1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "memory/space.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/oop.inline2.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "utilities/vmError.hpp"
  53 #include "utilities/workgroup.hpp"
  54 #include "utilities/macros.hpp"
  55 #if INCLUDE_ALL_GCS
  56 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  57 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  58 #endif // INCLUDE_ALL_GCS
  59 
  60 GenCollectedHeap* GenCollectedHeap::_gch;
  61 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  62 
  63 // The set of potentially parallel tasks in root scanning.
  64 enum GCH_strong_roots_tasks {
  65   // We probably want to parallelize both of these internally, but for now...
  66   GCH_PS_younger_gens,
  67   // Leave this one last.
  68   GCH_PS_NumElements
  69 };
  70 
  71 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  72   SharedHeap(policy),
  73   _rem_set(NULL),
  74   _gen_policy(policy),
  75   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_roots_tasks == NULL ||
  79       !_gen_process_roots_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   int i;
  89   _n_gens = gen_policy()->number_of_generations();
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t gen_alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(gen_alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   ReservedSpace heap_rs;
 112 
 113   size_t heap_alignment = collector_policy()->heap_alignment();
 114 
 115   heap_address = allocate(heap_alignment, &heap_rs);
 116 
 117   if (!heap_rs.is_reserved()) {
 118     vm_shutdown_during_initialization(
 119       "Could not reserve enough space for object heap");
 120     return JNI_ENOMEM;
 121   }
 122 
 123   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 124 
 125   _rem_set = collector_policy()->create_rem_set(reserved_region());
 126   set_barrier_set(rem_set()->bs());
 127 
 128   _gch = this;
 129 
 130   for (i = 0; i < _n_gens; i++) {
 131     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 132     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 133     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 134   }
 135   clear_incremental_collection_failed();
 136 
 137 #if INCLUDE_ALL_GCS
 138   // If we are running CMS, create the collector responsible
 139   // for collecting the CMS generations.
 140   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 141     bool success = create_cms_collector();
 142     if (!success) return JNI_ENOMEM;
 143   }
 144 #endif // INCLUDE_ALL_GCS
 145 
 146   return JNI_OK;
 147 }
 148 
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 153     "the maximum representable size";
 154 
 155   // Now figure out the total size.
 156   size_t total_reserved = 0;
 157   const size_t pageSize = UseLargePages ?
 158       os::large_page_size() : os::vm_page_size();
 159 
 160   assert(alignment % pageSize == 0, "Must be");
 161 
 162   for (int i = 0; i < _n_gens; i++) {
 163     total_reserved += _gen_specs[i]->max_size();
 164     if (total_reserved < _gen_specs[i]->max_size()) {
 165       vm_exit_during_initialization(overflow_msg);
 166     }
 167   }
 168   assert(total_reserved % alignment == 0,
 169          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 170                  SIZE_FORMAT, total_reserved, alignment));
 171 
 172   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 173   return heap_rs->base();
 174 }
 175 
 176 
 177 void GenCollectedHeap::post_initialize() {
 178   SharedHeap::post_initialize();
 179   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 180   guarantee(policy->is_generation_policy(), "Illegal policy type");
 181   assert((get_gen(0)->kind() == Generation::DefNew) ||
 182          (get_gen(0)->kind() == Generation::ParNew),
 183     "Wrong youngest generation type");
 184   DefNewGeneration* def_new_gen = (DefNewGeneration*)get_gen(0);
 185 
 186   Generation* old_gen = get_gen(1);
 187   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 188          old_gen->kind() == Generation::MarkSweepCompact,
 189     "Wrong generation kind");
 190 
 191   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 192                                  old_gen->capacity(),
 193                                  def_new_gen->from()->capacity());
 194   policy->initialize_gc_policy_counters();
 195 }
 196 
 197 void GenCollectedHeap::ref_processing_init() {
 198   SharedHeap::ref_processing_init();
 199   for (int i = 0; i < _n_gens; i++) {
 200     _gens[i]->ref_processor_init();
 201   }
 202 }
 203 
 204 size_t GenCollectedHeap::capacity() const {
 205   size_t res = 0;
 206   for (int i = 0; i < _n_gens; i++) {
 207     res += _gens[i]->capacity();
 208   }
 209   return res;
 210 }
 211 
 212 size_t GenCollectedHeap::used() const {
 213   size_t res = 0;
 214   for (int i = 0; i < _n_gens; i++) {
 215     res += _gens[i]->used();
 216   }
 217   return res;
 218 }
 219 
 220 // Save the "used_region" for generations level and lower.
 221 void GenCollectedHeap::save_used_regions(int level) {
 222   assert(level < _n_gens, "Illegal level parameter");
 223   for (int i = level; i >= 0; i--) {
 224     _gens[i]->save_used_region();
 225   }
 226 }
 227 
 228 size_t GenCollectedHeap::max_capacity() const {
 229   size_t res = 0;
 230   for (int i = 0; i < _n_gens; i++) {
 231     res += _gens[i]->max_capacity();
 232   }
 233   return res;
 234 }
 235 
 236 // Update the _full_collections_completed counter
 237 // at the end of a stop-world full GC.
 238 unsigned int GenCollectedHeap::update_full_collections_completed() {
 239   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 240   assert(_full_collections_completed <= _total_full_collections,
 241          "Can't complete more collections than were started");
 242   _full_collections_completed = _total_full_collections;
 243   ml.notify_all();
 244   return _full_collections_completed;
 245 }
 246 
 247 // Update the _full_collections_completed counter, as appropriate,
 248 // at the end of a concurrent GC cycle. Note the conditional update
 249 // below to allow this method to be called by a concurrent collector
 250 // without synchronizing in any manner with the VM thread (which
 251 // may already have initiated a STW full collection "concurrently").
 252 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 253   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 254   assert((_full_collections_completed <= _total_full_collections) &&
 255          (count <= _total_full_collections),
 256          "Can't complete more collections than were started");
 257   if (count > _full_collections_completed) {
 258     _full_collections_completed = count;
 259     ml.notify_all();
 260   }
 261   return _full_collections_completed;
 262 }
 263 
 264 
 265 #ifndef PRODUCT
 266 // Override of memory state checking method in CollectedHeap:
 267 // Some collectors (CMS for example) can't have badHeapWordVal written
 268 // in the first two words of an object. (For instance , in the case of
 269 // CMS these words hold state used to synchronize between certain
 270 // (concurrent) GC steps and direct allocating mutators.)
 271 // The skip_header_HeapWords() method below, allows us to skip
 272 // over the requisite number of HeapWord's. Note that (for
 273 // generational collectors) this means that those many words are
 274 // skipped in each object, irrespective of the generation in which
 275 // that object lives. The resultant loss of precision seems to be
 276 // harmless and the pain of avoiding that imprecision appears somewhat
 277 // higher than we are prepared to pay for such rudimentary debugging
 278 // support.
 279 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 280                                                          size_t size) {
 281   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 282     // We are asked to check a size in HeapWords,
 283     // but the memory is mangled in juint words.
 284     juint* start = (juint*) (addr + skip_header_HeapWords());
 285     juint* end   = (juint*) (addr + size);
 286     for (juint* slot = start; slot < end; slot += 1) {
 287       assert(*slot == badHeapWordVal,
 288              "Found non badHeapWordValue in pre-allocation check");
 289     }
 290   }
 291 }
 292 #endif
 293 
 294 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 295                                                bool is_tlab,
 296                                                bool first_only) {
 297   HeapWord* res;
 298   for (int i = 0; i < _n_gens; i++) {
 299     if (_gens[i]->should_allocate(size, is_tlab)) {
 300       res = _gens[i]->allocate(size, is_tlab);
 301       if (res != NULL) return res;
 302       else if (first_only) break;
 303     }
 304   }
 305   // Otherwise...
 306   return NULL;
 307 }
 308 
 309 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 310                                          bool* gc_overhead_limit_was_exceeded) {
 311   return collector_policy()->mem_allocate_work(size,
 312                                                false /* is_tlab */,
 313                                                gc_overhead_limit_was_exceeded);
 314 }
 315 
 316 bool GenCollectedHeap::must_clear_all_soft_refs() {
 317   return _gc_cause == GCCause::_last_ditch_collection;
 318 }
 319 
 320 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 321   return UseConcMarkSweepGC &&
 322          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 323           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 324 }
 325 
 326 void GenCollectedHeap::do_collection(bool  full,
 327                                      bool   clear_all_soft_refs,
 328                                      size_t size,
 329                                      bool   is_tlab,
 330                                      int    max_level) {
 331   bool prepared_for_verification = false;
 332   ResourceMark rm;
 333   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 334 
 335   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 336   assert(my_thread->is_VM_thread() ||
 337          my_thread->is_ConcurrentGC_thread(),
 338          "incorrect thread type capability");
 339   assert(Heap_lock->is_locked(),
 340          "the requesting thread should have the Heap_lock");
 341   guarantee(!is_gc_active(), "collection is not reentrant");
 342   assert(max_level < n_gens(), "sanity check");
 343 
 344   if (GC_locker::check_active_before_gc()) {
 345     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 346   }
 347 
 348   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 349                           collector_policy()->should_clear_all_soft_refs();
 350 
 351   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 352 
 353   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 354 
 355   print_heap_before_gc();
 356 
 357   {
 358     FlagSetting fl(_is_gc_active, true);
 359 
 360     bool complete = full && (max_level == (n_gens()-1));
 361     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 362     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 363     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 364     // so we can assume here that the next GC id is what we want.
 365     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 366 
 367     gc_prologue(complete);
 368     increment_total_collections(complete);
 369 
 370     size_t gch_prev_used = used();
 371 
 372     int starting_level = 0;
 373     if (full) {
 374       // Search for the oldest generation which will collect all younger
 375       // generations, and start collection loop there.
 376       for (int i = max_level; i >= 0; i--) {
 377         if (_gens[i]->full_collects_younger_generations()) {
 378           starting_level = i;
 379           break;
 380         }
 381       }
 382     }
 383 
 384     bool must_restore_marks_for_biased_locking = false;
 385 
 386     int max_level_collected = starting_level;
 387     for (int i = starting_level; i <= max_level; i++) {
 388       if (_gens[i]->should_collect(full, size, is_tlab)) {
 389         if (i == n_gens() - 1) {  // a major collection is to happen
 390           if (!complete) {
 391             // The full_collections increment was missed above.
 392             increment_total_full_collections();
 393           }
 394           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 395         }
 396         // Timer for individual generations. Last argument is false: no CR
 397         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 398         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 399         // so we can assume here that the next GC id is what we want.
 400         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 401         TraceCollectorStats tcs(_gens[i]->counters());
 402         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 403 
 404         size_t prev_used = _gens[i]->used();
 405         _gens[i]->stat_record()->invocations++;
 406         _gens[i]->stat_record()->accumulated_time.start();
 407 
 408         // Must be done anew before each collection because
 409         // a previous collection will do mangling and will
 410         // change top of some spaces.
 411         record_gen_tops_before_GC();
 412 
 413         if (PrintGC && Verbose) {
 414           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 415                      i,
 416                      _gens[i]->stat_record()->invocations,
 417                      size*HeapWordSize);
 418         }
 419 
 420         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 421             total_collections() >= VerifyGCStartAt) {
 422           HandleMark hm;  // Discard invalid handles created during verification
 423           if (!prepared_for_verification) {
 424             prepare_for_verify();
 425             prepared_for_verification = true;
 426           }
 427           Universe::verify(" VerifyBeforeGC:");
 428         }
 429         COMPILER2_PRESENT(DerivedPointerTable::clear());
 430 
 431         if (!must_restore_marks_for_biased_locking &&
 432             _gens[i]->performs_in_place_marking()) {
 433           // We perform this mark word preservation work lazily
 434           // because it's only at this point that we know whether we
 435           // absolutely have to do it; we want to avoid doing it for
 436           // scavenge-only collections where it's unnecessary
 437           must_restore_marks_for_biased_locking = true;
 438           BiasedLocking::preserve_marks();
 439         }
 440 
 441         // Do collection work
 442         {
 443           // Note on ref discovery: For what appear to be historical reasons,
 444           // GCH enables and disabled (by enqueing) refs discovery.
 445           // In the future this should be moved into the generation's
 446           // collect method so that ref discovery and enqueueing concerns
 447           // are local to a generation. The collect method could return
 448           // an appropriate indication in the case that notification on
 449           // the ref lock was needed. This will make the treatment of
 450           // weak refs more uniform (and indeed remove such concerns
 451           // from GCH). XXX
 452 
 453           HandleMark hm;  // Discard invalid handles created during gc
 454           save_marks();   // save marks for all gens
 455           // We want to discover references, but not process them yet.
 456           // This mode is disabled in process_discovered_references if the
 457           // generation does some collection work, or in
 458           // enqueue_discovered_references if the generation returns
 459           // without doing any work.
 460           ReferenceProcessor* rp = _gens[i]->ref_processor();
 461           // If the discovery of ("weak") refs in this generation is
 462           // atomic wrt other collectors in this configuration, we
 463           // are guaranteed to have empty discovered ref lists.
 464           if (rp->discovery_is_atomic()) {
 465             rp->enable_discovery();
 466             rp->setup_policy(do_clear_all_soft_refs);
 467           } else {
 468             // collect() below will enable discovery as appropriate
 469           }
 470           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 471           if (!rp->enqueuing_is_done()) {
 472             rp->enqueue_discovered_references();
 473           } else {
 474             rp->set_enqueuing_is_done(false);
 475           }
 476           rp->verify_no_references_recorded();
 477         }
 478         max_level_collected = i;
 479 
 480         // Determine if allocation request was met.
 481         if (size > 0) {
 482           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 483             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 484               size = 0;
 485             }
 486           }
 487         }
 488 
 489         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 490 
 491         _gens[i]->stat_record()->accumulated_time.stop();
 492 
 493         update_gc_stats(i, full);
 494 
 495         if (VerifyAfterGC && i >= VerifyGCLevel &&
 496             total_collections() >= VerifyGCStartAt) {
 497           HandleMark hm;  // Discard invalid handles created during verification
 498           Universe::verify(" VerifyAfterGC:");
 499         }
 500 
 501         if (PrintGCDetails) {
 502           gclog_or_tty->print(":");
 503           _gens[i]->print_heap_change(prev_used);
 504         }
 505       }
 506     }
 507 
 508     // Update "complete" boolean wrt what actually transpired --
 509     // for instance, a promotion failure could have led to
 510     // a whole heap collection.
 511     complete = complete || (max_level_collected == n_gens() - 1);
 512 
 513     if (complete) { // We did a "major" collection
 514       // FIXME: See comment at pre_full_gc_dump call
 515       post_full_gc_dump(NULL);   // do any post full gc dumps
 516     }
 517 
 518     if (PrintGCDetails) {
 519       print_heap_change(gch_prev_used);
 520 
 521       // Print metaspace info for full GC with PrintGCDetails flag.
 522       if (complete) {
 523         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 524       }
 525     }
 526 
 527     for (int j = max_level_collected; j >= 0; j -= 1) {
 528       // Adjust generation sizes.
 529       _gens[j]->compute_new_size();
 530     }
 531 
 532     if (complete) {
 533       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 534       ClassLoaderDataGraph::purge();
 535       MetaspaceAux::verify_metrics();
 536       // Resize the metaspace capacity after full collections
 537       MetaspaceGC::compute_new_size();
 538       update_full_collections_completed();
 539     }
 540 
 541     // Track memory usage and detect low memory after GC finishes
 542     MemoryService::track_memory_usage();
 543 
 544     gc_epilogue(complete);
 545 
 546     if (must_restore_marks_for_biased_locking) {
 547       BiasedLocking::restore_marks();
 548     }
 549   }
 550 
 551   print_heap_after_gc();
 552 
 553 #ifdef TRACESPINNING
 554   ParallelTaskTerminator::print_termination_counts();
 555 #endif
 556 }
 557 
 558 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 559   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 560 }
 561 
 562 void GenCollectedHeap::set_par_threads(uint t) {
 563   SharedHeap::set_par_threads(t);
 564   _gen_process_roots_tasks->set_n_threads(t);
 565 }
 566 
 567 void GenCollectedHeap::
 568 gen_process_roots(int level,
 569                   bool younger_gens_as_roots,
 570                   bool activate_scope,
 571                   SharedHeap::ScanningOption so,
 572                   OopsInGenClosure* not_older_gens,
 573                   OopsInGenClosure* weak_roots,
 574                   OopsInGenClosure* older_gens,
 575                   CLDClosure* cld_closure,
 576                   CLDClosure* weak_cld_closure,
 577                   CodeBlobClosure* code_closure) {
 578 
 579   // General roots.
 580   SharedHeap::process_roots(activate_scope, so,
 581                             not_older_gens, weak_roots,
 582                             cld_closure, weak_cld_closure,
 583                             code_closure);
 584 
 585   if (younger_gens_as_roots) {
 586     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 587       for (int i = 0; i < level; i++) {
 588         not_older_gens->set_generation(_gens[i]);
 589         _gens[i]->oop_iterate(not_older_gens);
 590       }
 591       not_older_gens->reset_generation();
 592     }
 593   }
 594   // When collection is parallel, all threads get to cooperate to do
 595   // older-gen scanning.
 596   for (int i = level+1; i < _n_gens; i++) {
 597     older_gens->set_generation(_gens[i]);
 598     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 599     older_gens->reset_generation();
 600   }
 601 
 602   _gen_process_roots_tasks->all_tasks_completed();
 603 }
 604 
 605 void GenCollectedHeap::
 606 gen_process_roots(int level,
 607                   bool younger_gens_as_roots,
 608                   bool activate_scope,
 609                   SharedHeap::ScanningOption so,
 610                   bool only_strong_roots,
 611                   OopsInGenClosure* not_older_gens,
 612                   OopsInGenClosure* older_gens,
 613                   CLDClosure* cld_closure) {
 614 
 615   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 616 
 617   bool is_moving_collection = false;
 618   if (level == 0 || is_adjust_phase) {
 619     // young collections are always moving
 620     is_moving_collection = true;
 621   }
 622 
 623   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 624   CodeBlobClosure* code_closure = &mark_code_closure;
 625 
 626   gen_process_roots(level,
 627                     younger_gens_as_roots,
 628                     activate_scope, so,
 629                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
 630                     older_gens,
 631                     cld_closure, only_strong_roots ? NULL : cld_closure,
 632                     code_closure);
 633 
 634 }
 635 
 636 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 637   SharedHeap::process_weak_roots(root_closure);
 638   // "Local" "weak" refs
 639   for (int i = 0; i < _n_gens; i++) {
 640     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 641   }
 642 }
 643 
 644 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 645 void GenCollectedHeap::                                                 \
 646 oop_since_save_marks_iterate(int level,                                 \
 647                              OopClosureType* cur,                       \
 648                              OopClosureType* older) {                   \
 649   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 650   for (int i = level+1; i < n_gens(); i++) {                            \
 651     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 652   }                                                                     \
 653 }
 654 
 655 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 656 
 657 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 658 
 659 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 660   for (int i = level; i < _n_gens; i++) {
 661     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 662   }
 663   return true;
 664 }
 665 
 666 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 667   return _gens[0]->supports_inline_contig_alloc();
 668 }
 669 
 670 HeapWord** GenCollectedHeap::top_addr() const {
 671   return _gens[0]->top_addr();
 672 }
 673 
 674 HeapWord** GenCollectedHeap::end_addr() const {
 675   return _gens[0]->end_addr();
 676 }
 677 
 678 // public collection interfaces
 679 
 680 void GenCollectedHeap::collect(GCCause::Cause cause) {
 681   if (should_do_concurrent_full_gc(cause)) {
 682 #if INCLUDE_ALL_GCS
 683     // mostly concurrent full collection
 684     collect_mostly_concurrent(cause);
 685 #else  // INCLUDE_ALL_GCS
 686     ShouldNotReachHere();
 687 #endif // INCLUDE_ALL_GCS
 688   } else if (cause == GCCause::_wb_young_gc) {
 689     // minor collection for WhiteBox API
 690     collect(cause, 0);
 691   } else {
 692 #ifdef ASSERT
 693   if (cause == GCCause::_scavenge_alot) {
 694     // minor collection only
 695     collect(cause, 0);
 696   } else {
 697     // Stop-the-world full collection
 698     collect(cause, n_gens() - 1);
 699   }
 700 #else
 701     // Stop-the-world full collection
 702     collect(cause, n_gens() - 1);
 703 #endif
 704   }
 705 }
 706 
 707 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 708   // The caller doesn't have the Heap_lock
 709   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 710   MutexLocker ml(Heap_lock);
 711   collect_locked(cause, max_level);
 712 }
 713 
 714 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 715   // The caller has the Heap_lock
 716   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 717   collect_locked(cause, n_gens() - 1);
 718 }
 719 
 720 // this is the private collection interface
 721 // The Heap_lock is expected to be held on entry.
 722 
 723 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 724   // Read the GC count while holding the Heap_lock
 725   unsigned int gc_count_before      = total_collections();
 726   unsigned int full_gc_count_before = total_full_collections();
 727   {
 728     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 729     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 730                          cause, max_level);
 731     VMThread::execute(&op);
 732   }
 733 }
 734 
 735 #if INCLUDE_ALL_GCS
 736 bool GenCollectedHeap::create_cms_collector() {
 737 
 738   assert(_gens[1]->kind() == Generation::ConcurrentMarkSweep,
 739          "Unexpected generation kinds");
 740   // Skip two header words in the block content verification
 741   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 742   CMSCollector* collector = new CMSCollector(
 743     (ConcurrentMarkSweepGeneration*)_gens[1],
 744     _rem_set->as_CardTableRS(),
 745     (ConcurrentMarkSweepPolicy*) collector_policy());
 746 
 747   if (collector == NULL || !collector->completed_initialization()) {
 748     if (collector) {
 749       delete collector;  // Be nice in embedded situation
 750     }
 751     vm_shutdown_during_initialization("Could not create CMS collector");
 752     return false;
 753   }
 754   return true;  // success
 755 }
 756 
 757 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 758   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 759 
 760   MutexLocker ml(Heap_lock);
 761   // Read the GC counts while holding the Heap_lock
 762   unsigned int full_gc_count_before = total_full_collections();
 763   unsigned int gc_count_before      = total_collections();
 764   {
 765     MutexUnlocker mu(Heap_lock);
 766     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 767     VMThread::execute(&op);
 768   }
 769 }
 770 #endif // INCLUDE_ALL_GCS
 771 
 772 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 773    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 774 }
 775 
 776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 777                                           int max_level) {
 778   int local_max_level;
 779   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 780       gc_cause() == GCCause::_gc_locker) {
 781     local_max_level = 0;
 782   } else {
 783     local_max_level = max_level;
 784   }
 785 
 786   do_collection(true                 /* full */,
 787                 clear_all_soft_refs  /* clear_all_soft_refs */,
 788                 0                    /* size */,
 789                 false                /* is_tlab */,
 790                 local_max_level      /* max_level */);
 791   // Hack XXX FIX ME !!!
 792   // A scavenge may not have been attempted, or may have
 793   // been attempted and failed, because the old gen was too full
 794   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 795       incremental_collection_will_fail(false /* don't consult_young */)) {
 796     if (PrintGCDetails) {
 797       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 798                              "because scavenge failed");
 799     }
 800     // This time allow the old gen to be collected as well
 801     do_collection(true                 /* full */,
 802                   clear_all_soft_refs  /* clear_all_soft_refs */,
 803                   0                    /* size */,
 804                   false                /* is_tlab */,
 805                   n_gens() - 1         /* max_level */);
 806   }
 807 }
 808 
 809 bool GenCollectedHeap::is_in_young(oop p) {
 810   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 811   assert(result == _gens[0]->is_in_reserved(p),
 812          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 813   return result;
 814 }
 815 
 816 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 817 bool GenCollectedHeap::is_in(const void* p) const {
 818   #ifndef ASSERT
 819   guarantee(VerifyBeforeGC      ||
 820             VerifyDuringGC      ||
 821             VerifyBeforeExit    ||
 822             VerifyDuringStartup ||
 823             PrintAssembly       ||
 824             tty->count() != 0   ||   // already printing
 825             VerifyAfterGC       ||
 826     VMError::fatal_error_in_progress(), "too expensive");
 827 
 828   #endif
 829   // This might be sped up with a cache of the last generation that
 830   // answered yes.
 831   for (int i = 0; i < _n_gens; i++) {
 832     if (_gens[i]->is_in(p)) return true;
 833   }
 834   // Otherwise...
 835   return false;
 836 }
 837 
 838 #ifdef ASSERT
 839 // Don't implement this by using is_in_young().  This method is used
 840 // in some cases to check that is_in_young() is correct.
 841 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 842   assert(is_in_reserved(p) || p == NULL,
 843     "Does not work if address is non-null and outside of the heap");
 844   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 845 }
 846 #endif
 847 
 848 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 849   for (int i = 0; i < _n_gens; i++) {
 850     _gens[i]->oop_iterate(cl);
 851   }
 852 }
 853 
 854 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 855   for (int i = 0; i < _n_gens; i++) {
 856     _gens[i]->object_iterate(cl);
 857   }
 858 }
 859 
 860 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 861   for (int i = 0; i < _n_gens; i++) {
 862     _gens[i]->safe_object_iterate(cl);
 863   }
 864 }
 865 
 866 Space* GenCollectedHeap::space_containing(const void* addr) const {
 867   for (int i = 0; i < _n_gens; i++) {
 868     Space* res = _gens[i]->space_containing(addr);
 869     if (res != NULL) return res;
 870   }
 871   // Otherwise...
 872   assert(false, "Could not find containing space");
 873   return NULL;
 874 }
 875 
 876 
 877 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 878   assert(is_in_reserved(addr), "block_start of address outside of heap");
 879   for (int i = 0; i < _n_gens; i++) {
 880     if (_gens[i]->is_in_reserved(addr)) {
 881       assert(_gens[i]->is_in(addr),
 882              "addr should be in allocated part of generation");
 883       return _gens[i]->block_start(addr);
 884     }
 885   }
 886   assert(false, "Some generation should contain the address");
 887   return NULL;
 888 }
 889 
 890 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 891   assert(is_in_reserved(addr), "block_size of address outside of heap");
 892   for (int i = 0; i < _n_gens; i++) {
 893     if (_gens[i]->is_in_reserved(addr)) {
 894       assert(_gens[i]->is_in(addr),
 895              "addr should be in allocated part of generation");
 896       return _gens[i]->block_size(addr);
 897     }
 898   }
 899   assert(false, "Some generation should contain the address");
 900   return 0;
 901 }
 902 
 903 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 904   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 905   assert(block_start(addr) == addr, "addr must be a block start");
 906   for (int i = 0; i < _n_gens; i++) {
 907     if (_gens[i]->is_in_reserved(addr)) {
 908       return _gens[i]->block_is_obj(addr);
 909     }
 910   }
 911   assert(false, "Some generation should contain the address");
 912   return false;
 913 }
 914 
 915 bool GenCollectedHeap::supports_tlab_allocation() const {
 916   for (int i = 0; i < _n_gens; i += 1) {
 917     if (_gens[i]->supports_tlab_allocation()) {
 918       return true;
 919     }
 920   }
 921   return false;
 922 }
 923 
 924 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 925   size_t result = 0;
 926   for (int i = 0; i < _n_gens; i += 1) {
 927     if (_gens[i]->supports_tlab_allocation()) {
 928       result += _gens[i]->tlab_capacity();
 929     }
 930   }
 931   return result;
 932 }
 933 
 934 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 935   size_t result = 0;
 936   for (int i = 0; i < _n_gens; i += 1) {
 937     if (_gens[i]->supports_tlab_allocation()) {
 938       result += _gens[i]->tlab_used();
 939     }
 940   }
 941   return result;
 942 }
 943 
 944 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 945   size_t result = 0;
 946   for (int i = 0; i < _n_gens; i += 1) {
 947     if (_gens[i]->supports_tlab_allocation()) {
 948       result += _gens[i]->unsafe_max_tlab_alloc();
 949     }
 950   }
 951   return result;
 952 }
 953 
 954 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 955   bool gc_overhead_limit_was_exceeded;
 956   return collector_policy()->mem_allocate_work(size /* size */,
 957                                                true /* is_tlab */,
 958                                                &gc_overhead_limit_was_exceeded);
 959 }
 960 
 961 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 962 // from the list headed by "*prev_ptr".
 963 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 964   bool first = true;
 965   size_t min_size = 0;   // "first" makes this conceptually infinite.
 966   ScratchBlock **smallest_ptr, *smallest;
 967   ScratchBlock  *cur = *prev_ptr;
 968   while (cur) {
 969     assert(*prev_ptr == cur, "just checking");
 970     if (first || cur->num_words < min_size) {
 971       smallest_ptr = prev_ptr;
 972       smallest     = cur;
 973       min_size     = smallest->num_words;
 974       first        = false;
 975     }
 976     prev_ptr = &cur->next;
 977     cur     =  cur->next;
 978   }
 979   smallest      = *smallest_ptr;
 980   *smallest_ptr = smallest->next;
 981   return smallest;
 982 }
 983 
 984 // Sort the scratch block list headed by res into decreasing size order,
 985 // and set "res" to the result.
 986 static void sort_scratch_list(ScratchBlock*& list) {
 987   ScratchBlock* sorted = NULL;
 988   ScratchBlock* unsorted = list;
 989   while (unsorted) {
 990     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 991     smallest->next  = sorted;
 992     sorted          = smallest;
 993   }
 994   list = sorted;
 995 }
 996 
 997 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 998                                                size_t max_alloc_words) {
 999   ScratchBlock* res = NULL;
1000   for (int i = 0; i < _n_gens; i++) {
1001     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1002   }
1003   sort_scratch_list(res);
1004   return res;
1005 }
1006 
1007 void GenCollectedHeap::release_scratch() {
1008   for (int i = 0; i < _n_gens; i++) {
1009     _gens[i]->reset_scratch();
1010   }
1011 }
1012 
1013 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1014   void do_generation(Generation* gen) {
1015     gen->prepare_for_verify();
1016   }
1017 };
1018 
1019 void GenCollectedHeap::prepare_for_verify() {
1020   ensure_parsability(false);        // no need to retire TLABs
1021   GenPrepareForVerifyClosure blk;
1022   generation_iterate(&blk, false);
1023 }
1024 
1025 
1026 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1027                                           bool old_to_young) {
1028   if (old_to_young) {
1029     for (int i = _n_gens-1; i >= 0; i--) {
1030       cl->do_generation(_gens[i]);
1031     }
1032   } else {
1033     for (int i = 0; i < _n_gens; i++) {
1034       cl->do_generation(_gens[i]);
1035     }
1036   }
1037 }
1038 
1039 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1040   for (int i = 0; i < _n_gens; i++) {
1041     _gens[i]->space_iterate(cl, true);
1042   }
1043 }
1044 
1045 bool GenCollectedHeap::is_maximal_no_gc() const {
1046   for (int i = 0; i < _n_gens; i++) {
1047     if (!_gens[i]->is_maximal_no_gc()) {
1048       return false;
1049     }
1050   }
1051   return true;
1052 }
1053 
1054 void GenCollectedHeap::save_marks() {
1055   for (int i = 0; i < _n_gens; i++) {
1056     _gens[i]->save_marks();
1057   }
1058 }
1059 
1060 GenCollectedHeap* GenCollectedHeap::heap() {
1061   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1062   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1063   return _gch;
1064 }
1065 
1066 
1067 void GenCollectedHeap::prepare_for_compaction() {
1068   guarantee(_n_gens = 2, "Wrong number of generations");
1069   Generation* old_gen = _gens[1];
1070   // Start by compacting into same gen.
1071   CompactPoint cp(old_gen);
1072   old_gen->prepare_for_compaction(&cp);
1073   Generation* young_gen = _gens[0];
1074   young_gen->prepare_for_compaction(&cp);
1075 }
1076 
1077 GCStats* GenCollectedHeap::gc_stats(int level) const {
1078   return _gens[level]->gc_stats();
1079 }
1080 
1081 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1082   for (int i = _n_gens-1; i >= 0; i--) {
1083     Generation* g = _gens[i];
1084     if (!silent) {
1085       gclog_or_tty->print("%s", g->name());
1086       gclog_or_tty->print(" ");
1087     }
1088     g->verify();
1089   }
1090   if (!silent) {
1091     gclog_or_tty->print("remset ");
1092   }
1093   rem_set()->verify();
1094 }
1095 
1096 void GenCollectedHeap::print_on(outputStream* st) const {
1097   for (int i = 0; i < _n_gens; i++) {
1098     _gens[i]->print_on(st);
1099   }
1100   MetaspaceAux::print_on(st);
1101 }
1102 
1103 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1104   if (workers() != NULL) {
1105     workers()->threads_do(tc);
1106   }
1107 #if INCLUDE_ALL_GCS
1108   if (UseConcMarkSweepGC) {
1109     ConcurrentMarkSweepThread::threads_do(tc);
1110   }
1111 #endif // INCLUDE_ALL_GCS
1112 }
1113 
1114 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1115 #if INCLUDE_ALL_GCS
1116   if (UseConcMarkSweepGC) {
1117     workers()->print_worker_threads_on(st);
1118     ConcurrentMarkSweepThread::print_all_on(st);
1119   }
1120 #endif // INCLUDE_ALL_GCS
1121 }
1122 
1123 void GenCollectedHeap::print_on_error(outputStream* st) const {
1124   this->CollectedHeap::print_on_error(st);
1125 
1126 #if INCLUDE_ALL_GCS
1127   if (UseConcMarkSweepGC) {
1128     st->cr();
1129     CMSCollector::print_on_error(st);
1130   }
1131 #endif // INCLUDE_ALL_GCS
1132 }
1133 
1134 void GenCollectedHeap::print_tracing_info() const {
1135   if (TraceYoungGenTime) {
1136     get_gen(0)->print_summary_info();
1137   }
1138   if (TraceOldGenTime) {
1139     get_gen(1)->print_summary_info();
1140   }
1141 }
1142 
1143 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1144   if (PrintGCDetails && Verbose) {
1145     gclog_or_tty->print(" "  SIZE_FORMAT
1146                         "->" SIZE_FORMAT
1147                         "("  SIZE_FORMAT ")",
1148                         prev_used, used(), capacity());
1149   } else {
1150     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1151                         "->" SIZE_FORMAT "K"
1152                         "("  SIZE_FORMAT "K)",
1153                         prev_used / K, used() / K, capacity() / K);
1154   }
1155 }
1156 
1157 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1158  private:
1159   bool _full;
1160  public:
1161   void do_generation(Generation* gen) {
1162     gen->gc_prologue(_full);
1163   }
1164   GenGCPrologueClosure(bool full) : _full(full) {};
1165 };
1166 
1167 void GenCollectedHeap::gc_prologue(bool full) {
1168   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1169 
1170   always_do_update_barrier = false;
1171   // Fill TLAB's and such
1172   CollectedHeap::accumulate_statistics_all_tlabs();
1173   ensure_parsability(true);   // retire TLABs
1174 
1175   // Walk generations
1176   GenGCPrologueClosure blk(full);
1177   generation_iterate(&blk, false);  // not old-to-young.
1178 };
1179 
1180 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1181  private:
1182   bool _full;
1183  public:
1184   void do_generation(Generation* gen) {
1185     gen->gc_epilogue(_full);
1186   }
1187   GenGCEpilogueClosure(bool full) : _full(full) {};
1188 };
1189 
1190 void GenCollectedHeap::gc_epilogue(bool full) {
1191 #ifdef COMPILER2
1192   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1193   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1194   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1195 #endif /* COMPILER2 */
1196 
1197   resize_all_tlabs();
1198 
1199   GenGCEpilogueClosure blk(full);
1200   generation_iterate(&blk, false);  // not old-to-young.
1201 
1202   if (!CleanChunkPoolAsync) {
1203     Chunk::clean_chunk_pool();
1204   }
1205 
1206   MetaspaceCounters::update_performance_counters();
1207   CompressedClassSpaceCounters::update_performance_counters();
1208 
1209   always_do_update_barrier = UseConcMarkSweepGC;
1210 };
1211 
1212 #ifndef PRODUCT
1213 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1214  private:
1215  public:
1216   void do_generation(Generation* gen) {
1217     gen->record_spaces_top();
1218   }
1219 };
1220 
1221 void GenCollectedHeap::record_gen_tops_before_GC() {
1222   if (ZapUnusedHeapArea) {
1223     GenGCSaveTopsBeforeGCClosure blk;
1224     generation_iterate(&blk, false);  // not old-to-young.
1225   }
1226 }
1227 #endif  // not PRODUCT
1228 
1229 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1230  public:
1231   void do_generation(Generation* gen) {
1232     gen->ensure_parsability();
1233   }
1234 };
1235 
1236 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1237   CollectedHeap::ensure_parsability(retire_tlabs);
1238   GenEnsureParsabilityClosure ep_cl;
1239   generation_iterate(&ep_cl, false);
1240 }
1241 
1242 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1243                                               oop obj,
1244                                               size_t obj_size) {
1245   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1246   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1247   HeapWord* result = NULL;
1248 
1249   result = old_gen->expand_and_allocate(obj_size, false);
1250 
1251   if (result != NULL) {
1252     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1253   }
1254   return oop(result);
1255 }
1256 
1257 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1258   jlong _time;   // in ms
1259   jlong _now;    // in ms
1260 
1261  public:
1262   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1263 
1264   jlong time() { return _time; }
1265 
1266   void do_generation(Generation* gen) {
1267     _time = MIN2(_time, gen->time_of_last_gc(_now));
1268   }
1269 };
1270 
1271 jlong GenCollectedHeap::millis_since_last_gc() {
1272   // We need a monotonically non-decreasing time in ms but
1273   // os::javaTimeMillis() does not guarantee monotonicity.
1274   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1275   GenTimeOfLastGCClosure tolgc_cl(now);
1276   // iterate over generations getting the oldest
1277   // time that a generation was collected
1278   generation_iterate(&tolgc_cl, false);
1279 
1280   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1281   // provided the underlying platform provides such a time source
1282   // (and it is bug free). So we still have to guard against getting
1283   // back a time later than 'now'.
1284   jlong retVal = now - tolgc_cl.time();
1285   if (retVal < 0) {
1286     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1287     return 0;
1288   }
1289   return retVal;
1290 }