1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define a__ ((Assembler*)_masm)->
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #else
  56 #define BLOCK_COMMENT(str) __ block_comment(str)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  63 
  64 // -------------------------------------------------------------------------------------------------------------------------
  65 // Stub Code definitions
  66 
  67 static address handle_unsafe_access() {
  68   JavaThread* thread = JavaThread::current();
  69   address pc  = thread->saved_exception_pc();
  70   // pc is the instruction which we must emulate
  71   // doing a no-op is fine:  return garbage from the load
  72   // therefore, compute npc
  73   address npc = Assembler::locate_next_instruction(pc);
  74 
  75   // request an async exception
  76   thread->set_pending_unsafe_access_error();
  77 
  78   // return address of next instruction to execute
  79   return npc;
  80 }
  81 
  82 class StubGenerator: public StubCodeGenerator {
  83  private:
  84 
  85 #ifdef PRODUCT
  86 #define inc_counter_np(counter) ((void)0)
  87 #else
  88   void inc_counter_np_(int& counter) {
  89     __ incrementl(ExternalAddress((address)&counter));
  90   }
  91 #define inc_counter_np(counter) \
  92   BLOCK_COMMENT("inc_counter " #counter); \
  93   inc_counter_np_(counter);
  94 #endif //PRODUCT
  95 
  96   void inc_copy_counter_np(BasicType t) {
  97 #ifndef PRODUCT
  98     switch (t) {
  99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 104     }
 105     ShouldNotReachHere();
 106 #endif //PRODUCT
 107   }
 108 
 109   //------------------------------------------------------------------------------------------------------------------------
 110   // Call stubs are used to call Java from C
 111   //
 112   //    [ return_from_Java     ] <--- rsp
 113   //    [ argument word n      ]
 114   //      ...
 115   // -N [ argument word 1      ]
 116   // -7 [ Possible padding for stack alignment ]
 117   // -6 [ Possible padding for stack alignment ]
 118   // -5 [ Possible padding for stack alignment ]
 119   // -4 [ mxcsr save           ] <--- rsp_after_call
 120   // -3 [ saved rbx,            ]
 121   // -2 [ saved rsi            ]
 122   // -1 [ saved rdi            ]
 123   //  0 [ saved rbp,            ] <--- rbp,
 124   //  1 [ return address       ]
 125   //  2 [ ptr. to call wrapper ]
 126   //  3 [ result               ]
 127   //  4 [ result_type          ]
 128   //  5 [ method               ]
 129   //  6 [ entry_point          ]
 130   //  7 [ parameters           ]
 131   //  8 [ parameter_size       ]
 132   //  9 [ thread               ]
 133 
 134 
 135   address generate_call_stub(address& return_address) {
 136     StubCodeMark mark(this, "StubRoutines", "call_stub");
 137     address start = __ pc();
 138 
 139     // stub code parameters / addresses
 140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 141     bool  sse_save = false;
 142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 143     const int     locals_count_in_bytes  (4*wordSize);
 144     const Address mxcsr_save    (rbp, -4 * wordSize);
 145     const Address saved_rbx     (rbp, -3 * wordSize);
 146     const Address saved_rsi     (rbp, -2 * wordSize);
 147     const Address saved_rdi     (rbp, -1 * wordSize);
 148     const Address result        (rbp,  3 * wordSize);
 149     const Address result_type   (rbp,  4 * wordSize);
 150     const Address method        (rbp,  5 * wordSize);
 151     const Address entry_point   (rbp,  6 * wordSize);
 152     const Address parameters    (rbp,  7 * wordSize);
 153     const Address parameter_size(rbp,  8 * wordSize);
 154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 155     sse_save =  UseSSE > 0;
 156 
 157     // stub code
 158     __ enter();
 159     __ movptr(rcx, parameter_size);              // parameter counter
 160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 162     __ subptr(rsp, rcx);
 163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 164 
 165     // save rdi, rsi, & rbx, according to C calling conventions
 166     __ movptr(saved_rdi, rdi);
 167     __ movptr(saved_rsi, rsi);
 168     __ movptr(saved_rbx, rbx);
 169     // save and initialize %mxcsr
 170     if (sse_save) {
 171       Label skip_ldmx;
 172       __ stmxcsr(mxcsr_save);
 173       __ movl(rax, mxcsr_save);
 174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 176       __ cmp32(rax, mxcsr_std);
 177       __ jcc(Assembler::equal, skip_ldmx);
 178       __ ldmxcsr(mxcsr_std);
 179       __ bind(skip_ldmx);
 180     }
 181 
 182     // make sure the control word is correct.
 183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 184 
 185 #ifdef ASSERT
 186     // make sure we have no pending exceptions
 187     { Label L;
 188       __ movptr(rcx, thread);
 189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 190       __ jcc(Assembler::equal, L);
 191       __ stop("StubRoutines::call_stub: entered with pending exception");
 192       __ bind(L);
 193     }
 194 #endif
 195 
 196     // pass parameters if any
 197     BLOCK_COMMENT("pass parameters if any");
 198     Label parameters_done;
 199     __ movl(rcx, parameter_size);  // parameter counter
 200     __ testl(rcx, rcx);
 201     __ jcc(Assembler::zero, parameters_done);
 202 
 203     // parameter passing loop
 204 
 205     Label loop;
 206     // Copy Java parameters in reverse order (receiver last)
 207     // Note that the argument order is inverted in the process
 208     // source is rdx[rcx: N-1..0]
 209     // dest   is rsp[rbx: 0..N-1]
 210 
 211     __ movptr(rdx, parameters);          // parameter pointer
 212     __ xorptr(rbx, rbx);
 213 
 214     __ BIND(loop);
 215 
 216     // get parameter
 217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 220     __ increment(rbx);
 221     __ decrement(rcx);
 222     __ jcc(Assembler::notZero, loop);
 223 
 224     // call Java function
 225     __ BIND(parameters_done);
 226     __ movptr(rbx, method);           // get Method*
 227     __ movptr(rax, entry_point);      // get entry_point
 228     __ mov(rsi, rsp);                 // set sender sp
 229     BLOCK_COMMENT("call Java function");
 230     __ call(rax);
 231 
 232     BLOCK_COMMENT("call_stub_return_address:");
 233     return_address = __ pc();
 234 
 235 #ifdef COMPILER2
 236     {
 237       Label L_skip;
 238       if (UseSSE >= 2) {
 239         __ verify_FPU(0, "call_stub_return");
 240       } else {
 241         for (int i = 1; i < 8; i++) {
 242           __ ffree(i);
 243         }
 244 
 245         // UseSSE <= 1 so double result should be left on TOS
 246         __ movl(rsi, result_type);
 247         __ cmpl(rsi, T_DOUBLE);
 248         __ jcc(Assembler::equal, L_skip);
 249         if (UseSSE == 0) {
 250           // UseSSE == 0 so float result should be left on TOS
 251           __ cmpl(rsi, T_FLOAT);
 252           __ jcc(Assembler::equal, L_skip);
 253         }
 254         __ ffree(0);
 255       }
 256       __ BIND(L_skip);
 257     }
 258 #endif // COMPILER2
 259 
 260     // store result depending on type
 261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 262     __ movptr(rdi, result);
 263     Label is_long, is_float, is_double, exit;
 264     __ movl(rsi, result_type);
 265     __ cmpl(rsi, T_LONG);
 266     __ jcc(Assembler::equal, is_long);
 267     __ cmpl(rsi, T_FLOAT);
 268     __ jcc(Assembler::equal, is_float);
 269     __ cmpl(rsi, T_DOUBLE);
 270     __ jcc(Assembler::equal, is_double);
 271 
 272     // handle T_INT case
 273     __ movl(Address(rdi, 0), rax);
 274     __ BIND(exit);
 275 
 276     // check that FPU stack is empty
 277     __ verify_FPU(0, "generate_call_stub");
 278 
 279     // pop parameters
 280     __ lea(rsp, rsp_after_call);
 281 
 282     // restore %mxcsr
 283     if (sse_save) {
 284       __ ldmxcsr(mxcsr_save);
 285     }
 286 
 287     // restore rdi, rsi and rbx,
 288     __ movptr(rbx, saved_rbx);
 289     __ movptr(rsi, saved_rsi);
 290     __ movptr(rdi, saved_rdi);
 291     __ addptr(rsp, 4*wordSize);
 292 
 293     // return
 294     __ pop(rbp);
 295     __ ret(0);
 296 
 297     // handle return types different from T_INT
 298     __ BIND(is_long);
 299     __ movl(Address(rdi, 0 * wordSize), rax);
 300     __ movl(Address(rdi, 1 * wordSize), rdx);
 301     __ jmp(exit);
 302 
 303     __ BIND(is_float);
 304     // interpreter uses xmm0 for return values
 305     if (UseSSE >= 1) {
 306       __ movflt(Address(rdi, 0), xmm0);
 307     } else {
 308       __ fstp_s(Address(rdi, 0));
 309     }
 310     __ jmp(exit);
 311 
 312     __ BIND(is_double);
 313     // interpreter uses xmm0 for return values
 314     if (UseSSE >= 2) {
 315       __ movdbl(Address(rdi, 0), xmm0);
 316     } else {
 317       __ fstp_d(Address(rdi, 0));
 318     }
 319     __ jmp(exit);
 320 
 321     return start;
 322   }
 323 
 324 
 325   //------------------------------------------------------------------------------------------------------------------------
 326   // Return point for a Java call if there's an exception thrown in Java code.
 327   // The exception is caught and transformed into a pending exception stored in
 328   // JavaThread that can be tested from within the VM.
 329   //
 330   // Note: Usually the parameters are removed by the callee. In case of an exception
 331   //       crossing an activation frame boundary, that is not the case if the callee
 332   //       is compiled code => need to setup the rsp.
 333   //
 334   // rax,: exception oop
 335 
 336   address generate_catch_exception() {
 337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 340     address start = __ pc();
 341 
 342     // get thread directly
 343     __ movptr(rcx, thread);
 344 #ifdef ASSERT
 345     // verify that threads correspond
 346     { Label L;
 347       __ get_thread(rbx);
 348       __ cmpptr(rbx, rcx);
 349       __ jcc(Assembler::equal, L);
 350       __ stop("StubRoutines::catch_exception: threads must correspond");
 351       __ bind(L);
 352     }
 353 #endif
 354     // set pending exception
 355     __ verify_oop(rax);
 356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 358            ExternalAddress((address)__FILE__));
 359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 360     // complete return to VM
 361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 363 
 364     return start;
 365   }
 366 
 367 
 368   //------------------------------------------------------------------------------------------------------------------------
 369   // Continuation point for runtime calls returning with a pending exception.
 370   // The pending exception check happened in the runtime or native call stub.
 371   // The pending exception in Thread is converted into a Java-level exception.
 372   //
 373   // Contract with Java-level exception handlers:
 374   // rax: exception
 375   // rdx: throwing pc
 376   //
 377   // NOTE: At entry of this stub, exception-pc must be on stack !!
 378 
 379   address generate_forward_exception() {
 380     StubCodeMark mark(this, "StubRoutines", "forward exception");
 381     address start = __ pc();
 382     const Register thread = rcx;
 383 
 384     // other registers used in this stub
 385     const Register exception_oop = rax;
 386     const Register handler_addr  = rbx;
 387     const Register exception_pc  = rdx;
 388 
 389     // Upon entry, the sp points to the return address returning into Java
 390     // (interpreted or compiled) code; i.e., the return address becomes the
 391     // throwing pc.
 392     //
 393     // Arguments pushed before the runtime call are still on the stack but
 394     // the exception handler will reset the stack pointer -> ignore them.
 395     // A potential result in registers can be ignored as well.
 396 
 397 #ifdef ASSERT
 398     // make sure this code is only executed if there is a pending exception
 399     { Label L;
 400       __ get_thread(thread);
 401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 402       __ jcc(Assembler::notEqual, L);
 403       __ stop("StubRoutines::forward exception: no pending exception (1)");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // compute exception handler into rbx,
 409     __ get_thread(thread);
 410     __ movptr(exception_pc, Address(rsp, 0));
 411     BLOCK_COMMENT("call exception_handler_for_return_address");
 412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 413     __ mov(handler_addr, rax);
 414 
 415     // setup rax & rdx, remove return address & clear pending exception
 416     __ get_thread(thread);
 417     __ pop(exception_pc);
 418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 420 
 421 #ifdef ASSERT
 422     // make sure exception is set
 423     { Label L;
 424       __ testptr(exception_oop, exception_oop);
 425       __ jcc(Assembler::notEqual, L);
 426       __ stop("StubRoutines::forward exception: no pending exception (2)");
 427       __ bind(L);
 428     }
 429 #endif
 430 
 431     // Verify that there is really a valid exception in RAX.
 432     __ verify_oop(exception_oop);
 433 
 434     // continue at exception handler (return address removed)
 435     // rax: exception
 436     // rbx: exception handler
 437     // rdx: throwing pc
 438     __ jmp(handler_addr);
 439 
 440     return start;
 441   }
 442 
 443 
 444   //----------------------------------------------------------------------------------------------------
 445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 446   //
 447   // xchg exists as far back as 8086, lock needed for MP only
 448   // Stack layout immediately after call:
 449   //
 450   // 0 [ret addr ] <--- rsp
 451   // 1 [  ex     ]
 452   // 2 [  dest   ]
 453   //
 454   // Result:   *dest <- ex, return (old *dest)
 455   //
 456   // Note: win32 does not currently use this code
 457 
 458   address generate_atomic_xchg() {
 459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 460     address start = __ pc();
 461 
 462     __ push(rdx);
 463     Address exchange(rsp, 2 * wordSize);
 464     Address dest_addr(rsp, 3 * wordSize);
 465     __ movl(rax, exchange);
 466     __ movptr(rdx, dest_addr);
 467     __ xchgl(rax, Address(rdx, 0));
 468     __ pop(rdx);
 469     __ ret(0);
 470 
 471     return start;
 472   }
 473 
 474   //----------------------------------------------------------------------------------------------------
 475   // Support for void verify_mxcsr()
 476   //
 477   // This routine is used with -Xcheck:jni to verify that native
 478   // JNI code does not return to Java code without restoring the
 479   // MXCSR register to our expected state.
 480 
 481 
 482   address generate_verify_mxcsr() {
 483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 484     address start = __ pc();
 485 
 486     const Address mxcsr_save(rsp, 0);
 487 
 488     if (CheckJNICalls && UseSSE > 0 ) {
 489       Label ok_ret;
 490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 491       __ push(rax);
 492       __ subptr(rsp, wordSize);      // allocate a temp location
 493       __ stmxcsr(mxcsr_save);
 494       __ movl(rax, mxcsr_save);
 495       __ andl(rax, MXCSR_MASK);
 496       __ cmp32(rax, mxcsr_std);
 497       __ jcc(Assembler::equal, ok_ret);
 498 
 499       __ warn("MXCSR changed by native JNI code.");
 500 
 501       __ ldmxcsr(mxcsr_std);
 502 
 503       __ bind(ok_ret);
 504       __ addptr(rsp, wordSize);
 505       __ pop(rax);
 506     }
 507 
 508     __ ret(0);
 509 
 510     return start;
 511   }
 512 
 513 
 514   //---------------------------------------------------------------------------
 515   // Support for void verify_fpu_cntrl_wrd()
 516   //
 517   // This routine is used with -Xcheck:jni to verify that native
 518   // JNI code does not return to Java code without restoring the
 519   // FP control word to our expected state.
 520 
 521   address generate_verify_fpu_cntrl_wrd() {
 522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 523     address start = __ pc();
 524 
 525     const Address fpu_cntrl_wrd_save(rsp, 0);
 526 
 527     if (CheckJNICalls) {
 528       Label ok_ret;
 529       __ push(rax);
 530       __ subptr(rsp, wordSize);      // allocate a temp location
 531       __ fnstcw(fpu_cntrl_wrd_save);
 532       __ movl(rax, fpu_cntrl_wrd_save);
 533       __ andl(rax, FPU_CNTRL_WRD_MASK);
 534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 535       __ cmp32(rax, fpu_std);
 536       __ jcc(Assembler::equal, ok_ret);
 537 
 538       __ warn("Floating point control word changed by native JNI code.");
 539 
 540       __ fldcw(fpu_std);
 541 
 542       __ bind(ok_ret);
 543       __ addptr(rsp, wordSize);
 544       __ pop(rax);
 545     }
 546 
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   //---------------------------------------------------------------------------
 553   // Wrapper for slow-case handling of double-to-integer conversion
 554   // d2i or f2i fast case failed either because it is nan or because
 555   // of under/overflow.
 556   // Input:  FPU TOS: float value
 557   // Output: rax, (rdx): integer (long) result
 558 
 559   address generate_d2i_wrapper(BasicType t, address fcn) {
 560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 561     address start = __ pc();
 562 
 563   // Capture info about frame layout
 564   enum layout { FPUState_off         = 0,
 565                 rbp_off              = FPUStateSizeInWords,
 566                 rdi_off,
 567                 rsi_off,
 568                 rcx_off,
 569                 rbx_off,
 570                 saved_argument_off,
 571                 saved_argument_off2, // 2nd half of double
 572                 framesize
 573   };
 574 
 575   assert(FPUStateSizeInWords == 27, "update stack layout");
 576 
 577     // Save outgoing argument to stack across push_FPU_state()
 578     __ subptr(rsp, wordSize * 2);
 579     __ fstp_d(Address(rsp, 0));
 580 
 581     // Save CPU & FPU state
 582     __ push(rbx);
 583     __ push(rcx);
 584     __ push(rsi);
 585     __ push(rdi);
 586     __ push(rbp);
 587     __ push_FPU_state();
 588 
 589     // push_FPU_state() resets the FP top of stack
 590     // Load original double into FP top of stack
 591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 592     // Store double into stack as outgoing argument
 593     __ subptr(rsp, wordSize*2);
 594     __ fst_d(Address(rsp, 0));
 595 
 596     // Prepare FPU for doing math in C-land
 597     __ empty_FPU_stack();
 598     // Call the C code to massage the double.  Result in EAX
 599     if (t == T_INT)
 600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 601     else if (t == T_LONG)
 602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 603     __ call_VM_leaf( fcn, 2 );
 604 
 605     // Restore CPU & FPU state
 606     __ pop_FPU_state();
 607     __ pop(rbp);
 608     __ pop(rdi);
 609     __ pop(rsi);
 610     __ pop(rcx);
 611     __ pop(rbx);
 612     __ addptr(rsp, wordSize * 2);
 613 
 614     __ ret(0);
 615 
 616     return start;
 617   }
 618 
 619 
 620   //---------------------------------------------------------------------------
 621   // The following routine generates a subroutine to throw an asynchronous
 622   // UnknownError when an unsafe access gets a fault that could not be
 623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 624   address generate_handler_for_unsafe_access() {
 625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 626     address start = __ pc();
 627 
 628     __ push(0);                       // hole for return address-to-be
 629     __ pusha();                       // push registers
 630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 631     BLOCK_COMMENT("call handle_unsafe_access");
 632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 633     __ movptr(next_pc, rax);          // stuff next address
 634     __ popa();
 635     __ ret(0);                        // jump to next address
 636 
 637     return start;
 638   }
 639 
 640 
 641   //----------------------------------------------------------------------------------------------------
 642   // Non-destructive plausibility checks for oops
 643 
 644   address generate_verify_oop() {
 645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 646     address start = __ pc();
 647 
 648     // Incoming arguments on stack after saving rax,:
 649     //
 650     // [tos    ]: saved rdx
 651     // [tos + 1]: saved EFLAGS
 652     // [tos + 2]: return address
 653     // [tos + 3]: char* error message
 654     // [tos + 4]: oop   object to verify
 655     // [tos + 5]: saved rax, - saved by caller and bashed
 656 
 657     Label exit, error;
 658     __ pushf();
 659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 660     __ push(rdx);                                // save rdx
 661     // make sure object is 'reasonable'
 662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 663     __ testptr(rax, rax);
 664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 665 
 666     // Check if the oop is in the right area of memory
 667     const int oop_mask = Universe::verify_oop_mask();
 668     const int oop_bits = Universe::verify_oop_bits();
 669     __ mov(rdx, rax);
 670     __ andptr(rdx, oop_mask);
 671     __ cmpptr(rdx, oop_bits);
 672     __ jcc(Assembler::notZero, error);
 673 
 674     // make sure klass is 'reasonable', which is not zero.
 675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 676     __ testptr(rax, rax);
 677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 678 
 679     // return if everything seems ok
 680     __ bind(exit);
 681     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 682     __ pop(rdx);                                 // restore rdx
 683     __ popf();                                   // restore EFLAGS
 684     __ ret(3 * wordSize);                        // pop arguments
 685 
 686     // handle errors
 687     __ bind(error);
 688     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 689     __ pop(rdx);                                 // get saved rdx back
 690     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 691     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 692     BLOCK_COMMENT("call MacroAssembler::debug");
 693     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 694     __ popa();
 695     __ ret(3 * wordSize);                        // pop arguments
 696     return start;
 697   }
 698 
 699   //
 700   //  Generate pre-barrier for array stores
 701   //
 702   //  Input:
 703   //     start   -  starting address
 704   //     count   -  element count
 705   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 706     assert_different_registers(start, count);
 707     BarrierSet* bs = Universe::heap()->barrier_set();
 708     switch (bs->kind()) {
 709       case BarrierSet::G1SATBCTLogging:
 710         // With G1, don't generate the call if we statically know that the target in uninitialized
 711         if (!uninitialized_target) {
 712            __ pusha();                      // push registers
 713            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 714                            start, count);
 715            __ popa();
 716          }
 717         break;
 718       case BarrierSet::CardTableModRef:
 719       case BarrierSet::CardTableExtension:
 720       case BarrierSet::ModRef:
 721         break;
 722       default      :
 723         ShouldNotReachHere();
 724 
 725     }
 726   }
 727 
 728 
 729   //
 730   // Generate a post-barrier for an array store
 731   //
 732   //     start    -  starting address
 733   //     count    -  element count
 734   //
 735   //  The two input registers are overwritten.
 736   //
 737   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 738     BarrierSet* bs = Universe::heap()->barrier_set();
 739     assert_different_registers(start, count);
 740     switch (bs->kind()) {
 741       case BarrierSet::G1SATBCTLogging:
 742         {
 743           __ pusha();                      // push registers
 744           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 745                           start, count);
 746           __ popa();
 747         }
 748         break;
 749 
 750       case BarrierSet::CardTableModRef:
 751       case BarrierSet::CardTableExtension:
 752         {
 753           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 754           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 755 
 756           Label L_loop;
 757           const Register end = count;  // elements count; end == start+count-1
 758           assert_different_registers(start, end);
 759 
 760           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 761           __ shrptr(start, CardTableModRefBS::card_shift);
 762           __ shrptr(end,   CardTableModRefBS::card_shift);
 763           __ subptr(end, start); // end --> count
 764         __ BIND(L_loop);
 765           intptr_t disp = (intptr_t) ct->byte_map_base;
 766           Address cardtable(start, count, Address::times_1, disp);
 767           __ movb(cardtable, 0);
 768           __ decrement(count);
 769           __ jcc(Assembler::greaterEqual, L_loop);
 770         }
 771         break;
 772       case BarrierSet::ModRef:
 773         break;
 774       default      :
 775         ShouldNotReachHere();
 776 
 777     }
 778   }
 779 
 780 
 781   // Copy 64 bytes chunks
 782   //
 783   // Inputs:
 784   //   from        - source array address
 785   //   to_from     - destination array address - from
 786   //   qword_count - 8-bytes element count, negative
 787   //
 788   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 789     assert( UseSSE >= 2, "supported cpu only" );
 790     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 791     // Copy 64-byte chunks
 792     __ jmpb(L_copy_64_bytes);
 793     __ align(OptoLoopAlignment);
 794   __ BIND(L_copy_64_bytes_loop);
 795 
 796     if (UseUnalignedLoadStores) {
 797       if (UseAVX >= 2) {
 798         __ vmovdqu(xmm0, Address(from,  0));
 799         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
 800         __ vmovdqu(xmm1, Address(from, 32));
 801         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
 802       } else {
 803         __ movdqu(xmm0, Address(from, 0));
 804         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 805         __ movdqu(xmm1, Address(from, 16));
 806         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 807         __ movdqu(xmm2, Address(from, 32));
 808         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 809         __ movdqu(xmm3, Address(from, 48));
 810         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 811       }
 812     } else {
 813       __ movq(xmm0, Address(from, 0));
 814       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 815       __ movq(xmm1, Address(from, 8));
 816       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 817       __ movq(xmm2, Address(from, 16));
 818       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 819       __ movq(xmm3, Address(from, 24));
 820       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 821       __ movq(xmm4, Address(from, 32));
 822       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 823       __ movq(xmm5, Address(from, 40));
 824       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 825       __ movq(xmm6, Address(from, 48));
 826       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 827       __ movq(xmm7, Address(from, 56));
 828       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 829     }
 830 
 831     __ addl(from, 64);
 832   __ BIND(L_copy_64_bytes);
 833     __ subl(qword_count, 8);
 834     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 835 
 836     if (UseUnalignedLoadStores && (UseAVX >= 2)) {
 837       // clean upper bits of YMM registers
 838       __ vzeroupper();
 839     }
 840     __ addl(qword_count, 8);
 841     __ jccb(Assembler::zero, L_exit);
 842     //
 843     // length is too short, just copy qwords
 844     //
 845   __ BIND(L_copy_8_bytes);
 846     __ movq(xmm0, Address(from, 0));
 847     __ movq(Address(from, to_from, Address::times_1), xmm0);
 848     __ addl(from, 8);
 849     __ decrement(qword_count);
 850     __ jcc(Assembler::greater, L_copy_8_bytes);
 851   __ BIND(L_exit);
 852   }
 853 
 854   // Copy 64 bytes chunks
 855   //
 856   // Inputs:
 857   //   from        - source array address
 858   //   to_from     - destination array address - from
 859   //   qword_count - 8-bytes element count, negative
 860   //
 861   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 862     assert( VM_Version::supports_mmx(), "supported cpu only" );
 863     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 864     // Copy 64-byte chunks
 865     __ jmpb(L_copy_64_bytes);
 866     __ align(OptoLoopAlignment);
 867   __ BIND(L_copy_64_bytes_loop);
 868     __ movq(mmx0, Address(from, 0));
 869     __ movq(mmx1, Address(from, 8));
 870     __ movq(mmx2, Address(from, 16));
 871     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 872     __ movq(mmx3, Address(from, 24));
 873     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 874     __ movq(mmx4, Address(from, 32));
 875     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 876     __ movq(mmx5, Address(from, 40));
 877     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 878     __ movq(mmx6, Address(from, 48));
 879     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 880     __ movq(mmx7, Address(from, 56));
 881     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 882     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 883     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 884     __ addptr(from, 64);
 885   __ BIND(L_copy_64_bytes);
 886     __ subl(qword_count, 8);
 887     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 888     __ addl(qword_count, 8);
 889     __ jccb(Assembler::zero, L_exit);
 890     //
 891     // length is too short, just copy qwords
 892     //
 893   __ BIND(L_copy_8_bytes);
 894     __ movq(mmx0, Address(from, 0));
 895     __ movq(Address(from, to_from, Address::times_1), mmx0);
 896     __ addptr(from, 8);
 897     __ decrement(qword_count);
 898     __ jcc(Assembler::greater, L_copy_8_bytes);
 899   __ BIND(L_exit);
 900     __ emms();
 901   }
 902 
 903   address generate_disjoint_copy(BasicType t, bool aligned,
 904                                  Address::ScaleFactor sf,
 905                                  address* entry, const char *name,
 906                                  bool dest_uninitialized = false) {
 907     __ align(CodeEntryAlignment);
 908     StubCodeMark mark(this, "StubRoutines", name);
 909     address start = __ pc();
 910 
 911     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 912     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 913 
 914     int shift = Address::times_ptr - sf;
 915 
 916     const Register from     = rsi;  // source array address
 917     const Register to       = rdi;  // destination array address
 918     const Register count    = rcx;  // elements count
 919     const Register to_from  = to;   // (to - from)
 920     const Register saved_to = rdx;  // saved destination array address
 921 
 922     __ enter(); // required for proper stackwalking of RuntimeStub frame
 923     __ push(rsi);
 924     __ push(rdi);
 925     __ movptr(from , Address(rsp, 12+ 4));
 926     __ movptr(to   , Address(rsp, 12+ 8));
 927     __ movl(count, Address(rsp, 12+ 12));
 928 
 929     if (entry != NULL) {
 930       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 931       BLOCK_COMMENT("Entry:");
 932     }
 933 
 934     if (t == T_OBJECT) {
 935       __ testl(count, count);
 936       __ jcc(Assembler::zero, L_0_count);
 937       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 938       __ mov(saved_to, to);          // save 'to'
 939     }
 940 
 941     __ subptr(to, from); // to --> to_from
 942     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 943     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 944     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 945       // align source address at 4 bytes address boundary
 946       if (t == T_BYTE) {
 947         // One byte misalignment happens only for byte arrays
 948         __ testl(from, 1);
 949         __ jccb(Assembler::zero, L_skip_align1);
 950         __ movb(rax, Address(from, 0));
 951         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 952         __ increment(from);
 953         __ decrement(count);
 954       __ BIND(L_skip_align1);
 955       }
 956       // Two bytes misalignment happens only for byte and short (char) arrays
 957       __ testl(from, 2);
 958       __ jccb(Assembler::zero, L_skip_align2);
 959       __ movw(rax, Address(from, 0));
 960       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 961       __ addptr(from, 2);
 962       __ subl(count, 1<<(shift-1));
 963     __ BIND(L_skip_align2);
 964     }
 965     if (!VM_Version::supports_mmx()) {
 966       __ mov(rax, count);      // save 'count'
 967       __ shrl(count, shift); // bytes count
 968       __ addptr(to_from, from);// restore 'to'
 969       __ rep_mov();
 970       __ subptr(to_from, from);// restore 'to_from'
 971       __ mov(count, rax);      // restore 'count'
 972       __ jmpb(L_copy_2_bytes); // all dwords were copied
 973     } else {
 974       if (!UseUnalignedLoadStores) {
 975         // align to 8 bytes, we know we are 4 byte aligned to start
 976         __ testptr(from, 4);
 977         __ jccb(Assembler::zero, L_copy_64_bytes);
 978         __ movl(rax, Address(from, 0));
 979         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 980         __ addptr(from, 4);
 981         __ subl(count, 1<<shift);
 982       }
 983     __ BIND(L_copy_64_bytes);
 984       __ mov(rax, count);
 985       __ shrl(rax, shift+1);  // 8 bytes chunk count
 986       //
 987       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
 988       //
 989       if (UseXMMForArrayCopy) {
 990         xmm_copy_forward(from, to_from, rax);
 991       } else {
 992         mmx_copy_forward(from, to_from, rax);
 993       }
 994     }
 995     // copy tailing dword
 996   __ BIND(L_copy_4_bytes);
 997     __ testl(count, 1<<shift);
 998     __ jccb(Assembler::zero, L_copy_2_bytes);
 999     __ movl(rax, Address(from, 0));
1000     __ movl(Address(from, to_from, Address::times_1, 0), rax);
1001     if (t == T_BYTE || t == T_SHORT) {
1002       __ addptr(from, 4);
1003     __ BIND(L_copy_2_bytes);
1004       // copy tailing word
1005       __ testl(count, 1<<(shift-1));
1006       __ jccb(Assembler::zero, L_copy_byte);
1007       __ movw(rax, Address(from, 0));
1008       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1009       if (t == T_BYTE) {
1010         __ addptr(from, 2);
1011       __ BIND(L_copy_byte);
1012         // copy tailing byte
1013         __ testl(count, 1);
1014         __ jccb(Assembler::zero, L_exit);
1015         __ movb(rax, Address(from, 0));
1016         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1017       __ BIND(L_exit);
1018       } else {
1019       __ BIND(L_copy_byte);
1020       }
1021     } else {
1022     __ BIND(L_copy_2_bytes);
1023     }
1024 
1025     if (t == T_OBJECT) {
1026       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1027       __ mov(to, saved_to); // restore 'to'
1028       gen_write_ref_array_post_barrier(to, count);
1029     __ BIND(L_0_count);
1030     }
1031     inc_copy_counter_np(t);
1032     __ pop(rdi);
1033     __ pop(rsi);
1034     __ leave(); // required for proper stackwalking of RuntimeStub frame
1035     __ xorptr(rax, rax); // return 0
1036     __ ret(0);
1037     return start;
1038   }
1039 
1040 
1041   address generate_fill(BasicType t, bool aligned, const char *name) {
1042     __ align(CodeEntryAlignment);
1043     StubCodeMark mark(this, "StubRoutines", name);
1044     address start = __ pc();
1045 
1046     BLOCK_COMMENT("Entry:");
1047 
1048     const Register to       = rdi;  // source array address
1049     const Register value    = rdx;  // value
1050     const Register count    = rsi;  // elements count
1051 
1052     __ enter(); // required for proper stackwalking of RuntimeStub frame
1053     __ push(rsi);
1054     __ push(rdi);
1055     __ movptr(to   , Address(rsp, 12+ 4));
1056     __ movl(value, Address(rsp, 12+ 8));
1057     __ movl(count, Address(rsp, 12+ 12));
1058 
1059     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1060 
1061     __ pop(rdi);
1062     __ pop(rsi);
1063     __ leave(); // required for proper stackwalking of RuntimeStub frame
1064     __ ret(0);
1065     return start;
1066   }
1067 
1068   address generate_conjoint_copy(BasicType t, bool aligned,
1069                                  Address::ScaleFactor sf,
1070                                  address nooverlap_target,
1071                                  address* entry, const char *name,
1072                                  bool dest_uninitialized = false) {
1073     __ align(CodeEntryAlignment);
1074     StubCodeMark mark(this, "StubRoutines", name);
1075     address start = __ pc();
1076 
1077     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1078     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1079 
1080     int shift = Address::times_ptr - sf;
1081 
1082     const Register src   = rax;  // source array address
1083     const Register dst   = rdx;  // destination array address
1084     const Register from  = rsi;  // source array address
1085     const Register to    = rdi;  // destination array address
1086     const Register count = rcx;  // elements count
1087     const Register end   = rax;  // array end address
1088 
1089     __ enter(); // required for proper stackwalking of RuntimeStub frame
1090     __ push(rsi);
1091     __ push(rdi);
1092     __ movptr(src  , Address(rsp, 12+ 4));   // from
1093     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1094     __ movl2ptr(count, Address(rsp, 12+12)); // count
1095 
1096     if (entry != NULL) {
1097       *entry = __ pc(); // Entry point from generic arraycopy stub.
1098       BLOCK_COMMENT("Entry:");
1099     }
1100 
1101     // nooverlap_target expects arguments in rsi and rdi.
1102     __ mov(from, src);
1103     __ mov(to  , dst);
1104 
1105     // arrays overlap test: dispatch to disjoint stub if necessary.
1106     RuntimeAddress nooverlap(nooverlap_target);
1107     __ cmpptr(dst, src);
1108     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1109     __ jump_cc(Assembler::belowEqual, nooverlap);
1110     __ cmpptr(dst, end);
1111     __ jump_cc(Assembler::aboveEqual, nooverlap);
1112 
1113     if (t == T_OBJECT) {
1114       __ testl(count, count);
1115       __ jcc(Assembler::zero, L_0_count);
1116       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1117     }
1118 
1119     // copy from high to low
1120     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1121     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1122     if (t == T_BYTE || t == T_SHORT) {
1123       // Align the end of destination array at 4 bytes address boundary
1124       __ lea(end, Address(dst, count, sf, 0));
1125       if (t == T_BYTE) {
1126         // One byte misalignment happens only for byte arrays
1127         __ testl(end, 1);
1128         __ jccb(Assembler::zero, L_skip_align1);
1129         __ decrement(count);
1130         __ movb(rdx, Address(from, count, sf, 0));
1131         __ movb(Address(to, count, sf, 0), rdx);
1132       __ BIND(L_skip_align1);
1133       }
1134       // Two bytes misalignment happens only for byte and short (char) arrays
1135       __ testl(end, 2);
1136       __ jccb(Assembler::zero, L_skip_align2);
1137       __ subptr(count, 1<<(shift-1));
1138       __ movw(rdx, Address(from, count, sf, 0));
1139       __ movw(Address(to, count, sf, 0), rdx);
1140     __ BIND(L_skip_align2);
1141       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1142       __ jcc(Assembler::below, L_copy_4_bytes);
1143     }
1144 
1145     if (!VM_Version::supports_mmx()) {
1146       __ std();
1147       __ mov(rax, count); // Save 'count'
1148       __ mov(rdx, to);    // Save 'to'
1149       __ lea(rsi, Address(from, count, sf, -4));
1150       __ lea(rdi, Address(to  , count, sf, -4));
1151       __ shrptr(count, shift); // bytes count
1152       __ rep_mov();
1153       __ cld();
1154       __ mov(count, rax); // restore 'count'
1155       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1156       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1157       __ mov(to, rdx);   // restore 'to'
1158       __ jmpb(L_copy_2_bytes); // all dword were copied
1159    } else {
1160       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1161       __ testptr(end, 4);
1162       __ jccb(Assembler::zero, L_copy_8_bytes);
1163       __ subl(count, 1<<shift);
1164       __ movl(rdx, Address(from, count, sf, 0));
1165       __ movl(Address(to, count, sf, 0), rdx);
1166       __ jmpb(L_copy_8_bytes);
1167 
1168       __ align(OptoLoopAlignment);
1169       // Move 8 bytes
1170     __ BIND(L_copy_8_bytes_loop);
1171       if (UseXMMForArrayCopy) {
1172         __ movq(xmm0, Address(from, count, sf, 0));
1173         __ movq(Address(to, count, sf, 0), xmm0);
1174       } else {
1175         __ movq(mmx0, Address(from, count, sf, 0));
1176         __ movq(Address(to, count, sf, 0), mmx0);
1177       }
1178     __ BIND(L_copy_8_bytes);
1179       __ subl(count, 2<<shift);
1180       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1181       __ addl(count, 2<<shift);
1182       if (!UseXMMForArrayCopy) {
1183         __ emms();
1184       }
1185     }
1186   __ BIND(L_copy_4_bytes);
1187     // copy prefix qword
1188     __ testl(count, 1<<shift);
1189     __ jccb(Assembler::zero, L_copy_2_bytes);
1190     __ movl(rdx, Address(from, count, sf, -4));
1191     __ movl(Address(to, count, sf, -4), rdx);
1192 
1193     if (t == T_BYTE || t == T_SHORT) {
1194         __ subl(count, (1<<shift));
1195       __ BIND(L_copy_2_bytes);
1196         // copy prefix dword
1197         __ testl(count, 1<<(shift-1));
1198         __ jccb(Assembler::zero, L_copy_byte);
1199         __ movw(rdx, Address(from, count, sf, -2));
1200         __ movw(Address(to, count, sf, -2), rdx);
1201         if (t == T_BYTE) {
1202           __ subl(count, 1<<(shift-1));
1203         __ BIND(L_copy_byte);
1204           // copy prefix byte
1205           __ testl(count, 1);
1206           __ jccb(Assembler::zero, L_exit);
1207           __ movb(rdx, Address(from, 0));
1208           __ movb(Address(to, 0), rdx);
1209         __ BIND(L_exit);
1210         } else {
1211         __ BIND(L_copy_byte);
1212         }
1213     } else {
1214     __ BIND(L_copy_2_bytes);
1215     }
1216     if (t == T_OBJECT) {
1217       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1218       gen_write_ref_array_post_barrier(to, count);
1219     __ BIND(L_0_count);
1220     }
1221     inc_copy_counter_np(t);
1222     __ pop(rdi);
1223     __ pop(rsi);
1224     __ leave(); // required for proper stackwalking of RuntimeStub frame
1225     __ xorptr(rax, rax); // return 0
1226     __ ret(0);
1227     return start;
1228   }
1229 
1230 
1231   address generate_disjoint_long_copy(address* entry, const char *name) {
1232     __ align(CodeEntryAlignment);
1233     StubCodeMark mark(this, "StubRoutines", name);
1234     address start = __ pc();
1235 
1236     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1237     const Register from       = rax;  // source array address
1238     const Register to         = rdx;  // destination array address
1239     const Register count      = rcx;  // elements count
1240     const Register to_from    = rdx;  // (to - from)
1241 
1242     __ enter(); // required for proper stackwalking of RuntimeStub frame
1243     __ movptr(from , Address(rsp, 8+0));       // from
1244     __ movptr(to   , Address(rsp, 8+4));       // to
1245     __ movl2ptr(count, Address(rsp, 8+8));     // count
1246 
1247     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1248     BLOCK_COMMENT("Entry:");
1249 
1250     __ subptr(to, from); // to --> to_from
1251     if (VM_Version::supports_mmx()) {
1252       if (UseXMMForArrayCopy) {
1253         xmm_copy_forward(from, to_from, count);
1254       } else {
1255         mmx_copy_forward(from, to_from, count);
1256       }
1257     } else {
1258       __ jmpb(L_copy_8_bytes);
1259       __ align(OptoLoopAlignment);
1260     __ BIND(L_copy_8_bytes_loop);
1261       __ fild_d(Address(from, 0));
1262       __ fistp_d(Address(from, to_from, Address::times_1));
1263       __ addptr(from, 8);
1264     __ BIND(L_copy_8_bytes);
1265       __ decrement(count);
1266       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1267     }
1268     inc_copy_counter_np(T_LONG);
1269     __ leave(); // required for proper stackwalking of RuntimeStub frame
1270     __ xorptr(rax, rax); // return 0
1271     __ ret(0);
1272     return start;
1273   }
1274 
1275   address generate_conjoint_long_copy(address nooverlap_target,
1276                                       address* entry, const char *name) {
1277     __ align(CodeEntryAlignment);
1278     StubCodeMark mark(this, "StubRoutines", name);
1279     address start = __ pc();
1280 
1281     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1282     const Register from       = rax;  // source array address
1283     const Register to         = rdx;  // destination array address
1284     const Register count      = rcx;  // elements count
1285     const Register end_from   = rax;  // source array end address
1286 
1287     __ enter(); // required for proper stackwalking of RuntimeStub frame
1288     __ movptr(from , Address(rsp, 8+0));       // from
1289     __ movptr(to   , Address(rsp, 8+4));       // to
1290     __ movl2ptr(count, Address(rsp, 8+8));     // count
1291 
1292     *entry = __ pc(); // Entry point from generic arraycopy stub.
1293     BLOCK_COMMENT("Entry:");
1294 
1295     // arrays overlap test
1296     __ cmpptr(to, from);
1297     RuntimeAddress nooverlap(nooverlap_target);
1298     __ jump_cc(Assembler::belowEqual, nooverlap);
1299     __ lea(end_from, Address(from, count, Address::times_8, 0));
1300     __ cmpptr(to, end_from);
1301     __ movptr(from, Address(rsp, 8));  // from
1302     __ jump_cc(Assembler::aboveEqual, nooverlap);
1303 
1304     __ jmpb(L_copy_8_bytes);
1305 
1306     __ align(OptoLoopAlignment);
1307   __ BIND(L_copy_8_bytes_loop);
1308     if (VM_Version::supports_mmx()) {
1309       if (UseXMMForArrayCopy) {
1310         __ movq(xmm0, Address(from, count, Address::times_8));
1311         __ movq(Address(to, count, Address::times_8), xmm0);
1312       } else {
1313         __ movq(mmx0, Address(from, count, Address::times_8));
1314         __ movq(Address(to, count, Address::times_8), mmx0);
1315       }
1316     } else {
1317       __ fild_d(Address(from, count, Address::times_8));
1318       __ fistp_d(Address(to, count, Address::times_8));
1319     }
1320   __ BIND(L_copy_8_bytes);
1321     __ decrement(count);
1322     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1323 
1324     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1325       __ emms();
1326     }
1327     inc_copy_counter_np(T_LONG);
1328     __ leave(); // required for proper stackwalking of RuntimeStub frame
1329     __ xorptr(rax, rax); // return 0
1330     __ ret(0);
1331     return start;
1332   }
1333 
1334 
1335   // Helper for generating a dynamic type check.
1336   // The sub_klass must be one of {rbx, rdx, rsi}.
1337   // The temp is killed.
1338   void generate_type_check(Register sub_klass,
1339                            Address& super_check_offset_addr,
1340                            Address& super_klass_addr,
1341                            Register temp,
1342                            Label* L_success, Label* L_failure) {
1343     BLOCK_COMMENT("type_check:");
1344 
1345     Label L_fallthrough;
1346 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1347     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1348     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1349 
1350     // The following is a strange variation of the fast path which requires
1351     // one less register, because needed values are on the argument stack.
1352     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1353     //                                  L_success, L_failure, NULL);
1354     assert_different_registers(sub_klass, temp);
1355 
1356     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1357 
1358     // if the pointers are equal, we are done (e.g., String[] elements)
1359     __ cmpptr(sub_klass, super_klass_addr);
1360     LOCAL_JCC(Assembler::equal, L_success);
1361 
1362     // check the supertype display:
1363     __ movl2ptr(temp, super_check_offset_addr);
1364     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1365     __ movptr(temp, super_check_addr); // load displayed supertype
1366     __ cmpptr(temp, super_klass_addr); // test the super type
1367     LOCAL_JCC(Assembler::equal, L_success);
1368 
1369     // if it was a primary super, we can just fail immediately
1370     __ cmpl(super_check_offset_addr, sc_offset);
1371     LOCAL_JCC(Assembler::notEqual, L_failure);
1372 
1373     // The repne_scan instruction uses fixed registers, which will get spilled.
1374     // We happen to know this works best when super_klass is in rax.
1375     Register super_klass = temp;
1376     __ movptr(super_klass, super_klass_addr);
1377     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1378                                      L_success, L_failure);
1379 
1380     __ bind(L_fallthrough);
1381 
1382     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1383     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1384 
1385 #undef LOCAL_JCC
1386   }
1387 
1388   //
1389   //  Generate checkcasting array copy stub
1390   //
1391   //  Input:
1392   //    4(rsp)   - source array address
1393   //    8(rsp)   - destination array address
1394   //   12(rsp)   - element count, can be zero
1395   //   16(rsp)   - size_t ckoff (super_check_offset)
1396   //   20(rsp)   - oop ckval (super_klass)
1397   //
1398   //  Output:
1399   //    rax, ==  0  -  success
1400   //    rax, == -1^K - failure, where K is partial transfer count
1401   //
1402   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1403     __ align(CodeEntryAlignment);
1404     StubCodeMark mark(this, "StubRoutines", name);
1405     address start = __ pc();
1406 
1407     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1408 
1409     // register use:
1410     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1411     //  rdi, rsi      -- element access (oop, klass)
1412     //  rbx,           -- temp
1413     const Register from       = rax;    // source array address
1414     const Register to         = rdx;    // destination array address
1415     const Register length     = rcx;    // elements count
1416     const Register elem       = rdi;    // each oop copied
1417     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1418     const Register temp       = rbx;    // lone remaining temp
1419 
1420     __ enter(); // required for proper stackwalking of RuntimeStub frame
1421 
1422     __ push(rsi);
1423     __ push(rdi);
1424     __ push(rbx);
1425 
1426     Address   from_arg(rsp, 16+ 4);     // from
1427     Address     to_arg(rsp, 16+ 8);     // to
1428     Address length_arg(rsp, 16+12);     // elements count
1429     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1430     Address  ckval_arg(rsp, 16+20);     // super_klass
1431 
1432     // Load up:
1433     __ movptr(from,     from_arg);
1434     __ movptr(to,         to_arg);
1435     __ movl2ptr(length, length_arg);
1436 
1437     if (entry != NULL) {
1438       *entry = __ pc(); // Entry point from generic arraycopy stub.
1439       BLOCK_COMMENT("Entry:");
1440     }
1441 
1442     //---------------------------------------------------------------
1443     // Assembler stub will be used for this call to arraycopy
1444     // if the two arrays are subtypes of Object[] but the
1445     // destination array type is not equal to or a supertype
1446     // of the source type.  Each element must be separately
1447     // checked.
1448 
1449     // Loop-invariant addresses.  They are exclusive end pointers.
1450     Address end_from_addr(from, length, Address::times_ptr, 0);
1451     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1452 
1453     Register end_from = from;           // re-use
1454     Register end_to   = to;             // re-use
1455     Register count    = length;         // re-use
1456 
1457     // Loop-variant addresses.  They assume post-incremented count < 0.
1458     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1459     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1460     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1461 
1462     // Copy from low to high addresses, indexed from the end of each array.
1463     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1464     __ lea(end_from, end_from_addr);
1465     __ lea(end_to,   end_to_addr);
1466     assert(length == count, "");        // else fix next line:
1467     __ negptr(count);                   // negate and test the length
1468     __ jccb(Assembler::notZero, L_load_element);
1469 
1470     // Empty array:  Nothing to do.
1471     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1472     __ jmp(L_done);
1473 
1474     // ======== begin loop ========
1475     // (Loop is rotated; its entry is L_load_element.)
1476     // Loop control:
1477     //   for (count = -count; count != 0; count++)
1478     // Base pointers src, dst are biased by 8*count,to last element.
1479     __ align(OptoLoopAlignment);
1480 
1481     __ BIND(L_store_element);
1482     __ movptr(to_element_addr, elem);     // store the oop
1483     __ increment(count);                // increment the count toward zero
1484     __ jccb(Assembler::zero, L_do_card_marks);
1485 
1486     // ======== loop entry is here ========
1487     __ BIND(L_load_element);
1488     __ movptr(elem, from_element_addr);   // load the oop
1489     __ testptr(elem, elem);
1490     __ jccb(Assembler::zero, L_store_element);
1491 
1492     // (Could do a trick here:  Remember last successful non-null
1493     // element stored and make a quick oop equality check on it.)
1494 
1495     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1496     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1497                         &L_store_element, NULL);
1498     // (On fall-through, we have failed the element type check.)
1499     // ======== end loop ========
1500 
1501     // It was a real error; we must depend on the caller to finish the job.
1502     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1503     // Emit GC store barriers for the oops we have copied (length_arg + count),
1504     // and report their number to the caller.
1505     assert_different_registers(to, count, rax);
1506     Label L_post_barrier;
1507     __ addl(count, length_arg);         // transfers = (length - remaining)
1508     __ movl2ptr(rax, count);            // save the value
1509     __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
1510     __ jccb(Assembler::notZero, L_post_barrier);
1511     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
1512 
1513     // Come here on success only.
1514     __ BIND(L_do_card_marks);
1515     __ xorptr(rax, rax);                // return 0 on success
1516     __ movl2ptr(count, length_arg);
1517 
1518     __ BIND(L_post_barrier);
1519     __ movptr(to, to_arg);              // reload
1520     gen_write_ref_array_post_barrier(to, count);
1521 
1522     // Common exit point (success or failure).
1523     __ BIND(L_done);
1524     __ pop(rbx);
1525     __ pop(rdi);
1526     __ pop(rsi);
1527     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1528     __ leave(); // required for proper stackwalking of RuntimeStub frame
1529     __ ret(0);
1530 
1531     return start;
1532   }
1533 
1534   //
1535   //  Generate 'unsafe' array copy stub
1536   //  Though just as safe as the other stubs, it takes an unscaled
1537   //  size_t argument instead of an element count.
1538   //
1539   //  Input:
1540   //    4(rsp)   - source array address
1541   //    8(rsp)   - destination array address
1542   //   12(rsp)   - byte count, can be zero
1543   //
1544   //  Output:
1545   //    rax, ==  0  -  success
1546   //    rax, == -1  -  need to call System.arraycopy
1547   //
1548   // Examines the alignment of the operands and dispatches
1549   // to a long, int, short, or byte copy loop.
1550   //
1551   address generate_unsafe_copy(const char *name,
1552                                address byte_copy_entry,
1553                                address short_copy_entry,
1554                                address int_copy_entry,
1555                                address long_copy_entry) {
1556 
1557     Label L_long_aligned, L_int_aligned, L_short_aligned;
1558 
1559     __ align(CodeEntryAlignment);
1560     StubCodeMark mark(this, "StubRoutines", name);
1561     address start = __ pc();
1562 
1563     const Register from       = rax;  // source array address
1564     const Register to         = rdx;  // destination array address
1565     const Register count      = rcx;  // elements count
1566 
1567     __ enter(); // required for proper stackwalking of RuntimeStub frame
1568     __ push(rsi);
1569     __ push(rdi);
1570     Address  from_arg(rsp, 12+ 4);      // from
1571     Address    to_arg(rsp, 12+ 8);      // to
1572     Address count_arg(rsp, 12+12);      // byte count
1573 
1574     // Load up:
1575     __ movptr(from ,  from_arg);
1576     __ movptr(to   ,    to_arg);
1577     __ movl2ptr(count, count_arg);
1578 
1579     // bump this on entry, not on exit:
1580     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1581 
1582     const Register bits = rsi;
1583     __ mov(bits, from);
1584     __ orptr(bits, to);
1585     __ orptr(bits, count);
1586 
1587     __ testl(bits, BytesPerLong-1);
1588     __ jccb(Assembler::zero, L_long_aligned);
1589 
1590     __ testl(bits, BytesPerInt-1);
1591     __ jccb(Assembler::zero, L_int_aligned);
1592 
1593     __ testl(bits, BytesPerShort-1);
1594     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1595 
1596     __ BIND(L_short_aligned);
1597     __ shrptr(count, LogBytesPerShort); // size => short_count
1598     __ movl(count_arg, count);          // update 'count'
1599     __ jump(RuntimeAddress(short_copy_entry));
1600 
1601     __ BIND(L_int_aligned);
1602     __ shrptr(count, LogBytesPerInt); // size => int_count
1603     __ movl(count_arg, count);          // update 'count'
1604     __ jump(RuntimeAddress(int_copy_entry));
1605 
1606     __ BIND(L_long_aligned);
1607     __ shrptr(count, LogBytesPerLong); // size => qword_count
1608     __ movl(count_arg, count);          // update 'count'
1609     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1610     __ pop(rsi);
1611     __ jump(RuntimeAddress(long_copy_entry));
1612 
1613     return start;
1614   }
1615 
1616 
1617   // Perform range checks on the proposed arraycopy.
1618   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1619   void arraycopy_range_checks(Register src,
1620                               Register src_pos,
1621                               Register dst,
1622                               Register dst_pos,
1623                               Address& length,
1624                               Label& L_failed) {
1625     BLOCK_COMMENT("arraycopy_range_checks:");
1626     const Register src_end = src_pos;   // source array end position
1627     const Register dst_end = dst_pos;   // destination array end position
1628     __ addl(src_end, length); // src_pos + length
1629     __ addl(dst_end, length); // dst_pos + length
1630 
1631     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1632     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1633     __ jcc(Assembler::above, L_failed);
1634 
1635     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1636     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1637     __ jcc(Assembler::above, L_failed);
1638 
1639     BLOCK_COMMENT("arraycopy_range_checks done");
1640   }
1641 
1642 
1643   //
1644   //  Generate generic array copy stubs
1645   //
1646   //  Input:
1647   //     4(rsp)    -  src oop
1648   //     8(rsp)    -  src_pos
1649   //    12(rsp)    -  dst oop
1650   //    16(rsp)    -  dst_pos
1651   //    20(rsp)    -  element count
1652   //
1653   //  Output:
1654   //    rax, ==  0  -  success
1655   //    rax, == -1^K - failure, where K is partial transfer count
1656   //
1657   address generate_generic_copy(const char *name,
1658                                 address entry_jbyte_arraycopy,
1659                                 address entry_jshort_arraycopy,
1660                                 address entry_jint_arraycopy,
1661                                 address entry_oop_arraycopy,
1662                                 address entry_jlong_arraycopy,
1663                                 address entry_checkcast_arraycopy) {
1664     Label L_failed, L_failed_0, L_objArray;
1665 
1666     { int modulus = CodeEntryAlignment;
1667       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1668       int advance = target - (__ offset() % modulus);
1669       if (advance < 0)  advance += modulus;
1670       if (advance > 0)  __ nop(advance);
1671     }
1672     StubCodeMark mark(this, "StubRoutines", name);
1673 
1674     // Short-hop target to L_failed.  Makes for denser prologue code.
1675     __ BIND(L_failed_0);
1676     __ jmp(L_failed);
1677     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1678 
1679     __ align(CodeEntryAlignment);
1680     address start = __ pc();
1681 
1682     __ enter(); // required for proper stackwalking of RuntimeStub frame
1683     __ push(rsi);
1684     __ push(rdi);
1685 
1686     // bump this on entry, not on exit:
1687     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1688 
1689     // Input values
1690     Address SRC     (rsp, 12+ 4);
1691     Address SRC_POS (rsp, 12+ 8);
1692     Address DST     (rsp, 12+12);
1693     Address DST_POS (rsp, 12+16);
1694     Address LENGTH  (rsp, 12+20);
1695 
1696     //-----------------------------------------------------------------------
1697     // Assembler stub will be used for this call to arraycopy
1698     // if the following conditions are met:
1699     //
1700     // (1) src and dst must not be null.
1701     // (2) src_pos must not be negative.
1702     // (3) dst_pos must not be negative.
1703     // (4) length  must not be negative.
1704     // (5) src klass and dst klass should be the same and not NULL.
1705     // (6) src and dst should be arrays.
1706     // (7) src_pos + length must not exceed length of src.
1707     // (8) dst_pos + length must not exceed length of dst.
1708     //
1709 
1710     const Register src     = rax;       // source array oop
1711     const Register src_pos = rsi;
1712     const Register dst     = rdx;       // destination array oop
1713     const Register dst_pos = rdi;
1714     const Register length  = rcx;       // transfer count
1715 
1716     //  if (src == NULL) return -1;
1717     __ movptr(src, SRC);      // src oop
1718     __ testptr(src, src);
1719     __ jccb(Assembler::zero, L_failed_0);
1720 
1721     //  if (src_pos < 0) return -1;
1722     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1723     __ testl(src_pos, src_pos);
1724     __ jccb(Assembler::negative, L_failed_0);
1725 
1726     //  if (dst == NULL) return -1;
1727     __ movptr(dst, DST);      // dst oop
1728     __ testptr(dst, dst);
1729     __ jccb(Assembler::zero, L_failed_0);
1730 
1731     //  if (dst_pos < 0) return -1;
1732     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1733     __ testl(dst_pos, dst_pos);
1734     __ jccb(Assembler::negative, L_failed_0);
1735 
1736     //  if (length < 0) return -1;
1737     __ movl2ptr(length, LENGTH);   // length
1738     __ testl(length, length);
1739     __ jccb(Assembler::negative, L_failed_0);
1740 
1741     //  if (src->klass() == NULL) return -1;
1742     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1743     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1744     const Register rcx_src_klass = rcx;    // array klass
1745     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1746 
1747 #ifdef ASSERT
1748     //  assert(src->klass() != NULL);
1749     BLOCK_COMMENT("assert klasses not null");
1750     { Label L1, L2;
1751       __ testptr(rcx_src_klass, rcx_src_klass);
1752       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1753       __ bind(L1);
1754       __ stop("broken null klass");
1755       __ bind(L2);
1756       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1757       __ jccb(Assembler::equal, L1);      // this would be broken also
1758       BLOCK_COMMENT("assert done");
1759     }
1760 #endif //ASSERT
1761 
1762     // Load layout helper (32-bits)
1763     //
1764     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1765     // 32        30    24            16              8     2                 0
1766     //
1767     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1768     //
1769 
1770     int lh_offset = in_bytes(Klass::layout_helper_offset());
1771     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1772 
1773     // Handle objArrays completely differently...
1774     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1775     __ cmpl(src_klass_lh_addr, objArray_lh);
1776     __ jcc(Assembler::equal, L_objArray);
1777 
1778     //  if (src->klass() != dst->klass()) return -1;
1779     __ cmpptr(rcx_src_klass, dst_klass_addr);
1780     __ jccb(Assembler::notEqual, L_failed_0);
1781 
1782     const Register rcx_lh = rcx;  // layout helper
1783     assert(rcx_lh == rcx_src_klass, "known alias");
1784     __ movl(rcx_lh, src_klass_lh_addr);
1785 
1786     //  if (!src->is_Array()) return -1;
1787     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1788     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1789 
1790     // At this point, it is known to be a typeArray (array_tag 0x3).
1791 #ifdef ASSERT
1792     { Label L;
1793       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1794       __ jcc(Assembler::greaterEqual, L); // signed cmp
1795       __ stop("must be a primitive array");
1796       __ bind(L);
1797     }
1798 #endif
1799 
1800     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1801     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1802 
1803     // TypeArrayKlass
1804     //
1805     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1806     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1807     //
1808     const Register rsi_offset = rsi; // array offset
1809     const Register src_array  = src; // src array offset
1810     const Register dst_array  = dst; // dst array offset
1811     const Register rdi_elsize = rdi; // log2 element size
1812 
1813     __ mov(rsi_offset, rcx_lh);
1814     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1815     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1816     __ addptr(src_array, rsi_offset);  // src array offset
1817     __ addptr(dst_array, rsi_offset);  // dst array offset
1818     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1819 
1820     // next registers should be set before the jump to corresponding stub
1821     const Register from       = src; // source array address
1822     const Register to         = dst; // destination array address
1823     const Register count      = rcx; // elements count
1824     // some of them should be duplicated on stack
1825 #define FROM   Address(rsp, 12+ 4)
1826 #define TO     Address(rsp, 12+ 8)   // Not used now
1827 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1828 
1829     BLOCK_COMMENT("scale indexes to element size");
1830     __ movl2ptr(rsi, SRC_POS);  // src_pos
1831     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1832     assert(src_array == from, "");
1833     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1834     __ movl2ptr(rdi, DST_POS);  // dst_pos
1835     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1836     assert(dst_array == to, "");
1837     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1838     __ movptr(FROM, from);      // src_addr
1839     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1840     __ movl2ptr(count, LENGTH); // elements count
1841 
1842     BLOCK_COMMENT("choose copy loop based on element size");
1843     __ cmpl(rdi_elsize, 0);
1844 
1845     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1846     __ cmpl(rdi_elsize, LogBytesPerShort);
1847     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1848     __ cmpl(rdi_elsize, LogBytesPerInt);
1849     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1850 #ifdef ASSERT
1851     __ cmpl(rdi_elsize, LogBytesPerLong);
1852     __ jccb(Assembler::notEqual, L_failed);
1853 #endif
1854     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1855     __ pop(rsi);
1856     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1857 
1858   __ BIND(L_failed);
1859     __ xorptr(rax, rax);
1860     __ notptr(rax); // return -1
1861     __ pop(rdi);
1862     __ pop(rsi);
1863     __ leave(); // required for proper stackwalking of RuntimeStub frame
1864     __ ret(0);
1865 
1866     // ObjArrayKlass
1867   __ BIND(L_objArray);
1868     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1869 
1870     Label L_plain_copy, L_checkcast_copy;
1871     //  test array classes for subtyping
1872     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1873     __ jccb(Assembler::notEqual, L_checkcast_copy);
1874 
1875     // Identically typed arrays can be copied without element-wise checks.
1876     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1877     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1878 
1879   __ BIND(L_plain_copy);
1880     __ movl2ptr(count, LENGTH); // elements count
1881     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1882     __ lea(from, Address(src, src_pos, Address::times_ptr,
1883                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1884     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1885     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1886                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1887     __ movptr(FROM,  from);   // src_addr
1888     __ movptr(TO,    to);     // dst_addr
1889     __ movl(COUNT, count);  // count
1890     __ jump(RuntimeAddress(entry_oop_arraycopy));
1891 
1892   __ BIND(L_checkcast_copy);
1893     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1894     {
1895       // Handy offsets:
1896       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1897       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1898 
1899       Register rsi_dst_klass = rsi;
1900       Register rdi_temp      = rdi;
1901       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1902       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1903       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1904 
1905       // Before looking at dst.length, make sure dst is also an objArray.
1906       __ movptr(rsi_dst_klass, dst_klass_addr);
1907       __ cmpl(dst_klass_lh_addr, objArray_lh);
1908       __ jccb(Assembler::notEqual, L_failed);
1909 
1910       // It is safe to examine both src.length and dst.length.
1911       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1912       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1913       // (Now src_pos and dst_pos are killed, but not src and dst.)
1914 
1915       // We'll need this temp (don't forget to pop it after the type check).
1916       __ push(rbx);
1917       Register rbx_src_klass = rbx;
1918 
1919       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1920       __ movptr(rsi_dst_klass, dst_klass_addr);
1921       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1922       Label L_fail_array_check;
1923       generate_type_check(rbx_src_klass,
1924                           super_check_offset_addr, dst_klass_addr,
1925                           rdi_temp, NULL, &L_fail_array_check);
1926       // (On fall-through, we have passed the array type check.)
1927       __ pop(rbx);
1928       __ jmp(L_plain_copy);
1929 
1930       __ BIND(L_fail_array_check);
1931       // Reshuffle arguments so we can call checkcast_arraycopy:
1932 
1933       // match initial saves for checkcast_arraycopy
1934       // push(rsi);    // already done; see above
1935       // push(rdi);    // already done; see above
1936       // push(rbx);    // already done; see above
1937 
1938       // Marshal outgoing arguments now, freeing registers.
1939       Address   from_arg(rsp, 16+ 4);   // from
1940       Address     to_arg(rsp, 16+ 8);   // to
1941       Address length_arg(rsp, 16+12);   // elements count
1942       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1943       Address  ckval_arg(rsp, 16+20);   // super_klass
1944 
1945       Address SRC_POS_arg(rsp, 16+ 8);
1946       Address DST_POS_arg(rsp, 16+16);
1947       Address  LENGTH_arg(rsp, 16+20);
1948       // push rbx, changed the incoming offsets (why not just use rbp,??)
1949       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1950 
1951       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1952       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1953       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1954       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1955 
1956       __ movptr(ckval_arg, rbx);          // destination element type
1957       __ movl(rbx, Address(rbx, sco_offset));
1958       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1959 
1960       __ movl(length_arg, length);      // outgoing length argument
1961 
1962       __ lea(from, Address(src, src_pos, Address::times_ptr,
1963                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1964       __ movptr(from_arg, from);
1965 
1966       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1967                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1968       __ movptr(to_arg, to);
1969       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1970     }
1971 
1972     return start;
1973   }
1974 
1975   void generate_arraycopy_stubs() {
1976     address entry;
1977     address entry_jbyte_arraycopy;
1978     address entry_jshort_arraycopy;
1979     address entry_jint_arraycopy;
1980     address entry_oop_arraycopy;
1981     address entry_jlong_arraycopy;
1982     address entry_checkcast_arraycopy;
1983 
1984     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1985         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1986                                "arrayof_jbyte_disjoint_arraycopy");
1987     StubRoutines::_arrayof_jbyte_arraycopy =
1988         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1989                                NULL, "arrayof_jbyte_arraycopy");
1990     StubRoutines::_jbyte_disjoint_arraycopy =
1991         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1992                                "jbyte_disjoint_arraycopy");
1993     StubRoutines::_jbyte_arraycopy =
1994         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1995                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1996 
1997     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1998         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
1999                                "arrayof_jshort_disjoint_arraycopy");
2000     StubRoutines::_arrayof_jshort_arraycopy =
2001         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2002                                NULL, "arrayof_jshort_arraycopy");
2003     StubRoutines::_jshort_disjoint_arraycopy =
2004         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2005                                "jshort_disjoint_arraycopy");
2006     StubRoutines::_jshort_arraycopy =
2007         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2008                                &entry_jshort_arraycopy, "jshort_arraycopy");
2009 
2010     // Next arrays are always aligned on 4 bytes at least.
2011     StubRoutines::_jint_disjoint_arraycopy =
2012         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2013                                "jint_disjoint_arraycopy");
2014     StubRoutines::_jint_arraycopy =
2015         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2016                                &entry_jint_arraycopy, "jint_arraycopy");
2017 
2018     StubRoutines::_oop_disjoint_arraycopy =
2019         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2020                                "oop_disjoint_arraycopy");
2021     StubRoutines::_oop_arraycopy =
2022         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2023                                &entry_oop_arraycopy, "oop_arraycopy");
2024 
2025     StubRoutines::_oop_disjoint_arraycopy_uninit =
2026         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2027                                "oop_disjoint_arraycopy_uninit",
2028                                /*dest_uninitialized*/true);
2029     StubRoutines::_oop_arraycopy_uninit =
2030         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2031                                NULL, "oop_arraycopy_uninit",
2032                                /*dest_uninitialized*/true);
2033 
2034     StubRoutines::_jlong_disjoint_arraycopy =
2035         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2036     StubRoutines::_jlong_arraycopy =
2037         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2038                                     "jlong_arraycopy");
2039 
2040     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2041     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2042     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2043     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2044     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2045     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2046 
2047     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2048     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2049     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2050     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2051 
2052     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2053     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2054     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2055     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2056 
2057     StubRoutines::_checkcast_arraycopy =
2058         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2059     StubRoutines::_checkcast_arraycopy_uninit =
2060         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2061 
2062     StubRoutines::_unsafe_arraycopy =
2063         generate_unsafe_copy("unsafe_arraycopy",
2064                                entry_jbyte_arraycopy,
2065                                entry_jshort_arraycopy,
2066                                entry_jint_arraycopy,
2067                                entry_jlong_arraycopy);
2068 
2069     StubRoutines::_generic_arraycopy =
2070         generate_generic_copy("generic_arraycopy",
2071                                entry_jbyte_arraycopy,
2072                                entry_jshort_arraycopy,
2073                                entry_jint_arraycopy,
2074                                entry_oop_arraycopy,
2075                                entry_jlong_arraycopy,
2076                                entry_checkcast_arraycopy);
2077   }
2078 
2079   void generate_math_stubs() {
2080     {
2081       StubCodeMark mark(this, "StubRoutines", "log");
2082       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2083 
2084       __ fld_d(Address(rsp, 4));
2085       __ flog();
2086       __ ret(0);
2087     }
2088     {
2089       StubCodeMark mark(this, "StubRoutines", "log10");
2090       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2091 
2092       __ fld_d(Address(rsp, 4));
2093       __ flog10();
2094       __ ret(0);
2095     }
2096     {
2097       StubCodeMark mark(this, "StubRoutines", "sin");
2098       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2099 
2100       __ fld_d(Address(rsp, 4));
2101       __ trigfunc('s');
2102       __ ret(0);
2103     }
2104     {
2105       StubCodeMark mark(this, "StubRoutines", "cos");
2106       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2107 
2108       __ fld_d(Address(rsp, 4));
2109       __ trigfunc('c');
2110       __ ret(0);
2111     }
2112     {
2113       StubCodeMark mark(this, "StubRoutines", "tan");
2114       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2115 
2116       __ fld_d(Address(rsp, 4));
2117       __ trigfunc('t');
2118       __ ret(0);
2119     }
2120     {
2121       StubCodeMark mark(this, "StubRoutines", "exp");
2122       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2123 
2124       __ fld_d(Address(rsp, 4));
2125       __ exp_with_fallback(0);
2126       __ ret(0);
2127     }
2128     {
2129       StubCodeMark mark(this, "StubRoutines", "pow");
2130       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2131 
2132       __ fld_d(Address(rsp, 12));
2133       __ fld_d(Address(rsp, 4));
2134       __ pow_with_fallback(0);
2135       __ ret(0);
2136     }
2137   }
2138 
2139   // AES intrinsic stubs
2140   enum {AESBlockSize = 16};
2141 
2142   address generate_key_shuffle_mask() {
2143     __ align(16);
2144     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2145     address start = __ pc();
2146     __ emit_data(0x00010203, relocInfo::none, 0 );
2147     __ emit_data(0x04050607, relocInfo::none, 0 );
2148     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2149     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2150     return start;
2151   }
2152 
2153   // Utility routine for loading a 128-bit key word in little endian format
2154   // can optionally specify that the shuffle mask is already in an xmmregister
2155   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2156     __ movdqu(xmmdst, Address(key, offset));
2157     if (xmm_shuf_mask != NULL) {
2158       __ pshufb(xmmdst, xmm_shuf_mask);
2159     } else {
2160       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2161     }
2162   }
2163 
2164   // aesenc using specified key+offset
2165   // can optionally specify that the shuffle mask is already in an xmmregister
2166   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2167     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2168     __ aesenc(xmmdst, xmmtmp);
2169   }
2170 
2171   // aesdec using specified key+offset
2172   // can optionally specify that the shuffle mask is already in an xmmregister
2173   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2174     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2175     __ aesdec(xmmdst, xmmtmp);
2176   }
2177 
2178 
2179   // Arguments:
2180   //
2181   // Inputs:
2182   //   c_rarg0   - source byte array address
2183   //   c_rarg1   - destination byte array address
2184   //   c_rarg2   - K (key) in little endian int array
2185   //
2186   address generate_aescrypt_encryptBlock() {
2187     assert(UseAES, "need AES instructions and misaligned SSE support");
2188     __ align(CodeEntryAlignment);
2189     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2190     Label L_doLast;
2191     address start = __ pc();
2192 
2193     const Register from        = rdx;      // source array address
2194     const Register to          = rdx;      // destination array address
2195     const Register key         = rcx;      // key array address
2196     const Register keylen      = rax;
2197     const Address  from_param(rbp, 8+0);
2198     const Address  to_param  (rbp, 8+4);
2199     const Address  key_param (rbp, 8+8);
2200 
2201     const XMMRegister xmm_result = xmm0;
2202     const XMMRegister xmm_key_shuf_mask = xmm1;
2203     const XMMRegister xmm_temp1  = xmm2;
2204     const XMMRegister xmm_temp2  = xmm3;
2205     const XMMRegister xmm_temp3  = xmm4;
2206     const XMMRegister xmm_temp4  = xmm5;
2207 
2208     __ enter();   // required for proper stackwalking of RuntimeStub frame
2209     __ movptr(from, from_param);
2210     __ movptr(key, key_param);
2211 
2212     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2213     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2214 
2215     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2216     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2217     __ movptr(to, to_param);
2218 
2219     // For encryption, the java expanded key ordering is just what we need
2220 
2221     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2222     __ pxor(xmm_result, xmm_temp1);
2223 
2224     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2225     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2226     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2227     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2228 
2229     __ aesenc(xmm_result, xmm_temp1);
2230     __ aesenc(xmm_result, xmm_temp2);
2231     __ aesenc(xmm_result, xmm_temp3);
2232     __ aesenc(xmm_result, xmm_temp4);
2233 
2234     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2235     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2236     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2237     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2238 
2239     __ aesenc(xmm_result, xmm_temp1);
2240     __ aesenc(xmm_result, xmm_temp2);
2241     __ aesenc(xmm_result, xmm_temp3);
2242     __ aesenc(xmm_result, xmm_temp4);
2243 
2244     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2245     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2246 
2247     __ cmpl(keylen, 44);
2248     __ jccb(Assembler::equal, L_doLast);
2249 
2250     __ aesenc(xmm_result, xmm_temp1);
2251     __ aesenc(xmm_result, xmm_temp2);
2252 
2253     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2254     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2255 
2256     __ cmpl(keylen, 52);
2257     __ jccb(Assembler::equal, L_doLast);
2258 
2259     __ aesenc(xmm_result, xmm_temp1);
2260     __ aesenc(xmm_result, xmm_temp2);
2261 
2262     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2263     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2264 
2265     __ BIND(L_doLast);
2266     __ aesenc(xmm_result, xmm_temp1);
2267     __ aesenclast(xmm_result, xmm_temp2);
2268     __ movdqu(Address(to, 0), xmm_result);        // store the result
2269     __ xorptr(rax, rax); // return 0
2270     __ leave(); // required for proper stackwalking of RuntimeStub frame
2271     __ ret(0);
2272 
2273     return start;
2274   }
2275 
2276 
2277   // Arguments:
2278   //
2279   // Inputs:
2280   //   c_rarg0   - source byte array address
2281   //   c_rarg1   - destination byte array address
2282   //   c_rarg2   - K (key) in little endian int array
2283   //
2284   address generate_aescrypt_decryptBlock() {
2285     assert(UseAES, "need AES instructions and misaligned SSE support");
2286     __ align(CodeEntryAlignment);
2287     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2288     Label L_doLast;
2289     address start = __ pc();
2290 
2291     const Register from        = rdx;      // source array address
2292     const Register to          = rdx;      // destination array address
2293     const Register key         = rcx;      // key array address
2294     const Register keylen      = rax;
2295     const Address  from_param(rbp, 8+0);
2296     const Address  to_param  (rbp, 8+4);
2297     const Address  key_param (rbp, 8+8);
2298 
2299     const XMMRegister xmm_result = xmm0;
2300     const XMMRegister xmm_key_shuf_mask = xmm1;
2301     const XMMRegister xmm_temp1  = xmm2;
2302     const XMMRegister xmm_temp2  = xmm3;
2303     const XMMRegister xmm_temp3  = xmm4;
2304     const XMMRegister xmm_temp4  = xmm5;
2305 
2306     __ enter(); // required for proper stackwalking of RuntimeStub frame
2307     __ movptr(from, from_param);
2308     __ movptr(key, key_param);
2309 
2310     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2311     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2312 
2313     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2314     __ movdqu(xmm_result, Address(from, 0));
2315     __ movptr(to, to_param);
2316 
2317     // for decryption java expanded key ordering is rotated one position from what we want
2318     // so we start from 0x10 here and hit 0x00 last
2319     // we don't know if the key is aligned, hence not using load-execute form
2320     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2321     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2322     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2323     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2324 
2325     __ pxor  (xmm_result, xmm_temp1);
2326     __ aesdec(xmm_result, xmm_temp2);
2327     __ aesdec(xmm_result, xmm_temp3);
2328     __ aesdec(xmm_result, xmm_temp4);
2329 
2330     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2331     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2332     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2333     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2334 
2335     __ aesdec(xmm_result, xmm_temp1);
2336     __ aesdec(xmm_result, xmm_temp2);
2337     __ aesdec(xmm_result, xmm_temp3);
2338     __ aesdec(xmm_result, xmm_temp4);
2339 
2340     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2341     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2342     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2343 
2344     __ cmpl(keylen, 44);
2345     __ jccb(Assembler::equal, L_doLast);
2346 
2347     __ aesdec(xmm_result, xmm_temp1);
2348     __ aesdec(xmm_result, xmm_temp2);
2349 
2350     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2351     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2352 
2353     __ cmpl(keylen, 52);
2354     __ jccb(Assembler::equal, L_doLast);
2355 
2356     __ aesdec(xmm_result, xmm_temp1);
2357     __ aesdec(xmm_result, xmm_temp2);
2358 
2359     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2360     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2361 
2362     __ BIND(L_doLast);
2363     __ aesdec(xmm_result, xmm_temp1);
2364     __ aesdec(xmm_result, xmm_temp2);
2365 
2366     // for decryption the aesdeclast operation is always on key+0x00
2367     __ aesdeclast(xmm_result, xmm_temp3);
2368     __ movdqu(Address(to, 0), xmm_result);  // store the result
2369     __ xorptr(rax, rax); // return 0
2370     __ leave(); // required for proper stackwalking of RuntimeStub frame
2371     __ ret(0);
2372 
2373     return start;
2374   }
2375 
2376   void handleSOERegisters(bool saving) {
2377     const int saveFrameSizeInBytes = 4 * wordSize;
2378     const Address saved_rbx     (rbp, -3 * wordSize);
2379     const Address saved_rsi     (rbp, -2 * wordSize);
2380     const Address saved_rdi     (rbp, -1 * wordSize);
2381 
2382     if (saving) {
2383       __ subptr(rsp, saveFrameSizeInBytes);
2384       __ movptr(saved_rsi, rsi);
2385       __ movptr(saved_rdi, rdi);
2386       __ movptr(saved_rbx, rbx);
2387     } else {
2388       // restoring
2389       __ movptr(rsi, saved_rsi);
2390       __ movptr(rdi, saved_rdi);
2391       __ movptr(rbx, saved_rbx);
2392     }
2393   }
2394 
2395   // Arguments:
2396   //
2397   // Inputs:
2398   //   c_rarg0   - source byte array address
2399   //   c_rarg1   - destination byte array address
2400   //   c_rarg2   - K (key) in little endian int array
2401   //   c_rarg3   - r vector byte array address
2402   //   c_rarg4   - input length
2403   //
2404   // Output:
2405   //   rax       - input length
2406   //
2407   address generate_cipherBlockChaining_encryptAESCrypt() {
2408     assert(UseAES, "need AES instructions and misaligned SSE support");
2409     __ align(CodeEntryAlignment);
2410     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2411     address start = __ pc();
2412 
2413     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2414     const Register from        = rsi;      // source array address
2415     const Register to          = rdx;      // destination array address
2416     const Register key         = rcx;      // key array address
2417     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2418                                            // and left with the results of the last encryption block
2419     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2420     const Register pos         = rax;
2421 
2422     // xmm register assignments for the loops below
2423     const XMMRegister xmm_result = xmm0;
2424     const XMMRegister xmm_temp   = xmm1;
2425     // first 6 keys preloaded into xmm2-xmm7
2426     const int XMM_REG_NUM_KEY_FIRST = 2;
2427     const int XMM_REG_NUM_KEY_LAST  = 7;
2428     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2429 
2430     __ enter(); // required for proper stackwalking of RuntimeStub frame
2431     handleSOERegisters(true /*saving*/);
2432 
2433     // load registers from incoming parameters
2434     const Address  from_param(rbp, 8+0);
2435     const Address  to_param  (rbp, 8+4);
2436     const Address  key_param (rbp, 8+8);
2437     const Address  rvec_param (rbp, 8+12);
2438     const Address  len_param  (rbp, 8+16);
2439     __ movptr(from , from_param);
2440     __ movptr(to   , to_param);
2441     __ movptr(key  , key_param);
2442     __ movptr(rvec , rvec_param);
2443     __ movptr(len_reg , len_param);
2444 
2445     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2446     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2447     // load up xmm regs 2 thru 7 with keys 0-5
2448     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2449       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2450       offset += 0x10;
2451     }
2452 
2453     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2454 
2455     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2456     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2457     __ cmpl(rax, 44);
2458     __ jcc(Assembler::notEqual, L_key_192_256);
2459 
2460     // 128 bit code follows here
2461     __ movl(pos, 0);
2462     __ align(OptoLoopAlignment);
2463     __ BIND(L_loopTop_128);
2464     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2465     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2466 
2467     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2468     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2469       __ aesenc(xmm_result, as_XMMRegister(rnum));
2470     }
2471     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2472       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2473     }
2474     load_key(xmm_temp, key, 0xa0);
2475     __ aesenclast(xmm_result, xmm_temp);
2476 
2477     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2478     // no need to store r to memory until we exit
2479     __ addptr(pos, AESBlockSize);
2480     __ subptr(len_reg, AESBlockSize);
2481     __ jcc(Assembler::notEqual, L_loopTop_128);
2482 
2483     __ BIND(L_exit);
2484     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2485 
2486     handleSOERegisters(false /*restoring*/);
2487     __ movptr(rax, len_param); // return length
2488     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2489     __ ret(0);
2490 
2491     __ BIND(L_key_192_256);
2492     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2493     __ cmpl(rax, 52);
2494     __ jcc(Assembler::notEqual, L_key_256);
2495 
2496     // 192-bit code follows here (could be changed to use more xmm registers)
2497     __ movl(pos, 0);
2498     __ align(OptoLoopAlignment);
2499     __ BIND(L_loopTop_192);
2500     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2501     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2502 
2503     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2504     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2505       __ aesenc(xmm_result, as_XMMRegister(rnum));
2506     }
2507     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2508       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2509     }
2510     load_key(xmm_temp, key, 0xc0);
2511     __ aesenclast(xmm_result, xmm_temp);
2512 
2513     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2514     // no need to store r to memory until we exit
2515     __ addptr(pos, AESBlockSize);
2516     __ subptr(len_reg, AESBlockSize);
2517     __ jcc(Assembler::notEqual, L_loopTop_192);
2518     __ jmp(L_exit);
2519 
2520     __ BIND(L_key_256);
2521     // 256-bit code follows here (could be changed to use more xmm registers)
2522     __ movl(pos, 0);
2523     __ align(OptoLoopAlignment);
2524     __ BIND(L_loopTop_256);
2525     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2526     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2527 
2528     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2529     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2530       __ aesenc(xmm_result, as_XMMRegister(rnum));
2531     }
2532     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2533       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2534     }
2535     load_key(xmm_temp, key, 0xe0);
2536     __ aesenclast(xmm_result, xmm_temp);
2537 
2538     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2539     // no need to store r to memory until we exit
2540     __ addptr(pos, AESBlockSize);
2541     __ subptr(len_reg, AESBlockSize);
2542     __ jcc(Assembler::notEqual, L_loopTop_256);
2543     __ jmp(L_exit);
2544 
2545     return start;
2546   }
2547 
2548 
2549   // CBC AES Decryption.
2550   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2551   //
2552   // Arguments:
2553   //
2554   // Inputs:
2555   //   c_rarg0   - source byte array address
2556   //   c_rarg1   - destination byte array address
2557   //   c_rarg2   - K (key) in little endian int array
2558   //   c_rarg3   - r vector byte array address
2559   //   c_rarg4   - input length
2560   //
2561   // Output:
2562   //   rax       - input length
2563   //
2564 
2565   address generate_cipherBlockChaining_decryptAESCrypt() {
2566     assert(UseAES, "need AES instructions and misaligned SSE support");
2567     __ align(CodeEntryAlignment);
2568     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2569     address start = __ pc();
2570 
2571     Label L_exit, L_key_192_256, L_key_256;
2572     Label L_singleBlock_loopTop_128;
2573     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2574     const Register from        = rsi;      // source array address
2575     const Register to          = rdx;      // destination array address
2576     const Register key         = rcx;      // key array address
2577     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2578                                            // and left with the results of the last encryption block
2579     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2580     const Register pos         = rax;
2581 
2582     // xmm register assignments for the loops below
2583     const XMMRegister xmm_result = xmm0;
2584     const XMMRegister xmm_temp   = xmm1;
2585     // first 6 keys preloaded into xmm2-xmm7
2586     const int XMM_REG_NUM_KEY_FIRST = 2;
2587     const int XMM_REG_NUM_KEY_LAST  = 7;
2588     const int FIRST_NON_REG_KEY_offset = 0x70;
2589     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2590 
2591     __ enter(); // required for proper stackwalking of RuntimeStub frame
2592     handleSOERegisters(true /*saving*/);
2593 
2594     // load registers from incoming parameters
2595     const Address  from_param(rbp, 8+0);
2596     const Address  to_param  (rbp, 8+4);
2597     const Address  key_param (rbp, 8+8);
2598     const Address  rvec_param (rbp, 8+12);
2599     const Address  len_param  (rbp, 8+16);
2600     __ movptr(from , from_param);
2601     __ movptr(to   , to_param);
2602     __ movptr(key  , key_param);
2603     __ movptr(rvec , rvec_param);
2604     __ movptr(len_reg , len_param);
2605 
2606     // the java expanded key ordering is rotated one position from what we want
2607     // so we start from 0x10 here and hit 0x00 last
2608     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2609     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2610     // load up xmm regs 2 thru 6 with first 5 keys
2611     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2612       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2613       offset += 0x10;
2614     }
2615 
2616     // inside here, use the rvec register to point to previous block cipher
2617     // with which we xor at the end of each newly decrypted block
2618     const Register  prev_block_cipher_ptr = rvec;
2619 
2620     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2621     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2622     __ cmpl(rax, 44);
2623     __ jcc(Assembler::notEqual, L_key_192_256);
2624 
2625 
2626     // 128-bit code follows here, parallelized
2627     __ movl(pos, 0);
2628     __ align(OptoLoopAlignment);
2629     __ BIND(L_singleBlock_loopTop_128);
2630     __ cmpptr(len_reg, 0);           // any blocks left??
2631     __ jcc(Assembler::equal, L_exit);
2632     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2633     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2634     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2635       __ aesdec(xmm_result, as_XMMRegister(rnum));
2636     }
2637     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2638       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2639     }
2640     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2641     __ aesdeclast(xmm_result, xmm_temp);
2642     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2643     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2644     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2645     // no need to store r to memory until we exit
2646     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2647     __ addptr(pos, AESBlockSize);
2648     __ subptr(len_reg, AESBlockSize);
2649     __ jmp(L_singleBlock_loopTop_128);
2650 
2651 
2652     __ BIND(L_exit);
2653     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2654     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2655     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2656     handleSOERegisters(false /*restoring*/);
2657     __ movptr(rax, len_param); // return length
2658     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2659     __ ret(0);
2660 
2661 
2662     __ BIND(L_key_192_256);
2663     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2664     __ cmpl(rax, 52);
2665     __ jcc(Assembler::notEqual, L_key_256);
2666 
2667     // 192-bit code follows here (could be optimized to use parallelism)
2668     __ movl(pos, 0);
2669     __ align(OptoLoopAlignment);
2670     __ BIND(L_singleBlock_loopTop_192);
2671     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2672     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2673     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2674       __ aesdec(xmm_result, as_XMMRegister(rnum));
2675     }
2676     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2677       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2678     }
2679     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2680     __ aesdeclast(xmm_result, xmm_temp);
2681     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2682     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2683     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2684     // no need to store r to memory until we exit
2685     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2686     __ addptr(pos, AESBlockSize);
2687     __ subptr(len_reg, AESBlockSize);
2688     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2689     __ jmp(L_exit);
2690 
2691     __ BIND(L_key_256);
2692     // 256-bit code follows here (could be optimized to use parallelism)
2693     __ movl(pos, 0);
2694     __ align(OptoLoopAlignment);
2695     __ BIND(L_singleBlock_loopTop_256);
2696     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2697     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2698     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2699       __ aesdec(xmm_result, as_XMMRegister(rnum));
2700     }
2701     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2702       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2703     }
2704     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2705     __ aesdeclast(xmm_result, xmm_temp);
2706     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2707     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2708     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2709     // no need to store r to memory until we exit
2710     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2711     __ addptr(pos, AESBlockSize);
2712     __ subptr(len_reg, AESBlockSize);
2713     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2714     __ jmp(L_exit);
2715 
2716     return start;
2717   }
2718 
2719   /**
2720    *  Arguments:
2721    *
2722    * Inputs:
2723    *   rsp(4)   - int crc
2724    *   rsp(8)   - byte* buf
2725    *   rsp(12)  - int length
2726    *
2727    * Ouput:
2728    *       rax   - int crc result
2729    */
2730   address generate_updateBytesCRC32() {
2731     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
2732 
2733     __ align(CodeEntryAlignment);
2734     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
2735 
2736     address start = __ pc();
2737 
2738     const Register crc   = rdx;  // crc
2739     const Register buf   = rsi;  // source java byte array address
2740     const Register len   = rcx;  // length
2741     const Register table = rdi;  // crc_table address (reuse register)
2742     const Register tmp   = rbx;
2743     assert_different_registers(crc, buf, len, table, tmp, rax);
2744 
2745     BLOCK_COMMENT("Entry:");
2746     __ enter(); // required for proper stackwalking of RuntimeStub frame
2747     __ push(rsi);
2748     __ push(rdi);
2749     __ push(rbx);
2750 
2751     Address crc_arg(rbp, 8 + 0);
2752     Address buf_arg(rbp, 8 + 4);
2753     Address len_arg(rbp, 8 + 8);
2754 
2755     // Load up:
2756     __ movl(crc,   crc_arg);
2757     __ movptr(buf, buf_arg);
2758     __ movl(len,   len_arg);
2759 
2760     __ kernel_crc32(crc, buf, len, table, tmp);
2761 
2762     __ movl(rax, crc);
2763     __ pop(rbx);
2764     __ pop(rdi);
2765     __ pop(rsi);
2766     __ leave(); // required for proper stackwalking of RuntimeStub frame
2767     __ ret(0);
2768 
2769     return start;
2770   }
2771 
2772   // Safefetch stubs.
2773   void generate_safefetch(const char* name, int size, address* entry,
2774                           address* fault_pc, address* continuation_pc) {
2775     // safefetch signatures:
2776     //   int      SafeFetch32(int*      adr, int      errValue);
2777     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
2778 
2779     StubCodeMark mark(this, "StubRoutines", name);
2780 
2781     // Entry point, pc or function descriptor.
2782     *entry = __ pc();
2783 
2784     __ movl(rax, Address(rsp, 0x8));
2785     __ movl(rcx, Address(rsp, 0x4));
2786     // Load *adr into eax, may fault.
2787     *fault_pc = __ pc();
2788     switch (size) {
2789       case 4:
2790         // int32_t
2791         __ movl(rax, Address(rcx, 0));
2792         break;
2793       case 8:
2794         // int64_t
2795         Unimplemented();
2796         break;
2797       default:
2798         ShouldNotReachHere();
2799     }
2800 
2801     // Return errValue or *adr.
2802     *continuation_pc = __ pc();
2803     __ ret(0);
2804   }
2805 
2806  public:
2807   // Information about frame layout at time of blocking runtime call.
2808   // Note that we only have to preserve callee-saved registers since
2809   // the compilers are responsible for supplying a continuation point
2810   // if they expect all registers to be preserved.
2811   enum layout {
2812     thread_off,    // last_java_sp
2813     arg1_off,
2814     arg2_off,
2815     rbp_off,       // callee saved register
2816     ret_pc,
2817     framesize
2818   };
2819 
2820  private:
2821 
2822 #undef  __
2823 #define __ masm->
2824 
2825   //------------------------------------------------------------------------------------------------------------------------
2826   // Continuation point for throwing of implicit exceptions that are not handled in
2827   // the current activation. Fabricates an exception oop and initiates normal
2828   // exception dispatching in this frame.
2829   //
2830   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2831   // This is no longer true after adapter frames were removed but could possibly
2832   // be brought back in the future if the interpreter code was reworked and it
2833   // was deemed worthwhile. The comment below was left to describe what must
2834   // happen here if callee saves were resurrected. As it stands now this stub
2835   // could actually be a vanilla BufferBlob and have now oopMap at all.
2836   // Since it doesn't make much difference we've chosen to leave it the
2837   // way it was in the callee save days and keep the comment.
2838 
2839   // If we need to preserve callee-saved values we need a callee-saved oop map and
2840   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2841   // If the compiler needs all registers to be preserved between the fault
2842   // point and the exception handler then it must assume responsibility for that in
2843   // AbstractCompiler::continuation_for_implicit_null_exception or
2844   // continuation_for_implicit_division_by_zero_exception. All other implicit
2845   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2846   // either at call sites or otherwise assume that stack unwinding will be initiated,
2847   // so caller saved registers were assumed volatile in the compiler.
2848   address generate_throw_exception(const char* name, address runtime_entry,
2849                                    Register arg1 = noreg, Register arg2 = noreg) {
2850 
2851     int insts_size = 256;
2852     int locs_size  = 32;
2853 
2854     CodeBuffer code(name, insts_size, locs_size);
2855     OopMapSet* oop_maps  = new OopMapSet();
2856     MacroAssembler* masm = new MacroAssembler(&code);
2857 
2858     address start = __ pc();
2859 
2860     // This is an inlined and slightly modified version of call_VM
2861     // which has the ability to fetch the return PC out of
2862     // thread-local storage and also sets up last_Java_sp slightly
2863     // differently than the real call_VM
2864     Register java_thread = rbx;
2865     __ get_thread(java_thread);
2866 
2867     __ enter(); // required for proper stackwalking of RuntimeStub frame
2868 
2869     // pc and rbp, already pushed
2870     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2871 
2872     // Frame is now completed as far as size and linkage.
2873 
2874     int frame_complete = __ pc() - start;
2875 
2876     // push java thread (becomes first argument of C function)
2877     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2878     if (arg1 != noreg) {
2879       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2880     }
2881     if (arg2 != noreg) {
2882       assert(arg1 != noreg, "missing reg arg");
2883       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2884     }
2885 
2886     // Set up last_Java_sp and last_Java_fp
2887     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2888 
2889     // Call runtime
2890     BLOCK_COMMENT("call runtime_entry");
2891     __ call(RuntimeAddress(runtime_entry));
2892     // Generate oop map
2893     OopMap* map =  new OopMap(framesize, 0);
2894     oop_maps->add_gc_map(__ pc() - start, map);
2895 
2896     // restore the thread (cannot use the pushed argument since arguments
2897     // may be overwritten by C code generated by an optimizing compiler);
2898     // however can use the register value directly if it is callee saved.
2899     __ get_thread(java_thread);
2900 
2901     __ reset_last_Java_frame(java_thread, true, false);
2902 
2903     __ leave(); // required for proper stackwalking of RuntimeStub frame
2904 
2905     // check for pending exceptions
2906 #ifdef ASSERT
2907     Label L;
2908     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2909     __ jcc(Assembler::notEqual, L);
2910     __ should_not_reach_here();
2911     __ bind(L);
2912 #endif /* ASSERT */
2913     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2914 
2915 
2916     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2917     return stub->entry_point();
2918   }
2919 
2920 
2921   void create_control_words() {
2922     // Round to nearest, 53-bit mode, exceptions masked
2923     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2924     // Round to zero, 53-bit mode, exception mased
2925     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2926     // Round to nearest, 24-bit mode, exceptions masked
2927     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2928     // Round to nearest, 64-bit mode, exceptions masked
2929     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2930     // Round to nearest, 64-bit mode, exceptions masked
2931     StubRoutines::_mxcsr_std           = 0x1F80;
2932     // Note: the following two constants are 80-bit values
2933     //       layout is critical for correct loading by FPU.
2934     // Bias for strict fp multiply/divide
2935     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2936     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2937     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2938     // Un-Bias for strict fp multiply/divide
2939     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2940     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2941     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2942   }
2943 
2944   //---------------------------------------------------------------------------
2945   // Initialization
2946 
2947   void generate_initial() {
2948     // Generates all stubs and initializes the entry points
2949 
2950     //------------------------------------------------------------------------------------------------------------------------
2951     // entry points that exist in all platforms
2952     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2953     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2954     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2955 
2956     StubRoutines::_call_stub_entry              =
2957       generate_call_stub(StubRoutines::_call_stub_return_address);
2958     // is referenced by megamorphic call
2959     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2960 
2961     // These are currently used by Solaris/Intel
2962     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2963 
2964     StubRoutines::_handler_for_unsafe_access_entry =
2965       generate_handler_for_unsafe_access();
2966 
2967     // platform dependent
2968     create_control_words();
2969 
2970     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2971     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2972     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2973                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2974     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2975                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2976 
2977     // Build this early so it's available for the interpreter
2978     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2979 
2980     if (UseCRC32Intrinsics) {
2981       // set table address before stub generation which use it
2982       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
2983       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
2984     }
2985   }
2986 
2987 
2988   void generate_all() {
2989     // Generates all stubs and initializes the entry points
2990 
2991     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2992     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2993     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2994     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2995     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2996 
2997     //------------------------------------------------------------------------------------------------------------------------
2998     // entry points that are platform specific
2999 
3000     // support for verify_oop (must happen after universe_init)
3001     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
3002 
3003     // arraycopy stubs used by compilers
3004     generate_arraycopy_stubs();
3005 
3006     generate_math_stubs();
3007 
3008     // don't bother generating these AES intrinsic stubs unless global flag is set
3009     if (UseAESIntrinsics) {
3010       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
3011 
3012       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3013       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3014       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3015       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
3016     }
3017 
3018     // Safefetch stubs.
3019     generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3020                                                    &StubRoutines::_safefetch32_fault_pc,
3021                                                    &StubRoutines::_safefetch32_continuation_pc);
3022     StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
3023     StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
3024     StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3025   }
3026 
3027 
3028  public:
3029   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3030     if (all) {
3031       generate_all();
3032     } else {
3033       generate_initial();
3034     }
3035   }
3036 }; // end class declaration
3037 
3038 
3039 void StubGenerator_generate(CodeBuffer* code, bool all) {
3040   StubGenerator g(code, all);
3041 }