1 /*
   2  * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2013, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreter.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "memory/universe.inline.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 #include "utilities/macros.hpp"
  41 
  42 #ifndef CC_INTERP
  43 
  44 #undef __
  45 #define __ _masm->
  46 
  47 // ============================================================================
  48 // Misc helpers
  49 
  50 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  51 // (only one of both variants is possible at the same time).
  52 // Index can be noreg.
  53 // Kills:
  54 //   Rbase, Rtmp
  55 static void do_oop_store(InterpreterMacroAssembler* _masm,
  56                          Register           Rbase,
  57                          RegisterOrConstant offset,
  58                          Register           Rval,         // Noreg means always null.
  59                          Register           Rtmp1,
  60                          Register           Rtmp2,
  61                          Register           Rtmp3,
  62                          BarrierSet::Name   barrier,
  63                          bool               precise,
  64                          bool               check_null) {
  65   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
  66 
  67   switch (barrier) {
  68 #if INCLUDE_ALL_GCS
  69     case BarrierSet::G1SATBCTLogging:
  70       {
  71         // Load and record the previous value.
  72         __ g1_write_barrier_pre(Rbase, offset,
  73                                 Rtmp3, /* holder of pre_val ? */
  74                                 Rtmp1, Rtmp2, false /* frame */);
  75 
  76         Label Lnull, Ldone;
  77         if (Rval != noreg) {
  78           if (check_null) {
  79             __ cmpdi(CCR0, Rval, 0);
  80             __ beq(CCR0, Lnull);
  81           }
  82           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
  83           // Mark the card.
  84           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
  85             __ add(Rbase, offset, Rbase);
  86           }
  87           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
  88           if (check_null) { __ b(Ldone); }
  89         }
  90 
  91         if (Rval == noreg || check_null) { // Store null oop.
  92           Register Rnull = Rval;
  93           __ bind(Lnull);
  94           if (Rval == noreg) {
  95             Rnull = Rtmp1;
  96             __ li(Rnull, 0);
  97           }
  98           if (UseCompressedOops) {
  99             __ stw(Rnull, offset, Rbase);
 100           } else {
 101             __ std(Rnull, offset, Rbase);
 102           }
 103         }
 104         __ bind(Ldone);
 105       }
 106       break;
 107 #endif // INCLUDE_ALL_GCS
 108     case BarrierSet::CardTableModRef:
 109     case BarrierSet::CardTableExtension:
 110       {
 111         Label Lnull, Ldone;
 112         if (Rval != noreg) {
 113           if (check_null) {
 114             __ cmpdi(CCR0, Rval, 0);
 115             __ beq(CCR0, Lnull);
 116           }
 117           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
 118           // Mark the card.
 119           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
 120             __ add(Rbase, offset, Rbase);
 121           }
 122           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
 123           if (check_null) {
 124             __ b(Ldone);
 125           }
 126         }
 127 
 128         if (Rval == noreg || check_null) { // Store null oop.
 129           Register Rnull = Rval;
 130           __ bind(Lnull);
 131           if (Rval == noreg) {
 132             Rnull = Rtmp1;
 133             __ li(Rnull, 0);
 134           }
 135           if (UseCompressedOops) {
 136             __ stw(Rnull, offset, Rbase);
 137           } else {
 138             __ std(Rnull, offset, Rbase);
 139           }
 140         }
 141         __ bind(Ldone);
 142       }
 143       break;
 144     case BarrierSet::ModRef:
 145       ShouldNotReachHere();
 146       break;
 147     default:
 148       ShouldNotReachHere();
 149   }
 150 }
 151 
 152 // ============================================================================
 153 // Platform-dependent initialization
 154 
 155 void TemplateTable::pd_initialize() {
 156   // No ppc64 specific initialization.
 157 }
 158 
 159 Address TemplateTable::at_bcp(int offset) {
 160   // Not used on ppc.
 161   ShouldNotReachHere();
 162   return Address();
 163 }
 164 
 165 // Patches the current bytecode (ptr to it located in bcp)
 166 // in the bytecode stream with a new one.
 167 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
 168   // With sharing on, may need to test method flag.
 169   if (!RewriteBytecodes) return;
 170   Label L_patch_done;
 171 
 172   switch (new_bc) {
 173     case Bytecodes::_fast_aputfield:
 174     case Bytecodes::_fast_bputfield:
 175     case Bytecodes::_fast_cputfield:
 176     case Bytecodes::_fast_dputfield:
 177     case Bytecodes::_fast_fputfield:
 178     case Bytecodes::_fast_iputfield:
 179     case Bytecodes::_fast_lputfield:
 180     case Bytecodes::_fast_sputfield:
 181     {
 182       // We skip bytecode quickening for putfield instructions when
 183       // the put_code written to the constant pool cache is zero.
 184       // This is required so that every execution of this instruction
 185       // calls out to InterpreterRuntime::resolve_get_put to do
 186       // additional, required work.
 187       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 188       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 189       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 190       // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
 191 #if defined(VM_LITTLE_ENDIAN)
 192       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
 193 #else
 194       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 195 #endif
 196       __ cmpwi(CCR0, Rnew_bc, 0);
 197       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 198       __ beq(CCR0, L_patch_done);
 199       // __ isync(); // acquire not needed
 200       break;
 201     }
 202 
 203     default:
 204       assert(byte_no == -1, "sanity");
 205       if (load_bc_into_bc_reg) {
 206         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 207       }
 208   }
 209 
 210   if (JvmtiExport::can_post_breakpoint()) {
 211     Label L_fast_patch;
 212     __ lbz(Rtemp, 0, R14_bcp);
 213     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 214     __ bne(CCR0, L_fast_patch);
 215     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 217     __ b(L_patch_done);
 218     __ bind(L_fast_patch);
 219   }
 220 
 221   // Patch bytecode.
 222   __ stb(Rnew_bc, 0, R14_bcp);
 223 
 224   __ bind(L_patch_done);
 225 }
 226 
 227 // ============================================================================
 228 // Individual instructions
 229 
 230 void TemplateTable::nop() {
 231   transition(vtos, vtos);
 232   // Nothing to do.
 233 }
 234 
 235 void TemplateTable::shouldnotreachhere() {
 236   transition(vtos, vtos);
 237   __ stop("shouldnotreachhere bytecode");
 238 }
 239 
 240 void TemplateTable::aconst_null() {
 241   transition(vtos, atos);
 242   __ li(R17_tos, 0);
 243 }
 244 
 245 void TemplateTable::iconst(int value) {
 246   transition(vtos, itos);
 247   assert(value >= -1 && value <= 5, "");
 248   __ li(R17_tos, value);
 249 }
 250 
 251 void TemplateTable::lconst(int value) {
 252   transition(vtos, ltos);
 253   assert(value >= -1 && value <= 5, "");
 254   __ li(R17_tos, value);
 255 }
 256 
 257 void TemplateTable::fconst(int value) {
 258   transition(vtos, ftos);
 259   static float zero = 0.0;
 260   static float one  = 1.0;
 261   static float two  = 2.0;
 262   switch (value) {
 263     default: ShouldNotReachHere();
 264     case 0: {
 265       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 266       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 267       break;
 268     }
 269     case 1: {
 270       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 271       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 272       break;
 273     }
 274     case 2: {
 275       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 276       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 277       break;
 278     }
 279   }
 280 }
 281 
 282 void TemplateTable::dconst(int value) {
 283   transition(vtos, dtos);
 284   static double zero = 0.0;
 285   static double one  = 1.0;
 286   switch (value) {
 287     case 0: {
 288       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 289       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 290       break;
 291     }
 292     case 1: {
 293       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 294       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 295       break;
 296     }
 297     default: ShouldNotReachHere();
 298   }
 299 }
 300 
 301 void TemplateTable::bipush() {
 302   transition(vtos, itos);
 303   __ lbz(R17_tos, 1, R14_bcp);
 304   __ extsb(R17_tos, R17_tos);
 305 }
 306 
 307 void TemplateTable::sipush() {
 308   transition(vtos, itos);
 309   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 310 }
 311 
 312 void TemplateTable::ldc(bool wide) {
 313   Register Rscratch1 = R11_scratch1,
 314            Rscratch2 = R12_scratch2,
 315            Rcpool    = R3_ARG1;
 316 
 317   transition(vtos, vtos);
 318   Label notInt, notClass, exit;
 319 
 320   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 321   if (wide) { // Read index.
 322     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 323   } else {
 324     __ lbz(Rscratch1, 1, R14_bcp);
 325   }
 326 
 327   const int base_offset = ConstantPool::header_size() * wordSize;
 328   const int tags_offset = Array<u1>::base_offset_in_bytes();
 329 
 330   // Get type from tags.
 331   __ addi(Rscratch2, Rscratch2, tags_offset);
 332   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 333 
 334   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 335   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 336   __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
 337 
 338   // Resolved class - need to call vm to get java mirror of the class.
 339   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 340   __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above?
 341   __ beq(CCR0, notClass);
 342 
 343   __ li(R4, wide ? 1 : 0);
 344   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 345   __ push(atos);
 346   __ b(exit);
 347 
 348   __ align(32, 12);
 349   __ bind(notClass);
 350   __ addi(Rcpool, Rcpool, base_offset);
 351   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 352   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 353   __ bne(CCR0, notInt);
 354   __ lwax(R17_tos, Rcpool, Rscratch1);
 355   __ push(itos);
 356   __ b(exit);
 357 
 358   __ align(32, 12);
 359   __ bind(notInt);
 360 #ifdef ASSERT
 361   // String and Object are rewritten to fast_aldc
 362   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 363   __ asm_assert_eq("unexpected type", 0x8765);
 364 #endif
 365   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 366   __ push(ftos);
 367 
 368   __ align(32, 12);
 369   __ bind(exit);
 370 }
 371 
 372 // Fast path for caching oop constants.
 373 void TemplateTable::fast_aldc(bool wide) {
 374   transition(vtos, atos);
 375 
 376   int index_size = wide ? sizeof(u2) : sizeof(u1);
 377   const Register Rscratch = R11_scratch1;
 378   Label resolved;
 379 
 380   // We are resolved if the resolved reference cache entry contains a
 381   // non-null object (CallSite, etc.)
 382   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 383   __ load_resolved_reference_at_index(R17_tos, Rscratch);
 384   __ cmpdi(CCR0, R17_tos, 0);
 385   __ bne(CCR0, resolved);
 386   __ load_const_optimized(R3_ARG1, (int)bytecode());
 387 
 388   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 389 
 390   // First time invocation - must resolve first.
 391   __ call_VM(R17_tos, entry, R3_ARG1);
 392 
 393   __ align(32, 12);
 394   __ bind(resolved);
 395   __ verify_oop(R17_tos);
 396 }
 397 
 398 void TemplateTable::ldc2_w() {
 399   transition(vtos, vtos);
 400   Label Llong, Lexit;
 401 
 402   Register Rindex = R11_scratch1,
 403            Rcpool = R12_scratch2,
 404            Rtag   = R3_ARG1;
 405   __ get_cpool_and_tags(Rcpool, Rtag);
 406   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 407 
 408   const int base_offset = ConstantPool::header_size() * wordSize;
 409   const int tags_offset = Array<u1>::base_offset_in_bytes();
 410   // Get type from tags.
 411   __ addi(Rcpool, Rcpool, base_offset);
 412   __ addi(Rtag, Rtag, tags_offset);
 413 
 414   __ lbzx(Rtag, Rtag, Rindex);
 415 
 416   __ sldi(Rindex, Rindex, LogBytesPerWord);
 417   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 418   __ bne(CCR0, Llong);
 419   // A double can be placed at word-aligned locations in the constant pool.
 420   // Check out Conversions.java for an example.
 421   // Also ConstantPool::header_size() is 20, which makes it very difficult
 422   // to double-align double on the constant pool. SG, 11/7/97
 423   __ lfdx(F15_ftos, Rcpool, Rindex);
 424   __ push(dtos);
 425   __ b(Lexit);
 426 
 427   __ bind(Llong);
 428   __ ldx(R17_tos, Rcpool, Rindex);
 429   __ push(ltos);
 430 
 431   __ bind(Lexit);
 432 }
 433 
 434 // Get the locals index located in the bytecode stream at bcp + offset.
 435 void TemplateTable::locals_index(Register Rdst, int offset) {
 436   __ lbz(Rdst, offset, R14_bcp);
 437 }
 438 
 439 void TemplateTable::iload() {
 440   transition(vtos, itos);
 441 
 442   // Get the local value into tos
 443   const Register Rindex = R22_tmp2;
 444   locals_index(Rindex);
 445 
 446   // Rewrite iload,iload  pair into fast_iload2
 447   //         iload,caload pair into fast_icaload
 448   if (RewriteFrequentPairs) {
 449     Label Lrewrite, Ldone;
 450     Register Rnext_byte  = R3_ARG1,
 451              Rrewrite_to = R6_ARG4,
 452              Rscratch    = R11_scratch1;
 453 
 454     // get next byte
 455     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 456 
 457     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 458     // last two iloads in a pair. Comparing against fast_iload means that
 459     // the next bytecode is neither an iload or a caload, and therefore
 460     // an iload pair.
 461     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 462     __ beq(CCR0, Ldone);
 463 
 464     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 465     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 466     __ beq(CCR1, Lrewrite);
 467 
 468     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 469     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 470     __ beq(CCR0, Lrewrite);
 471 
 472     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 473 
 474     __ bind(Lrewrite);
 475     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 476     __ bind(Ldone);
 477   }
 478 
 479   __ load_local_int(R17_tos, Rindex, Rindex);
 480 }
 481 
 482 // Load 2 integers in a row without dispatching
 483 void TemplateTable::fast_iload2() {
 484   transition(vtos, itos);
 485 
 486   __ lbz(R3_ARG1, 1, R14_bcp);
 487   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 488 
 489   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 490   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 491   __ push_i(R3_ARG1);
 492 }
 493 
 494 void TemplateTable::fast_iload() {
 495   transition(vtos, itos);
 496   // Get the local value into tos
 497 
 498   const Register Rindex = R11_scratch1;
 499   locals_index(Rindex);
 500   __ load_local_int(R17_tos, Rindex, Rindex);
 501 }
 502 
 503 // Load a local variable type long from locals area to TOS cache register.
 504 // Local index resides in bytecodestream.
 505 void TemplateTable::lload() {
 506   transition(vtos, ltos);
 507 
 508   const Register Rindex = R11_scratch1;
 509   locals_index(Rindex);
 510   __ load_local_long(R17_tos, Rindex, Rindex);
 511 }
 512 
 513 void TemplateTable::fload() {
 514   transition(vtos, ftos);
 515 
 516   const Register Rindex = R11_scratch1;
 517   locals_index(Rindex);
 518   __ load_local_float(F15_ftos, Rindex, Rindex);
 519 }
 520 
 521 void TemplateTable::dload() {
 522   transition(vtos, dtos);
 523 
 524   const Register Rindex = R11_scratch1;
 525   locals_index(Rindex);
 526   __ load_local_double(F15_ftos, Rindex, Rindex);
 527 }
 528 
 529 void TemplateTable::aload() {
 530   transition(vtos, atos);
 531 
 532   const Register Rindex = R11_scratch1;
 533   locals_index(Rindex);
 534   __ load_local_ptr(R17_tos, Rindex, Rindex);
 535 }
 536 
 537 void TemplateTable::locals_index_wide(Register Rdst) {
 538   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 539   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 540 }
 541 
 542 void TemplateTable::wide_iload() {
 543   // Get the local value into tos.
 544 
 545   const Register Rindex = R11_scratch1;
 546   locals_index_wide(Rindex);
 547   __ load_local_int(R17_tos, Rindex, Rindex);
 548 }
 549 
 550 void TemplateTable::wide_lload() {
 551   transition(vtos, ltos);
 552 
 553   const Register Rindex = R11_scratch1;
 554   locals_index_wide(Rindex);
 555   __ load_local_long(R17_tos, Rindex, Rindex);
 556 }
 557 
 558 void TemplateTable::wide_fload() {
 559   transition(vtos, ftos);
 560 
 561   const Register Rindex = R11_scratch1;
 562   locals_index_wide(Rindex);
 563   __ load_local_float(F15_ftos, Rindex, Rindex);
 564 }
 565 
 566 void TemplateTable::wide_dload() {
 567   transition(vtos, dtos);
 568 
 569   const Register Rindex = R11_scratch1;
 570   locals_index_wide(Rindex);
 571   __ load_local_double(F15_ftos, Rindex, Rindex);
 572 }
 573 
 574 void TemplateTable::wide_aload() {
 575   transition(vtos, atos);
 576 
 577   const Register Rindex = R11_scratch1;
 578   locals_index_wide(Rindex);
 579   __ load_local_ptr(R17_tos, Rindex, Rindex);
 580 }
 581 
 582 void TemplateTable::iaload() {
 583   transition(itos, itos);
 584 
 585   const Register Rload_addr = R3_ARG1,
 586                  Rarray     = R4_ARG2,
 587                  Rtemp      = R5_ARG3;
 588   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 589   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 590 }
 591 
 592 void TemplateTable::laload() {
 593   transition(itos, ltos);
 594 
 595   const Register Rload_addr = R3_ARG1,
 596                  Rarray     = R4_ARG2,
 597                  Rtemp      = R5_ARG3;
 598   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 599   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 600 }
 601 
 602 void TemplateTable::faload() {
 603   transition(itos, ftos);
 604 
 605   const Register Rload_addr = R3_ARG1,
 606                  Rarray     = R4_ARG2,
 607                  Rtemp      = R5_ARG3;
 608   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 609   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 610 }
 611 
 612 void TemplateTable::daload() {
 613   transition(itos, dtos);
 614 
 615   const Register Rload_addr = R3_ARG1,
 616                  Rarray     = R4_ARG2,
 617                  Rtemp      = R5_ARG3;
 618   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 619   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 620 }
 621 
 622 void TemplateTable::aaload() {
 623   transition(itos, atos);
 624 
 625   // tos: index
 626   // result tos: array
 627   const Register Rload_addr = R3_ARG1,
 628                  Rarray     = R4_ARG2,
 629                  Rtemp      = R5_ARG3;
 630   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 631   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
 632   __ verify_oop(R17_tos);
 633   //__ dcbt(R17_tos); // prefetch
 634 }
 635 
 636 void TemplateTable::baload() {
 637   transition(itos, itos);
 638 
 639   const Register Rload_addr = R3_ARG1,
 640                  Rarray     = R4_ARG2,
 641                  Rtemp      = R5_ARG3;
 642   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 643   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 644   __ extsb(R17_tos, R17_tos);
 645 }
 646 
 647 void TemplateTable::caload() {
 648   transition(itos, itos);
 649 
 650   const Register Rload_addr = R3_ARG1,
 651                  Rarray     = R4_ARG2,
 652                  Rtemp      = R5_ARG3;
 653   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 654   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 655 }
 656 
 657 // Iload followed by caload frequent pair.
 658 void TemplateTable::fast_icaload() {
 659   transition(vtos, itos);
 660 
 661   const Register Rload_addr = R3_ARG1,
 662                  Rarray     = R4_ARG2,
 663                  Rtemp      = R11_scratch1;
 664 
 665   locals_index(R17_tos);
 666   __ load_local_int(R17_tos, Rtemp, R17_tos);
 667   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 668   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 669 }
 670 
 671 void TemplateTable::saload() {
 672   transition(itos, itos);
 673 
 674   const Register Rload_addr = R11_scratch1,
 675                  Rarray     = R12_scratch2,
 676                  Rtemp      = R3_ARG1;
 677   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 678   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 679 }
 680 
 681 void TemplateTable::iload(int n) {
 682   transition(vtos, itos);
 683 
 684   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 685 }
 686 
 687 void TemplateTable::lload(int n) {
 688   transition(vtos, ltos);
 689 
 690   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 691 }
 692 
 693 void TemplateTable::fload(int n) {
 694   transition(vtos, ftos);
 695 
 696   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 697 }
 698 
 699 void TemplateTable::dload(int n) {
 700   transition(vtos, dtos);
 701 
 702   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 703 }
 704 
 705 void TemplateTable::aload(int n) {
 706   transition(vtos, atos);
 707 
 708   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 709 }
 710 
 711 void TemplateTable::aload_0() {
 712   transition(vtos, atos);
 713   // According to bytecode histograms, the pairs:
 714   //
 715   // _aload_0, _fast_igetfield
 716   // _aload_0, _fast_agetfield
 717   // _aload_0, _fast_fgetfield
 718   //
 719   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 720   // _aload_0 bytecode checks if the next bytecode is either
 721   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 722   // rewrites the current bytecode into a pair bytecode; otherwise it
 723   // rewrites the current bytecode into _0 that doesn't do
 724   // the pair check anymore.
 725   //
 726   // Note: If the next bytecode is _getfield, the rewrite must be
 727   //       delayed, otherwise we may miss an opportunity for a pair.
 728   //
 729   // Also rewrite frequent pairs
 730   //   aload_0, aload_1
 731   //   aload_0, iload_1
 732   // These bytecodes with a small amount of code are most profitable
 733   // to rewrite.
 734 
 735   if (RewriteFrequentPairs) {
 736 
 737     Label Lrewrite, Ldont_rewrite;
 738     Register Rnext_byte  = R3_ARG1,
 739              Rrewrite_to = R6_ARG4,
 740              Rscratch    = R11_scratch1;
 741 
 742     // Get next byte.
 743     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 744 
 745     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 746     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 747     __ beq(CCR0, Ldont_rewrite);
 748 
 749     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 750     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 751     __ beq(CCR1, Lrewrite);
 752 
 753     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 754     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 755     __ beq(CCR0, Lrewrite);
 756 
 757     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 758     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 759     __ beq(CCR1, Lrewrite);
 760 
 761     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 762 
 763     __ bind(Lrewrite);
 764     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 765     __ bind(Ldont_rewrite);
 766   }
 767 
 768   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 769   aload(0);
 770 }
 771 
 772 void TemplateTable::istore() {
 773   transition(itos, vtos);
 774 
 775   const Register Rindex = R11_scratch1;
 776   locals_index(Rindex);
 777   __ store_local_int(R17_tos, Rindex);
 778 }
 779 
 780 void TemplateTable::lstore() {
 781   transition(ltos, vtos);
 782   const Register Rindex = R11_scratch1;
 783   locals_index(Rindex);
 784   __ store_local_long(R17_tos, Rindex);
 785 }
 786 
 787 void TemplateTable::fstore() {
 788   transition(ftos, vtos);
 789 
 790   const Register Rindex = R11_scratch1;
 791   locals_index(Rindex);
 792   __ store_local_float(F15_ftos, Rindex);
 793 }
 794 
 795 void TemplateTable::dstore() {
 796   transition(dtos, vtos);
 797 
 798   const Register Rindex = R11_scratch1;
 799   locals_index(Rindex);
 800   __ store_local_double(F15_ftos, Rindex);
 801 }
 802 
 803 void TemplateTable::astore() {
 804   transition(vtos, vtos);
 805 
 806   const Register Rindex = R11_scratch1;
 807   __ pop_ptr();
 808   __ verify_oop_or_return_address(R17_tos, Rindex);
 809   locals_index(Rindex);
 810   __ store_local_ptr(R17_tos, Rindex);
 811 }
 812 
 813 void TemplateTable::wide_istore() {
 814   transition(vtos, vtos);
 815 
 816   const Register Rindex = R11_scratch1;
 817   __ pop_i();
 818   locals_index_wide(Rindex);
 819   __ store_local_int(R17_tos, Rindex);
 820 }
 821 
 822 void TemplateTable::wide_lstore() {
 823   transition(vtos, vtos);
 824 
 825   const Register Rindex = R11_scratch1;
 826   __ pop_l();
 827   locals_index_wide(Rindex);
 828   __ store_local_long(R17_tos, Rindex);
 829 }
 830 
 831 void TemplateTable::wide_fstore() {
 832   transition(vtos, vtos);
 833 
 834   const Register Rindex = R11_scratch1;
 835   __ pop_f();
 836   locals_index_wide(Rindex);
 837   __ store_local_float(F15_ftos, Rindex);
 838 }
 839 
 840 void TemplateTable::wide_dstore() {
 841   transition(vtos, vtos);
 842 
 843   const Register Rindex = R11_scratch1;
 844   __ pop_d();
 845   locals_index_wide(Rindex);
 846   __ store_local_double(F15_ftos, Rindex);
 847 }
 848 
 849 void TemplateTable::wide_astore() {
 850   transition(vtos, vtos);
 851 
 852   const Register Rindex = R11_scratch1;
 853   __ pop_ptr();
 854   __ verify_oop_or_return_address(R17_tos, Rindex);
 855   locals_index_wide(Rindex);
 856   __ store_local_ptr(R17_tos, Rindex);
 857 }
 858 
 859 void TemplateTable::iastore() {
 860   transition(itos, vtos);
 861 
 862   const Register Rindex      = R3_ARG1,
 863                  Rstore_addr = R4_ARG2,
 864                  Rarray      = R5_ARG3,
 865                  Rtemp       = R6_ARG4;
 866   __ pop_i(Rindex);
 867   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 868   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
 869   }
 870 
 871 void TemplateTable::lastore() {
 872   transition(ltos, vtos);
 873 
 874   const Register Rindex      = R3_ARG1,
 875                  Rstore_addr = R4_ARG2,
 876                  Rarray      = R5_ARG3,
 877                  Rtemp       = R6_ARG4;
 878   __ pop_i(Rindex);
 879   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 880   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
 881   }
 882 
 883 void TemplateTable::fastore() {
 884   transition(ftos, vtos);
 885 
 886   const Register Rindex      = R3_ARG1,
 887                  Rstore_addr = R4_ARG2,
 888                  Rarray      = R5_ARG3,
 889                  Rtemp       = R6_ARG4;
 890   __ pop_i(Rindex);
 891   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 892   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
 893   }
 894 
 895 void TemplateTable::dastore() {
 896   transition(dtos, vtos);
 897 
 898   const Register Rindex      = R3_ARG1,
 899                  Rstore_addr = R4_ARG2,
 900                  Rarray      = R5_ARG3,
 901                  Rtemp       = R6_ARG4;
 902   __ pop_i(Rindex);
 903   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 904   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
 905   }
 906 
 907 // Pop 3 values from the stack and...
 908 void TemplateTable::aastore() {
 909   transition(vtos, vtos);
 910 
 911   Label Lstore_ok, Lis_null, Ldone;
 912   const Register Rindex    = R3_ARG1,
 913                  Rarray    = R4_ARG2,
 914                  Rscratch  = R11_scratch1,
 915                  Rscratch2 = R12_scratch2,
 916                  Rarray_klass = R5_ARG3,
 917                  Rarray_element_klass = Rarray_klass,
 918                  Rvalue_klass = R6_ARG4,
 919                  Rstore_addr = R31;    // Use register which survives VM call.
 920 
 921   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
 922   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
 923   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
 924 
 925   __ verify_oop(R17_tos);
 926   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
 927   // Rindex is dead!
 928   Register Rscratch3 = Rindex;
 929 
 930   // Do array store check - check for NULL value first.
 931   __ cmpdi(CCR0, R17_tos, 0);
 932   __ beq(CCR0, Lis_null);
 933 
 934   __ load_klass(Rarray_klass, Rarray);
 935   __ load_klass(Rvalue_klass, R17_tos);
 936 
 937   // Do fast instanceof cache test.
 938   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
 939 
 940   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
 941   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
 942 
 943   // Fell through: subtype check failed => throw an exception.
 944   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
 945   __ mtctr(R11_scratch1);
 946   __ bctr();
 947 
 948   __ bind(Lis_null);
 949   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
 950                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 951   __ profile_null_seen(Rscratch, Rscratch2);
 952   __ b(Ldone);
 953 
 954   // Store is OK.
 955   __ bind(Lstore_ok);
 956   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
 957                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 958 
 959   __ bind(Ldone);
 960   // Adjust sp (pops array, index and value).
 961   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
 962 }
 963 
 964 void TemplateTable::bastore() {
 965   transition(itos, vtos);
 966 
 967   const Register Rindex   = R11_scratch1,
 968                  Rarray   = R12_scratch2,
 969                  Rscratch = R3_ARG1;
 970   __ pop_i(Rindex);
 971   // tos: val
 972   // Rarray: array ptr (popped by index_check)
 973   __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
 974   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
 975 }
 976 
 977 void TemplateTable::castore() {
 978   transition(itos, vtos);
 979 
 980   const Register Rindex   = R11_scratch1,
 981                  Rarray   = R12_scratch2,
 982                  Rscratch = R3_ARG1;
 983   __ pop_i(Rindex);
 984   // tos: val
 985   // Rarray: array ptr (popped by index_check)
 986   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
 987   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
 988 }
 989 
 990 void TemplateTable::sastore() {
 991   castore();
 992 }
 993 
 994 void TemplateTable::istore(int n) {
 995   transition(itos, vtos);
 996   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 997 }
 998 
 999 void TemplateTable::lstore(int n) {
1000   transition(ltos, vtos);
1001   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1002 }
1003 
1004 void TemplateTable::fstore(int n) {
1005   transition(ftos, vtos);
1006   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1007 }
1008 
1009 void TemplateTable::dstore(int n) {
1010   transition(dtos, vtos);
1011   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1012 }
1013 
1014 void TemplateTable::astore(int n) {
1015   transition(vtos, vtos);
1016 
1017   __ pop_ptr();
1018   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1019   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1020 }
1021 
1022 void TemplateTable::pop() {
1023   transition(vtos, vtos);
1024 
1025   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1026 }
1027 
1028 void TemplateTable::pop2() {
1029   transition(vtos, vtos);
1030 
1031   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1032 }
1033 
1034 void TemplateTable::dup() {
1035   transition(vtos, vtos);
1036 
1037   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1038   __ push_ptr(R11_scratch1);
1039 }
1040 
1041 void TemplateTable::dup_x1() {
1042   transition(vtos, vtos);
1043 
1044   Register Ra = R11_scratch1,
1045            Rb = R12_scratch2;
1046   // stack: ..., a, b
1047   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1048   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1049   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1050   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1051   __ push_ptr(Rb);
1052   // stack: ..., b, a, b
1053 }
1054 
1055 void TemplateTable::dup_x2() {
1056   transition(vtos, vtos);
1057 
1058   Register Ra = R11_scratch1,
1059            Rb = R12_scratch2,
1060            Rc = R3_ARG1;
1061 
1062   // stack: ..., a, b, c
1063   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1064   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1065   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1066   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1067   // stack: ..., c, b, c
1068   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1069   // stack: ..., c, a, c
1070   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1071   __ push_ptr(Rc);                                        // push c
1072   // stack: ..., c, a, b, c
1073 }
1074 
1075 void TemplateTable::dup2() {
1076   transition(vtos, vtos);
1077 
1078   Register Ra = R11_scratch1,
1079            Rb = R12_scratch2;
1080   // stack: ..., a, b
1081   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1082   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1083   __ push_2ptrs(Ra, Rb);
1084   // stack: ..., a, b, a, b
1085 }
1086 
1087 void TemplateTable::dup2_x1() {
1088   transition(vtos, vtos);
1089 
1090   Register Ra = R11_scratch1,
1091            Rb = R12_scratch2,
1092            Rc = R3_ARG1;
1093   // stack: ..., a, b, c
1094   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1095   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1096   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1097   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1098   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1099   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1100   // stack: ..., b, c, a
1101   __ push_2ptrs(Rb, Rc);
1102   // stack: ..., b, c, a, b, c
1103 }
1104 
1105 void TemplateTable::dup2_x2() {
1106   transition(vtos, vtos);
1107 
1108   Register Ra = R11_scratch1,
1109            Rb = R12_scratch2,
1110            Rc = R3_ARG1,
1111            Rd = R4_ARG2;
1112   // stack: ..., a, b, c, d
1113   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1114   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1115   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1116   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1117   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1118   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1119   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1120   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1121   // stack: ..., c, d, a, b
1122   __ push_2ptrs(Rc, Rd);
1123   // stack: ..., c, d, a, b, c, d
1124 }
1125 
1126 void TemplateTable::swap() {
1127   transition(vtos, vtos);
1128   // stack: ..., a, b
1129 
1130   Register Ra = R11_scratch1,
1131            Rb = R12_scratch2;
1132   // stack: ..., a, b
1133   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1134   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1135   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1136   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1137   // stack: ..., b, a
1138 }
1139 
1140 void TemplateTable::iop2(Operation op) {
1141   transition(itos, itos);
1142 
1143   Register Rscratch = R11_scratch1;
1144 
1145   __ pop_i(Rscratch);
1146   // tos  = number of bits to shift
1147   // Rscratch = value to shift
1148   switch (op) {
1149     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1150     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1151     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1152     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1153     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1154     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1155     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1156     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1157     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1158     default:     ShouldNotReachHere();
1159   }
1160 }
1161 
1162 void TemplateTable::lop2(Operation op) {
1163   transition(ltos, ltos);
1164 
1165   Register Rscratch = R11_scratch1;
1166   __ pop_l(Rscratch);
1167   switch (op) {
1168     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1169     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1170     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1171     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1172     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1173     default:     ShouldNotReachHere();
1174   }
1175 }
1176 
1177 void TemplateTable::idiv() {
1178   transition(itos, itos);
1179 
1180   Label Lnormal, Lexception, Ldone;
1181   Register Rdividend = R11_scratch1; // Used by irem.
1182 
1183   __ addi(R0, R17_tos, 1);
1184   __ cmplwi(CCR0, R0, 2);
1185   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1186 
1187   __ cmpwi(CCR1, R17_tos, 0);
1188   __ beq(CCR1, Lexception); // divisor == 0
1189 
1190   __ pop_i(Rdividend);
1191   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1192   __ b(Ldone);
1193 
1194   __ bind(Lexception);
1195   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1196   __ mtctr(R11_scratch1);
1197   __ bctr();
1198 
1199   __ align(32, 12);
1200   __ bind(Lnormal);
1201   __ pop_i(Rdividend);
1202   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1203   __ bind(Ldone);
1204 }
1205 
1206 void TemplateTable::irem() {
1207   transition(itos, itos);
1208 
1209   __ mr(R12_scratch2, R17_tos);
1210   idiv();
1211   __ mullw(R17_tos, R17_tos, R12_scratch2);
1212   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1213 }
1214 
1215 void TemplateTable::lmul() {
1216   transition(ltos, ltos);
1217 
1218   __ pop_l(R11_scratch1);
1219   __ mulld(R17_tos, R11_scratch1, R17_tos);
1220 }
1221 
1222 void TemplateTable::ldiv() {
1223   transition(ltos, ltos);
1224 
1225   Label Lnormal, Lexception, Ldone;
1226   Register Rdividend = R11_scratch1; // Used by lrem.
1227 
1228   __ addi(R0, R17_tos, 1);
1229   __ cmpldi(CCR0, R0, 2);
1230   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1231 
1232   __ cmpdi(CCR1, R17_tos, 0);
1233   __ beq(CCR1, Lexception); // divisor == 0
1234 
1235   __ pop_l(Rdividend);
1236   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1237   __ b(Ldone);
1238 
1239   __ bind(Lexception);
1240   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1241   __ mtctr(R11_scratch1);
1242   __ bctr();
1243 
1244   __ align(32, 12);
1245   __ bind(Lnormal);
1246   __ pop_l(Rdividend);
1247   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1248   __ bind(Ldone);
1249 }
1250 
1251 void TemplateTable::lrem() {
1252   transition(ltos, ltos);
1253 
1254   __ mr(R12_scratch2, R17_tos);
1255   ldiv();
1256   __ mulld(R17_tos, R17_tos, R12_scratch2);
1257   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1258 }
1259 
1260 void TemplateTable::lshl() {
1261   transition(itos, ltos);
1262 
1263   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1264   __ pop_l(R11_scratch1);
1265   __ sld(R17_tos, R11_scratch1, R17_tos);
1266 }
1267 
1268 void TemplateTable::lshr() {
1269   transition(itos, ltos);
1270 
1271   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1272   __ pop_l(R11_scratch1);
1273   __ srad(R17_tos, R11_scratch1, R17_tos);
1274 }
1275 
1276 void TemplateTable::lushr() {
1277   transition(itos, ltos);
1278 
1279   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1280   __ pop_l(R11_scratch1);
1281   __ srd(R17_tos, R11_scratch1, R17_tos);
1282 }
1283 
1284 void TemplateTable::fop2(Operation op) {
1285   transition(ftos, ftos);
1286 
1287   switch (op) {
1288     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1289     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1290     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1291     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1292     case rem:
1293       __ pop_f(F1_ARG1);
1294       __ fmr(F2_ARG2, F15_ftos);
1295       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1296       __ fmr(F15_ftos, F1_RET);
1297       break;
1298 
1299     default: ShouldNotReachHere();
1300   }
1301 }
1302 
1303 void TemplateTable::dop2(Operation op) {
1304   transition(dtos, dtos);
1305 
1306   switch (op) {
1307     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1308     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1309     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1310     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1311     case rem:
1312       __ pop_d(F1_ARG1);
1313       __ fmr(F2_ARG2, F15_ftos);
1314       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1315       __ fmr(F15_ftos, F1_RET);
1316       break;
1317 
1318     default: ShouldNotReachHere();
1319   }
1320 }
1321 
1322 // Negate the value in the TOS cache.
1323 void TemplateTable::ineg() {
1324   transition(itos, itos);
1325 
1326   __ neg(R17_tos, R17_tos);
1327 }
1328 
1329 // Negate the value in the TOS cache.
1330 void TemplateTable::lneg() {
1331   transition(ltos, ltos);
1332 
1333   __ neg(R17_tos, R17_tos);
1334 }
1335 
1336 void TemplateTable::fneg() {
1337   transition(ftos, ftos);
1338 
1339   __ fneg(F15_ftos, F15_ftos);
1340 }
1341 
1342 void TemplateTable::dneg() {
1343   transition(dtos, dtos);
1344 
1345   __ fneg(F15_ftos, F15_ftos);
1346 }
1347 
1348 // Increments a local variable in place.
1349 void TemplateTable::iinc() {
1350   transition(vtos, vtos);
1351 
1352   const Register Rindex     = R11_scratch1,
1353                  Rincrement = R0,
1354                  Rvalue     = R12_scratch2;
1355 
1356   locals_index(Rindex);              // Load locals index from bytecode stream.
1357   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1358   __ extsb(Rincrement, Rincrement);
1359 
1360   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1361 
1362   __ add(Rvalue, Rincrement, Rvalue);
1363   __ stw(Rvalue, 0, Rindex);
1364 }
1365 
1366 void TemplateTable::wide_iinc() {
1367   transition(vtos, vtos);
1368 
1369   Register Rindex       = R11_scratch1,
1370            Rlocals_addr = Rindex,
1371            Rincr        = R12_scratch2;
1372   locals_index_wide(Rindex);
1373   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1374   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1375   __ add(R17_tos, Rincr, R17_tos);
1376   __ stw(R17_tos, 0, Rlocals_addr);
1377 }
1378 
1379 void TemplateTable::convert() {
1380   // %%%%% Factor this first part accross platforms
1381 #ifdef ASSERT
1382   TosState tos_in  = ilgl;
1383   TosState tos_out = ilgl;
1384   switch (bytecode()) {
1385     case Bytecodes::_i2l: // fall through
1386     case Bytecodes::_i2f: // fall through
1387     case Bytecodes::_i2d: // fall through
1388     case Bytecodes::_i2b: // fall through
1389     case Bytecodes::_i2c: // fall through
1390     case Bytecodes::_i2s: tos_in = itos; break;
1391     case Bytecodes::_l2i: // fall through
1392     case Bytecodes::_l2f: // fall through
1393     case Bytecodes::_l2d: tos_in = ltos; break;
1394     case Bytecodes::_f2i: // fall through
1395     case Bytecodes::_f2l: // fall through
1396     case Bytecodes::_f2d: tos_in = ftos; break;
1397     case Bytecodes::_d2i: // fall through
1398     case Bytecodes::_d2l: // fall through
1399     case Bytecodes::_d2f: tos_in = dtos; break;
1400     default             : ShouldNotReachHere();
1401   }
1402   switch (bytecode()) {
1403     case Bytecodes::_l2i: // fall through
1404     case Bytecodes::_f2i: // fall through
1405     case Bytecodes::_d2i: // fall through
1406     case Bytecodes::_i2b: // fall through
1407     case Bytecodes::_i2c: // fall through
1408     case Bytecodes::_i2s: tos_out = itos; break;
1409     case Bytecodes::_i2l: // fall through
1410     case Bytecodes::_f2l: // fall through
1411     case Bytecodes::_d2l: tos_out = ltos; break;
1412     case Bytecodes::_i2f: // fall through
1413     case Bytecodes::_l2f: // fall through
1414     case Bytecodes::_d2f: tos_out = ftos; break;
1415     case Bytecodes::_i2d: // fall through
1416     case Bytecodes::_l2d: // fall through
1417     case Bytecodes::_f2d: tos_out = dtos; break;
1418     default             : ShouldNotReachHere();
1419   }
1420   transition(tos_in, tos_out);
1421 #endif
1422 
1423   // Conversion
1424   Label done;
1425   switch (bytecode()) {
1426     case Bytecodes::_i2l:
1427       __ extsw(R17_tos, R17_tos);
1428       break;
1429 
1430     case Bytecodes::_l2i:
1431       // Nothing to do, we'll continue to work with the lower bits.
1432       break;
1433 
1434     case Bytecodes::_i2b:
1435       __ extsb(R17_tos, R17_tos);
1436       break;
1437 
1438     case Bytecodes::_i2c:
1439       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1440       break;
1441 
1442     case Bytecodes::_i2s:
1443       __ extsh(R17_tos, R17_tos);
1444       break;
1445 
1446     case Bytecodes::_i2d:
1447       __ extsw(R17_tos, R17_tos);
1448     case Bytecodes::_l2d:
1449       __ push_l_pop_d();
1450       __ fcfid(F15_ftos, F15_ftos);
1451       break;
1452 
1453     case Bytecodes::_i2f:
1454       __ extsw(R17_tos, R17_tos);
1455       __ push_l_pop_d();
1456       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1457         // Comment: alternatively, load with sign extend could be done by lfiwax.
1458         __ fcfids(F15_ftos, F15_ftos);
1459       } else {
1460         __ fcfid(F15_ftos, F15_ftos);
1461         __ frsp(F15_ftos, F15_ftos);
1462       }
1463       break;
1464 
1465     case Bytecodes::_l2f:
1466       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1467         __ push_l_pop_d();
1468         __ fcfids(F15_ftos, F15_ftos);
1469       } else {
1470         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1471         __ mr(R3_ARG1, R17_tos);
1472         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1473         __ fmr(F15_ftos, F1_RET);
1474       }
1475       break;
1476 
1477     case Bytecodes::_f2d:
1478       // empty
1479       break;
1480 
1481     case Bytecodes::_d2f:
1482       __ frsp(F15_ftos, F15_ftos);
1483       break;
1484 
1485     case Bytecodes::_d2i:
1486     case Bytecodes::_f2i:
1487       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1488       __ li(R17_tos, 0); // 0 in case of NAN
1489       __ bso(CCR0, done);
1490       __ fctiwz(F15_ftos, F15_ftos);
1491       __ push_d_pop_l();
1492       break;
1493 
1494     case Bytecodes::_d2l:
1495     case Bytecodes::_f2l:
1496       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1497       __ li(R17_tos, 0); // 0 in case of NAN
1498       __ bso(CCR0, done);
1499       __ fctidz(F15_ftos, F15_ftos);
1500       __ push_d_pop_l();
1501       break;
1502 
1503     default: ShouldNotReachHere();
1504   }
1505   __ bind(done);
1506 }
1507 
1508 // Long compare
1509 void TemplateTable::lcmp() {
1510   transition(ltos, itos);
1511 
1512   const Register Rscratch = R11_scratch1;
1513   __ pop_l(Rscratch); // first operand, deeper in stack
1514 
1515   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1516   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1517   __ srwi(Rscratch, R17_tos, 30);
1518   __ srawi(R17_tos, R17_tos, 31);
1519   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1520 }
1521 
1522 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1523 // unordered_result == -1 => fcmpl or dcmpl
1524 // unordered_result ==  1 => fcmpg or dcmpg
1525 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1526   const FloatRegister Rfirst  = F0_SCRATCH,
1527                       Rsecond = F15_ftos;
1528   const Register Rscratch = R11_scratch1;
1529 
1530   if (is_float) {
1531     __ pop_f(Rfirst);
1532   } else {
1533     __ pop_d(Rfirst);
1534   }
1535 
1536   Label Lunordered, Ldone;
1537   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1538   if (unordered_result) {
1539     __ bso(CCR0, Lunordered);
1540   }
1541   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1542   __ srwi(Rscratch, R17_tos, 30);
1543   __ srawi(R17_tos, R17_tos, 31);
1544   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1545   if (unordered_result) {
1546     __ b(Ldone);
1547     __ bind(Lunordered);
1548     __ load_const_optimized(R17_tos, unordered_result);
1549   }
1550   __ bind(Ldone);
1551 }
1552 
1553 // Branch_conditional which takes TemplateTable::Condition.
1554 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1555   bool positive = false;
1556   Assembler::Condition cond = Assembler::equal;
1557   switch (cc) {
1558     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1559     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1560     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1561     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1562     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1563     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1564     default: ShouldNotReachHere();
1565   }
1566   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1567   int bi = Assembler::bi0(crx, cond);
1568   __ bc(bo, bi, L);
1569 }
1570 
1571 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1572 
1573   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1574   __ verify_thread();
1575 
1576   const Register Rscratch1    = R11_scratch1,
1577                  Rscratch2    = R12_scratch2,
1578                  Rscratch3    = R3_ARG1,
1579                  R4_counters  = R4_ARG2,
1580                  bumped_count = R31,
1581                  Rdisp        = R22_tmp2;
1582 
1583   __ profile_taken_branch(Rscratch1, bumped_count);
1584 
1585   // Get (wide) offset.
1586   if (is_wide) {
1587     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1588   } else {
1589     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1590   }
1591 
1592   // --------------------------------------------------------------------------
1593   // Handle all the JSR stuff here, then exit.
1594   // It's much shorter and cleaner than intermingling with the
1595   // non-JSR normal-branch stuff occurring below.
1596   if (is_jsr) {
1597     // Compute return address as bci in Otos_i.
1598     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1599     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1600     __ subf(R17_tos, Rscratch1, Rscratch2);
1601 
1602     // Bump bcp to target of JSR.
1603     __ add(R14_bcp, Rdisp, R14_bcp);
1604     // Push returnAddress for "ret" on stack.
1605     __ push_ptr(R17_tos);
1606     // And away we go!
1607     __ dispatch_next(vtos);
1608     return;
1609   }
1610 
1611   // --------------------------------------------------------------------------
1612   // Normal (non-jsr) branch handling
1613 
1614   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1615   if (increment_invocation_counter_for_backward_branches) {
1616     //__ unimplemented("branch invocation counter");
1617 
1618     Label Lforward;
1619     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1620 
1621     // Check branch direction.
1622     __ cmpdi(CCR0, Rdisp, 0);
1623     __ bgt(CCR0, Lforward);
1624 
1625     __ get_method_counters(R19_method, R4_counters, Lforward);
1626 
1627     if (TieredCompilation) {
1628       Label Lno_mdo, Loverflow;
1629       const int increment = InvocationCounter::count_increment;
1630       const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1631       if (ProfileInterpreter) {
1632         Register Rmdo = Rscratch1;
1633 
1634         // If no method data exists, go to profile_continue.
1635         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1636         __ cmpdi(CCR0, Rmdo, 0);
1637         __ beq(CCR0, Lno_mdo);
1638 
1639         // Increment backedge counter in the MDO.
1640         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1641         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1642         __ load_const_optimized(Rscratch3, mask, R0);
1643         __ addi(Rscratch2, Rscratch2, increment);
1644         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1645         __ and_(Rscratch3, Rscratch2, Rscratch3);
1646         __ bne(CCR0, Lforward);
1647         __ b(Loverflow);
1648       }
1649 
1650       // If there's no MDO, increment counter in method.
1651       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1652       __ bind(Lno_mdo);
1653       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1654       __ load_const_optimized(Rscratch3, mask, R0);
1655       __ addi(Rscratch2, Rscratch2, increment);
1656       __ stw(Rscratch2, mo_bc_offs, R19_method);
1657       __ and_(Rscratch3, Rscratch2, Rscratch3);
1658       __ bne(CCR0, Lforward);
1659 
1660       __ bind(Loverflow);
1661 
1662       // Notify point for loop, pass branch bytecode.
1663       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
1664 
1665       // Was an OSR adapter generated?
1666       // O0 = osr nmethod
1667       __ cmpdi(CCR0, R3_RET, 0);
1668       __ beq(CCR0, Lforward);
1669 
1670       // Has the nmethod been invalidated already?
1671       __ lbz(R0, nmethod::state_offset(), R3_RET);
1672       __ cmpwi(CCR0, R0, nmethod::in_use);
1673       __ bne(CCR0, Lforward);
1674 
1675       // Migrate the interpreter frame off of the stack.
1676       // We can use all registers because we will not return to interpreter from this point.
1677 
1678       // Save nmethod.
1679       const Register osr_nmethod = R31;
1680       __ mr(osr_nmethod, R3_RET);
1681       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1682       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1683       __ reset_last_Java_frame();
1684       // OSR buffer is in ARG1.
1685 
1686       // Remove the interpreter frame.
1687       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1688 
1689       // Jump to the osr code.
1690       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1691       __ mtlr(R0);
1692       __ mtctr(R11_scratch1);
1693       __ bctr();
1694 
1695     } else {
1696 
1697       const Register invoke_ctr = Rscratch1;
1698       // Update Backedge branch separately from invocations.
1699       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1700 
1701       if (ProfileInterpreter) {
1702         __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
1703         if (UseOnStackReplacement) {
1704           __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
1705         }
1706       } else {
1707         if (UseOnStackReplacement) {
1708           __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
1709         }
1710       }
1711     }
1712 
1713     __ bind(Lforward);
1714 
1715   } else {
1716     // Bump bytecode pointer by displacement (take the branch).
1717     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1718   }
1719   // Continue with bytecode @ target.
1720   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1721   // %%%%% and changing dispatch_next to dispatch_only.
1722   __ dispatch_next(vtos);
1723 }
1724 
1725 // Helper function for if_cmp* methods below.
1726 // Factored out common compare and branch code.
1727 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1728   Label Lnot_taken;
1729   // Note: The condition code we get is the condition under which we
1730   // *fall through*! So we have to inverse the CC here.
1731 
1732   if (is_jint) {
1733     if (cmp0) {
1734       __ cmpwi(CCR0, Rfirst, 0);
1735     } else {
1736       __ cmpw(CCR0, Rfirst, Rsecond);
1737     }
1738   } else {
1739     if (cmp0) {
1740       __ cmpdi(CCR0, Rfirst, 0);
1741     } else {
1742       __ cmpd(CCR0, Rfirst, Rsecond);
1743     }
1744   }
1745   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1746 
1747   // Conition is false => Jump!
1748   branch(false, false);
1749 
1750   // Condition is not true => Continue.
1751   __ align(32, 12);
1752   __ bind(Lnot_taken);
1753   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1754 }
1755 
1756 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1757 void TemplateTable::if_0cmp(Condition cc) {
1758   transition(itos, vtos);
1759 
1760   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1761 }
1762 
1763 // Compare integer values and fall through if CC holds, branch away otherwise.
1764 //
1765 // Interface:
1766 //  - Rfirst: First operand  (older stack value)
1767 //  - tos:    Second operand (younger stack value)
1768 void TemplateTable::if_icmp(Condition cc) {
1769   transition(itos, vtos);
1770 
1771   const Register Rfirst  = R0,
1772                  Rsecond = R17_tos;
1773 
1774   __ pop_i(Rfirst);
1775   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1776 }
1777 
1778 void TemplateTable::if_nullcmp(Condition cc) {
1779   transition(atos, vtos);
1780 
1781   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1782 }
1783 
1784 void TemplateTable::if_acmp(Condition cc) {
1785   transition(atos, vtos);
1786 
1787   const Register Rfirst  = R0,
1788                  Rsecond = R17_tos;
1789 
1790   __ pop_ptr(Rfirst);
1791   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1792 }
1793 
1794 void TemplateTable::ret() {
1795   locals_index(R11_scratch1);
1796   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1797 
1798   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1799 
1800   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1801   __ add(R11_scratch1, R17_tos, R11_scratch1);
1802   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1803   __ dispatch_next(vtos);
1804 }
1805 
1806 void TemplateTable::wide_ret() {
1807   transition(vtos, vtos);
1808 
1809   const Register Rindex = R3_ARG1,
1810                  Rscratch1 = R11_scratch1,
1811                  Rscratch2 = R12_scratch2;
1812 
1813   locals_index_wide(Rindex);
1814   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1815   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1816   // Tos now contains the bci, compute the bcp from that.
1817   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1818   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1819   __ add(R14_bcp, Rscratch1, Rscratch2);
1820   __ dispatch_next(vtos);
1821 }
1822 
1823 void TemplateTable::tableswitch() {
1824   transition(itos, vtos);
1825 
1826   Label Ldispatch, Ldefault_case;
1827   Register Rlow_byte         = R3_ARG1,
1828            Rindex            = Rlow_byte,
1829            Rhigh_byte        = R4_ARG2,
1830            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1831            Rscratch1         = R11_scratch1,
1832            Rscratch2         = R12_scratch2,
1833            Roffset           = R6_ARG4;
1834 
1835   // Align bcp.
1836   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1837   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1838 
1839   // Load lo & hi.
1840   __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1841   __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1842 
1843   // Check for default case (=index outside [low,high]).
1844   __ cmpw(CCR0, R17_tos, Rlow_byte);
1845   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1846   __ blt(CCR0, Ldefault_case);
1847   __ bgt(CCR1, Ldefault_case);
1848 
1849   // Lookup dispatch offset.
1850   __ sub(Rindex, R17_tos, Rlow_byte);
1851   __ extsw(Rindex, Rindex);
1852   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1853   __ sldi(Rindex, Rindex, LogBytesPerInt);
1854   __ addi(Rindex, Rindex, 3 * BytesPerInt);
1855 #if defined(VM_LITTLE_ENDIAN)
1856   __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
1857   __ extsw(Roffset, Roffset);
1858 #else
1859   __ lwax(Roffset, Rdef_offset_addr, Rindex);
1860 #endif
1861   __ b(Ldispatch);
1862 
1863   __ bind(Ldefault_case);
1864   __ profile_switch_default(Rhigh_byte, Rscratch1);
1865   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1866 
1867   __ bind(Ldispatch);
1868 
1869   __ add(R14_bcp, Roffset, R14_bcp);
1870   __ dispatch_next(vtos);
1871 }
1872 
1873 void TemplateTable::lookupswitch() {
1874   transition(itos, itos);
1875   __ stop("lookupswitch bytecode should have been rewritten");
1876 }
1877 
1878 // Table switch using linear search through cases.
1879 // Bytecode stream format:
1880 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1881 // Note: Everything is big-endian format here.
1882 void TemplateTable::fast_linearswitch() {
1883   transition(itos, vtos);
1884 
1885   Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1886   Register Rcount           = R3_ARG1,
1887            Rcurrent_pair    = R4_ARG2,
1888            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1889            Roffset          = R31,     // Might need to survive C call.
1890            Rvalue           = R12_scratch2,
1891            Rscratch         = R11_scratch1,
1892            Rcmp_value       = R17_tos;
1893 
1894   // Align bcp.
1895   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1896   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1897 
1898   // Setup loop counter and limit.
1899   __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1900   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1901 
1902   __ mtctr(Rcount);
1903   __ cmpwi(CCR0, Rcount, 0);
1904   __ bne(CCR0, Lloop_entry);
1905 
1906   // Default case
1907   __ bind(Ldefault_case);
1908   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1909   if (ProfileInterpreter) {
1910     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1911   }
1912   __ b(Lcontinue_execution);
1913 
1914   // Next iteration
1915   __ bind(Lsearch_loop);
1916   __ bdz(Ldefault_case);
1917   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1918   __ bind(Lloop_entry);
1919   __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
1920   __ cmpw(CCR0, Rvalue, Rcmp_value);
1921   __ bne(CCR0, Lsearch_loop);
1922 
1923   // Found, load offset.
1924   __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
1925   // Calculate case index and profile
1926   __ mfctr(Rcurrent_pair);
1927   if (ProfileInterpreter) {
1928     __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
1929     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
1930   }
1931 
1932   __ bind(Lcontinue_execution);
1933   __ add(R14_bcp, Roffset, R14_bcp);
1934   __ dispatch_next(vtos);
1935 }
1936 
1937 // Table switch using binary search (value/offset pairs are ordered).
1938 // Bytecode stream format:
1939 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1940 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1941 void TemplateTable::fast_binaryswitch() {
1942 
1943   transition(itos, vtos);
1944   // Implementation using the following core algorithm: (copied from Intel)
1945   //
1946   // int binary_search(int key, LookupswitchPair* array, int n) {
1947   //   // Binary search according to "Methodik des Programmierens" by
1948   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1949   //   int i = 0;
1950   //   int j = n;
1951   //   while (i+1 < j) {
1952   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1953   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1954   //     // where a stands for the array and assuming that the (inexisting)
1955   //     // element a[n] is infinitely big.
1956   //     int h = (i + j) >> 1;
1957   //     // i < h < j
1958   //     if (key < array[h].fast_match()) {
1959   //       j = h;
1960   //     } else {
1961   //       i = h;
1962   //     }
1963   //   }
1964   //   // R: a[i] <= key < a[i+1] or Q
1965   //   // (i.e., if key is within array, i is the correct index)
1966   //   return i;
1967   // }
1968 
1969   // register allocation
1970   const Register Rkey     = R17_tos;          // already set (tosca)
1971   const Register Rarray   = R3_ARG1;
1972   const Register Ri       = R4_ARG2;
1973   const Register Rj       = R5_ARG3;
1974   const Register Rh       = R6_ARG4;
1975   const Register Rscratch = R11_scratch1;
1976 
1977   const int log_entry_size = 3;
1978   const int entry_size = 1 << log_entry_size;
1979 
1980   Label found;
1981 
1982   // Find Array start,
1983   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
1984   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
1985 
1986   // initialize i & j
1987   __ li(Ri,0);
1988   __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
1989 
1990   // and start.
1991   Label entry;
1992   __ b(entry);
1993 
1994   // binary search loop
1995   { Label loop;
1996     __ bind(loop);
1997     // int h = (i + j) >> 1;
1998     __ srdi(Rh, Rh, 1);
1999     // if (key < array[h].fast_match()) {
2000     //   j = h;
2001     // } else {
2002     //   i = h;
2003     // }
2004     __ sldi(Rscratch, Rh, log_entry_size);
2005 #if defined(VM_LITTLE_ENDIAN)
2006     __ lwbrx(Rscratch, Rscratch, Rarray);
2007 #else
2008     __ lwzx(Rscratch, Rscratch, Rarray);
2009 #endif
2010 
2011     // if (key < current value)
2012     //   Rh = Rj
2013     // else
2014     //   Rh = Ri
2015     Label Lgreater;
2016     __ cmpw(CCR0, Rkey, Rscratch);
2017     __ bge(CCR0, Lgreater);
2018     __ mr(Rj, Rh);
2019     __ b(entry);
2020     __ bind(Lgreater);
2021     __ mr(Ri, Rh);
2022 
2023     // while (i+1 < j)
2024     __ bind(entry);
2025     __ addi(Rscratch, Ri, 1);
2026     __ cmpw(CCR0, Rscratch, Rj);
2027     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2028 
2029     __ blt(CCR0, loop);
2030   }
2031 
2032   // End of binary search, result index is i (must check again!).
2033   Label default_case;
2034   Label continue_execution;
2035   if (ProfileInterpreter) {
2036     __ mr(Rh, Ri);              // Save index in i for profiling.
2037   }
2038   // Ri = value offset
2039   __ sldi(Ri, Ri, log_entry_size);
2040   __ add(Ri, Ri, Rarray);
2041   __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2042 
2043   Label not_found;
2044   // Ri = offset offset
2045   __ cmpw(CCR0, Rkey, Rscratch);
2046   __ beq(CCR0, not_found);
2047   // entry not found -> j = default offset
2048   __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2049   __ b(default_case);
2050 
2051   __ bind(not_found);
2052   // entry found -> j = offset
2053   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2054   __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2055 
2056   if (ProfileInterpreter) {
2057     __ b(continue_execution);
2058   }
2059 
2060   __ bind(default_case); // fall through (if not profiling)
2061   __ profile_switch_default(Ri, Rscratch);
2062 
2063   __ bind(continue_execution);
2064 
2065   __ extsw(Rj, Rj);
2066   __ add(R14_bcp, Rj, R14_bcp);
2067   __ dispatch_next(vtos);
2068 }
2069 
2070 void TemplateTable::_return(TosState state) {
2071   transition(state, state);
2072   assert(_desc->calls_vm(),
2073          "inconsistent calls_vm information"); // call in remove_activation
2074 
2075   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2076 
2077     Register Rscratch     = R11_scratch1,
2078              Rklass       = R12_scratch2,
2079              Rklass_flags = Rklass;
2080     Label Lskip_register_finalizer;
2081 
2082     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2083     assert(state == vtos, "only valid state");
2084     __ ld(R17_tos, 0, R18_locals);
2085 
2086     // Load klass of this obj.
2087     __ load_klass(Rklass, R17_tos);
2088     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2089     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2090     __ bfalse(CCR0, Lskip_register_finalizer);
2091 
2092     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2093 
2094     __ align(32, 12);
2095     __ bind(Lskip_register_finalizer);
2096   }
2097 
2098   // Move the result value into the correct register and remove memory stack frame.
2099   __ remove_activation(state, /* throw_monitor_exception */ true);
2100   // Restoration of lr done by remove_activation.
2101   switch (state) {
2102     case ltos:
2103     case btos:
2104     case ctos:
2105     case stos:
2106     case atos:
2107     case itos: __ mr(R3_RET, R17_tos); break;
2108     case ftos:
2109     case dtos: __ fmr(F1_RET, F15_ftos); break;
2110     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2111                // to get visible before the reference to the object gets stored anywhere.
2112                __ membar(Assembler::StoreStore); break;
2113     default  : ShouldNotReachHere();
2114   }
2115   __ blr();
2116 }
2117 
2118 // ============================================================================
2119 // Constant pool cache access
2120 //
2121 // Memory ordering:
2122 //
2123 // Like done in C++ interpreter, we load the fields
2124 //   - _indices
2125 //   - _f12_oop
2126 // acquired, because these are asked if the cache is already resolved. We don't
2127 // want to float loads above this check.
2128 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2129 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2130 
2131 // Call into the VM if call site is not yet resolved
2132 //
2133 // Input regs:
2134 //   - None, all passed regs are outputs.
2135 //
2136 // Returns:
2137 //   - Rcache:  The const pool cache entry that contains the resolved result.
2138 //   - Rresult: Either noreg or output for f1/f2.
2139 //
2140 // Kills:
2141 //   - Rscratch
2142 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2143 
2144   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2145   Label Lresolved, Ldone;
2146 
2147   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2148   // We are resolved if the indices offset contains the current bytecode.
2149 #if defined(VM_LITTLE_ENDIAN)
2150   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2151 #else
2152   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2153 #endif
2154   // Acquire by cmp-br-isync (see below).
2155   __ cmpdi(CCR0, Rscratch, (int)bytecode());
2156   __ beq(CCR0, Lresolved);
2157 
2158   address entry = NULL;
2159   switch (bytecode()) {
2160     case Bytecodes::_getstatic      : // fall through
2161     case Bytecodes::_putstatic      : // fall through
2162     case Bytecodes::_getfield       : // fall through
2163     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2164     case Bytecodes::_invokevirtual  : // fall through
2165     case Bytecodes::_invokespecial  : // fall through
2166     case Bytecodes::_invokestatic   : // fall through
2167     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2168     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2169     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2170     default                         : ShouldNotReachHere(); break;
2171   }
2172   __ li(R4_ARG2, (int)bytecode());
2173   __ call_VM(noreg, entry, R4_ARG2, true);
2174 
2175   // Update registers with resolved info.
2176   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2177   __ b(Ldone);
2178 
2179   __ bind(Lresolved);
2180   __ isync(); // Order load wrt. succeeding loads.
2181   __ bind(Ldone);
2182 }
2183 
2184 // Load the constant pool cache entry at field accesses into registers.
2185 // The Rcache and Rindex registers must be set before call.
2186 // Input:
2187 //   - Rcache, Rindex
2188 // Output:
2189 //   - Robj, Roffset, Rflags
2190 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2191                                               Register Rcache,
2192                                               Register Rindex /* unused on PPC64 */,
2193                                               Register Roffset,
2194                                               Register Rflags,
2195                                               bool is_static = false) {
2196   assert_different_registers(Rcache, Rflags, Roffset);
2197   // assert(Rindex == noreg, "parameter not used on PPC64");
2198 
2199   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2200   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2201   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2202   if (is_static) {
2203     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2204     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2205     // Acquire not needed here. Following access has an address dependency on this value.
2206   }
2207 }
2208 
2209 // Load the constant pool cache entry at invokes into registers.
2210 // Resolve if necessary.
2211 
2212 // Input Registers:
2213 //   - None, bcp is used, though
2214 //
2215 // Return registers:
2216 //   - Rmethod       (f1 field or f2 if invokevirtual)
2217 //   - Ritable_index (f2 field)
2218 //   - Rflags        (flags field)
2219 //
2220 // Kills:
2221 //   - R21
2222 //
2223 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2224                                                Register Rmethod,
2225                                                Register Ritable_index,
2226                                                Register Rflags,
2227                                                bool is_invokevirtual,
2228                                                bool is_invokevfinal,
2229                                                bool is_invokedynamic) {
2230 
2231   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2232   // Determine constant pool cache field offsets.
2233   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2234   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2235   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2236   // Access constant pool cache fields.
2237   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2238 
2239   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2240 
2241   if (is_invokevfinal) {
2242     assert(Ritable_index == noreg, "register not used");
2243     // Already resolved.
2244     __ get_cache_and_index_at_bcp(Rcache, 1);
2245   } else {
2246     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2247   }
2248 
2249   __ ld(Rmethod, method_offset, Rcache);
2250   __ ld(Rflags, flags_offset, Rcache);
2251 
2252   if (Ritable_index != noreg) {
2253     __ ld(Ritable_index, index_offset, Rcache);
2254   }
2255 }
2256 
2257 // ============================================================================
2258 // Field access
2259 
2260 // Volatile variables demand their effects be made known to all CPU's
2261 // in order. Store buffers on most chips allow reads & writes to
2262 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2263 // without some kind of memory barrier (i.e., it's not sufficient that
2264 // the interpreter does not reorder volatile references, the hardware
2265 // also must not reorder them).
2266 //
2267 // According to the new Java Memory Model (JMM):
2268 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2269 //     writes act as aquire & release, so:
2270 // (2) A read cannot let unrelated NON-volatile memory refs that
2271 //     happen after the read float up to before the read. It's OK for
2272 //     non-volatile memory refs that happen before the volatile read to
2273 //     float down below it.
2274 // (3) Similar a volatile write cannot let unrelated NON-volatile
2275 //     memory refs that happen BEFORE the write float down to after the
2276 //     write. It's OK for non-volatile memory refs that happen after the
2277 //     volatile write to float up before it.
2278 //
2279 // We only put in barriers around volatile refs (they are expensive),
2280 // not _between_ memory refs (that would require us to track the
2281 // flavor of the previous memory refs). Requirements (2) and (3)
2282 // require some barriers before volatile stores and after volatile
2283 // loads. These nearly cover requirement (1) but miss the
2284 // volatile-store-volatile-load case.  This final case is placed after
2285 // volatile-stores although it could just as well go before
2286 // volatile-loads.
2287 
2288 // The registers cache and index expected to be set before call.
2289 // Correct values of the cache and index registers are preserved.
2290 // Kills:
2291 //   Rcache (if has_tos)
2292 //   Rscratch
2293 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2294 
2295   assert_different_registers(Rcache, Rscratch);
2296 
2297   if (JvmtiExport::can_post_field_access()) {
2298     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2299     Label Lno_field_access_post;
2300 
2301     // Check if post field access in enabled.
2302     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2303     __ lwz(Rscratch, offs, Rscratch);
2304 
2305     __ cmpwi(CCR0, Rscratch, 0);
2306     __ beq(CCR0, Lno_field_access_post);
2307 
2308     // Post access enabled - do it!
2309     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2310     if (is_static) {
2311       __ li(R17_tos, 0);
2312     } else {
2313       if (has_tos) {
2314         // The fast bytecode versions have obj ptr in register.
2315         // Thus, save object pointer before call_VM() clobbers it
2316         // put object on tos where GC wants it.
2317         __ push_ptr(R17_tos);
2318       } else {
2319         // Load top of stack (do not pop the value off the stack).
2320         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2321       }
2322       __ verify_oop(R17_tos);
2323     }
2324     // tos:   object pointer or NULL if static
2325     // cache: cache entry pointer
2326     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2327     if (!is_static && has_tos) {
2328       // Restore object pointer.
2329       __ pop_ptr(R17_tos);
2330       __ verify_oop(R17_tos);
2331     } else {
2332       // Cache is still needed to get class or obj.
2333       __ get_cache_and_index_at_bcp(Rcache, 1);
2334     }
2335 
2336     __ align(32, 12);
2337     __ bind(Lno_field_access_post);
2338   }
2339 }
2340 
2341 // kills R11_scratch1
2342 void TemplateTable::pop_and_check_object(Register Roop) {
2343   Register Rtmp = R11_scratch1;
2344 
2345   assert_different_registers(Rtmp, Roop);
2346   __ pop_ptr(Roop);
2347   // For field access must check obj.
2348   __ null_check_throw(Roop, -1, Rtmp);
2349   __ verify_oop(Roop);
2350 }
2351 
2352 // PPC64: implement volatile loads as fence-store-acquire.
2353 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2354   transition(vtos, vtos);
2355 
2356   Label Lacquire, Lisync;
2357 
2358   const Register Rcache        = R3_ARG1,
2359                  Rclass_or_obj = R22_tmp2,
2360                  Roffset       = R23_tmp3,
2361                  Rflags        = R31,
2362                  Rbtable       = R5_ARG3,
2363                  Rbc           = R6_ARG4,
2364                  Rscratch      = R12_scratch2;
2365 
2366   static address field_branch_table[number_of_states],
2367                  static_branch_table[number_of_states];
2368 
2369   address* branch_table = is_static ? static_branch_table : field_branch_table;
2370 
2371   // Get field offset.
2372   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2373 
2374   // JVMTI support
2375   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2376 
2377   // Load after possible GC.
2378   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2379 
2380   // Load pointer to branch table.
2381   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2382 
2383   // Get volatile flag.
2384   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2385   // Note: sync is needed before volatile load on PPC64.
2386 
2387   // Check field type.
2388   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2389 
2390 #ifdef ASSERT
2391   Label LFlagInvalid;
2392   __ cmpldi(CCR0, Rflags, number_of_states);
2393   __ bge(CCR0, LFlagInvalid);
2394 #endif
2395 
2396   // Load from branch table and dispatch (volatile case: one instruction ahead).
2397   __ sldi(Rflags, Rflags, LogBytesPerWord);
2398   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2399   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2400     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2401   }
2402   __ ldx(Rbtable, Rbtable, Rflags);
2403 
2404   // Get the obj from stack.
2405   if (!is_static) {
2406     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2407   } else {
2408     __ verify_oop(Rclass_or_obj);
2409   }
2410 
2411   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2412     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2413   }
2414   __ mtctr(Rbtable);
2415   __ bctr();
2416 
2417 #ifdef ASSERT
2418   __ bind(LFlagInvalid);
2419   __ stop("got invalid flag", 0x654);
2420 
2421   // __ bind(Lvtos);
2422   address pc_before_fence = __ pc();
2423   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2424   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2425   assert(branch_table[vtos] == 0, "can't compute twice");
2426   branch_table[vtos] = __ pc(); // non-volatile_entry point
2427   __ stop("vtos unexpected", 0x655);
2428 #endif
2429 
2430   __ align(32, 28, 28); // Align load.
2431   // __ bind(Ldtos);
2432   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2433   assert(branch_table[dtos] == 0, "can't compute twice");
2434   branch_table[dtos] = __ pc(); // non-volatile_entry point
2435   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2436   __ push(dtos);
2437   if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2438   {
2439     Label acquire_double;
2440     __ beq(CCR6, acquire_double); // Volatile?
2441     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2442 
2443     __ bind(acquire_double);
2444     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2445     __ beq_predict_taken(CCR0, Lisync);
2446     __ b(Lisync); // In case of NAN.
2447   }
2448 
2449   __ align(32, 28, 28); // Align load.
2450   // __ bind(Lftos);
2451   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2452   assert(branch_table[ftos] == 0, "can't compute twice");
2453   branch_table[ftos] = __ pc(); // non-volatile_entry point
2454   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2455   __ push(ftos);
2456   if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
2457   {
2458     Label acquire_float;
2459     __ beq(CCR6, acquire_float); // Volatile?
2460     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2461 
2462     __ bind(acquire_float);
2463     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2464     __ beq_predict_taken(CCR0, Lisync);
2465     __ b(Lisync); // In case of NAN.
2466   }
2467 
2468   __ align(32, 28, 28); // Align load.
2469   // __ bind(Litos);
2470   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2471   assert(branch_table[itos] == 0, "can't compute twice");
2472   branch_table[itos] = __ pc(); // non-volatile_entry point
2473   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2474   __ push(itos);
2475   if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2476   __ beq(CCR6, Lacquire); // Volatile?
2477   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2478 
2479   __ align(32, 28, 28); // Align load.
2480   // __ bind(Lltos);
2481   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2482   assert(branch_table[ltos] == 0, "can't compute twice");
2483   branch_table[ltos] = __ pc(); // non-volatile_entry point
2484   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2485   __ push(ltos);
2486   if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2487   __ beq(CCR6, Lacquire); // Volatile?
2488   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2489 
2490   __ align(32, 28, 28); // Align load.
2491   // __ bind(Lbtos);
2492   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2493   assert(branch_table[btos] == 0, "can't compute twice");
2494   branch_table[btos] = __ pc(); // non-volatile_entry point
2495   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2496   __ extsb(R17_tos, R17_tos);
2497   __ push(btos);
2498   if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2499   __ beq(CCR6, Lacquire); // Volatile?
2500   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2501 
2502   __ align(32, 28, 28); // Align load.
2503   // __ bind(Lctos);
2504   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2505   assert(branch_table[ctos] == 0, "can't compute twice");
2506   branch_table[ctos] = __ pc(); // non-volatile_entry point
2507   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2508   __ push(ctos);
2509   if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2510   __ beq(CCR6, Lacquire); // Volatile?
2511   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2512 
2513   __ align(32, 28, 28); // Align load.
2514   // __ bind(Lstos);
2515   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2516   assert(branch_table[stos] == 0, "can't compute twice");
2517   branch_table[stos] = __ pc(); // non-volatile_entry point
2518   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2519   __ push(stos);
2520   if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2521   __ beq(CCR6, Lacquire); // Volatile?
2522   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2523 
2524   __ align(32, 28, 28); // Align load.
2525   // __ bind(Latos);
2526   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2527   assert(branch_table[atos] == 0, "can't compute twice");
2528   branch_table[atos] = __ pc(); // non-volatile_entry point
2529   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2530   __ verify_oop(R17_tos);
2531   __ push(atos);
2532   //__ dcbt(R17_tos); // prefetch
2533   if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2534   __ beq(CCR6, Lacquire); // Volatile?
2535   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2536 
2537   __ align(32, 12);
2538   __ bind(Lacquire);
2539   __ twi_0(R17_tos);
2540   __ bind(Lisync);
2541   __ isync(); // acquire
2542 
2543 #ifdef ASSERT
2544   for (int i = 0; i<number_of_states; ++i) {
2545     assert(branch_table[i], "get initialization");
2546     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2547     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2548   }
2549 #endif
2550 }
2551 
2552 void TemplateTable::getfield(int byte_no) {
2553   getfield_or_static(byte_no, false);
2554 }
2555 
2556 void TemplateTable::getstatic(int byte_no) {
2557   getfield_or_static(byte_no, true);
2558 }
2559 
2560 // The registers cache and index expected to be set before call.
2561 // The function may destroy various registers, just not the cache and index registers.
2562 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2563 
2564   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2565 
2566   if (JvmtiExport::can_post_field_modification()) {
2567     Label Lno_field_mod_post;
2568 
2569     // Check if post field access in enabled.
2570     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2571     __ lwz(Rscratch, offs, Rscratch);
2572 
2573     __ cmpwi(CCR0, Rscratch, 0);
2574     __ beq(CCR0, Lno_field_mod_post);
2575 
2576     // Do the post
2577     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2578     const Register Robj = Rscratch;
2579 
2580     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2581     if (is_static) {
2582       // Life is simple. Null out the object pointer.
2583       __ li(Robj, 0);
2584     } else {
2585       // In case of the fast versions, value lives in registers => put it back on tos.
2586       int offs = Interpreter::expr_offset_in_bytes(0);
2587       Register base = R15_esp;
2588       switch(bytecode()) {
2589         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2590         case Bytecodes::_fast_iputfield: // Fall through
2591         case Bytecodes::_fast_bputfield: // Fall through
2592         case Bytecodes::_fast_cputfield: // Fall through
2593         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2594         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2595         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2596         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2597         default: {
2598           offs = 0;
2599           base = Robj;
2600           const Register Rflags = Robj;
2601           Label is_one_slot;
2602           // Life is harder. The stack holds the value on top, followed by the
2603           // object. We don't know the size of the value, though; it could be
2604           // one or two words depending on its type. As a result, we must find
2605           // the type to determine where the object is.
2606           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2607           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2608 
2609           __ cmpwi(CCR0, Rflags, ltos);
2610           __ cmpwi(CCR1, Rflags, dtos);
2611           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2612           __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal);
2613           __ beq(CCR0, is_one_slot);
2614           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2615           __ bind(is_one_slot);
2616           break;
2617         }
2618       }
2619       __ ld(Robj, offs, base);
2620       __ verify_oop(Robj);
2621     }
2622 
2623     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2624     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2625     __ get_cache_and_index_at_bcp(Rcache, 1);
2626 
2627     // In case of the fast versions, value lives in registers => put it back on tos.
2628     switch(bytecode()) {
2629       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2630       case Bytecodes::_fast_iputfield: // Fall through
2631       case Bytecodes::_fast_bputfield: // Fall through
2632       case Bytecodes::_fast_cputfield: // Fall through
2633       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2634       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2635       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2636       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2637       default: break; // Nothin' to do.
2638     }
2639 
2640     __ align(32, 12);
2641     __ bind(Lno_field_mod_post);
2642   }
2643 }
2644 
2645 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2646 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2647   Label Lvolatile;
2648 
2649   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2650                  Rclass_or_obj = R31,      // Needs to survive C call.
2651                  Roffset       = R22_tmp2, // Needs to survive C call.
2652                  Rflags        = R3_ARG1,
2653                  Rbtable       = R4_ARG2,
2654                  Rscratch      = R11_scratch1,
2655                  Rscratch2     = R12_scratch2,
2656                  Rscratch3     = R6_ARG4,
2657                  Rbc           = Rscratch3;
2658   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2659 
2660   static address field_branch_table[number_of_states],
2661                  static_branch_table[number_of_states];
2662 
2663   address* branch_table = is_static ? static_branch_table : field_branch_table;
2664 
2665   // Stack (grows up):
2666   //  value
2667   //  obj
2668 
2669   // Load the field offset.
2670   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2671   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2672   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2673 
2674   // Load pointer to branch table.
2675   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2676 
2677   // Get volatile flag.
2678   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2679 
2680   // Check the field type.
2681   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2682 
2683 #ifdef ASSERT
2684   Label LFlagInvalid;
2685   __ cmpldi(CCR0, Rflags, number_of_states);
2686   __ bge(CCR0, LFlagInvalid);
2687 #endif
2688 
2689   // Load from branch table and dispatch (volatile case: one instruction ahead).
2690   __ sldi(Rflags, Rflags, LogBytesPerWord);
2691   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
2692   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2693   __ ldx(Rbtable, Rbtable, Rflags);
2694 
2695   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2696   __ mtctr(Rbtable);
2697   __ bctr();
2698 
2699 #ifdef ASSERT
2700   __ bind(LFlagInvalid);
2701   __ stop("got invalid flag", 0x656);
2702 
2703   // __ bind(Lvtos);
2704   address pc_before_release = __ pc();
2705   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2706   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2707   assert(branch_table[vtos] == 0, "can't compute twice");
2708   branch_table[vtos] = __ pc(); // non-volatile_entry point
2709   __ stop("vtos unexpected", 0x657);
2710 #endif
2711 
2712   __ align(32, 28, 28); // Align pop.
2713   // __ bind(Ldtos);
2714   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2715   assert(branch_table[dtos] == 0, "can't compute twice");
2716   branch_table[dtos] = __ pc(); // non-volatile_entry point
2717   __ pop(dtos);
2718   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2719   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2720   if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
2721   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2722     __ beq(CR_is_vol, Lvolatile); // Volatile?
2723   }
2724   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2725 
2726   __ align(32, 28, 28); // Align pop.
2727   // __ bind(Lftos);
2728   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2729   assert(branch_table[ftos] == 0, "can't compute twice");
2730   branch_table[ftos] = __ pc(); // non-volatile_entry point
2731   __ pop(ftos);
2732   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2733   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2734   if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
2735   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2736     __ beq(CR_is_vol, Lvolatile); // Volatile?
2737   }
2738   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2739 
2740   __ align(32, 28, 28); // Align pop.
2741   // __ bind(Litos);
2742   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2743   assert(branch_table[itos] == 0, "can't compute twice");
2744   branch_table[itos] = __ pc(); // non-volatile_entry point
2745   __ pop(itos);
2746   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2747   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2748   if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
2749   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2750     __ beq(CR_is_vol, Lvolatile); // Volatile?
2751   }
2752   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2753 
2754   __ align(32, 28, 28); // Align pop.
2755   // __ bind(Lltos);
2756   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2757   assert(branch_table[ltos] == 0, "can't compute twice");
2758   branch_table[ltos] = __ pc(); // non-volatile_entry point
2759   __ pop(ltos);
2760   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2761   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2762   if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
2763   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2764     __ beq(CR_is_vol, Lvolatile); // Volatile?
2765   }
2766   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2767 
2768   __ align(32, 28, 28); // Align pop.
2769   // __ bind(Lbtos);
2770   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2771   assert(branch_table[btos] == 0, "can't compute twice");
2772   branch_table[btos] = __ pc(); // non-volatile_entry point
2773   __ pop(btos);
2774   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2775   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2776   if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
2777   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2778     __ beq(CR_is_vol, Lvolatile); // Volatile?
2779   }
2780   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2781 
2782   __ align(32, 28, 28); // Align pop.
2783   // __ bind(Lctos);
2784   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2785   assert(branch_table[ctos] == 0, "can't compute twice");
2786   branch_table[ctos] = __ pc(); // non-volatile_entry point
2787   __ pop(ctos);
2788   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2789   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2790   if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
2791   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2792     __ beq(CR_is_vol, Lvolatile); // Volatile?
2793   }
2794   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2795 
2796   __ align(32, 28, 28); // Align pop.
2797   // __ bind(Lstos);
2798   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2799   assert(branch_table[stos] == 0, "can't compute twice");
2800   branch_table[stos] = __ pc(); // non-volatile_entry point
2801   __ pop(stos);
2802   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2803   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2804   if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
2805   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2806     __ beq(CR_is_vol, Lvolatile); // Volatile?
2807   }
2808   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2809 
2810   __ align(32, 28, 28); // Align pop.
2811   // __ bind(Latos);
2812   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2813   assert(branch_table[atos] == 0, "can't compute twice");
2814   branch_table[atos] = __ pc(); // non-volatile_entry point
2815   __ pop(atos);
2816   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2817   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2818   if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
2819   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2820     __ beq(CR_is_vol, Lvolatile); // Volatile?
2821     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2822 
2823     __ align(32, 12);
2824     __ bind(Lvolatile);
2825     __ fence();
2826   }
2827   // fallthru: __ b(Lexit);
2828 
2829 #ifdef ASSERT
2830   for (int i = 0; i<number_of_states; ++i) {
2831     assert(branch_table[i], "put initialization");
2832     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2833     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2834   }
2835 #endif
2836 }
2837 
2838 void TemplateTable::putfield(int byte_no) {
2839   putfield_or_static(byte_no, false);
2840 }
2841 
2842 void TemplateTable::putstatic(int byte_no) {
2843   putfield_or_static(byte_no, true);
2844 }
2845 
2846 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
2847 void TemplateTable::jvmti_post_fast_field_mod() {
2848   __ should_not_reach_here();
2849 }
2850 
2851 void TemplateTable::fast_storefield(TosState state) {
2852   transition(state, vtos);
2853 
2854   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2855                  Rclass_or_obj = R31,      // Needs to survive C call.
2856                  Roffset       = R22_tmp2, // Needs to survive C call.
2857                  Rflags        = R3_ARG1,
2858                  Rscratch      = R11_scratch1,
2859                  Rscratch2     = R12_scratch2,
2860                  Rscratch3     = R4_ARG2;
2861   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2862 
2863   // Constant pool already resolved => Load flags and offset of field.
2864   __ get_cache_and_index_at_bcp(Rcache, 1);
2865   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
2866   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2867 
2868   // Get the obj and the final store addr.
2869   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2870 
2871   // Get volatile flag.
2872   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2873   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
2874   {
2875     Label LnotVolatile;
2876     __ beq(CCR0, LnotVolatile);
2877     __ release();
2878     __ align(32, 12);
2879     __ bind(LnotVolatile);
2880   }
2881 
2882   // Do the store and fencing.
2883   switch(bytecode()) {
2884     case Bytecodes::_fast_aputfield:
2885       // Store into the field.
2886       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2887       break;
2888 
2889     case Bytecodes::_fast_iputfield:
2890       __ stwx(R17_tos, Rclass_or_obj, Roffset);
2891       break;
2892 
2893     case Bytecodes::_fast_lputfield:
2894       __ stdx(R17_tos, Rclass_or_obj, Roffset);
2895       break;
2896 
2897     case Bytecodes::_fast_bputfield:
2898       __ stbx(R17_tos, Rclass_or_obj, Roffset);
2899       break;
2900 
2901     case Bytecodes::_fast_cputfield:
2902     case Bytecodes::_fast_sputfield:
2903       __ sthx(R17_tos, Rclass_or_obj, Roffset);
2904       break;
2905 
2906     case Bytecodes::_fast_fputfield:
2907       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2908       break;
2909 
2910     case Bytecodes::_fast_dputfield:
2911       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2912       break;
2913 
2914     default: ShouldNotReachHere();
2915   }
2916 
2917   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2918     Label LVolatile;
2919     __ beq(CR_is_vol, LVolatile);
2920     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2921 
2922     __ align(32, 12);
2923     __ bind(LVolatile);
2924     __ fence();
2925   }
2926 }
2927 
2928 void TemplateTable::fast_accessfield(TosState state) {
2929   transition(atos, state);
2930 
2931   Label LisVolatile;
2932   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2933 
2934   const Register Rcache        = R3_ARG1,
2935                  Rclass_or_obj = R17_tos,
2936                  Roffset       = R22_tmp2,
2937                  Rflags        = R23_tmp3,
2938                  Rscratch      = R12_scratch2;
2939 
2940   // Constant pool already resolved. Get the field offset.
2941   __ get_cache_and_index_at_bcp(Rcache, 1);
2942   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2943 
2944   // JVMTI support
2945   jvmti_post_field_access(Rcache, Rscratch, false, true);
2946 
2947   // Get the load address.
2948   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
2949 
2950   // Get volatile flag.
2951   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2952   __ bne(CCR0, LisVolatile);
2953 
2954   switch(bytecode()) {
2955     case Bytecodes::_fast_agetfield:
2956     {
2957       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2958       __ verify_oop(R17_tos);
2959       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2960 
2961       __ bind(LisVolatile);
2962       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2963       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2964       __ verify_oop(R17_tos);
2965       __ twi_0(R17_tos);
2966       __ isync();
2967       break;
2968     }
2969     case Bytecodes::_fast_igetfield:
2970     {
2971       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2972       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2973 
2974       __ bind(LisVolatile);
2975       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2976       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2977       __ twi_0(R17_tos);
2978       __ isync();
2979       break;
2980     }
2981     case Bytecodes::_fast_lgetfield:
2982     {
2983       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2984       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2985 
2986       __ bind(LisVolatile);
2987       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2988       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2989       __ twi_0(R17_tos);
2990       __ isync();
2991       break;
2992     }
2993     case Bytecodes::_fast_bgetfield:
2994     {
2995       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2996       __ extsb(R17_tos, R17_tos);
2997       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2998 
2999       __ bind(LisVolatile);
3000       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3001       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3002       __ twi_0(R17_tos);
3003       __ extsb(R17_tos, R17_tos);
3004       __ isync();
3005       break;
3006     }
3007     case Bytecodes::_fast_cgetfield:
3008     {
3009       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3010       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3011 
3012       __ bind(LisVolatile);
3013       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3014       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3015       __ twi_0(R17_tos);
3016       __ isync();
3017       break;
3018     }
3019     case Bytecodes::_fast_sgetfield:
3020     {
3021       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3022       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3023 
3024       __ bind(LisVolatile);
3025       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3026       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3027       __ twi_0(R17_tos);
3028       __ isync();
3029       break;
3030     }
3031     case Bytecodes::_fast_fgetfield:
3032     {
3033       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3034       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3035 
3036       __ bind(LisVolatile);
3037       Label Ldummy;
3038       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3039       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3040       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3041       __ bne_predict_not_taken(CCR0, Ldummy);
3042       __ bind(Ldummy);
3043       __ isync();
3044       break;
3045     }
3046     case Bytecodes::_fast_dgetfield:
3047     {
3048       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3049       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3050 
3051       __ bind(LisVolatile);
3052       Label Ldummy;
3053       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3054       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3055       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3056       __ bne_predict_not_taken(CCR0, Ldummy);
3057       __ bind(Ldummy);
3058       __ isync();
3059       break;
3060     }
3061     default: ShouldNotReachHere();
3062   }
3063 }
3064 
3065 void TemplateTable::fast_xaccess(TosState state) {
3066   transition(vtos, state);
3067 
3068   Label LisVolatile;
3069   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3070   const Register Rcache        = R3_ARG1,
3071                  Rclass_or_obj = R17_tos,
3072                  Roffset       = R22_tmp2,
3073                  Rflags        = R23_tmp3,
3074                  Rscratch      = R12_scratch2;
3075 
3076   __ ld(Rclass_or_obj, 0, R18_locals);
3077 
3078   // Constant pool already resolved. Get the field offset.
3079   __ get_cache_and_index_at_bcp(Rcache, 2);
3080   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3081 
3082   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3083 
3084   // Needed to report exception at the correct bcp.
3085   __ addi(R14_bcp, R14_bcp, 1);
3086 
3087   // Get the load address.
3088   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3089 
3090   // Get volatile flag.
3091   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3092   __ bne(CCR0, LisVolatile);
3093 
3094   switch(state) {
3095   case atos:
3096     {
3097       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3098       __ verify_oop(R17_tos);
3099       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3100 
3101       __ bind(LisVolatile);
3102       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3103       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3104       __ verify_oop(R17_tos);
3105       __ twi_0(R17_tos);
3106       __ isync();
3107       break;
3108     }
3109   case itos:
3110     {
3111       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3112       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3113 
3114       __ bind(LisVolatile);
3115       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3116       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3117       __ twi_0(R17_tos);
3118       __ isync();
3119       break;
3120     }
3121   case ftos:
3122     {
3123       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3124       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3125 
3126       __ bind(LisVolatile);
3127       Label Ldummy;
3128       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3129       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3130       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3131       __ bne_predict_not_taken(CCR0, Ldummy);
3132       __ bind(Ldummy);
3133       __ isync();
3134       break;
3135     }
3136   default: ShouldNotReachHere();
3137   }
3138   __ addi(R14_bcp, R14_bcp, -1);
3139 }
3140 
3141 // ============================================================================
3142 // Calls
3143 
3144 // Common code for invoke
3145 //
3146 // Input:
3147 //   - byte_no
3148 //
3149 // Output:
3150 //   - Rmethod:        The method to invoke next.
3151 //   - Rret_addr:      The return address to return to.
3152 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3153 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3154 //   - Rflags:         Method flags from const pool cache.
3155 //
3156 //  Kills:
3157 //   - Rscratch1
3158 //
3159 void TemplateTable::prepare_invoke(int byte_no,
3160                                    Register Rmethod,  // linked method (or i-klass)
3161                                    Register Rret_addr,// return address
3162                                    Register Rindex,   // itable index, MethodType, etc.
3163                                    Register Rrecv,    // If caller wants to see it.
3164                                    Register Rflags,   // If caller wants to test it.
3165                                    Register Rscratch
3166                                    ) {
3167   // Determine flags.
3168   const Bytecodes::Code code = bytecode();
3169   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3170   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3171   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3172   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3173   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3174   const bool load_receiver       = (Rrecv != noreg);
3175   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3176 
3177   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3178   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3179   assert_different_registers(Rret_addr, Rscratch);
3180 
3181   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3182 
3183   // Saving of SP done in call_from_interpreter.
3184 
3185   // Maybe push "appendix" to arguments.
3186   if (is_invokedynamic || is_invokehandle) {
3187     Label Ldone;
3188     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3189     __ beq(CCR0, Ldone);
3190     // Push "appendix" (MethodType, CallSite, etc.).
3191     // This must be done before we get the receiver,
3192     // since the parameter_size includes it.
3193     __ load_resolved_reference_at_index(Rscratch, Rindex);
3194     __ verify_oop(Rscratch);
3195     __ push_ptr(Rscratch);
3196     __ bind(Ldone);
3197   }
3198 
3199   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3200   if (load_receiver) {
3201     const Register Rparam_count = Rscratch;
3202     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3203     __ load_receiver(Rparam_count, Rrecv);
3204     __ verify_oop(Rrecv);
3205   }
3206 
3207   // Get return address.
3208   {
3209     Register Rtable_addr = Rscratch;
3210     Register Rret_type = Rret_addr;
3211     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3212 
3213     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3214     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3215     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3216     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3217     // Get return address.
3218     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3219   }
3220 }
3221 
3222 // Helper for virtual calls. Load target out of vtable and jump off!
3223 // Kills all passed registers.
3224 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3225 
3226   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3227   const Register Rtarget_method = Rindex;
3228 
3229   // Get target method & entry point.
3230   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3231   // Calc vtable addr scale the vtable index by 8.
3232   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
3233   // Load target.
3234   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3235   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3236   // Argument and return type profiling.
3237   __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3238   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3239 }
3240 
3241 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3242 void TemplateTable::invokevirtual(int byte_no) {
3243   transition(vtos, vtos);
3244 
3245   Register Rtable_addr = R11_scratch1,
3246            Rret_type = R12_scratch2,
3247            Rret_addr = R5_ARG3,
3248            Rflags = R22_tmp2, // Should survive C call.
3249            Rrecv = R3_ARG1,
3250            Rrecv_klass = Rrecv,
3251            Rvtableindex_or_method = R31, // Should survive C call.
3252            Rnum_params = R4_ARG2,
3253            Rnew_bc = R6_ARG4;
3254 
3255   Label LnotFinal;
3256 
3257   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3258 
3259   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3260   __ bfalse(CCR0, LnotFinal);
3261 
3262   patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3263   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3264 
3265   __ align(32, 12);
3266   __ bind(LnotFinal);
3267   // Load "this" pointer (receiver).
3268   __ rldicl(Rnum_params, Rflags, 64, 48);
3269   __ load_receiver(Rnum_params, Rrecv);
3270   __ verify_oop(Rrecv);
3271 
3272   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3273   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3274   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3275   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3276   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3277   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3278   __ load_klass(Rrecv_klass, Rrecv);
3279   __ verify_klass_ptr(Rrecv_klass);
3280   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3281 
3282   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3283 }
3284 
3285 void TemplateTable::fast_invokevfinal(int byte_no) {
3286   transition(vtos, vtos);
3287 
3288   assert(byte_no == f2_byte, "use this argument");
3289   Register Rflags  = R22_tmp2,
3290            Rmethod = R31;
3291   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3292   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3293 }
3294 
3295 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3296 
3297   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3298 
3299   // Load receiver from stack slot.
3300   Register Rrecv = Rscratch2;
3301   Register Rnum_params = Rrecv;
3302 
3303   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3304   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3305 
3306   // Get return address.
3307   Register Rtable_addr = Rscratch1,
3308            Rret_addr   = Rflags,
3309            Rret_type   = Rret_addr;
3310   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3311   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3312   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3313   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3314   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3315 
3316   // Load receiver and receiver NULL check.
3317   __ load_receiver(Rnum_params, Rrecv);
3318   __ null_check_throw(Rrecv, -1, Rscratch1);
3319 
3320   __ profile_final_call(Rrecv, Rscratch1);
3321   // Argument and return type profiling.
3322   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3323 
3324   // Do the call.
3325   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3326 }
3327 
3328 void TemplateTable::invokespecial(int byte_no) {
3329   assert(byte_no == f1_byte, "use this argument");
3330   transition(vtos, vtos);
3331 
3332   Register Rtable_addr = R3_ARG1,
3333            Rret_addr   = R4_ARG2,
3334            Rflags      = R5_ARG3,
3335            Rreceiver   = R6_ARG4,
3336            Rmethod     = R31;
3337 
3338   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3339 
3340   // Receiver NULL check.
3341   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3342 
3343   __ profile_call(R11_scratch1, R12_scratch2);
3344   // Argument and return type profiling.
3345   __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3346   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3347 }
3348 
3349 void TemplateTable::invokestatic(int byte_no) {
3350   assert(byte_no == f1_byte, "use this argument");
3351   transition(vtos, vtos);
3352 
3353   Register Rtable_addr = R3_ARG1,
3354            Rret_addr   = R4_ARG2,
3355            Rflags      = R5_ARG3;
3356 
3357   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3358 
3359   __ profile_call(R11_scratch1, R12_scratch2);
3360   // Argument and return type profiling.
3361   __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3362   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3363 }
3364 
3365 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3366                                                   Register Rret,
3367                                                   Register Rflags,
3368                                                   Register Rindex,
3369                                                   Register Rtemp1,
3370                                                   Register Rtemp2) {
3371 
3372   assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3373   Label LnotFinal;
3374 
3375   // Check for vfinal.
3376   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3377   __ bfalse(CCR0, LnotFinal);
3378 
3379   Register Rscratch = Rflags; // Rflags is dead now.
3380 
3381   // Final call case.
3382   __ profile_final_call(Rtemp1, Rscratch);
3383   // Argument and return type profiling.
3384   __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true);
3385   // Do the final call - the index (f2) contains the method.
3386   __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
3387 
3388   // Non-final callc case.
3389   __ bind(LnotFinal);
3390   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3391   generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
3392 }
3393 
3394 void TemplateTable::invokeinterface(int byte_no) {
3395   assert(byte_no == f1_byte, "use this argument");
3396   transition(vtos, vtos);
3397 
3398   const Register Rscratch1        = R11_scratch1,
3399                  Rscratch2        = R12_scratch2,
3400                  Rscratch3        = R9_ARG7,
3401                  Rscratch4        = R10_ARG8,
3402                  Rtable_addr      = Rscratch2,
3403                  Rinterface_klass = R5_ARG3,
3404                  Rret_type        = R8_ARG6,
3405                  Rret_addr        = Rret_type,
3406                  Rindex           = R6_ARG4,
3407                  Rreceiver        = R4_ARG2,
3408                  Rrecv_klass      = Rreceiver,
3409                  Rflags           = R7_ARG5;
3410 
3411   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
3412 
3413   // Get receiver klass.
3414   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
3415   __ load_klass(Rrecv_klass, Rreceiver);
3416 
3417   // Check corner case object method.
3418   Label LobjectMethod;
3419 
3420   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3421   __ btrue(CCR0, LobjectMethod);
3422 
3423   // Fallthrough: The normal invokeinterface case.
3424   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3425 
3426   // Find entry point to call.
3427   Label Lthrow_icc, Lthrow_ame;
3428   // Result will be returned in Rindex.
3429   __ mr(Rscratch4, Rrecv_klass);
3430   __ mr(Rscratch3, Rindex);
3431   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
3432 
3433   __ cmpdi(CCR0, Rindex, 0);
3434   __ beq(CCR0, Lthrow_ame);
3435   // Found entry. Jump off!
3436   // Argument and return type profiling.
3437   __ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true);
3438   __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
3439 
3440   // Vtable entry was NULL => Throw abstract method error.
3441   __ bind(Lthrow_ame);
3442   __ mr(Rrecv_klass, Rscratch4);
3443   __ mr(Rindex, Rscratch3);
3444   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3445 
3446   // Interface was not found => Throw incompatible class change error.
3447   __ bind(Lthrow_icc);
3448   __ mr(Rrecv_klass, Rscratch4);
3449   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3450 
3451   __ should_not_reach_here();
3452 
3453   // Special case of invokeinterface called for virtual method of
3454   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3455   // The invokeinterface was rewritten to a invokevirtual, hence we have
3456   // to handle this corner case. This code isn't produced by javac, but could
3457   // be produced by another compliant java compiler.
3458   __ bind(LobjectMethod);
3459   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
3460 }
3461 
3462 void TemplateTable::invokedynamic(int byte_no) {
3463   transition(vtos, vtos);
3464 
3465   const Register Rret_addr = R3_ARG1,
3466                  Rflags    = R4_ARG2,
3467                  Rmethod   = R22_tmp2,
3468                  Rscratch1 = R11_scratch1,
3469                  Rscratch2 = R12_scratch2;
3470 
3471   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3472 
3473   // Profile this call.
3474   __ profile_call(Rscratch1, Rscratch2);
3475 
3476   // Off we go. With the new method handles, we don't jump to a method handle
3477   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3478   // to be the callsite object the bootstrap method returned. This is passed to a
3479   // "link" method which does the dispatch (Most likely just grabs the MH stored
3480   // inside the callsite and does an invokehandle).
3481   // Argument and return type profiling.
3482   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3483   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3484 }
3485 
3486 void TemplateTable::invokehandle(int byte_no) {
3487   transition(vtos, vtos);
3488 
3489   const Register Rret_addr = R3_ARG1,
3490                  Rflags    = R4_ARG2,
3491                  Rrecv     = R5_ARG3,
3492                  Rmethod   = R22_tmp2,
3493                  Rscratch1 = R11_scratch1,
3494                  Rscratch2 = R12_scratch2;
3495 
3496   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3497   __ verify_method_ptr(Rmethod);
3498   __ null_check_throw(Rrecv, -1, Rscratch2);
3499 
3500   __ profile_final_call(Rrecv, Rscratch1);
3501 
3502   // Still no call from handle => We call the method handle interpreter here.
3503   // Argument and return type profiling.
3504   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3505   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3506 }
3507 
3508 // =============================================================================
3509 // Allocation
3510 
3511 // Puts allocated obj ref onto the expression stack.
3512 void TemplateTable::_new() {
3513   transition(vtos, atos);
3514 
3515   Label Lslow_case,
3516         Ldone,
3517         Linitialize_header,
3518         Lallocate_shared,
3519         Linitialize_object;  // Including clearing the fields.
3520 
3521   const Register RallocatedObject = R17_tos,
3522                  RinstanceKlass   = R9_ARG7,
3523                  Rscratch         = R11_scratch1,
3524                  Roffset          = R8_ARG6,
3525                  Rinstance_size   = Roffset,
3526                  Rcpool           = R4_ARG2,
3527                  Rtags            = R3_ARG1,
3528                  Rindex           = R5_ARG3;
3529 
3530   const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc();
3531 
3532   // --------------------------------------------------------------------------
3533   // Check if fast case is possible.
3534 
3535   // Load pointers to const pool and const pool's tags array.
3536   __ get_cpool_and_tags(Rcpool, Rtags);
3537   // Load index of constant pool entry.
3538   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3539 
3540   if (UseTLAB) {
3541     // Make sure the class we're about to instantiate has been resolved
3542     // This is done before loading instanceKlass to be consistent with the order
3543     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3544     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3545     __ lbzx(Rtags, Rindex, Rtags);
3546 
3547     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3548     __ bne(CCR0, Lslow_case);
3549 
3550     // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
3551     __ sldi(Roffset, Rindex, LogBytesPerWord);
3552     __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
3553     __ isync(); // Order load of instance Klass wrt. tags.
3554     __ ldx(RinstanceKlass, Roffset, Rscratch);
3555 
3556     // Make sure klass is fully initialized and get instance_size.
3557     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3558     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3559 
3560     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3561     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3562     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3563 
3564     __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized?
3565     __ beq(CCR0, Lslow_case);
3566 
3567     // --------------------------------------------------------------------------
3568     // Fast case:
3569     // Allocate the instance.
3570     // 1) Try to allocate in the TLAB.
3571     // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
3572     // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3573 
3574     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3575     Register RnewTopValue = R6_ARG4;
3576     Register RendValue    = R7_ARG5;
3577 
3578     // Check if we can allocate in the TLAB.
3579     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3580     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3581 
3582     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3583 
3584     // If there is enough space, we do not CAS and do not clear.
3585     __ cmpld(CCR0, RnewTopValue, RendValue);
3586     __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
3587 
3588     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3589 
3590     if (ZeroTLAB) {
3591       // The fields have already been cleared.
3592       __ b(Linitialize_header);
3593     } else {
3594       // Initialize both the header and fields.
3595       __ b(Linitialize_object);
3596     }
3597 
3598     // Fall through: TLAB was too small.
3599     if (allow_shared_alloc) {
3600       Register RtlabWasteLimitValue = R10_ARG8;
3601       Register RfreeValue = RnewTopValue;
3602 
3603       __ bind(Lallocate_shared);
3604       // Check if tlab should be discarded (refill_waste_limit >= free).
3605       __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3606       __ subf(RfreeValue, RoldTopValue, RendValue);
3607       __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
3608       __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
3609       __ bge(CCR0, Lslow_case);
3610 
3611       // Increment waste limit to prevent getting stuck on this slow path.
3612       __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
3613       __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3614     }
3615     // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
3616   }
3617   // else: Always go the slow path.
3618 
3619   // --------------------------------------------------------------------------
3620   // slow case
3621   __ bind(Lslow_case);
3622   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3623 
3624   if (UseTLAB) {
3625     __ b(Ldone);
3626     // --------------------------------------------------------------------------
3627     // Init1: Zero out newly allocated memory.
3628 
3629     if (!ZeroTLAB || allow_shared_alloc) {
3630       // Clear object fields.
3631       __ bind(Linitialize_object);
3632 
3633       // Initialize remaining object fields.
3634       Register Rbase = Rtags;
3635       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3636       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3637       __ srdi(Rinstance_size, Rinstance_size, 3);
3638 
3639       // Clear out object skipping header. Takes also care of the zero length case.
3640       __ clear_memory_doubleword(Rbase, Rinstance_size);
3641       // fallthru: __ b(Linitialize_header);
3642     }
3643 
3644     // --------------------------------------------------------------------------
3645     // Init2: Initialize the header: mark, klass
3646     __ bind(Linitialize_header);
3647 
3648     // Init mark.
3649     if (UseBiasedLocking) {
3650       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3651     } else {
3652       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3653     }
3654     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3655 
3656     // Init klass.
3657     __ store_klass_gap(RallocatedObject);
3658     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3659 
3660     // Check and trigger dtrace event.
3661     {
3662       SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
3663       __ push(atos);
3664       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3665       __ pop(atos);
3666     }
3667   }
3668 
3669   // continue
3670   __ bind(Ldone);
3671 
3672   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3673   __ membar(Assembler::StoreStore);
3674 }
3675 
3676 void TemplateTable::newarray() {
3677   transition(itos, atos);
3678 
3679   __ lbz(R4, 1, R14_bcp);
3680   __ extsw(R5, R17_tos);
3681   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3682 
3683   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3684   __ membar(Assembler::StoreStore);
3685 }
3686 
3687 void TemplateTable::anewarray() {
3688   transition(itos, atos);
3689 
3690   __ get_constant_pool(R4);
3691   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3692   __ extsw(R6, R17_tos); // size
3693   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3694 
3695   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3696   __ membar(Assembler::StoreStore);
3697 }
3698 
3699 // Allocate a multi dimensional array
3700 void TemplateTable::multianewarray() {
3701   transition(vtos, atos);
3702 
3703   Register Rptr = R31; // Needs to survive C call.
3704 
3705   // Put ndims * wordSize into frame temp slot
3706   __ lbz(Rptr, 3, R14_bcp);
3707   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3708   // Esp points past last_dim, so set to R4 to first_dim address.
3709   __ add(R4, Rptr, R15_esp);
3710   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3711   // Pop all dimensions off the stack.
3712   __ add(R15_esp, Rptr, R15_esp);
3713 
3714   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3715   __ membar(Assembler::StoreStore);
3716 }
3717 
3718 void TemplateTable::arraylength() {
3719   transition(atos, itos);
3720 
3721   Label LnoException;
3722   __ verify_oop(R17_tos);
3723   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3724   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3725 }
3726 
3727 // ============================================================================
3728 // Typechecks
3729 
3730 void TemplateTable::checkcast() {
3731   transition(atos, atos);
3732 
3733   Label Ldone, Lis_null, Lquicked, Lresolved;
3734   Register Roffset         = R6_ARG4,
3735            RobjKlass       = R4_ARG2,
3736            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3737            Rcpool          = R11_scratch1,
3738            Rtags           = R12_scratch2;
3739 
3740   // Null does not pass.
3741   __ cmpdi(CCR0, R17_tos, 0);
3742   __ beq(CCR0, Lis_null);
3743 
3744   // Get constant pool tag to find out if the bytecode has already been "quickened".
3745   __ get_cpool_and_tags(Rcpool, Rtags);
3746 
3747   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3748 
3749   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3750   __ lbzx(Rtags, Rtags, Roffset);
3751 
3752   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3753   __ beq(CCR0, Lquicked);
3754 
3755   // Call into the VM to "quicken" instanceof.
3756   __ push_ptr();  // for GC
3757   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3758   __ get_vm_result_2(RspecifiedKlass);
3759   __ pop_ptr();   // Restore receiver.
3760   __ b(Lresolved);
3761 
3762   // Extract target class from constant pool.
3763   __ bind(Lquicked);
3764   __ sldi(Roffset, Roffset, LogBytesPerWord);
3765   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3766   __ isync(); // Order load of specified Klass wrt. tags.
3767   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3768 
3769   // Do the checkcast.
3770   __ bind(Lresolved);
3771   // Get value klass in RobjKlass.
3772   __ load_klass(RobjKlass, R17_tos);
3773   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3774   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3775 
3776   // Not a subtype; so must throw exception
3777   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3778   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3779   __ mtctr(R11_scratch1);
3780   __ bctr();
3781 
3782   // Profile the null case.
3783   __ align(32, 12);
3784   __ bind(Lis_null);
3785   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3786 
3787   __ align(32, 12);
3788   __ bind(Ldone);
3789 }
3790 
3791 // Output:
3792 //   - tos == 0: Obj was null or not an instance of class.
3793 //   - tos == 1: Obj was an instance of class.
3794 void TemplateTable::instanceof() {
3795   transition(atos, itos);
3796 
3797   Label Ldone, Lis_null, Lquicked, Lresolved;
3798   Register Roffset         = R5_ARG3,
3799            RobjKlass       = R4_ARG2,
3800            RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
3801            Rcpool          = R11_scratch1,
3802            Rtags           = R12_scratch2;
3803 
3804   // Null does not pass.
3805   __ cmpdi(CCR0, R17_tos, 0);
3806   __ beq(CCR0, Lis_null);
3807 
3808   // Get constant pool tag to find out if the bytecode has already been "quickened".
3809   __ get_cpool_and_tags(Rcpool, Rtags);
3810 
3811   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3812 
3813   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3814   __ lbzx(Rtags, Rtags, Roffset);
3815 
3816   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3817   __ beq(CCR0, Lquicked);
3818 
3819   // Call into the VM to "quicken" instanceof.
3820   __ push_ptr();  // for GC
3821   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3822   __ get_vm_result_2(RspecifiedKlass);
3823   __ pop_ptr();   // Restore receiver.
3824   __ b(Lresolved);
3825 
3826   // Extract target class from constant pool.
3827   __ bind(Lquicked);
3828   __ sldi(Roffset, Roffset, LogBytesPerWord);
3829   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3830   __ isync(); // Order load of specified Klass wrt. tags.
3831   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3832 
3833   // Do the checkcast.
3834   __ bind(Lresolved);
3835   // Get value klass in RobjKlass.
3836   __ load_klass(RobjKlass, R17_tos);
3837   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3838   __ li(R17_tos, 1);
3839   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3840   __ li(R17_tos, 0);
3841 
3842   if (ProfileInterpreter) {
3843     __ b(Ldone);
3844   }
3845 
3846   // Profile the null case.
3847   __ align(32, 12);
3848   __ bind(Lis_null);
3849   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
3850 
3851   __ align(32, 12);
3852   __ bind(Ldone);
3853 }
3854 
3855 // =============================================================================
3856 // Breakpoints
3857 
3858 void TemplateTable::_breakpoint() {
3859   transition(vtos, vtos);
3860 
3861   // Get the unpatched byte code.
3862   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
3863   __ mr(R31, R3_RET);
3864 
3865   // Post the breakpoint event.
3866   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
3867 
3868   // Complete the execution of original bytecode.
3869   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
3870 }
3871 
3872 // =============================================================================
3873 // Exceptions
3874 
3875 void TemplateTable::athrow() {
3876   transition(atos, vtos);
3877 
3878   // Exception oop is in tos
3879   __ verify_oop(R17_tos);
3880 
3881   __ null_check_throw(R17_tos, -1, R11_scratch1);
3882 
3883   // Throw exception interpreter entry expects exception oop to be in R3.
3884   __ mr(R3_RET, R17_tos);
3885   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
3886   __ mtctr(R11_scratch1);
3887   __ bctr();
3888 }
3889 
3890 // =============================================================================
3891 // Synchronization
3892 // Searches the basic object lock list on the stack for a free slot
3893 // and uses it to lock the obect in tos.
3894 //
3895 // Recursive locking is enabled by exiting the search if the same
3896 // object is already found in the list. Thus, a new basic lock obj lock
3897 // is allocated "higher up" in the stack and thus is found first
3898 // at next monitor exit.
3899 void TemplateTable::monitorenter() {
3900   transition(atos, vtos);
3901 
3902   __ verify_oop(R17_tos);
3903 
3904   Register Rcurrent_monitor  = R11_scratch1,
3905            Rcurrent_obj      = R12_scratch2,
3906            Robj_to_lock      = R17_tos,
3907            Rscratch1         = R3_ARG1,
3908            Rscratch2         = R4_ARG2,
3909            Rscratch3         = R5_ARG3,
3910            Rcurrent_obj_addr = R6_ARG4;
3911 
3912   // ------------------------------------------------------------------------------
3913   // Null pointer exception.
3914   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
3915 
3916   // Try to acquire a lock on the object.
3917   // Repeat until succeeded (i.e., until monitorenter returns true).
3918 
3919   // ------------------------------------------------------------------------------
3920   // Find a free slot in the monitor block.
3921   Label Lfound, Lexit, Lallocate_new;
3922   ConditionRegister found_free_slot = CCR0,
3923                     found_same_obj  = CCR1,
3924                     reached_limit   = CCR6;
3925   {
3926     Label Lloop, Lentry;
3927     Register Rlimit = Rcurrent_monitor;
3928 
3929     // Set up search loop - start with topmost monitor.
3930     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
3931 
3932     __ ld(Rlimit, 0, R1_SP);
3933     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
3934 
3935     // Check if any slot is present => short cut to allocation if not.
3936     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3937     __ bgt(reached_limit, Lallocate_new);
3938 
3939     // Pre-load topmost slot.
3940     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3941     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3942     // The search loop.
3943     __ bind(Lloop);
3944     // Found free slot?
3945     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
3946     // Is this entry for same obj? If so, stop the search and take the found
3947     // free slot or allocate a new one to enable recursive locking.
3948     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
3949     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3950     __ beq(found_free_slot, Lexit);
3951     __ beq(found_same_obj, Lallocate_new);
3952     __ bgt(reached_limit, Lallocate_new);
3953     // Check if last allocated BasicLockObj reached.
3954     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3955     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3956     // Next iteration if unchecked BasicObjectLocks exist on the stack.
3957     __ b(Lloop);
3958   }
3959 
3960   // ------------------------------------------------------------------------------
3961   // Check if we found a free slot.
3962   __ bind(Lexit);
3963 
3964   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
3965   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
3966   __ b(Lfound);
3967 
3968   // We didn't find a free BasicObjLock => allocate one.
3969   __ align(32, 12);
3970   __ bind(Lallocate_new);
3971   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
3972   __ mr(Rcurrent_monitor, R26_monitor);
3973   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
3974 
3975   // ------------------------------------------------------------------------------
3976   // We now have a slot to lock.
3977   __ bind(Lfound);
3978 
3979   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3980   // The object has already been poped from the stack, so the expression stack looks correct.
3981   __ addi(R14_bcp, R14_bcp, 1);
3982 
3983   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
3984   __ lock_object(Rcurrent_monitor, Robj_to_lock);
3985 
3986   // Check if there's enough space on the stack for the monitors after locking.
3987   Label Lskip_stack_check;
3988   // Optimization: If the monitors stack section is less then a std page size (4K) don't run
3989   // the stack check. There should be enough shadow pages to fit that in.
3990   __ ld(Rscratch3, 0, R1_SP);
3991   __ sub(Rscratch3, Rscratch3, R26_monitor);
3992   __ cmpdi(CCR0, Rscratch3, 4*K);
3993   __ blt(CCR0, Lskip_stack_check);
3994 
3995   DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
3996   __ li(Rscratch1, 0);
3997   __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
3998 
3999   __ align(32, 12);
4000   __ bind(Lskip_stack_check);
4001 
4002   // The bcp has already been incremented. Just need to dispatch to next instruction.
4003   __ dispatch_next(vtos);
4004 }
4005 
4006 void TemplateTable::monitorexit() {
4007   transition(atos, vtos);
4008   __ verify_oop(R17_tos);
4009 
4010   Register Rcurrent_monitor  = R11_scratch1,
4011            Rcurrent_obj      = R12_scratch2,
4012            Robj_to_lock      = R17_tos,
4013            Rcurrent_obj_addr = R3_ARG1,
4014            Rlimit            = R4_ARG2;
4015   Label Lfound, Lillegal_monitor_state;
4016 
4017   // Check corner case: unbalanced monitorEnter / Exit.
4018   __ ld(Rlimit, 0, R1_SP);
4019   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4020 
4021   // Null pointer check.
4022   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4023 
4024   __ cmpld(CCR0, R26_monitor, Rlimit);
4025   __ bgt(CCR0, Lillegal_monitor_state);
4026 
4027   // Find the corresponding slot in the monitors stack section.
4028   {
4029     Label Lloop;
4030 
4031     // Start with topmost monitor.
4032     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4033     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4034     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4035     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4036 
4037     __ bind(Lloop);
4038     // Is this entry for same obj?
4039     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4040     __ beq(CCR0, Lfound);
4041 
4042     // Check if last allocated BasicLockObj reached.
4043 
4044     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4045     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4046     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4047 
4048     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4049     __ ble(CCR0, Lloop);
4050   }
4051 
4052   // Fell through without finding the basic obj lock => throw up!
4053   __ bind(Lillegal_monitor_state);
4054   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4055   __ should_not_reach_here();
4056 
4057   __ align(32, 12);
4058   __ bind(Lfound);
4059   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4060           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4061   __ unlock_object(Rcurrent_monitor);
4062 }
4063 
4064 // ============================================================================
4065 // Wide bytecodes
4066 
4067 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4068 void TemplateTable::wide() {
4069   transition(vtos, vtos);
4070 
4071   const Register Rtable = R11_scratch1,
4072                  Rindex = R12_scratch2,
4073                  Rtmp   = R0;
4074 
4075   __ lbz(Rindex, 1, R14_bcp);
4076 
4077   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4078 
4079   __ slwi(Rindex, Rindex, LogBytesPerWord);
4080   __ ldx(Rtmp, Rtable, Rindex);
4081   __ mtctr(Rtmp);
4082   __ bctr();
4083   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4084 }
4085 #endif // !CC_INTERP