1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 #define __ _masm->
  42 
  43 // Misc helpers
  44 
  45 // Do an oop store like *(base + index + offset) = val
  46 // index can be noreg,
  47 static void do_oop_store(InterpreterMacroAssembler* _masm,
  48                          Register base,
  49                          Register index,
  50                          int offset,
  51                          Register val,
  52                          Register tmp,
  53                          BarrierSet::Name barrier,
  54                          bool precise) {
  55   assert(tmp != val && tmp != base && tmp != index, "register collision");
  56   assert(index == noreg || offset == 0, "only one offset");
  57   switch (barrier) {
  58 #if INCLUDE_ALL_GCS
  59     case BarrierSet::G1SATBCTLogging:
  60       {
  61         // Load and record the previous value.
  62         __ g1_write_barrier_pre(base, index, offset,
  63                                 noreg /* pre_val */,
  64                                 tmp, true /*preserve_o_regs*/);
  65 
  66         // G1 barrier needs uncompressed oop for region cross check.
  67         Register new_val = val;
  68         if (UseCompressedOops && val != G0) {
  69           new_val = tmp;
  70           __ mov(val, new_val);
  71         }
  72 
  73         if (index == noreg ) {
  74           assert(Assembler::is_simm13(offset), "fix this code");
  75           __ store_heap_oop(val, base, offset);
  76         } else {
  77           __ store_heap_oop(val, base, index);
  78         }
  79 
  80         // No need for post barrier if storing NULL
  81         if (val != G0) {
  82           if (precise) {
  83             if (index == noreg) {
  84               __ add(base, offset, base);
  85             } else {
  86               __ add(base, index, base);
  87             }
  88           }
  89           __ g1_write_barrier_post(base, new_val, tmp);
  90         }
  91       }
  92       break;
  93 #endif // INCLUDE_ALL_GCS
  94     case BarrierSet::CardTableModRef:
  95     case BarrierSet::CardTableExtension:
  96       {
  97         if (index == noreg ) {
  98           assert(Assembler::is_simm13(offset), "fix this code");
  99           __ store_heap_oop(val, base, offset);
 100         } else {
 101           __ store_heap_oop(val, base, index);
 102         }
 103         // No need for post barrier if storing NULL
 104         if (val != G0) {
 105           if (precise) {
 106             if (index == noreg) {
 107               __ add(base, offset, base);
 108             } else {
 109               __ add(base, index, base);
 110             }
 111           }
 112           __ card_write_barrier_post(base, val, tmp);
 113         }
 114       }
 115       break;
 116     case BarrierSet::ModRef:
 117       ShouldNotReachHere();
 118       break;
 119     default      :
 120       ShouldNotReachHere();
 121 
 122   }
 123 }
 124 
 125 
 126 //----------------------------------------------------------------------------------------------------
 127 // Platform-dependent initialization
 128 
 129 void TemplateTable::pd_initialize() {
 130   // (none)
 131 }
 132 
 133 
 134 //----------------------------------------------------------------------------------------------------
 135 // Condition conversion
 136 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 137   switch (cc) {
 138     case TemplateTable::equal        : return Assembler::notEqual;
 139     case TemplateTable::not_equal    : return Assembler::equal;
 140     case TemplateTable::less         : return Assembler::greaterEqual;
 141     case TemplateTable::less_equal   : return Assembler::greater;
 142     case TemplateTable::greater      : return Assembler::lessEqual;
 143     case TemplateTable::greater_equal: return Assembler::less;
 144   }
 145   ShouldNotReachHere();
 146   return Assembler::zero;
 147 }
 148 
 149 //----------------------------------------------------------------------------------------------------
 150 // Miscelaneous helper routines
 151 
 152 
 153 Address TemplateTable::at_bcp(int offset) {
 154   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 155   return Address(Lbcp, offset);
 156 }
 157 
 158 
 159 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 160                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 161                                    int byte_no) {
 162   // With sharing on, may need to test Method* flag.
 163   if (!RewriteBytecodes)  return;
 164   Label L_patch_done;
 165 
 166   switch (bc) {
 167   case Bytecodes::_fast_aputfield:
 168   case Bytecodes::_fast_bputfield:
 169   case Bytecodes::_fast_cputfield:
 170   case Bytecodes::_fast_dputfield:
 171   case Bytecodes::_fast_fputfield:
 172   case Bytecodes::_fast_iputfield:
 173   case Bytecodes::_fast_lputfield:
 174   case Bytecodes::_fast_sputfield:
 175     {
 176       // We skip bytecode quickening for putfield instructions when
 177       // the put_code written to the constant pool cache is zero.
 178       // This is required so that every execution of this instruction
 179       // calls out to InterpreterRuntime::resolve_get_put to do
 180       // additional, required work.
 181       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 182       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 183       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 184       __ set(bc, bc_reg);
 185       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 186     }
 187     break;
 188   default:
 189     assert(byte_no == -1, "sanity");
 190     if (load_bc_into_bc_reg) {
 191       __ set(bc, bc_reg);
 192     }
 193   }
 194 
 195   if (JvmtiExport::can_post_breakpoint()) {
 196     Label L_fast_patch;
 197     __ ldub(at_bcp(0), temp_reg);
 198     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 199     // perform the quickening, slowly, in the bowels of the breakpoint table
 200     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 201     __ ba_short(L_patch_done);
 202     __ bind(L_fast_patch);
 203   }
 204 
 205 #ifdef ASSERT
 206   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 207   Label L_okay;
 208   __ ldub(at_bcp(0), temp_reg);
 209   __ cmp(temp_reg, orig_bytecode);
 210   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 211   __ delayed()->cmp(temp_reg, bc_reg);
 212   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 213   __ delayed()->nop();
 214   __ stop("patching the wrong bytecode");
 215   __ bind(L_okay);
 216 #endif
 217 
 218   // patch bytecode
 219   __ stb(bc_reg, at_bcp(0));
 220   __ bind(L_patch_done);
 221 }
 222 
 223 //----------------------------------------------------------------------------------------------------
 224 // Individual instructions
 225 
 226 void TemplateTable::nop() {
 227   transition(vtos, vtos);
 228   // nothing to do
 229 }
 230 
 231 void TemplateTable::shouldnotreachhere() {
 232   transition(vtos, vtos);
 233   __ stop("shouldnotreachhere bytecode");
 234 }
 235 
 236 void TemplateTable::aconst_null() {
 237   transition(vtos, atos);
 238   __ clr(Otos_i);
 239 }
 240 
 241 
 242 void TemplateTable::iconst(int value) {
 243   transition(vtos, itos);
 244   __ set(value, Otos_i);
 245 }
 246 
 247 
 248 void TemplateTable::lconst(int value) {
 249   transition(vtos, ltos);
 250   assert(value >= 0, "check this code");
 251 #ifdef _LP64
 252   __ set(value, Otos_l);
 253 #else
 254   __ set(value, Otos_l2);
 255   __ clr( Otos_l1);
 256 #endif
 257 }
 258 
 259 
 260 void TemplateTable::fconst(int value) {
 261   transition(vtos, ftos);
 262   static float zero = 0.0, one = 1.0, two = 2.0;
 263   float* p;
 264   switch( value ) {
 265    default: ShouldNotReachHere();
 266    case 0:  p = &zero;  break;
 267    case 1:  p = &one;   break;
 268    case 2:  p = &two;   break;
 269   }
 270   AddressLiteral a(p);
 271   __ sethi(a, G3_scratch);
 272   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 273 }
 274 
 275 
 276 void TemplateTable::dconst(int value) {
 277   transition(vtos, dtos);
 278   static double zero = 0.0, one = 1.0;
 279   double* p;
 280   switch( value ) {
 281    default: ShouldNotReachHere();
 282    case 0:  p = &zero;  break;
 283    case 1:  p = &one;   break;
 284   }
 285   AddressLiteral a(p);
 286   __ sethi(a, G3_scratch);
 287   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 288 }
 289 
 290 
 291 // %%%%% Should factore most snippet templates across platforms
 292 
 293 void TemplateTable::bipush() {
 294   transition(vtos, itos);
 295   __ ldsb( at_bcp(1), Otos_i );
 296 }
 297 
 298 void TemplateTable::sipush() {
 299   transition(vtos, itos);
 300   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 301 }
 302 
 303 void TemplateTable::ldc(bool wide) {
 304   transition(vtos, vtos);
 305   Label call_ldc, notInt, isString, notString, notClass, exit;
 306 
 307   if (wide) {
 308     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 309   } else {
 310     __ ldub(Lbcp, 1, O1);
 311   }
 312   __ get_cpool_and_tags(O0, O2);
 313 
 314   const int base_offset = ConstantPool::header_size() * wordSize;
 315   const int tags_offset = Array<u1>::base_offset_in_bytes();
 316 
 317   // get type from tags
 318   __ add(O2, tags_offset, O2);
 319   __ ldub(O2, O1, O2);
 320 
 321   // unresolved class? If so, must resolve
 322   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 323 
 324   // unresolved class in error state
 325   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 326 
 327   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 328   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 329   __ delayed()->add(O0, base_offset, O0);
 330 
 331   __ bind(call_ldc);
 332   __ set(wide, O1);
 333   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 334   __ push(atos);
 335   __ ba_short(exit);
 336 
 337   __ bind(notClass);
 338  // __ add(O0, base_offset, O0);
 339   __ sll(O1, LogBytesPerWord, O1);
 340   __ cmp(O2, JVM_CONSTANT_Integer);
 341   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 342   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 343   __ ld(O0, O1, Otos_i);
 344   __ push(itos);
 345   __ ba_short(exit);
 346 
 347   __ bind(notInt);
 348  // __ cmp(O2, JVM_CONSTANT_String);
 349   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 350   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 351   __ bind(isString);
 352   __ stop("string should be rewritten to fast_aldc");
 353   __ ba_short(exit);
 354 
 355   __ bind(notString);
 356  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 357   __ push(ftos);
 358 
 359   __ bind(exit);
 360 }
 361 
 362 // Fast path for caching oop constants.
 363 // %%% We should use this to handle Class and String constants also.
 364 // %%% It will simplify the ldc/primitive path considerably.
 365 void TemplateTable::fast_aldc(bool wide) {
 366   transition(vtos, atos);
 367 
 368   int index_size = wide ? sizeof(u2) : sizeof(u1);
 369   Label resolved;
 370 
 371   // We are resolved if the resolved reference cache entry contains a
 372   // non-null object (CallSite, etc.)
 373   assert_different_registers(Otos_i, G3_scratch);
 374   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 375   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 376   __ tst(Otos_i);
 377   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 378   __ delayed()->set((int)bytecode(), O1);
 379 
 380   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 381 
 382   // first time invocation - must resolve first
 383   __ call_VM(Otos_i, entry, O1);
 384   __ bind(resolved);
 385   __ verify_oop(Otos_i);
 386 }
 387 
 388 
 389 void TemplateTable::ldc2_w() {
 390   transition(vtos, vtos);
 391   Label Long, exit;
 392 
 393   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 394   __ get_cpool_and_tags(O0, O2);
 395 
 396   const int base_offset = ConstantPool::header_size() * wordSize;
 397   const int tags_offset = Array<u1>::base_offset_in_bytes();
 398   // get type from tags
 399   __ add(O2, tags_offset, O2);
 400   __ ldub(O2, O1, O2);
 401 
 402   __ sll(O1, LogBytesPerWord, O1);
 403   __ add(O0, O1, G3_scratch);
 404 
 405   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 406   // A double can be placed at word-aligned locations in the constant pool.
 407   // Check out Conversions.java for an example.
 408   // Also ConstantPool::header_size() is 20, which makes it very difficult
 409   // to double-align double on the constant pool.  SG, 11/7/97
 410 #ifdef _LP64
 411   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 412 #else
 413   FloatRegister f = Ftos_d;
 414   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 415   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 416          f->successor());
 417 #endif
 418   __ push(dtos);
 419   __ ba_short(exit);
 420 
 421   __ bind(Long);
 422 #ifdef _LP64
 423   __ ldx(G3_scratch, base_offset, Otos_l);
 424 #else
 425   __ ld(G3_scratch, base_offset, Otos_l);
 426   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 427 #endif
 428   __ push(ltos);
 429 
 430   __ bind(exit);
 431 }
 432 
 433 
 434 void TemplateTable::locals_index(Register reg, int offset) {
 435   __ ldub( at_bcp(offset), reg );
 436 }
 437 
 438 
 439 void TemplateTable::locals_index_wide(Register reg) {
 440   // offset is 2, not 1, because Lbcp points to wide prefix code
 441   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 442 }
 443 
 444 void TemplateTable::iload() {
 445   transition(vtos, itos);
 446   // Rewrite iload,iload  pair into fast_iload2
 447   //         iload,caload pair into fast_icaload
 448   if (RewriteFrequentPairs) {
 449     Label rewrite, done;
 450 
 451     // get next byte
 452     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 453 
 454     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 455     // last two iloads in a pair.  Comparing against fast_iload means that
 456     // the next bytecode is neither an iload or a caload, and therefore
 457     // an iload pair.
 458     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 459 
 460     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 461     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 462     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 463 
 464     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 465     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 466     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 467 
 468     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 469     // rewrite
 470     // G4_scratch: fast bytecode
 471     __ bind(rewrite);
 472     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 473     __ bind(done);
 474   }
 475 
 476   // Get the local value into tos
 477   locals_index(G3_scratch);
 478   __ access_local_int( G3_scratch, Otos_i );
 479 }
 480 
 481 void TemplateTable::fast_iload2() {
 482   transition(vtos, itos);
 483   locals_index(G3_scratch);
 484   __ access_local_int( G3_scratch, Otos_i );
 485   __ push_i();
 486   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 487   __ access_local_int( G3_scratch, Otos_i );
 488 }
 489 
 490 void TemplateTable::fast_iload() {
 491   transition(vtos, itos);
 492   locals_index(G3_scratch);
 493   __ access_local_int( G3_scratch, Otos_i );
 494 }
 495 
 496 void TemplateTable::lload() {
 497   transition(vtos, ltos);
 498   locals_index(G3_scratch);
 499   __ access_local_long( G3_scratch, Otos_l );
 500 }
 501 
 502 
 503 void TemplateTable::fload() {
 504   transition(vtos, ftos);
 505   locals_index(G3_scratch);
 506   __ access_local_float( G3_scratch, Ftos_f );
 507 }
 508 
 509 
 510 void TemplateTable::dload() {
 511   transition(vtos, dtos);
 512   locals_index(G3_scratch);
 513   __ access_local_double( G3_scratch, Ftos_d );
 514 }
 515 
 516 
 517 void TemplateTable::aload() {
 518   transition(vtos, atos);
 519   locals_index(G3_scratch);
 520   __ access_local_ptr( G3_scratch, Otos_i);
 521 }
 522 
 523 
 524 void TemplateTable::wide_iload() {
 525   transition(vtos, itos);
 526   locals_index_wide(G3_scratch);
 527   __ access_local_int( G3_scratch, Otos_i );
 528 }
 529 
 530 
 531 void TemplateTable::wide_lload() {
 532   transition(vtos, ltos);
 533   locals_index_wide(G3_scratch);
 534   __ access_local_long( G3_scratch, Otos_l );
 535 }
 536 
 537 
 538 void TemplateTable::wide_fload() {
 539   transition(vtos, ftos);
 540   locals_index_wide(G3_scratch);
 541   __ access_local_float( G3_scratch, Ftos_f );
 542 }
 543 
 544 
 545 void TemplateTable::wide_dload() {
 546   transition(vtos, dtos);
 547   locals_index_wide(G3_scratch);
 548   __ access_local_double( G3_scratch, Ftos_d );
 549 }
 550 
 551 
 552 void TemplateTable::wide_aload() {
 553   transition(vtos, atos);
 554   locals_index_wide(G3_scratch);
 555   __ access_local_ptr( G3_scratch, Otos_i );
 556   __ verify_oop(Otos_i);
 557 }
 558 
 559 
 560 void TemplateTable::iaload() {
 561   transition(itos, itos);
 562   // Otos_i: index
 563   // tos: array
 564   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 565   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 566 }
 567 
 568 
 569 void TemplateTable::laload() {
 570   transition(itos, ltos);
 571   // Otos_i: index
 572   // O2: array
 573   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 574   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 575 }
 576 
 577 
 578 void TemplateTable::faload() {
 579   transition(itos, ftos);
 580   // Otos_i: index
 581   // O2: array
 582   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 583   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 584 }
 585 
 586 
 587 void TemplateTable::daload() {
 588   transition(itos, dtos);
 589   // Otos_i: index
 590   // O2: array
 591   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 592   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 593 }
 594 
 595 
 596 void TemplateTable::aaload() {
 597   transition(itos, atos);
 598   // Otos_i: index
 599   // tos: array
 600   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 601   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 602   __ verify_oop(Otos_i);
 603 }
 604 
 605 
 606 void TemplateTable::baload() {
 607   transition(itos, itos);
 608   // Otos_i: index
 609   // tos: array
 610   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 611   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 612 }
 613 
 614 
 615 void TemplateTable::caload() {
 616   transition(itos, itos);
 617   // Otos_i: index
 618   // tos: array
 619   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 620   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 621 }
 622 
 623 void TemplateTable::fast_icaload() {
 624   transition(vtos, itos);
 625   // Otos_i: index
 626   // tos: array
 627   locals_index(G3_scratch);
 628   __ access_local_int( G3_scratch, Otos_i );
 629   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 630   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 631 }
 632 
 633 
 634 void TemplateTable::saload() {
 635   transition(itos, itos);
 636   // Otos_i: index
 637   // tos: array
 638   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 639   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 640 }
 641 
 642 
 643 void TemplateTable::iload(int n) {
 644   transition(vtos, itos);
 645   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 646 }
 647 
 648 
 649 void TemplateTable::lload(int n) {
 650   transition(vtos, ltos);
 651   assert(n+1 < Argument::n_register_parameters, "would need more code");
 652   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 653 }
 654 
 655 
 656 void TemplateTable::fload(int n) {
 657   transition(vtos, ftos);
 658   assert(n < Argument::n_register_parameters, "would need more code");
 659   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 660 }
 661 
 662 
 663 void TemplateTable::dload(int n) {
 664   transition(vtos, dtos);
 665   FloatRegister dst = Ftos_d;
 666   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 667 }
 668 
 669 
 670 void TemplateTable::aload(int n) {
 671   transition(vtos, atos);
 672   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 673 }
 674 
 675 
 676 void TemplateTable::aload_0() {
 677   transition(vtos, atos);
 678 
 679   // According to bytecode histograms, the pairs:
 680   //
 681   // _aload_0, _fast_igetfield (itos)
 682   // _aload_0, _fast_agetfield (atos)
 683   // _aload_0, _fast_fgetfield (ftos)
 684   //
 685   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 686   // bytecode checks the next bytecode and then rewrites the current
 687   // bytecode into a pair bytecode; otherwise it rewrites the current
 688   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 689   //
 690   if (RewriteFrequentPairs) {
 691     Label rewrite, done;
 692 
 693     // get next byte
 694     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 695 
 696     // do actual aload_0
 697     aload(0);
 698 
 699     // if _getfield then wait with rewrite
 700     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 701 
 702     // if _igetfield then rewrite to _fast_iaccess_0
 703     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 704     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 705     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 706     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 707 
 708     // if _agetfield then rewrite to _fast_aaccess_0
 709     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 710     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 711     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 712     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 713 
 714     // if _fgetfield then rewrite to _fast_faccess_0
 715     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 716     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 717     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 718     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 719 
 720     // else rewrite to _fast_aload0
 721     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 722     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 723 
 724     // rewrite
 725     // G4_scratch: fast bytecode
 726     __ bind(rewrite);
 727     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 728     __ bind(done);
 729   } else {
 730     aload(0);
 731   }
 732 }
 733 
 734 
 735 void TemplateTable::istore() {
 736   transition(itos, vtos);
 737   locals_index(G3_scratch);
 738   __ store_local_int( G3_scratch, Otos_i );
 739 }
 740 
 741 
 742 void TemplateTable::lstore() {
 743   transition(ltos, vtos);
 744   locals_index(G3_scratch);
 745   __ store_local_long( G3_scratch, Otos_l );
 746 }
 747 
 748 
 749 void TemplateTable::fstore() {
 750   transition(ftos, vtos);
 751   locals_index(G3_scratch);
 752   __ store_local_float( G3_scratch, Ftos_f );
 753 }
 754 
 755 
 756 void TemplateTable::dstore() {
 757   transition(dtos, vtos);
 758   locals_index(G3_scratch);
 759   __ store_local_double( G3_scratch, Ftos_d );
 760 }
 761 
 762 
 763 void TemplateTable::astore() {
 764   transition(vtos, vtos);
 765   __ load_ptr(0, Otos_i);
 766   __ inc(Lesp, Interpreter::stackElementSize);
 767   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 768   locals_index(G3_scratch);
 769   __ store_local_ptr(G3_scratch, Otos_i);
 770 }
 771 
 772 
 773 void TemplateTable::wide_istore() {
 774   transition(vtos, vtos);
 775   __ pop_i();
 776   locals_index_wide(G3_scratch);
 777   __ store_local_int( G3_scratch, Otos_i );
 778 }
 779 
 780 
 781 void TemplateTable::wide_lstore() {
 782   transition(vtos, vtos);
 783   __ pop_l();
 784   locals_index_wide(G3_scratch);
 785   __ store_local_long( G3_scratch, Otos_l );
 786 }
 787 
 788 
 789 void TemplateTable::wide_fstore() {
 790   transition(vtos, vtos);
 791   __ pop_f();
 792   locals_index_wide(G3_scratch);
 793   __ store_local_float( G3_scratch, Ftos_f );
 794 }
 795 
 796 
 797 void TemplateTable::wide_dstore() {
 798   transition(vtos, vtos);
 799   __ pop_d();
 800   locals_index_wide(G3_scratch);
 801   __ store_local_double( G3_scratch, Ftos_d );
 802 }
 803 
 804 
 805 void TemplateTable::wide_astore() {
 806   transition(vtos, vtos);
 807   __ load_ptr(0, Otos_i);
 808   __ inc(Lesp, Interpreter::stackElementSize);
 809   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 810   locals_index_wide(G3_scratch);
 811   __ store_local_ptr(G3_scratch, Otos_i);
 812 }
 813 
 814 
 815 void TemplateTable::iastore() {
 816   transition(itos, vtos);
 817   __ pop_i(O2); // index
 818   // Otos_i: val
 819   // O3: array
 820   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 821   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 822 }
 823 
 824 
 825 void TemplateTable::lastore() {
 826   transition(ltos, vtos);
 827   __ pop_i(O2); // index
 828   // Otos_l: val
 829   // O3: array
 830   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 831   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 832 }
 833 
 834 
 835 void TemplateTable::fastore() {
 836   transition(ftos, vtos);
 837   __ pop_i(O2); // index
 838   // Ftos_f: val
 839   // O3: array
 840   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 841   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 842 }
 843 
 844 
 845 void TemplateTable::dastore() {
 846   transition(dtos, vtos);
 847   __ pop_i(O2); // index
 848   // Fos_d: val
 849   // O3: array
 850   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 851   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 852 }
 853 
 854 
 855 void TemplateTable::aastore() {
 856   Label store_ok, is_null, done;
 857   transition(vtos, vtos);
 858   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 859   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 860   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 861   // Otos_i: val
 862   // O2: index
 863   // O3: array
 864   __ verify_oop(Otos_i);
 865   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 866 
 867   // do array store check - check for NULL value first
 868   __ br_null_short( Otos_i, Assembler::pn, is_null );
 869 
 870   __ load_klass(O3, O4); // get array klass
 871   __ load_klass(Otos_i, O5); // get value klass
 872 
 873   // do fast instanceof cache test
 874 
 875   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 876 
 877   assert(Otos_i == O0, "just checking");
 878 
 879   // Otos_i:    value
 880   // O1:        addr - offset
 881   // O2:        index
 882   // O3:        array
 883   // O4:        array element klass
 884   // O5:        value klass
 885 
 886   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 887 
 888   // Generate a fast subtype check.  Branch to store_ok if no
 889   // failure.  Throw if failure.
 890   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 891 
 892   // Not a subtype; so must throw exception
 893   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 894 
 895   // Store is OK.
 896   __ bind(store_ok);
 897   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 898 
 899   __ ba(done);
 900   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 901 
 902   __ bind(is_null);
 903   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 904 
 905   __ profile_null_seen(G3_scratch);
 906   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 907   __ bind(done);
 908 }
 909 
 910 
 911 void TemplateTable::bastore() {
 912   transition(itos, vtos);
 913   __ pop_i(O2); // index
 914   // Otos_i: val
 915   // O3: array
 916   __ index_check(O3, O2, 0, G3_scratch, O2);
 917   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 918 }
 919 
 920 
 921 void TemplateTable::castore() {
 922   transition(itos, vtos);
 923   __ pop_i(O2); // index
 924   // Otos_i: val
 925   // O3: array
 926   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 927   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 928 }
 929 
 930 
 931 void TemplateTable::sastore() {
 932   // %%%%% Factor across platform
 933   castore();
 934 }
 935 
 936 
 937 void TemplateTable::istore(int n) {
 938   transition(itos, vtos);
 939   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 940 }
 941 
 942 
 943 void TemplateTable::lstore(int n) {
 944   transition(ltos, vtos);
 945   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 946   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 947 
 948 }
 949 
 950 
 951 void TemplateTable::fstore(int n) {
 952   transition(ftos, vtos);
 953   assert(n < Argument::n_register_parameters, "only handle register cases");
 954   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 955 }
 956 
 957 
 958 void TemplateTable::dstore(int n) {
 959   transition(dtos, vtos);
 960   FloatRegister src = Ftos_d;
 961   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 962 }
 963 
 964 
 965 void TemplateTable::astore(int n) {
 966   transition(vtos, vtos);
 967   __ load_ptr(0, Otos_i);
 968   __ inc(Lesp, Interpreter::stackElementSize);
 969   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 970   __ store_local_ptr(n, Otos_i);
 971 }
 972 
 973 
 974 void TemplateTable::pop() {
 975   transition(vtos, vtos);
 976   __ inc(Lesp, Interpreter::stackElementSize);
 977 }
 978 
 979 
 980 void TemplateTable::pop2() {
 981   transition(vtos, vtos);
 982   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 983 }
 984 
 985 
 986 void TemplateTable::dup() {
 987   transition(vtos, vtos);
 988   // stack: ..., a
 989   // load a and tag
 990   __ load_ptr(0, Otos_i);
 991   __ push_ptr(Otos_i);
 992   // stack: ..., a, a
 993 }
 994 
 995 
 996 void TemplateTable::dup_x1() {
 997   transition(vtos, vtos);
 998   // stack: ..., a, b
 999   __ load_ptr( 1, G3_scratch);  // get a
1000   __ load_ptr( 0, Otos_l1);     // get b
1001   __ store_ptr(1, Otos_l1);     // put b
1002   __ store_ptr(0, G3_scratch);  // put a - like swap
1003   __ push_ptr(Otos_l1);         // push b
1004   // stack: ..., b, a, b
1005 }
1006 
1007 
1008 void TemplateTable::dup_x2() {
1009   transition(vtos, vtos);
1010   // stack: ..., a, b, c
1011   // get c and push on stack, reuse registers
1012   __ load_ptr( 0, G3_scratch);  // get c
1013   __ push_ptr(G3_scratch);      // push c with tag
1014   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1015   // (stack offsets n+1 now)
1016   __ load_ptr( 3, Otos_l1);     // get a
1017   __ store_ptr(3, G3_scratch);  // put c at 3
1018   // stack: ..., c, b, c, c  (a in reg)
1019   __ load_ptr( 2, G3_scratch);  // get b
1020   __ store_ptr(2, Otos_l1);     // put a at 2
1021   // stack: ..., c, a, c, c  (b in reg)
1022   __ store_ptr(1, G3_scratch);  // put b at 1
1023   // stack: ..., c, a, b, c
1024 }
1025 
1026 
1027 void TemplateTable::dup2() {
1028   transition(vtos, vtos);
1029   __ load_ptr(1, G3_scratch);  // get a
1030   __ load_ptr(0, Otos_l1);     // get b
1031   __ push_ptr(G3_scratch);     // push a
1032   __ push_ptr(Otos_l1);        // push b
1033   // stack: ..., a, b, a, b
1034 }
1035 
1036 
1037 void TemplateTable::dup2_x1() {
1038   transition(vtos, vtos);
1039   // stack: ..., a, b, c
1040   __ load_ptr( 1, Lscratch);    // get b
1041   __ load_ptr( 2, Otos_l1);     // get a
1042   __ store_ptr(2, Lscratch);    // put b at a
1043   // stack: ..., b, b, c
1044   __ load_ptr( 0, G3_scratch);  // get c
1045   __ store_ptr(1, G3_scratch);  // put c at b
1046   // stack: ..., b, c, c
1047   __ store_ptr(0, Otos_l1);     // put a at c
1048   // stack: ..., b, c, a
1049   __ push_ptr(Lscratch);        // push b
1050   __ push_ptr(G3_scratch);      // push c
1051   // stack: ..., b, c, a, b, c
1052 }
1053 
1054 
1055 // The spec says that these types can be a mixture of category 1 (1 word)
1056 // types and/or category 2 types (long and doubles)
1057 void TemplateTable::dup2_x2() {
1058   transition(vtos, vtos);
1059   // stack: ..., a, b, c, d
1060   __ load_ptr( 1, Lscratch);    // get c
1061   __ load_ptr( 3, Otos_l1);     // get a
1062   __ store_ptr(3, Lscratch);    // put c at 3
1063   __ store_ptr(1, Otos_l1);     // put a at 1
1064   // stack: ..., c, b, a, d
1065   __ load_ptr( 2, G3_scratch);  // get b
1066   __ load_ptr( 0, Otos_l1);     // get d
1067   __ store_ptr(0, G3_scratch);  // put b at 0
1068   __ store_ptr(2, Otos_l1);     // put d at 2
1069   // stack: ..., c, d, a, b
1070   __ push_ptr(Lscratch);        // push c
1071   __ push_ptr(Otos_l1);         // push d
1072   // stack: ..., c, d, a, b, c, d
1073 }
1074 
1075 
1076 void TemplateTable::swap() {
1077   transition(vtos, vtos);
1078   // stack: ..., a, b
1079   __ load_ptr( 1, G3_scratch);  // get a
1080   __ load_ptr( 0, Otos_l1);     // get b
1081   __ store_ptr(0, G3_scratch);  // put b
1082   __ store_ptr(1, Otos_l1);     // put a
1083   // stack: ..., b, a
1084 }
1085 
1086 
1087 void TemplateTable::iop2(Operation op) {
1088   transition(itos, itos);
1089   __ pop_i(O1);
1090   switch (op) {
1091    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1092    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1093      // %%%%% Mul may not exist: better to call .mul?
1094    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1095    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1096    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1097    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1098    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1099    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1100    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1101    default: ShouldNotReachHere();
1102   }
1103 }
1104 
1105 
1106 void TemplateTable::lop2(Operation op) {
1107   transition(ltos, ltos);
1108   __ pop_l(O2);
1109   switch (op) {
1110 #ifdef _LP64
1111    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1112    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1113    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1114    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1115    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1116 #else
1117    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1118    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1119    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1120    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1121    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1122 #endif
1123    default: ShouldNotReachHere();
1124   }
1125 }
1126 
1127 
1128 void TemplateTable::idiv() {
1129   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1130   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1131 
1132   transition(itos, itos);
1133   __ pop_i(O1); // get 1st op
1134 
1135   // Y contains upper 32 bits of result, set it to 0 or all ones
1136   __ wry(G0);
1137   __ mov(~0, G3_scratch);
1138 
1139   __ tst(O1);
1140      Label neg;
1141   __ br(Assembler::negative, true, Assembler::pn, neg);
1142   __ delayed()->wry(G3_scratch);
1143   __ bind(neg);
1144 
1145      Label ok;
1146   __ tst(Otos_i);
1147   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1148 
1149   const int min_int = 0x80000000;
1150   Label regular;
1151   __ cmp(Otos_i, -1);
1152   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1153 #ifdef _LP64
1154   // Don't put set in delay slot
1155   // Set will turn into multiple instructions in 64 bit mode
1156   __ delayed()->nop();
1157   __ set(min_int, G4_scratch);
1158 #else
1159   __ delayed()->set(min_int, G4_scratch);
1160 #endif
1161   Label done;
1162   __ cmp(O1, G4_scratch);
1163   __ br(Assembler::equal, true, Assembler::pt, done);
1164   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1165 
1166   __ bind(regular);
1167   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1168   __ bind(done);
1169 }
1170 
1171 
1172 void TemplateTable::irem() {
1173   transition(itos, itos);
1174   __ mov(Otos_i, O2); // save divisor
1175   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1176   __ smul(Otos_i, O2, Otos_i);
1177   __ sub(O1, Otos_i, Otos_i);
1178 }
1179 
1180 
1181 void TemplateTable::lmul() {
1182   transition(ltos, ltos);
1183   __ pop_l(O2);
1184 #ifdef _LP64
1185   __ mulx(Otos_l, O2, Otos_l);
1186 #else
1187   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1188 #endif
1189 
1190 }
1191 
1192 
1193 void TemplateTable::ldiv() {
1194   transition(ltos, ltos);
1195 
1196   // check for zero
1197   __ pop_l(O2);
1198 #ifdef _LP64
1199   __ tst(Otos_l);
1200   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1201   __ sdivx(O2, Otos_l, Otos_l);
1202 #else
1203   __ orcc(Otos_l1, Otos_l2, G0);
1204   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1205   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1206 #endif
1207 }
1208 
1209 
1210 void TemplateTable::lrem() {
1211   transition(ltos, ltos);
1212 
1213   // check for zero
1214   __ pop_l(O2);
1215 #ifdef _LP64
1216   __ tst(Otos_l);
1217   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1218   __ sdivx(O2, Otos_l, Otos_l2);
1219   __ mulx (Otos_l2, Otos_l, Otos_l2);
1220   __ sub  (O2, Otos_l2, Otos_l);
1221 #else
1222   __ orcc(Otos_l1, Otos_l2, G0);
1223   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1224   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1225 #endif
1226 }
1227 
1228 
1229 void TemplateTable::lshl() {
1230   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1231 
1232   __ pop_l(O2);                          // shift value in O2, O3
1233 #ifdef _LP64
1234   __ sllx(O2, Otos_i, Otos_l);
1235 #else
1236   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1237 #endif
1238 }
1239 
1240 
1241 void TemplateTable::lshr() {
1242   transition(itos, ltos); // %%%% see lshl comment
1243 
1244   __ pop_l(O2);                          // shift value in O2, O3
1245 #ifdef _LP64
1246   __ srax(O2, Otos_i, Otos_l);
1247 #else
1248   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1249 #endif
1250 }
1251 
1252 
1253 
1254 void TemplateTable::lushr() {
1255   transition(itos, ltos); // %%%% see lshl comment
1256 
1257   __ pop_l(O2);                          // shift value in O2, O3
1258 #ifdef _LP64
1259   __ srlx(O2, Otos_i, Otos_l);
1260 #else
1261   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1262 #endif
1263 }
1264 
1265 
1266 void TemplateTable::fop2(Operation op) {
1267   transition(ftos, ftos);
1268   switch (op) {
1269    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1270    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1271    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1272    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1273    case  rem:
1274      assert(Ftos_f == F0, "just checking");
1275 #ifdef _LP64
1276      // LP64 calling conventions use F1, F3 for passing 2 floats
1277      __ pop_f(F1);
1278      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1279 #else
1280      __ pop_i(O0);
1281      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1282      __ ld( __ d_tmp, O1 );
1283 #endif
1284      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1285      assert( Ftos_f == F0, "fix this code" );
1286      break;
1287 
1288    default: ShouldNotReachHere();
1289   }
1290 }
1291 
1292 
1293 void TemplateTable::dop2(Operation op) {
1294   transition(dtos, dtos);
1295   switch (op) {
1296    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1297    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1298    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1299    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1300    case  rem:
1301 #ifdef _LP64
1302      // Pass arguments in D0, D2
1303      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1304      __ pop_d( F0 );
1305 #else
1306      // Pass arguments in O0O1, O2O3
1307      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1308      __ ldd( __ d_tmp, O2 );
1309      __ pop_d(Ftos_f);
1310      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1311      __ ldd( __ d_tmp, O0 );
1312 #endif
1313      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1314      assert( Ftos_d == F0, "fix this code" );
1315      break;
1316 
1317    default: ShouldNotReachHere();
1318   }
1319 }
1320 
1321 
1322 void TemplateTable::ineg() {
1323   transition(itos, itos);
1324   __ neg(Otos_i);
1325 }
1326 
1327 
1328 void TemplateTable::lneg() {
1329   transition(ltos, ltos);
1330 #ifdef _LP64
1331   __ sub(G0, Otos_l, Otos_l);
1332 #else
1333   __ lneg(Otos_l1, Otos_l2);
1334 #endif
1335 }
1336 
1337 
1338 void TemplateTable::fneg() {
1339   transition(ftos, ftos);
1340   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1341 }
1342 
1343 
1344 void TemplateTable::dneg() {
1345   transition(dtos, dtos);
1346   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1347 }
1348 
1349 
1350 void TemplateTable::iinc() {
1351   transition(vtos, vtos);
1352   locals_index(G3_scratch);
1353   __ ldsb(Lbcp, 2, O2);  // load constant
1354   __ access_local_int(G3_scratch, Otos_i);
1355   __ add(Otos_i, O2, Otos_i);
1356   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1357 }
1358 
1359 
1360 void TemplateTable::wide_iinc() {
1361   transition(vtos, vtos);
1362   locals_index_wide(G3_scratch);
1363   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1364   __ access_local_int(G3_scratch, Otos_i);
1365   __ add(Otos_i, O3, Otos_i);
1366   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1367 }
1368 
1369 
1370 void TemplateTable::convert() {
1371 // %%%%% Factor this first part accross platforms
1372   #ifdef ASSERT
1373     TosState tos_in  = ilgl;
1374     TosState tos_out = ilgl;
1375     switch (bytecode()) {
1376       case Bytecodes::_i2l: // fall through
1377       case Bytecodes::_i2f: // fall through
1378       case Bytecodes::_i2d: // fall through
1379       case Bytecodes::_i2b: // fall through
1380       case Bytecodes::_i2c: // fall through
1381       case Bytecodes::_i2s: tos_in = itos; break;
1382       case Bytecodes::_l2i: // fall through
1383       case Bytecodes::_l2f: // fall through
1384       case Bytecodes::_l2d: tos_in = ltos; break;
1385       case Bytecodes::_f2i: // fall through
1386       case Bytecodes::_f2l: // fall through
1387       case Bytecodes::_f2d: tos_in = ftos; break;
1388       case Bytecodes::_d2i: // fall through
1389       case Bytecodes::_d2l: // fall through
1390       case Bytecodes::_d2f: tos_in = dtos; break;
1391       default             : ShouldNotReachHere();
1392     }
1393     switch (bytecode()) {
1394       case Bytecodes::_l2i: // fall through
1395       case Bytecodes::_f2i: // fall through
1396       case Bytecodes::_d2i: // fall through
1397       case Bytecodes::_i2b: // fall through
1398       case Bytecodes::_i2c: // fall through
1399       case Bytecodes::_i2s: tos_out = itos; break;
1400       case Bytecodes::_i2l: // fall through
1401       case Bytecodes::_f2l: // fall through
1402       case Bytecodes::_d2l: tos_out = ltos; break;
1403       case Bytecodes::_i2f: // fall through
1404       case Bytecodes::_l2f: // fall through
1405       case Bytecodes::_d2f: tos_out = ftos; break;
1406       case Bytecodes::_i2d: // fall through
1407       case Bytecodes::_l2d: // fall through
1408       case Bytecodes::_f2d: tos_out = dtos; break;
1409       default             : ShouldNotReachHere();
1410     }
1411     transition(tos_in, tos_out);
1412   #endif
1413 
1414 
1415   // Conversion
1416   Label done;
1417   switch (bytecode()) {
1418    case Bytecodes::_i2l:
1419 #ifdef _LP64
1420     // Sign extend the 32 bits
1421     __ sra ( Otos_i, 0, Otos_l );
1422 #else
1423     __ addcc(Otos_i, 0, Otos_l2);
1424     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1425     __ delayed()->clr(Otos_l1);
1426     __ set(~0, Otos_l1);
1427 #endif
1428     break;
1429 
1430    case Bytecodes::_i2f:
1431     __ st(Otos_i, __ d_tmp );
1432     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1433     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1434     break;
1435 
1436    case Bytecodes::_i2d:
1437     __ st(Otos_i, __ d_tmp);
1438     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1439     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1440     break;
1441 
1442    case Bytecodes::_i2b:
1443     __ sll(Otos_i, 24, Otos_i);
1444     __ sra(Otos_i, 24, Otos_i);
1445     break;
1446 
1447    case Bytecodes::_i2c:
1448     __ sll(Otos_i, 16, Otos_i);
1449     __ srl(Otos_i, 16, Otos_i);
1450     break;
1451 
1452    case Bytecodes::_i2s:
1453     __ sll(Otos_i, 16, Otos_i);
1454     __ sra(Otos_i, 16, Otos_i);
1455     break;
1456 
1457    case Bytecodes::_l2i:
1458 #ifndef _LP64
1459     __ mov(Otos_l2, Otos_i);
1460 #else
1461     // Sign-extend into the high 32 bits
1462     __ sra(Otos_l, 0, Otos_i);
1463 #endif
1464     break;
1465 
1466    case Bytecodes::_l2f:
1467    case Bytecodes::_l2d:
1468     __ st_long(Otos_l, __ d_tmp);
1469     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1470 
1471     if (bytecode() == Bytecodes::_l2f) {
1472       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1473     } else {
1474       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1475     }
1476     break;
1477 
1478   case Bytecodes::_f2i:  {
1479       Label isNaN;
1480       // result must be 0 if value is NaN; test by comparing value to itself
1481       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1482       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1483       __ delayed()->clr(Otos_i);                                     // NaN
1484       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1485       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1486       __ ld(__ d_tmp, Otos_i);
1487       __ bind(isNaN);
1488     }
1489     break;
1490 
1491    case Bytecodes::_f2l:
1492     // must uncache tos
1493     __ push_f();
1494 #ifdef _LP64
1495     __ pop_f(F1);
1496 #else
1497     __ pop_i(O0);
1498 #endif
1499     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1500     break;
1501 
1502    case Bytecodes::_f2d:
1503     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1504     break;
1505 
1506    case Bytecodes::_d2i:
1507    case Bytecodes::_d2l:
1508     // must uncache tos
1509     __ push_d();
1510 #ifdef _LP64
1511     // LP64 calling conventions pass first double arg in D0
1512     __ pop_d( Ftos_d );
1513 #else
1514     __ pop_i( O0 );
1515     __ pop_i( O1 );
1516 #endif
1517     __ call_VM_leaf(Lscratch,
1518         bytecode() == Bytecodes::_d2i
1519           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1520           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1521     break;
1522 
1523     case Bytecodes::_d2f:
1524       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1525     break;
1526 
1527     default: ShouldNotReachHere();
1528   }
1529   __ bind(done);
1530 }
1531 
1532 
1533 void TemplateTable::lcmp() {
1534   transition(ltos, itos);
1535 
1536 #ifdef _LP64
1537   __ pop_l(O1); // pop off value 1, value 2 is in O0
1538   __ lcmp( O1, Otos_l, Otos_i );
1539 #else
1540   __ pop_l(O2); // cmp O2,3 to O0,1
1541   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1542 #endif
1543 }
1544 
1545 
1546 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1547 
1548   if (is_float) __ pop_f(F2);
1549   else          __ pop_d(F2);
1550 
1551   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1552 
1553   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1554 }
1555 
1556 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1557   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1558   __ verify_thread();
1559 
1560   const Register O2_bumped_count = O2;
1561   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1562 
1563   // get (wide) offset to O1_disp
1564   const Register O1_disp = O1;
1565   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1566   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1567 
1568   // Handle all the JSR stuff here, then exit.
1569   // It's much shorter and cleaner than intermingling with the
1570   // non-JSR normal-branch stuff occurring below.
1571   if( is_jsr ) {
1572     // compute return address as bci in Otos_i
1573     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1574     __ sub(Lbcp, G3_scratch, G3_scratch);
1575     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1576 
1577     // Bump Lbcp to target of JSR
1578     __ add(Lbcp, O1_disp, Lbcp);
1579     // Push returnAddress for "ret" on stack
1580     __ push_ptr(Otos_i);
1581     // And away we go!
1582     __ dispatch_next(vtos);
1583     return;
1584   }
1585 
1586   // Normal (non-jsr) branch handling
1587 
1588   // Save the current Lbcp
1589   const Register l_cur_bcp = Lscratch;
1590   __ mov( Lbcp, l_cur_bcp );
1591 
1592   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1593   if ( increment_invocation_counter_for_backward_branches ) {
1594     Label Lforward;
1595     // check branch direction
1596     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1597     // Bump bytecode pointer by displacement (take the branch)
1598     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1599 
1600     const Register G3_method_counters = G3_scratch;
1601     __ get_method_counters(Lmethod, G3_method_counters, Lforward);
1602 
1603     if (TieredCompilation) {
1604       Label Lno_mdo, Loverflow;
1605       int increment = InvocationCounter::count_increment;
1606       if (ProfileInterpreter) {
1607         // If no method data exists, go to profile_continue.
1608         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1609         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1610 
1611         // Increment backedge counter in the MDO
1612         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1613                                                  in_bytes(InvocationCounter::counter_offset()));
1614         Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
1615         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1616                                    Assembler::notZero, &Lforward);
1617         __ ba_short(Loverflow);
1618       }
1619 
1620       // If there's no MDO, increment counter in MethodCounters*
1621       __ bind(Lno_mdo);
1622       Address backedge_counter(G3_method_counters,
1623               in_bytes(MethodCounters::backedge_counter_offset()) +
1624               in_bytes(InvocationCounter::counter_offset()));
1625       Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
1626       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1627                                  Assembler::notZero, &Lforward);
1628       __ bind(Loverflow);
1629 
1630       // notify point for loop, pass branch bytecode
1631       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1632 
1633       // Was an OSR adapter generated?
1634       // O0 = osr nmethod
1635       __ br_null_short(O0, Assembler::pn, Lforward);
1636 
1637       // Has the nmethod been invalidated already?
1638       __ ldub(O0, nmethod::state_offset(), O2);
1639       __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
1640 
1641       // migrate the interpreter frame off of the stack
1642 
1643       __ mov(G2_thread, L7);
1644       // save nmethod
1645       __ mov(O0, L6);
1646       __ set_last_Java_frame(SP, noreg);
1647       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1648       __ reset_last_Java_frame();
1649       __ mov(L7, G2_thread);
1650 
1651       // move OSR nmethod to I1
1652       __ mov(L6, I1);
1653 
1654       // OSR buffer to I0
1655       __ mov(O0, I0);
1656 
1657       // remove the interpreter frame
1658       __ restore(I5_savedSP, 0, SP);
1659 
1660       // Jump to the osr code.
1661       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1662       __ jmp(O2, G0);
1663       __ delayed()->nop();
1664 
1665     } else { // not TieredCompilation
1666       // Update Backedge branch separately from invocations
1667       const Register G4_invoke_ctr = G4;
1668       __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
1669       if (ProfileInterpreter) {
1670         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
1671         if (UseOnStackReplacement) {
1672 
1673           __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
1674         }
1675       } else {
1676         if (UseOnStackReplacement) {
1677           __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
1678         }
1679       }
1680     }
1681 
1682     __ bind(Lforward);
1683   } else
1684     // Bump bytecode pointer by displacement (take the branch)
1685     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1686 
1687   // continue with bytecode @ target
1688   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1689   // %%%%% and changing dispatch_next to dispatch_only
1690   __ dispatch_next(vtos);
1691 }
1692 
1693 
1694 // Note Condition in argument is TemplateTable::Condition
1695 // arg scope is within class scope
1696 
1697 void TemplateTable::if_0cmp(Condition cc) {
1698   // no pointers, integer only!
1699   transition(itos, vtos);
1700   // assume branch is more often taken than not (loops use backward branches)
1701   __ cmp( Otos_i, 0);
1702   __ if_cmp(ccNot(cc), false);
1703 }
1704 
1705 
1706 void TemplateTable::if_icmp(Condition cc) {
1707   transition(itos, vtos);
1708   __ pop_i(O1);
1709   __ cmp(O1, Otos_i);
1710   __ if_cmp(ccNot(cc), false);
1711 }
1712 
1713 
1714 void TemplateTable::if_nullcmp(Condition cc) {
1715   transition(atos, vtos);
1716   __ tst(Otos_i);
1717   __ if_cmp(ccNot(cc), true);
1718 }
1719 
1720 
1721 void TemplateTable::if_acmp(Condition cc) {
1722   transition(atos, vtos);
1723   __ pop_ptr(O1);
1724   __ verify_oop(O1);
1725   __ verify_oop(Otos_i);
1726   __ cmp(O1, Otos_i);
1727   __ if_cmp(ccNot(cc), true);
1728 }
1729 
1730 
1731 
1732 void TemplateTable::ret() {
1733   transition(vtos, vtos);
1734   locals_index(G3_scratch);
1735   __ access_local_returnAddress(G3_scratch, Otos_i);
1736   // Otos_i contains the bci, compute the bcp from that
1737 
1738 #ifdef _LP64
1739 #ifdef ASSERT
1740   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1741   // the result.  The return address (really a BCI) was stored with an
1742   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1743   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1744   // loaded value.
1745   { Label zzz ;
1746      __ set (65536, G3_scratch) ;
1747      __ cmp (Otos_i, G3_scratch) ;
1748      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1749      __ delayed()->nop();
1750      __ stop("BCI is in the wrong register half?");
1751      __ bind (zzz) ;
1752   }
1753 #endif
1754 #endif
1755 
1756   __ profile_ret(vtos, Otos_i, G4_scratch);
1757 
1758   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1759   __ add(G3_scratch, Otos_i, G3_scratch);
1760   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1761   __ dispatch_next(vtos);
1762 }
1763 
1764 
1765 void TemplateTable::wide_ret() {
1766   transition(vtos, vtos);
1767   locals_index_wide(G3_scratch);
1768   __ access_local_returnAddress(G3_scratch, Otos_i);
1769   // Otos_i contains the bci, compute the bcp from that
1770 
1771   __ profile_ret(vtos, Otos_i, G4_scratch);
1772 
1773   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1774   __ add(G3_scratch, Otos_i, G3_scratch);
1775   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1776   __ dispatch_next(vtos);
1777 }
1778 
1779 
1780 void TemplateTable::tableswitch() {
1781   transition(itos, vtos);
1782   Label default_case, continue_execution;
1783 
1784   // align bcp
1785   __ add(Lbcp, BytesPerInt, O1);
1786   __ and3(O1, -BytesPerInt, O1);
1787   // load lo, hi
1788   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1789   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1790 #ifdef _LP64
1791   // Sign extend the 32 bits
1792   __ sra ( Otos_i, 0, Otos_i );
1793 #endif /* _LP64 */
1794 
1795   // check against lo & hi
1796   __ cmp( Otos_i, O2);
1797   __ br( Assembler::less, false, Assembler::pn, default_case);
1798   __ delayed()->cmp( Otos_i, O3 );
1799   __ br( Assembler::greater, false, Assembler::pn, default_case);
1800   // lookup dispatch offset
1801   __ delayed()->sub(Otos_i, O2, O2);
1802   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1803   __ sll(O2, LogBytesPerInt, O2);
1804   __ add(O2, 3 * BytesPerInt, O2);
1805   __ ba(continue_execution);
1806   __ delayed()->ld(O1, O2, O2);
1807   // handle default
1808   __ bind(default_case);
1809   __ profile_switch_default(O3);
1810   __ ld(O1, 0, O2); // get default offset
1811   // continue execution
1812   __ bind(continue_execution);
1813   __ add(Lbcp, O2, Lbcp);
1814   __ dispatch_next(vtos);
1815 }
1816 
1817 
1818 void TemplateTable::lookupswitch() {
1819   transition(itos, itos);
1820   __ stop("lookupswitch bytecode should have been rewritten");
1821 }
1822 
1823 void TemplateTable::fast_linearswitch() {
1824   transition(itos, vtos);
1825     Label loop_entry, loop, found, continue_execution;
1826   // align bcp
1827   __ add(Lbcp, BytesPerInt, O1);
1828   __ and3(O1, -BytesPerInt, O1);
1829  // set counter
1830   __ ld(O1, BytesPerInt, O2);
1831   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1832   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1833   __ ba(loop_entry);
1834   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1835 
1836   // table search
1837   __ bind(loop);
1838   __ cmp(O4, Otos_i);
1839   __ br(Assembler::equal, true, Assembler::pn, found);
1840   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1841   __ inc(O3, 2 * BytesPerInt);
1842 
1843   __ bind(loop_entry);
1844   __ cmp(O2, O3);
1845   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1846   __ delayed()->ld(O3, 0, O4);
1847 
1848   // default case
1849   __ ld(O1, 0, O4); // get default offset
1850   if (ProfileInterpreter) {
1851     __ profile_switch_default(O3);
1852     __ ba_short(continue_execution);
1853   }
1854 
1855   // entry found -> get offset
1856   __ bind(found);
1857   if (ProfileInterpreter) {
1858     __ sub(O3, O1, O3);
1859     __ sub(O3, 2*BytesPerInt, O3);
1860     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1861     __ profile_switch_case(O3, O1, O2, G3_scratch);
1862 
1863     __ bind(continue_execution);
1864   }
1865   __ add(Lbcp, O4, Lbcp);
1866   __ dispatch_next(vtos);
1867 }
1868 
1869 
1870 void TemplateTable::fast_binaryswitch() {
1871   transition(itos, vtos);
1872   // Implementation using the following core algorithm: (copied from Intel)
1873   //
1874   // int binary_search(int key, LookupswitchPair* array, int n) {
1875   //   // Binary search according to "Methodik des Programmierens" by
1876   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1877   //   int i = 0;
1878   //   int j = n;
1879   //   while (i+1 < j) {
1880   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1881   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1882   //     // where a stands for the array and assuming that the (inexisting)
1883   //     // element a[n] is infinitely big.
1884   //     int h = (i + j) >> 1;
1885   //     // i < h < j
1886   //     if (key < array[h].fast_match()) {
1887   //       j = h;
1888   //     } else {
1889   //       i = h;
1890   //     }
1891   //   }
1892   //   // R: a[i] <= key < a[i+1] or Q
1893   //   // (i.e., if key is within array, i is the correct index)
1894   //   return i;
1895   // }
1896 
1897   // register allocation
1898   assert(Otos_i == O0, "alias checking");
1899   const Register Rkey     = Otos_i;                    // already set (tosca)
1900   const Register Rarray   = O1;
1901   const Register Ri       = O2;
1902   const Register Rj       = O3;
1903   const Register Rh       = O4;
1904   const Register Rscratch = O5;
1905 
1906   const int log_entry_size = 3;
1907   const int entry_size = 1 << log_entry_size;
1908 
1909   Label found;
1910   // Find Array start
1911   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1912   __ and3(Rarray, -BytesPerInt, Rarray);
1913   // initialize i & j (in delay slot)
1914   __ clr( Ri );
1915 
1916   // and start
1917   Label entry;
1918   __ ba(entry);
1919   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1920   // (Rj is already in the native byte-ordering.)
1921 
1922   // binary search loop
1923   { Label loop;
1924     __ bind( loop );
1925     // int h = (i + j) >> 1;
1926     __ sra( Rh, 1, Rh );
1927     // if (key < array[h].fast_match()) {
1928     //   j = h;
1929     // } else {
1930     //   i = h;
1931     // }
1932     __ sll( Rh, log_entry_size, Rscratch );
1933     __ ld( Rarray, Rscratch, Rscratch );
1934     // (Rscratch is already in the native byte-ordering.)
1935     __ cmp( Rkey, Rscratch );
1936     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1937     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1938 
1939     // while (i+1 < j)
1940     __ bind( entry );
1941     __ add( Ri, 1, Rscratch );
1942     __ cmp(Rscratch, Rj);
1943     __ br( Assembler::less, true, Assembler::pt, loop );
1944     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1945   }
1946 
1947   // end of binary search, result index is i (must check again!)
1948   Label default_case;
1949   Label continue_execution;
1950   if (ProfileInterpreter) {
1951     __ mov( Ri, Rh );              // Save index in i for profiling
1952   }
1953   __ sll( Ri, log_entry_size, Ri );
1954   __ ld( Rarray, Ri, Rscratch );
1955   // (Rscratch is already in the native byte-ordering.)
1956   __ cmp( Rkey, Rscratch );
1957   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1958   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1959 
1960   // entry found -> j = offset
1961   __ inc( Ri, BytesPerInt );
1962   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1963   __ ld( Rarray, Ri, Rj );
1964   // (Rj is already in the native byte-ordering.)
1965 
1966   if (ProfileInterpreter) {
1967     __ ba_short(continue_execution);
1968   }
1969 
1970   __ bind(default_case); // fall through (if not profiling)
1971   __ profile_switch_default(Ri);
1972 
1973   __ bind(continue_execution);
1974   __ add( Lbcp, Rj, Lbcp );
1975   __ dispatch_next( vtos );
1976 }
1977 
1978 
1979 void TemplateTable::_return(TosState state) {
1980   transition(state, state);
1981   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1982 
1983   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1984     assert(state == vtos, "only valid state");
1985     __ mov(G0, G3_scratch);
1986     __ access_local_ptr(G3_scratch, Otos_i);
1987     __ load_klass(Otos_i, O2);
1988     __ set(JVM_ACC_HAS_FINALIZER, G3);
1989     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
1990     __ andcc(G3, O2, G0);
1991     Label skip_register_finalizer;
1992     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1993     __ delayed()->nop();
1994 
1995     // Call out to do finalizer registration
1996     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1997 
1998     __ bind(skip_register_finalizer);
1999   }
2000 
2001   __ remove_activation(state, /* throw_monitor_exception */ true);
2002 
2003   // The caller's SP was adjusted upon method entry to accomodate
2004   // the callee's non-argument locals. Undo that adjustment.
2005   __ ret();                             // return to caller
2006   __ delayed()->restore(I5_savedSP, G0, SP);
2007 }
2008 
2009 
2010 // ----------------------------------------------------------------------------
2011 // Volatile variables demand their effects be made known to all CPU's in
2012 // order.  Store buffers on most chips allow reads & writes to reorder; the
2013 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2014 // memory barrier (i.e., it's not sufficient that the interpreter does not
2015 // reorder volatile references, the hardware also must not reorder them).
2016 //
2017 // According to the new Java Memory Model (JMM):
2018 // (1) All volatiles are serialized wrt to each other.
2019 // ALSO reads & writes act as aquire & release, so:
2020 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2021 // the read float up to before the read.  It's OK for non-volatile memory refs
2022 // that happen before the volatile read to float down below it.
2023 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2024 // that happen BEFORE the write float down to after the write.  It's OK for
2025 // non-volatile memory refs that happen after the volatile write to float up
2026 // before it.
2027 //
2028 // We only put in barriers around volatile refs (they are expensive), not
2029 // _between_ memory refs (that would require us to track the flavor of the
2030 // previous memory refs).  Requirements (2) and (3) require some barriers
2031 // before volatile stores and after volatile loads.  These nearly cover
2032 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2033 // case is placed after volatile-stores although it could just as well go
2034 // before volatile-loads.
2035 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2036   // Helper function to insert a is-volatile test and memory barrier
2037   // All current sparc implementations run in TSO, needing only StoreLoad
2038   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2039   __ membar( order_constraint );
2040 }
2041 
2042 // ----------------------------------------------------------------------------
2043 void TemplateTable::resolve_cache_and_index(int byte_no,
2044                                             Register Rcache,
2045                                             Register index,
2046                                             size_t index_size) {
2047   // Depends on cpCacheOop layout!
2048   Label resolved;
2049 
2050     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2051     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2052     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2053     __ br(Assembler::equal, false, Assembler::pt, resolved);
2054     __ delayed()->set((int)bytecode(), O1);
2055 
2056   address entry;
2057   switch (bytecode()) {
2058     case Bytecodes::_getstatic      : // fall through
2059     case Bytecodes::_putstatic      : // fall through
2060     case Bytecodes::_getfield       : // fall through
2061     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2062     case Bytecodes::_invokevirtual  : // fall through
2063     case Bytecodes::_invokespecial  : // fall through
2064     case Bytecodes::_invokestatic   : // fall through
2065     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2066     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2067     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2068     default:
2069       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2070       break;
2071   }
2072   // first time invocation - must resolve first
2073   __ call_VM(noreg, entry, O1);
2074   // Update registers with resolved info
2075   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2076   __ bind(resolved);
2077 }
2078 
2079 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2080                                                Register method,
2081                                                Register itable_index,
2082                                                Register flags,
2083                                                bool is_invokevirtual,
2084                                                bool is_invokevfinal,
2085                                                bool is_invokedynamic) {
2086   // Uses both G3_scratch and G4_scratch
2087   Register cache = G3_scratch;
2088   Register index = G4_scratch;
2089   assert_different_registers(cache, method, itable_index);
2090 
2091   // determine constant pool cache field offsets
2092   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2093   const int method_offset = in_bytes(
2094       ConstantPoolCache::base_offset() +
2095       ((byte_no == f2_byte)
2096        ? ConstantPoolCacheEntry::f2_offset()
2097        : ConstantPoolCacheEntry::f1_offset()
2098       )
2099     );
2100   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2101                                     ConstantPoolCacheEntry::flags_offset());
2102   // access constant pool cache fields
2103   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2104                                     ConstantPoolCacheEntry::f2_offset());
2105 
2106   if (is_invokevfinal) {
2107     __ get_cache_and_index_at_bcp(cache, index, 1);
2108     __ ld_ptr(Address(cache, method_offset), method);
2109   } else {
2110     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2111     resolve_cache_and_index(byte_no, cache, index, index_size);
2112     __ ld_ptr(Address(cache, method_offset), method);
2113   }
2114 
2115   if (itable_index != noreg) {
2116     // pick up itable or appendix index from f2 also:
2117     __ ld_ptr(Address(cache, index_offset), itable_index);
2118   }
2119   __ ld_ptr(Address(cache, flags_offset), flags);
2120 }
2121 
2122 // The Rcache register must be set before call
2123 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2124                                               Register Rcache,
2125                                               Register index,
2126                                               Register Roffset,
2127                                               Register Rflags,
2128                                               bool is_static) {
2129   assert_different_registers(Rcache, Rflags, Roffset);
2130 
2131   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2132 
2133   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2134   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2135   if (is_static) {
2136     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2137     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2138     __ ld_ptr( Robj, mirror_offset, Robj);
2139   }
2140 }
2141 
2142 // The registers Rcache and index expected to be set before call.
2143 // Correct values of the Rcache and index registers are preserved.
2144 void TemplateTable::jvmti_post_field_access(Register Rcache,
2145                                             Register index,
2146                                             bool is_static,
2147                                             bool has_tos) {
2148   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2149 
2150   if (JvmtiExport::can_post_field_access()) {
2151     // Check to see if a field access watch has been set before we take
2152     // the time to call into the VM.
2153     Label Label1;
2154     assert_different_registers(Rcache, index, G1_scratch);
2155     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2156     __ load_contents(get_field_access_count_addr, G1_scratch);
2157     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2158 
2159     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2160 
2161     if (is_static) {
2162       __ clr(Otos_i);
2163     } else {
2164       if (has_tos) {
2165       // save object pointer before call_VM() clobbers it
2166         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2167       } else {
2168         // Load top of stack (do not pop the value off the stack);
2169         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2170       }
2171       __ verify_oop(Otos_i);
2172     }
2173     // Otos_i: object pointer or NULL if static
2174     // Rcache: cache entry pointer
2175     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2176                Otos_i, Rcache);
2177     if (!is_static && has_tos) {
2178       __ pop_ptr(Otos_i);  // restore object pointer
2179       __ verify_oop(Otos_i);
2180     }
2181     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2182     __ bind(Label1);
2183   }
2184 }
2185 
2186 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2187   transition(vtos, vtos);
2188 
2189   Register Rcache = G3_scratch;
2190   Register index  = G4_scratch;
2191   Register Rclass = Rcache;
2192   Register Roffset= G4_scratch;
2193   Register Rflags = G1_scratch;
2194   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2195 
2196   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2197   jvmti_post_field_access(Rcache, index, is_static, false);
2198   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2199 
2200   if (!is_static) {
2201     pop_and_check_object(Rclass);
2202   } else {
2203     __ verify_oop(Rclass);
2204   }
2205 
2206   Label exit;
2207 
2208   Assembler::Membar_mask_bits membar_bits =
2209     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2210 
2211   if (__ membar_has_effect(membar_bits)) {
2212     // Get volatile flag
2213     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2214     __ and3(Rflags, Lscratch, Lscratch);
2215   }
2216 
2217   Label checkVolatile;
2218 
2219   // compute field type
2220   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2221   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2222   // Make sure we don't need to mask Rflags after the above shift
2223   ConstantPoolCacheEntry::verify_tos_state_shift();
2224 
2225   // Check atos before itos for getstatic, more likely (in Queens at least)
2226   __ cmp(Rflags, atos);
2227   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2228   __ delayed() ->cmp(Rflags, itos);
2229 
2230   // atos
2231   __ load_heap_oop(Rclass, Roffset, Otos_i);
2232   __ verify_oop(Otos_i);
2233   __ push(atos);
2234   if (!is_static) {
2235     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2236   }
2237   __ ba(checkVolatile);
2238   __ delayed()->tst(Lscratch);
2239 
2240   __ bind(notObj);
2241 
2242   // cmp(Rflags, itos);
2243   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2244   __ delayed() ->cmp(Rflags, ltos);
2245 
2246   // itos
2247   __ ld(Rclass, Roffset, Otos_i);
2248   __ push(itos);
2249   if (!is_static) {
2250     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2251   }
2252   __ ba(checkVolatile);
2253   __ delayed()->tst(Lscratch);
2254 
2255   __ bind(notInt);
2256 
2257   // cmp(Rflags, ltos);
2258   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2259   __ delayed() ->cmp(Rflags, btos);
2260 
2261   // ltos
2262   // load must be atomic
2263   __ ld_long(Rclass, Roffset, Otos_l);
2264   __ push(ltos);
2265   if (!is_static) {
2266     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2267   }
2268   __ ba(checkVolatile);
2269   __ delayed()->tst(Lscratch);
2270 
2271   __ bind(notLong);
2272 
2273   // cmp(Rflags, btos);
2274   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2275   __ delayed() ->cmp(Rflags, ctos);
2276 
2277   // btos
2278   __ ldsb(Rclass, Roffset, Otos_i);
2279   __ push(itos);
2280   if (!is_static) {
2281     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2282   }
2283   __ ba(checkVolatile);
2284   __ delayed()->tst(Lscratch);
2285 
2286   __ bind(notByte);
2287 
2288   // cmp(Rflags, ctos);
2289   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2290   __ delayed() ->cmp(Rflags, stos);
2291 
2292   // ctos
2293   __ lduh(Rclass, Roffset, Otos_i);
2294   __ push(itos);
2295   if (!is_static) {
2296     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2297   }
2298   __ ba(checkVolatile);
2299   __ delayed()->tst(Lscratch);
2300 
2301   __ bind(notChar);
2302 
2303   // cmp(Rflags, stos);
2304   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2305   __ delayed() ->cmp(Rflags, ftos);
2306 
2307   // stos
2308   __ ldsh(Rclass, Roffset, Otos_i);
2309   __ push(itos);
2310   if (!is_static) {
2311     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2312   }
2313   __ ba(checkVolatile);
2314   __ delayed()->tst(Lscratch);
2315 
2316   __ bind(notShort);
2317 
2318 
2319   // cmp(Rflags, ftos);
2320   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2321   __ delayed() ->tst(Lscratch);
2322 
2323   // ftos
2324   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2325   __ push(ftos);
2326   if (!is_static) {
2327     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2328   }
2329   __ ba(checkVolatile);
2330   __ delayed()->tst(Lscratch);
2331 
2332   __ bind(notFloat);
2333 
2334 
2335   // dtos
2336   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2337   __ push(dtos);
2338   if (!is_static) {
2339     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2340   }
2341 
2342   __ bind(checkVolatile);
2343   if (__ membar_has_effect(membar_bits)) {
2344     // __ tst(Lscratch); executed in delay slot
2345     __ br(Assembler::zero, false, Assembler::pt, exit);
2346     __ delayed()->nop();
2347     volatile_barrier(membar_bits);
2348   }
2349 
2350   __ bind(exit);
2351 }
2352 
2353 
2354 void TemplateTable::getfield(int byte_no) {
2355   getfield_or_static(byte_no, false);
2356 }
2357 
2358 void TemplateTable::getstatic(int byte_no) {
2359   getfield_or_static(byte_no, true);
2360 }
2361 
2362 
2363 void TemplateTable::fast_accessfield(TosState state) {
2364   transition(atos, state);
2365   Register Rcache  = G3_scratch;
2366   Register index   = G4_scratch;
2367   Register Roffset = G4_scratch;
2368   Register Rflags  = Rcache;
2369   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2370 
2371   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2372   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2373 
2374   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2375 
2376   __ null_check(Otos_i);
2377   __ verify_oop(Otos_i);
2378 
2379   Label exit;
2380 
2381   Assembler::Membar_mask_bits membar_bits =
2382     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2383   if (__ membar_has_effect(membar_bits)) {
2384     // Get volatile flag
2385     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2386     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2387   }
2388 
2389   switch (bytecode()) {
2390     case Bytecodes::_fast_bgetfield:
2391       __ ldsb(Otos_i, Roffset, Otos_i);
2392       break;
2393     case Bytecodes::_fast_cgetfield:
2394       __ lduh(Otos_i, Roffset, Otos_i);
2395       break;
2396     case Bytecodes::_fast_sgetfield:
2397       __ ldsh(Otos_i, Roffset, Otos_i);
2398       break;
2399     case Bytecodes::_fast_igetfield:
2400       __ ld(Otos_i, Roffset, Otos_i);
2401       break;
2402     case Bytecodes::_fast_lgetfield:
2403       __ ld_long(Otos_i, Roffset, Otos_l);
2404       break;
2405     case Bytecodes::_fast_fgetfield:
2406       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2407       break;
2408     case Bytecodes::_fast_dgetfield:
2409       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2410       break;
2411     case Bytecodes::_fast_agetfield:
2412       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2413       break;
2414     default:
2415       ShouldNotReachHere();
2416   }
2417 
2418   if (__ membar_has_effect(membar_bits)) {
2419     __ btst(Lscratch, Rflags);
2420     __ br(Assembler::zero, false, Assembler::pt, exit);
2421     __ delayed()->nop();
2422     volatile_barrier(membar_bits);
2423     __ bind(exit);
2424   }
2425 
2426   if (state == atos) {
2427     __ verify_oop(Otos_i);    // does not blow flags!
2428   }
2429 }
2430 
2431 void TemplateTable::jvmti_post_fast_field_mod() {
2432   if (JvmtiExport::can_post_field_modification()) {
2433     // Check to see if a field modification watch has been set before we take
2434     // the time to call into the VM.
2435     Label done;
2436     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2437     __ load_contents(get_field_modification_count_addr, G4_scratch);
2438     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2439     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2440     __ verify_oop(G4_scratch);
2441     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2442     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2443     // Save tos values before call_VM() clobbers them. Since we have
2444     // to do it for every data type, we use the saved values as the
2445     // jvalue object.
2446     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2447     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2448     case Bytecodes::_fast_bputfield: // fall through
2449     case Bytecodes::_fast_sputfield: // fall through
2450     case Bytecodes::_fast_cputfield: // fall through
2451     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2452     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2453     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2454     // get words in right order for use as jvalue object
2455     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2456     }
2457     // setup pointer to jvalue object
2458     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2459     // G4_scratch:  object pointer
2460     // G1_scratch: cache entry pointer
2461     // G3_scratch: jvalue object on the stack
2462     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2463     switch (bytecode()) {             // restore tos values
2464     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2465     case Bytecodes::_fast_bputfield: // fall through
2466     case Bytecodes::_fast_sputfield: // fall through
2467     case Bytecodes::_fast_cputfield: // fall through
2468     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2469     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2470     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2471     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2472     }
2473     __ bind(done);
2474   }
2475 }
2476 
2477 // The registers Rcache and index expected to be set before call.
2478 // The function may destroy various registers, just not the Rcache and index registers.
2479 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2480   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2481 
2482   if (JvmtiExport::can_post_field_modification()) {
2483     // Check to see if a field modification watch has been set before we take
2484     // the time to call into the VM.
2485     Label Label1;
2486     assert_different_registers(Rcache, index, G1_scratch);
2487     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2488     __ load_contents(get_field_modification_count_addr, G1_scratch);
2489     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2490 
2491     // The Rcache and index registers have been already set.
2492     // This allows to eliminate this call but the Rcache and index
2493     // registers must be correspondingly used after this line.
2494     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2495 
2496     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2497     if (is_static) {
2498       // Life is simple.  Null out the object pointer.
2499       __ clr(G4_scratch);
2500     } else {
2501       Register Rflags = G1_scratch;
2502       // Life is harder. The stack holds the value on top, followed by the
2503       // object.  We don't know the size of the value, though; it could be
2504       // one or two words depending on its type. As a result, we must find
2505       // the type to determine where the object is.
2506 
2507       Label two_word, valsizeknown;
2508       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2509       __ mov(Lesp, G4_scratch);
2510       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2511       // Make sure we don't need to mask Rflags after the above shift
2512       ConstantPoolCacheEntry::verify_tos_state_shift();
2513       __ cmp(Rflags, ltos);
2514       __ br(Assembler::equal, false, Assembler::pt, two_word);
2515       __ delayed()->cmp(Rflags, dtos);
2516       __ br(Assembler::equal, false, Assembler::pt, two_word);
2517       __ delayed()->nop();
2518       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2519       __ ba_short(valsizeknown);
2520       __ bind(two_word);
2521 
2522       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2523 
2524       __ bind(valsizeknown);
2525       // setup object pointer
2526       __ ld_ptr(G4_scratch, 0, G4_scratch);
2527       __ verify_oop(G4_scratch);
2528     }
2529     // setup pointer to jvalue object
2530     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2531     // G4_scratch:  object pointer or NULL if static
2532     // G3_scratch: cache entry pointer
2533     // G1_scratch: jvalue object on the stack
2534     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2535                G4_scratch, G3_scratch, G1_scratch);
2536     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2537     __ bind(Label1);
2538   }
2539 }
2540 
2541 void TemplateTable::pop_and_check_object(Register r) {
2542   __ pop_ptr(r);
2543   __ null_check(r);  // for field access must check obj.
2544   __ verify_oop(r);
2545 }
2546 
2547 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2548   transition(vtos, vtos);
2549   Register Rcache = G3_scratch;
2550   Register index  = G4_scratch;
2551   Register Rclass = Rcache;
2552   Register Roffset= G4_scratch;
2553   Register Rflags = G1_scratch;
2554   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2555 
2556   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2557   jvmti_post_field_mod(Rcache, index, is_static);
2558   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2559 
2560   Assembler::Membar_mask_bits read_bits =
2561     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2562   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2563 
2564   Label notVolatile, checkVolatile, exit;
2565   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2566     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2567     __ and3(Rflags, Lscratch, Lscratch);
2568 
2569     if (__ membar_has_effect(read_bits)) {
2570       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2571       volatile_barrier(read_bits);
2572       __ bind(notVolatile);
2573     }
2574   }
2575 
2576   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2577   // Make sure we don't need to mask Rflags after the above shift
2578   ConstantPoolCacheEntry::verify_tos_state_shift();
2579 
2580   // compute field type
2581   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2582 
2583   if (is_static) {
2584     // putstatic with object type most likely, check that first
2585     __ cmp(Rflags, atos);
2586     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2587     __ delayed()->cmp(Rflags, itos);
2588 
2589     // atos
2590     {
2591       __ pop_ptr();
2592       __ verify_oop(Otos_i);
2593       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2594       __ ba(checkVolatile);
2595       __ delayed()->tst(Lscratch);
2596     }
2597 
2598     __ bind(notObj);
2599     // cmp(Rflags, itos);
2600     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2601     __ delayed()->cmp(Rflags, btos);
2602 
2603     // itos
2604     {
2605       __ pop_i();
2606       __ st(Otos_i, Rclass, Roffset);
2607       __ ba(checkVolatile);
2608       __ delayed()->tst(Lscratch);
2609     }
2610 
2611     __ bind(notInt);
2612   } else {
2613     // putfield with int type most likely, check that first
2614     __ cmp(Rflags, itos);
2615     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2616     __ delayed()->cmp(Rflags, atos);
2617 
2618     // itos
2619     {
2620       __ pop_i();
2621       pop_and_check_object(Rclass);
2622       __ st(Otos_i, Rclass, Roffset);
2623       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2624       __ ba(checkVolatile);
2625       __ delayed()->tst(Lscratch);
2626     }
2627 
2628     __ bind(notInt);
2629     // cmp(Rflags, atos);
2630     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2631     __ delayed()->cmp(Rflags, btos);
2632 
2633     // atos
2634     {
2635       __ pop_ptr();
2636       pop_and_check_object(Rclass);
2637       __ verify_oop(Otos_i);
2638       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2639       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2640       __ ba(checkVolatile);
2641       __ delayed()->tst(Lscratch);
2642     }
2643 
2644     __ bind(notObj);
2645   }
2646 
2647   // cmp(Rflags, btos);
2648   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2649   __ delayed()->cmp(Rflags, ltos);
2650 
2651   // btos
2652   {
2653     __ pop_i();
2654     if (!is_static) pop_and_check_object(Rclass);
2655     __ stb(Otos_i, Rclass, Roffset);
2656     if (!is_static) {
2657       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2658     }
2659     __ ba(checkVolatile);
2660     __ delayed()->tst(Lscratch);
2661   }
2662 
2663   __ bind(notByte);
2664   // cmp(Rflags, ltos);
2665   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2666   __ delayed()->cmp(Rflags, ctos);
2667 
2668   // ltos
2669   {
2670     __ pop_l();
2671     if (!is_static) pop_and_check_object(Rclass);
2672     __ st_long(Otos_l, Rclass, Roffset);
2673     if (!is_static) {
2674       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2675     }
2676     __ ba(checkVolatile);
2677     __ delayed()->tst(Lscratch);
2678   }
2679 
2680   __ bind(notLong);
2681   // cmp(Rflags, ctos);
2682   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2683   __ delayed()->cmp(Rflags, stos);
2684 
2685   // ctos (char)
2686   {
2687     __ pop_i();
2688     if (!is_static) pop_and_check_object(Rclass);
2689     __ sth(Otos_i, Rclass, Roffset);
2690     if (!is_static) {
2691       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2692     }
2693     __ ba(checkVolatile);
2694     __ delayed()->tst(Lscratch);
2695   }
2696 
2697   __ bind(notChar);
2698   // cmp(Rflags, stos);
2699   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2700   __ delayed()->cmp(Rflags, ftos);
2701 
2702   // stos (short)
2703   {
2704     __ pop_i();
2705     if (!is_static) pop_and_check_object(Rclass);
2706     __ sth(Otos_i, Rclass, Roffset);
2707     if (!is_static) {
2708       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2709     }
2710     __ ba(checkVolatile);
2711     __ delayed()->tst(Lscratch);
2712   }
2713 
2714   __ bind(notShort);
2715   // cmp(Rflags, ftos);
2716   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2717   __ delayed()->nop();
2718 
2719   // ftos
2720   {
2721     __ pop_f();
2722     if (!is_static) pop_and_check_object(Rclass);
2723     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2724     if (!is_static) {
2725       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2726     }
2727     __ ba(checkVolatile);
2728     __ delayed()->tst(Lscratch);
2729   }
2730 
2731   __ bind(notFloat);
2732 
2733   // dtos
2734   {
2735     __ pop_d();
2736     if (!is_static) pop_and_check_object(Rclass);
2737     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2738     if (!is_static) {
2739       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2740     }
2741   }
2742 
2743   __ bind(checkVolatile);
2744   __ tst(Lscratch);
2745 
2746   if (__ membar_has_effect(write_bits)) {
2747     // __ tst(Lscratch); in delay slot
2748     __ br(Assembler::zero, false, Assembler::pt, exit);
2749     __ delayed()->nop();
2750     volatile_barrier(Assembler::StoreLoad);
2751     __ bind(exit);
2752   }
2753 }
2754 
2755 void TemplateTable::fast_storefield(TosState state) {
2756   transition(state, vtos);
2757   Register Rcache = G3_scratch;
2758   Register Rclass = Rcache;
2759   Register Roffset= G4_scratch;
2760   Register Rflags = G1_scratch;
2761   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2762 
2763   jvmti_post_fast_field_mod();
2764 
2765   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2766 
2767   Assembler::Membar_mask_bits read_bits =
2768     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2769   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2770 
2771   Label notVolatile, checkVolatile, exit;
2772   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2773     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2774     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2775     __ and3(Rflags, Lscratch, Lscratch);
2776     if (__ membar_has_effect(read_bits)) {
2777       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2778       volatile_barrier(read_bits);
2779       __ bind(notVolatile);
2780     }
2781   }
2782 
2783   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2784   pop_and_check_object(Rclass);
2785 
2786   switch (bytecode()) {
2787     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2788     case Bytecodes::_fast_cputfield: /* fall through */
2789     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2790     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2791     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2792     case Bytecodes::_fast_fputfield:
2793       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2794       break;
2795     case Bytecodes::_fast_dputfield:
2796       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2797       break;
2798     case Bytecodes::_fast_aputfield:
2799       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2800       break;
2801     default:
2802       ShouldNotReachHere();
2803   }
2804 
2805   if (__ membar_has_effect(write_bits)) {
2806     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2807     volatile_barrier(Assembler::StoreLoad);
2808     __ bind(exit);
2809   }
2810 }
2811 
2812 
2813 void TemplateTable::putfield(int byte_no) {
2814   putfield_or_static(byte_no, false);
2815 }
2816 
2817 void TemplateTable::putstatic(int byte_no) {
2818   putfield_or_static(byte_no, true);
2819 }
2820 
2821 
2822 void TemplateTable::fast_xaccess(TosState state) {
2823   transition(vtos, state);
2824   Register Rcache = G3_scratch;
2825   Register Roffset = G4_scratch;
2826   Register Rflags  = G4_scratch;
2827   Register Rreceiver = Lscratch;
2828 
2829   __ ld_ptr(Llocals, 0, Rreceiver);
2830 
2831   // access constant pool cache  (is resolved)
2832   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2833   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2834   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2835 
2836   __ verify_oop(Rreceiver);
2837   __ null_check(Rreceiver);
2838   if (state == atos) {
2839     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2840   } else if (state == itos) {
2841     __ ld (Rreceiver, Roffset, Otos_i) ;
2842   } else if (state == ftos) {
2843     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2844   } else {
2845     ShouldNotReachHere();
2846   }
2847 
2848   Assembler::Membar_mask_bits membar_bits =
2849     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2850   if (__ membar_has_effect(membar_bits)) {
2851 
2852     // Get is_volatile value in Rflags and check if membar is needed
2853     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2854 
2855     // Test volatile
2856     Label notVolatile;
2857     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2858     __ btst(Rflags, Lscratch);
2859     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2860     __ delayed()->nop();
2861     volatile_barrier(membar_bits);
2862     __ bind(notVolatile);
2863   }
2864 
2865   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2866   __ sub(Lbcp, 1, Lbcp);
2867 }
2868 
2869 //----------------------------------------------------------------------------------------------------
2870 // Calls
2871 
2872 void TemplateTable::count_calls(Register method, Register temp) {
2873   // implemented elsewhere
2874   ShouldNotReachHere();
2875 }
2876 
2877 void TemplateTable::prepare_invoke(int byte_no,
2878                                    Register method,  // linked method (or i-klass)
2879                                    Register ra,      // return address
2880                                    Register index,   // itable index, MethodType, etc.
2881                                    Register recv,    // if caller wants to see it
2882                                    Register flags    // if caller wants to test it
2883                                    ) {
2884   // determine flags
2885   const Bytecodes::Code code = bytecode();
2886   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2887   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2888   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2889   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2890   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2891   const bool load_receiver       = (recv != noreg);
2892   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2893   assert(recv  == noreg || recv  == O0, "");
2894   assert(flags == noreg || flags == O1, "");
2895 
2896   // setup registers & access constant pool cache
2897   if (recv  == noreg)  recv  = O0;
2898   if (flags == noreg)  flags = O1;
2899   const Register temp = O2;
2900   assert_different_registers(method, ra, index, recv, flags, temp);
2901 
2902   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2903 
2904   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2905 
2906   // maybe push appendix to arguments
2907   if (is_invokedynamic || is_invokehandle) {
2908     Label L_no_push;
2909     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2910     __ btst(flags, temp);
2911     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2912     __ delayed()->nop();
2913     // Push the appendix as a trailing parameter.
2914     // This must be done before we get the receiver,
2915     // since the parameter_size includes it.
2916     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2917     __ load_resolved_reference_at_index(temp, index);
2918     __ verify_oop(temp);
2919     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2920     __ bind(L_no_push);
2921   }
2922 
2923   // load receiver if needed (after appendix is pushed so parameter size is correct)
2924   if (load_receiver) {
2925     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2926     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2927     __ verify_oop(recv);
2928   }
2929 
2930   // compute return type
2931   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2932   // Make sure we don't need to mask flags after the above shift
2933   ConstantPoolCacheEntry::verify_tos_state_shift();
2934   // load return address
2935   {
2936     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2937     AddressLiteral table(table_addr);
2938     __ set(table, temp);
2939     __ sll(ra, LogBytesPerWord, ra);
2940     __ ld_ptr(Address(temp, ra), ra);
2941   }
2942 }
2943 
2944 
2945 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2946   Register Rcall = Rindex;
2947   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2948 
2949   // get target Method* & entry point
2950   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2951   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
2952   __ call_from_interpreter(Rcall, Gargs, Rret);
2953 }
2954 
2955 void TemplateTable::invokevirtual(int byte_no) {
2956   transition(vtos, vtos);
2957   assert(byte_no == f2_byte, "use this argument");
2958 
2959   Register Rscratch = G3_scratch;
2960   Register Rtemp    = G4_scratch;
2961   Register Rret     = Lscratch;
2962   Register O0_recv  = O0;
2963   Label notFinal;
2964 
2965   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2966   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2967 
2968   // Check for vfinal
2969   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2970   __ btst(Rret, G4_scratch);
2971   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2972   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2973 
2974   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2975 
2976   invokevfinal_helper(Rscratch, Rret);
2977 
2978   __ bind(notFinal);
2979 
2980   __ mov(G5_method, Rscratch);  // better scratch register
2981   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
2982   // receiver is in O0_recv
2983   __ verify_oop(O0_recv);
2984 
2985   // get return address
2986   AddressLiteral table(Interpreter::invoke_return_entry_table());
2987   __ set(table, Rtemp);
2988   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
2989   // Make sure we don't need to mask Rret after the above shift
2990   ConstantPoolCacheEntry::verify_tos_state_shift();
2991   __ sll(Rret,  LogBytesPerWord, Rret);
2992   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2993 
2994   // get receiver klass
2995   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
2996   __ load_klass(O0_recv, O0_recv);
2997   __ verify_klass_ptr(O0_recv);
2998 
2999   __ profile_virtual_call(O0_recv, O4);
3000 
3001   generate_vtable_call(O0_recv, Rscratch, Rret);
3002 }
3003 
3004 void TemplateTable::fast_invokevfinal(int byte_no) {
3005   transition(vtos, vtos);
3006   assert(byte_no == f2_byte, "use this argument");
3007 
3008   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3009                              /*is_invokevfinal*/true, false);
3010   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3011   invokevfinal_helper(G3_scratch, Lscratch);
3012 }
3013 
3014 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3015   Register Rtemp = G4_scratch;
3016 
3017   // Load receiver from stack slot
3018   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3019   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3020   __ load_receiver(G4_scratch, O0);
3021 
3022   // receiver NULL check
3023   __ null_check(O0);
3024 
3025   __ profile_final_call(O4);
3026   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3027 
3028   // get return address
3029   AddressLiteral table(Interpreter::invoke_return_entry_table());
3030   __ set(table, Rtemp);
3031   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3032   // Make sure we don't need to mask Rret after the above shift
3033   ConstantPoolCacheEntry::verify_tos_state_shift();
3034   __ sll(Rret,  LogBytesPerWord, Rret);
3035   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3036 
3037 
3038   // do the call
3039   __ call_from_interpreter(Rscratch, Gargs, Rret);
3040 }
3041 
3042 
3043 void TemplateTable::invokespecial(int byte_no) {
3044   transition(vtos, vtos);
3045   assert(byte_no == f1_byte, "use this argument");
3046 
3047   const Register Rret     = Lscratch;
3048   const Register O0_recv  = O0;
3049   const Register Rscratch = G3_scratch;
3050 
3051   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3052   __ null_check(O0_recv);
3053 
3054   // do the call
3055   __ profile_call(O4);
3056   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3057   __ call_from_interpreter(Rscratch, Gargs, Rret);
3058 }
3059 
3060 
3061 void TemplateTable::invokestatic(int byte_no) {
3062   transition(vtos, vtos);
3063   assert(byte_no == f1_byte, "use this argument");
3064 
3065   const Register Rret     = Lscratch;
3066   const Register Rscratch = G3_scratch;
3067 
3068   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3069 
3070   // do the call
3071   __ profile_call(O4);
3072   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3073   __ call_from_interpreter(Rscratch, Gargs, Rret);
3074 }
3075 
3076 void TemplateTable::invokeinterface_object_method(Register RKlass,
3077                                                   Register Rcall,
3078                                                   Register Rret,
3079                                                   Register Rflags) {
3080   Register Rscratch = G4_scratch;
3081   Register Rindex = Lscratch;
3082 
3083   assert_different_registers(Rscratch, Rindex, Rret);
3084 
3085   Label notFinal;
3086 
3087   // Check for vfinal
3088   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3089   __ btst(Rflags, Rscratch);
3090   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3091   __ delayed()->nop();
3092 
3093   __ profile_final_call(O4);
3094 
3095   // do the call - the index (f2) contains the Method*
3096   assert_different_registers(G5_method, Gargs, Rcall);
3097   __ mov(Rindex, G5_method);
3098   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3099   __ call_from_interpreter(Rcall, Gargs, Rret);
3100   __ bind(notFinal);
3101 
3102   __ profile_virtual_call(RKlass, O4);
3103   generate_vtable_call(RKlass, Rindex, Rret);
3104 }
3105 
3106 
3107 void TemplateTable::invokeinterface(int byte_no) {
3108   transition(vtos, vtos);
3109   assert(byte_no == f1_byte, "use this argument");
3110 
3111   const Register Rinterface  = G1_scratch;
3112   const Register Rret        = G3_scratch;
3113   const Register Rindex      = Lscratch;
3114   const Register O0_recv     = O0;
3115   const Register O1_flags    = O1;
3116   const Register O2_Klass    = O2;
3117   const Register Rscratch    = G4_scratch;
3118   assert_different_registers(Rscratch, G5_method);
3119 
3120   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3121 
3122   // get receiver klass
3123   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3124   __ load_klass(O0_recv, O2_Klass);
3125 
3126   // Special case of invokeinterface called for virtual method of
3127   // java.lang.Object.  See cpCacheOop.cpp for details.
3128   // This code isn't produced by javac, but could be produced by
3129   // another compliant java compiler.
3130   Label notMethod;
3131   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3132   __ btst(O1_flags, Rscratch);
3133   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3134   __ delayed()->nop();
3135 
3136   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3137 
3138   __ bind(notMethod);
3139 
3140   __ profile_virtual_call(O2_Klass, O4);
3141 
3142   //
3143   // find entry point to call
3144   //
3145 
3146   // compute start of first itableOffsetEntry (which is at end of vtable)
3147   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3148   Label search;
3149   Register Rtemp = O1_flags;
3150 
3151   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3152   if (align_object_offset(1) > 1) {
3153     __ round_to(Rtemp, align_object_offset(1));
3154   }
3155   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3156   if (Assembler::is_simm13(base)) {
3157     __ add(Rtemp, base, Rtemp);
3158   } else {
3159     __ set(base, Rscratch);
3160     __ add(Rscratch, Rtemp, Rtemp);
3161   }
3162   __ add(O2_Klass, Rtemp, Rscratch);
3163 
3164   __ bind(search);
3165 
3166   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3167   {
3168     Label ok;
3169 
3170     // Check that entry is non-null.  Null entries are probably a bytecode
3171     // problem.  If the interface isn't implemented by the receiver class,
3172     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3173     // this too but that's only if the entry isn't already resolved, so we
3174     // need to check again.
3175     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3176     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3177     __ should_not_reach_here();
3178     __ bind(ok);
3179   }
3180 
3181   __ cmp(Rinterface, Rtemp);
3182   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3183   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3184 
3185   // entry found and Rscratch points to it
3186   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3187 
3188   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3189   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3190   __ add(Rscratch, Rindex, Rscratch);
3191   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3192 
3193   // Check for abstract method error.
3194   {
3195     Label ok;
3196     __ br_notnull_short(G5_method, Assembler::pt, ok);
3197     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3198     __ should_not_reach_here();
3199     __ bind(ok);
3200   }
3201 
3202   Register Rcall = Rinterface;
3203   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3204 
3205   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3206   __ call_from_interpreter(Rcall, Gargs, Rret);
3207 }
3208 
3209 void TemplateTable::invokehandle(int byte_no) {
3210   transition(vtos, vtos);
3211   assert(byte_no == f1_byte, "use this argument");
3212 
3213   const Register Rret       = Lscratch;
3214   const Register G4_mtype   = G4_scratch;
3215   const Register O0_recv    = O0;
3216   const Register Rscratch   = G3_scratch;
3217 
3218   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3219   __ null_check(O0_recv);
3220 
3221   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3222   // G5: MH.invokeExact_MT method (from f2)
3223 
3224   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3225 
3226   // do the call
3227   __ verify_oop(G4_mtype);
3228   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3229   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3230   __ call_from_interpreter(Rscratch, Gargs, Rret);
3231 }
3232 
3233 
3234 void TemplateTable::invokedynamic(int byte_no) {
3235   transition(vtos, vtos);
3236   assert(byte_no == f1_byte, "use this argument");
3237 
3238   const Register Rret        = Lscratch;
3239   const Register G4_callsite = G4_scratch;
3240   const Register Rscratch    = G3_scratch;
3241 
3242   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3243 
3244   // G4: CallSite object (from cpool->resolved_references[f1])
3245   // G5: MH.linkToCallSite method (from f2)
3246 
3247   // Note:  G4_callsite is already pushed by prepare_invoke
3248 
3249   // %%% should make a type profile for any invokedynamic that takes a ref argument
3250   // profile this call
3251   __ profile_call(O4);
3252 
3253   // do the call
3254   __ verify_oop(G4_callsite);
3255   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3256   __ call_from_interpreter(Rscratch, Gargs, Rret);
3257 }
3258 
3259 
3260 //----------------------------------------------------------------------------------------------------
3261 // Allocation
3262 
3263 void TemplateTable::_new() {
3264   transition(vtos, atos);
3265 
3266   Label slow_case;
3267   Label done;
3268   Label initialize_header;
3269   Label initialize_object;  // including clearing the fields
3270 
3271   Register RallocatedObject = Otos_i;
3272   Register RinstanceKlass = O1;
3273   Register Roffset = O3;
3274   Register Rscratch = O4;
3275 
3276   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3277   __ get_cpool_and_tags(Rscratch, G3_scratch);
3278   // make sure the class we're about to instantiate has been resolved
3279   // This is done before loading InstanceKlass to be consistent with the order
3280   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3281   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3282   __ ldub(G3_scratch, Roffset, G3_scratch);
3283   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3284   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3285   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3286   // get InstanceKlass
3287   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3288   __ add(Roffset, sizeof(ConstantPool), Roffset);
3289   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3290 
3291   // make sure klass is fully initialized:
3292   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3293   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3294   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3295   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3296 
3297   // get instance_size in InstanceKlass (already aligned)
3298   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3299 
3300   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3301   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3302   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3303   __ delayed()->nop();
3304 
3305   // allocate the instance
3306   // 1) Try to allocate in the TLAB
3307   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3308   // 3) if the above fails (or is not applicable), go to a slow case
3309   // (creates a new TLAB, etc.)
3310 
3311   const bool allow_shared_alloc =
3312     Universe::heap()->supports_inline_contig_alloc();
3313 
3314   if(UseTLAB) {
3315     Register RoldTopValue = RallocatedObject;
3316     Register RtlabWasteLimitValue = G3_scratch;
3317     Register RnewTopValue = G1_scratch;
3318     Register RendValue = Rscratch;
3319     Register RfreeValue = RnewTopValue;
3320 
3321     // check if we can allocate in the TLAB
3322     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3323     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3324     __ add(RoldTopValue, Roffset, RnewTopValue);
3325 
3326     // if there is enough space, we do not CAS and do not clear
3327     __ cmp(RnewTopValue, RendValue);
3328     if(ZeroTLAB) {
3329       // the fields have already been cleared
3330       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3331     } else {
3332       // initialize both the header and fields
3333       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3334     }
3335     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3336 
3337     if (allow_shared_alloc) {
3338       // Check if tlab should be discarded (refill_waste_limit >= free)
3339       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3340       __ sub(RendValue, RoldTopValue, RfreeValue);
3341 #ifdef _LP64
3342       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3343 #else
3344       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3345 #endif
3346       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3347 
3348       // increment waste limit to prevent getting stuck on this slow path
3349       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3350       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3351     } else {
3352       // No allocation in the shared eden.
3353       __ ba_short(slow_case);
3354     }
3355   }
3356 
3357   // Allocation in the shared Eden
3358   if (allow_shared_alloc) {
3359     Register RoldTopValue = G1_scratch;
3360     Register RtopAddr = G3_scratch;
3361     Register RnewTopValue = RallocatedObject;
3362     Register RendValue = Rscratch;
3363 
3364     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3365 
3366     Label retry;
3367     __ bind(retry);
3368     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3369     __ ld_ptr(RendValue, 0, RendValue);
3370     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3371     __ add(RoldTopValue, Roffset, RnewTopValue);
3372 
3373     // RnewTopValue contains the top address after the new object
3374     // has been allocated.
3375     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3376 
3377     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3378 
3379     // if someone beat us on the allocation, try again, otherwise continue
3380     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3381 
3382     // bump total bytes allocated by this thread
3383     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3384     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3385   }
3386 
3387   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3388     // clear object fields
3389     __ bind(initialize_object);
3390     __ deccc(Roffset, sizeof(oopDesc));
3391     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3392     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3393 
3394     // initialize remaining object fields
3395     if (UseBlockZeroing) {
3396       // Use BIS for zeroing
3397       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3398     } else {
3399       Label loop;
3400       __ subcc(Roffset, wordSize, Roffset);
3401       __ bind(loop);
3402       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3403       __ st_ptr(G0, G3_scratch, Roffset);
3404       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3405       __ delayed()->subcc(Roffset, wordSize, Roffset);
3406     }
3407     __ ba_short(initialize_header);
3408   }
3409 
3410   // slow case
3411   __ bind(slow_case);
3412   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3413   __ get_constant_pool(O1);
3414 
3415   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3416 
3417   __ ba_short(done);
3418 
3419   // Initialize the header: mark, klass
3420   __ bind(initialize_header);
3421 
3422   if (UseBiasedLocking) {
3423     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3424   } else {
3425     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3426   }
3427   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3428   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3429   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3430 
3431   {
3432     SkipIfEqual skip_if(
3433       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3434     // Trigger dtrace event
3435     __ push(atos);
3436     __ call_VM_leaf(noreg,
3437        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3438     __ pop(atos);
3439   }
3440 
3441   // continue
3442   __ bind(done);
3443 }
3444 
3445 
3446 
3447 void TemplateTable::newarray() {
3448   transition(itos, atos);
3449   __ ldub(Lbcp, 1, O1);
3450      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3451 }
3452 
3453 
3454 void TemplateTable::anewarray() {
3455   transition(itos, atos);
3456   __ get_constant_pool(O1);
3457   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3458      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3459 }
3460 
3461 
3462 void TemplateTable::arraylength() {
3463   transition(atos, itos);
3464   Label ok;
3465   __ verify_oop(Otos_i);
3466   __ tst(Otos_i);
3467   __ throw_if_not_1_x( Assembler::notZero, ok );
3468   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3469   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3470 }
3471 
3472 
3473 void TemplateTable::checkcast() {
3474   transition(atos, atos);
3475   Label done, is_null, quicked, cast_ok, resolved;
3476   Register Roffset = G1_scratch;
3477   Register RobjKlass = O5;
3478   Register RspecifiedKlass = O4;
3479 
3480   // Check for casting a NULL
3481   __ br_null_short(Otos_i, Assembler::pn, is_null);
3482 
3483   // Get value klass in RobjKlass
3484   __ load_klass(Otos_i, RobjKlass); // get value klass
3485 
3486   // Get constant pool tag
3487   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3488 
3489   // See if the checkcast has been quickened
3490   __ get_cpool_and_tags(Lscratch, G3_scratch);
3491   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3492   __ ldub(G3_scratch, Roffset, G3_scratch);
3493   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3494   __ br(Assembler::equal, true, Assembler::pt, quicked);
3495   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3496 
3497   __ push_ptr(); // save receiver for result, and for GC
3498   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3499   __ get_vm_result_2(RspecifiedKlass);
3500   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3501 
3502   __ ba_short(resolved);
3503 
3504   // Extract target class from constant pool
3505   __ bind(quicked);
3506   __ add(Roffset, sizeof(ConstantPool), Roffset);
3507   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3508   __ bind(resolved);
3509   __ load_klass(Otos_i, RobjKlass); // get value klass
3510 
3511   // Generate a fast subtype check.  Branch to cast_ok if no
3512   // failure.  Throw exception if failure.
3513   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3514 
3515   // Not a subtype; so must throw exception
3516   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3517 
3518   __ bind(cast_ok);
3519 
3520   if (ProfileInterpreter) {
3521     __ ba_short(done);
3522   }
3523   __ bind(is_null);
3524   __ profile_null_seen(G3_scratch);
3525   __ bind(done);
3526 }
3527 
3528 
3529 void TemplateTable::instanceof() {
3530   Label done, is_null, quicked, resolved;
3531   transition(atos, itos);
3532   Register Roffset = G1_scratch;
3533   Register RobjKlass = O5;
3534   Register RspecifiedKlass = O4;
3535 
3536   // Check for casting a NULL
3537   __ br_null_short(Otos_i, Assembler::pt, is_null);
3538 
3539   // Get value klass in RobjKlass
3540   __ load_klass(Otos_i, RobjKlass); // get value klass
3541 
3542   // Get constant pool tag
3543   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3544 
3545   // See if the checkcast has been quickened
3546   __ get_cpool_and_tags(Lscratch, G3_scratch);
3547   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3548   __ ldub(G3_scratch, Roffset, G3_scratch);
3549   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3550   __ br(Assembler::equal, true, Assembler::pt, quicked);
3551   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3552 
3553   __ push_ptr(); // save receiver for result, and for GC
3554   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3555   __ get_vm_result_2(RspecifiedKlass);
3556   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3557 
3558   __ ba_short(resolved);
3559 
3560   // Extract target class from constant pool
3561   __ bind(quicked);
3562   __ add(Roffset, sizeof(ConstantPool), Roffset);
3563   __ get_constant_pool(Lscratch);
3564   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3565   __ bind(resolved);
3566   __ load_klass(Otos_i, RobjKlass); // get value klass
3567 
3568   // Generate a fast subtype check.  Branch to cast_ok if no
3569   // failure.  Return 0 if failure.
3570   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3571   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3572   // Not a subtype; return 0;
3573   __ clr( Otos_i );
3574 
3575   if (ProfileInterpreter) {
3576     __ ba_short(done);
3577   }
3578   __ bind(is_null);
3579   __ profile_null_seen(G3_scratch);
3580   __ bind(done);
3581 }
3582 
3583 void TemplateTable::_breakpoint() {
3584 
3585    // Note: We get here even if we are single stepping..
3586    // jbug inists on setting breakpoints at every bytecode
3587    // even if we are in single step mode.
3588 
3589    transition(vtos, vtos);
3590    // get the unpatched byte code
3591    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3592    __ mov(O0, Lbyte_code);
3593 
3594    // post the breakpoint event
3595    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3596 
3597    // complete the execution of original bytecode
3598    __ dispatch_normal(vtos);
3599 }
3600 
3601 
3602 //----------------------------------------------------------------------------------------------------
3603 // Exceptions
3604 
3605 void TemplateTable::athrow() {
3606   transition(atos, vtos);
3607 
3608   // This works because exception is cached in Otos_i which is same as O0,
3609   // which is same as what throw_exception_entry_expects
3610   assert(Otos_i == Oexception, "see explanation above");
3611 
3612   __ verify_oop(Otos_i);
3613   __ null_check(Otos_i);
3614   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3615 }
3616 
3617 
3618 //----------------------------------------------------------------------------------------------------
3619 // Synchronization
3620 
3621 
3622 // See frame_sparc.hpp for monitor block layout.
3623 // Monitor elements are dynamically allocated by growing stack as needed.
3624 
3625 void TemplateTable::monitorenter() {
3626   transition(atos, vtos);
3627   __ verify_oop(Otos_i);
3628   // Try to acquire a lock on the object
3629   // Repeat until succeeded (i.e., until
3630   // monitorenter returns true).
3631 
3632   {   Label ok;
3633     __ tst(Otos_i);
3634     __ throw_if_not_1_x( Assembler::notZero,  ok);
3635     __ delayed()->mov(Otos_i, Lscratch); // save obj
3636     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3637   }
3638 
3639   assert(O0 == Otos_i, "Be sure where the object to lock is");
3640 
3641   // find a free slot in the monitor block
3642 
3643 
3644   // initialize entry pointer
3645   __ clr(O1); // points to free slot or NULL
3646 
3647   {
3648     Label entry, loop, exit;
3649     __ add( __ top_most_monitor(), O2 ); // last one to check
3650     __ ba( entry );
3651     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3652 
3653 
3654     __ bind( loop );
3655 
3656     __ verify_oop(O4);          // verify each monitor's oop
3657     __ tst(O4); // is this entry unused?
3658     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3659 
3660     __ cmp(O4, O0); // check if current entry is for same object
3661     __ brx( Assembler::equal, false, Assembler::pn, exit );
3662     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3663 
3664     __ bind( entry );
3665 
3666     __ cmp( O3, O2 );
3667     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3668     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3669 
3670     __ bind( exit );
3671   }
3672 
3673   { Label allocated;
3674 
3675     // found free slot?
3676     __ br_notnull_short(O1, Assembler::pn, allocated);
3677 
3678     __ add_monitor_to_stack( false, O2, O3 );
3679     __ mov(Lmonitors, O1);
3680 
3681     __ bind(allocated);
3682   }
3683 
3684   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3685   // The object has already been poped from the stack, so the expression stack looks correct.
3686   __ inc(Lbcp);
3687 
3688   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3689   __ lock_object(O1, O0);
3690 
3691   // check if there's enough space on the stack for the monitors after locking
3692   __ generate_stack_overflow_check(0);
3693 
3694   // The bcp has already been incremented. Just need to dispatch to next instruction.
3695   __ dispatch_next(vtos);
3696 }
3697 
3698 
3699 void TemplateTable::monitorexit() {
3700   transition(atos, vtos);
3701   __ verify_oop(Otos_i);
3702   __ tst(Otos_i);
3703   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3704 
3705   assert(O0 == Otos_i, "just checking");
3706 
3707   { Label entry, loop, found;
3708     __ add( __ top_most_monitor(), O2 ); // last one to check
3709     __ ba(entry);
3710     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3711     // By using a local it survives the call to the C routine.
3712     __ delayed()->mov( Lmonitors, Lscratch );
3713 
3714     __ bind( loop );
3715 
3716     __ verify_oop(O4);          // verify each monitor's oop
3717     __ cmp(O4, O0); // check if current entry is for desired object
3718     __ brx( Assembler::equal, true, Assembler::pt, found );
3719     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3720 
3721     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3722 
3723     __ bind( entry );
3724 
3725     __ cmp( Lscratch, O2 );
3726     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3727     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3728 
3729     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3730     __ should_not_reach_here();
3731 
3732     __ bind(found);
3733   }
3734   __ unlock_object(O1);
3735 }
3736 
3737 
3738 //----------------------------------------------------------------------------------------------------
3739 // Wide instructions
3740 
3741 void TemplateTable::wide() {
3742   transition(vtos, vtos);
3743   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3744   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3745   AddressLiteral ep(Interpreter::_wentry_point);
3746   __ set(ep, G4_scratch);
3747   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3748   __ jmp(G3_scratch, G0);
3749   __ delayed()->nop();
3750   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3751 }
3752 
3753 
3754 //----------------------------------------------------------------------------------------------------
3755 // Multi arrays
3756 
3757 void TemplateTable::multianewarray() {
3758   transition(vtos, atos);
3759      // put ndims * wordSize into Lscratch
3760   __ ldub( Lbcp,     3,               Lscratch);
3761   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3762      // Lesp points past last_dim, so set to O1 to first_dim address
3763   __ add(  Lesp,     Lscratch,        O1);
3764      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3765   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3766 }
3767 #endif /* !CC_INTERP */