared::vtbl_common_code_size,
3226           max_alignment);
3227 
3228     if (SharedMiscCodeSize < min_misc_code_size) {
3229       report_out_of_shared_space(SharedMiscCode);
3230     }
3231 
3232     // Initialize with the sum of the shared space sizes.  The read-only
3233     // and read write metaspace chunks will be allocated out of this and the
3234     // remainder is the misc code and data chunks.
3235     cds_total = FileMapInfo::shared_spaces_size();
3236     cds_total = align_size_up(cds_total, _reserve_alignment);
3237     _space_list = new VirtualSpaceList(cds_total/wordSize);
3238     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3239 
3240     if (!_space_list->initialization_succeeded()) {
3241       vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3242     }
3243 
3244 #ifdef _LP64
3245     if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3246       vm_exit_during_initialization("Unable to dump shared archive.",
3247           err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3248                   SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3249                   "klass limit: " UINT64_FORMAT, cds_total, compressed_class_space_size(),
3250                   cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3251     }
3252 
3253     // Set the compressed klass pointer base so that decoding of these pointers works
3254     // properly when creating the shared archive.
3255     assert(UseCompressedOops && UseCompressedClassPointers,
3256       "UseCompressedOops and UseCompressedClassPointers must be set");
3257     Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3258     if (TraceMetavirtualspaceAllocation && Verbose) {
3259       gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3260                              p2i(_space_list->current_virtual_space()->bottom()));
3261     }
3262 
3263     Universe::set_narrow_klass_shift(0);
3264 #endif // _LP64
3265 #endif // INCLUDE_CDS
3266   } else {
3267 #if INCLUDE_CDS
3268     // If using shared space, open the file that contains the shared space
3269     // and map in the memory before initializing the rest of metaspace (so
3270     // the addresses don't conflict)
3271     address cds_address = NULL;
3272     if (UseSharedSpaces) {
3273       FileMapInfo* mapinfo = new FileMapInfo();
3274 
3275       // Open the shared archive file, read and validate the header. If
3276       // initialization fails, shared spaces [UseSharedSpaces] are
3277       // disabled and the file is closed.
3278       // Map in spaces now also
3279       if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3280         cds_total = FileMapInfo::shared_spaces_size();
3281         cds_address = (address)mapinfo->region_base(0);
3282       } else {
3283         assert(!mapinfo->is_open() && !UseSharedSpaces,
3284                "archive file not closed or shared spaces not disabled.");
3285       }
3286     }
3287 #endif // INCLUDE_CDS
3288 #ifdef _LP64
3289     // If UseCompressedClassPointers is set then allocate the metaspace area
3290     // above the heap and above the CDS area (if it exists).
3291     if (using_class_space()) {
3292       if (UseSharedSpaces) {
3293 #if INCLUDE_CDS
3294         char* cds_end = (char*)(cds_address + cds_total);
3295         cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3296         allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3297 #endif
3298       } else {
3299         char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3300         allocate_metaspace_compressed_klass_ptrs(base, 0);
3301       }
3302     }
3303 #endif // _LP64
3304 
3305     // Initialize these before initializing the VirtualSpaceList
3306     _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3307     _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3308     // Make the first class chunk bigger than a medium chunk so it's not put
3309     // on the medium chunk list.   The next chunk will be small and progress
3310     // from there.  This size calculated by -version.
3311     _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3312                                        (CompressedClassSpaceSize/BytesPerWord)*2);
3313     _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3314     // Arbitrarily set the initial virtual space to a multiple
3315     // of the boot class loader size.
3316     size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3317     word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3318 
3319     // Initialize the list of virtual spaces.
3320     _space_list = new VirtualSpaceList(word_size);
3321     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3322 
3323     if (!_space_list->initialization_succeeded()) {
3324       vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3325     }
3326   }
3327 
3328   _tracer = new MetaspaceTracer();
3329 }
3330 
3331 void Metaspace::post_initialize() {
3332   MetaspaceGC::post_initialize();
3333 }
3334 
3335 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3336                                                size_t chunk_word_size,
3337                                                size_t chunk_bunch) {
3338   // Get a chunk from the chunk freelist
3339   Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3340   if (chunk != NULL) {
3341     return chunk;
3342   }
3343 
3344   return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3345 }
3346 
3347 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3348 
3349   assert(space_list() != NULL,
3350     "Metadata VirtualSpaceList has not been initialized");
3351   assert(chunk_manager_metadata() != NULL,
3352     "Metadata ChunkManager has not been initialized");
3353 
3354   _vsm = new SpaceManager(NonClassType, lock);
3355   if (_vsm == NULL) {
3356     return;
3357   }
3358   size_t word_size;
3359   size_t class_word_size;
3360   vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3361 
3362   if (using_class_space()) {
3363   assert(class_space_list() != NULL,
3364     "Class VirtualSpaceList has not been initialized");
3365   assert(chunk_manager_class() != NULL,
3366     "Class ChunkManager has not been initialized");
3367 
3368     // Allocate SpaceManager for classes.
3369     _class_vsm = new SpaceManager(ClassType, lock);
3370     if (_class_vsm == NULL) {
3371       return;
3372     }
3373   }
3374 
3375   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3376 
3377   // Allocate chunk for metadata objects
3378   Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3379                                                   word_size,
3380                                                   vsm()->medium_chunk_bunch());
3381   // For dumping shared archive, report error if allocation has failed.
3382   if (DumpSharedSpaces && new_chunk == NULL) {
3383     report_insufficient_metaspace(MetaspaceAux::committed_bytes() + word_size * BytesPerWord);
3384   }
3385   assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3386   if (new_chunk != NULL) {
3387     // Add to this manager's list of chunks in use and current_chunk().
3388     vsm()->add_chunk(new_chunk, true);
3389   }
3390 
3391   // Allocate chunk for class metadata objects
3392   if (using_class_space()) {
3393     Metachunk* class_chunk = get_initialization_chunk(ClassType,
3394                                                       class_word_size,
3395                                                       class_vsm()->medium_chunk_bunch());
3396     if (class_chunk != NULL) {
3397       class_vsm()->add_chunk(class_chunk, true);
3398     } else {
3399       // For dumping shared archive, report error if allocation has failed.
3400       if (DumpSharedSpaces) {
3401         report_insufficient_metaspace(MetaspaceAux::committed_bytes() + class_word_size * BytesPerWord);
3402       }
3403     }
3404   }
3405 
3406   _alloc_record_head = NULL;
3407   _alloc_record_tail = NULL;
3408 }
3409 
3410 size_t Metaspace::align_word_size_up(size_t word_size) {
3411   size_t byte_size = word_size * wordSize;
3412   return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3413 }
3414 
3415 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3416   // DumpSharedSpaces doesn't use class metadata area (yet)
3417   // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3418   if (is_class_space_allocation(mdtype)) {
3419     return  class_vsm()->allocate(word_size);
3420   } else {
3421     return  vsm()->allocate(word_size);
3422   }
3423 }
3424 
3425 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3426   size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3427   assert(delta_bytes > 0, "Must be");
3428 
3429   size_t before = 0;
3430   size_t after = 0;
3431   MetaWord* res;
3432   bool incremented;
3433 
3434   // Each thread increments the HWM at most once. Even if the thread fails to increment
3435   // the HWM, an allocation is still attempted. This is because another thread must then
3436   // have incremented the HWM and therefore the allocation might still succeed.
3437   do {
3438     incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
3439     res = allocate(word_size, mdtype);
3440   } while (!incremented && res == NULL);
3441 
3442   if (incremented) {
3443     tracer()->report_gc_threshold(before, after,
3444                                   MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3445     if (PrintGCDetails && Verbose) {
3446       gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3447           " to " SIZE_FORMAT, before, after);
3448     }
3449   }
3450 
3451   return res;
3452 }
3453 
3454 // Space allocated in the Metaspace.  This may
3455 // be across several metadata virtual spaces.
3456 char* Metaspace::bottom() const {
3457   assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3458   return (char*)vsm()->current_chunk()->bottom();
3459 }
3460 
3461 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3462   if (mdtype == ClassType) {
3463     return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3464   } else {
3465     return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
3466   }
3467 }
3468 
3469 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3470   if (mdtype == ClassType) {
3471     return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3472   } else {
3473     return vsm()->sum_free_in_chunks_in_use();
3474   }
3475 }
3476 
3477 // Space capacity in the Metaspace.  It includes
3478 // space in the list of chunks from which allocations
3479 // have been made. Don't include space in the global freelist and
3480 // in the space available in the dictionary which
3481 // is already counted in some chunk.
3482 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3483   if (mdtype == ClassType) {
3484     return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3485   } else {
3486     return vsm()->sum_capacity_in_chunks_in_use();
3487   }
3488 }
3489 
3490 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3491   return used_words_slow(mdtype) * BytesPerWord;
3492 }
3493 
3494 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3495   return capacity_words_slow(mdtype) * BytesPerWord;
3496 }
3497 
3498 size_t Metaspace::allocated_blocks_bytes() const {
3499   return vsm()->allocated_blocks_bytes() +
3500       (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
3501 }
3502 
3503 size_t Metaspace::allocated_chunks_bytes() const {
3504   return vsm()->allocated_chunks_bytes() +
3505       (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
3506 }
3507 
3508 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3509   assert(!SafepointSynchronize::is_at_safepoint()
3510          || Thread::current()->is_VM_thread(), "should be the VM thread");
3511 
3512   if (DumpSharedSpaces && PrintSharedSpaces) {
3513     record_deallocation(ptr, vsm()->get_raw_word_size(word_size));
3514   }
3515 
3516   MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3517 
3518   if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3519     // Dark matter.  Too small for dictionary.
3520 #ifdef ASSERT
3521     Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
3522 #endif
3523     return;
3524   }
3525   if (is_class && using_class_space()) {
3526     class_vsm()->deallocate(ptr, word_size);
3527   } else {
3528     vsm()->deallocate(ptr, word_size);
3529   }
3530 }
3531 
3532 
3533 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3534                               bool read_only, MetaspaceObj::Type type, TRAPS) {
3535   if (HAS_PENDING_EXCEPTION) {
3536     assert(false, "Should not allocate with exception pending");
3537     return NULL;  // caller does a CHECK_NULL too
3538   }
3539 
3540   assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3541         "ClassLoaderData::the_null_class_loader_data() should have been used.");
3542 
3543   // Allocate in metaspaces without taking out a lock, because it deadlocks
3544   // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
3545   // to revisit this for application class data sharing.
3546   if (DumpSharedSpaces) {
3547     assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3548     Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3549     MetaWord* result = space->allocate(word_size, NonClassType);
3550     if (result == NULL) {
3551       report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3552     }
3553     if (PrintSharedSpaces) {
3554       space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));
3555     }
3556 
3557     // Zero initialize.
3558     Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3559 
3560     return result;
3561   }
3562 
3563   MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3564 
3565   // Try to allocate metadata.
3566   MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3567 
3568   if (result == NULL) {
3569     tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3570 
3571     // Allocation failed.
3572     if (is_init_completed()) {
3573       // Only start a GC if the bootstrapping has completed.
3574 
3575       // Try to clean out some memory and retry.
3576       result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3577           loader_data, word_size, mdtype);
3578     }
3579   }
3580 
3581   if (result == NULL) {
3582     report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3583   }
3584 
3585   // Zero initialize.
3586   Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3587 
3588   return result;
3589 }
3590 
3591 size_t Metaspace::class_chunk_size(size_t word_size) {
3592   assert(using_class_space(), "Has to use class space");
3593   return class_vsm()->calc_chunk_size(word_size);
3594 }
3595 
3596 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3597   tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3598 
3599   // If result is still null, we are out of memory.
3600   if (Verbose && TraceMetadataChunkAllocation) {
3601     gclog_or_tty->print_cr("Metaspace allocation failed for size "
3602         SIZE_FORMAT, word_size);
3603     if (loader_data->metaspace_or_null() != NULL) {
3604       loader_data->dump(gclog_or_tty);
3605     }
3606     MetaspaceAux::dump(gclog_or_tty);
3607   }
3608 
3609   bool out_of_compressed_class_space = false;
3610   if (is_class_space_allocation(mdtype)) {
3611     Metaspace* metaspace = loader_data->metaspace_non_null();
3612     out_of_compressed_class_space =
3613       MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3614       (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3615       CompressedClassSpaceSize;
3616   }
3617 
3618   // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3619   const char* space_string = out_of_compressed_class_space ?
3620     "Compressed class space" : "Metaspace";
3621 
3622   report_java_out_of_memory(space_string);
3623 
3624   if (JvmtiExport::should_post_resource_exhausted()) {
3625     JvmtiExport::post_resource_exhausted(
3626         JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3627         space_string);
3628   }
3629 
3630   if (!is_init_completed()) {
3631     vm_exit_during_initialization("OutOfMemoryError", space_string);
3632   }
3633 
3634   if (out_of_compressed_class_space) {
3635     THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3636   } else {
3637     THROW_OOP(Universe::out_of_memory_error_metaspace());
3638   }
3639 }
3640 
3641 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3642   switch (mdtype) {
3643     case Metaspace::ClassType: return "Class";
3644     case Metaspace::NonClassType: return "Metadata";
3645     default:
3646       assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
3647       return NULL;
3648   }
3649 }
3650 
3651 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3652   assert(DumpSharedSpaces, "sanity");
3653 
3654   int byte_size = (int)word_size * HeapWordSize;
3655   AllocRecord *rec = new AllocRecord((address)ptr, type, byte_size);
3656 
3657   if (_alloc_record_head == NULL) {
3658     _alloc_record_head = _alloc_record_tail = rec;
3659   } else if (_alloc_record_tail->_ptr + _alloc_record_tail->_byte_size == (address)ptr) {
3660     _alloc_record_tail->_next = rec;
3661     _alloc_record_tail = rec;
3662   } else {
3663     // slow linear search, but this doesn't happen that often, and only when dumping
3664     for (AllocRecord *old = _alloc_record_head; old; old = old->_next) {
3665       if (old->_ptr == ptr) {
3666         assert(old->_type == MetaspaceObj::DeallocatedType, "sanity");
3667         int remain_bytes = old->_byte_size - byte_size;
3668         assert(remain_bytes >= 0, "sanity");
3669         old->_type = type;
3670 
3671         if (remain_bytes == 0) {
3672           delete(rec);
3673         } else {
3674           address remain_ptr = address(ptr) + byte_size;
3675           rec->_ptr = remain_ptr;
3676           rec->_byte_size = remain_bytes;
3677           rec->_type = MetaspaceObj::DeallocatedType;
3678           rec->_next = old->_next;
3679           old->_byte_size = byte_size;
3680           old->_next = rec;
3681         }
3682         return;
3683       }
3684     }
3685     assert(0, "reallocating a freed pointer that was not recorded");
3686   }
3687 }
3688 
3689 void Metaspace::record_deallocation(void* ptr, size_t word_size) {
3690   assert(DumpSharedSpaces, "sanity");
3691 
3692   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3693     if (rec->_ptr == ptr) {
3694       assert(rec->_byte_size == (int)word_size * HeapWordSize, "sanity");
3695       rec->_type = MetaspaceObj::DeallocatedType;
3696       return;
3697     }
3698   }
3699 
3700   assert(0, "deallocating a pointer that was not recorded");
3701 }
3702 
3703 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3704   assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3705 
3706   address last_addr = (address)bottom();
3707 
3708   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3709     address ptr = rec->_ptr;
3710     if (last_addr < ptr) {
3711       closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3712     }
3713     closure->doit(ptr, rec->_type, rec->_byte_size);
3714     last_addr = ptr + rec->_byte_size;
3715   }
3716 
3717   address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3718   if (last_addr < top) {
3719     closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3720   }
3721 }
3722 
3723 void Metaspace::purge(MetadataType mdtype) {
3724   get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3725 }
3726 
3727 void Metaspace::purge() {
3728   MutexLockerEx cl(SpaceManager::expand_lock(),
3729                    Mutex::_no_safepoint_check_flag);
3730   purge(NonClassType);
3731   if (using_class_space()) {
3732     purge(ClassType);
3733   }
3734 }
3735 
3736 void Metaspace::print_on(outputStream* out) const {
3737   // Print both class virtual space counts and metaspace.
3738   if (Verbose) {
3739     vsm()->print_on(out);
3740     if (using_class_space()) {
3741       class_vsm()->print_on(out);
3742     }
3743   }
3744 }
3745 
3746 bool Metaspace::contains(const void* ptr) {
3747   if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3748     return true;
3749   }
3750 
3751   if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3752      return true;
3753   }
3754 
3755   return get_space_list(NonClassType)->contains(ptr);
3756 }
3757 
3758 void Metaspace::verify() {
3759   vsm()->verify();
3760   if (using_class_space()) {
3761     class_vsm()->verify();
3762   }
3763 }
3764 
3765 void Metaspace::dump(outputStream* const out) const {
3766   out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
3767   vsm()->dump(out);
3768   if (using_class_space()) {
3769     out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
3770     class_vsm()->dump(out);
3771   }
3772 }
3773 
3774 /////////////// Unit tests ///////////////
3775 
3776 #ifndef PRODUCT
3777 
3778 class TestMetaspaceAuxTest : AllStatic {
3779  public:
3780   static void test_reserved() {
3781     size_t reserved = MetaspaceAux::reserved_bytes();
3782 
3783     assert(reserved > 0, "assert");
3784 
3785     size_t committed  = MetaspaceAux::committed_bytes();
3786     assert(committed <= reserved, "assert");
3787 
3788     size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3789     assert(reserved_metadata > 0, "assert");
3790     assert(reserved_metadata <= reserved, "assert");
3791 
3792     if (UseCompressedClassPointers) {
3793       size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3794       assert(reserved_class > 0, "assert");
3795       assert(reserved_class < reserved, "assert");
3796     }
3797   }
3798 
3799   static void test_committed() {
3800     size_t committed = MetaspaceAux::committed_bytes();
3801 
3802     assert(committed > 0, "assert");
3803 
3804     size_t reserved  = MetaspaceAux::reserved_bytes();
3805     assert(committed <= reserved, "assert");
3806 
3807     size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3808     assert(committed_metadata > 0, "assert");
3809     assert(committed_metadata <= committed, "assert");
3810 
3811     if (UseCompressedClassPointers) {
3812       size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3813       assert(committed_class > 0, "assert");
3814       assert(committed_class < committed, "assert");
3815     }
3816   }
3817 
3818   static void test_virtual_space_list_large_chunk() {
3819     VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3820     MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3821     // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3822     // vm_allocation_granularity aligned on Windows.
3823     size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3824     large_size += (os::vm_page_size()/BytesPerWord);
3825     vs_list->get_new_chunk(large_size, large_size, 0);
3826   }
3827 
3828   static void test() {
3829     test_reserved();
3830     test_committed();
3831     test_virtual_space_list_large_chunk();
3832   }
3833 };
3834 
3835 void TestMetaspaceAux_test() {
3836   TestMetaspaceAuxTest::test();
3837 }
3838 
3839 class TestVirtualSpaceNodeTest {
3840   static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3841                                           size_t& num_small_chunks,
3842                                           size_t& num_specialized_chunks) {
3843     num_medium_chunks = words_left / MediumChunk;
3844     words_left = words_left % MediumChunk;
3845 
3846     num_small_chunks = words_left / SmallChunk;
3847     words_left = words_left % SmallChunk;
3848     // how many specialized chunks can we get?
3849     num_specialized_chunks = words_left / SpecializedChunk;
3850     assert(words_left % SpecializedChunk == 0, "should be nothing left");
3851   }
3852 
3853  public:
3854   static void test() {
3855     MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3856     const size_t vsn_test_size_words = MediumChunk  * 4;
3857     const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3858 
3859     // The chunk sizes must be multiples of eachother, or this will fail
3860     STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3861     STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3862 
3863     { // No committed memory in VSN
3864       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3865       VirtualSpaceNode vsn(vsn_test_size_bytes);
3866       vsn.initialize();
3867       vsn.retire(&cm);
3868       assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3869     }
3870 
3871     { // All of VSN is committed, half is used by chunks
3872       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3873       VirtualSpaceNode vsn(vsn_test_size_bytes);
3874       vsn.initialize();
3875       vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3876       vsn.get_chunk_vs(MediumChunk);
3877       vsn.get_chunk_vs(MediumChunk);
3878       vsn.retire(&cm);
3879       assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3880       assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3881     }
3882 
3883     const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3884     // This doesn't work for systems with vm_page_size >= 16K.
3885     if (page_chunks < MediumChunk) {
3886       // 4 pages of VSN is committed, some is used by chunks
3887       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3888       VirtualSpaceNode vsn(vsn_test_size_bytes);
3889 
3890       vsn.initialize();
3891       vsn.expand_by(page_chunks, page_chunks);
3892       vsn.get_chunk_vs(SmallChunk);
3893       vsn.get_chunk_vs(SpecializedChunk);
3894       vsn.retire(&cm);
3895 
3896       // committed - used = words left to retire
3897       const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3898 
3899       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3900       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3901 
3902       assert(num_medium_chunks == 0, "should not get any medium chunks");
3903       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3904       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3905     }
3906 
3907     { // Half of VSN is committed, a humongous chunk is used
3908       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3909       VirtualSpaceNode vsn(vsn_test_size_bytes);
3910       vsn.initialize();
3911       vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3912       vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3913       vsn.retire(&cm);
3914 
3915       const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3916       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3917       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3918 
3919       assert(num_medium_chunks == 0, "should not get any medium chunks");
3920       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3921       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3922     }
3923 
3924   }
3925 
3926 #define assert_is_available_positive(word_size) \
3927   assert(vsn.is_available(word_size), \
3928     err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
3929             "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3930             (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end())));
3931 
3932 #define assert_is_available_negative(word_size) \
3933   assert(!vsn.is_available(word_size), \
3934     err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
3935             "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3936             (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end())));
3937 
3938   static void test_is_available_positive() {
3939     // Reserve some memory.
3940     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3941     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3942 
3943     // Commit some memory.
3944     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3945     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3946     assert(expanded, "Failed to commit");
3947 
3948     // Check that is_available accepts the committed size.
3949     assert_is_available_positive(commit_word_size);
3950 
3951     // Check that is_available accepts half the committed size.
3952     size_t expand_word_size = commit_word_size / 2;
3953     assert_is_available_positive(expand_word_size);
3954   }
3955 
3956   static void test_is_available_negative() {
3957     // Reserve some memory.
3958     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3959     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3960 
3961     // Commit some memory.
3962     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3963     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3964     assert(expanded, "Failed to commit");
3965 
3966     // Check that is_available doesn't accept a too large size.
3967     size_t two_times_commit_word_size = commit_word_size * 2;
3968     assert_is_available_negative(two_times_commit_word_size);
3969   }
3970 
3971   static void test_is_available_overflow() {
3972     // Reserve some memory.
3973     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3974     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3975 
3976     // Commit some memory.
3977     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3978     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3979     assert(expanded, "Failed to commit");
3980 
3981     // Calculate a size that will overflow the virtual space size.
3982     void* virtual_space_max = (void*)(uintptr_t)-1;
3983     size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
3984     size_t overflow_size = bottom_to_max + BytesPerWord;
3985     size_t overflow_word_size = overflow_size / BytesPerWord;
3986 
3987     // Check that is_available can handle the overflow.
3988     assert_is_available_negative(overflow_word_size);
3989   }
3990 
3991   static void test_is_available() {
3992     TestVirtualSpaceNodeTest::test_is_available_positive();
3993     TestVirtualSpaceNodeTest::test_is_available_negative();
3994     TestVirtualSpaceNodeTest::test_is_available_overflow();
3995   }
3996 };
3997 
3998 void TestVirtualSpaceNode_test() {
3999   TestVirtualSpaceNodeTest::test();
4000   TestVirtualSpaceNodeTest::test_is_available();
4001 }
4002 #endif