1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 #define __ _masm->
  42 
  43 // Misc helpers
  44 
  45 // Do an oop store like *(base + index + offset) = val
  46 // index can be noreg,
  47 static void do_oop_store(InterpreterMacroAssembler* _masm,
  48                          Register base,
  49                          Register index,
  50                          int offset,
  51                          Register val,
  52                          Register tmp,
  53                          BarrierSet::Name barrier,
  54                          bool precise) {
  55   assert(tmp != val && tmp != base && tmp != index, "register collision");
  56   assert(index == noreg || offset == 0, "only one offset");
  57   switch (barrier) {
  58 #if INCLUDE_ALL_GCS
  59     case BarrierSet::G1SATBCT:
  60     case BarrierSet::G1SATBCTLogging:
  61       {
  62         // Load and record the previous value.
  63         __ g1_write_barrier_pre(base, index, offset,
  64                                 noreg /* pre_val */,
  65                                 tmp, true /*preserve_o_regs*/);
  66 
  67         // G1 barrier needs uncompressed oop for region cross check.
  68         Register new_val = val;
  69         if (UseCompressedOops && val != G0) {
  70           new_val = tmp;
  71           __ mov(val, new_val);
  72         }
  73 
  74         if (index == noreg ) {
  75           assert(Assembler::is_simm13(offset), "fix this code");
  76           __ store_heap_oop(val, base, offset);
  77         } else {
  78           __ store_heap_oop(val, base, index);
  79         }
  80 
  81         // No need for post barrier if storing NULL
  82         if (val != G0) {
  83           if (precise) {
  84             if (index == noreg) {
  85               __ add(base, offset, base);
  86             } else {
  87               __ add(base, index, base);
  88             }
  89           }
  90           __ g1_write_barrier_post(base, new_val, tmp);
  91         }
  92       }
  93       break;
  94 #endif // INCLUDE_ALL_GCS
  95     case BarrierSet::CardTableModRef:
  96     case BarrierSet::CardTableExtension:
  97       {
  98         if (index == noreg ) {
  99           assert(Assembler::is_simm13(offset), "fix this code");
 100           __ store_heap_oop(val, base, offset);
 101         } else {
 102           __ store_heap_oop(val, base, index);
 103         }
 104         // No need for post barrier if storing NULL
 105         if (val != G0) {
 106           if (precise) {
 107             if (index == noreg) {
 108               __ add(base, offset, base);
 109             } else {
 110               __ add(base, index, base);
 111             }
 112           }
 113           __ card_write_barrier_post(base, val, tmp);
 114         }
 115       }
 116       break;
 117     case BarrierSet::ModRef:
 118       ShouldNotReachHere();
 119       break;
 120     default      :
 121       ShouldNotReachHere();
 122 
 123   }
 124 }
 125 
 126 
 127 //----------------------------------------------------------------------------------------------------
 128 // Platform-dependent initialization
 129 
 130 void TemplateTable::pd_initialize() {
 131   // (none)
 132 }
 133 
 134 
 135 //----------------------------------------------------------------------------------------------------
 136 // Condition conversion
 137 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 138   switch (cc) {
 139     case TemplateTable::equal        : return Assembler::notEqual;
 140     case TemplateTable::not_equal    : return Assembler::equal;
 141     case TemplateTable::less         : return Assembler::greaterEqual;
 142     case TemplateTable::less_equal   : return Assembler::greater;
 143     case TemplateTable::greater      : return Assembler::lessEqual;
 144     case TemplateTable::greater_equal: return Assembler::less;
 145   }
 146   ShouldNotReachHere();
 147   return Assembler::zero;
 148 }
 149 
 150 //----------------------------------------------------------------------------------------------------
 151 // Miscelaneous helper routines
 152 
 153 
 154 Address TemplateTable::at_bcp(int offset) {
 155   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 156   return Address(Lbcp, offset);
 157 }
 158 
 159 
 160 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 161                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 162                                    int byte_no) {
 163   // With sharing on, may need to test Method* flag.
 164   if (!RewriteBytecodes)  return;
 165   Label L_patch_done;
 166 
 167   switch (bc) {
 168   case Bytecodes::_fast_aputfield:
 169   case Bytecodes::_fast_bputfield:
 170   case Bytecodes::_fast_cputfield:
 171   case Bytecodes::_fast_dputfield:
 172   case Bytecodes::_fast_fputfield:
 173   case Bytecodes::_fast_iputfield:
 174   case Bytecodes::_fast_lputfield:
 175   case Bytecodes::_fast_sputfield:
 176     {
 177       // We skip bytecode quickening for putfield instructions when
 178       // the put_code written to the constant pool cache is zero.
 179       // This is required so that every execution of this instruction
 180       // calls out to InterpreterRuntime::resolve_get_put to do
 181       // additional, required work.
 182       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 183       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 184       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 185       __ set(bc, bc_reg);
 186       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 187     }
 188     break;
 189   default:
 190     assert(byte_no == -1, "sanity");
 191     if (load_bc_into_bc_reg) {
 192       __ set(bc, bc_reg);
 193     }
 194   }
 195 
 196   if (JvmtiExport::can_post_breakpoint()) {
 197     Label L_fast_patch;
 198     __ ldub(at_bcp(0), temp_reg);
 199     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 200     // perform the quickening, slowly, in the bowels of the breakpoint table
 201     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 202     __ ba_short(L_patch_done);
 203     __ bind(L_fast_patch);
 204   }
 205 
 206 #ifdef ASSERT
 207   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 208   Label L_okay;
 209   __ ldub(at_bcp(0), temp_reg);
 210   __ cmp(temp_reg, orig_bytecode);
 211   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 212   __ delayed()->cmp(temp_reg, bc_reg);
 213   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 214   __ delayed()->nop();
 215   __ stop("patching the wrong bytecode");
 216   __ bind(L_okay);
 217 #endif
 218 
 219   // patch bytecode
 220   __ stb(bc_reg, at_bcp(0));
 221   __ bind(L_patch_done);
 222 }
 223 
 224 //----------------------------------------------------------------------------------------------------
 225 // Individual instructions
 226 
 227 void TemplateTable::nop() {
 228   transition(vtos, vtos);
 229   // nothing to do
 230 }
 231 
 232 void TemplateTable::shouldnotreachhere() {
 233   transition(vtos, vtos);
 234   __ stop("shouldnotreachhere bytecode");
 235 }
 236 
 237 void TemplateTable::aconst_null() {
 238   transition(vtos, atos);
 239   __ clr(Otos_i);
 240 }
 241 
 242 
 243 void TemplateTable::iconst(int value) {
 244   transition(vtos, itos);
 245   __ set(value, Otos_i);
 246 }
 247 
 248 
 249 void TemplateTable::lconst(int value) {
 250   transition(vtos, ltos);
 251   assert(value >= 0, "check this code");
 252 #ifdef _LP64
 253   __ set(value, Otos_l);
 254 #else
 255   __ set(value, Otos_l2);
 256   __ clr( Otos_l1);
 257 #endif
 258 }
 259 
 260 
 261 void TemplateTable::fconst(int value) {
 262   transition(vtos, ftos);
 263   static float zero = 0.0, one = 1.0, two = 2.0;
 264   float* p;
 265   switch( value ) {
 266    default: ShouldNotReachHere();
 267    case 0:  p = &zero;  break;
 268    case 1:  p = &one;   break;
 269    case 2:  p = &two;   break;
 270   }
 271   AddressLiteral a(p);
 272   __ sethi(a, G3_scratch);
 273   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 274 }
 275 
 276 
 277 void TemplateTable::dconst(int value) {
 278   transition(vtos, dtos);
 279   static double zero = 0.0, one = 1.0;
 280   double* p;
 281   switch( value ) {
 282    default: ShouldNotReachHere();
 283    case 0:  p = &zero;  break;
 284    case 1:  p = &one;   break;
 285   }
 286   AddressLiteral a(p);
 287   __ sethi(a, G3_scratch);
 288   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 289 }
 290 
 291 
 292 // %%%%% Should factore most snippet templates across platforms
 293 
 294 void TemplateTable::bipush() {
 295   transition(vtos, itos);
 296   __ ldsb( at_bcp(1), Otos_i );
 297 }
 298 
 299 void TemplateTable::sipush() {
 300   transition(vtos, itos);
 301   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 302 }
 303 
 304 void TemplateTable::ldc(bool wide) {
 305   transition(vtos, vtos);
 306   Label call_ldc, notInt, isString, notString, notClass, exit;
 307 
 308   if (wide) {
 309     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 310   } else {
 311     __ ldub(Lbcp, 1, O1);
 312   }
 313   __ get_cpool_and_tags(O0, O2);
 314 
 315   const int base_offset = ConstantPool::header_size() * wordSize;
 316   const int tags_offset = Array<u1>::base_offset_in_bytes();
 317 
 318   // get type from tags
 319   __ add(O2, tags_offset, O2);
 320   __ ldub(O2, O1, O2);
 321 
 322   // unresolved class? If so, must resolve
 323   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 324 
 325   // unresolved class in error state
 326   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 327 
 328   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 329   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 330   __ delayed()->add(O0, base_offset, O0);
 331 
 332   __ bind(call_ldc);
 333   __ set(wide, O1);
 334   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 335   __ push(atos);
 336   __ ba_short(exit);
 337 
 338   __ bind(notClass);
 339  // __ add(O0, base_offset, O0);
 340   __ sll(O1, LogBytesPerWord, O1);
 341   __ cmp(O2, JVM_CONSTANT_Integer);
 342   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 343   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 344   __ ld(O0, O1, Otos_i);
 345   __ push(itos);
 346   __ ba_short(exit);
 347 
 348   __ bind(notInt);
 349  // __ cmp(O2, JVM_CONSTANT_String);
 350   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 351   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 352   __ bind(isString);
 353   __ stop("string should be rewritten to fast_aldc");
 354   __ ba_short(exit);
 355 
 356   __ bind(notString);
 357  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 358   __ push(ftos);
 359 
 360   __ bind(exit);
 361 }
 362 
 363 // Fast path for caching oop constants.
 364 // %%% We should use this to handle Class and String constants also.
 365 // %%% It will simplify the ldc/primitive path considerably.
 366 void TemplateTable::fast_aldc(bool wide) {
 367   transition(vtos, atos);
 368 
 369   int index_size = wide ? sizeof(u2) : sizeof(u1);
 370   Label resolved;
 371 
 372   // We are resolved if the resolved reference cache entry contains a
 373   // non-null object (CallSite, etc.)
 374   assert_different_registers(Otos_i, G3_scratch);
 375   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 376   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 377   __ tst(Otos_i);
 378   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 379   __ delayed()->set((int)bytecode(), O1);
 380 
 381   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 382 
 383   // first time invocation - must resolve first
 384   __ call_VM(Otos_i, entry, O1);
 385   __ bind(resolved);
 386   __ verify_oop(Otos_i);
 387 }
 388 
 389 
 390 void TemplateTable::ldc2_w() {
 391   transition(vtos, vtos);
 392   Label Long, exit;
 393 
 394   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 395   __ get_cpool_and_tags(O0, O2);
 396 
 397   const int base_offset = ConstantPool::header_size() * wordSize;
 398   const int tags_offset = Array<u1>::base_offset_in_bytes();
 399   // get type from tags
 400   __ add(O2, tags_offset, O2);
 401   __ ldub(O2, O1, O2);
 402 
 403   __ sll(O1, LogBytesPerWord, O1);
 404   __ add(O0, O1, G3_scratch);
 405 
 406   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 407   // A double can be placed at word-aligned locations in the constant pool.
 408   // Check out Conversions.java for an example.
 409   // Also ConstantPool::header_size() is 20, which makes it very difficult
 410   // to double-align double on the constant pool.  SG, 11/7/97
 411 #ifdef _LP64
 412   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 413 #else
 414   FloatRegister f = Ftos_d;
 415   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 416   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 417          f->successor());
 418 #endif
 419   __ push(dtos);
 420   __ ba_short(exit);
 421 
 422   __ bind(Long);
 423 #ifdef _LP64
 424   __ ldx(G3_scratch, base_offset, Otos_l);
 425 #else
 426   __ ld(G3_scratch, base_offset, Otos_l);
 427   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 428 #endif
 429   __ push(ltos);
 430 
 431   __ bind(exit);
 432 }
 433 
 434 
 435 void TemplateTable::locals_index(Register reg, int offset) {
 436   __ ldub( at_bcp(offset), reg );
 437 }
 438 
 439 
 440 void TemplateTable::locals_index_wide(Register reg) {
 441   // offset is 2, not 1, because Lbcp points to wide prefix code
 442   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 443 }
 444 
 445 void TemplateTable::iload() {
 446   transition(vtos, itos);
 447   // Rewrite iload,iload  pair into fast_iload2
 448   //         iload,caload pair into fast_icaload
 449   if (RewriteFrequentPairs) {
 450     Label rewrite, done;
 451 
 452     // get next byte
 453     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 454 
 455     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 456     // last two iloads in a pair.  Comparing against fast_iload means that
 457     // the next bytecode is neither an iload or a caload, and therefore
 458     // an iload pair.
 459     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 460 
 461     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 462     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 463     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 464 
 465     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 466     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 467     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 468 
 469     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 470     // rewrite
 471     // G4_scratch: fast bytecode
 472     __ bind(rewrite);
 473     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 474     __ bind(done);
 475   }
 476 
 477   // Get the local value into tos
 478   locals_index(G3_scratch);
 479   __ access_local_int( G3_scratch, Otos_i );
 480 }
 481 
 482 void TemplateTable::fast_iload2() {
 483   transition(vtos, itos);
 484   locals_index(G3_scratch);
 485   __ access_local_int( G3_scratch, Otos_i );
 486   __ push_i();
 487   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 488   __ access_local_int( G3_scratch, Otos_i );
 489 }
 490 
 491 void TemplateTable::fast_iload() {
 492   transition(vtos, itos);
 493   locals_index(G3_scratch);
 494   __ access_local_int( G3_scratch, Otos_i );
 495 }
 496 
 497 void TemplateTable::lload() {
 498   transition(vtos, ltos);
 499   locals_index(G3_scratch);
 500   __ access_local_long( G3_scratch, Otos_l );
 501 }
 502 
 503 
 504 void TemplateTable::fload() {
 505   transition(vtos, ftos);
 506   locals_index(G3_scratch);
 507   __ access_local_float( G3_scratch, Ftos_f );
 508 }
 509 
 510 
 511 void TemplateTable::dload() {
 512   transition(vtos, dtos);
 513   locals_index(G3_scratch);
 514   __ access_local_double( G3_scratch, Ftos_d );
 515 }
 516 
 517 
 518 void TemplateTable::aload() {
 519   transition(vtos, atos);
 520   locals_index(G3_scratch);
 521   __ access_local_ptr( G3_scratch, Otos_i);
 522 }
 523 
 524 
 525 void TemplateTable::wide_iload() {
 526   transition(vtos, itos);
 527   locals_index_wide(G3_scratch);
 528   __ access_local_int( G3_scratch, Otos_i );
 529 }
 530 
 531 
 532 void TemplateTable::wide_lload() {
 533   transition(vtos, ltos);
 534   locals_index_wide(G3_scratch);
 535   __ access_local_long( G3_scratch, Otos_l );
 536 }
 537 
 538 
 539 void TemplateTable::wide_fload() {
 540   transition(vtos, ftos);
 541   locals_index_wide(G3_scratch);
 542   __ access_local_float( G3_scratch, Ftos_f );
 543 }
 544 
 545 
 546 void TemplateTable::wide_dload() {
 547   transition(vtos, dtos);
 548   locals_index_wide(G3_scratch);
 549   __ access_local_double( G3_scratch, Ftos_d );
 550 }
 551 
 552 
 553 void TemplateTable::wide_aload() {
 554   transition(vtos, atos);
 555   locals_index_wide(G3_scratch);
 556   __ access_local_ptr( G3_scratch, Otos_i );
 557   __ verify_oop(Otos_i);
 558 }
 559 
 560 
 561 void TemplateTable::iaload() {
 562   transition(itos, itos);
 563   // Otos_i: index
 564   // tos: array
 565   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 566   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 567 }
 568 
 569 
 570 void TemplateTable::laload() {
 571   transition(itos, ltos);
 572   // Otos_i: index
 573   // O2: array
 574   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 575   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 576 }
 577 
 578 
 579 void TemplateTable::faload() {
 580   transition(itos, ftos);
 581   // Otos_i: index
 582   // O2: array
 583   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 584   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 585 }
 586 
 587 
 588 void TemplateTable::daload() {
 589   transition(itos, dtos);
 590   // Otos_i: index
 591   // O2: array
 592   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 593   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 594 }
 595 
 596 
 597 void TemplateTable::aaload() {
 598   transition(itos, atos);
 599   // Otos_i: index
 600   // tos: array
 601   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 602   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 603   __ verify_oop(Otos_i);
 604 }
 605 
 606 
 607 void TemplateTable::baload() {
 608   transition(itos, itos);
 609   // Otos_i: index
 610   // tos: array
 611   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 612   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 613 }
 614 
 615 
 616 void TemplateTable::caload() {
 617   transition(itos, itos);
 618   // Otos_i: index
 619   // tos: array
 620   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 621   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 622 }
 623 
 624 void TemplateTable::fast_icaload() {
 625   transition(vtos, itos);
 626   // Otos_i: index
 627   // tos: array
 628   locals_index(G3_scratch);
 629   __ access_local_int( G3_scratch, Otos_i );
 630   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 631   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 632 }
 633 
 634 
 635 void TemplateTable::saload() {
 636   transition(itos, itos);
 637   // Otos_i: index
 638   // tos: array
 639   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 640   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 641 }
 642 
 643 
 644 void TemplateTable::iload(int n) {
 645   transition(vtos, itos);
 646   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 647 }
 648 
 649 
 650 void TemplateTable::lload(int n) {
 651   transition(vtos, ltos);
 652   assert(n+1 < Argument::n_register_parameters, "would need more code");
 653   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 654 }
 655 
 656 
 657 void TemplateTable::fload(int n) {
 658   transition(vtos, ftos);
 659   assert(n < Argument::n_register_parameters, "would need more code");
 660   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 661 }
 662 
 663 
 664 void TemplateTable::dload(int n) {
 665   transition(vtos, dtos);
 666   FloatRegister dst = Ftos_d;
 667   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 668 }
 669 
 670 
 671 void TemplateTable::aload(int n) {
 672   transition(vtos, atos);
 673   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 674 }
 675 
 676 
 677 void TemplateTable::aload_0() {
 678   transition(vtos, atos);
 679 
 680   // According to bytecode histograms, the pairs:
 681   //
 682   // _aload_0, _fast_igetfield (itos)
 683   // _aload_0, _fast_agetfield (atos)
 684   // _aload_0, _fast_fgetfield (ftos)
 685   //
 686   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 687   // bytecode checks the next bytecode and then rewrites the current
 688   // bytecode into a pair bytecode; otherwise it rewrites the current
 689   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 690   //
 691   if (RewriteFrequentPairs) {
 692     Label rewrite, done;
 693 
 694     // get next byte
 695     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 696 
 697     // do actual aload_0
 698     aload(0);
 699 
 700     // if _getfield then wait with rewrite
 701     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 702 
 703     // if _igetfield then rewrite to _fast_iaccess_0
 704     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 705     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 706     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 707     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 708 
 709     // if _agetfield then rewrite to _fast_aaccess_0
 710     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 711     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 712     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 713     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 714 
 715     // if _fgetfield then rewrite to _fast_faccess_0
 716     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 717     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 718     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 719     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 720 
 721     // else rewrite to _fast_aload0
 722     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 723     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 724 
 725     // rewrite
 726     // G4_scratch: fast bytecode
 727     __ bind(rewrite);
 728     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 729     __ bind(done);
 730   } else {
 731     aload(0);
 732   }
 733 }
 734 
 735 
 736 void TemplateTable::istore() {
 737   transition(itos, vtos);
 738   locals_index(G3_scratch);
 739   __ store_local_int( G3_scratch, Otos_i );
 740 }
 741 
 742 
 743 void TemplateTable::lstore() {
 744   transition(ltos, vtos);
 745   locals_index(G3_scratch);
 746   __ store_local_long( G3_scratch, Otos_l );
 747 }
 748 
 749 
 750 void TemplateTable::fstore() {
 751   transition(ftos, vtos);
 752   locals_index(G3_scratch);
 753   __ store_local_float( G3_scratch, Ftos_f );
 754 }
 755 
 756 
 757 void TemplateTable::dstore() {
 758   transition(dtos, vtos);
 759   locals_index(G3_scratch);
 760   __ store_local_double( G3_scratch, Ftos_d );
 761 }
 762 
 763 
 764 void TemplateTable::astore() {
 765   transition(vtos, vtos);
 766   __ load_ptr(0, Otos_i);
 767   __ inc(Lesp, Interpreter::stackElementSize);
 768   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 769   locals_index(G3_scratch);
 770   __ store_local_ptr(G3_scratch, Otos_i);
 771 }
 772 
 773 
 774 void TemplateTable::wide_istore() {
 775   transition(vtos, vtos);
 776   __ pop_i();
 777   locals_index_wide(G3_scratch);
 778   __ store_local_int( G3_scratch, Otos_i );
 779 }
 780 
 781 
 782 void TemplateTable::wide_lstore() {
 783   transition(vtos, vtos);
 784   __ pop_l();
 785   locals_index_wide(G3_scratch);
 786   __ store_local_long( G3_scratch, Otos_l );
 787 }
 788 
 789 
 790 void TemplateTable::wide_fstore() {
 791   transition(vtos, vtos);
 792   __ pop_f();
 793   locals_index_wide(G3_scratch);
 794   __ store_local_float( G3_scratch, Ftos_f );
 795 }
 796 
 797 
 798 void TemplateTable::wide_dstore() {
 799   transition(vtos, vtos);
 800   __ pop_d();
 801   locals_index_wide(G3_scratch);
 802   __ store_local_double( G3_scratch, Ftos_d );
 803 }
 804 
 805 
 806 void TemplateTable::wide_astore() {
 807   transition(vtos, vtos);
 808   __ load_ptr(0, Otos_i);
 809   __ inc(Lesp, Interpreter::stackElementSize);
 810   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 811   locals_index_wide(G3_scratch);
 812   __ store_local_ptr(G3_scratch, Otos_i);
 813 }
 814 
 815 
 816 void TemplateTable::iastore() {
 817   transition(itos, vtos);
 818   __ pop_i(O2); // index
 819   // Otos_i: val
 820   // O3: array
 821   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 822   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 823 }
 824 
 825 
 826 void TemplateTable::lastore() {
 827   transition(ltos, vtos);
 828   __ pop_i(O2); // index
 829   // Otos_l: val
 830   // O3: array
 831   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 832   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 833 }
 834 
 835 
 836 void TemplateTable::fastore() {
 837   transition(ftos, vtos);
 838   __ pop_i(O2); // index
 839   // Ftos_f: val
 840   // O3: array
 841   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 842   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 843 }
 844 
 845 
 846 void TemplateTable::dastore() {
 847   transition(dtos, vtos);
 848   __ pop_i(O2); // index
 849   // Fos_d: val
 850   // O3: array
 851   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 852   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 853 }
 854 
 855 
 856 void TemplateTable::aastore() {
 857   Label store_ok, is_null, done;
 858   transition(vtos, vtos);
 859   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 860   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 861   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 862   // Otos_i: val
 863   // O2: index
 864   // O3: array
 865   __ verify_oop(Otos_i);
 866   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 867 
 868   // do array store check - check for NULL value first
 869   __ br_null_short( Otos_i, Assembler::pn, is_null );
 870 
 871   __ load_klass(O3, O4); // get array klass
 872   __ load_klass(Otos_i, O5); // get value klass
 873 
 874   // do fast instanceof cache test
 875 
 876   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 877 
 878   assert(Otos_i == O0, "just checking");
 879 
 880   // Otos_i:    value
 881   // O1:        addr - offset
 882   // O2:        index
 883   // O3:        array
 884   // O4:        array element klass
 885   // O5:        value klass
 886 
 887   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 888 
 889   // Generate a fast subtype check.  Branch to store_ok if no
 890   // failure.  Throw if failure.
 891   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 892 
 893   // Not a subtype; so must throw exception
 894   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 895 
 896   // Store is OK.
 897   __ bind(store_ok);
 898   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 899 
 900   __ ba(done);
 901   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 902 
 903   __ bind(is_null);
 904   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 905 
 906   __ profile_null_seen(G3_scratch);
 907   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 908   __ bind(done);
 909 }
 910 
 911 
 912 void TemplateTable::bastore() {
 913   transition(itos, vtos);
 914   __ pop_i(O2); // index
 915   // Otos_i: val
 916   // O3: array
 917   __ index_check(O3, O2, 0, G3_scratch, O2);
 918   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 919 }
 920 
 921 
 922 void TemplateTable::castore() {
 923   transition(itos, vtos);
 924   __ pop_i(O2); // index
 925   // Otos_i: val
 926   // O3: array
 927   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 928   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 929 }
 930 
 931 
 932 void TemplateTable::sastore() {
 933   // %%%%% Factor across platform
 934   castore();
 935 }
 936 
 937 
 938 void TemplateTable::istore(int n) {
 939   transition(itos, vtos);
 940   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 941 }
 942 
 943 
 944 void TemplateTable::lstore(int n) {
 945   transition(ltos, vtos);
 946   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 947   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 948 
 949 }
 950 
 951 
 952 void TemplateTable::fstore(int n) {
 953   transition(ftos, vtos);
 954   assert(n < Argument::n_register_parameters, "only handle register cases");
 955   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 956 }
 957 
 958 
 959 void TemplateTable::dstore(int n) {
 960   transition(dtos, vtos);
 961   FloatRegister src = Ftos_d;
 962   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 963 }
 964 
 965 
 966 void TemplateTable::astore(int n) {
 967   transition(vtos, vtos);
 968   __ load_ptr(0, Otos_i);
 969   __ inc(Lesp, Interpreter::stackElementSize);
 970   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 971   __ store_local_ptr(n, Otos_i);
 972 }
 973 
 974 
 975 void TemplateTable::pop() {
 976   transition(vtos, vtos);
 977   __ inc(Lesp, Interpreter::stackElementSize);
 978 }
 979 
 980 
 981 void TemplateTable::pop2() {
 982   transition(vtos, vtos);
 983   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 984 }
 985 
 986 
 987 void TemplateTable::dup() {
 988   transition(vtos, vtos);
 989   // stack: ..., a
 990   // load a and tag
 991   __ load_ptr(0, Otos_i);
 992   __ push_ptr(Otos_i);
 993   // stack: ..., a, a
 994 }
 995 
 996 
 997 void TemplateTable::dup_x1() {
 998   transition(vtos, vtos);
 999   // stack: ..., a, b
1000   __ load_ptr( 1, G3_scratch);  // get a
1001   __ load_ptr( 0, Otos_l1);     // get b
1002   __ store_ptr(1, Otos_l1);     // put b
1003   __ store_ptr(0, G3_scratch);  // put a - like swap
1004   __ push_ptr(Otos_l1);         // push b
1005   // stack: ..., b, a, b
1006 }
1007 
1008 
1009 void TemplateTable::dup_x2() {
1010   transition(vtos, vtos);
1011   // stack: ..., a, b, c
1012   // get c and push on stack, reuse registers
1013   __ load_ptr( 0, G3_scratch);  // get c
1014   __ push_ptr(G3_scratch);      // push c with tag
1015   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1016   // (stack offsets n+1 now)
1017   __ load_ptr( 3, Otos_l1);     // get a
1018   __ store_ptr(3, G3_scratch);  // put c at 3
1019   // stack: ..., c, b, c, c  (a in reg)
1020   __ load_ptr( 2, G3_scratch);  // get b
1021   __ store_ptr(2, Otos_l1);     // put a at 2
1022   // stack: ..., c, a, c, c  (b in reg)
1023   __ store_ptr(1, G3_scratch);  // put b at 1
1024   // stack: ..., c, a, b, c
1025 }
1026 
1027 
1028 void TemplateTable::dup2() {
1029   transition(vtos, vtos);
1030   __ load_ptr(1, G3_scratch);  // get a
1031   __ load_ptr(0, Otos_l1);     // get b
1032   __ push_ptr(G3_scratch);     // push a
1033   __ push_ptr(Otos_l1);        // push b
1034   // stack: ..., a, b, a, b
1035 }
1036 
1037 
1038 void TemplateTable::dup2_x1() {
1039   transition(vtos, vtos);
1040   // stack: ..., a, b, c
1041   __ load_ptr( 1, Lscratch);    // get b
1042   __ load_ptr( 2, Otos_l1);     // get a
1043   __ store_ptr(2, Lscratch);    // put b at a
1044   // stack: ..., b, b, c
1045   __ load_ptr( 0, G3_scratch);  // get c
1046   __ store_ptr(1, G3_scratch);  // put c at b
1047   // stack: ..., b, c, c
1048   __ store_ptr(0, Otos_l1);     // put a at c
1049   // stack: ..., b, c, a
1050   __ push_ptr(Lscratch);        // push b
1051   __ push_ptr(G3_scratch);      // push c
1052   // stack: ..., b, c, a, b, c
1053 }
1054 
1055 
1056 // The spec says that these types can be a mixture of category 1 (1 word)
1057 // types and/or category 2 types (long and doubles)
1058 void TemplateTable::dup2_x2() {
1059   transition(vtos, vtos);
1060   // stack: ..., a, b, c, d
1061   __ load_ptr( 1, Lscratch);    // get c
1062   __ load_ptr( 3, Otos_l1);     // get a
1063   __ store_ptr(3, Lscratch);    // put c at 3
1064   __ store_ptr(1, Otos_l1);     // put a at 1
1065   // stack: ..., c, b, a, d
1066   __ load_ptr( 2, G3_scratch);  // get b
1067   __ load_ptr( 0, Otos_l1);     // get d
1068   __ store_ptr(0, G3_scratch);  // put b at 0
1069   __ store_ptr(2, Otos_l1);     // put d at 2
1070   // stack: ..., c, d, a, b
1071   __ push_ptr(Lscratch);        // push c
1072   __ push_ptr(Otos_l1);         // push d
1073   // stack: ..., c, d, a, b, c, d
1074 }
1075 
1076 
1077 void TemplateTable::swap() {
1078   transition(vtos, vtos);
1079   // stack: ..., a, b
1080   __ load_ptr( 1, G3_scratch);  // get a
1081   __ load_ptr( 0, Otos_l1);     // get b
1082   __ store_ptr(0, G3_scratch);  // put b
1083   __ store_ptr(1, Otos_l1);     // put a
1084   // stack: ..., b, a
1085 }
1086 
1087 
1088 void TemplateTable::iop2(Operation op) {
1089   transition(itos, itos);
1090   __ pop_i(O1);
1091   switch (op) {
1092    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1093    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1094      // %%%%% Mul may not exist: better to call .mul?
1095    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1096    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1097    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1098    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1099    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1100    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1101    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1102    default: ShouldNotReachHere();
1103   }
1104 }
1105 
1106 
1107 void TemplateTable::lop2(Operation op) {
1108   transition(ltos, ltos);
1109   __ pop_l(O2);
1110   switch (op) {
1111 #ifdef _LP64
1112    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1113    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1114    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1115    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1116    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1117 #else
1118    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1119    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1120    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1121    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1122    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1123 #endif
1124    default: ShouldNotReachHere();
1125   }
1126 }
1127 
1128 
1129 void TemplateTable::idiv() {
1130   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1131   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1132 
1133   transition(itos, itos);
1134   __ pop_i(O1); // get 1st op
1135 
1136   // Y contains upper 32 bits of result, set it to 0 or all ones
1137   __ wry(G0);
1138   __ mov(~0, G3_scratch);
1139 
1140   __ tst(O1);
1141      Label neg;
1142   __ br(Assembler::negative, true, Assembler::pn, neg);
1143   __ delayed()->wry(G3_scratch);
1144   __ bind(neg);
1145 
1146      Label ok;
1147   __ tst(Otos_i);
1148   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1149 
1150   const int min_int = 0x80000000;
1151   Label regular;
1152   __ cmp(Otos_i, -1);
1153   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1154 #ifdef _LP64
1155   // Don't put set in delay slot
1156   // Set will turn into multiple instructions in 64 bit mode
1157   __ delayed()->nop();
1158   __ set(min_int, G4_scratch);
1159 #else
1160   __ delayed()->set(min_int, G4_scratch);
1161 #endif
1162   Label done;
1163   __ cmp(O1, G4_scratch);
1164   __ br(Assembler::equal, true, Assembler::pt, done);
1165   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1166 
1167   __ bind(regular);
1168   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1169   __ bind(done);
1170 }
1171 
1172 
1173 void TemplateTable::irem() {
1174   transition(itos, itos);
1175   __ mov(Otos_i, O2); // save divisor
1176   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1177   __ smul(Otos_i, O2, Otos_i);
1178   __ sub(O1, Otos_i, Otos_i);
1179 }
1180 
1181 
1182 void TemplateTable::lmul() {
1183   transition(ltos, ltos);
1184   __ pop_l(O2);
1185 #ifdef _LP64
1186   __ mulx(Otos_l, O2, Otos_l);
1187 #else
1188   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1189 #endif
1190 
1191 }
1192 
1193 
1194 void TemplateTable::ldiv() {
1195   transition(ltos, ltos);
1196 
1197   // check for zero
1198   __ pop_l(O2);
1199 #ifdef _LP64
1200   __ tst(Otos_l);
1201   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1202   __ sdivx(O2, Otos_l, Otos_l);
1203 #else
1204   __ orcc(Otos_l1, Otos_l2, G0);
1205   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1206   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1207 #endif
1208 }
1209 
1210 
1211 void TemplateTable::lrem() {
1212   transition(ltos, ltos);
1213 
1214   // check for zero
1215   __ pop_l(O2);
1216 #ifdef _LP64
1217   __ tst(Otos_l);
1218   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1219   __ sdivx(O2, Otos_l, Otos_l2);
1220   __ mulx (Otos_l2, Otos_l, Otos_l2);
1221   __ sub  (O2, Otos_l2, Otos_l);
1222 #else
1223   __ orcc(Otos_l1, Otos_l2, G0);
1224   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1225   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1226 #endif
1227 }
1228 
1229 
1230 void TemplateTable::lshl() {
1231   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1232 
1233   __ pop_l(O2);                          // shift value in O2, O3
1234 #ifdef _LP64
1235   __ sllx(O2, Otos_i, Otos_l);
1236 #else
1237   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1238 #endif
1239 }
1240 
1241 
1242 void TemplateTable::lshr() {
1243   transition(itos, ltos); // %%%% see lshl comment
1244 
1245   __ pop_l(O2);                          // shift value in O2, O3
1246 #ifdef _LP64
1247   __ srax(O2, Otos_i, Otos_l);
1248 #else
1249   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1250 #endif
1251 }
1252 
1253 
1254 
1255 void TemplateTable::lushr() {
1256   transition(itos, ltos); // %%%% see lshl comment
1257 
1258   __ pop_l(O2);                          // shift value in O2, O3
1259 #ifdef _LP64
1260   __ srlx(O2, Otos_i, Otos_l);
1261 #else
1262   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1263 #endif
1264 }
1265 
1266 
1267 void TemplateTable::fop2(Operation op) {
1268   transition(ftos, ftos);
1269   switch (op) {
1270    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1271    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1272    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1273    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1274    case  rem:
1275      assert(Ftos_f == F0, "just checking");
1276 #ifdef _LP64
1277      // LP64 calling conventions use F1, F3 for passing 2 floats
1278      __ pop_f(F1);
1279      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1280 #else
1281      __ pop_i(O0);
1282      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1283      __ ld( __ d_tmp, O1 );
1284 #endif
1285      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1286      assert( Ftos_f == F0, "fix this code" );
1287      break;
1288 
1289    default: ShouldNotReachHere();
1290   }
1291 }
1292 
1293 
1294 void TemplateTable::dop2(Operation op) {
1295   transition(dtos, dtos);
1296   switch (op) {
1297    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1298    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1299    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1300    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1301    case  rem:
1302 #ifdef _LP64
1303      // Pass arguments in D0, D2
1304      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1305      __ pop_d( F0 );
1306 #else
1307      // Pass arguments in O0O1, O2O3
1308      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1309      __ ldd( __ d_tmp, O2 );
1310      __ pop_d(Ftos_f);
1311      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1312      __ ldd( __ d_tmp, O0 );
1313 #endif
1314      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1315      assert( Ftos_d == F0, "fix this code" );
1316      break;
1317 
1318    default: ShouldNotReachHere();
1319   }
1320 }
1321 
1322 
1323 void TemplateTable::ineg() {
1324   transition(itos, itos);
1325   __ neg(Otos_i);
1326 }
1327 
1328 
1329 void TemplateTable::lneg() {
1330   transition(ltos, ltos);
1331 #ifdef _LP64
1332   __ sub(G0, Otos_l, Otos_l);
1333 #else
1334   __ lneg(Otos_l1, Otos_l2);
1335 #endif
1336 }
1337 
1338 
1339 void TemplateTable::fneg() {
1340   transition(ftos, ftos);
1341   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1342 }
1343 
1344 
1345 void TemplateTable::dneg() {
1346   transition(dtos, dtos);
1347   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1348 }
1349 
1350 
1351 void TemplateTable::iinc() {
1352   transition(vtos, vtos);
1353   locals_index(G3_scratch);
1354   __ ldsb(Lbcp, 2, O2);  // load constant
1355   __ access_local_int(G3_scratch, Otos_i);
1356   __ add(Otos_i, O2, Otos_i);
1357   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1358 }
1359 
1360 
1361 void TemplateTable::wide_iinc() {
1362   transition(vtos, vtos);
1363   locals_index_wide(G3_scratch);
1364   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1365   __ access_local_int(G3_scratch, Otos_i);
1366   __ add(Otos_i, O3, Otos_i);
1367   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1368 }
1369 
1370 
1371 void TemplateTable::convert() {
1372 // %%%%% Factor this first part accross platforms
1373   #ifdef ASSERT
1374     TosState tos_in  = ilgl;
1375     TosState tos_out = ilgl;
1376     switch (bytecode()) {
1377       case Bytecodes::_i2l: // fall through
1378       case Bytecodes::_i2f: // fall through
1379       case Bytecodes::_i2d: // fall through
1380       case Bytecodes::_i2b: // fall through
1381       case Bytecodes::_i2c: // fall through
1382       case Bytecodes::_i2s: tos_in = itos; break;
1383       case Bytecodes::_l2i: // fall through
1384       case Bytecodes::_l2f: // fall through
1385       case Bytecodes::_l2d: tos_in = ltos; break;
1386       case Bytecodes::_f2i: // fall through
1387       case Bytecodes::_f2l: // fall through
1388       case Bytecodes::_f2d: tos_in = ftos; break;
1389       case Bytecodes::_d2i: // fall through
1390       case Bytecodes::_d2l: // fall through
1391       case Bytecodes::_d2f: tos_in = dtos; break;
1392       default             : ShouldNotReachHere();
1393     }
1394     switch (bytecode()) {
1395       case Bytecodes::_l2i: // fall through
1396       case Bytecodes::_f2i: // fall through
1397       case Bytecodes::_d2i: // fall through
1398       case Bytecodes::_i2b: // fall through
1399       case Bytecodes::_i2c: // fall through
1400       case Bytecodes::_i2s: tos_out = itos; break;
1401       case Bytecodes::_i2l: // fall through
1402       case Bytecodes::_f2l: // fall through
1403       case Bytecodes::_d2l: tos_out = ltos; break;
1404       case Bytecodes::_i2f: // fall through
1405       case Bytecodes::_l2f: // fall through
1406       case Bytecodes::_d2f: tos_out = ftos; break;
1407       case Bytecodes::_i2d: // fall through
1408       case Bytecodes::_l2d: // fall through
1409       case Bytecodes::_f2d: tos_out = dtos; break;
1410       default             : ShouldNotReachHere();
1411     }
1412     transition(tos_in, tos_out);
1413   #endif
1414 
1415 
1416   // Conversion
1417   Label done;
1418   switch (bytecode()) {
1419    case Bytecodes::_i2l:
1420 #ifdef _LP64
1421     // Sign extend the 32 bits
1422     __ sra ( Otos_i, 0, Otos_l );
1423 #else
1424     __ addcc(Otos_i, 0, Otos_l2);
1425     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1426     __ delayed()->clr(Otos_l1);
1427     __ set(~0, Otos_l1);
1428 #endif
1429     break;
1430 
1431    case Bytecodes::_i2f:
1432     __ st(Otos_i, __ d_tmp );
1433     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1434     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1435     break;
1436 
1437    case Bytecodes::_i2d:
1438     __ st(Otos_i, __ d_tmp);
1439     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1440     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1441     break;
1442 
1443    case Bytecodes::_i2b:
1444     __ sll(Otos_i, 24, Otos_i);
1445     __ sra(Otos_i, 24, Otos_i);
1446     break;
1447 
1448    case Bytecodes::_i2c:
1449     __ sll(Otos_i, 16, Otos_i);
1450     __ srl(Otos_i, 16, Otos_i);
1451     break;
1452 
1453    case Bytecodes::_i2s:
1454     __ sll(Otos_i, 16, Otos_i);
1455     __ sra(Otos_i, 16, Otos_i);
1456     break;
1457 
1458    case Bytecodes::_l2i:
1459 #ifndef _LP64
1460     __ mov(Otos_l2, Otos_i);
1461 #else
1462     // Sign-extend into the high 32 bits
1463     __ sra(Otos_l, 0, Otos_i);
1464 #endif
1465     break;
1466 
1467    case Bytecodes::_l2f:
1468    case Bytecodes::_l2d:
1469     __ st_long(Otos_l, __ d_tmp);
1470     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1471 
1472     if (bytecode() == Bytecodes::_l2f) {
1473       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1474     } else {
1475       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1476     }
1477     break;
1478 
1479   case Bytecodes::_f2i:  {
1480       Label isNaN;
1481       // result must be 0 if value is NaN; test by comparing value to itself
1482       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1483       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1484       __ delayed()->clr(Otos_i);                                     // NaN
1485       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1486       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1487       __ ld(__ d_tmp, Otos_i);
1488       __ bind(isNaN);
1489     }
1490     break;
1491 
1492    case Bytecodes::_f2l:
1493     // must uncache tos
1494     __ push_f();
1495 #ifdef _LP64
1496     __ pop_f(F1);
1497 #else
1498     __ pop_i(O0);
1499 #endif
1500     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1501     break;
1502 
1503    case Bytecodes::_f2d:
1504     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1505     break;
1506 
1507    case Bytecodes::_d2i:
1508    case Bytecodes::_d2l:
1509     // must uncache tos
1510     __ push_d();
1511 #ifdef _LP64
1512     // LP64 calling conventions pass first double arg in D0
1513     __ pop_d( Ftos_d );
1514 #else
1515     __ pop_i( O0 );
1516     __ pop_i( O1 );
1517 #endif
1518     __ call_VM_leaf(Lscratch,
1519         bytecode() == Bytecodes::_d2i
1520           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1521           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1522     break;
1523 
1524     case Bytecodes::_d2f:
1525       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1526     break;
1527 
1528     default: ShouldNotReachHere();
1529   }
1530   __ bind(done);
1531 }
1532 
1533 
1534 void TemplateTable::lcmp() {
1535   transition(ltos, itos);
1536 
1537 #ifdef _LP64
1538   __ pop_l(O1); // pop off value 1, value 2 is in O0
1539   __ lcmp( O1, Otos_l, Otos_i );
1540 #else
1541   __ pop_l(O2); // cmp O2,3 to O0,1
1542   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1543 #endif
1544 }
1545 
1546 
1547 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1548 
1549   if (is_float) __ pop_f(F2);
1550   else          __ pop_d(F2);
1551 
1552   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1553 
1554   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1555 }
1556 
1557 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1558   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1559   __ verify_thread();
1560 
1561   const Register O2_bumped_count = O2;
1562   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1563 
1564   // get (wide) offset to O1_disp
1565   const Register O1_disp = O1;
1566   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1567   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1568 
1569   // Handle all the JSR stuff here, then exit.
1570   // It's much shorter and cleaner than intermingling with the
1571   // non-JSR normal-branch stuff occurring below.
1572   if( is_jsr ) {
1573     // compute return address as bci in Otos_i
1574     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1575     __ sub(Lbcp, G3_scratch, G3_scratch);
1576     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1577 
1578     // Bump Lbcp to target of JSR
1579     __ add(Lbcp, O1_disp, Lbcp);
1580     // Push returnAddress for "ret" on stack
1581     __ push_ptr(Otos_i);
1582     // And away we go!
1583     __ dispatch_next(vtos);
1584     return;
1585   }
1586 
1587   // Normal (non-jsr) branch handling
1588 
1589   // Save the current Lbcp
1590   const Register l_cur_bcp = Lscratch;
1591   __ mov( Lbcp, l_cur_bcp );
1592 
1593   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1594   if ( increment_invocation_counter_for_backward_branches ) {
1595     Label Lforward;
1596     // check branch direction
1597     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1598     // Bump bytecode pointer by displacement (take the branch)
1599     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1600 
1601     const Register G3_method_counters = G3_scratch;
1602     __ get_method_counters(Lmethod, G3_method_counters, Lforward);
1603 
1604     if (TieredCompilation) {
1605       Label Lno_mdo, Loverflow;
1606       int increment = InvocationCounter::count_increment;
1607       if (ProfileInterpreter) {
1608         // If no method data exists, go to profile_continue.
1609         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1610         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1611 
1612         // Increment backedge counter in the MDO
1613         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1614                                                  in_bytes(InvocationCounter::counter_offset()));
1615         Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
1616         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1617                                    Assembler::notZero, &Lforward);
1618         __ ba_short(Loverflow);
1619       }
1620 
1621       // If there's no MDO, increment counter in MethodCounters*
1622       __ bind(Lno_mdo);
1623       Address backedge_counter(G3_method_counters,
1624               in_bytes(MethodCounters::backedge_counter_offset()) +
1625               in_bytes(InvocationCounter::counter_offset()));
1626       Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
1627       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1628                                  Assembler::notZero, &Lforward);
1629       __ bind(Loverflow);
1630 
1631       // notify point for loop, pass branch bytecode
1632       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1633 
1634       // Was an OSR adapter generated?
1635       // O0 = osr nmethod
1636       __ br_null_short(O0, Assembler::pn, Lforward);
1637 
1638       // Has the nmethod been invalidated already?
1639       __ ldub(O0, nmethod::state_offset(), O2);
1640       __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
1641 
1642       // migrate the interpreter frame off of the stack
1643 
1644       __ mov(G2_thread, L7);
1645       // save nmethod
1646       __ mov(O0, L6);
1647       __ set_last_Java_frame(SP, noreg);
1648       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1649       __ reset_last_Java_frame();
1650       __ mov(L7, G2_thread);
1651 
1652       // move OSR nmethod to I1
1653       __ mov(L6, I1);
1654 
1655       // OSR buffer to I0
1656       __ mov(O0, I0);
1657 
1658       // remove the interpreter frame
1659       __ restore(I5_savedSP, 0, SP);
1660 
1661       // Jump to the osr code.
1662       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1663       __ jmp(O2, G0);
1664       __ delayed()->nop();
1665 
1666     } else { // not TieredCompilation
1667       // Update Backedge branch separately from invocations
1668       const Register G4_invoke_ctr = G4;
1669       __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
1670       if (ProfileInterpreter) {
1671         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
1672         if (UseOnStackReplacement) {
1673 
1674           __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
1675         }
1676       } else {
1677         if (UseOnStackReplacement) {
1678           __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
1679         }
1680       }
1681     }
1682 
1683     __ bind(Lforward);
1684   } else
1685     // Bump bytecode pointer by displacement (take the branch)
1686     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1687 
1688   // continue with bytecode @ target
1689   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1690   // %%%%% and changing dispatch_next to dispatch_only
1691   __ dispatch_next(vtos);
1692 }
1693 
1694 
1695 // Note Condition in argument is TemplateTable::Condition
1696 // arg scope is within class scope
1697 
1698 void TemplateTable::if_0cmp(Condition cc) {
1699   // no pointers, integer only!
1700   transition(itos, vtos);
1701   // assume branch is more often taken than not (loops use backward branches)
1702   __ cmp( Otos_i, 0);
1703   __ if_cmp(ccNot(cc), false);
1704 }
1705 
1706 
1707 void TemplateTable::if_icmp(Condition cc) {
1708   transition(itos, vtos);
1709   __ pop_i(O1);
1710   __ cmp(O1, Otos_i);
1711   __ if_cmp(ccNot(cc), false);
1712 }
1713 
1714 
1715 void TemplateTable::if_nullcmp(Condition cc) {
1716   transition(atos, vtos);
1717   __ tst(Otos_i);
1718   __ if_cmp(ccNot(cc), true);
1719 }
1720 
1721 
1722 void TemplateTable::if_acmp(Condition cc) {
1723   transition(atos, vtos);
1724   __ pop_ptr(O1);
1725   __ verify_oop(O1);
1726   __ verify_oop(Otos_i);
1727   __ cmp(O1, Otos_i);
1728   __ if_cmp(ccNot(cc), true);
1729 }
1730 
1731 
1732 
1733 void TemplateTable::ret() {
1734   transition(vtos, vtos);
1735   locals_index(G3_scratch);
1736   __ access_local_returnAddress(G3_scratch, Otos_i);
1737   // Otos_i contains the bci, compute the bcp from that
1738 
1739 #ifdef _LP64
1740 #ifdef ASSERT
1741   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1742   // the result.  The return address (really a BCI) was stored with an
1743   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1744   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1745   // loaded value.
1746   { Label zzz ;
1747      __ set (65536, G3_scratch) ;
1748      __ cmp (Otos_i, G3_scratch) ;
1749      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1750      __ delayed()->nop();
1751      __ stop("BCI is in the wrong register half?");
1752      __ bind (zzz) ;
1753   }
1754 #endif
1755 #endif
1756 
1757   __ profile_ret(vtos, Otos_i, G4_scratch);
1758 
1759   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1760   __ add(G3_scratch, Otos_i, G3_scratch);
1761   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1762   __ dispatch_next(vtos);
1763 }
1764 
1765 
1766 void TemplateTable::wide_ret() {
1767   transition(vtos, vtos);
1768   locals_index_wide(G3_scratch);
1769   __ access_local_returnAddress(G3_scratch, Otos_i);
1770   // Otos_i contains the bci, compute the bcp from that
1771 
1772   __ profile_ret(vtos, Otos_i, G4_scratch);
1773 
1774   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1775   __ add(G3_scratch, Otos_i, G3_scratch);
1776   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1777   __ dispatch_next(vtos);
1778 }
1779 
1780 
1781 void TemplateTable::tableswitch() {
1782   transition(itos, vtos);
1783   Label default_case, continue_execution;
1784 
1785   // align bcp
1786   __ add(Lbcp, BytesPerInt, O1);
1787   __ and3(O1, -BytesPerInt, O1);
1788   // load lo, hi
1789   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1790   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1791 #ifdef _LP64
1792   // Sign extend the 32 bits
1793   __ sra ( Otos_i, 0, Otos_i );
1794 #endif /* _LP64 */
1795 
1796   // check against lo & hi
1797   __ cmp( Otos_i, O2);
1798   __ br( Assembler::less, false, Assembler::pn, default_case);
1799   __ delayed()->cmp( Otos_i, O3 );
1800   __ br( Assembler::greater, false, Assembler::pn, default_case);
1801   // lookup dispatch offset
1802   __ delayed()->sub(Otos_i, O2, O2);
1803   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1804   __ sll(O2, LogBytesPerInt, O2);
1805   __ add(O2, 3 * BytesPerInt, O2);
1806   __ ba(continue_execution);
1807   __ delayed()->ld(O1, O2, O2);
1808   // handle default
1809   __ bind(default_case);
1810   __ profile_switch_default(O3);
1811   __ ld(O1, 0, O2); // get default offset
1812   // continue execution
1813   __ bind(continue_execution);
1814   __ add(Lbcp, O2, Lbcp);
1815   __ dispatch_next(vtos);
1816 }
1817 
1818 
1819 void TemplateTable::lookupswitch() {
1820   transition(itos, itos);
1821   __ stop("lookupswitch bytecode should have been rewritten");
1822 }
1823 
1824 void TemplateTable::fast_linearswitch() {
1825   transition(itos, vtos);
1826     Label loop_entry, loop, found, continue_execution;
1827   // align bcp
1828   __ add(Lbcp, BytesPerInt, O1);
1829   __ and3(O1, -BytesPerInt, O1);
1830  // set counter
1831   __ ld(O1, BytesPerInt, O2);
1832   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1833   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1834   __ ba(loop_entry);
1835   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1836 
1837   // table search
1838   __ bind(loop);
1839   __ cmp(O4, Otos_i);
1840   __ br(Assembler::equal, true, Assembler::pn, found);
1841   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1842   __ inc(O3, 2 * BytesPerInt);
1843 
1844   __ bind(loop_entry);
1845   __ cmp(O2, O3);
1846   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1847   __ delayed()->ld(O3, 0, O4);
1848 
1849   // default case
1850   __ ld(O1, 0, O4); // get default offset
1851   if (ProfileInterpreter) {
1852     __ profile_switch_default(O3);
1853     __ ba_short(continue_execution);
1854   }
1855 
1856   // entry found -> get offset
1857   __ bind(found);
1858   if (ProfileInterpreter) {
1859     __ sub(O3, O1, O3);
1860     __ sub(O3, 2*BytesPerInt, O3);
1861     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1862     __ profile_switch_case(O3, O1, O2, G3_scratch);
1863 
1864     __ bind(continue_execution);
1865   }
1866   __ add(Lbcp, O4, Lbcp);
1867   __ dispatch_next(vtos);
1868 }
1869 
1870 
1871 void TemplateTable::fast_binaryswitch() {
1872   transition(itos, vtos);
1873   // Implementation using the following core algorithm: (copied from Intel)
1874   //
1875   // int binary_search(int key, LookupswitchPair* array, int n) {
1876   //   // Binary search according to "Methodik des Programmierens" by
1877   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1878   //   int i = 0;
1879   //   int j = n;
1880   //   while (i+1 < j) {
1881   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1882   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1883   //     // where a stands for the array and assuming that the (inexisting)
1884   //     // element a[n] is infinitely big.
1885   //     int h = (i + j) >> 1;
1886   //     // i < h < j
1887   //     if (key < array[h].fast_match()) {
1888   //       j = h;
1889   //     } else {
1890   //       i = h;
1891   //     }
1892   //   }
1893   //   // R: a[i] <= key < a[i+1] or Q
1894   //   // (i.e., if key is within array, i is the correct index)
1895   //   return i;
1896   // }
1897 
1898   // register allocation
1899   assert(Otos_i == O0, "alias checking");
1900   const Register Rkey     = Otos_i;                    // already set (tosca)
1901   const Register Rarray   = O1;
1902   const Register Ri       = O2;
1903   const Register Rj       = O3;
1904   const Register Rh       = O4;
1905   const Register Rscratch = O5;
1906 
1907   const int log_entry_size = 3;
1908   const int entry_size = 1 << log_entry_size;
1909 
1910   Label found;
1911   // Find Array start
1912   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1913   __ and3(Rarray, -BytesPerInt, Rarray);
1914   // initialize i & j (in delay slot)
1915   __ clr( Ri );
1916 
1917   // and start
1918   Label entry;
1919   __ ba(entry);
1920   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1921   // (Rj is already in the native byte-ordering.)
1922 
1923   // binary search loop
1924   { Label loop;
1925     __ bind( loop );
1926     // int h = (i + j) >> 1;
1927     __ sra( Rh, 1, Rh );
1928     // if (key < array[h].fast_match()) {
1929     //   j = h;
1930     // } else {
1931     //   i = h;
1932     // }
1933     __ sll( Rh, log_entry_size, Rscratch );
1934     __ ld( Rarray, Rscratch, Rscratch );
1935     // (Rscratch is already in the native byte-ordering.)
1936     __ cmp( Rkey, Rscratch );
1937     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1938     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1939 
1940     // while (i+1 < j)
1941     __ bind( entry );
1942     __ add( Ri, 1, Rscratch );
1943     __ cmp(Rscratch, Rj);
1944     __ br( Assembler::less, true, Assembler::pt, loop );
1945     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1946   }
1947 
1948   // end of binary search, result index is i (must check again!)
1949   Label default_case;
1950   Label continue_execution;
1951   if (ProfileInterpreter) {
1952     __ mov( Ri, Rh );              // Save index in i for profiling
1953   }
1954   __ sll( Ri, log_entry_size, Ri );
1955   __ ld( Rarray, Ri, Rscratch );
1956   // (Rscratch is already in the native byte-ordering.)
1957   __ cmp( Rkey, Rscratch );
1958   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1959   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1960 
1961   // entry found -> j = offset
1962   __ inc( Ri, BytesPerInt );
1963   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1964   __ ld( Rarray, Ri, Rj );
1965   // (Rj is already in the native byte-ordering.)
1966 
1967   if (ProfileInterpreter) {
1968     __ ba_short(continue_execution);
1969   }
1970 
1971   __ bind(default_case); // fall through (if not profiling)
1972   __ profile_switch_default(Ri);
1973 
1974   __ bind(continue_execution);
1975   __ add( Lbcp, Rj, Lbcp );
1976   __ dispatch_next( vtos );
1977 }
1978 
1979 
1980 void TemplateTable::_return(TosState state) {
1981   transition(state, state);
1982   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1983 
1984   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1985     assert(state == vtos, "only valid state");
1986     __ mov(G0, G3_scratch);
1987     __ access_local_ptr(G3_scratch, Otos_i);
1988     __ load_klass(Otos_i, O2);
1989     __ set(JVM_ACC_HAS_FINALIZER, G3);
1990     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
1991     __ andcc(G3, O2, G0);
1992     Label skip_register_finalizer;
1993     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1994     __ delayed()->nop();
1995 
1996     // Call out to do finalizer registration
1997     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1998 
1999     __ bind(skip_register_finalizer);
2000   }
2001 
2002   __ remove_activation(state, /* throw_monitor_exception */ true);
2003 
2004   // The caller's SP was adjusted upon method entry to accomodate
2005   // the callee's non-argument locals. Undo that adjustment.
2006   __ ret();                             // return to caller
2007   __ delayed()->restore(I5_savedSP, G0, SP);
2008 }
2009 
2010 
2011 // ----------------------------------------------------------------------------
2012 // Volatile variables demand their effects be made known to all CPU's in
2013 // order.  Store buffers on most chips allow reads & writes to reorder; the
2014 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2015 // memory barrier (i.e., it's not sufficient that the interpreter does not
2016 // reorder volatile references, the hardware also must not reorder them).
2017 //
2018 // According to the new Java Memory Model (JMM):
2019 // (1) All volatiles are serialized wrt to each other.
2020 // ALSO reads & writes act as aquire & release, so:
2021 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2022 // the read float up to before the read.  It's OK for non-volatile memory refs
2023 // that happen before the volatile read to float down below it.
2024 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2025 // that happen BEFORE the write float down to after the write.  It's OK for
2026 // non-volatile memory refs that happen after the volatile write to float up
2027 // before it.
2028 //
2029 // We only put in barriers around volatile refs (they are expensive), not
2030 // _between_ memory refs (that would require us to track the flavor of the
2031 // previous memory refs).  Requirements (2) and (3) require some barriers
2032 // before volatile stores and after volatile loads.  These nearly cover
2033 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2034 // case is placed after volatile-stores although it could just as well go
2035 // before volatile-loads.
2036 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2037   // Helper function to insert a is-volatile test and memory barrier
2038   // All current sparc implementations run in TSO, needing only StoreLoad
2039   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2040   __ membar( order_constraint );
2041 }
2042 
2043 // ----------------------------------------------------------------------------
2044 void TemplateTable::resolve_cache_and_index(int byte_no,
2045                                             Register Rcache,
2046                                             Register index,
2047                                             size_t index_size) {
2048   // Depends on cpCacheOop layout!
2049   Label resolved;
2050 
2051     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2052     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2053     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2054     __ br(Assembler::equal, false, Assembler::pt, resolved);
2055     __ delayed()->set((int)bytecode(), O1);
2056 
2057   address entry;
2058   switch (bytecode()) {
2059     case Bytecodes::_getstatic      : // fall through
2060     case Bytecodes::_putstatic      : // fall through
2061     case Bytecodes::_getfield       : // fall through
2062     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2063     case Bytecodes::_invokevirtual  : // fall through
2064     case Bytecodes::_invokespecial  : // fall through
2065     case Bytecodes::_invokestatic   : // fall through
2066     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2067     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2068     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2069     default:
2070       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2071       break;
2072   }
2073   // first time invocation - must resolve first
2074   __ call_VM(noreg, entry, O1);
2075   // Update registers with resolved info
2076   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2077   __ bind(resolved);
2078 }
2079 
2080 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2081                                                Register method,
2082                                                Register itable_index,
2083                                                Register flags,
2084                                                bool is_invokevirtual,
2085                                                bool is_invokevfinal,
2086                                                bool is_invokedynamic) {
2087   // Uses both G3_scratch and G4_scratch
2088   Register cache = G3_scratch;
2089   Register index = G4_scratch;
2090   assert_different_registers(cache, method, itable_index);
2091 
2092   // determine constant pool cache field offsets
2093   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2094   const int method_offset = in_bytes(
2095       ConstantPoolCache::base_offset() +
2096       ((byte_no == f2_byte)
2097        ? ConstantPoolCacheEntry::f2_offset()
2098        : ConstantPoolCacheEntry::f1_offset()
2099       )
2100     );
2101   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2102                                     ConstantPoolCacheEntry::flags_offset());
2103   // access constant pool cache fields
2104   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2105                                     ConstantPoolCacheEntry::f2_offset());
2106 
2107   if (is_invokevfinal) {
2108     __ get_cache_and_index_at_bcp(cache, index, 1);
2109     __ ld_ptr(Address(cache, method_offset), method);
2110   } else {
2111     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2112     resolve_cache_and_index(byte_no, cache, index, index_size);
2113     __ ld_ptr(Address(cache, method_offset), method);
2114   }
2115 
2116   if (itable_index != noreg) {
2117     // pick up itable or appendix index from f2 also:
2118     __ ld_ptr(Address(cache, index_offset), itable_index);
2119   }
2120   __ ld_ptr(Address(cache, flags_offset), flags);
2121 }
2122 
2123 // The Rcache register must be set before call
2124 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2125                                               Register Rcache,
2126                                               Register index,
2127                                               Register Roffset,
2128                                               Register Rflags,
2129                                               bool is_static) {
2130   assert_different_registers(Rcache, Rflags, Roffset);
2131 
2132   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2133 
2134   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2135   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2136   if (is_static) {
2137     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2138     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2139     __ ld_ptr( Robj, mirror_offset, Robj);
2140   }
2141 }
2142 
2143 // The registers Rcache and index expected to be set before call.
2144 // Correct values of the Rcache and index registers are preserved.
2145 void TemplateTable::jvmti_post_field_access(Register Rcache,
2146                                             Register index,
2147                                             bool is_static,
2148                                             bool has_tos) {
2149   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2150 
2151   if (JvmtiExport::can_post_field_access()) {
2152     // Check to see if a field access watch has been set before we take
2153     // the time to call into the VM.
2154     Label Label1;
2155     assert_different_registers(Rcache, index, G1_scratch);
2156     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2157     __ load_contents(get_field_access_count_addr, G1_scratch);
2158     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2159 
2160     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2161 
2162     if (is_static) {
2163       __ clr(Otos_i);
2164     } else {
2165       if (has_tos) {
2166       // save object pointer before call_VM() clobbers it
2167         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2168       } else {
2169         // Load top of stack (do not pop the value off the stack);
2170         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2171       }
2172       __ verify_oop(Otos_i);
2173     }
2174     // Otos_i: object pointer or NULL if static
2175     // Rcache: cache entry pointer
2176     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2177                Otos_i, Rcache);
2178     if (!is_static && has_tos) {
2179       __ pop_ptr(Otos_i);  // restore object pointer
2180       __ verify_oop(Otos_i);
2181     }
2182     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2183     __ bind(Label1);
2184   }
2185 }
2186 
2187 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2188   transition(vtos, vtos);
2189 
2190   Register Rcache = G3_scratch;
2191   Register index  = G4_scratch;
2192   Register Rclass = Rcache;
2193   Register Roffset= G4_scratch;
2194   Register Rflags = G1_scratch;
2195   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2196 
2197   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2198   jvmti_post_field_access(Rcache, index, is_static, false);
2199   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2200 
2201   if (!is_static) {
2202     pop_and_check_object(Rclass);
2203   } else {
2204     __ verify_oop(Rclass);
2205   }
2206 
2207   Label exit;
2208 
2209   Assembler::Membar_mask_bits membar_bits =
2210     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2211 
2212   if (__ membar_has_effect(membar_bits)) {
2213     // Get volatile flag
2214     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2215     __ and3(Rflags, Lscratch, Lscratch);
2216   }
2217 
2218   Label checkVolatile;
2219 
2220   // compute field type
2221   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2222   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2223   // Make sure we don't need to mask Rflags after the above shift
2224   ConstantPoolCacheEntry::verify_tos_state_shift();
2225 
2226   // Check atos before itos for getstatic, more likely (in Queens at least)
2227   __ cmp(Rflags, atos);
2228   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2229   __ delayed() ->cmp(Rflags, itos);
2230 
2231   // atos
2232   __ load_heap_oop(Rclass, Roffset, Otos_i);
2233   __ verify_oop(Otos_i);
2234   __ push(atos);
2235   if (!is_static) {
2236     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2237   }
2238   __ ba(checkVolatile);
2239   __ delayed()->tst(Lscratch);
2240 
2241   __ bind(notObj);
2242 
2243   // cmp(Rflags, itos);
2244   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2245   __ delayed() ->cmp(Rflags, ltos);
2246 
2247   // itos
2248   __ ld(Rclass, Roffset, Otos_i);
2249   __ push(itos);
2250   if (!is_static) {
2251     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2252   }
2253   __ ba(checkVolatile);
2254   __ delayed()->tst(Lscratch);
2255 
2256   __ bind(notInt);
2257 
2258   // cmp(Rflags, ltos);
2259   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2260   __ delayed() ->cmp(Rflags, btos);
2261 
2262   // ltos
2263   // load must be atomic
2264   __ ld_long(Rclass, Roffset, Otos_l);
2265   __ push(ltos);
2266   if (!is_static) {
2267     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2268   }
2269   __ ba(checkVolatile);
2270   __ delayed()->tst(Lscratch);
2271 
2272   __ bind(notLong);
2273 
2274   // cmp(Rflags, btos);
2275   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2276   __ delayed() ->cmp(Rflags, ctos);
2277 
2278   // btos
2279   __ ldsb(Rclass, Roffset, Otos_i);
2280   __ push(itos);
2281   if (!is_static) {
2282     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2283   }
2284   __ ba(checkVolatile);
2285   __ delayed()->tst(Lscratch);
2286 
2287   __ bind(notByte);
2288 
2289   // cmp(Rflags, ctos);
2290   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2291   __ delayed() ->cmp(Rflags, stos);
2292 
2293   // ctos
2294   __ lduh(Rclass, Roffset, Otos_i);
2295   __ push(itos);
2296   if (!is_static) {
2297     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2298   }
2299   __ ba(checkVolatile);
2300   __ delayed()->tst(Lscratch);
2301 
2302   __ bind(notChar);
2303 
2304   // cmp(Rflags, stos);
2305   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2306   __ delayed() ->cmp(Rflags, ftos);
2307 
2308   // stos
2309   __ ldsh(Rclass, Roffset, Otos_i);
2310   __ push(itos);
2311   if (!is_static) {
2312     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2313   }
2314   __ ba(checkVolatile);
2315   __ delayed()->tst(Lscratch);
2316 
2317   __ bind(notShort);
2318 
2319 
2320   // cmp(Rflags, ftos);
2321   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2322   __ delayed() ->tst(Lscratch);
2323 
2324   // ftos
2325   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2326   __ push(ftos);
2327   if (!is_static) {
2328     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2329   }
2330   __ ba(checkVolatile);
2331   __ delayed()->tst(Lscratch);
2332 
2333   __ bind(notFloat);
2334 
2335 
2336   // dtos
2337   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2338   __ push(dtos);
2339   if (!is_static) {
2340     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2341   }
2342 
2343   __ bind(checkVolatile);
2344   if (__ membar_has_effect(membar_bits)) {
2345     // __ tst(Lscratch); executed in delay slot
2346     __ br(Assembler::zero, false, Assembler::pt, exit);
2347     __ delayed()->nop();
2348     volatile_barrier(membar_bits);
2349   }
2350 
2351   __ bind(exit);
2352 }
2353 
2354 
2355 void TemplateTable::getfield(int byte_no) {
2356   getfield_or_static(byte_no, false);
2357 }
2358 
2359 void TemplateTable::getstatic(int byte_no) {
2360   getfield_or_static(byte_no, true);
2361 }
2362 
2363 
2364 void TemplateTable::fast_accessfield(TosState state) {
2365   transition(atos, state);
2366   Register Rcache  = G3_scratch;
2367   Register index   = G4_scratch;
2368   Register Roffset = G4_scratch;
2369   Register Rflags  = Rcache;
2370   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2371 
2372   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2373   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2374 
2375   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2376 
2377   __ null_check(Otos_i);
2378   __ verify_oop(Otos_i);
2379 
2380   Label exit;
2381 
2382   Assembler::Membar_mask_bits membar_bits =
2383     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2384   if (__ membar_has_effect(membar_bits)) {
2385     // Get volatile flag
2386     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2387     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2388   }
2389 
2390   switch (bytecode()) {
2391     case Bytecodes::_fast_bgetfield:
2392       __ ldsb(Otos_i, Roffset, Otos_i);
2393       break;
2394     case Bytecodes::_fast_cgetfield:
2395       __ lduh(Otos_i, Roffset, Otos_i);
2396       break;
2397     case Bytecodes::_fast_sgetfield:
2398       __ ldsh(Otos_i, Roffset, Otos_i);
2399       break;
2400     case Bytecodes::_fast_igetfield:
2401       __ ld(Otos_i, Roffset, Otos_i);
2402       break;
2403     case Bytecodes::_fast_lgetfield:
2404       __ ld_long(Otos_i, Roffset, Otos_l);
2405       break;
2406     case Bytecodes::_fast_fgetfield:
2407       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2408       break;
2409     case Bytecodes::_fast_dgetfield:
2410       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2411       break;
2412     case Bytecodes::_fast_agetfield:
2413       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2414       break;
2415     default:
2416       ShouldNotReachHere();
2417   }
2418 
2419   if (__ membar_has_effect(membar_bits)) {
2420     __ btst(Lscratch, Rflags);
2421     __ br(Assembler::zero, false, Assembler::pt, exit);
2422     __ delayed()->nop();
2423     volatile_barrier(membar_bits);
2424     __ bind(exit);
2425   }
2426 
2427   if (state == atos) {
2428     __ verify_oop(Otos_i);    // does not blow flags!
2429   }
2430 }
2431 
2432 void TemplateTable::jvmti_post_fast_field_mod() {
2433   if (JvmtiExport::can_post_field_modification()) {
2434     // Check to see if a field modification watch has been set before we take
2435     // the time to call into the VM.
2436     Label done;
2437     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2438     __ load_contents(get_field_modification_count_addr, G4_scratch);
2439     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2440     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2441     __ verify_oop(G4_scratch);
2442     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2443     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2444     // Save tos values before call_VM() clobbers them. Since we have
2445     // to do it for every data type, we use the saved values as the
2446     // jvalue object.
2447     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2448     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2449     case Bytecodes::_fast_bputfield: // fall through
2450     case Bytecodes::_fast_sputfield: // fall through
2451     case Bytecodes::_fast_cputfield: // fall through
2452     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2453     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2454     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2455     // get words in right order for use as jvalue object
2456     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2457     }
2458     // setup pointer to jvalue object
2459     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2460     // G4_scratch:  object pointer
2461     // G1_scratch: cache entry pointer
2462     // G3_scratch: jvalue object on the stack
2463     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2464     switch (bytecode()) {             // restore tos values
2465     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2466     case Bytecodes::_fast_bputfield: // fall through
2467     case Bytecodes::_fast_sputfield: // fall through
2468     case Bytecodes::_fast_cputfield: // fall through
2469     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2470     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2471     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2472     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2473     }
2474     __ bind(done);
2475   }
2476 }
2477 
2478 // The registers Rcache and index expected to be set before call.
2479 // The function may destroy various registers, just not the Rcache and index registers.
2480 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2481   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2482 
2483   if (JvmtiExport::can_post_field_modification()) {
2484     // Check to see if a field modification watch has been set before we take
2485     // the time to call into the VM.
2486     Label Label1;
2487     assert_different_registers(Rcache, index, G1_scratch);
2488     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2489     __ load_contents(get_field_modification_count_addr, G1_scratch);
2490     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2491 
2492     // The Rcache and index registers have been already set.
2493     // This allows to eliminate this call but the Rcache and index
2494     // registers must be correspondingly used after this line.
2495     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2496 
2497     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2498     if (is_static) {
2499       // Life is simple.  Null out the object pointer.
2500       __ clr(G4_scratch);
2501     } else {
2502       Register Rflags = G1_scratch;
2503       // Life is harder. The stack holds the value on top, followed by the
2504       // object.  We don't know the size of the value, though; it could be
2505       // one or two words depending on its type. As a result, we must find
2506       // the type to determine where the object is.
2507 
2508       Label two_word, valsizeknown;
2509       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2510       __ mov(Lesp, G4_scratch);
2511       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2512       // Make sure we don't need to mask Rflags after the above shift
2513       ConstantPoolCacheEntry::verify_tos_state_shift();
2514       __ cmp(Rflags, ltos);
2515       __ br(Assembler::equal, false, Assembler::pt, two_word);
2516       __ delayed()->cmp(Rflags, dtos);
2517       __ br(Assembler::equal, false, Assembler::pt, two_word);
2518       __ delayed()->nop();
2519       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2520       __ ba_short(valsizeknown);
2521       __ bind(two_word);
2522 
2523       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2524 
2525       __ bind(valsizeknown);
2526       // setup object pointer
2527       __ ld_ptr(G4_scratch, 0, G4_scratch);
2528       __ verify_oop(G4_scratch);
2529     }
2530     // setup pointer to jvalue object
2531     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2532     // G4_scratch:  object pointer or NULL if static
2533     // G3_scratch: cache entry pointer
2534     // G1_scratch: jvalue object on the stack
2535     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2536                G4_scratch, G3_scratch, G1_scratch);
2537     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2538     __ bind(Label1);
2539   }
2540 }
2541 
2542 void TemplateTable::pop_and_check_object(Register r) {
2543   __ pop_ptr(r);
2544   __ null_check(r);  // for field access must check obj.
2545   __ verify_oop(r);
2546 }
2547 
2548 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2549   transition(vtos, vtos);
2550   Register Rcache = G3_scratch;
2551   Register index  = G4_scratch;
2552   Register Rclass = Rcache;
2553   Register Roffset= G4_scratch;
2554   Register Rflags = G1_scratch;
2555   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2556 
2557   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2558   jvmti_post_field_mod(Rcache, index, is_static);
2559   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2560 
2561   Assembler::Membar_mask_bits read_bits =
2562     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2563   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2564 
2565   Label notVolatile, checkVolatile, exit;
2566   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2567     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2568     __ and3(Rflags, Lscratch, Lscratch);
2569 
2570     if (__ membar_has_effect(read_bits)) {
2571       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2572       volatile_barrier(read_bits);
2573       __ bind(notVolatile);
2574     }
2575   }
2576 
2577   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2578   // Make sure we don't need to mask Rflags after the above shift
2579   ConstantPoolCacheEntry::verify_tos_state_shift();
2580 
2581   // compute field type
2582   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2583 
2584   if (is_static) {
2585     // putstatic with object type most likely, check that first
2586     __ cmp(Rflags, atos);
2587     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2588     __ delayed()->cmp(Rflags, itos);
2589 
2590     // atos
2591     {
2592       __ pop_ptr();
2593       __ verify_oop(Otos_i);
2594       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2595       __ ba(checkVolatile);
2596       __ delayed()->tst(Lscratch);
2597     }
2598 
2599     __ bind(notObj);
2600     // cmp(Rflags, itos);
2601     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2602     __ delayed()->cmp(Rflags, btos);
2603 
2604     // itos
2605     {
2606       __ pop_i();
2607       __ st(Otos_i, Rclass, Roffset);
2608       __ ba(checkVolatile);
2609       __ delayed()->tst(Lscratch);
2610     }
2611 
2612     __ bind(notInt);
2613   } else {
2614     // putfield with int type most likely, check that first
2615     __ cmp(Rflags, itos);
2616     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2617     __ delayed()->cmp(Rflags, atos);
2618 
2619     // itos
2620     {
2621       __ pop_i();
2622       pop_and_check_object(Rclass);
2623       __ st(Otos_i, Rclass, Roffset);
2624       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2625       __ ba(checkVolatile);
2626       __ delayed()->tst(Lscratch);
2627     }
2628 
2629     __ bind(notInt);
2630     // cmp(Rflags, atos);
2631     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2632     __ delayed()->cmp(Rflags, btos);
2633 
2634     // atos
2635     {
2636       __ pop_ptr();
2637       pop_and_check_object(Rclass);
2638       __ verify_oop(Otos_i);
2639       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2640       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2641       __ ba(checkVolatile);
2642       __ delayed()->tst(Lscratch);
2643     }
2644 
2645     __ bind(notObj);
2646   }
2647 
2648   // cmp(Rflags, btos);
2649   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2650   __ delayed()->cmp(Rflags, ltos);
2651 
2652   // btos
2653   {
2654     __ pop_i();
2655     if (!is_static) pop_and_check_object(Rclass);
2656     __ stb(Otos_i, Rclass, Roffset);
2657     if (!is_static) {
2658       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2659     }
2660     __ ba(checkVolatile);
2661     __ delayed()->tst(Lscratch);
2662   }
2663 
2664   __ bind(notByte);
2665   // cmp(Rflags, ltos);
2666   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2667   __ delayed()->cmp(Rflags, ctos);
2668 
2669   // ltos
2670   {
2671     __ pop_l();
2672     if (!is_static) pop_and_check_object(Rclass);
2673     __ st_long(Otos_l, Rclass, Roffset);
2674     if (!is_static) {
2675       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2676     }
2677     __ ba(checkVolatile);
2678     __ delayed()->tst(Lscratch);
2679   }
2680 
2681   __ bind(notLong);
2682   // cmp(Rflags, ctos);
2683   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2684   __ delayed()->cmp(Rflags, stos);
2685 
2686   // ctos (char)
2687   {
2688     __ pop_i();
2689     if (!is_static) pop_and_check_object(Rclass);
2690     __ sth(Otos_i, Rclass, Roffset);
2691     if (!is_static) {
2692       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2693     }
2694     __ ba(checkVolatile);
2695     __ delayed()->tst(Lscratch);
2696   }
2697 
2698   __ bind(notChar);
2699   // cmp(Rflags, stos);
2700   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2701   __ delayed()->cmp(Rflags, ftos);
2702 
2703   // stos (short)
2704   {
2705     __ pop_i();
2706     if (!is_static) pop_and_check_object(Rclass);
2707     __ sth(Otos_i, Rclass, Roffset);
2708     if (!is_static) {
2709       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2710     }
2711     __ ba(checkVolatile);
2712     __ delayed()->tst(Lscratch);
2713   }
2714 
2715   __ bind(notShort);
2716   // cmp(Rflags, ftos);
2717   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2718   __ delayed()->nop();
2719 
2720   // ftos
2721   {
2722     __ pop_f();
2723     if (!is_static) pop_and_check_object(Rclass);
2724     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2725     if (!is_static) {
2726       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2727     }
2728     __ ba(checkVolatile);
2729     __ delayed()->tst(Lscratch);
2730   }
2731 
2732   __ bind(notFloat);
2733 
2734   // dtos
2735   {
2736     __ pop_d();
2737     if (!is_static) pop_and_check_object(Rclass);
2738     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2739     if (!is_static) {
2740       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2741     }
2742   }
2743 
2744   __ bind(checkVolatile);
2745   __ tst(Lscratch);
2746 
2747   if (__ membar_has_effect(write_bits)) {
2748     // __ tst(Lscratch); in delay slot
2749     __ br(Assembler::zero, false, Assembler::pt, exit);
2750     __ delayed()->nop();
2751     volatile_barrier(Assembler::StoreLoad);
2752     __ bind(exit);
2753   }
2754 }
2755 
2756 void TemplateTable::fast_storefield(TosState state) {
2757   transition(state, vtos);
2758   Register Rcache = G3_scratch;
2759   Register Rclass = Rcache;
2760   Register Roffset= G4_scratch;
2761   Register Rflags = G1_scratch;
2762   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2763 
2764   jvmti_post_fast_field_mod();
2765 
2766   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2767 
2768   Assembler::Membar_mask_bits read_bits =
2769     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2770   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2771 
2772   Label notVolatile, checkVolatile, exit;
2773   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2774     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2775     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2776     __ and3(Rflags, Lscratch, Lscratch);
2777     if (__ membar_has_effect(read_bits)) {
2778       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2779       volatile_barrier(read_bits);
2780       __ bind(notVolatile);
2781     }
2782   }
2783 
2784   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2785   pop_and_check_object(Rclass);
2786 
2787   switch (bytecode()) {
2788     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2789     case Bytecodes::_fast_cputfield: /* fall through */
2790     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2791     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2792     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2793     case Bytecodes::_fast_fputfield:
2794       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2795       break;
2796     case Bytecodes::_fast_dputfield:
2797       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2798       break;
2799     case Bytecodes::_fast_aputfield:
2800       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2801       break;
2802     default:
2803       ShouldNotReachHere();
2804   }
2805 
2806   if (__ membar_has_effect(write_bits)) {
2807     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2808     volatile_barrier(Assembler::StoreLoad);
2809     __ bind(exit);
2810   }
2811 }
2812 
2813 
2814 void TemplateTable::putfield(int byte_no) {
2815   putfield_or_static(byte_no, false);
2816 }
2817 
2818 void TemplateTable::putstatic(int byte_no) {
2819   putfield_or_static(byte_no, true);
2820 }
2821 
2822 
2823 void TemplateTable::fast_xaccess(TosState state) {
2824   transition(vtos, state);
2825   Register Rcache = G3_scratch;
2826   Register Roffset = G4_scratch;
2827   Register Rflags  = G4_scratch;
2828   Register Rreceiver = Lscratch;
2829 
2830   __ ld_ptr(Llocals, 0, Rreceiver);
2831 
2832   // access constant pool cache  (is resolved)
2833   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2834   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2835   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2836 
2837   __ verify_oop(Rreceiver);
2838   __ null_check(Rreceiver);
2839   if (state == atos) {
2840     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2841   } else if (state == itos) {
2842     __ ld (Rreceiver, Roffset, Otos_i) ;
2843   } else if (state == ftos) {
2844     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2845   } else {
2846     ShouldNotReachHere();
2847   }
2848 
2849   Assembler::Membar_mask_bits membar_bits =
2850     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2851   if (__ membar_has_effect(membar_bits)) {
2852 
2853     // Get is_volatile value in Rflags and check if membar is needed
2854     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2855 
2856     // Test volatile
2857     Label notVolatile;
2858     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2859     __ btst(Rflags, Lscratch);
2860     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2861     __ delayed()->nop();
2862     volatile_barrier(membar_bits);
2863     __ bind(notVolatile);
2864   }
2865 
2866   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2867   __ sub(Lbcp, 1, Lbcp);
2868 }
2869 
2870 //----------------------------------------------------------------------------------------------------
2871 // Calls
2872 
2873 void TemplateTable::count_calls(Register method, Register temp) {
2874   // implemented elsewhere
2875   ShouldNotReachHere();
2876 }
2877 
2878 void TemplateTable::prepare_invoke(int byte_no,
2879                                    Register method,  // linked method (or i-klass)
2880                                    Register ra,      // return address
2881                                    Register index,   // itable index, MethodType, etc.
2882                                    Register recv,    // if caller wants to see it
2883                                    Register flags    // if caller wants to test it
2884                                    ) {
2885   // determine flags
2886   const Bytecodes::Code code = bytecode();
2887   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2888   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2889   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2890   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2891   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2892   const bool load_receiver       = (recv != noreg);
2893   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2894   assert(recv  == noreg || recv  == O0, "");
2895   assert(flags == noreg || flags == O1, "");
2896 
2897   // setup registers & access constant pool cache
2898   if (recv  == noreg)  recv  = O0;
2899   if (flags == noreg)  flags = O1;
2900   const Register temp = O2;
2901   assert_different_registers(method, ra, index, recv, flags, temp);
2902 
2903   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2904 
2905   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2906 
2907   // maybe push appendix to arguments
2908   if (is_invokedynamic || is_invokehandle) {
2909     Label L_no_push;
2910     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2911     __ btst(flags, temp);
2912     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2913     __ delayed()->nop();
2914     // Push the appendix as a trailing parameter.
2915     // This must be done before we get the receiver,
2916     // since the parameter_size includes it.
2917     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2918     __ load_resolved_reference_at_index(temp, index);
2919     __ verify_oop(temp);
2920     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2921     __ bind(L_no_push);
2922   }
2923 
2924   // load receiver if needed (after appendix is pushed so parameter size is correct)
2925   if (load_receiver) {
2926     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2927     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2928     __ verify_oop(recv);
2929   }
2930 
2931   // compute return type
2932   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2933   // Make sure we don't need to mask flags after the above shift
2934   ConstantPoolCacheEntry::verify_tos_state_shift();
2935   // load return address
2936   {
2937     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2938     AddressLiteral table(table_addr);
2939     __ set(table, temp);
2940     __ sll(ra, LogBytesPerWord, ra);
2941     __ ld_ptr(Address(temp, ra), ra);
2942   }
2943 }
2944 
2945 
2946 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2947   Register Rcall = Rindex;
2948   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2949 
2950   // get target Method* & entry point
2951   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2952   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
2953   __ call_from_interpreter(Rcall, Gargs, Rret);
2954 }
2955 
2956 void TemplateTable::invokevirtual(int byte_no) {
2957   transition(vtos, vtos);
2958   assert(byte_no == f2_byte, "use this argument");
2959 
2960   Register Rscratch = G3_scratch;
2961   Register Rtemp    = G4_scratch;
2962   Register Rret     = Lscratch;
2963   Register O0_recv  = O0;
2964   Label notFinal;
2965 
2966   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2967   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2968 
2969   // Check for vfinal
2970   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2971   __ btst(Rret, G4_scratch);
2972   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2973   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2974 
2975   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2976 
2977   invokevfinal_helper(Rscratch, Rret);
2978 
2979   __ bind(notFinal);
2980 
2981   __ mov(G5_method, Rscratch);  // better scratch register
2982   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
2983   // receiver is in O0_recv
2984   __ verify_oop(O0_recv);
2985 
2986   // get return address
2987   AddressLiteral table(Interpreter::invoke_return_entry_table());
2988   __ set(table, Rtemp);
2989   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
2990   // Make sure we don't need to mask Rret after the above shift
2991   ConstantPoolCacheEntry::verify_tos_state_shift();
2992   __ sll(Rret,  LogBytesPerWord, Rret);
2993   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2994 
2995   // get receiver klass
2996   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
2997   __ load_klass(O0_recv, O0_recv);
2998   __ verify_klass_ptr(O0_recv);
2999 
3000   __ profile_virtual_call(O0_recv, O4);
3001 
3002   generate_vtable_call(O0_recv, Rscratch, Rret);
3003 }
3004 
3005 void TemplateTable::fast_invokevfinal(int byte_no) {
3006   transition(vtos, vtos);
3007   assert(byte_no == f2_byte, "use this argument");
3008 
3009   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3010                              /*is_invokevfinal*/true, false);
3011   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3012   invokevfinal_helper(G3_scratch, Lscratch);
3013 }
3014 
3015 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3016   Register Rtemp = G4_scratch;
3017 
3018   // Load receiver from stack slot
3019   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3020   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3021   __ load_receiver(G4_scratch, O0);
3022 
3023   // receiver NULL check
3024   __ null_check(O0);
3025 
3026   __ profile_final_call(O4);
3027   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3028 
3029   // get return address
3030   AddressLiteral table(Interpreter::invoke_return_entry_table());
3031   __ set(table, Rtemp);
3032   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3033   // Make sure we don't need to mask Rret after the above shift
3034   ConstantPoolCacheEntry::verify_tos_state_shift();
3035   __ sll(Rret,  LogBytesPerWord, Rret);
3036   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3037 
3038 
3039   // do the call
3040   __ call_from_interpreter(Rscratch, Gargs, Rret);
3041 }
3042 
3043 
3044 void TemplateTable::invokespecial(int byte_no) {
3045   transition(vtos, vtos);
3046   assert(byte_no == f1_byte, "use this argument");
3047 
3048   const Register Rret     = Lscratch;
3049   const Register O0_recv  = O0;
3050   const Register Rscratch = G3_scratch;
3051 
3052   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3053   __ null_check(O0_recv);
3054 
3055   // do the call
3056   __ profile_call(O4);
3057   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3058   __ call_from_interpreter(Rscratch, Gargs, Rret);
3059 }
3060 
3061 
3062 void TemplateTable::invokestatic(int byte_no) {
3063   transition(vtos, vtos);
3064   assert(byte_no == f1_byte, "use this argument");
3065 
3066   const Register Rret     = Lscratch;
3067   const Register Rscratch = G3_scratch;
3068 
3069   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3070 
3071   // do the call
3072   __ profile_call(O4);
3073   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3074   __ call_from_interpreter(Rscratch, Gargs, Rret);
3075 }
3076 
3077 void TemplateTable::invokeinterface_object_method(Register RKlass,
3078                                                   Register Rcall,
3079                                                   Register Rret,
3080                                                   Register Rflags) {
3081   Register Rscratch = G4_scratch;
3082   Register Rindex = Lscratch;
3083 
3084   assert_different_registers(Rscratch, Rindex, Rret);
3085 
3086   Label notFinal;
3087 
3088   // Check for vfinal
3089   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3090   __ btst(Rflags, Rscratch);
3091   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3092   __ delayed()->nop();
3093 
3094   __ profile_final_call(O4);
3095 
3096   // do the call - the index (f2) contains the Method*
3097   assert_different_registers(G5_method, Gargs, Rcall);
3098   __ mov(Rindex, G5_method);
3099   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3100   __ call_from_interpreter(Rcall, Gargs, Rret);
3101   __ bind(notFinal);
3102 
3103   __ profile_virtual_call(RKlass, O4);
3104   generate_vtable_call(RKlass, Rindex, Rret);
3105 }
3106 
3107 
3108 void TemplateTable::invokeinterface(int byte_no) {
3109   transition(vtos, vtos);
3110   assert(byte_no == f1_byte, "use this argument");
3111 
3112   const Register Rinterface  = G1_scratch;
3113   const Register Rret        = G3_scratch;
3114   const Register Rindex      = Lscratch;
3115   const Register O0_recv     = O0;
3116   const Register O1_flags    = O1;
3117   const Register O2_Klass    = O2;
3118   const Register Rscratch    = G4_scratch;
3119   assert_different_registers(Rscratch, G5_method);
3120 
3121   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3122 
3123   // get receiver klass
3124   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3125   __ load_klass(O0_recv, O2_Klass);
3126 
3127   // Special case of invokeinterface called for virtual method of
3128   // java.lang.Object.  See cpCacheOop.cpp for details.
3129   // This code isn't produced by javac, but could be produced by
3130   // another compliant java compiler.
3131   Label notMethod;
3132   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3133   __ btst(O1_flags, Rscratch);
3134   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3135   __ delayed()->nop();
3136 
3137   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3138 
3139   __ bind(notMethod);
3140 
3141   __ profile_virtual_call(O2_Klass, O4);
3142 
3143   //
3144   // find entry point to call
3145   //
3146 
3147   // compute start of first itableOffsetEntry (which is at end of vtable)
3148   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3149   Label search;
3150   Register Rtemp = O1_flags;
3151 
3152   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3153   if (align_object_offset(1) > 1) {
3154     __ round_to(Rtemp, align_object_offset(1));
3155   }
3156   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3157   if (Assembler::is_simm13(base)) {
3158     __ add(Rtemp, base, Rtemp);
3159   } else {
3160     __ set(base, Rscratch);
3161     __ add(Rscratch, Rtemp, Rtemp);
3162   }
3163   __ add(O2_Klass, Rtemp, Rscratch);
3164 
3165   __ bind(search);
3166 
3167   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3168   {
3169     Label ok;
3170 
3171     // Check that entry is non-null.  Null entries are probably a bytecode
3172     // problem.  If the interface isn't implemented by the receiver class,
3173     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3174     // this too but that's only if the entry isn't already resolved, so we
3175     // need to check again.
3176     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3177     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3178     __ should_not_reach_here();
3179     __ bind(ok);
3180   }
3181 
3182   __ cmp(Rinterface, Rtemp);
3183   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3184   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3185 
3186   // entry found and Rscratch points to it
3187   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3188 
3189   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3190   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3191   __ add(Rscratch, Rindex, Rscratch);
3192   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3193 
3194   // Check for abstract method error.
3195   {
3196     Label ok;
3197     __ br_notnull_short(G5_method, Assembler::pt, ok);
3198     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3199     __ should_not_reach_here();
3200     __ bind(ok);
3201   }
3202 
3203   Register Rcall = Rinterface;
3204   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3205 
3206   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3207   __ call_from_interpreter(Rcall, Gargs, Rret);
3208 }
3209 
3210 void TemplateTable::invokehandle(int byte_no) {
3211   transition(vtos, vtos);
3212   assert(byte_no == f1_byte, "use this argument");
3213 
3214   const Register Rret       = Lscratch;
3215   const Register G4_mtype   = G4_scratch;
3216   const Register O0_recv    = O0;
3217   const Register Rscratch   = G3_scratch;
3218 
3219   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3220   __ null_check(O0_recv);
3221 
3222   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3223   // G5: MH.invokeExact_MT method (from f2)
3224 
3225   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3226 
3227   // do the call
3228   __ verify_oop(G4_mtype);
3229   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3230   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3231   __ call_from_interpreter(Rscratch, Gargs, Rret);
3232 }
3233 
3234 
3235 void TemplateTable::invokedynamic(int byte_no) {
3236   transition(vtos, vtos);
3237   assert(byte_no == f1_byte, "use this argument");
3238 
3239   const Register Rret        = Lscratch;
3240   const Register G4_callsite = G4_scratch;
3241   const Register Rscratch    = G3_scratch;
3242 
3243   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3244 
3245   // G4: CallSite object (from cpool->resolved_references[f1])
3246   // G5: MH.linkToCallSite method (from f2)
3247 
3248   // Note:  G4_callsite is already pushed by prepare_invoke
3249 
3250   // %%% should make a type profile for any invokedynamic that takes a ref argument
3251   // profile this call
3252   __ profile_call(O4);
3253 
3254   // do the call
3255   __ verify_oop(G4_callsite);
3256   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3257   __ call_from_interpreter(Rscratch, Gargs, Rret);
3258 }
3259 
3260 
3261 //----------------------------------------------------------------------------------------------------
3262 // Allocation
3263 
3264 void TemplateTable::_new() {
3265   transition(vtos, atos);
3266 
3267   Label slow_case;
3268   Label done;
3269   Label initialize_header;
3270   Label initialize_object;  // including clearing the fields
3271 
3272   Register RallocatedObject = Otos_i;
3273   Register RinstanceKlass = O1;
3274   Register Roffset = O3;
3275   Register Rscratch = O4;
3276 
3277   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3278   __ get_cpool_and_tags(Rscratch, G3_scratch);
3279   // make sure the class we're about to instantiate has been resolved
3280   // This is done before loading InstanceKlass to be consistent with the order
3281   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3282   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3283   __ ldub(G3_scratch, Roffset, G3_scratch);
3284   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3285   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3286   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3287   // get InstanceKlass
3288   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3289   __ add(Roffset, sizeof(ConstantPool), Roffset);
3290   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3291 
3292   // make sure klass is fully initialized:
3293   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3294   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3295   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3296   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3297 
3298   // get instance_size in InstanceKlass (already aligned)
3299   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3300 
3301   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3302   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3303   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3304   __ delayed()->nop();
3305 
3306   // allocate the instance
3307   // 1) Try to allocate in the TLAB
3308   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3309   // 3) if the above fails (or is not applicable), go to a slow case
3310   // (creates a new TLAB, etc.)
3311 
3312   const bool allow_shared_alloc =
3313     Universe::heap()->supports_inline_contig_alloc();
3314 
3315   if(UseTLAB) {
3316     Register RoldTopValue = RallocatedObject;
3317     Register RtlabWasteLimitValue = G3_scratch;
3318     Register RnewTopValue = G1_scratch;
3319     Register RendValue = Rscratch;
3320     Register RfreeValue = RnewTopValue;
3321 
3322     // check if we can allocate in the TLAB
3323     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3324     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3325     __ add(RoldTopValue, Roffset, RnewTopValue);
3326 
3327     // if there is enough space, we do not CAS and do not clear
3328     __ cmp(RnewTopValue, RendValue);
3329     if(ZeroTLAB) {
3330       // the fields have already been cleared
3331       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3332     } else {
3333       // initialize both the header and fields
3334       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3335     }
3336     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3337 
3338     if (allow_shared_alloc) {
3339       // Check if tlab should be discarded (refill_waste_limit >= free)
3340       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3341       __ sub(RendValue, RoldTopValue, RfreeValue);
3342 #ifdef _LP64
3343       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3344 #else
3345       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3346 #endif
3347       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3348 
3349       // increment waste limit to prevent getting stuck on this slow path
3350       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3351       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3352     } else {
3353       // No allocation in the shared eden.
3354       __ ba_short(slow_case);
3355     }
3356   }
3357 
3358   // Allocation in the shared Eden
3359   if (allow_shared_alloc) {
3360     Register RoldTopValue = G1_scratch;
3361     Register RtopAddr = G3_scratch;
3362     Register RnewTopValue = RallocatedObject;
3363     Register RendValue = Rscratch;
3364 
3365     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3366 
3367     Label retry;
3368     __ bind(retry);
3369     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3370     __ ld_ptr(RendValue, 0, RendValue);
3371     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3372     __ add(RoldTopValue, Roffset, RnewTopValue);
3373 
3374     // RnewTopValue contains the top address after the new object
3375     // has been allocated.
3376     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3377 
3378     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3379 
3380     // if someone beat us on the allocation, try again, otherwise continue
3381     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3382 
3383     // bump total bytes allocated by this thread
3384     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3385     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3386   }
3387 
3388   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3389     // clear object fields
3390     __ bind(initialize_object);
3391     __ deccc(Roffset, sizeof(oopDesc));
3392     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3393     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3394 
3395     // initialize remaining object fields
3396     if (UseBlockZeroing) {
3397       // Use BIS for zeroing
3398       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3399     } else {
3400       Label loop;
3401       __ subcc(Roffset, wordSize, Roffset);
3402       __ bind(loop);
3403       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3404       __ st_ptr(G0, G3_scratch, Roffset);
3405       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3406       __ delayed()->subcc(Roffset, wordSize, Roffset);
3407     }
3408     __ ba_short(initialize_header);
3409   }
3410 
3411   // slow case
3412   __ bind(slow_case);
3413   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3414   __ get_constant_pool(O1);
3415 
3416   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3417 
3418   __ ba_short(done);
3419 
3420   // Initialize the header: mark, klass
3421   __ bind(initialize_header);
3422 
3423   if (UseBiasedLocking) {
3424     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3425   } else {
3426     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3427   }
3428   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3429   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3430   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3431 
3432   {
3433     SkipIfEqual skip_if(
3434       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3435     // Trigger dtrace event
3436     __ push(atos);
3437     __ call_VM_leaf(noreg,
3438        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3439     __ pop(atos);
3440   }
3441 
3442   // continue
3443   __ bind(done);
3444 }
3445 
3446 
3447 
3448 void TemplateTable::newarray() {
3449   transition(itos, atos);
3450   __ ldub(Lbcp, 1, O1);
3451      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3452 }
3453 
3454 
3455 void TemplateTable::anewarray() {
3456   transition(itos, atos);
3457   __ get_constant_pool(O1);
3458   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3459      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3460 }
3461 
3462 
3463 void TemplateTable::arraylength() {
3464   transition(atos, itos);
3465   Label ok;
3466   __ verify_oop(Otos_i);
3467   __ tst(Otos_i);
3468   __ throw_if_not_1_x( Assembler::notZero, ok );
3469   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3470   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3471 }
3472 
3473 
3474 void TemplateTable::checkcast() {
3475   transition(atos, atos);
3476   Label done, is_null, quicked, cast_ok, resolved;
3477   Register Roffset = G1_scratch;
3478   Register RobjKlass = O5;
3479   Register RspecifiedKlass = O4;
3480 
3481   // Check for casting a NULL
3482   __ br_null_short(Otos_i, Assembler::pn, is_null);
3483 
3484   // Get value klass in RobjKlass
3485   __ load_klass(Otos_i, RobjKlass); // get value klass
3486 
3487   // Get constant pool tag
3488   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3489 
3490   // See if the checkcast has been quickened
3491   __ get_cpool_and_tags(Lscratch, G3_scratch);
3492   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3493   __ ldub(G3_scratch, Roffset, G3_scratch);
3494   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3495   __ br(Assembler::equal, true, Assembler::pt, quicked);
3496   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3497 
3498   __ push_ptr(); // save receiver for result, and for GC
3499   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3500   __ get_vm_result_2(RspecifiedKlass);
3501   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3502 
3503   __ ba_short(resolved);
3504 
3505   // Extract target class from constant pool
3506   __ bind(quicked);
3507   __ add(Roffset, sizeof(ConstantPool), Roffset);
3508   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3509   __ bind(resolved);
3510   __ load_klass(Otos_i, RobjKlass); // get value klass
3511 
3512   // Generate a fast subtype check.  Branch to cast_ok if no
3513   // failure.  Throw exception if failure.
3514   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3515 
3516   // Not a subtype; so must throw exception
3517   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3518 
3519   __ bind(cast_ok);
3520 
3521   if (ProfileInterpreter) {
3522     __ ba_short(done);
3523   }
3524   __ bind(is_null);
3525   __ profile_null_seen(G3_scratch);
3526   __ bind(done);
3527 }
3528 
3529 
3530 void TemplateTable::instanceof() {
3531   Label done, is_null, quicked, resolved;
3532   transition(atos, itos);
3533   Register Roffset = G1_scratch;
3534   Register RobjKlass = O5;
3535   Register RspecifiedKlass = O4;
3536 
3537   // Check for casting a NULL
3538   __ br_null_short(Otos_i, Assembler::pt, is_null);
3539 
3540   // Get value klass in RobjKlass
3541   __ load_klass(Otos_i, RobjKlass); // get value klass
3542 
3543   // Get constant pool tag
3544   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3545 
3546   // See if the checkcast has been quickened
3547   __ get_cpool_and_tags(Lscratch, G3_scratch);
3548   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3549   __ ldub(G3_scratch, Roffset, G3_scratch);
3550   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3551   __ br(Assembler::equal, true, Assembler::pt, quicked);
3552   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3553 
3554   __ push_ptr(); // save receiver for result, and for GC
3555   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3556   __ get_vm_result_2(RspecifiedKlass);
3557   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3558 
3559   __ ba_short(resolved);
3560 
3561   // Extract target class from constant pool
3562   __ bind(quicked);
3563   __ add(Roffset, sizeof(ConstantPool), Roffset);
3564   __ get_constant_pool(Lscratch);
3565   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3566   __ bind(resolved);
3567   __ load_klass(Otos_i, RobjKlass); // get value klass
3568 
3569   // Generate a fast subtype check.  Branch to cast_ok if no
3570   // failure.  Return 0 if failure.
3571   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3572   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3573   // Not a subtype; return 0;
3574   __ clr( Otos_i );
3575 
3576   if (ProfileInterpreter) {
3577     __ ba_short(done);
3578   }
3579   __ bind(is_null);
3580   __ profile_null_seen(G3_scratch);
3581   __ bind(done);
3582 }
3583 
3584 void TemplateTable::_breakpoint() {
3585 
3586    // Note: We get here even if we are single stepping..
3587    // jbug inists on setting breakpoints at every bytecode
3588    // even if we are in single step mode.
3589 
3590    transition(vtos, vtos);
3591    // get the unpatched byte code
3592    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3593    __ mov(O0, Lbyte_code);
3594 
3595    // post the breakpoint event
3596    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3597 
3598    // complete the execution of original bytecode
3599    __ dispatch_normal(vtos);
3600 }
3601 
3602 
3603 //----------------------------------------------------------------------------------------------------
3604 // Exceptions
3605 
3606 void TemplateTable::athrow() {
3607   transition(atos, vtos);
3608 
3609   // This works because exception is cached in Otos_i which is same as O0,
3610   // which is same as what throw_exception_entry_expects
3611   assert(Otos_i == Oexception, "see explanation above");
3612 
3613   __ verify_oop(Otos_i);
3614   __ null_check(Otos_i);
3615   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3616 }
3617 
3618 
3619 //----------------------------------------------------------------------------------------------------
3620 // Synchronization
3621 
3622 
3623 // See frame_sparc.hpp for monitor block layout.
3624 // Monitor elements are dynamically allocated by growing stack as needed.
3625 
3626 void TemplateTable::monitorenter() {
3627   transition(atos, vtos);
3628   __ verify_oop(Otos_i);
3629   // Try to acquire a lock on the object
3630   // Repeat until succeeded (i.e., until
3631   // monitorenter returns true).
3632 
3633   {   Label ok;
3634     __ tst(Otos_i);
3635     __ throw_if_not_1_x( Assembler::notZero,  ok);
3636     __ delayed()->mov(Otos_i, Lscratch); // save obj
3637     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3638   }
3639 
3640   assert(O0 == Otos_i, "Be sure where the object to lock is");
3641 
3642   // find a free slot in the monitor block
3643 
3644 
3645   // initialize entry pointer
3646   __ clr(O1); // points to free slot or NULL
3647 
3648   {
3649     Label entry, loop, exit;
3650     __ add( __ top_most_monitor(), O2 ); // last one to check
3651     __ ba( entry );
3652     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3653 
3654 
3655     __ bind( loop );
3656 
3657     __ verify_oop(O4);          // verify each monitor's oop
3658     __ tst(O4); // is this entry unused?
3659     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3660 
3661     __ cmp(O4, O0); // check if current entry is for same object
3662     __ brx( Assembler::equal, false, Assembler::pn, exit );
3663     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3664 
3665     __ bind( entry );
3666 
3667     __ cmp( O3, O2 );
3668     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3669     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3670 
3671     __ bind( exit );
3672   }
3673 
3674   { Label allocated;
3675 
3676     // found free slot?
3677     __ br_notnull_short(O1, Assembler::pn, allocated);
3678 
3679     __ add_monitor_to_stack( false, O2, O3 );
3680     __ mov(Lmonitors, O1);
3681 
3682     __ bind(allocated);
3683   }
3684 
3685   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3686   // The object has already been poped from the stack, so the expression stack looks correct.
3687   __ inc(Lbcp);
3688 
3689   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3690   __ lock_object(O1, O0);
3691 
3692   // check if there's enough space on the stack for the monitors after locking
3693   __ generate_stack_overflow_check(0);
3694 
3695   // The bcp has already been incremented. Just need to dispatch to next instruction.
3696   __ dispatch_next(vtos);
3697 }
3698 
3699 
3700 void TemplateTable::monitorexit() {
3701   transition(atos, vtos);
3702   __ verify_oop(Otos_i);
3703   __ tst(Otos_i);
3704   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3705 
3706   assert(O0 == Otos_i, "just checking");
3707 
3708   { Label entry, loop, found;
3709     __ add( __ top_most_monitor(), O2 ); // last one to check
3710     __ ba(entry);
3711     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3712     // By using a local it survives the call to the C routine.
3713     __ delayed()->mov( Lmonitors, Lscratch );
3714 
3715     __ bind( loop );
3716 
3717     __ verify_oop(O4);          // verify each monitor's oop
3718     __ cmp(O4, O0); // check if current entry is for desired object
3719     __ brx( Assembler::equal, true, Assembler::pt, found );
3720     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3721 
3722     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3723 
3724     __ bind( entry );
3725 
3726     __ cmp( Lscratch, O2 );
3727     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3728     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3729 
3730     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3731     __ should_not_reach_here();
3732 
3733     __ bind(found);
3734   }
3735   __ unlock_object(O1);
3736 }
3737 
3738 
3739 //----------------------------------------------------------------------------------------------------
3740 // Wide instructions
3741 
3742 void TemplateTable::wide() {
3743   transition(vtos, vtos);
3744   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3745   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3746   AddressLiteral ep(Interpreter::_wentry_point);
3747   __ set(ep, G4_scratch);
3748   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3749   __ jmp(G3_scratch, G0);
3750   __ delayed()->nop();
3751   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3752 }
3753 
3754 
3755 //----------------------------------------------------------------------------------------------------
3756 // Multi arrays
3757 
3758 void TemplateTable::multianewarray() {
3759   transition(vtos, atos);
3760      // put ndims * wordSize into Lscratch
3761   __ ldub( Lbcp,     3,               Lscratch);
3762   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3763      // Lesp points past last_dim, so set to O1 to first_dim address
3764   __ add(  Lesp,     Lscratch,        O1);
3765      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3766   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3767 }
3768 #endif /* !CC_INTERP */