1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  52 #define a__ ((Assembler*)_masm)->
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #else
  57 #define BLOCK_COMMENT(str) __ block_comment(str)
  58 #endif
  59 
  60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  61 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  62 
  63 // Stub Code definitions
  64 
  65 static address handle_unsafe_access() {
  66   JavaThread* thread = JavaThread::current();
  67   address pc = thread->saved_exception_pc();
  68   // pc is the instruction which we must emulate
  69   // doing a no-op is fine:  return garbage from the load
  70   // therefore, compute npc
  71   address npc = Assembler::locate_next_instruction(pc);
  72 
  73   // request an async exception
  74   thread->set_pending_unsafe_access_error();
  75 
  76   // return address of next instruction to execute
  77   return npc;
  78 }
  79 
  80 class StubGenerator: public StubCodeGenerator {
  81  private:
  82 
  83 #ifdef PRODUCT
  84 #define inc_counter_np(counter) ((void)0)
  85 #else
  86   void inc_counter_np_(int& counter) {
  87     // This can destroy rscratch1 if counter is far from the code cache
  88     __ incrementl(ExternalAddress((address)&counter));
  89   }
  90 #define inc_counter_np(counter) \
  91   BLOCK_COMMENT("inc_counter " #counter); \
  92   inc_counter_np_(counter);
  93 #endif
  94 
  95   // Call stubs are used to call Java from C
  96   //
  97   // Linux Arguments:
  98   //    c_rarg0:   call wrapper address                   address
  99   //    c_rarg1:   result                                 address
 100   //    c_rarg2:   result type                            BasicType
 101   //    c_rarg3:   method                                 Method*
 102   //    c_rarg4:   (interpreter) entry point              address
 103   //    c_rarg5:   parameters                             intptr_t*
 104   //    16(rbp): parameter size (in words)              int
 105   //    24(rbp): thread                                 Thread*
 106   //
 107   //     [ return_from_Java     ] <--- rsp
 108   //     [ argument word n      ]
 109   //      ...
 110   // -12 [ argument word 1      ]
 111   // -11 [ saved r15            ] <--- rsp_after_call
 112   // -10 [ saved r14            ]
 113   //  -9 [ saved r13            ]
 114   //  -8 [ saved r12            ]
 115   //  -7 [ saved rbx            ]
 116   //  -6 [ call wrapper         ]
 117   //  -5 [ result               ]
 118   //  -4 [ result type          ]
 119   //  -3 [ method               ]
 120   //  -2 [ entry point          ]
 121   //  -1 [ parameters           ]
 122   //   0 [ saved rbp            ] <--- rbp
 123   //   1 [ return address       ]
 124   //   2 [ parameter size       ]
 125   //   3 [ thread               ]
 126   //
 127   // Windows Arguments:
 128   //    c_rarg0:   call wrapper address                   address
 129   //    c_rarg1:   result                                 address
 130   //    c_rarg2:   result type                            BasicType
 131   //    c_rarg3:   method                                 Method*
 132   //    48(rbp): (interpreter) entry point              address
 133   //    56(rbp): parameters                             intptr_t*
 134   //    64(rbp): parameter size (in words)              int
 135   //    72(rbp): thread                                 Thread*
 136   //
 137   //     [ return_from_Java     ] <--- rsp
 138   //     [ argument word n      ]
 139   //      ...
 140   // -28 [ argument word 1      ]
 141   // -27 [ saved xmm15          ] <--- rsp_after_call
 142   //     [ saved xmm7-xmm14     ]
 143   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 144   //  -7 [ saved r15            ]
 145   //  -6 [ saved r14            ]
 146   //  -5 [ saved r13            ]
 147   //  -4 [ saved r12            ]
 148   //  -3 [ saved rdi            ]
 149   //  -2 [ saved rsi            ]
 150   //  -1 [ saved rbx            ]
 151   //   0 [ saved rbp            ] <--- rbp
 152   //   1 [ return address       ]
 153   //   2 [ call wrapper         ]
 154   //   3 [ result               ]
 155   //   4 [ result type          ]
 156   //   5 [ method               ]
 157   //   6 [ entry point          ]
 158   //   7 [ parameters           ]
 159   //   8 [ parameter size       ]
 160   //   9 [ thread               ]
 161   //
 162   //    Windows reserves the callers stack space for arguments 1-4.
 163   //    We spill c_rarg0-c_rarg3 to this space.
 164 
 165   // Call stub stack layout word offsets from rbp
 166   enum call_stub_layout {
 167 #ifdef _WIN64
 168     xmm_save_first     = 6,  // save from xmm6
 169     xmm_save_last      = 15, // to xmm15
 170     xmm_save_base      = -9,
 171     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 172     r15_off            = -7,
 173     r14_off            = -6,
 174     r13_off            = -5,
 175     r12_off            = -4,
 176     rdi_off            = -3,
 177     rsi_off            = -2,
 178     rbx_off            = -1,
 179     rbp_off            =  0,
 180     retaddr_off        =  1,
 181     call_wrapper_off   =  2,
 182     result_off         =  3,
 183     result_type_off    =  4,
 184     method_off         =  5,
 185     entry_point_off    =  6,
 186     parameters_off     =  7,
 187     parameter_size_off =  8,
 188     thread_off         =  9
 189 #else
 190     rsp_after_call_off = -12,
 191     mxcsr_off          = rsp_after_call_off,
 192     r15_off            = -11,
 193     r14_off            = -10,
 194     r13_off            = -9,
 195     r12_off            = -8,
 196     rbx_off            = -7,
 197     call_wrapper_off   = -6,
 198     result_off         = -5,
 199     result_type_off    = -4,
 200     method_off         = -3,
 201     entry_point_off    = -2,
 202     parameters_off     = -1,
 203     rbp_off            =  0,
 204     retaddr_off        =  1,
 205     parameter_size_off =  2,
 206     thread_off         =  3
 207 #endif
 208   };
 209 
 210 #ifdef _WIN64
 211   Address xmm_save(int reg) {
 212     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 213     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 214   }
 215 #endif
 216 
 217   address generate_call_stub(address& return_address) {
 218     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 219            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 220            "adjust this code");
 221     StubCodeMark mark(this, "StubRoutines", "call_stub");
 222     address start = __ pc();
 223 
 224     // same as in generate_catch_exception()!
 225     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 226 
 227     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 228     const Address result        (rbp, result_off         * wordSize);
 229     const Address result_type   (rbp, result_type_off    * wordSize);
 230     const Address method        (rbp, method_off         * wordSize);
 231     const Address entry_point   (rbp, entry_point_off    * wordSize);
 232     const Address parameters    (rbp, parameters_off     * wordSize);
 233     const Address parameter_size(rbp, parameter_size_off * wordSize);
 234 
 235     // same as in generate_catch_exception()!
 236     const Address thread        (rbp, thread_off         * wordSize);
 237 
 238     const Address r15_save(rbp, r15_off * wordSize);
 239     const Address r14_save(rbp, r14_off * wordSize);
 240     const Address r13_save(rbp, r13_off * wordSize);
 241     const Address r12_save(rbp, r12_off * wordSize);
 242     const Address rbx_save(rbp, rbx_off * wordSize);
 243 
 244     // stub code
 245     __ enter();
 246     __ subptr(rsp, -rsp_after_call_off * wordSize);
 247 
 248     // save register parameters
 249 #ifndef _WIN64
 250     __ movptr(parameters,   c_rarg5); // parameters
 251     __ movptr(entry_point,  c_rarg4); // entry_point
 252 #endif
 253 
 254     __ movptr(method,       c_rarg3); // method
 255     __ movl(result_type,  c_rarg2);   // result type
 256     __ movptr(result,       c_rarg1); // result
 257     __ movptr(call_wrapper, c_rarg0); // call wrapper
 258 
 259     // save regs belonging to calling function
 260     __ movptr(rbx_save, rbx);
 261     __ movptr(r12_save, r12);
 262     __ movptr(r13_save, r13);
 263     __ movptr(r14_save, r14);
 264     __ movptr(r15_save, r15);
 265 #ifdef _WIN64
 266     for (int i = 6; i <= 15; i++) {
 267       __ movdqu(xmm_save(i), as_XMMRegister(i));
 268     }
 269 
 270     const Address rdi_save(rbp, rdi_off * wordSize);
 271     const Address rsi_save(rbp, rsi_off * wordSize);
 272 
 273     __ movptr(rsi_save, rsi);
 274     __ movptr(rdi_save, rdi);
 275 #else
 276     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 277     {
 278       Label skip_ldmx;
 279       __ stmxcsr(mxcsr_save);
 280       __ movl(rax, mxcsr_save);
 281       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 282       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 283       __ cmp32(rax, mxcsr_std);
 284       __ jcc(Assembler::equal, skip_ldmx);
 285       __ ldmxcsr(mxcsr_std);
 286       __ bind(skip_ldmx);
 287     }
 288 #endif
 289 
 290     // Load up thread register
 291     __ movptr(r15_thread, thread);
 292     __ reinit_heapbase();
 293 
 294 #ifdef ASSERT
 295     // make sure we have no pending exceptions
 296     {
 297       Label L;
 298       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 299       __ jcc(Assembler::equal, L);
 300       __ stop("StubRoutines::call_stub: entered with pending exception");
 301       __ bind(L);
 302     }
 303 #endif
 304 
 305     // pass parameters if any
 306     BLOCK_COMMENT("pass parameters if any");
 307     Label parameters_done;
 308     __ movl(c_rarg3, parameter_size);
 309     __ testl(c_rarg3, c_rarg3);
 310     __ jcc(Assembler::zero, parameters_done);
 311 
 312     Label loop;
 313     __ movptr(c_rarg2, parameters);       // parameter pointer
 314     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 315     __ BIND(loop);
 316     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 317     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 318     __ decrementl(c_rarg1);             // decrement counter
 319     __ push(rax);                       // pass parameter
 320     __ jcc(Assembler::notZero, loop);
 321 
 322     // call Java function
 323     __ BIND(parameters_done);
 324     __ movptr(rbx, method);             // get Method*
 325     __ movptr(c_rarg1, entry_point);    // get entry_point
 326     __ mov(r13, rsp);                   // set sender sp
 327     BLOCK_COMMENT("call Java function");
 328     __ call(c_rarg1);
 329 
 330     BLOCK_COMMENT("call_stub_return_address:");
 331     return_address = __ pc();
 332 
 333     // store result depending on type (everything that is not
 334     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 335     __ movptr(c_rarg0, result);
 336     Label is_long, is_float, is_double, exit;
 337     __ movl(c_rarg1, result_type);
 338     __ cmpl(c_rarg1, T_OBJECT);
 339     __ jcc(Assembler::equal, is_long);
 340     __ cmpl(c_rarg1, T_LONG);
 341     __ jcc(Assembler::equal, is_long);
 342     __ cmpl(c_rarg1, T_FLOAT);
 343     __ jcc(Assembler::equal, is_float);
 344     __ cmpl(c_rarg1, T_DOUBLE);
 345     __ jcc(Assembler::equal, is_double);
 346 
 347     // handle T_INT case
 348     __ movl(Address(c_rarg0, 0), rax);
 349 
 350     __ BIND(exit);
 351 
 352     // pop parameters
 353     __ lea(rsp, rsp_after_call);
 354 
 355 #ifdef ASSERT
 356     // verify that threads correspond
 357     {
 358       Label L, S;
 359       __ cmpptr(r15_thread, thread);
 360       __ jcc(Assembler::notEqual, S);
 361       __ get_thread(rbx);
 362       __ cmpptr(r15_thread, rbx);
 363       __ jcc(Assembler::equal, L);
 364       __ bind(S);
 365       __ jcc(Assembler::equal, L);
 366       __ stop("StubRoutines::call_stub: threads must correspond");
 367       __ bind(L);
 368     }
 369 #endif
 370 
 371     // restore regs belonging to calling function
 372 #ifdef _WIN64
 373     for (int i = 15; i >= 6; i--) {
 374       __ movdqu(as_XMMRegister(i), xmm_save(i));
 375     }
 376 #endif
 377     __ movptr(r15, r15_save);
 378     __ movptr(r14, r14_save);
 379     __ movptr(r13, r13_save);
 380     __ movptr(r12, r12_save);
 381     __ movptr(rbx, rbx_save);
 382 
 383 #ifdef _WIN64
 384     __ movptr(rdi, rdi_save);
 385     __ movptr(rsi, rsi_save);
 386 #else
 387     __ ldmxcsr(mxcsr_save);
 388 #endif
 389 
 390     // restore rsp
 391     __ addptr(rsp, -rsp_after_call_off * wordSize);
 392 
 393     // return
 394     __ pop(rbp);
 395     __ ret(0);
 396 
 397     // handle return types different from T_INT
 398     __ BIND(is_long);
 399     __ movq(Address(c_rarg0, 0), rax);
 400     __ jmp(exit);
 401 
 402     __ BIND(is_float);
 403     __ movflt(Address(c_rarg0, 0), xmm0);
 404     __ jmp(exit);
 405 
 406     __ BIND(is_double);
 407     __ movdbl(Address(c_rarg0, 0), xmm0);
 408     __ jmp(exit);
 409 
 410     return start;
 411   }
 412 
 413   // Return point for a Java call if there's an exception thrown in
 414   // Java code.  The exception is caught and transformed into a
 415   // pending exception stored in JavaThread that can be tested from
 416   // within the VM.
 417   //
 418   // Note: Usually the parameters are removed by the callee. In case
 419   // of an exception crossing an activation frame boundary, that is
 420   // not the case if the callee is compiled code => need to setup the
 421   // rsp.
 422   //
 423   // rax: exception oop
 424 
 425   address generate_catch_exception() {
 426     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 427     address start = __ pc();
 428 
 429     // same as in generate_call_stub():
 430     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 431     const Address thread        (rbp, thread_off         * wordSize);
 432 
 433 #ifdef ASSERT
 434     // verify that threads correspond
 435     {
 436       Label L, S;
 437       __ cmpptr(r15_thread, thread);
 438       __ jcc(Assembler::notEqual, S);
 439       __ get_thread(rbx);
 440       __ cmpptr(r15_thread, rbx);
 441       __ jcc(Assembler::equal, L);
 442       __ bind(S);
 443       __ stop("StubRoutines::catch_exception: threads must correspond");
 444       __ bind(L);
 445     }
 446 #endif
 447 
 448     // set pending exception
 449     __ verify_oop(rax);
 450 
 451     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 452     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 453     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 454     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 455 
 456     // complete return to VM
 457     assert(StubRoutines::_call_stub_return_address != NULL,
 458            "_call_stub_return_address must have been generated before");
 459     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 460 
 461     return start;
 462   }
 463 
 464   // Continuation point for runtime calls returning with a pending
 465   // exception.  The pending exception check happened in the runtime
 466   // or native call stub.  The pending exception in Thread is
 467   // converted into a Java-level exception.
 468   //
 469   // Contract with Java-level exception handlers:
 470   // rax: exception
 471   // rdx: throwing pc
 472   //
 473   // NOTE: At entry of this stub, exception-pc must be on stack !!
 474 
 475   address generate_forward_exception() {
 476     StubCodeMark mark(this, "StubRoutines", "forward exception");
 477     address start = __ pc();
 478 
 479     // Upon entry, the sp points to the return address returning into
 480     // Java (interpreted or compiled) code; i.e., the return address
 481     // becomes the throwing pc.
 482     //
 483     // Arguments pushed before the runtime call are still on the stack
 484     // but the exception handler will reset the stack pointer ->
 485     // ignore them.  A potential result in registers can be ignored as
 486     // well.
 487 
 488 #ifdef ASSERT
 489     // make sure this code is only executed if there is a pending exception
 490     {
 491       Label L;
 492       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 493       __ jcc(Assembler::notEqual, L);
 494       __ stop("StubRoutines::forward exception: no pending exception (1)");
 495       __ bind(L);
 496     }
 497 #endif
 498 
 499     // compute exception handler into rbx
 500     __ movptr(c_rarg0, Address(rsp, 0));
 501     BLOCK_COMMENT("call exception_handler_for_return_address");
 502     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 503                          SharedRuntime::exception_handler_for_return_address),
 504                     r15_thread, c_rarg0);
 505     __ mov(rbx, rax);
 506 
 507     // setup rax & rdx, remove return address & clear pending exception
 508     __ pop(rdx);
 509     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 510     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 511 
 512 #ifdef ASSERT
 513     // make sure exception is set
 514     {
 515       Label L;
 516       __ testptr(rax, rax);
 517       __ jcc(Assembler::notEqual, L);
 518       __ stop("StubRoutines::forward exception: no pending exception (2)");
 519       __ bind(L);
 520     }
 521 #endif
 522 
 523     // continue at exception handler (return address removed)
 524     // rax: exception
 525     // rbx: exception handler
 526     // rdx: throwing pc
 527     __ verify_oop(rax);
 528     __ jmp(rbx);
 529 
 530     return start;
 531   }
 532 
 533   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 534   //
 535   // Arguments :
 536   //    c_rarg0: exchange_value
 537   //    c_rarg0: dest
 538   //
 539   // Result:
 540   //    *dest <- ex, return (orig *dest)
 541   address generate_atomic_xchg() {
 542     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 543     address start = __ pc();
 544 
 545     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 546     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 553   //
 554   // Arguments :
 555   //    c_rarg0: exchange_value
 556   //    c_rarg1: dest
 557   //
 558   // Result:
 559   //    *dest <- ex, return (orig *dest)
 560   address generate_atomic_xchg_ptr() {
 561     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 562     address start = __ pc();
 563 
 564     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 565     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 566     __ ret(0);
 567 
 568     return start;
 569   }
 570 
 571   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 572   //                                         jint compare_value)
 573   //
 574   // Arguments :
 575   //    c_rarg0: exchange_value
 576   //    c_rarg1: dest
 577   //    c_rarg2: compare_value
 578   //
 579   // Result:
 580   //    if ( compare_value == *dest ) {
 581   //       *dest = exchange_value
 582   //       return compare_value;
 583   //    else
 584   //       return *dest;
 585   address generate_atomic_cmpxchg() {
 586     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 587     address start = __ pc();
 588 
 589     __ movl(rax, c_rarg2);
 590    if ( os::is_MP() ) __ lock();
 591     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 592     __ ret(0);
 593 
 594     return start;
 595   }
 596 
 597   // Support for jbyte atomic::atomic_cmpxchg(jbyte exchange_value, volatile jbyte* dest,
 598   //                                          jbyte compare_value)
 599   //
 600   // Arguments :
 601   //    c_rarg0: exchange_value
 602   //    c_rarg1: dest
 603   //    c_rarg2: compare_value
 604   //
 605   // Result:
 606   //    if ( compare_value == *dest ) {
 607   //       *dest = exchange_value
 608   //       return compare_value;
 609   //    else
 610   //       return *dest;
 611   address generate_atomic_cmpxchg_byte() {
 612     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_byte");
 613     address start = __ pc();
 614 
 615     __ movsbq(rax, c_rarg2);
 616    if ( os::is_MP() ) __ lock();
 617     __ cmpxchgb(c_rarg0, Address(c_rarg1, 0));
 618     __ ret(0);
 619 
 620     return start;
 621   }
 622 
 623   // Support for jlong atomic::atomic_cmpxchg(jlong exchange_value,
 624   //                                          volatile jlong* dest,
 625   //                                          jlong compare_value)
 626   // Arguments :
 627   //    c_rarg0: exchange_value
 628   //    c_rarg1: dest
 629   //    c_rarg2: compare_value
 630   //
 631   // Result:
 632   //    if ( compare_value == *dest ) {
 633   //       *dest = exchange_value
 634   //       return compare_value;
 635   //    else
 636   //       return *dest;
 637   address generate_atomic_cmpxchg_long() {
 638     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 639     address start = __ pc();
 640 
 641     __ movq(rax, c_rarg2);
 642    if ( os::is_MP() ) __ lock();
 643     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 644     __ ret(0);
 645 
 646     return start;
 647   }
 648 
 649   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 650   //
 651   // Arguments :
 652   //    c_rarg0: add_value
 653   //    c_rarg1: dest
 654   //
 655   // Result:
 656   //    *dest += add_value
 657   //    return *dest;
 658   address generate_atomic_add() {
 659     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 660     address start = __ pc();
 661 
 662     __ movl(rax, c_rarg0);
 663    if ( os::is_MP() ) __ lock();
 664     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 665     __ addl(rax, c_rarg0);
 666     __ ret(0);
 667 
 668     return start;
 669   }
 670 
 671   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 672   //
 673   // Arguments :
 674   //    c_rarg0: add_value
 675   //    c_rarg1: dest
 676   //
 677   // Result:
 678   //    *dest += add_value
 679   //    return *dest;
 680   address generate_atomic_add_ptr() {
 681     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 682     address start = __ pc();
 683 
 684     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 685    if ( os::is_MP() ) __ lock();
 686     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 687     __ addptr(rax, c_rarg0);
 688     __ ret(0);
 689 
 690     return start;
 691   }
 692 
 693   // Support for intptr_t OrderAccess::fence()
 694   //
 695   // Arguments :
 696   //
 697   // Result:
 698   address generate_orderaccess_fence() {
 699     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 700     address start = __ pc();
 701     __ membar(Assembler::StoreLoad);
 702     __ ret(0);
 703 
 704     return start;
 705   }
 706 
 707   // Support for intptr_t get_previous_fp()
 708   //
 709   // This routine is used to find the previous frame pointer for the
 710   // caller (current_frame_guess). This is used as part of debugging
 711   // ps() is seemingly lost trying to find frames.
 712   // This code assumes that caller current_frame_guess) has a frame.
 713   address generate_get_previous_fp() {
 714     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 715     const Address old_fp(rbp, 0);
 716     const Address older_fp(rax, 0);
 717     address start = __ pc();
 718 
 719     __ enter();
 720     __ movptr(rax, old_fp); // callers fp
 721     __ movptr(rax, older_fp); // the frame for ps()
 722     __ pop(rbp);
 723     __ ret(0);
 724 
 725     return start;
 726   }
 727 
 728   // Support for intptr_t get_previous_sp()
 729   //
 730   // This routine is used to find the previous stack pointer for the
 731   // caller.
 732   address generate_get_previous_sp() {
 733     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 734     address start = __ pc();
 735 
 736     __ movptr(rax, rsp);
 737     __ addptr(rax, 8); // return address is at the top of the stack.
 738     __ ret(0);
 739 
 740     return start;
 741   }
 742 
 743   //----------------------------------------------------------------------------------------------------
 744   // Support for void verify_mxcsr()
 745   //
 746   // This routine is used with -Xcheck:jni to verify that native
 747   // JNI code does not return to Java code without restoring the
 748   // MXCSR register to our expected state.
 749 
 750   address generate_verify_mxcsr() {
 751     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 752     address start = __ pc();
 753 
 754     const Address mxcsr_save(rsp, 0);
 755 
 756     if (CheckJNICalls) {
 757       Label ok_ret;
 758       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 759       __ push(rax);
 760       __ subptr(rsp, wordSize);      // allocate a temp location
 761       __ stmxcsr(mxcsr_save);
 762       __ movl(rax, mxcsr_save);
 763       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 764       __ cmp32(rax, mxcsr_std);
 765       __ jcc(Assembler::equal, ok_ret);
 766 
 767       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 768 
 769       __ ldmxcsr(mxcsr_std);
 770 
 771       __ bind(ok_ret);
 772       __ addptr(rsp, wordSize);
 773       __ pop(rax);
 774     }
 775 
 776     __ ret(0);
 777 
 778     return start;
 779   }
 780 
 781   address generate_f2i_fixup() {
 782     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 783     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 784 
 785     address start = __ pc();
 786 
 787     Label L;
 788 
 789     __ push(rax);
 790     __ push(c_rarg3);
 791     __ push(c_rarg2);
 792     __ push(c_rarg1);
 793 
 794     __ movl(rax, 0x7f800000);
 795     __ xorl(c_rarg3, c_rarg3);
 796     __ movl(c_rarg2, inout);
 797     __ movl(c_rarg1, c_rarg2);
 798     __ andl(c_rarg1, 0x7fffffff);
 799     __ cmpl(rax, c_rarg1); // NaN? -> 0
 800     __ jcc(Assembler::negative, L);
 801     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 802     __ movl(c_rarg3, 0x80000000);
 803     __ movl(rax, 0x7fffffff);
 804     __ cmovl(Assembler::positive, c_rarg3, rax);
 805 
 806     __ bind(L);
 807     __ movptr(inout, c_rarg3);
 808 
 809     __ pop(c_rarg1);
 810     __ pop(c_rarg2);
 811     __ pop(c_rarg3);
 812     __ pop(rax);
 813 
 814     __ ret(0);
 815 
 816     return start;
 817   }
 818 
 819   address generate_f2l_fixup() {
 820     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 821     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 822     address start = __ pc();
 823 
 824     Label L;
 825 
 826     __ push(rax);
 827     __ push(c_rarg3);
 828     __ push(c_rarg2);
 829     __ push(c_rarg1);
 830 
 831     __ movl(rax, 0x7f800000);
 832     __ xorl(c_rarg3, c_rarg3);
 833     __ movl(c_rarg2, inout);
 834     __ movl(c_rarg1, c_rarg2);
 835     __ andl(c_rarg1, 0x7fffffff);
 836     __ cmpl(rax, c_rarg1); // NaN? -> 0
 837     __ jcc(Assembler::negative, L);
 838     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 839     __ mov64(c_rarg3, 0x8000000000000000);
 840     __ mov64(rax, 0x7fffffffffffffff);
 841     __ cmov(Assembler::positive, c_rarg3, rax);
 842 
 843     __ bind(L);
 844     __ movptr(inout, c_rarg3);
 845 
 846     __ pop(c_rarg1);
 847     __ pop(c_rarg2);
 848     __ pop(c_rarg3);
 849     __ pop(rax);
 850 
 851     __ ret(0);
 852 
 853     return start;
 854   }
 855 
 856   address generate_d2i_fixup() {
 857     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 858     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 859 
 860     address start = __ pc();
 861 
 862     Label L;
 863 
 864     __ push(rax);
 865     __ push(c_rarg3);
 866     __ push(c_rarg2);
 867     __ push(c_rarg1);
 868     __ push(c_rarg0);
 869 
 870     __ movl(rax, 0x7ff00000);
 871     __ movq(c_rarg2, inout);
 872     __ movl(c_rarg3, c_rarg2);
 873     __ mov(c_rarg1, c_rarg2);
 874     __ mov(c_rarg0, c_rarg2);
 875     __ negl(c_rarg3);
 876     __ shrptr(c_rarg1, 0x20);
 877     __ orl(c_rarg3, c_rarg2);
 878     __ andl(c_rarg1, 0x7fffffff);
 879     __ xorl(c_rarg2, c_rarg2);
 880     __ shrl(c_rarg3, 0x1f);
 881     __ orl(c_rarg1, c_rarg3);
 882     __ cmpl(rax, c_rarg1);
 883     __ jcc(Assembler::negative, L); // NaN -> 0
 884     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 885     __ movl(c_rarg2, 0x80000000);
 886     __ movl(rax, 0x7fffffff);
 887     __ cmov(Assembler::positive, c_rarg2, rax);
 888 
 889     __ bind(L);
 890     __ movptr(inout, c_rarg2);
 891 
 892     __ pop(c_rarg0);
 893     __ pop(c_rarg1);
 894     __ pop(c_rarg2);
 895     __ pop(c_rarg3);
 896     __ pop(rax);
 897 
 898     __ ret(0);
 899 
 900     return start;
 901   }
 902 
 903   address generate_d2l_fixup() {
 904     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 905     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 906 
 907     address start = __ pc();
 908 
 909     Label L;
 910 
 911     __ push(rax);
 912     __ push(c_rarg3);
 913     __ push(c_rarg2);
 914     __ push(c_rarg1);
 915     __ push(c_rarg0);
 916 
 917     __ movl(rax, 0x7ff00000);
 918     __ movq(c_rarg2, inout);
 919     __ movl(c_rarg3, c_rarg2);
 920     __ mov(c_rarg1, c_rarg2);
 921     __ mov(c_rarg0, c_rarg2);
 922     __ negl(c_rarg3);
 923     __ shrptr(c_rarg1, 0x20);
 924     __ orl(c_rarg3, c_rarg2);
 925     __ andl(c_rarg1, 0x7fffffff);
 926     __ xorl(c_rarg2, c_rarg2);
 927     __ shrl(c_rarg3, 0x1f);
 928     __ orl(c_rarg1, c_rarg3);
 929     __ cmpl(rax, c_rarg1);
 930     __ jcc(Assembler::negative, L); // NaN -> 0
 931     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 932     __ mov64(c_rarg2, 0x8000000000000000);
 933     __ mov64(rax, 0x7fffffffffffffff);
 934     __ cmovq(Assembler::positive, c_rarg2, rax);
 935 
 936     __ bind(L);
 937     __ movq(inout, c_rarg2);
 938 
 939     __ pop(c_rarg0);
 940     __ pop(c_rarg1);
 941     __ pop(c_rarg2);
 942     __ pop(c_rarg3);
 943     __ pop(rax);
 944 
 945     __ ret(0);
 946 
 947     return start;
 948   }
 949 
 950   address generate_fp_mask(const char *stub_name, int64_t mask) {
 951     __ align(CodeEntryAlignment);
 952     StubCodeMark mark(this, "StubRoutines", stub_name);
 953     address start = __ pc();
 954 
 955     __ emit_data64( mask, relocInfo::none );
 956     __ emit_data64( mask, relocInfo::none );
 957 
 958     return start;
 959   }
 960 
 961   // The following routine generates a subroutine to throw an
 962   // asynchronous UnknownError when an unsafe access gets a fault that
 963   // could not be reasonably prevented by the programmer.  (Example:
 964   // SIGBUS/OBJERR.)
 965   address generate_handler_for_unsafe_access() {
 966     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 967     address start = __ pc();
 968 
 969     __ push(0);                       // hole for return address-to-be
 970     __ pusha();                       // push registers
 971     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 972 
 973     // FIXME: this probably needs alignment logic
 974 
 975     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 976     BLOCK_COMMENT("call handle_unsafe_access");
 977     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 978     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 979 
 980     __ movptr(next_pc, rax);          // stuff next address
 981     __ popa();
 982     __ ret(0);                        // jump to next address
 983 
 984     return start;
 985   }
 986 
 987   // Non-destructive plausibility checks for oops
 988   //
 989   // Arguments:
 990   //    all args on stack!
 991   //
 992   // Stack after saving c_rarg3:
 993   //    [tos + 0]: saved c_rarg3
 994   //    [tos + 1]: saved c_rarg2
 995   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 996   //    [tos + 3]: saved flags
 997   //    [tos + 4]: return address
 998   //  * [tos + 5]: error message (char*)
 999   //  * [tos + 6]: object to verify (oop)
1000   //  * [tos + 7]: saved rax - saved by caller and bashed
1001   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1002   //  * = popped on exit
1003   address generate_verify_oop() {
1004     StubCodeMark mark(this, "StubRoutines", "verify_oop");
1005     address start = __ pc();
1006 
1007     Label exit, error;
1008 
1009     __ pushf();
1010     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
1011 
1012     __ push(r12);
1013 
1014     // save c_rarg2 and c_rarg3
1015     __ push(c_rarg2);
1016     __ push(c_rarg3);
1017 
1018     enum {
1019            // After previous pushes.
1020            oop_to_verify = 6 * wordSize,
1021            saved_rax     = 7 * wordSize,
1022            saved_r10     = 8 * wordSize,
1023 
1024            // Before the call to MacroAssembler::debug(), see below.
1025            return_addr   = 16 * wordSize,
1026            error_msg     = 17 * wordSize
1027     };
1028 
1029     // get object
1030     __ movptr(rax, Address(rsp, oop_to_verify));
1031 
1032     // make sure object is 'reasonable'
1033     __ testptr(rax, rax);
1034     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1035     // Check if the oop is in the right area of memory
1036     __ movptr(c_rarg2, rax);
1037     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1038     __ andptr(c_rarg2, c_rarg3);
1039     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1040     __ cmpptr(c_rarg2, c_rarg3);
1041     __ jcc(Assembler::notZero, error);
1042 
1043     // set r12 to heapbase for load_klass()
1044     __ reinit_heapbase();
1045 
1046     // make sure klass is 'reasonable', which is not zero.
1047     __ load_klass(rax, rax);  // get klass
1048     __ testptr(rax, rax);
1049     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1050 
1051     // return if everything seems ok
1052     __ bind(exit);
1053     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1054     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1055     __ pop(c_rarg3);                             // restore c_rarg3
1056     __ pop(c_rarg2);                             // restore c_rarg2
1057     __ pop(r12);                                 // restore r12
1058     __ popf();                                   // restore flags
1059     __ ret(4 * wordSize);                        // pop caller saved stuff
1060 
1061     // handle errors
1062     __ bind(error);
1063     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1064     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1065     __ pop(c_rarg3);                             // get saved c_rarg3 back
1066     __ pop(c_rarg2);                             // get saved c_rarg2 back
1067     __ pop(r12);                                 // get saved r12 back
1068     __ popf();                                   // get saved flags off stack --
1069                                                  // will be ignored
1070 
1071     __ pusha();                                  // push registers
1072                                                  // (rip is already
1073                                                  // already pushed)
1074     // debug(char* msg, int64_t pc, int64_t regs[])
1075     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1076     // pushed all the registers, so now the stack looks like:
1077     //     [tos +  0] 16 saved registers
1078     //     [tos + 16] return address
1079     //   * [tos + 17] error message (char*)
1080     //   * [tos + 18] object to verify (oop)
1081     //   * [tos + 19] saved rax - saved by caller and bashed
1082     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1083     //   * = popped on exit
1084 
1085     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1086     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1087     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1088     __ mov(r12, rsp);                               // remember rsp
1089     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1090     __ andptr(rsp, -16);                            // align stack as required by ABI
1091     BLOCK_COMMENT("call MacroAssembler::debug");
1092     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1093     __ mov(rsp, r12);                               // restore rsp
1094     __ popa();                                      // pop registers (includes r12)
1095     __ ret(4 * wordSize);                           // pop caller saved stuff
1096 
1097     return start;
1098   }
1099 
1100   //
1101   // Verify that a register contains clean 32-bits positive value
1102   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1103   //
1104   //  Input:
1105   //    Rint  -  32-bits value
1106   //    Rtmp  -  scratch
1107   //
1108   void assert_clean_int(Register Rint, Register Rtmp) {
1109 #ifdef ASSERT
1110     Label L;
1111     assert_different_registers(Rtmp, Rint);
1112     __ movslq(Rtmp, Rint);
1113     __ cmpq(Rtmp, Rint);
1114     __ jcc(Assembler::equal, L);
1115     __ stop("high 32-bits of int value are not 0");
1116     __ bind(L);
1117 #endif
1118   }
1119 
1120   //  Generate overlap test for array copy stubs
1121   //
1122   //  Input:
1123   //     c_rarg0 - from
1124   //     c_rarg1 - to
1125   //     c_rarg2 - element count
1126   //
1127   //  Output:
1128   //     rax   - &from[element count - 1]
1129   //
1130   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1131     assert(no_overlap_target != NULL, "must be generated");
1132     array_overlap_test(no_overlap_target, NULL, sf);
1133   }
1134   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1135     array_overlap_test(NULL, &L_no_overlap, sf);
1136   }
1137   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1138     const Register from     = c_rarg0;
1139     const Register to       = c_rarg1;
1140     const Register count    = c_rarg2;
1141     const Register end_from = rax;
1142 
1143     __ cmpptr(to, from);
1144     __ lea(end_from, Address(from, count, sf, 0));
1145     if (NOLp == NULL) {
1146       ExternalAddress no_overlap(no_overlap_target);
1147       __ jump_cc(Assembler::belowEqual, no_overlap);
1148       __ cmpptr(to, end_from);
1149       __ jump_cc(Assembler::aboveEqual, no_overlap);
1150     } else {
1151       __ jcc(Assembler::belowEqual, (*NOLp));
1152       __ cmpptr(to, end_from);
1153       __ jcc(Assembler::aboveEqual, (*NOLp));
1154     }
1155   }
1156 
1157   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1158   //
1159   // Outputs:
1160   //    rdi - rcx
1161   //    rsi - rdx
1162   //    rdx - r8
1163   //    rcx - r9
1164   //
1165   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1166   // are non-volatile.  r9 and r10 should not be used by the caller.
1167   //
1168   void setup_arg_regs(int nargs = 3) {
1169     const Register saved_rdi = r9;
1170     const Register saved_rsi = r10;
1171     assert(nargs == 3 || nargs == 4, "else fix");
1172 #ifdef _WIN64
1173     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1174            "unexpected argument registers");
1175     if (nargs >= 4)
1176       __ mov(rax, r9);  // r9 is also saved_rdi
1177     __ movptr(saved_rdi, rdi);
1178     __ movptr(saved_rsi, rsi);
1179     __ mov(rdi, rcx); // c_rarg0
1180     __ mov(rsi, rdx); // c_rarg1
1181     __ mov(rdx, r8);  // c_rarg2
1182     if (nargs >= 4)
1183       __ mov(rcx, rax); // c_rarg3 (via rax)
1184 #else
1185     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1186            "unexpected argument registers");
1187 #endif
1188   }
1189 
1190   void restore_arg_regs() {
1191     const Register saved_rdi = r9;
1192     const Register saved_rsi = r10;
1193 #ifdef _WIN64
1194     __ movptr(rdi, saved_rdi);
1195     __ movptr(rsi, saved_rsi);
1196 #endif
1197   }
1198 
1199   // Generate code for an array write pre barrier
1200   //
1201   //     addr    -  starting address
1202   //     count   -  element count
1203   //     tmp     - scratch register
1204   //
1205   //     Destroy no registers!
1206   //
1207   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1208     BarrierSet* bs = Universe::heap()->barrier_set();
1209     switch (bs->kind()) {
1210       case BarrierSet::G1SATBCT:
1211       case BarrierSet::G1SATBCTLogging:
1212         // With G1, don't generate the call if we statically know that the target in uninitialized
1213         if (!dest_uninitialized) {
1214            __ pusha();                      // push registers
1215            if (count == c_rarg0) {
1216              if (addr == c_rarg1) {
1217                // exactly backwards!!
1218                __ xchgptr(c_rarg1, c_rarg0);
1219              } else {
1220                __ movptr(c_rarg1, count);
1221                __ movptr(c_rarg0, addr);
1222              }
1223            } else {
1224              __ movptr(c_rarg0, addr);
1225              __ movptr(c_rarg1, count);
1226            }
1227            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1228            __ popa();
1229         }
1230          break;
1231       case BarrierSet::CardTableModRef:
1232       case BarrierSet::CardTableExtension:
1233       case BarrierSet::ModRef:
1234         break;
1235       default:
1236         ShouldNotReachHere();
1237 
1238     }
1239   }
1240 
1241   //
1242   // Generate code for an array write post barrier
1243   //
1244   //  Input:
1245   //     start    - register containing starting address of destination array
1246   //     count    - elements count
1247   //     scratch  - scratch register
1248   //
1249   //  The input registers are overwritten.
1250   //
1251   void  gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
1252     assert_different_registers(start, count, scratch);
1253     BarrierSet* bs = Universe::heap()->barrier_set();
1254     switch (bs->kind()) {
1255       case BarrierSet::G1SATBCT:
1256       case BarrierSet::G1SATBCTLogging:
1257         {
1258           __ pusha();             // push registers (overkill)
1259           if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
1260             assert_different_registers(c_rarg1, start);
1261             __ mov(c_rarg1, count);
1262             __ mov(c_rarg0, start);
1263           } else {
1264             assert_different_registers(c_rarg0, count);
1265             __ mov(c_rarg0, start);
1266             __ mov(c_rarg1, count);
1267           }
1268           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1269           __ popa();
1270         }
1271         break;
1272       case BarrierSet::CardTableModRef:
1273       case BarrierSet::CardTableExtension:
1274         {
1275           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1276           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1277 
1278           Label L_loop;
1279           const Register end = count;
1280 
1281           __ leaq(end, Address(start, count, TIMES_OOP, 0));  // end == start+count*oop_size
1282           __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
1283           __ shrptr(start, CardTableModRefBS::card_shift);
1284           __ shrptr(end,   CardTableModRefBS::card_shift);
1285           __ subptr(end, start); // end --> cards count
1286 
1287           int64_t disp = (int64_t) ct->byte_map_base;
1288           __ mov64(scratch, disp);
1289           __ addptr(start, scratch);
1290         __ BIND(L_loop);
1291           __ movb(Address(start, count, Address::times_1), 0);
1292           __ decrement(count);
1293           __ jcc(Assembler::greaterEqual, L_loop);
1294         }
1295         break;
1296       default:
1297         ShouldNotReachHere();
1298 
1299     }
1300   }
1301 
1302 
1303   // Copy big chunks forward
1304   //
1305   // Inputs:
1306   //   end_from     - source arrays end address
1307   //   end_to       - destination array end address
1308   //   qword_count  - 64-bits element count, negative
1309   //   to           - scratch
1310   //   L_copy_bytes - entry label
1311   //   L_copy_8_bytes  - exit  label
1312   //
1313   void copy_bytes_forward(Register end_from, Register end_to,
1314                              Register qword_count, Register to,
1315                              Label& L_copy_bytes, Label& L_copy_8_bytes) {
1316     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1317     Label L_loop;
1318     __ align(OptoLoopAlignment);
1319     if (UseUnalignedLoadStores) {
1320       Label L_end;
1321       // Copy 64-bytes per iteration
1322       __ BIND(L_loop);
1323       if (UseAVX >= 2) {
1324         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1325         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1326         __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
1327         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
1328       } else {
1329         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1330         __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1331         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
1332         __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
1333         __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
1334         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
1335         __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
1336         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
1337       }
1338       __ BIND(L_copy_bytes);
1339       __ addptr(qword_count, 8);
1340       __ jcc(Assembler::lessEqual, L_loop);
1341       __ subptr(qword_count, 4);  // sub(8) and add(4)
1342       __ jccb(Assembler::greater, L_end);
1343       // Copy trailing 32 bytes
1344       if (UseAVX >= 2) {
1345         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1346         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1347       } else {
1348         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1349         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1350         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1351         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1352       }
1353       __ addptr(qword_count, 4);
1354       __ BIND(L_end);
1355       if (UseAVX >= 2) {
1356         // clean upper bits of YMM registers
1357         __ vzeroupper();
1358       }
1359     } else {
1360       // Copy 32-bytes per iteration
1361       __ BIND(L_loop);
1362       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1363       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1364       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1365       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1366       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1367       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1368       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1369       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1370 
1371       __ BIND(L_copy_bytes);
1372       __ addptr(qword_count, 4);
1373       __ jcc(Assembler::lessEqual, L_loop);
1374     }
1375     __ subptr(qword_count, 4);
1376     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1377   }
1378 
1379   // Copy big chunks backward
1380   //
1381   // Inputs:
1382   //   from         - source arrays address
1383   //   dest         - destination array address
1384   //   qword_count  - 64-bits element count
1385   //   to           - scratch
1386   //   L_copy_bytes - entry label
1387   //   L_copy_8_bytes  - exit  label
1388   //
1389   void copy_bytes_backward(Register from, Register dest,
1390                               Register qword_count, Register to,
1391                               Label& L_copy_bytes, Label& L_copy_8_bytes) {
1392     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1393     Label L_loop;
1394     __ align(OptoLoopAlignment);
1395     if (UseUnalignedLoadStores) {
1396       Label L_end;
1397       // Copy 64-bytes per iteration
1398       __ BIND(L_loop);
1399       if (UseAVX >= 2) {
1400         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
1401         __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
1402         __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1403         __ vmovdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1404       } else {
1405         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
1406         __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
1407         __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
1408         __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
1409         __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
1410         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
1411         __ movdqu(xmm3, Address(from, qword_count, Address::times_8,  0));
1412         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm3);
1413       }
1414       __ BIND(L_copy_bytes);
1415       __ subptr(qword_count, 8);
1416       __ jcc(Assembler::greaterEqual, L_loop);
1417 
1418       __ addptr(qword_count, 4);  // add(8) and sub(4)
1419       __ jccb(Assembler::less, L_end);
1420       // Copy trailing 32 bytes
1421       if (UseAVX >= 2) {
1422         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
1423         __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
1424       } else {
1425         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1426         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1427         __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1428         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1429       }
1430       __ subptr(qword_count, 4);
1431       __ BIND(L_end);
1432       if (UseAVX >= 2) {
1433         // clean upper bits of YMM registers
1434         __ vzeroupper();
1435       }
1436     } else {
1437       // Copy 32-bytes per iteration
1438       __ BIND(L_loop);
1439       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1440       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1441       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1442       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1443       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1444       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1445       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1446       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1447 
1448       __ BIND(L_copy_bytes);
1449       __ subptr(qword_count, 4);
1450       __ jcc(Assembler::greaterEqual, L_loop);
1451     }
1452     __ addptr(qword_count, 4);
1453     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1454   }
1455 
1456 
1457   // Arguments:
1458   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1459   //             ignored
1460   //   name    - stub name string
1461   //
1462   // Inputs:
1463   //   c_rarg0   - source array address
1464   //   c_rarg1   - destination array address
1465   //   c_rarg2   - element count, treated as ssize_t, can be zero
1466   //
1467   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1468   // we let the hardware handle it.  The one to eight bytes within words,
1469   // dwords or qwords that span cache line boundaries will still be loaded
1470   // and stored atomically.
1471   //
1472   // Side Effects:
1473   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1474   //   used by generate_conjoint_byte_copy().
1475   //
1476   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1477     __ align(CodeEntryAlignment);
1478     StubCodeMark mark(this, "StubRoutines", name);
1479     address start = __ pc();
1480 
1481     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1482     Label L_copy_byte, L_exit;
1483     const Register from        = rdi;  // source array address
1484     const Register to          = rsi;  // destination array address
1485     const Register count       = rdx;  // elements count
1486     const Register byte_count  = rcx;
1487     const Register qword_count = count;
1488     const Register end_from    = from; // source array end address
1489     const Register end_to      = to;   // destination array end address
1490     // End pointers are inclusive, and if count is not zero they point
1491     // to the last unit copied:  end_to[0] := end_from[0]
1492 
1493     __ enter(); // required for proper stackwalking of RuntimeStub frame
1494     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1495 
1496     if (entry != NULL) {
1497       *entry = __ pc();
1498        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1499       BLOCK_COMMENT("Entry:");
1500     }
1501 
1502     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1503                       // r9 and r10 may be used to save non-volatile registers
1504 
1505     // 'from', 'to' and 'count' are now valid
1506     __ movptr(byte_count, count);
1507     __ shrptr(count, 3); // count => qword_count
1508 
1509     // Copy from low to high addresses.  Use 'to' as scratch.
1510     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1511     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1512     __ negptr(qword_count); // make the count negative
1513     __ jmp(L_copy_bytes);
1514 
1515     // Copy trailing qwords
1516   __ BIND(L_copy_8_bytes);
1517     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1518     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1519     __ increment(qword_count);
1520     __ jcc(Assembler::notZero, L_copy_8_bytes);
1521 
1522     // Check for and copy trailing dword
1523   __ BIND(L_copy_4_bytes);
1524     __ testl(byte_count, 4);
1525     __ jccb(Assembler::zero, L_copy_2_bytes);
1526     __ movl(rax, Address(end_from, 8));
1527     __ movl(Address(end_to, 8), rax);
1528 
1529     __ addptr(end_from, 4);
1530     __ addptr(end_to, 4);
1531 
1532     // Check for and copy trailing word
1533   __ BIND(L_copy_2_bytes);
1534     __ testl(byte_count, 2);
1535     __ jccb(Assembler::zero, L_copy_byte);
1536     __ movw(rax, Address(end_from, 8));
1537     __ movw(Address(end_to, 8), rax);
1538 
1539     __ addptr(end_from, 2);
1540     __ addptr(end_to, 2);
1541 
1542     // Check for and copy trailing byte
1543   __ BIND(L_copy_byte);
1544     __ testl(byte_count, 1);
1545     __ jccb(Assembler::zero, L_exit);
1546     __ movb(rax, Address(end_from, 8));
1547     __ movb(Address(end_to, 8), rax);
1548 
1549   __ BIND(L_exit);
1550     restore_arg_regs();
1551     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1552     __ xorptr(rax, rax); // return 0
1553     __ leave(); // required for proper stackwalking of RuntimeStub frame
1554     __ ret(0);
1555 
1556     // Copy in multi-bytes chunks
1557     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1558     __ jmp(L_copy_4_bytes);
1559 
1560     return start;
1561   }
1562 
1563   // Arguments:
1564   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1565   //             ignored
1566   //   name    - stub name string
1567   //
1568   // Inputs:
1569   //   c_rarg0   - source array address
1570   //   c_rarg1   - destination array address
1571   //   c_rarg2   - element count, treated as ssize_t, can be zero
1572   //
1573   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1574   // we let the hardware handle it.  The one to eight bytes within words,
1575   // dwords or qwords that span cache line boundaries will still be loaded
1576   // and stored atomically.
1577   //
1578   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1579                                       address* entry, const char *name) {
1580     __ align(CodeEntryAlignment);
1581     StubCodeMark mark(this, "StubRoutines", name);
1582     address start = __ pc();
1583 
1584     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1585     const Register from        = rdi;  // source array address
1586     const Register to          = rsi;  // destination array address
1587     const Register count       = rdx;  // elements count
1588     const Register byte_count  = rcx;
1589     const Register qword_count = count;
1590 
1591     __ enter(); // required for proper stackwalking of RuntimeStub frame
1592     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1593 
1594     if (entry != NULL) {
1595       *entry = __ pc();
1596       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1597       BLOCK_COMMENT("Entry:");
1598     }
1599 
1600     array_overlap_test(nooverlap_target, Address::times_1);
1601     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1602                       // r9 and r10 may be used to save non-volatile registers
1603 
1604     // 'from', 'to' and 'count' are now valid
1605     __ movptr(byte_count, count);
1606     __ shrptr(count, 3);   // count => qword_count
1607 
1608     // Copy from high to low addresses.
1609 
1610     // Check for and copy trailing byte
1611     __ testl(byte_count, 1);
1612     __ jcc(Assembler::zero, L_copy_2_bytes);
1613     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1614     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1615     __ decrement(byte_count); // Adjust for possible trailing word
1616 
1617     // Check for and copy trailing word
1618   __ BIND(L_copy_2_bytes);
1619     __ testl(byte_count, 2);
1620     __ jcc(Assembler::zero, L_copy_4_bytes);
1621     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1622     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1623 
1624     // Check for and copy trailing dword
1625   __ BIND(L_copy_4_bytes);
1626     __ testl(byte_count, 4);
1627     __ jcc(Assembler::zero, L_copy_bytes);
1628     __ movl(rax, Address(from, qword_count, Address::times_8));
1629     __ movl(Address(to, qword_count, Address::times_8), rax);
1630     __ jmp(L_copy_bytes);
1631 
1632     // Copy trailing qwords
1633   __ BIND(L_copy_8_bytes);
1634     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1635     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1636     __ decrement(qword_count);
1637     __ jcc(Assembler::notZero, L_copy_8_bytes);
1638 
1639     restore_arg_regs();
1640     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1641     __ xorptr(rax, rax); // return 0
1642     __ leave(); // required for proper stackwalking of RuntimeStub frame
1643     __ ret(0);
1644 
1645     // Copy in multi-bytes chunks
1646     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1647 
1648     restore_arg_regs();
1649     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1650     __ xorptr(rax, rax); // return 0
1651     __ leave(); // required for proper stackwalking of RuntimeStub frame
1652     __ ret(0);
1653 
1654     return start;
1655   }
1656 
1657   // Arguments:
1658   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1659   //             ignored
1660   //   name    - stub name string
1661   //
1662   // Inputs:
1663   //   c_rarg0   - source array address
1664   //   c_rarg1   - destination array address
1665   //   c_rarg2   - element count, treated as ssize_t, can be zero
1666   //
1667   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1668   // let the hardware handle it.  The two or four words within dwords
1669   // or qwords that span cache line boundaries will still be loaded
1670   // and stored atomically.
1671   //
1672   // Side Effects:
1673   //   disjoint_short_copy_entry is set to the no-overlap entry point
1674   //   used by generate_conjoint_short_copy().
1675   //
1676   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1677     __ align(CodeEntryAlignment);
1678     StubCodeMark mark(this, "StubRoutines", name);
1679     address start = __ pc();
1680 
1681     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1682     const Register from        = rdi;  // source array address
1683     const Register to          = rsi;  // destination array address
1684     const Register count       = rdx;  // elements count
1685     const Register word_count  = rcx;
1686     const Register qword_count = count;
1687     const Register end_from    = from; // source array end address
1688     const Register end_to      = to;   // destination array end address
1689     // End pointers are inclusive, and if count is not zero they point
1690     // to the last unit copied:  end_to[0] := end_from[0]
1691 
1692     __ enter(); // required for proper stackwalking of RuntimeStub frame
1693     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1694 
1695     if (entry != NULL) {
1696       *entry = __ pc();
1697       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1698       BLOCK_COMMENT("Entry:");
1699     }
1700 
1701     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1702                       // r9 and r10 may be used to save non-volatile registers
1703 
1704     // 'from', 'to' and 'count' are now valid
1705     __ movptr(word_count, count);
1706     __ shrptr(count, 2); // count => qword_count
1707 
1708     // Copy from low to high addresses.  Use 'to' as scratch.
1709     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1710     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1711     __ negptr(qword_count);
1712     __ jmp(L_copy_bytes);
1713 
1714     // Copy trailing qwords
1715   __ BIND(L_copy_8_bytes);
1716     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1717     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1718     __ increment(qword_count);
1719     __ jcc(Assembler::notZero, L_copy_8_bytes);
1720 
1721     // Original 'dest' is trashed, so we can't use it as a
1722     // base register for a possible trailing word copy
1723 
1724     // Check for and copy trailing dword
1725   __ BIND(L_copy_4_bytes);
1726     __ testl(word_count, 2);
1727     __ jccb(Assembler::zero, L_copy_2_bytes);
1728     __ movl(rax, Address(end_from, 8));
1729     __ movl(Address(end_to, 8), rax);
1730 
1731     __ addptr(end_from, 4);
1732     __ addptr(end_to, 4);
1733 
1734     // Check for and copy trailing word
1735   __ BIND(L_copy_2_bytes);
1736     __ testl(word_count, 1);
1737     __ jccb(Assembler::zero, L_exit);
1738     __ movw(rax, Address(end_from, 8));
1739     __ movw(Address(end_to, 8), rax);
1740 
1741   __ BIND(L_exit);
1742     restore_arg_regs();
1743     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1744     __ xorptr(rax, rax); // return 0
1745     __ leave(); // required for proper stackwalking of RuntimeStub frame
1746     __ ret(0);
1747 
1748     // Copy in multi-bytes chunks
1749     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1750     __ jmp(L_copy_4_bytes);
1751 
1752     return start;
1753   }
1754 
1755   address generate_fill(BasicType t, bool aligned, const char *name) {
1756     __ align(CodeEntryAlignment);
1757     StubCodeMark mark(this, "StubRoutines", name);
1758     address start = __ pc();
1759 
1760     BLOCK_COMMENT("Entry:");
1761 
1762     const Register to       = c_rarg0;  // source array address
1763     const Register value    = c_rarg1;  // value
1764     const Register count    = c_rarg2;  // elements count
1765 
1766     __ enter(); // required for proper stackwalking of RuntimeStub frame
1767 
1768     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1769 
1770     __ leave(); // required for proper stackwalking of RuntimeStub frame
1771     __ ret(0);
1772     return start;
1773   }
1774 
1775   // Arguments:
1776   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1777   //             ignored
1778   //   name    - stub name string
1779   //
1780   // Inputs:
1781   //   c_rarg0   - source array address
1782   //   c_rarg1   - destination array address
1783   //   c_rarg2   - element count, treated as ssize_t, can be zero
1784   //
1785   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1786   // let the hardware handle it.  The two or four words within dwords
1787   // or qwords that span cache line boundaries will still be loaded
1788   // and stored atomically.
1789   //
1790   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1791                                        address *entry, const char *name) {
1792     __ align(CodeEntryAlignment);
1793     StubCodeMark mark(this, "StubRoutines", name);
1794     address start = __ pc();
1795 
1796     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
1797     const Register from        = rdi;  // source array address
1798     const Register to          = rsi;  // destination array address
1799     const Register count       = rdx;  // elements count
1800     const Register word_count  = rcx;
1801     const Register qword_count = count;
1802 
1803     __ enter(); // required for proper stackwalking of RuntimeStub frame
1804     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1805 
1806     if (entry != NULL) {
1807       *entry = __ pc();
1808       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1809       BLOCK_COMMENT("Entry:");
1810     }
1811 
1812     array_overlap_test(nooverlap_target, Address::times_2);
1813     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1814                       // r9 and r10 may be used to save non-volatile registers
1815 
1816     // 'from', 'to' and 'count' are now valid
1817     __ movptr(word_count, count);
1818     __ shrptr(count, 2); // count => qword_count
1819 
1820     // Copy from high to low addresses.  Use 'to' as scratch.
1821 
1822     // Check for and copy trailing word
1823     __ testl(word_count, 1);
1824     __ jccb(Assembler::zero, L_copy_4_bytes);
1825     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1826     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1827 
1828     // Check for and copy trailing dword
1829   __ BIND(L_copy_4_bytes);
1830     __ testl(word_count, 2);
1831     __ jcc(Assembler::zero, L_copy_bytes);
1832     __ movl(rax, Address(from, qword_count, Address::times_8));
1833     __ movl(Address(to, qword_count, Address::times_8), rax);
1834     __ jmp(L_copy_bytes);
1835 
1836     // Copy trailing qwords
1837   __ BIND(L_copy_8_bytes);
1838     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1839     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1840     __ decrement(qword_count);
1841     __ jcc(Assembler::notZero, L_copy_8_bytes);
1842 
1843     restore_arg_regs();
1844     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1845     __ xorptr(rax, rax); // return 0
1846     __ leave(); // required for proper stackwalking of RuntimeStub frame
1847     __ ret(0);
1848 
1849     // Copy in multi-bytes chunks
1850     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1851 
1852     restore_arg_regs();
1853     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1854     __ xorptr(rax, rax); // return 0
1855     __ leave(); // required for proper stackwalking of RuntimeStub frame
1856     __ ret(0);
1857 
1858     return start;
1859   }
1860 
1861   // Arguments:
1862   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1863   //             ignored
1864   //   is_oop  - true => oop array, so generate store check code
1865   //   name    - stub name string
1866   //
1867   // Inputs:
1868   //   c_rarg0   - source array address
1869   //   c_rarg1   - destination array address
1870   //   c_rarg2   - element count, treated as ssize_t, can be zero
1871   //
1872   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1873   // the hardware handle it.  The two dwords within qwords that span
1874   // cache line boundaries will still be loaded and stored atomicly.
1875   //
1876   // Side Effects:
1877   //   disjoint_int_copy_entry is set to the no-overlap entry point
1878   //   used by generate_conjoint_int_oop_copy().
1879   //
1880   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1881                                          const char *name, bool dest_uninitialized = false) {
1882     __ align(CodeEntryAlignment);
1883     StubCodeMark mark(this, "StubRoutines", name);
1884     address start = __ pc();
1885 
1886     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1887     const Register from        = rdi;  // source array address
1888     const Register to          = rsi;  // destination array address
1889     const Register count       = rdx;  // elements count
1890     const Register dword_count = rcx;
1891     const Register qword_count = count;
1892     const Register end_from    = from; // source array end address
1893     const Register end_to      = to;   // destination array end address
1894     const Register saved_to    = r11;  // saved destination array address
1895     // End pointers are inclusive, and if count is not zero they point
1896     // to the last unit copied:  end_to[0] := end_from[0]
1897 
1898     __ enter(); // required for proper stackwalking of RuntimeStub frame
1899     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1900 
1901     if (entry != NULL) {
1902       *entry = __ pc();
1903       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1904       BLOCK_COMMENT("Entry:");
1905     }
1906 
1907     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1908                       // r9 and r10 may be used to save non-volatile registers
1909     if (is_oop) {
1910       __ movq(saved_to, to);
1911       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1912     }
1913 
1914     // 'from', 'to' and 'count' are now valid
1915     __ movptr(dword_count, count);
1916     __ shrptr(count, 1); // count => qword_count
1917 
1918     // Copy from low to high addresses.  Use 'to' as scratch.
1919     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1920     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1921     __ negptr(qword_count);
1922     __ jmp(L_copy_bytes);
1923 
1924     // Copy trailing qwords
1925   __ BIND(L_copy_8_bytes);
1926     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1927     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1928     __ increment(qword_count);
1929     __ jcc(Assembler::notZero, L_copy_8_bytes);
1930 
1931     // Check for and copy trailing dword
1932   __ BIND(L_copy_4_bytes);
1933     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1934     __ jccb(Assembler::zero, L_exit);
1935     __ movl(rax, Address(end_from, 8));
1936     __ movl(Address(end_to, 8), rax);
1937 
1938   __ BIND(L_exit);
1939     if (is_oop) {
1940       gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
1941     }
1942     restore_arg_regs();
1943     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1944     __ xorptr(rax, rax); // return 0
1945     __ leave(); // required for proper stackwalking of RuntimeStub frame
1946     __ ret(0);
1947 
1948     // Copy in multi-bytes chunks
1949     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1950     __ jmp(L_copy_4_bytes);
1951 
1952     return start;
1953   }
1954 
1955   // Arguments:
1956   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1957   //             ignored
1958   //   is_oop  - true => oop array, so generate store check code
1959   //   name    - stub name string
1960   //
1961   // Inputs:
1962   //   c_rarg0   - source array address
1963   //   c_rarg1   - destination array address
1964   //   c_rarg2   - element count, treated as ssize_t, can be zero
1965   //
1966   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1967   // the hardware handle it.  The two dwords within qwords that span
1968   // cache line boundaries will still be loaded and stored atomicly.
1969   //
1970   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1971                                          address *entry, const char *name,
1972                                          bool dest_uninitialized = false) {
1973     __ align(CodeEntryAlignment);
1974     StubCodeMark mark(this, "StubRoutines", name);
1975     address start = __ pc();
1976 
1977     Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1978     const Register from        = rdi;  // source array address
1979     const Register to          = rsi;  // destination array address
1980     const Register count       = rdx;  // elements count
1981     const Register dword_count = rcx;
1982     const Register qword_count = count;
1983 
1984     __ enter(); // required for proper stackwalking of RuntimeStub frame
1985     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1986 
1987     if (entry != NULL) {
1988       *entry = __ pc();
1989        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1990       BLOCK_COMMENT("Entry:");
1991     }
1992 
1993     array_overlap_test(nooverlap_target, Address::times_4);
1994     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1995                       // r9 and r10 may be used to save non-volatile registers
1996 
1997     if (is_oop) {
1998       // no registers are destroyed by this call
1999       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2000     }
2001 
2002     assert_clean_int(count, rax); // Make sure 'count' is clean int.
2003     // 'from', 'to' and 'count' are now valid
2004     __ movptr(dword_count, count);
2005     __ shrptr(count, 1); // count => qword_count
2006 
2007     // Copy from high to low addresses.  Use 'to' as scratch.
2008 
2009     // Check for and copy trailing dword
2010     __ testl(dword_count, 1);
2011     __ jcc(Assembler::zero, L_copy_bytes);
2012     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
2013     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
2014     __ jmp(L_copy_bytes);
2015 
2016     // Copy trailing qwords
2017   __ BIND(L_copy_8_bytes);
2018     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2019     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2020     __ decrement(qword_count);
2021     __ jcc(Assembler::notZero, L_copy_8_bytes);
2022 
2023     if (is_oop) {
2024       __ jmp(L_exit);
2025     }
2026     restore_arg_regs();
2027     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2028     __ xorptr(rax, rax); // return 0
2029     __ leave(); // required for proper stackwalking of RuntimeStub frame
2030     __ ret(0);
2031 
2032     // Copy in multi-bytes chunks
2033     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2034 
2035   __ BIND(L_exit);
2036     if (is_oop) {
2037       gen_write_ref_array_post_barrier(to, dword_count, rax);
2038     }
2039     restore_arg_regs();
2040     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2041     __ xorptr(rax, rax); // return 0
2042     __ leave(); // required for proper stackwalking of RuntimeStub frame
2043     __ ret(0);
2044 
2045     return start;
2046   }
2047 
2048   // Arguments:
2049   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2050   //             ignored
2051   //   is_oop  - true => oop array, so generate store check code
2052   //   name    - stub name string
2053   //
2054   // Inputs:
2055   //   c_rarg0   - source array address
2056   //   c_rarg1   - destination array address
2057   //   c_rarg2   - element count, treated as ssize_t, can be zero
2058   //
2059  // Side Effects:
2060   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
2061   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
2062   //
2063   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
2064                                           const char *name, bool dest_uninitialized = false) {
2065     __ align(CodeEntryAlignment);
2066     StubCodeMark mark(this, "StubRoutines", name);
2067     address start = __ pc();
2068 
2069     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2070     const Register from        = rdi;  // source array address
2071     const Register to          = rsi;  // destination array address
2072     const Register qword_count = rdx;  // elements count
2073     const Register end_from    = from; // source array end address
2074     const Register end_to      = rcx;  // destination array end address
2075     const Register saved_to    = to;
2076     const Register saved_count = r11;
2077     // End pointers are inclusive, and if count is not zero they point
2078     // to the last unit copied:  end_to[0] := end_from[0]
2079 
2080     __ enter(); // required for proper stackwalking of RuntimeStub frame
2081     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2082     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2083 
2084     if (entry != NULL) {
2085       *entry = __ pc();
2086       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2087       BLOCK_COMMENT("Entry:");
2088     }
2089 
2090     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2091                       // r9 and r10 may be used to save non-volatile registers
2092     // 'from', 'to' and 'qword_count' are now valid
2093     if (is_oop) {
2094       // Save to and count for store barrier
2095       __ movptr(saved_count, qword_count);
2096       // no registers are destroyed by this call
2097       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2098     }
2099 
2100     // Copy from low to high addresses.  Use 'to' as scratch.
2101     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2102     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2103     __ negptr(qword_count);
2104     __ jmp(L_copy_bytes);
2105 
2106     // Copy trailing qwords
2107   __ BIND(L_copy_8_bytes);
2108     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2109     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2110     __ increment(qword_count);
2111     __ jcc(Assembler::notZero, L_copy_8_bytes);
2112 
2113     if (is_oop) {
2114       __ jmp(L_exit);
2115     } else {
2116       restore_arg_regs();
2117       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2118       __ xorptr(rax, rax); // return 0
2119       __ leave(); // required for proper stackwalking of RuntimeStub frame
2120       __ ret(0);
2121     }
2122 
2123     // Copy in multi-bytes chunks
2124     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2125 
2126     if (is_oop) {
2127     __ BIND(L_exit);
2128       gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
2129     }
2130     restore_arg_regs();
2131     if (is_oop) {
2132       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2133     } else {
2134       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2135     }
2136     __ xorptr(rax, rax); // return 0
2137     __ leave(); // required for proper stackwalking of RuntimeStub frame
2138     __ ret(0);
2139 
2140     return start;
2141   }
2142 
2143   // Arguments:
2144   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2145   //             ignored
2146   //   is_oop  - true => oop array, so generate store check code
2147   //   name    - stub name string
2148   //
2149   // Inputs:
2150   //   c_rarg0   - source array address
2151   //   c_rarg1   - destination array address
2152   //   c_rarg2   - element count, treated as ssize_t, can be zero
2153   //
2154   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2155                                           address nooverlap_target, address *entry,
2156                                           const char *name, bool dest_uninitialized = false) {
2157     __ align(CodeEntryAlignment);
2158     StubCodeMark mark(this, "StubRoutines", name);
2159     address start = __ pc();
2160 
2161     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2162     const Register from        = rdi;  // source array address
2163     const Register to          = rsi;  // destination array address
2164     const Register qword_count = rdx;  // elements count
2165     const Register saved_count = rcx;
2166 
2167     __ enter(); // required for proper stackwalking of RuntimeStub frame
2168     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2169 
2170     if (entry != NULL) {
2171       *entry = __ pc();
2172       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2173       BLOCK_COMMENT("Entry:");
2174     }
2175 
2176     array_overlap_test(nooverlap_target, Address::times_8);
2177     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2178                       // r9 and r10 may be used to save non-volatile registers
2179     // 'from', 'to' and 'qword_count' are now valid
2180     if (is_oop) {
2181       // Save to and count for store barrier
2182       __ movptr(saved_count, qword_count);
2183       // No registers are destroyed by this call
2184       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
2185     }
2186 
2187     __ jmp(L_copy_bytes);
2188 
2189     // Copy trailing qwords
2190   __ BIND(L_copy_8_bytes);
2191     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2192     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2193     __ decrement(qword_count);
2194     __ jcc(Assembler::notZero, L_copy_8_bytes);
2195 
2196     if (is_oop) {
2197       __ jmp(L_exit);
2198     } else {
2199       restore_arg_regs();
2200       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2201       __ xorptr(rax, rax); // return 0
2202       __ leave(); // required for proper stackwalking of RuntimeStub frame
2203       __ ret(0);
2204     }
2205 
2206     // Copy in multi-bytes chunks
2207     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2208 
2209     if (is_oop) {
2210     __ BIND(L_exit);
2211       gen_write_ref_array_post_barrier(to, saved_count, rax);
2212     }
2213     restore_arg_regs();
2214     if (is_oop) {
2215       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2216     } else {
2217       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2218     }
2219     __ xorptr(rax, rax); // return 0
2220     __ leave(); // required for proper stackwalking of RuntimeStub frame
2221     __ ret(0);
2222 
2223     return start;
2224   }
2225 
2226 
2227   // Helper for generating a dynamic type check.
2228   // Smashes no registers.
2229   void generate_type_check(Register sub_klass,
2230                            Register super_check_offset,
2231                            Register super_klass,
2232                            Label& L_success) {
2233     assert_different_registers(sub_klass, super_check_offset, super_klass);
2234 
2235     BLOCK_COMMENT("type_check:");
2236 
2237     Label L_miss;
2238 
2239     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2240                                      super_check_offset);
2241     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2242 
2243     // Fall through on failure!
2244     __ BIND(L_miss);
2245   }
2246 
2247   //
2248   //  Generate checkcasting array copy stub
2249   //
2250   //  Input:
2251   //    c_rarg0   - source array address
2252   //    c_rarg1   - destination array address
2253   //    c_rarg2   - element count, treated as ssize_t, can be zero
2254   //    c_rarg3   - size_t ckoff (super_check_offset)
2255   // not Win64
2256   //    c_rarg4   - oop ckval (super_klass)
2257   // Win64
2258   //    rsp+40    - oop ckval (super_klass)
2259   //
2260   //  Output:
2261   //    rax ==  0  -  success
2262   //    rax == -1^K - failure, where K is partial transfer count
2263   //
2264   address generate_checkcast_copy(const char *name, address *entry,
2265                                   bool dest_uninitialized = false) {
2266 
2267     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2268 
2269     // Input registers (after setup_arg_regs)
2270     const Register from        = rdi;   // source array address
2271     const Register to          = rsi;   // destination array address
2272     const Register length      = rdx;   // elements count
2273     const Register ckoff       = rcx;   // super_check_offset
2274     const Register ckval       = r8;    // super_klass
2275 
2276     // Registers used as temps (r13, r14 are save-on-entry)
2277     const Register end_from    = from;  // source array end address
2278     const Register end_to      = r13;   // destination array end address
2279     const Register count       = rdx;   // -(count_remaining)
2280     const Register r14_length  = r14;   // saved copy of length
2281     // End pointers are inclusive, and if length is not zero they point
2282     // to the last unit copied:  end_to[0] := end_from[0]
2283 
2284     const Register rax_oop    = rax;    // actual oop copied
2285     const Register r11_klass  = r11;    // oop._klass
2286 
2287     //---------------------------------------------------------------
2288     // Assembler stub will be used for this call to arraycopy
2289     // if the two arrays are subtypes of Object[] but the
2290     // destination array type is not equal to or a supertype
2291     // of the source type.  Each element must be separately
2292     // checked.
2293 
2294     __ align(CodeEntryAlignment);
2295     StubCodeMark mark(this, "StubRoutines", name);
2296     address start = __ pc();
2297 
2298     __ enter(); // required for proper stackwalking of RuntimeStub frame
2299 
2300 #ifdef ASSERT
2301     // caller guarantees that the arrays really are different
2302     // otherwise, we would have to make conjoint checks
2303     { Label L;
2304       array_overlap_test(L, TIMES_OOP);
2305       __ stop("checkcast_copy within a single array");
2306       __ bind(L);
2307     }
2308 #endif //ASSERT
2309 
2310     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2311                        // ckoff => rcx, ckval => r8
2312                        // r9 and r10 may be used to save non-volatile registers
2313 #ifdef _WIN64
2314     // last argument (#4) is on stack on Win64
2315     __ movptr(ckval, Address(rsp, 6 * wordSize));
2316 #endif
2317 
2318     // Caller of this entry point must set up the argument registers.
2319     if (entry != NULL) {
2320       *entry = __ pc();
2321       BLOCK_COMMENT("Entry:");
2322     }
2323 
2324     // allocate spill slots for r13, r14
2325     enum {
2326       saved_r13_offset,
2327       saved_r14_offset,
2328       saved_rbp_offset
2329     };
2330     __ subptr(rsp, saved_rbp_offset * wordSize);
2331     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2332     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2333 
2334     // check that int operands are properly extended to size_t
2335     assert_clean_int(length, rax);
2336     assert_clean_int(ckoff, rax);
2337 
2338 #ifdef ASSERT
2339     BLOCK_COMMENT("assert consistent ckoff/ckval");
2340     // The ckoff and ckval must be mutually consistent,
2341     // even though caller generates both.
2342     { Label L;
2343       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2344       __ cmpl(ckoff, Address(ckval, sco_offset));
2345       __ jcc(Assembler::equal, L);
2346       __ stop("super_check_offset inconsistent");
2347       __ bind(L);
2348     }
2349 #endif //ASSERT
2350 
2351     // Loop-invariant addresses.  They are exclusive end pointers.
2352     Address end_from_addr(from, length, TIMES_OOP, 0);
2353     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2354     // Loop-variant addresses.  They assume post-incremented count < 0.
2355     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2356     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2357 
2358     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2359 
2360     // Copy from low to high addresses, indexed from the end of each array.
2361     __ lea(end_from, end_from_addr);
2362     __ lea(end_to,   end_to_addr);
2363     __ movptr(r14_length, length);        // save a copy of the length
2364     assert(length == count, "");          // else fix next line:
2365     __ negptr(count);                     // negate and test the length
2366     __ jcc(Assembler::notZero, L_load_element);
2367 
2368     // Empty array:  Nothing to do.
2369     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2370     __ jmp(L_done);
2371 
2372     // ======== begin loop ========
2373     // (Loop is rotated; its entry is L_load_element.)
2374     // Loop control:
2375     //   for (count = -count; count != 0; count++)
2376     // Base pointers src, dst are biased by 8*(count-1),to last element.
2377     __ align(OptoLoopAlignment);
2378 
2379     __ BIND(L_store_element);
2380     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2381     __ increment(count);               // increment the count toward zero
2382     __ jcc(Assembler::zero, L_do_card_marks);
2383 
2384     // ======== loop entry is here ========
2385     __ BIND(L_load_element);
2386     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2387     __ testptr(rax_oop, rax_oop);
2388     __ jcc(Assembler::zero, L_store_element);
2389 
2390     __ load_klass(r11_klass, rax_oop);// query the object klass
2391     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2392     // ======== end loop ========
2393 
2394     // It was a real error; we must depend on the caller to finish the job.
2395     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2396     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2397     // and report their number to the caller.
2398     assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
2399     Label L_post_barrier;
2400     __ addptr(r14_length, count);     // K = (original - remaining) oops
2401     __ movptr(rax, r14_length);       // save the value
2402     __ notptr(rax);                   // report (-1^K) to caller (does not affect flags)
2403     __ jccb(Assembler::notZero, L_post_barrier);
2404     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
2405 
2406     // Come here on success only.
2407     __ BIND(L_do_card_marks);
2408     __ xorptr(rax, rax);              // return 0 on success
2409 
2410     __ BIND(L_post_barrier);
2411     gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
2412 
2413     // Common exit point (success or failure).
2414     __ BIND(L_done);
2415     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2416     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2417     restore_arg_regs();
2418     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2419     __ leave(); // required for proper stackwalking of RuntimeStub frame
2420     __ ret(0);
2421 
2422     return start;
2423   }
2424 
2425   //
2426   //  Generate 'unsafe' array copy stub
2427   //  Though just as safe as the other stubs, it takes an unscaled
2428   //  size_t argument instead of an element count.
2429   //
2430   //  Input:
2431   //    c_rarg0   - source array address
2432   //    c_rarg1   - destination array address
2433   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2434   //
2435   // Examines the alignment of the operands and dispatches
2436   // to a long, int, short, or byte copy loop.
2437   //
2438   address generate_unsafe_copy(const char *name,
2439                                address byte_copy_entry, address short_copy_entry,
2440                                address int_copy_entry, address long_copy_entry) {
2441 
2442     Label L_long_aligned, L_int_aligned, L_short_aligned;
2443 
2444     // Input registers (before setup_arg_regs)
2445     const Register from        = c_rarg0;  // source array address
2446     const Register to          = c_rarg1;  // destination array address
2447     const Register size        = c_rarg2;  // byte count (size_t)
2448 
2449     // Register used as a temp
2450     const Register bits        = rax;      // test copy of low bits
2451 
2452     __ align(CodeEntryAlignment);
2453     StubCodeMark mark(this, "StubRoutines", name);
2454     address start = __ pc();
2455 
2456     __ enter(); // required for proper stackwalking of RuntimeStub frame
2457 
2458     // bump this on entry, not on exit:
2459     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2460 
2461     __ mov(bits, from);
2462     __ orptr(bits, to);
2463     __ orptr(bits, size);
2464 
2465     __ testb(bits, BytesPerLong-1);
2466     __ jccb(Assembler::zero, L_long_aligned);
2467 
2468     __ testb(bits, BytesPerInt-1);
2469     __ jccb(Assembler::zero, L_int_aligned);
2470 
2471     __ testb(bits, BytesPerShort-1);
2472     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2473 
2474     __ BIND(L_short_aligned);
2475     __ shrptr(size, LogBytesPerShort); // size => short_count
2476     __ jump(RuntimeAddress(short_copy_entry));
2477 
2478     __ BIND(L_int_aligned);
2479     __ shrptr(size, LogBytesPerInt); // size => int_count
2480     __ jump(RuntimeAddress(int_copy_entry));
2481 
2482     __ BIND(L_long_aligned);
2483     __ shrptr(size, LogBytesPerLong); // size => qword_count
2484     __ jump(RuntimeAddress(long_copy_entry));
2485 
2486     return start;
2487   }
2488 
2489   // Perform range checks on the proposed arraycopy.
2490   // Kills temp, but nothing else.
2491   // Also, clean the sign bits of src_pos and dst_pos.
2492   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2493                               Register src_pos, // source position (c_rarg1)
2494                               Register dst,     // destination array oo (c_rarg2)
2495                               Register dst_pos, // destination position (c_rarg3)
2496                               Register length,
2497                               Register temp,
2498                               Label& L_failed) {
2499     BLOCK_COMMENT("arraycopy_range_checks:");
2500 
2501     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2502     __ movl(temp, length);
2503     __ addl(temp, src_pos);             // src_pos + length
2504     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2505     __ jcc(Assembler::above, L_failed);
2506 
2507     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2508     __ movl(temp, length);
2509     __ addl(temp, dst_pos);             // dst_pos + length
2510     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2511     __ jcc(Assembler::above, L_failed);
2512 
2513     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2514     // Move with sign extension can be used since they are positive.
2515     __ movslq(src_pos, src_pos);
2516     __ movslq(dst_pos, dst_pos);
2517 
2518     BLOCK_COMMENT("arraycopy_range_checks done");
2519   }
2520 
2521   //
2522   //  Generate generic array copy stubs
2523   //
2524   //  Input:
2525   //    c_rarg0    -  src oop
2526   //    c_rarg1    -  src_pos (32-bits)
2527   //    c_rarg2    -  dst oop
2528   //    c_rarg3    -  dst_pos (32-bits)
2529   // not Win64
2530   //    c_rarg4    -  element count (32-bits)
2531   // Win64
2532   //    rsp+40     -  element count (32-bits)
2533   //
2534   //  Output:
2535   //    rax ==  0  -  success
2536   //    rax == -1^K - failure, where K is partial transfer count
2537   //
2538   address generate_generic_copy(const char *name,
2539                                 address byte_copy_entry, address short_copy_entry,
2540                                 address int_copy_entry, address oop_copy_entry,
2541                                 address long_copy_entry, address checkcast_copy_entry) {
2542 
2543     Label L_failed, L_failed_0, L_objArray;
2544     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2545 
2546     // Input registers
2547     const Register src        = c_rarg0;  // source array oop
2548     const Register src_pos    = c_rarg1;  // source position
2549     const Register dst        = c_rarg2;  // destination array oop
2550     const Register dst_pos    = c_rarg3;  // destination position
2551 #ifndef _WIN64
2552     const Register length     = c_rarg4;
2553 #else
2554     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2555 #endif
2556 
2557     { int modulus = CodeEntryAlignment;
2558       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2559       int advance = target - (__ offset() % modulus);
2560       if (advance < 0)  advance += modulus;
2561       if (advance > 0)  __ nop(advance);
2562     }
2563     StubCodeMark mark(this, "StubRoutines", name);
2564 
2565     // Short-hop target to L_failed.  Makes for denser prologue code.
2566     __ BIND(L_failed_0);
2567     __ jmp(L_failed);
2568     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2569 
2570     __ align(CodeEntryAlignment);
2571     address start = __ pc();
2572 
2573     __ enter(); // required for proper stackwalking of RuntimeStub frame
2574 
2575     // bump this on entry, not on exit:
2576     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2577 
2578     //-----------------------------------------------------------------------
2579     // Assembler stub will be used for this call to arraycopy
2580     // if the following conditions are met:
2581     //
2582     // (1) src and dst must not be null.
2583     // (2) src_pos must not be negative.
2584     // (3) dst_pos must not be negative.
2585     // (4) length  must not be negative.
2586     // (5) src klass and dst klass should be the same and not NULL.
2587     // (6) src and dst should be arrays.
2588     // (7) src_pos + length must not exceed length of src.
2589     // (8) dst_pos + length must not exceed length of dst.
2590     //
2591 
2592     //  if (src == NULL) return -1;
2593     __ testptr(src, src);         // src oop
2594     size_t j1off = __ offset();
2595     __ jccb(Assembler::zero, L_failed_0);
2596 
2597     //  if (src_pos < 0) return -1;
2598     __ testl(src_pos, src_pos); // src_pos (32-bits)
2599     __ jccb(Assembler::negative, L_failed_0);
2600 
2601     //  if (dst == NULL) return -1;
2602     __ testptr(dst, dst);         // dst oop
2603     __ jccb(Assembler::zero, L_failed_0);
2604 
2605     //  if (dst_pos < 0) return -1;
2606     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2607     size_t j4off = __ offset();
2608     __ jccb(Assembler::negative, L_failed_0);
2609 
2610     // The first four tests are very dense code,
2611     // but not quite dense enough to put four
2612     // jumps in a 16-byte instruction fetch buffer.
2613     // That's good, because some branch predicters
2614     // do not like jumps so close together.
2615     // Make sure of this.
2616     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2617 
2618     // registers used as temp
2619     const Register r11_length    = r11; // elements count to copy
2620     const Register r10_src_klass = r10; // array klass
2621 
2622     //  if (length < 0) return -1;
2623     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2624     __ testl(r11_length, r11_length);
2625     __ jccb(Assembler::negative, L_failed_0);
2626 
2627     __ load_klass(r10_src_klass, src);
2628 #ifdef ASSERT
2629     //  assert(src->klass() != NULL);
2630     {
2631       BLOCK_COMMENT("assert klasses not null {");
2632       Label L1, L2;
2633       __ testptr(r10_src_klass, r10_src_klass);
2634       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2635       __ bind(L1);
2636       __ stop("broken null klass");
2637       __ bind(L2);
2638       __ load_klass(rax, dst);
2639       __ cmpq(rax, 0);
2640       __ jcc(Assembler::equal, L1);     // this would be broken also
2641       BLOCK_COMMENT("} assert klasses not null done");
2642     }
2643 #endif
2644 
2645     // Load layout helper (32-bits)
2646     //
2647     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2648     // 32        30    24            16              8     2                 0
2649     //
2650     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2651     //
2652 
2653     const int lh_offset = in_bytes(Klass::layout_helper_offset());
2654 
2655     // Handle objArrays completely differently...
2656     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2657     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2658     __ jcc(Assembler::equal, L_objArray);
2659 
2660     //  if (src->klass() != dst->klass()) return -1;
2661     __ load_klass(rax, dst);
2662     __ cmpq(r10_src_klass, rax);
2663     __ jcc(Assembler::notEqual, L_failed);
2664 
2665     const Register rax_lh = rax;  // layout helper
2666     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2667 
2668     //  if (!src->is_Array()) return -1;
2669     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2670     __ jcc(Assembler::greaterEqual, L_failed);
2671 
2672     // At this point, it is known to be a typeArray (array_tag 0x3).
2673 #ifdef ASSERT
2674     {
2675       BLOCK_COMMENT("assert primitive array {");
2676       Label L;
2677       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2678       __ jcc(Assembler::greaterEqual, L);
2679       __ stop("must be a primitive array");
2680       __ bind(L);
2681       BLOCK_COMMENT("} assert primitive array done");
2682     }
2683 #endif
2684 
2685     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2686                            r10, L_failed);
2687 
2688     // TypeArrayKlass
2689     //
2690     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2691     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2692     //
2693 
2694     const Register r10_offset = r10;    // array offset
2695     const Register rax_elsize = rax_lh; // element size
2696 
2697     __ movl(r10_offset, rax_lh);
2698     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2699     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2700     __ addptr(src, r10_offset);           // src array offset
2701     __ addptr(dst, r10_offset);           // dst array offset
2702     BLOCK_COMMENT("choose copy loop based on element size");
2703     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2704 
2705     // next registers should be set before the jump to corresponding stub
2706     const Register from     = c_rarg0;  // source array address
2707     const Register to       = c_rarg1;  // destination array address
2708     const Register count    = c_rarg2;  // elements count
2709 
2710     // 'from', 'to', 'count' registers should be set in such order
2711     // since they are the same as 'src', 'src_pos', 'dst'.
2712 
2713   __ BIND(L_copy_bytes);
2714     __ cmpl(rax_elsize, 0);
2715     __ jccb(Assembler::notEqual, L_copy_shorts);
2716     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2717     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2718     __ movl2ptr(count, r11_length); // length
2719     __ jump(RuntimeAddress(byte_copy_entry));
2720 
2721   __ BIND(L_copy_shorts);
2722     __ cmpl(rax_elsize, LogBytesPerShort);
2723     __ jccb(Assembler::notEqual, L_copy_ints);
2724     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2725     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2726     __ movl2ptr(count, r11_length); // length
2727     __ jump(RuntimeAddress(short_copy_entry));
2728 
2729   __ BIND(L_copy_ints);
2730     __ cmpl(rax_elsize, LogBytesPerInt);
2731     __ jccb(Assembler::notEqual, L_copy_longs);
2732     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2733     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2734     __ movl2ptr(count, r11_length); // length
2735     __ jump(RuntimeAddress(int_copy_entry));
2736 
2737   __ BIND(L_copy_longs);
2738 #ifdef ASSERT
2739     {
2740       BLOCK_COMMENT("assert long copy {");
2741       Label L;
2742       __ cmpl(rax_elsize, LogBytesPerLong);
2743       __ jcc(Assembler::equal, L);
2744       __ stop("must be long copy, but elsize is wrong");
2745       __ bind(L);
2746       BLOCK_COMMENT("} assert long copy done");
2747     }
2748 #endif
2749     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2750     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2751     __ movl2ptr(count, r11_length); // length
2752     __ jump(RuntimeAddress(long_copy_entry));
2753 
2754     // ObjArrayKlass
2755   __ BIND(L_objArray);
2756     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2757 
2758     Label L_plain_copy, L_checkcast_copy;
2759     //  test array classes for subtyping
2760     __ load_klass(rax, dst);
2761     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2762     __ jcc(Assembler::notEqual, L_checkcast_copy);
2763 
2764     // Identically typed arrays can be copied without element-wise checks.
2765     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2766                            r10, L_failed);
2767 
2768     __ lea(from, Address(src, src_pos, TIMES_OOP,
2769                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2770     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2771                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2772     __ movl2ptr(count, r11_length); // length
2773   __ BIND(L_plain_copy);
2774     __ jump(RuntimeAddress(oop_copy_entry));
2775 
2776   __ BIND(L_checkcast_copy);
2777     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2778     {
2779       // Before looking at dst.length, make sure dst is also an objArray.
2780       __ cmpl(Address(rax, lh_offset), objArray_lh);
2781       __ jcc(Assembler::notEqual, L_failed);
2782 
2783       // It is safe to examine both src.length and dst.length.
2784       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2785                              rax, L_failed);
2786 
2787       const Register r11_dst_klass = r11;
2788       __ load_klass(r11_dst_klass, dst); // reload
2789 
2790       // Marshal the base address arguments now, freeing registers.
2791       __ lea(from, Address(src, src_pos, TIMES_OOP,
2792                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2793       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2794                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2795       __ movl(count, length);           // length (reloaded)
2796       Register sco_temp = c_rarg3;      // this register is free now
2797       assert_different_registers(from, to, count, sco_temp,
2798                                  r11_dst_klass, r10_src_klass);
2799       assert_clean_int(count, sco_temp);
2800 
2801       // Generate the type check.
2802       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2803       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2804       assert_clean_int(sco_temp, rax);
2805       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2806 
2807       // Fetch destination element klass from the ObjArrayKlass header.
2808       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2809       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2810       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2811       assert_clean_int(sco_temp, rax);
2812 
2813       // the checkcast_copy loop needs two extra arguments:
2814       assert(c_rarg3 == sco_temp, "#3 already in place");
2815       // Set up arguments for checkcast_copy_entry.
2816       setup_arg_regs(4);
2817       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2818       __ jump(RuntimeAddress(checkcast_copy_entry));
2819     }
2820 
2821   __ BIND(L_failed);
2822     __ xorptr(rax, rax);
2823     __ notptr(rax); // return -1
2824     __ leave();   // required for proper stackwalking of RuntimeStub frame
2825     __ ret(0);
2826 
2827     return start;
2828   }
2829 
2830   void generate_arraycopy_stubs() {
2831     address entry;
2832     address entry_jbyte_arraycopy;
2833     address entry_jshort_arraycopy;
2834     address entry_jint_arraycopy;
2835     address entry_oop_arraycopy;
2836     address entry_jlong_arraycopy;
2837     address entry_checkcast_arraycopy;
2838 
2839     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2840                                                                            "jbyte_disjoint_arraycopy");
2841     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2842                                                                            "jbyte_arraycopy");
2843 
2844     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2845                                                                             "jshort_disjoint_arraycopy");
2846     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2847                                                                             "jshort_arraycopy");
2848 
2849     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2850                                                                               "jint_disjoint_arraycopy");
2851     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2852                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2853 
2854     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2855                                                                                "jlong_disjoint_arraycopy");
2856     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2857                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2858 
2859 
2860     if (UseCompressedOops) {
2861       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2862                                                                               "oop_disjoint_arraycopy");
2863       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2864                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2865       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2866                                                                                      "oop_disjoint_arraycopy_uninit",
2867                                                                                      /*dest_uninitialized*/true);
2868       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2869                                                                                      NULL, "oop_arraycopy_uninit",
2870                                                                                      /*dest_uninitialized*/true);
2871     } else {
2872       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2873                                                                                "oop_disjoint_arraycopy");
2874       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2875                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2876       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2877                                                                                       "oop_disjoint_arraycopy_uninit",
2878                                                                                       /*dest_uninitialized*/true);
2879       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2880                                                                                       NULL, "oop_arraycopy_uninit",
2881                                                                                       /*dest_uninitialized*/true);
2882     }
2883 
2884     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2885     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2886                                                                         /*dest_uninitialized*/true);
2887 
2888     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2889                                                               entry_jbyte_arraycopy,
2890                                                               entry_jshort_arraycopy,
2891                                                               entry_jint_arraycopy,
2892                                                               entry_jlong_arraycopy);
2893     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2894                                                                entry_jbyte_arraycopy,
2895                                                                entry_jshort_arraycopy,
2896                                                                entry_jint_arraycopy,
2897                                                                entry_oop_arraycopy,
2898                                                                entry_jlong_arraycopy,
2899                                                                entry_checkcast_arraycopy);
2900 
2901     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2902     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2903     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2904     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2905     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2906     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2907 
2908     // We don't generate specialized code for HeapWord-aligned source
2909     // arrays, so just use the code we've already generated
2910     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2911     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2912 
2913     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2914     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2915 
2916     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2917     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2918 
2919     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2920     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2921 
2922     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2923     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2924 
2925     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2926     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2927   }
2928 
2929   void generate_math_stubs() {
2930     {
2931       StubCodeMark mark(this, "StubRoutines", "log");
2932       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2933 
2934       __ subq(rsp, 8);
2935       __ movdbl(Address(rsp, 0), xmm0);
2936       __ fld_d(Address(rsp, 0));
2937       __ flog();
2938       __ fstp_d(Address(rsp, 0));
2939       __ movdbl(xmm0, Address(rsp, 0));
2940       __ addq(rsp, 8);
2941       __ ret(0);
2942     }
2943     {
2944       StubCodeMark mark(this, "StubRoutines", "log10");
2945       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2946 
2947       __ subq(rsp, 8);
2948       __ movdbl(Address(rsp, 0), xmm0);
2949       __ fld_d(Address(rsp, 0));
2950       __ flog10();
2951       __ fstp_d(Address(rsp, 0));
2952       __ movdbl(xmm0, Address(rsp, 0));
2953       __ addq(rsp, 8);
2954       __ ret(0);
2955     }
2956     {
2957       StubCodeMark mark(this, "StubRoutines", "sin");
2958       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2959 
2960       __ subq(rsp, 8);
2961       __ movdbl(Address(rsp, 0), xmm0);
2962       __ fld_d(Address(rsp, 0));
2963       __ trigfunc('s');
2964       __ fstp_d(Address(rsp, 0));
2965       __ movdbl(xmm0, Address(rsp, 0));
2966       __ addq(rsp, 8);
2967       __ ret(0);
2968     }
2969     {
2970       StubCodeMark mark(this, "StubRoutines", "cos");
2971       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2972 
2973       __ subq(rsp, 8);
2974       __ movdbl(Address(rsp, 0), xmm0);
2975       __ fld_d(Address(rsp, 0));
2976       __ trigfunc('c');
2977       __ fstp_d(Address(rsp, 0));
2978       __ movdbl(xmm0, Address(rsp, 0));
2979       __ addq(rsp, 8);
2980       __ ret(0);
2981     }
2982     {
2983       StubCodeMark mark(this, "StubRoutines", "tan");
2984       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2985 
2986       __ subq(rsp, 8);
2987       __ movdbl(Address(rsp, 0), xmm0);
2988       __ fld_d(Address(rsp, 0));
2989       __ trigfunc('t');
2990       __ fstp_d(Address(rsp, 0));
2991       __ movdbl(xmm0, Address(rsp, 0));
2992       __ addq(rsp, 8);
2993       __ ret(0);
2994     }
2995     {
2996       StubCodeMark mark(this, "StubRoutines", "exp");
2997       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2998 
2999       __ subq(rsp, 8);
3000       __ movdbl(Address(rsp, 0), xmm0);
3001       __ fld_d(Address(rsp, 0));
3002       __ exp_with_fallback(0);
3003       __ fstp_d(Address(rsp, 0));
3004       __ movdbl(xmm0, Address(rsp, 0));
3005       __ addq(rsp, 8);
3006       __ ret(0);
3007     }
3008     {
3009       StubCodeMark mark(this, "StubRoutines", "pow");
3010       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
3011 
3012       __ subq(rsp, 8);
3013       __ movdbl(Address(rsp, 0), xmm1);
3014       __ fld_d(Address(rsp, 0));
3015       __ movdbl(Address(rsp, 0), xmm0);
3016       __ fld_d(Address(rsp, 0));
3017       __ pow_with_fallback(0);
3018       __ fstp_d(Address(rsp, 0));
3019       __ movdbl(xmm0, Address(rsp, 0));
3020       __ addq(rsp, 8);
3021       __ ret(0);
3022     }
3023   }
3024 
3025   // AES intrinsic stubs
3026   enum {AESBlockSize = 16};
3027 
3028   address generate_key_shuffle_mask() {
3029     __ align(16);
3030     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
3031     address start = __ pc();
3032     __ emit_data64( 0x0405060700010203, relocInfo::none );
3033     __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
3034     return start;
3035   }
3036 
3037   // Utility routine for loading a 128-bit key word in little endian format
3038   // can optionally specify that the shuffle mask is already in an xmmregister
3039   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
3040     __ movdqu(xmmdst, Address(key, offset));
3041     if (xmm_shuf_mask != NULL) {
3042       __ pshufb(xmmdst, xmm_shuf_mask);
3043     } else {
3044       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3045     }
3046   }
3047 
3048   // Arguments:
3049   //
3050   // Inputs:
3051   //   c_rarg0   - source byte array address
3052   //   c_rarg1   - destination byte array address
3053   //   c_rarg2   - K (key) in little endian int array
3054   //
3055   address generate_aescrypt_encryptBlock() {
3056     assert(UseAES, "need AES instructions and misaligned SSE support");
3057     __ align(CodeEntryAlignment);
3058     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
3059     Label L_doLast;
3060     address start = __ pc();
3061 
3062     const Register from        = c_rarg0;  // source array address
3063     const Register to          = c_rarg1;  // destination array address
3064     const Register key         = c_rarg2;  // key array address
3065     const Register keylen      = rax;
3066 
3067     const XMMRegister xmm_result = xmm0;
3068     const XMMRegister xmm_key_shuf_mask = xmm1;
3069     // On win64 xmm6-xmm15 must be preserved so don't use them.
3070     const XMMRegister xmm_temp1  = xmm2;
3071     const XMMRegister xmm_temp2  = xmm3;
3072     const XMMRegister xmm_temp3  = xmm4;
3073     const XMMRegister xmm_temp4  = xmm5;
3074 
3075     __ enter(); // required for proper stackwalking of RuntimeStub frame
3076 
3077     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3078     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3079 
3080     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3081     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
3082 
3083     // For encryption, the java expanded key ordering is just what we need
3084     // we don't know if the key is aligned, hence not using load-execute form
3085 
3086     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
3087     __ pxor(xmm_result, xmm_temp1);
3088 
3089     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3090     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3091     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3092     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3093 
3094     __ aesenc(xmm_result, xmm_temp1);
3095     __ aesenc(xmm_result, xmm_temp2);
3096     __ aesenc(xmm_result, xmm_temp3);
3097     __ aesenc(xmm_result, xmm_temp4);
3098 
3099     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3100     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3101     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3102     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3103 
3104     __ aesenc(xmm_result, xmm_temp1);
3105     __ aesenc(xmm_result, xmm_temp2);
3106     __ aesenc(xmm_result, xmm_temp3);
3107     __ aesenc(xmm_result, xmm_temp4);
3108 
3109     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3110     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3111 
3112     __ cmpl(keylen, 44);
3113     __ jccb(Assembler::equal, L_doLast);
3114 
3115     __ aesenc(xmm_result, xmm_temp1);
3116     __ aesenc(xmm_result, xmm_temp2);
3117 
3118     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3119     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3120 
3121     __ cmpl(keylen, 52);
3122     __ jccb(Assembler::equal, L_doLast);
3123 
3124     __ aesenc(xmm_result, xmm_temp1);
3125     __ aesenc(xmm_result, xmm_temp2);
3126 
3127     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3128     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3129 
3130     __ BIND(L_doLast);
3131     __ aesenc(xmm_result, xmm_temp1);
3132     __ aesenclast(xmm_result, xmm_temp2);
3133     __ movdqu(Address(to, 0), xmm_result);        // store the result
3134     __ xorptr(rax, rax); // return 0
3135     __ leave(); // required for proper stackwalking of RuntimeStub frame
3136     __ ret(0);
3137 
3138     return start;
3139   }
3140 
3141 
3142   // Arguments:
3143   //
3144   // Inputs:
3145   //   c_rarg0   - source byte array address
3146   //   c_rarg1   - destination byte array address
3147   //   c_rarg2   - K (key) in little endian int array
3148   //
3149   address generate_aescrypt_decryptBlock() {
3150     assert(UseAES, "need AES instructions and misaligned SSE support");
3151     __ align(CodeEntryAlignment);
3152     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
3153     Label L_doLast;
3154     address start = __ pc();
3155 
3156     const Register from        = c_rarg0;  // source array address
3157     const Register to          = c_rarg1;  // destination array address
3158     const Register key         = c_rarg2;  // key array address
3159     const Register keylen      = rax;
3160 
3161     const XMMRegister xmm_result = xmm0;
3162     const XMMRegister xmm_key_shuf_mask = xmm1;
3163     // On win64 xmm6-xmm15 must be preserved so don't use them.
3164     const XMMRegister xmm_temp1  = xmm2;
3165     const XMMRegister xmm_temp2  = xmm3;
3166     const XMMRegister xmm_temp3  = xmm4;
3167     const XMMRegister xmm_temp4  = xmm5;
3168 
3169     __ enter(); // required for proper stackwalking of RuntimeStub frame
3170 
3171     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3172     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3173 
3174     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3175     __ movdqu(xmm_result, Address(from, 0));
3176 
3177     // for decryption java expanded key ordering is rotated one position from what we want
3178     // so we start from 0x10 here and hit 0x00 last
3179     // we don't know if the key is aligned, hence not using load-execute form
3180     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3181     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3182     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3183     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3184 
3185     __ pxor  (xmm_result, xmm_temp1);
3186     __ aesdec(xmm_result, xmm_temp2);
3187     __ aesdec(xmm_result, xmm_temp3);
3188     __ aesdec(xmm_result, xmm_temp4);
3189 
3190     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3191     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3192     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3193     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3194 
3195     __ aesdec(xmm_result, xmm_temp1);
3196     __ aesdec(xmm_result, xmm_temp2);
3197     __ aesdec(xmm_result, xmm_temp3);
3198     __ aesdec(xmm_result, xmm_temp4);
3199 
3200     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3201     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3202     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
3203 
3204     __ cmpl(keylen, 44);
3205     __ jccb(Assembler::equal, L_doLast);
3206 
3207     __ aesdec(xmm_result, xmm_temp1);
3208     __ aesdec(xmm_result, xmm_temp2);
3209 
3210     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3211     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3212 
3213     __ cmpl(keylen, 52);
3214     __ jccb(Assembler::equal, L_doLast);
3215 
3216     __ aesdec(xmm_result, xmm_temp1);
3217     __ aesdec(xmm_result, xmm_temp2);
3218 
3219     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3220     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3221 
3222     __ BIND(L_doLast);
3223     __ aesdec(xmm_result, xmm_temp1);
3224     __ aesdec(xmm_result, xmm_temp2);
3225 
3226     // for decryption the aesdeclast operation is always on key+0x00
3227     __ aesdeclast(xmm_result, xmm_temp3);
3228     __ movdqu(Address(to, 0), xmm_result);  // store the result
3229     __ xorptr(rax, rax); // return 0
3230     __ leave(); // required for proper stackwalking of RuntimeStub frame
3231     __ ret(0);
3232 
3233     return start;
3234   }
3235 
3236 
3237   // Arguments:
3238   //
3239   // Inputs:
3240   //   c_rarg0   - source byte array address
3241   //   c_rarg1   - destination byte array address
3242   //   c_rarg2   - K (key) in little endian int array
3243   //   c_rarg3   - r vector byte array address
3244   //   c_rarg4   - input length
3245   //
3246   // Output:
3247   //   rax       - input length
3248   //
3249   address generate_cipherBlockChaining_encryptAESCrypt() {
3250     assert(UseAES, "need AES instructions and misaligned SSE support");
3251     __ align(CodeEntryAlignment);
3252     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
3253     address start = __ pc();
3254 
3255     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
3256     const Register from        = c_rarg0;  // source array address
3257     const Register to          = c_rarg1;  // destination array address
3258     const Register key         = c_rarg2;  // key array address
3259     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3260                                            // and left with the results of the last encryption block
3261 #ifndef _WIN64
3262     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3263 #else
3264     const Address  len_mem(rbp, 6 * wordSize);  // length is on stack on Win64
3265     const Register len_reg     = r10;      // pick the first volatile windows register
3266 #endif
3267     const Register pos         = rax;
3268 
3269     // xmm register assignments for the loops below
3270     const XMMRegister xmm_result = xmm0;
3271     const XMMRegister xmm_temp   = xmm1;
3272     // keys 0-10 preloaded into xmm2-xmm12
3273     const int XMM_REG_NUM_KEY_FIRST = 2;
3274     const int XMM_REG_NUM_KEY_LAST  = 15;
3275     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3276     const XMMRegister xmm_key10  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
3277     const XMMRegister xmm_key11  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
3278     const XMMRegister xmm_key12  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
3279     const XMMRegister xmm_key13  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
3280 
3281     __ enter(); // required for proper stackwalking of RuntimeStub frame
3282 
3283 #ifdef _WIN64
3284     // on win64, fill len_reg from stack position
3285     __ movl(len_reg, len_mem);
3286     // save the xmm registers which must be preserved 6-15
3287     __ subptr(rsp, -rsp_after_call_off * wordSize);
3288     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3289       __ movdqu(xmm_save(i), as_XMMRegister(i));
3290     }
3291 #else
3292     __ push(len_reg); // Save
3293 #endif
3294 
3295     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
3296     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3297     // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
3298     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
3299       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3300       offset += 0x10;
3301     }
3302     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
3303 
3304     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3305     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3306     __ cmpl(rax, 44);
3307     __ jcc(Assembler::notEqual, L_key_192_256);
3308 
3309     // 128 bit code follows here
3310     __ movptr(pos, 0);
3311     __ align(OptoLoopAlignment);
3312 
3313     __ BIND(L_loopTop_128);
3314     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3315     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3316     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3317     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
3318       __ aesenc(xmm_result, as_XMMRegister(rnum));
3319     }
3320     __ aesenclast(xmm_result, xmm_key10);
3321     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3322     // no need to store r to memory until we exit
3323     __ addptr(pos, AESBlockSize);
3324     __ subptr(len_reg, AESBlockSize);
3325     __ jcc(Assembler::notEqual, L_loopTop_128);
3326 
3327     __ BIND(L_exit);
3328     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
3329 
3330 #ifdef _WIN64
3331     // restore xmm regs belonging to calling function
3332     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3333       __ movdqu(as_XMMRegister(i), xmm_save(i));
3334     }
3335     __ movl(rax, len_mem);
3336 #else
3337     __ pop(rax); // return length
3338 #endif
3339     __ leave(); // required for proper stackwalking of RuntimeStub frame
3340     __ ret(0);
3341 
3342     __ BIND(L_key_192_256);
3343     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3344     load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
3345     load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
3346     __ cmpl(rax, 52);
3347     __ jcc(Assembler::notEqual, L_key_256);
3348 
3349     // 192-bit code follows here (could be changed to use more xmm registers)
3350     __ movptr(pos, 0);
3351     __ align(OptoLoopAlignment);
3352 
3353     __ BIND(L_loopTop_192);
3354     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3355     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3356     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3357     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
3358       __ aesenc(xmm_result, as_XMMRegister(rnum));
3359     }
3360     __ aesenclast(xmm_result, xmm_key12);
3361     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3362     // no need to store r to memory until we exit
3363     __ addptr(pos, AESBlockSize);
3364     __ subptr(len_reg, AESBlockSize);
3365     __ jcc(Assembler::notEqual, L_loopTop_192);
3366     __ jmp(L_exit);
3367 
3368     __ BIND(L_key_256);
3369     // 256-bit code follows here (could be changed to use more xmm registers)
3370     load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
3371     __ movptr(pos, 0);
3372     __ align(OptoLoopAlignment);
3373 
3374     __ BIND(L_loopTop_256);
3375     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3376     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3377     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3378     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
3379       __ aesenc(xmm_result, as_XMMRegister(rnum));
3380     }
3381     load_key(xmm_temp, key, 0xe0);
3382     __ aesenclast(xmm_result, xmm_temp);
3383     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3384     // no need to store r to memory until we exit
3385     __ addptr(pos, AESBlockSize);
3386     __ subptr(len_reg, AESBlockSize);
3387     __ jcc(Assembler::notEqual, L_loopTop_256);
3388     __ jmp(L_exit);
3389 
3390     return start;
3391   }
3392 
3393   // Safefetch stubs.
3394   void generate_safefetch(const char* name, int size, address* entry,
3395                           address* fault_pc, address* continuation_pc) {
3396     // safefetch signatures:
3397     //   int      SafeFetch32(int*      adr, int      errValue);
3398     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3399     //
3400     // arguments:
3401     //   c_rarg0 = adr
3402     //   c_rarg1 = errValue
3403     //
3404     // result:
3405     //   PPC_RET  = *adr or errValue
3406 
3407     StubCodeMark mark(this, "StubRoutines", name);
3408 
3409     // Entry point, pc or function descriptor.
3410     *entry = __ pc();
3411 
3412     // Load *adr into c_rarg1, may fault.
3413     *fault_pc = __ pc();
3414     switch (size) {
3415       case 4:
3416         // int32_t
3417         __ movl(c_rarg1, Address(c_rarg0, 0));
3418         break;
3419       case 8:
3420         // int64_t
3421         __ movq(c_rarg1, Address(c_rarg0, 0));
3422         break;
3423       default:
3424         ShouldNotReachHere();
3425     }
3426 
3427     // return errValue or *adr
3428     *continuation_pc = __ pc();
3429     __ movq(rax, c_rarg1);
3430     __ ret(0);
3431   }
3432 
3433   // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
3434   // to hide instruction latency
3435   //
3436   // Arguments:
3437   //
3438   // Inputs:
3439   //   c_rarg0   - source byte array address
3440   //   c_rarg1   - destination byte array address
3441   //   c_rarg2   - K (key) in little endian int array
3442   //   c_rarg3   - r vector byte array address
3443   //   c_rarg4   - input length
3444   //
3445   // Output:
3446   //   rax       - input length
3447   //
3448 
3449   address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
3450     assert(UseAES, "need AES instructions and misaligned SSE support");
3451     __ align(CodeEntryAlignment);
3452     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
3453     address start = __ pc();
3454 
3455     Label L_exit, L_key_192_256, L_key_256;
3456     Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
3457     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
3458     const Register from        = c_rarg0;  // source array address
3459     const Register to          = c_rarg1;  // destination array address
3460     const Register key         = c_rarg2;  // key array address
3461     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3462                                            // and left with the results of the last encryption block
3463 #ifndef _WIN64
3464     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3465 #else
3466     const Address  len_mem(rbp, 6 * wordSize);  // length is on stack on Win64
3467     const Register len_reg     = r10;      // pick the first volatile windows register
3468 #endif
3469     const Register pos         = rax;
3470 
3471     // keys 0-10 preloaded into xmm2-xmm12
3472     const int XMM_REG_NUM_KEY_FIRST = 5;
3473     const int XMM_REG_NUM_KEY_LAST  = 15;
3474     const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3475     const XMMRegister xmm_key_last  = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
3476 
3477     __ enter(); // required for proper stackwalking of RuntimeStub frame
3478 
3479 #ifdef _WIN64
3480     // on win64, fill len_reg from stack position
3481     __ movl(len_reg, len_mem);
3482     // save the xmm registers which must be preserved 6-15
3483     __ subptr(rsp, -rsp_after_call_off * wordSize);
3484     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3485       __ movdqu(xmm_save(i), as_XMMRegister(i));
3486     }
3487 #else
3488     __ push(len_reg); // Save
3489 #endif
3490 
3491     // the java expanded key ordering is rotated one position from what we want
3492     // so we start from 0x10 here and hit 0x00 last
3493     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
3494     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3495     // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
3496     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
3497       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3498       offset += 0x10;
3499     }
3500     load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
3501 
3502     const XMMRegister xmm_prev_block_cipher = xmm1;  // holds cipher of previous block
3503 
3504     // registers holding the four results in the parallelized loop
3505     const XMMRegister xmm_result0 = xmm0;
3506     const XMMRegister xmm_result1 = xmm2;
3507     const XMMRegister xmm_result2 = xmm3;
3508     const XMMRegister xmm_result3 = xmm4;
3509 
3510     __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));   // initialize with initial rvec
3511 
3512     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3513     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3514     __ cmpl(rax, 44);
3515     __ jcc(Assembler::notEqual, L_key_192_256);
3516 
3517 
3518     // 128-bit code follows here, parallelized
3519     __ movptr(pos, 0);
3520     __ align(OptoLoopAlignment);
3521     __ BIND(L_multiBlock_loopTop_128);
3522     __ cmpptr(len_reg, 4*AESBlockSize);           // see if at least 4 blocks left
3523     __ jcc(Assembler::less, L_singleBlock_loopTop_128);
3524 
3525     __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize));   // get next 4 blocks into xmmresult registers
3526     __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
3527     __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
3528     __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
3529 
3530 #define DoFour(opc, src_reg)                    \
3531     __ opc(xmm_result0, src_reg);               \
3532     __ opc(xmm_result1, src_reg);               \
3533     __ opc(xmm_result2, src_reg);               \
3534     __ opc(xmm_result3, src_reg);
3535 
3536     DoFour(pxor, xmm_key_first);
3537     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3538       DoFour(aesdec, as_XMMRegister(rnum));
3539     }
3540     DoFour(aesdeclast, xmm_key_last);
3541     // for each result, xor with the r vector of previous cipher block
3542     __ pxor(xmm_result0, xmm_prev_block_cipher);
3543     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
3544     __ pxor(xmm_result1, xmm_prev_block_cipher);
3545     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
3546     __ pxor(xmm_result2, xmm_prev_block_cipher);
3547     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
3548     __ pxor(xmm_result3, xmm_prev_block_cipher);
3549     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize));   // this will carry over to next set of blocks
3550 
3551     __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0);     // store 4 results into the next 64 bytes of output
3552     __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
3553     __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
3554     __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
3555 
3556     __ addptr(pos, 4*AESBlockSize);
3557     __ subptr(len_reg, 4*AESBlockSize);
3558     __ jmp(L_multiBlock_loopTop_128);
3559 
3560     // registers used in the non-parallelized loops
3561     // xmm register assignments for the loops below
3562     const XMMRegister xmm_result = xmm0;
3563     const XMMRegister xmm_prev_block_cipher_save = xmm2;
3564     const XMMRegister xmm_key11 = xmm3;
3565     const XMMRegister xmm_key12 = xmm4;
3566     const XMMRegister xmm_temp  = xmm4;
3567 
3568     __ align(OptoLoopAlignment);
3569     __ BIND(L_singleBlock_loopTop_128);
3570     __ cmpptr(len_reg, 0);           // any blocks left??
3571     __ jcc(Assembler::equal, L_exit);
3572     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3573     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3574     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3575     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3576       __ aesdec(xmm_result, as_XMMRegister(rnum));
3577     }
3578     __ aesdeclast(xmm_result, xmm_key_last);
3579     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3580     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3581     // no need to store r to memory until we exit
3582     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);              // set up next r vector with cipher input from this block
3583 
3584     __ addptr(pos, AESBlockSize);
3585     __ subptr(len_reg, AESBlockSize);
3586     __ jmp(L_singleBlock_loopTop_128);
3587 
3588 
3589     __ BIND(L_exit);
3590     __ movdqu(Address(rvec, 0), xmm_prev_block_cipher);     // final value of r stored in rvec of CipherBlockChaining object
3591 #ifdef _WIN64
3592     // restore regs belonging to calling function
3593     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3594       __ movdqu(as_XMMRegister(i), xmm_save(i));
3595     }
3596     __ movl(rax, len_mem);
3597 #else
3598     __ pop(rax); // return length
3599 #endif
3600     __ leave(); // required for proper stackwalking of RuntimeStub frame
3601     __ ret(0);
3602 
3603 
3604     __ BIND(L_key_192_256);
3605     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3606     load_key(xmm_key11, key, 0xb0);
3607     __ cmpl(rax, 52);
3608     __ jcc(Assembler::notEqual, L_key_256);
3609 
3610     // 192-bit code follows here (could be optimized to use parallelism)
3611     load_key(xmm_key12, key, 0xc0);     // 192-bit key goes up to c0
3612     __ movptr(pos, 0);
3613     __ align(OptoLoopAlignment);
3614 
3615     __ BIND(L_singleBlock_loopTop_192);
3616     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3617     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3618     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3619     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3620       __ aesdec(xmm_result, as_XMMRegister(rnum));
3621     }
3622     __ aesdec(xmm_result, xmm_key11);
3623     __ aesdec(xmm_result, xmm_key12);
3624     __ aesdeclast(xmm_result, xmm_key_last);                    // xmm15 always came from key+0
3625     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3626     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3627     // no need to store r to memory until we exit
3628     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3629     __ addptr(pos, AESBlockSize);
3630     __ subptr(len_reg, AESBlockSize);
3631     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
3632     __ jmp(L_exit);
3633 
3634     __ BIND(L_key_256);
3635     // 256-bit code follows here (could be optimized to use parallelism)
3636     __ movptr(pos, 0);
3637     __ align(OptoLoopAlignment);
3638 
3639     __ BIND(L_singleBlock_loopTop_256);
3640     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
3641     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3642     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3643     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3644       __ aesdec(xmm_result, as_XMMRegister(rnum));
3645     }
3646     __ aesdec(xmm_result, xmm_key11);
3647     load_key(xmm_temp, key, 0xc0);
3648     __ aesdec(xmm_result, xmm_temp);
3649     load_key(xmm_temp, key, 0xd0);
3650     __ aesdec(xmm_result, xmm_temp);
3651     load_key(xmm_temp, key, 0xe0);     // 256-bit key goes up to e0
3652     __ aesdec(xmm_result, xmm_temp);
3653     __ aesdeclast(xmm_result, xmm_key_last);          // xmm15 came from key+0
3654     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3655     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3656     // no need to store r to memory until we exit
3657     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3658     __ addptr(pos, AESBlockSize);
3659     __ subptr(len_reg, AESBlockSize);
3660     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
3661     __ jmp(L_exit);
3662 
3663     return start;
3664   }
3665 
3666   /**
3667    *  Arguments:
3668    *
3669    * Inputs:
3670    *   c_rarg0   - int crc
3671    *   c_rarg1   - byte* buf
3672    *   c_rarg2   - int length
3673    *
3674    * Ouput:
3675    *       rax   - int crc result
3676    */
3677   address generate_updateBytesCRC32() {
3678     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3679 
3680     __ align(CodeEntryAlignment);
3681     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
3682 
3683     address start = __ pc();
3684     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3685     // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3686     // rscratch1: r10
3687     const Register crc   = c_rarg0;  // crc
3688     const Register buf   = c_rarg1;  // source java byte array address
3689     const Register len   = c_rarg2;  // length
3690     const Register table = c_rarg3;  // crc_table address (reuse register)
3691     const Register tmp   = r11;
3692     assert_different_registers(crc, buf, len, table, tmp, rax);
3693 
3694     BLOCK_COMMENT("Entry:");
3695     __ enter(); // required for proper stackwalking of RuntimeStub frame
3696 
3697     __ kernel_crc32(crc, buf, len, table, tmp);
3698 
3699     __ movl(rax, crc);
3700     __ leave(); // required for proper stackwalking of RuntimeStub frame
3701     __ ret(0);
3702 
3703     return start;
3704   }
3705 
3706 
3707   /**
3708    *  Arguments:
3709    *
3710    *  Input:
3711    *    c_rarg0   - x address
3712    *    c_rarg1   - x length
3713    *    c_rarg2   - y address
3714    *    c_rarg3   - y lenth
3715    * not Win64
3716    *    c_rarg4   - z address
3717    *    c_rarg5   - z length
3718    * Win64
3719    *    rsp+40    - z address
3720    *    rsp+48    - z length
3721    */
3722   address generate_multiplyToLen() {
3723     __ align(CodeEntryAlignment);
3724     StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
3725 
3726     address start = __ pc();
3727     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3728     // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3729     const Register x     = rdi;
3730     const Register xlen  = rax;
3731     const Register y     = rsi;
3732     const Register ylen  = rcx;
3733     const Register z     = r8;
3734     const Register zlen  = r11;
3735 
3736     // Next registers will be saved on stack in multiply_to_len().
3737     const Register tmp1  = r12;
3738     const Register tmp2  = r13;
3739     const Register tmp3  = r14;
3740     const Register tmp4  = r15;
3741     const Register tmp5  = rbx;
3742 
3743     BLOCK_COMMENT("Entry:");
3744     __ enter(); // required for proper stackwalking of RuntimeStub frame
3745 
3746 #ifndef _WIN64
3747     __ movptr(zlen, r9); // Save r9 in r11 - zlen
3748 #endif
3749     setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3750                        // ylen => rcx, z => r8, zlen => r11
3751                        // r9 and r10 may be used to save non-volatile registers
3752 #ifdef _WIN64
3753     // last 2 arguments (#4, #5) are on stack on Win64
3754     __ movptr(z, Address(rsp, 6 * wordSize));
3755     __ movptr(zlen, Address(rsp, 7 * wordSize));
3756 #endif
3757 
3758     __ movptr(xlen, rsi);
3759     __ movptr(y,    rdx);
3760     __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
3761 
3762     restore_arg_regs();
3763 
3764     __ leave(); // required for proper stackwalking of RuntimeStub frame
3765     __ ret(0);
3766 
3767     return start;
3768   }
3769 
3770 #undef __
3771 #define __ masm->
3772 
3773   // Continuation point for throwing of implicit exceptions that are
3774   // not handled in the current activation. Fabricates an exception
3775   // oop and initiates normal exception dispatching in this
3776   // frame. Since we need to preserve callee-saved values (currently
3777   // only for C2, but done for C1 as well) we need a callee-saved oop
3778   // map and therefore have to make these stubs into RuntimeStubs
3779   // rather than BufferBlobs.  If the compiler needs all registers to
3780   // be preserved between the fault point and the exception handler
3781   // then it must assume responsibility for that in
3782   // AbstractCompiler::continuation_for_implicit_null_exception or
3783   // continuation_for_implicit_division_by_zero_exception. All other
3784   // implicit exceptions (e.g., NullPointerException or
3785   // AbstractMethodError on entry) are either at call sites or
3786   // otherwise assume that stack unwinding will be initiated, so
3787   // caller saved registers were assumed volatile in the compiler.
3788   address generate_throw_exception(const char* name,
3789                                    address runtime_entry,
3790                                    Register arg1 = noreg,
3791                                    Register arg2 = noreg) {
3792     // Information about frame layout at time of blocking runtime call.
3793     // Note that we only have to preserve callee-saved registers since
3794     // the compilers are responsible for supplying a continuation point
3795     // if they expect all registers to be preserved.
3796     enum layout {
3797       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
3798       rbp_off2,
3799       return_off,
3800       return_off2,
3801       framesize // inclusive of return address
3802     };
3803 
3804     int insts_size = 512;
3805     int locs_size  = 64;
3806 
3807     CodeBuffer code(name, insts_size, locs_size);
3808     OopMapSet* oop_maps  = new OopMapSet();
3809     MacroAssembler* masm = new MacroAssembler(&code);
3810 
3811     address start = __ pc();
3812 
3813     // This is an inlined and slightly modified version of call_VM
3814     // which has the ability to fetch the return PC out of
3815     // thread-local storage and also sets up last_Java_sp slightly
3816     // differently than the real call_VM
3817 
3818     __ enter(); // required for proper stackwalking of RuntimeStub frame
3819 
3820     assert(is_even(framesize/2), "sp not 16-byte aligned");
3821 
3822     // return address and rbp are already in place
3823     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
3824 
3825     int frame_complete = __ pc() - start;
3826 
3827     // Set up last_Java_sp and last_Java_fp
3828     address the_pc = __ pc();
3829     __ set_last_Java_frame(rsp, rbp, the_pc);
3830     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3831 
3832     // Call runtime
3833     if (arg1 != noreg) {
3834       assert(arg2 != c_rarg1, "clobbered");
3835       __ movptr(c_rarg1, arg1);
3836     }
3837     if (arg2 != noreg) {
3838       __ movptr(c_rarg2, arg2);
3839     }
3840     __ movptr(c_rarg0, r15_thread);
3841     BLOCK_COMMENT("call runtime_entry");
3842     __ call(RuntimeAddress(runtime_entry));
3843 
3844     // Generate oop map
3845     OopMap* map = new OopMap(framesize, 0);
3846 
3847     oop_maps->add_gc_map(the_pc - start, map);
3848 
3849     __ reset_last_Java_frame(true, true);
3850 
3851     __ leave(); // required for proper stackwalking of RuntimeStub frame
3852 
3853     // check for pending exceptions
3854 #ifdef ASSERT
3855     Label L;
3856     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
3857             (int32_t) NULL_WORD);
3858     __ jcc(Assembler::notEqual, L);
3859     __ should_not_reach_here();
3860     __ bind(L);
3861 #endif // ASSERT
3862     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3863 
3864 
3865     // codeBlob framesize is in words (not VMRegImpl::slot_size)
3866     RuntimeStub* stub =
3867       RuntimeStub::new_runtime_stub(name,
3868                                     &code,
3869                                     frame_complete,
3870                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3871                                     oop_maps, false);
3872     return stub->entry_point();
3873   }
3874 
3875   void create_control_words() {
3876     // Round to nearest, 53-bit mode, exceptions masked
3877     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
3878     // Round to zero, 53-bit mode, exception mased
3879     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
3880     // Round to nearest, 24-bit mode, exceptions masked
3881     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
3882     // Round to nearest, 64-bit mode, exceptions masked
3883     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
3884     // Round to nearest, 64-bit mode, exceptions masked
3885     StubRoutines::_mxcsr_std           = 0x1F80;
3886     // Note: the following two constants are 80-bit values
3887     //       layout is critical for correct loading by FPU.
3888     // Bias for strict fp multiply/divide
3889     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
3890     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
3891     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
3892     // Un-Bias for strict fp multiply/divide
3893     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
3894     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
3895     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
3896   }
3897 
3898   // Initialization
3899   void generate_initial() {
3900     // Generates all stubs and initializes the entry points
3901 
3902     // This platform-specific settings are needed by generate_call_stub()
3903     create_control_words();
3904 
3905     // entry points that exist in all platforms Note: This is code
3906     // that could be shared among different platforms - however the
3907     // benefit seems to be smaller than the disadvantage of having a
3908     // much more complicated generator structure. See also comment in
3909     // stubRoutines.hpp.
3910 
3911     StubRoutines::_forward_exception_entry = generate_forward_exception();
3912 
3913     StubRoutines::_call_stub_entry =
3914       generate_call_stub(StubRoutines::_call_stub_return_address);
3915 
3916     // is referenced by megamorphic call
3917     StubRoutines::_catch_exception_entry = generate_catch_exception();
3918 
3919     // atomic calls
3920     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3921     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
3922     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3923     StubRoutines::_atomic_cmpxchg_byte_entry = generate_atomic_cmpxchg_byte();
3924     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3925     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3926     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
3927     StubRoutines::_fence_entry               = generate_orderaccess_fence();
3928 
3929     StubRoutines::_handler_for_unsafe_access_entry =
3930       generate_handler_for_unsafe_access();
3931 
3932     // platform dependent
3933     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3934     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3935 
3936     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3937 
3938     // Build this early so it's available for the interpreter.
3939     StubRoutines::_throw_StackOverflowError_entry =
3940       generate_throw_exception("StackOverflowError throw_exception",
3941                                CAST_FROM_FN_PTR(address,
3942                                                 SharedRuntime::
3943                                                 throw_StackOverflowError));
3944     if (UseCRC32Intrinsics) {
3945       // set table address before stub generation which use it
3946       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
3947       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
3948     }
3949   }
3950 
3951   void generate_all() {
3952     // Generates all stubs and initializes the entry points
3953 
3954     // These entry points require SharedInfo::stack0 to be set up in
3955     // non-core builds and need to be relocatable, so they each
3956     // fabricate a RuntimeStub internally.
3957     StubRoutines::_throw_AbstractMethodError_entry =
3958       generate_throw_exception("AbstractMethodError throw_exception",
3959                                CAST_FROM_FN_PTR(address,
3960                                                 SharedRuntime::
3961                                                 throw_AbstractMethodError));
3962 
3963     StubRoutines::_throw_IncompatibleClassChangeError_entry =
3964       generate_throw_exception("IncompatibleClassChangeError throw_exception",
3965                                CAST_FROM_FN_PTR(address,
3966                                                 SharedRuntime::
3967                                                 throw_IncompatibleClassChangeError));
3968 
3969     StubRoutines::_throw_NullPointerException_at_call_entry =
3970       generate_throw_exception("NullPointerException at call throw_exception",
3971                                CAST_FROM_FN_PTR(address,
3972                                                 SharedRuntime::
3973                                                 throw_NullPointerException_at_call));
3974 
3975     // entry points that are platform specific
3976     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
3977     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
3978     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
3979     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
3980 
3981     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3982     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3983     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3984     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3985 
3986     // support for verify_oop (must happen after universe_init)
3987     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3988 
3989     // arraycopy stubs used by compilers
3990     generate_arraycopy_stubs();
3991 
3992     generate_math_stubs();
3993 
3994     // don't bother generating these AES intrinsic stubs unless global flag is set
3995     if (UseAESIntrinsics) {
3996       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // needed by the others
3997 
3998       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3999       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
4000       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
4001       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
4002     }
4003 
4004     // Safefetch stubs.
4005     generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
4006                                                        &StubRoutines::_safefetch32_fault_pc,
4007                                                        &StubRoutines::_safefetch32_continuation_pc);
4008     generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
4009                                                        &StubRoutines::_safefetchN_fault_pc,
4010                                                        &StubRoutines::_safefetchN_continuation_pc);
4011 #ifdef COMPILER2
4012     if (UseMultiplyToLenIntrinsic) {
4013       StubRoutines::_multiplyToLen = generate_multiplyToLen();
4014     }
4015 #endif
4016   }
4017 
4018  public:
4019   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
4020     if (all) {
4021       generate_all();
4022     } else {
4023       generate_initial();
4024     }
4025   }
4026 }; // end class declaration
4027 
4028 void StubGenerator_generate(CodeBuffer* code, bool all) {
4029   StubGenerator g(code, all);
4030 }