1 /*
   2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #ifndef CC_INTERP
  42 
  43 #define __ _masm->
  44 
  45 // Platform-dependent initialization
  46 
  47 void TemplateTable::pd_initialize() {
  48   // No amd64 specific initialization
  49 }
  50 
  51 // Address computation: local variables
  52 
  53 static inline Address iaddress(int n) {
  54   return Address(r14, Interpreter::local_offset_in_bytes(n));
  55 }
  56 
  57 static inline Address laddress(int n) {
  58   return iaddress(n + 1);
  59 }
  60 
  61 static inline Address faddress(int n) {
  62   return iaddress(n);
  63 }
  64 
  65 static inline Address daddress(int n) {
  66   return laddress(n);
  67 }
  68 
  69 static inline Address aaddress(int n) {
  70   return iaddress(n);
  71 }
  72 
  73 static inline Address iaddress(Register r) {
  74   return Address(r14, r, Address::times_8);
  75 }
  76 
  77 static inline Address laddress(Register r) {
  78   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  79 }
  80 
  81 static inline Address faddress(Register r) {
  82   return iaddress(r);
  83 }
  84 
  85 static inline Address daddress(Register r) {
  86   return laddress(r);
  87 }
  88 
  89 static inline Address aaddress(Register r) {
  90   return iaddress(r);
  91 }
  92 
  93 static inline Address at_rsp() {
  94   return Address(rsp, 0);
  95 }
  96 
  97 // At top of Java expression stack which may be different than esp().  It
  98 // isn't for category 1 objects.
  99 static inline Address at_tos   () {
 100   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 101 }
 102 
 103 static inline Address at_tos_p1() {
 104   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 105 }
 106 
 107 static inline Address at_tos_p2() {
 108   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 109 }
 110 
 111 // Condition conversion
 112 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 113   switch (cc) {
 114   case TemplateTable::equal        : return Assembler::notEqual;
 115   case TemplateTable::not_equal    : return Assembler::equal;
 116   case TemplateTable::less         : return Assembler::greaterEqual;
 117   case TemplateTable::less_equal   : return Assembler::greater;
 118   case TemplateTable::greater      : return Assembler::lessEqual;
 119   case TemplateTable::greater_equal: return Assembler::less;
 120   }
 121   ShouldNotReachHere();
 122   return Assembler::zero;
 123 }
 124 
 125 
 126 // Miscelaneous helper routines
 127 // Store an oop (or NULL) at the address described by obj.
 128 // If val == noreg this means store a NULL
 129 
 130 static void do_oop_store(InterpreterMacroAssembler* _masm,
 131                          Address obj,
 132                          Register val,
 133                          BarrierSet::Name barrier,
 134                          bool precise) {
 135   assert(val == noreg || val == rax, "parameter is just for looks");
 136   switch (barrier) {
 137 #if INCLUDE_ALL_GCS
 138     case BarrierSet::G1SATBCT:
 139     case BarrierSet::G1SATBCTLogging:
 140       {
 141         // flatten object address if needed
 142         if (obj.index() == noreg && obj.disp() == 0) {
 143           if (obj.base() != rdx) {
 144             __ movq(rdx, obj.base());
 145           }
 146         } else {
 147           __ leaq(rdx, obj);
 148         }
 149         __ g1_write_barrier_pre(rdx /* obj */,
 150                                 rbx /* pre_val */,
 151                                 r15_thread /* thread */,
 152                                 r8  /* tmp */,
 153                                 val != noreg /* tosca_live */,
 154                                 false /* expand_call */);
 155         if (val == noreg) {
 156           __ store_heap_oop_null(Address(rdx, 0));
 157         } else {
 158           // G1 barrier needs uncompressed oop for region cross check.
 159           Register new_val = val;
 160           if (UseCompressedOops) {
 161             new_val = rbx;
 162             __ movptr(new_val, val);
 163           }
 164           __ store_heap_oop(Address(rdx, 0), val);
 165           __ g1_write_barrier_post(rdx /* store_adr */,
 166                                    new_val /* new_val */,
 167                                    r15_thread /* thread */,
 168                                    r8 /* tmp */,
 169                                    rbx /* tmp2 */);
 170         }
 171       }
 172       break;
 173 #endif // INCLUDE_ALL_GCS
 174     case BarrierSet::CardTableModRef:
 175     case BarrierSet::CardTableExtension:
 176       {
 177         if (val == noreg) {
 178           __ store_heap_oop_null(obj);
 179         } else {
 180           __ store_heap_oop(obj, val);
 181           // flatten object address if needed
 182           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 183             __ store_check(obj.base());
 184           } else {
 185             __ leaq(rdx, obj);
 186             __ store_check(rdx);
 187           }
 188         }
 189       }
 190       break;
 191     case BarrierSet::ModRef:
 192     case BarrierSet::Other:
 193       if (val == noreg) {
 194         __ store_heap_oop_null(obj);
 195       } else {
 196         __ store_heap_oop(obj, val);
 197       }
 198       break;
 199     default      :
 200       ShouldNotReachHere();
 201 
 202   }
 203 }
 204 
 205 Address TemplateTable::at_bcp(int offset) {
 206   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 207   return Address(r13, offset);
 208 }
 209 
 210 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 211                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 212                                    int byte_no) {
 213   if (!RewriteBytecodes)  return;
 214   Label L_patch_done;
 215 
 216   switch (bc) {
 217   case Bytecodes::_fast_aputfield:
 218   case Bytecodes::_fast_bputfield:
 219   case Bytecodes::_fast_cputfield:
 220   case Bytecodes::_fast_dputfield:
 221   case Bytecodes::_fast_fputfield:
 222   case Bytecodes::_fast_iputfield:
 223   case Bytecodes::_fast_lputfield:
 224   case Bytecodes::_fast_sputfield:
 225     {
 226       // We skip bytecode quickening for putfield instructions when
 227       // the put_code written to the constant pool cache is zero.
 228       // This is required so that every execution of this instruction
 229       // calls out to InterpreterRuntime::resolve_get_put to do
 230       // additional, required work.
 231       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 232       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 233       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 234       __ movl(bc_reg, bc);
 235       __ cmpl(temp_reg, (int) 0);
 236       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 237     }
 238     break;
 239   default:
 240     assert(byte_no == -1, "sanity");
 241     // the pair bytecodes have already done the load.
 242     if (load_bc_into_bc_reg) {
 243       __ movl(bc_reg, bc);
 244     }
 245   }
 246 
 247   if (JvmtiExport::can_post_breakpoint()) {
 248     Label L_fast_patch;
 249     // if a breakpoint is present we can't rewrite the stream directly
 250     __ movzbl(temp_reg, at_bcp(0));
 251     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 252     __ jcc(Assembler::notEqual, L_fast_patch);
 253     __ get_method(temp_reg);
 254     // Let breakpoint table handling rewrite to quicker bytecode
 255     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 256 #ifndef ASSERT
 257     __ jmpb(L_patch_done);
 258 #else
 259     __ jmp(L_patch_done);
 260 #endif
 261     __ bind(L_fast_patch);
 262   }
 263 
 264 #ifdef ASSERT
 265   Label L_okay;
 266   __ load_unsigned_byte(temp_reg, at_bcp(0));
 267   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 268   __ jcc(Assembler::equal, L_okay);
 269   __ cmpl(temp_reg, bc_reg);
 270   __ jcc(Assembler::equal, L_okay);
 271   __ stop("patching the wrong bytecode");
 272   __ bind(L_okay);
 273 #endif
 274 
 275   // patch bytecode
 276   __ movb(at_bcp(0), bc_reg);
 277   __ bind(L_patch_done);
 278 }
 279 
 280 
 281 // Individual instructions
 282 
 283 void TemplateTable::nop() {
 284   transition(vtos, vtos);
 285   // nothing to do
 286 }
 287 
 288 void TemplateTable::shouldnotreachhere() {
 289   transition(vtos, vtos);
 290   __ stop("shouldnotreachhere bytecode");
 291 }
 292 
 293 void TemplateTable::aconst_null() {
 294   transition(vtos, atos);
 295   __ xorl(rax, rax);
 296 }
 297 
 298 void TemplateTable::iconst(int value) {
 299   transition(vtos, itos);
 300   if (value == 0) {
 301     __ xorl(rax, rax);
 302   } else {
 303     __ movl(rax, value);
 304   }
 305 }
 306 
 307 void TemplateTable::lconst(int value) {
 308   transition(vtos, ltos);
 309   if (value == 0) {
 310     __ xorl(rax, rax);
 311   } else {
 312     __ movl(rax, value);
 313   }
 314 }
 315 
 316 void TemplateTable::fconst(int value) {
 317   transition(vtos, ftos);
 318   static float one = 1.0f, two = 2.0f;
 319   switch (value) {
 320   case 0:
 321     __ xorps(xmm0, xmm0);
 322     break;
 323   case 1:
 324     __ movflt(xmm0, ExternalAddress((address) &one));
 325     break;
 326   case 2:
 327     __ movflt(xmm0, ExternalAddress((address) &two));
 328     break;
 329   default:
 330     ShouldNotReachHere();
 331     break;
 332   }
 333 }
 334 
 335 void TemplateTable::dconst(int value) {
 336   transition(vtos, dtos);
 337   static double one = 1.0;
 338   switch (value) {
 339   case 0:
 340     __ xorpd(xmm0, xmm0);
 341     break;
 342   case 1:
 343     __ movdbl(xmm0, ExternalAddress((address) &one));
 344     break;
 345   default:
 346     ShouldNotReachHere();
 347     break;
 348   }
 349 }
 350 
 351 void TemplateTable::bipush() {
 352   transition(vtos, itos);
 353   __ load_signed_byte(rax, at_bcp(1));
 354 }
 355 
 356 void TemplateTable::sipush() {
 357   transition(vtos, itos);
 358   __ load_unsigned_short(rax, at_bcp(1));
 359   __ bswapl(rax);
 360   __ sarl(rax, 16);
 361 }
 362 
 363 void TemplateTable::ldc(bool wide) {
 364   transition(vtos, vtos);
 365   Label call_ldc, notFloat, notClass, Done;
 366 
 367   if (wide) {
 368     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 369   } else {
 370     __ load_unsigned_byte(rbx, at_bcp(1));
 371   }
 372 
 373   __ get_cpool_and_tags(rcx, rax);
 374   const int base_offset = ConstantPool::header_size() * wordSize;
 375   const int tags_offset = Array<u1>::base_offset_in_bytes();
 376 
 377   // get type
 378   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 379 
 380   // unresolved class - get the resolved class
 381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 382   __ jccb(Assembler::equal, call_ldc);
 383 
 384   // unresolved class in error state - call into runtime to throw the error
 385   // from the first resolution attempt
 386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 387   __ jccb(Assembler::equal, call_ldc);
 388 
 389   // resolved class - need to call vm to get java mirror of the class
 390   __ cmpl(rdx, JVM_CONSTANT_Class);
 391   __ jcc(Assembler::notEqual, notClass);
 392 
 393   __ bind(call_ldc);
 394   __ movl(c_rarg1, wide);
 395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 396   __ push_ptr(rax);
 397   __ verify_oop(rax);
 398   __ jmp(Done);
 399 
 400   __ bind(notClass);
 401   __ cmpl(rdx, JVM_CONSTANT_Float);
 402   __ jccb(Assembler::notEqual, notFloat);
 403   // ftos
 404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 405   __ push_f();
 406   __ jmp(Done);
 407 
 408   __ bind(notFloat);
 409 #ifdef ASSERT
 410   {
 411     Label L;
 412     __ cmpl(rdx, JVM_CONSTANT_Integer);
 413     __ jcc(Assembler::equal, L);
 414     // String and Object are rewritten to fast_aldc
 415     __ stop("unexpected tag type in ldc");
 416     __ bind(L);
 417   }
 418 #endif
 419   // itos JVM_CONSTANT_Integer only
 420   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 421   __ push_i(rax);
 422   __ bind(Done);
 423 }
 424 
 425 // Fast path for caching oop constants.
 426 void TemplateTable::fast_aldc(bool wide) {
 427   transition(vtos, atos);
 428 
 429   Register result = rax;
 430   Register tmp = rdx;
 431   int index_size = wide ? sizeof(u2) : sizeof(u1);
 432 
 433   Label resolved;
 434 
 435   // We are resolved if the resolved reference cache entry contains a
 436   // non-null object (String, MethodType, etc.)
 437   assert_different_registers(result, tmp);
 438   __ get_cache_index_at_bcp(tmp, 1, index_size);
 439   __ load_resolved_reference_at_index(result, tmp);
 440   __ testl(result, result);
 441   __ jcc(Assembler::notZero, resolved);
 442 
 443   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 444 
 445   // first time invocation - must resolve first
 446   __ movl(tmp, (int)bytecode());
 447   __ call_VM(result, entry, tmp);
 448 
 449   __ bind(resolved);
 450 
 451   if (VerifyOops) {
 452     __ verify_oop(result);
 453   }
 454 }
 455 
 456 void TemplateTable::ldc2_w() {
 457   transition(vtos, vtos);
 458   Label Long, Done;
 459   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 460 
 461   __ get_cpool_and_tags(rcx, rax);
 462   const int base_offset = ConstantPool::header_size() * wordSize;
 463   const int tags_offset = Array<u1>::base_offset_in_bytes();
 464 
 465   // get type
 466   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 467           JVM_CONSTANT_Double);
 468   __ jccb(Assembler::notEqual, Long);
 469   // dtos
 470   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 471   __ push_d();
 472   __ jmpb(Done);
 473 
 474   __ bind(Long);
 475   // ltos
 476   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 477   __ push_l();
 478 
 479   __ bind(Done);
 480 }
 481 
 482 void TemplateTable::locals_index(Register reg, int offset) {
 483   __ load_unsigned_byte(reg, at_bcp(offset));
 484   __ negptr(reg);
 485 }
 486 
 487 void TemplateTable::iload() {
 488   transition(vtos, itos);
 489   if (RewriteFrequentPairs) {
 490     Label rewrite, done;
 491     const Register bc = c_rarg3;
 492     assert(rbx != bc, "register damaged");
 493 
 494     // get next byte
 495     __ load_unsigned_byte(rbx,
 496                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 497     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 498     // last two iloads in a pair.  Comparing against fast_iload means that
 499     // the next bytecode is neither an iload or a caload, and therefore
 500     // an iload pair.
 501     __ cmpl(rbx, Bytecodes::_iload);
 502     __ jcc(Assembler::equal, done);
 503 
 504     __ cmpl(rbx, Bytecodes::_fast_iload);
 505     __ movl(bc, Bytecodes::_fast_iload2);
 506     __ jccb(Assembler::equal, rewrite);
 507 
 508     // if _caload, rewrite to fast_icaload
 509     __ cmpl(rbx, Bytecodes::_caload);
 510     __ movl(bc, Bytecodes::_fast_icaload);
 511     __ jccb(Assembler::equal, rewrite);
 512 
 513     // rewrite so iload doesn't check again.
 514     __ movl(bc, Bytecodes::_fast_iload);
 515 
 516     // rewrite
 517     // bc: fast bytecode
 518     __ bind(rewrite);
 519     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 520     __ bind(done);
 521   }
 522 
 523   // Get the local value into tos
 524   locals_index(rbx);
 525   __ movl(rax, iaddress(rbx));
 526 }
 527 
 528 void TemplateTable::fast_iload2() {
 529   transition(vtos, itos);
 530   locals_index(rbx);
 531   __ movl(rax, iaddress(rbx));
 532   __ push(itos);
 533   locals_index(rbx, 3);
 534   __ movl(rax, iaddress(rbx));
 535 }
 536 
 537 void TemplateTable::fast_iload() {
 538   transition(vtos, itos);
 539   locals_index(rbx);
 540   __ movl(rax, iaddress(rbx));
 541 }
 542 
 543 void TemplateTable::lload() {
 544   transition(vtos, ltos);
 545   locals_index(rbx);
 546   __ movq(rax, laddress(rbx));
 547 }
 548 
 549 void TemplateTable::fload() {
 550   transition(vtos, ftos);
 551   locals_index(rbx);
 552   __ movflt(xmm0, faddress(rbx));
 553 }
 554 
 555 void TemplateTable::dload() {
 556   transition(vtos, dtos);
 557   locals_index(rbx);
 558   __ movdbl(xmm0, daddress(rbx));
 559 }
 560 
 561 void TemplateTable::aload() {
 562   transition(vtos, atos);
 563   locals_index(rbx);
 564   __ movptr(rax, aaddress(rbx));
 565 }
 566 
 567 void TemplateTable::locals_index_wide(Register reg) {
 568   __ load_unsigned_short(reg, at_bcp(2));
 569   __ bswapl(reg);
 570   __ shrl(reg, 16);
 571   __ negptr(reg);
 572 }
 573 
 574 void TemplateTable::wide_iload() {
 575   transition(vtos, itos);
 576   locals_index_wide(rbx);
 577   __ movl(rax, iaddress(rbx));
 578 }
 579 
 580 void TemplateTable::wide_lload() {
 581   transition(vtos, ltos);
 582   locals_index_wide(rbx);
 583   __ movq(rax, laddress(rbx));
 584 }
 585 
 586 void TemplateTable::wide_fload() {
 587   transition(vtos, ftos);
 588   locals_index_wide(rbx);
 589   __ movflt(xmm0, faddress(rbx));
 590 }
 591 
 592 void TemplateTable::wide_dload() {
 593   transition(vtos, dtos);
 594   locals_index_wide(rbx);
 595   __ movdbl(xmm0, daddress(rbx));
 596 }
 597 
 598 void TemplateTable::wide_aload() {
 599   transition(vtos, atos);
 600   locals_index_wide(rbx);
 601   __ movptr(rax, aaddress(rbx));
 602 }
 603 
 604 void TemplateTable::index_check(Register array, Register index) {
 605   // destroys rbx
 606   // check array
 607   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 608   // sign extend index for use by indexed load
 609   __ movl2ptr(index, index);
 610   // check index
 611   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 612   if (index != rbx) {
 613     // ??? convention: move aberrant index into ebx for exception message
 614     assert(rbx != array, "different registers");
 615     __ movl(rbx, index);
 616   }
 617   __ jump_cc(Assembler::aboveEqual,
 618              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 619 }
 620 
 621 void TemplateTable::iaload() {
 622   transition(itos, itos);
 623   __ pop_ptr(rdx);
 624   // eax: index
 625   // rdx: array
 626   index_check(rdx, rax); // kills rbx
 627   __ movl(rax, Address(rdx, rax,
 628                        Address::times_4,
 629                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 630 }
 631 
 632 void TemplateTable::laload() {
 633   transition(itos, ltos);
 634   __ pop_ptr(rdx);
 635   // eax: index
 636   // rdx: array
 637   index_check(rdx, rax); // kills rbx
 638   __ movq(rax, Address(rdx, rbx,
 639                        Address::times_8,
 640                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 641 }
 642 
 643 void TemplateTable::faload() {
 644   transition(itos, ftos);
 645   __ pop_ptr(rdx);
 646   // eax: index
 647   // rdx: array
 648   index_check(rdx, rax); // kills rbx
 649   __ movflt(xmm0, Address(rdx, rax,
 650                          Address::times_4,
 651                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 652 }
 653 
 654 void TemplateTable::daload() {
 655   transition(itos, dtos);
 656   __ pop_ptr(rdx);
 657   // eax: index
 658   // rdx: array
 659   index_check(rdx, rax); // kills rbx
 660   __ movdbl(xmm0, Address(rdx, rax,
 661                           Address::times_8,
 662                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 663 }
 664 
 665 void TemplateTable::aaload() {
 666   transition(itos, atos);
 667   __ pop_ptr(rdx);
 668   // eax: index
 669   // rdx: array
 670   index_check(rdx, rax); // kills rbx
 671   __ load_heap_oop(rax, Address(rdx, rax,
 672                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 673                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 674 }
 675 
 676 void TemplateTable::baload() {
 677   transition(itos, itos);
 678   __ pop_ptr(rdx);
 679   // eax: index
 680   // rdx: array
 681   index_check(rdx, rax); // kills rbx
 682   __ load_signed_byte(rax,
 683                       Address(rdx, rax,
 684                               Address::times_1,
 685                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 686 }
 687 
 688 void TemplateTable::caload() {
 689   transition(itos, itos);
 690   __ pop_ptr(rdx);
 691   // eax: index
 692   // rdx: array
 693   index_check(rdx, rax); // kills rbx
 694   __ load_unsigned_short(rax,
 695                          Address(rdx, rax,
 696                                  Address::times_2,
 697                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 698 }
 699 
 700 // iload followed by caload frequent pair
 701 void TemplateTable::fast_icaload() {
 702   transition(vtos, itos);
 703   // load index out of locals
 704   locals_index(rbx);
 705   __ movl(rax, iaddress(rbx));
 706 
 707   // eax: index
 708   // rdx: array
 709   __ pop_ptr(rdx);
 710   index_check(rdx, rax); // kills rbx
 711   __ load_unsigned_short(rax,
 712                          Address(rdx, rax,
 713                                  Address::times_2,
 714                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 715 }
 716 
 717 void TemplateTable::saload() {
 718   transition(itos, itos);
 719   __ pop_ptr(rdx);
 720   // eax: index
 721   // rdx: array
 722   index_check(rdx, rax); // kills rbx
 723   __ load_signed_short(rax,
 724                        Address(rdx, rax,
 725                                Address::times_2,
 726                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 727 }
 728 
 729 void TemplateTable::iload(int n) {
 730   transition(vtos, itos);
 731   __ movl(rax, iaddress(n));
 732 }
 733 
 734 void TemplateTable::lload(int n) {
 735   transition(vtos, ltos);
 736   __ movq(rax, laddress(n));
 737 }
 738 
 739 void TemplateTable::fload(int n) {
 740   transition(vtos, ftos);
 741   __ movflt(xmm0, faddress(n));
 742 }
 743 
 744 void TemplateTable::dload(int n) {
 745   transition(vtos, dtos);
 746   __ movdbl(xmm0, daddress(n));
 747 }
 748 
 749 void TemplateTable::aload(int n) {
 750   transition(vtos, atos);
 751   __ movptr(rax, aaddress(n));
 752 }
 753 
 754 void TemplateTable::aload_0() {
 755   transition(vtos, atos);
 756   // According to bytecode histograms, the pairs:
 757   //
 758   // _aload_0, _fast_igetfield
 759   // _aload_0, _fast_agetfield
 760   // _aload_0, _fast_fgetfield
 761   //
 762   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 763   // _aload_0 bytecode checks if the next bytecode is either
 764   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 765   // rewrites the current bytecode into a pair bytecode; otherwise it
 766   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 767   // the pair check anymore.
 768   //
 769   // Note: If the next bytecode is _getfield, the rewrite must be
 770   //       delayed, otherwise we may miss an opportunity for a pair.
 771   //
 772   // Also rewrite frequent pairs
 773   //   aload_0, aload_1
 774   //   aload_0, iload_1
 775   // These bytecodes with a small amount of code are most profitable
 776   // to rewrite
 777   if (RewriteFrequentPairs) {
 778     Label rewrite, done;
 779     const Register bc = c_rarg3;
 780     assert(rbx != bc, "register damaged");
 781     // get next byte
 782     __ load_unsigned_byte(rbx,
 783                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 784 
 785     // do actual aload_0
 786     aload(0);
 787 
 788     // if _getfield then wait with rewrite
 789     __ cmpl(rbx, Bytecodes::_getfield);
 790     __ jcc(Assembler::equal, done);
 791 
 792     // if _igetfield then reqrite to _fast_iaccess_0
 793     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 794            Bytecodes::_aload_0,
 795            "fix bytecode definition");
 796     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 797     __ movl(bc, Bytecodes::_fast_iaccess_0);
 798     __ jccb(Assembler::equal, rewrite);
 799 
 800     // if _agetfield then reqrite to _fast_aaccess_0
 801     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 802            Bytecodes::_aload_0,
 803            "fix bytecode definition");
 804     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 805     __ movl(bc, Bytecodes::_fast_aaccess_0);
 806     __ jccb(Assembler::equal, rewrite);
 807 
 808     // if _fgetfield then reqrite to _fast_faccess_0
 809     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 810            Bytecodes::_aload_0,
 811            "fix bytecode definition");
 812     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 813     __ movl(bc, Bytecodes::_fast_faccess_0);
 814     __ jccb(Assembler::equal, rewrite);
 815 
 816     // else rewrite to _fast_aload0
 817     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 818            Bytecodes::_aload_0,
 819            "fix bytecode definition");
 820     __ movl(bc, Bytecodes::_fast_aload_0);
 821 
 822     // rewrite
 823     // bc: fast bytecode
 824     __ bind(rewrite);
 825     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 826 
 827     __ bind(done);
 828   } else {
 829     aload(0);
 830   }
 831 }
 832 
 833 void TemplateTable::istore() {
 834   transition(itos, vtos);
 835   locals_index(rbx);
 836   __ movl(iaddress(rbx), rax);
 837 }
 838 
 839 void TemplateTable::lstore() {
 840   transition(ltos, vtos);
 841   locals_index(rbx);
 842   __ movq(laddress(rbx), rax);
 843 }
 844 
 845 void TemplateTable::fstore() {
 846   transition(ftos, vtos);
 847   locals_index(rbx);
 848   __ movflt(faddress(rbx), xmm0);
 849 }
 850 
 851 void TemplateTable::dstore() {
 852   transition(dtos, vtos);
 853   locals_index(rbx);
 854   __ movdbl(daddress(rbx), xmm0);
 855 }
 856 
 857 void TemplateTable::astore() {
 858   transition(vtos, vtos);
 859   __ pop_ptr(rax);
 860   locals_index(rbx);
 861   __ movptr(aaddress(rbx), rax);
 862 }
 863 
 864 void TemplateTable::wide_istore() {
 865   transition(vtos, vtos);
 866   __ pop_i();
 867   locals_index_wide(rbx);
 868   __ movl(iaddress(rbx), rax);
 869 }
 870 
 871 void TemplateTable::wide_lstore() {
 872   transition(vtos, vtos);
 873   __ pop_l();
 874   locals_index_wide(rbx);
 875   __ movq(laddress(rbx), rax);
 876 }
 877 
 878 void TemplateTable::wide_fstore() {
 879   transition(vtos, vtos);
 880   __ pop_f();
 881   locals_index_wide(rbx);
 882   __ movflt(faddress(rbx), xmm0);
 883 }
 884 
 885 void TemplateTable::wide_dstore() {
 886   transition(vtos, vtos);
 887   __ pop_d();
 888   locals_index_wide(rbx);
 889   __ movdbl(daddress(rbx), xmm0);
 890 }
 891 
 892 void TemplateTable::wide_astore() {
 893   transition(vtos, vtos);
 894   __ pop_ptr(rax);
 895   locals_index_wide(rbx);
 896   __ movptr(aaddress(rbx), rax);
 897 }
 898 
 899 void TemplateTable::iastore() {
 900   transition(itos, vtos);
 901   __ pop_i(rbx);
 902   __ pop_ptr(rdx);
 903   // eax: value
 904   // ebx: index
 905   // rdx: array
 906   index_check(rdx, rbx); // prefer index in ebx
 907   __ movl(Address(rdx, rbx,
 908                   Address::times_4,
 909                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 910           rax);
 911 }
 912 
 913 void TemplateTable::lastore() {
 914   transition(ltos, vtos);
 915   __ pop_i(rbx);
 916   __ pop_ptr(rdx);
 917   // rax: value
 918   // ebx: index
 919   // rdx: array
 920   index_check(rdx, rbx); // prefer index in ebx
 921   __ movq(Address(rdx, rbx,
 922                   Address::times_8,
 923                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 924           rax);
 925 }
 926 
 927 void TemplateTable::fastore() {
 928   transition(ftos, vtos);
 929   __ pop_i(rbx);
 930   __ pop_ptr(rdx);
 931   // xmm0: value
 932   // ebx:  index
 933   // rdx:  array
 934   index_check(rdx, rbx); // prefer index in ebx
 935   __ movflt(Address(rdx, rbx,
 936                    Address::times_4,
 937                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 938            xmm0);
 939 }
 940 
 941 void TemplateTable::dastore() {
 942   transition(dtos, vtos);
 943   __ pop_i(rbx);
 944   __ pop_ptr(rdx);
 945   // xmm0: value
 946   // ebx:  index
 947   // rdx:  array
 948   index_check(rdx, rbx); // prefer index in ebx
 949   __ movdbl(Address(rdx, rbx,
 950                    Address::times_8,
 951                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 952            xmm0);
 953 }
 954 
 955 void TemplateTable::aastore() {
 956   Label is_null, ok_is_subtype, done;
 957   transition(vtos, vtos);
 958   // stack: ..., array, index, value
 959   __ movptr(rax, at_tos());    // value
 960   __ movl(rcx, at_tos_p1()); // index
 961   __ movptr(rdx, at_tos_p2()); // array
 962 
 963   Address element_address(rdx, rcx,
 964                           UseCompressedOops? Address::times_4 : Address::times_8,
 965                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 966 
 967   index_check(rdx, rcx);     // kills rbx
 968   // do array store check - check for NULL value first
 969   __ testptr(rax, rax);
 970   __ jcc(Assembler::zero, is_null);
 971 
 972   // Move subklass into rbx
 973   __ load_klass(rbx, rax);
 974   // Move superklass into rax
 975   __ load_klass(rax, rdx);
 976   __ movptr(rax, Address(rax,
 977                          ObjArrayKlass::element_klass_offset()));
 978   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 979   __ lea(rdx, element_address);
 980 
 981   // Generate subtype check.  Blows rcx, rdi
 982   // Superklass in rax.  Subklass in rbx.
 983   __ gen_subtype_check(rbx, ok_is_subtype);
 984 
 985   // Come here on failure
 986   // object is at TOS
 987   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 988 
 989   // Come here on success
 990   __ bind(ok_is_subtype);
 991 
 992   // Get the value we will store
 993   __ movptr(rax, at_tos());
 994   // Now store using the appropriate barrier
 995   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 996   __ jmp(done);
 997 
 998   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
 999   __ bind(is_null);
1000   __ profile_null_seen(rbx);
1001 
1002   // Store a NULL
1003   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1004 
1005   // Pop stack arguments
1006   __ bind(done);
1007   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1008 }
1009 
1010 void TemplateTable::bastore() {
1011   transition(itos, vtos);
1012   __ pop_i(rbx);
1013   __ pop_ptr(rdx);
1014   // eax: value
1015   // ebx: index
1016   // rdx: array
1017   index_check(rdx, rbx); // prefer index in ebx
1018   __ movb(Address(rdx, rbx,
1019                   Address::times_1,
1020                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1021           rax);
1022 }
1023 
1024 void TemplateTable::castore() {
1025   transition(itos, vtos);
1026   __ pop_i(rbx);
1027   __ pop_ptr(rdx);
1028   // eax: value
1029   // ebx: index
1030   // rdx: array
1031   index_check(rdx, rbx);  // prefer index in ebx
1032   __ movw(Address(rdx, rbx,
1033                   Address::times_2,
1034                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1035           rax);
1036 }
1037 
1038 void TemplateTable::sastore() {
1039   castore();
1040 }
1041 
1042 void TemplateTable::istore(int n) {
1043   transition(itos, vtos);
1044   __ movl(iaddress(n), rax);
1045 }
1046 
1047 void TemplateTable::lstore(int n) {
1048   transition(ltos, vtos);
1049   __ movq(laddress(n), rax);
1050 }
1051 
1052 void TemplateTable::fstore(int n) {
1053   transition(ftos, vtos);
1054   __ movflt(faddress(n), xmm0);
1055 }
1056 
1057 void TemplateTable::dstore(int n) {
1058   transition(dtos, vtos);
1059   __ movdbl(daddress(n), xmm0);
1060 }
1061 
1062 void TemplateTable::astore(int n) {
1063   transition(vtos, vtos);
1064   __ pop_ptr(rax);
1065   __ movptr(aaddress(n), rax);
1066 }
1067 
1068 void TemplateTable::pop() {
1069   transition(vtos, vtos);
1070   __ addptr(rsp, Interpreter::stackElementSize);
1071 }
1072 
1073 void TemplateTable::pop2() {
1074   transition(vtos, vtos);
1075   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1076 }
1077 
1078 void TemplateTable::dup() {
1079   transition(vtos, vtos);
1080   __ load_ptr(0, rax);
1081   __ push_ptr(rax);
1082   // stack: ..., a, a
1083 }
1084 
1085 void TemplateTable::dup_x1() {
1086   transition(vtos, vtos);
1087   // stack: ..., a, b
1088   __ load_ptr( 0, rax);  // load b
1089   __ load_ptr( 1, rcx);  // load a
1090   __ store_ptr(1, rax);  // store b
1091   __ store_ptr(0, rcx);  // store a
1092   __ push_ptr(rax);      // push b
1093   // stack: ..., b, a, b
1094 }
1095 
1096 void TemplateTable::dup_x2() {
1097   transition(vtos, vtos);
1098   // stack: ..., a, b, c
1099   __ load_ptr( 0, rax);  // load c
1100   __ load_ptr( 2, rcx);  // load a
1101   __ store_ptr(2, rax);  // store c in a
1102   __ push_ptr(rax);      // push c
1103   // stack: ..., c, b, c, c
1104   __ load_ptr( 2, rax);  // load b
1105   __ store_ptr(2, rcx);  // store a in b
1106   // stack: ..., c, a, c, c
1107   __ store_ptr(1, rax);  // store b in c
1108   // stack: ..., c, a, b, c
1109 }
1110 
1111 void TemplateTable::dup2() {
1112   transition(vtos, vtos);
1113   // stack: ..., a, b
1114   __ load_ptr(1, rax);  // load a
1115   __ push_ptr(rax);     // push a
1116   __ load_ptr(1, rax);  // load b
1117   __ push_ptr(rax);     // push b
1118   // stack: ..., a, b, a, b
1119 }
1120 
1121 void TemplateTable::dup2_x1() {
1122   transition(vtos, vtos);
1123   // stack: ..., a, b, c
1124   __ load_ptr( 0, rcx);  // load c
1125   __ load_ptr( 1, rax);  // load b
1126   __ push_ptr(rax);      // push b
1127   __ push_ptr(rcx);      // push c
1128   // stack: ..., a, b, c, b, c
1129   __ store_ptr(3, rcx);  // store c in b
1130   // stack: ..., a, c, c, b, c
1131   __ load_ptr( 4, rcx);  // load a
1132   __ store_ptr(2, rcx);  // store a in 2nd c
1133   // stack: ..., a, c, a, b, c
1134   __ store_ptr(4, rax);  // store b in a
1135   // stack: ..., b, c, a, b, c
1136 }
1137 
1138 void TemplateTable::dup2_x2() {
1139   transition(vtos, vtos);
1140   // stack: ..., a, b, c, d
1141   __ load_ptr( 0, rcx);  // load d
1142   __ load_ptr( 1, rax);  // load c
1143   __ push_ptr(rax);      // push c
1144   __ push_ptr(rcx);      // push d
1145   // stack: ..., a, b, c, d, c, d
1146   __ load_ptr( 4, rax);  // load b
1147   __ store_ptr(2, rax);  // store b in d
1148   __ store_ptr(4, rcx);  // store d in b
1149   // stack: ..., a, d, c, b, c, d
1150   __ load_ptr( 5, rcx);  // load a
1151   __ load_ptr( 3, rax);  // load c
1152   __ store_ptr(3, rcx);  // store a in c
1153   __ store_ptr(5, rax);  // store c in a
1154   // stack: ..., c, d, a, b, c, d
1155 }
1156 
1157 void TemplateTable::swap() {
1158   transition(vtos, vtos);
1159   // stack: ..., a, b
1160   __ load_ptr( 1, rcx);  // load a
1161   __ load_ptr( 0, rax);  // load b
1162   __ store_ptr(0, rcx);  // store a in b
1163   __ store_ptr(1, rax);  // store b in a
1164   // stack: ..., b, a
1165 }
1166 
1167 void TemplateTable::iop2(Operation op) {
1168   transition(itos, itos);
1169   switch (op) {
1170   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1171   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1172   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1173   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1174   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1175   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1176   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1177   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1178   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1179   default   : ShouldNotReachHere();
1180   }
1181 }
1182 
1183 void TemplateTable::lop2(Operation op) {
1184   transition(ltos, ltos);
1185   switch (op) {
1186   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1187   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1188   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1189   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1190   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1191   default   : ShouldNotReachHere();
1192   }
1193 }
1194 
1195 void TemplateTable::idiv() {
1196   transition(itos, itos);
1197   __ movl(rcx, rax);
1198   __ pop_i(rax);
1199   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1200   //       they are not equal, one could do a normal division (no correction
1201   //       needed), which may speed up this implementation for the common case.
1202   //       (see also JVM spec., p.243 & p.271)
1203   __ corrected_idivl(rcx);
1204 }
1205 
1206 void TemplateTable::irem() {
1207   transition(itos, itos);
1208   __ movl(rcx, rax);
1209   __ pop_i(rax);
1210   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1211   //       they are not equal, one could do a normal division (no correction
1212   //       needed), which may speed up this implementation for the common case.
1213   //       (see also JVM spec., p.243 & p.271)
1214   __ corrected_idivl(rcx);
1215   __ movl(rax, rdx);
1216 }
1217 
1218 void TemplateTable::lmul() {
1219   transition(ltos, ltos);
1220   __ pop_l(rdx);
1221   __ imulq(rax, rdx);
1222 }
1223 
1224 void TemplateTable::ldiv() {
1225   transition(ltos, ltos);
1226   __ mov(rcx, rax);
1227   __ pop_l(rax);
1228   // generate explicit div0 check
1229   __ testq(rcx, rcx);
1230   __ jump_cc(Assembler::zero,
1231              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1232   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1233   //       they are not equal, one could do a normal division (no correction
1234   //       needed), which may speed up this implementation for the common case.
1235   //       (see also JVM spec., p.243 & p.271)
1236   __ corrected_idivq(rcx); // kills rbx
1237 }
1238 
1239 void TemplateTable::lrem() {
1240   transition(ltos, ltos);
1241   __ mov(rcx, rax);
1242   __ pop_l(rax);
1243   __ testq(rcx, rcx);
1244   __ jump_cc(Assembler::zero,
1245              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1246   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1247   //       they are not equal, one could do a normal division (no correction
1248   //       needed), which may speed up this implementation for the common case.
1249   //       (see also JVM spec., p.243 & p.271)
1250   __ corrected_idivq(rcx); // kills rbx
1251   __ mov(rax, rdx);
1252 }
1253 
1254 void TemplateTable::lshl() {
1255   transition(itos, ltos);
1256   __ movl(rcx, rax);                             // get shift count
1257   __ pop_l(rax);                                 // get shift value
1258   __ shlq(rax);
1259 }
1260 
1261 void TemplateTable::lshr() {
1262   transition(itos, ltos);
1263   __ movl(rcx, rax);                             // get shift count
1264   __ pop_l(rax);                                 // get shift value
1265   __ sarq(rax);
1266 }
1267 
1268 void TemplateTable::lushr() {
1269   transition(itos, ltos);
1270   __ movl(rcx, rax);                             // get shift count
1271   __ pop_l(rax);                                 // get shift value
1272   __ shrq(rax);
1273 }
1274 
1275 void TemplateTable::fop2(Operation op) {
1276   transition(ftos, ftos);
1277   switch (op) {
1278   case add:
1279     __ addss(xmm0, at_rsp());
1280     __ addptr(rsp, Interpreter::stackElementSize);
1281     break;
1282   case sub:
1283     __ movflt(xmm1, xmm0);
1284     __ pop_f(xmm0);
1285     __ subss(xmm0, xmm1);
1286     break;
1287   case mul:
1288     __ mulss(xmm0, at_rsp());
1289     __ addptr(rsp, Interpreter::stackElementSize);
1290     break;
1291   case div:
1292     __ movflt(xmm1, xmm0);
1293     __ pop_f(xmm0);
1294     __ divss(xmm0, xmm1);
1295     break;
1296   case rem:
1297     __ movflt(xmm1, xmm0);
1298     __ pop_f(xmm0);
1299     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1300     break;
1301   default:
1302     ShouldNotReachHere();
1303     break;
1304   }
1305 }
1306 
1307 void TemplateTable::dop2(Operation op) {
1308   transition(dtos, dtos);
1309   switch (op) {
1310   case add:
1311     __ addsd(xmm0, at_rsp());
1312     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1313     break;
1314   case sub:
1315     __ movdbl(xmm1, xmm0);
1316     __ pop_d(xmm0);
1317     __ subsd(xmm0, xmm1);
1318     break;
1319   case mul:
1320     __ mulsd(xmm0, at_rsp());
1321     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1322     break;
1323   case div:
1324     __ movdbl(xmm1, xmm0);
1325     __ pop_d(xmm0);
1326     __ divsd(xmm0, xmm1);
1327     break;
1328   case rem:
1329     __ movdbl(xmm1, xmm0);
1330     __ pop_d(xmm0);
1331     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1332     break;
1333   default:
1334     ShouldNotReachHere();
1335     break;
1336   }
1337 }
1338 
1339 void TemplateTable::ineg() {
1340   transition(itos, itos);
1341   __ negl(rax);
1342 }
1343 
1344 void TemplateTable::lneg() {
1345   transition(ltos, ltos);
1346   __ negq(rax);
1347 }
1348 
1349 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1350 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1351   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1352   // of 128-bits operands for SSE instructions.
1353   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1354   // Store the value to a 128-bits operand.
1355   operand[0] = lo;
1356   operand[1] = hi;
1357   return operand;
1358 }
1359 
1360 // Buffer for 128-bits masks used by SSE instructions.
1361 static jlong float_signflip_pool[2*2];
1362 static jlong double_signflip_pool[2*2];
1363 
1364 void TemplateTable::fneg() {
1365   transition(ftos, ftos);
1366   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1367   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1368 }
1369 
1370 void TemplateTable::dneg() {
1371   transition(dtos, dtos);
1372   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1373   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1374 }
1375 
1376 void TemplateTable::iinc() {
1377   transition(vtos, vtos);
1378   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1379   locals_index(rbx);
1380   __ addl(iaddress(rbx), rdx);
1381 }
1382 
1383 void TemplateTable::wide_iinc() {
1384   transition(vtos, vtos);
1385   __ movl(rdx, at_bcp(4)); // get constant
1386   locals_index_wide(rbx);
1387   __ bswapl(rdx); // swap bytes & sign-extend constant
1388   __ sarl(rdx, 16);
1389   __ addl(iaddress(rbx), rdx);
1390   // Note: should probably use only one movl to get both
1391   //       the index and the constant -> fix this
1392 }
1393 
1394 void TemplateTable::convert() {
1395   // Checking
1396 #ifdef ASSERT
1397   {
1398     TosState tos_in  = ilgl;
1399     TosState tos_out = ilgl;
1400     switch (bytecode()) {
1401     case Bytecodes::_i2l: // fall through
1402     case Bytecodes::_i2f: // fall through
1403     case Bytecodes::_i2d: // fall through
1404     case Bytecodes::_i2b: // fall through
1405     case Bytecodes::_i2c: // fall through
1406     case Bytecodes::_i2s: tos_in = itos; break;
1407     case Bytecodes::_l2i: // fall through
1408     case Bytecodes::_l2f: // fall through
1409     case Bytecodes::_l2d: tos_in = ltos; break;
1410     case Bytecodes::_f2i: // fall through
1411     case Bytecodes::_f2l: // fall through
1412     case Bytecodes::_f2d: tos_in = ftos; break;
1413     case Bytecodes::_d2i: // fall through
1414     case Bytecodes::_d2l: // fall through
1415     case Bytecodes::_d2f: tos_in = dtos; break;
1416     default             : ShouldNotReachHere();
1417     }
1418     switch (bytecode()) {
1419     case Bytecodes::_l2i: // fall through
1420     case Bytecodes::_f2i: // fall through
1421     case Bytecodes::_d2i: // fall through
1422     case Bytecodes::_i2b: // fall through
1423     case Bytecodes::_i2c: // fall through
1424     case Bytecodes::_i2s: tos_out = itos; break;
1425     case Bytecodes::_i2l: // fall through
1426     case Bytecodes::_f2l: // fall through
1427     case Bytecodes::_d2l: tos_out = ltos; break;
1428     case Bytecodes::_i2f: // fall through
1429     case Bytecodes::_l2f: // fall through
1430     case Bytecodes::_d2f: tos_out = ftos; break;
1431     case Bytecodes::_i2d: // fall through
1432     case Bytecodes::_l2d: // fall through
1433     case Bytecodes::_f2d: tos_out = dtos; break;
1434     default             : ShouldNotReachHere();
1435     }
1436     transition(tos_in, tos_out);
1437   }
1438 #endif // ASSERT
1439 
1440   static const int64_t is_nan = 0x8000000000000000L;
1441 
1442   // Conversion
1443   switch (bytecode()) {
1444   case Bytecodes::_i2l:
1445     __ movslq(rax, rax);
1446     break;
1447   case Bytecodes::_i2f:
1448     __ cvtsi2ssl(xmm0, rax);
1449     break;
1450   case Bytecodes::_i2d:
1451     __ cvtsi2sdl(xmm0, rax);
1452     break;
1453   case Bytecodes::_i2b:
1454     __ movsbl(rax, rax);
1455     break;
1456   case Bytecodes::_i2c:
1457     __ movzwl(rax, rax);
1458     break;
1459   case Bytecodes::_i2s:
1460     __ movswl(rax, rax);
1461     break;
1462   case Bytecodes::_l2i:
1463     __ movl(rax, rax);
1464     break;
1465   case Bytecodes::_l2f:
1466     __ cvtsi2ssq(xmm0, rax);
1467     break;
1468   case Bytecodes::_l2d:
1469     __ cvtsi2sdq(xmm0, rax);
1470     break;
1471   case Bytecodes::_f2i:
1472   {
1473     Label L;
1474     __ cvttss2sil(rax, xmm0);
1475     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1476     __ jcc(Assembler::notEqual, L);
1477     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1478     __ bind(L);
1479   }
1480     break;
1481   case Bytecodes::_f2l:
1482   {
1483     Label L;
1484     __ cvttss2siq(rax, xmm0);
1485     // NaN or overflow/underflow?
1486     __ cmp64(rax, ExternalAddress((address) &is_nan));
1487     __ jcc(Assembler::notEqual, L);
1488     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1489     __ bind(L);
1490   }
1491     break;
1492   case Bytecodes::_f2d:
1493     __ cvtss2sd(xmm0, xmm0);
1494     break;
1495   case Bytecodes::_d2i:
1496   {
1497     Label L;
1498     __ cvttsd2sil(rax, xmm0);
1499     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1500     __ jcc(Assembler::notEqual, L);
1501     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1502     __ bind(L);
1503   }
1504     break;
1505   case Bytecodes::_d2l:
1506   {
1507     Label L;
1508     __ cvttsd2siq(rax, xmm0);
1509     // NaN or overflow/underflow?
1510     __ cmp64(rax, ExternalAddress((address) &is_nan));
1511     __ jcc(Assembler::notEqual, L);
1512     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1513     __ bind(L);
1514   }
1515     break;
1516   case Bytecodes::_d2f:
1517     __ cvtsd2ss(xmm0, xmm0);
1518     break;
1519   default:
1520     ShouldNotReachHere();
1521   }
1522 }
1523 
1524 void TemplateTable::lcmp() {
1525   transition(ltos, itos);
1526   Label done;
1527   __ pop_l(rdx);
1528   __ cmpq(rdx, rax);
1529   __ movl(rax, -1);
1530   __ jccb(Assembler::less, done);
1531   __ setb(Assembler::notEqual, rax);
1532   __ movzbl(rax, rax);
1533   __ bind(done);
1534 }
1535 
1536 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1537   Label done;
1538   if (is_float) {
1539     // XXX get rid of pop here, use ... reg, mem32
1540     __ pop_f(xmm1);
1541     __ ucomiss(xmm1, xmm0);
1542   } else {
1543     // XXX get rid of pop here, use ... reg, mem64
1544     __ pop_d(xmm1);
1545     __ ucomisd(xmm1, xmm0);
1546   }
1547   if (unordered_result < 0) {
1548     __ movl(rax, -1);
1549     __ jccb(Assembler::parity, done);
1550     __ jccb(Assembler::below, done);
1551     __ setb(Assembler::notEqual, rdx);
1552     __ movzbl(rax, rdx);
1553   } else {
1554     __ movl(rax, 1);
1555     __ jccb(Assembler::parity, done);
1556     __ jccb(Assembler::above, done);
1557     __ movl(rax, 0);
1558     __ jccb(Assembler::equal, done);
1559     __ decrementl(rax);
1560   }
1561   __ bind(done);
1562 }
1563 
1564 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1565   __ get_method(rcx); // rcx holds method
1566   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1567                                      // holds bumped taken count
1568 
1569   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1570                              InvocationCounter::counter_offset();
1571   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1572                               InvocationCounter::counter_offset();
1573 
1574   // Load up edx with the branch displacement
1575   if (is_wide) {
1576     __ movl(rdx, at_bcp(1));
1577   } else {
1578     __ load_signed_short(rdx, at_bcp(1));
1579   }
1580   __ bswapl(rdx);
1581 
1582   if (!is_wide) {
1583     __ sarl(rdx, 16);
1584   }
1585   __ movl2ptr(rdx, rdx);
1586 
1587   // Handle all the JSR stuff here, then exit.
1588   // It's much shorter and cleaner than intermingling with the non-JSR
1589   // normal-branch stuff occurring below.
1590   if (is_jsr) {
1591     // Pre-load the next target bytecode into rbx
1592     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1593 
1594     // compute return address as bci in rax
1595     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1596                         in_bytes(ConstMethod::codes_offset())));
1597     __ subptr(rax, Address(rcx, Method::const_offset()));
1598     // Adjust the bcp in r13 by the displacement in rdx
1599     __ addptr(r13, rdx);
1600     // jsr returns atos that is not an oop
1601     __ push_i(rax);
1602     __ dispatch_only(vtos);
1603     return;
1604   }
1605 
1606   // Normal (non-jsr) branch handling
1607 
1608   // Adjust the bcp in r13 by the displacement in rdx
1609   __ addptr(r13, rdx);
1610 
1611   assert(UseLoopCounter || !UseOnStackReplacement,
1612          "on-stack-replacement requires loop counters");
1613   Label backedge_counter_overflow;
1614   Label profile_method;
1615   Label dispatch;
1616   if (UseLoopCounter) {
1617     // increment backedge counter for backward branches
1618     // rax: MDO
1619     // ebx: MDO bumped taken-count
1620     // rcx: method
1621     // rdx: target offset
1622     // r13: target bcp
1623     // r14: locals pointer
1624     __ testl(rdx, rdx);             // check if forward or backward branch
1625     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1626 
1627     // check if MethodCounters exists
1628     Label has_counters;
1629     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1630     __ testptr(rax, rax);
1631     __ jcc(Assembler::notZero, has_counters);
1632     __ push(rdx);
1633     __ push(rcx);
1634     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1635                rcx);
1636     __ pop(rcx);
1637     __ pop(rdx);
1638     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1639     __ jcc(Assembler::zero, dispatch);
1640     __ bind(has_counters);
1641 
1642     if (TieredCompilation) {
1643       Label no_mdo;
1644       int increment = InvocationCounter::count_increment;
1645       if (ProfileInterpreter) {
1646         // Are we profiling?
1647         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1648         __ testptr(rbx, rbx);
1649         __ jccb(Assembler::zero, no_mdo);
1650         // Increment the MDO backedge counter
1651         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1652                                            in_bytes(InvocationCounter::counter_offset()));
1653         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
1654         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1655                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1656         __ jmp(dispatch);
1657       }
1658       __ bind(no_mdo);
1659       // Increment backedge counter in MethodCounters*
1660       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1661          const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
1662       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1663                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1664     } else { // not TieredCompilation
1665       // increment counter
1666       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1667       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1668       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1669       __ movl(Address(rcx, be_offset), rax);        // store counter
1670 
1671       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1672 
1673       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1674       __ addl(rax, Address(rcx, be_offset));        // add both counters
1675 
1676       if (ProfileInterpreter) {
1677         // Test to see if we should create a method data oop
1678         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
1679         __ jcc(Assembler::less, dispatch);
1680 
1681         // if no method data exists, go to profile method
1682         __ test_method_data_pointer(rax, profile_method);
1683 
1684         if (UseOnStackReplacement) {
1685           // check for overflow against ebx which is the MDO taken count
1686           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
1687           __ jcc(Assembler::below, dispatch);
1688 
1689           // When ProfileInterpreter is on, the backedge_count comes
1690           // from the MethodData*, which value does not get reset on
1691           // the call to frequency_counter_overflow().  To avoid
1692           // excessive calls to the overflow routine while the method is
1693           // being compiled, add a second test to make sure the overflow
1694           // function is called only once every overflow_frequency.
1695           const int overflow_frequency = 1024;
1696           __ andl(rbx, overflow_frequency - 1);
1697           __ jcc(Assembler::zero, backedge_counter_overflow);
1698 
1699         }
1700       } else {
1701         if (UseOnStackReplacement) {
1702           // check for overflow against eax, which is the sum of the
1703           // counters
1704           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
1705           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1706 
1707         }
1708       }
1709     }
1710     __ bind(dispatch);
1711   }
1712 
1713   // Pre-load the next target bytecode into rbx
1714   __ load_unsigned_byte(rbx, Address(r13, 0));
1715 
1716   // continue with the bytecode @ target
1717   // eax: return bci for jsr's, unused otherwise
1718   // ebx: target bytecode
1719   // r13: target bcp
1720   __ dispatch_only(vtos);
1721 
1722   if (UseLoopCounter) {
1723     if (ProfileInterpreter) {
1724       // Out-of-line code to allocate method data oop.
1725       __ bind(profile_method);
1726       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1727       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1728       __ set_method_data_pointer_for_bcp();
1729       __ jmp(dispatch);
1730     }
1731 
1732     if (UseOnStackReplacement) {
1733       // invocation counter overflow
1734       __ bind(backedge_counter_overflow);
1735       __ negptr(rdx);
1736       __ addptr(rdx, r13); // branch bcp
1737       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1738       __ call_VM(noreg,
1739                  CAST_FROM_FN_PTR(address,
1740                                   InterpreterRuntime::frequency_counter_overflow),
1741                  rdx);
1742       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1743 
1744       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1745       // ebx: target bytecode
1746       // rdx: scratch
1747       // r14: locals pointer
1748       // r13: bcp
1749       __ testptr(rax, rax);                        // test result
1750       __ jcc(Assembler::zero, dispatch);         // no osr if null
1751       // nmethod may have been invalidated (VM may block upon call_VM return)
1752       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
1753       __ jcc(Assembler::notEqual, dispatch);
1754 
1755       // We have the address of an on stack replacement routine in eax
1756       // We need to prepare to execute the OSR method. First we must
1757       // migrate the locals and monitors off of the stack.
1758 
1759       __ mov(r13, rax);                             // save the nmethod
1760 
1761       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1762 
1763       // eax is OSR buffer, move it to expected parameter location
1764       __ mov(j_rarg0, rax);
1765 
1766       // We use j_rarg definitions here so that registers don't conflict as parameter
1767       // registers change across platforms as we are in the midst of a calling
1768       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1769 
1770       const Register retaddr = j_rarg2;
1771       const Register sender_sp = j_rarg1;
1772 
1773       // pop the interpreter frame
1774       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1775       __ leave();                                // remove frame anchor
1776       __ pop(retaddr);                           // get return address
1777       __ mov(rsp, sender_sp);                   // set sp to sender sp
1778       // Ensure compiled code always sees stack at proper alignment
1779       __ andptr(rsp, -(StackAlignmentInBytes));
1780 
1781       // unlike x86 we need no specialized return from compiled code
1782       // to the interpreter or the call stub.
1783 
1784       // push the return address
1785       __ push(retaddr);
1786 
1787       // and begin the OSR nmethod
1788       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1789     }
1790   }
1791 }
1792 
1793 
1794 void TemplateTable::if_0cmp(Condition cc) {
1795   transition(itos, vtos);
1796   // assume branch is more often taken than not (loops use backward branches)
1797   Label not_taken;
1798   __ testl(rax, rax);
1799   __ jcc(j_not(cc), not_taken);
1800   branch(false, false);
1801   __ bind(not_taken);
1802   __ profile_not_taken_branch(rax);
1803 }
1804 
1805 void TemplateTable::if_icmp(Condition cc) {
1806   transition(itos, vtos);
1807   // assume branch is more often taken than not (loops use backward branches)
1808   Label not_taken;
1809   __ pop_i(rdx);
1810   __ cmpl(rdx, rax);
1811   __ jcc(j_not(cc), not_taken);
1812   branch(false, false);
1813   __ bind(not_taken);
1814   __ profile_not_taken_branch(rax);
1815 }
1816 
1817 void TemplateTable::if_nullcmp(Condition cc) {
1818   transition(atos, vtos);
1819   // assume branch is more often taken than not (loops use backward branches)
1820   Label not_taken;
1821   __ testptr(rax, rax);
1822   __ jcc(j_not(cc), not_taken);
1823   branch(false, false);
1824   __ bind(not_taken);
1825   __ profile_not_taken_branch(rax);
1826 }
1827 
1828 void TemplateTable::if_acmp(Condition cc) {
1829   transition(atos, vtos);
1830   // assume branch is more often taken than not (loops use backward branches)
1831   Label not_taken;
1832   __ pop_ptr(rdx);
1833   __ cmpptr(rdx, rax);
1834   __ jcc(j_not(cc), not_taken);
1835   branch(false, false);
1836   __ bind(not_taken);
1837   __ profile_not_taken_branch(rax);
1838 }
1839 
1840 void TemplateTable::ret() {
1841   transition(vtos, vtos);
1842   locals_index(rbx);
1843   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1844   __ profile_ret(rbx, rcx);
1845   __ get_method(rax);
1846   __ movptr(r13, Address(rax, Method::const_offset()));
1847   __ lea(r13, Address(r13, rbx, Address::times_1,
1848                       ConstMethod::codes_offset()));
1849   __ dispatch_next(vtos);
1850 }
1851 
1852 void TemplateTable::wide_ret() {
1853   transition(vtos, vtos);
1854   locals_index_wide(rbx);
1855   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1856   __ profile_ret(rbx, rcx);
1857   __ get_method(rax);
1858   __ movptr(r13, Address(rax, Method::const_offset()));
1859   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
1860   __ dispatch_next(vtos);
1861 }
1862 
1863 void TemplateTable::tableswitch() {
1864   Label default_case, continue_execution;
1865   transition(itos, vtos);
1866   // align r13
1867   __ lea(rbx, at_bcp(BytesPerInt));
1868   __ andptr(rbx, -BytesPerInt);
1869   // load lo & hi
1870   __ movl(rcx, Address(rbx, BytesPerInt));
1871   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1872   __ bswapl(rcx);
1873   __ bswapl(rdx);
1874   // check against lo & hi
1875   __ cmpl(rax, rcx);
1876   __ jcc(Assembler::less, default_case);
1877   __ cmpl(rax, rdx);
1878   __ jcc(Assembler::greater, default_case);
1879   // lookup dispatch offset
1880   __ subl(rax, rcx);
1881   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1882   __ profile_switch_case(rax, rbx, rcx);
1883   // continue execution
1884   __ bind(continue_execution);
1885   __ bswapl(rdx);
1886   __ movl2ptr(rdx, rdx);
1887   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1888   __ addptr(r13, rdx);
1889   __ dispatch_only(vtos);
1890   // handle default
1891   __ bind(default_case);
1892   __ profile_switch_default(rax);
1893   __ movl(rdx, Address(rbx, 0));
1894   __ jmp(continue_execution);
1895 }
1896 
1897 void TemplateTable::lookupswitch() {
1898   transition(itos, itos);
1899   __ stop("lookupswitch bytecode should have been rewritten");
1900 }
1901 
1902 void TemplateTable::fast_linearswitch() {
1903   transition(itos, vtos);
1904   Label loop_entry, loop, found, continue_execution;
1905   // bswap rax so we can avoid bswapping the table entries
1906   __ bswapl(rax);
1907   // align r13
1908   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1909                                     // this instruction (change offsets
1910                                     // below)
1911   __ andptr(rbx, -BytesPerInt);
1912   // set counter
1913   __ movl(rcx, Address(rbx, BytesPerInt));
1914   __ bswapl(rcx);
1915   __ jmpb(loop_entry);
1916   // table search
1917   __ bind(loop);
1918   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1919   __ jcc(Assembler::equal, found);
1920   __ bind(loop_entry);
1921   __ decrementl(rcx);
1922   __ jcc(Assembler::greaterEqual, loop);
1923   // default case
1924   __ profile_switch_default(rax);
1925   __ movl(rdx, Address(rbx, 0));
1926   __ jmp(continue_execution);
1927   // entry found -> get offset
1928   __ bind(found);
1929   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1930   __ profile_switch_case(rcx, rax, rbx);
1931   // continue execution
1932   __ bind(continue_execution);
1933   __ bswapl(rdx);
1934   __ movl2ptr(rdx, rdx);
1935   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1936   __ addptr(r13, rdx);
1937   __ dispatch_only(vtos);
1938 }
1939 
1940 void TemplateTable::fast_binaryswitch() {
1941   transition(itos, vtos);
1942   // Implementation using the following core algorithm:
1943   //
1944   // int binary_search(int key, LookupswitchPair* array, int n) {
1945   //   // Binary search according to "Methodik des Programmierens" by
1946   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1947   //   int i = 0;
1948   //   int j = n;
1949   //   while (i+1 < j) {
1950   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1951   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1952   //     // where a stands for the array and assuming that the (inexisting)
1953   //     // element a[n] is infinitely big.
1954   //     int h = (i + j) >> 1;
1955   //     // i < h < j
1956   //     if (key < array[h].fast_match()) {
1957   //       j = h;
1958   //     } else {
1959   //       i = h;
1960   //     }
1961   //   }
1962   //   // R: a[i] <= key < a[i+1] or Q
1963   //   // (i.e., if key is within array, i is the correct index)
1964   //   return i;
1965   // }
1966 
1967   // Register allocation
1968   const Register key   = rax; // already set (tosca)
1969   const Register array = rbx;
1970   const Register i     = rcx;
1971   const Register j     = rdx;
1972   const Register h     = rdi;
1973   const Register temp  = rsi;
1974 
1975   // Find array start
1976   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1977                                           // get rid of this
1978                                           // instruction (change
1979                                           // offsets below)
1980   __ andptr(array, -BytesPerInt);
1981 
1982   // Initialize i & j
1983   __ xorl(i, i);                            // i = 0;
1984   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1985 
1986   // Convert j into native byteordering
1987   __ bswapl(j);
1988 
1989   // And start
1990   Label entry;
1991   __ jmp(entry);
1992 
1993   // binary search loop
1994   {
1995     Label loop;
1996     __ bind(loop);
1997     // int h = (i + j) >> 1;
1998     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1999     __ sarl(h, 1);                               // h = (i + j) >> 1;
2000     // if (key < array[h].fast_match()) {
2001     //   j = h;
2002     // } else {
2003     //   i = h;
2004     // }
2005     // Convert array[h].match to native byte-ordering before compare
2006     __ movl(temp, Address(array, h, Address::times_8));
2007     __ bswapl(temp);
2008     __ cmpl(key, temp);
2009     // j = h if (key <  array[h].fast_match())
2010     __ cmovl(Assembler::less, j, h);
2011     // i = h if (key >= array[h].fast_match())
2012     __ cmovl(Assembler::greaterEqual, i, h);
2013     // while (i+1 < j)
2014     __ bind(entry);
2015     __ leal(h, Address(i, 1)); // i+1
2016     __ cmpl(h, j);             // i+1 < j
2017     __ jcc(Assembler::less, loop);
2018   }
2019 
2020   // end of binary search, result index is i (must check again!)
2021   Label default_case;
2022   // Convert array[i].match to native byte-ordering before compare
2023   __ movl(temp, Address(array, i, Address::times_8));
2024   __ bswapl(temp);
2025   __ cmpl(key, temp);
2026   __ jcc(Assembler::notEqual, default_case);
2027 
2028   // entry found -> j = offset
2029   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2030   __ profile_switch_case(i, key, array);
2031   __ bswapl(j);
2032   __ movl2ptr(j, j);
2033   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2034   __ addptr(r13, j);
2035   __ dispatch_only(vtos);
2036 
2037   // default case -> j = default offset
2038   __ bind(default_case);
2039   __ profile_switch_default(i);
2040   __ movl(j, Address(array, -2 * BytesPerInt));
2041   __ bswapl(j);
2042   __ movl2ptr(j, j);
2043   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2044   __ addptr(r13, j);
2045   __ dispatch_only(vtos);
2046 }
2047 
2048 
2049 void TemplateTable::_return(TosState state) {
2050   transition(state, state);
2051   assert(_desc->calls_vm(),
2052          "inconsistent calls_vm information"); // call in remove_activation
2053 
2054   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2055     assert(state == vtos, "only valid state");
2056     __ movptr(c_rarg1, aaddress(0));
2057     __ load_klass(rdi, c_rarg1);
2058     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2059     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2060     Label skip_register_finalizer;
2061     __ jcc(Assembler::zero, skip_register_finalizer);
2062 
2063     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2064 
2065     __ bind(skip_register_finalizer);
2066   }
2067 
2068   __ remove_activation(state, r13);
2069   __ jmp(r13);
2070 }
2071 
2072 // ----------------------------------------------------------------------------
2073 // Volatile variables demand their effects be made known to all CPU's
2074 // in order.  Store buffers on most chips allow reads & writes to
2075 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2076 // without some kind of memory barrier (i.e., it's not sufficient that
2077 // the interpreter does not reorder volatile references, the hardware
2078 // also must not reorder them).
2079 //
2080 // According to the new Java Memory Model (JMM):
2081 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2082 //     writes act as aquire & release, so:
2083 // (2) A read cannot let unrelated NON-volatile memory refs that
2084 //     happen after the read float up to before the read.  It's OK for
2085 //     non-volatile memory refs that happen before the volatile read to
2086 //     float down below it.
2087 // (3) Similar a volatile write cannot let unrelated NON-volatile
2088 //     memory refs that happen BEFORE the write float down to after the
2089 //     write.  It's OK for non-volatile memory refs that happen after the
2090 //     volatile write to float up before it.
2091 //
2092 // We only put in barriers around volatile refs (they are expensive),
2093 // not _between_ memory refs (that would require us to track the
2094 // flavor of the previous memory refs).  Requirements (2) and (3)
2095 // require some barriers before volatile stores and after volatile
2096 // loads.  These nearly cover requirement (1) but miss the
2097 // volatile-store-volatile-load case.  This final case is placed after
2098 // volatile-stores although it could just as well go before
2099 // volatile-loads.
2100 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2101                                      order_constraint) {
2102   // Helper function to insert a is-volatile test and memory barrier
2103   if (os::is_MP()) { // Not needed on single CPU
2104     __ membar(order_constraint);
2105   }
2106 }
2107 
2108 void TemplateTable::resolve_cache_and_index(int byte_no,
2109                                             Register Rcache,
2110                                             Register index,
2111                                             size_t index_size) {
2112   const Register temp = rbx;
2113   assert_different_registers(Rcache, index, temp);
2114 
2115   Label resolved;
2116     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2117     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2118     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2119     __ jcc(Assembler::equal, resolved);
2120 
2121   // resolve first time through
2122   address entry;
2123   switch (bytecode()) {
2124   case Bytecodes::_getstatic:
2125   case Bytecodes::_putstatic:
2126   case Bytecodes::_getfield:
2127   case Bytecodes::_putfield:
2128     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2129     break;
2130   case Bytecodes::_invokevirtual:
2131   case Bytecodes::_invokespecial:
2132   case Bytecodes::_invokestatic:
2133   case Bytecodes::_invokeinterface:
2134     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2135     break;
2136   case Bytecodes::_invokehandle:
2137     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2138     break;
2139   case Bytecodes::_invokedynamic:
2140     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2141     break;
2142   default:
2143     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2144     break;
2145   }
2146   __ movl(temp, (int) bytecode());
2147   __ call_VM(noreg, entry, temp);
2148 
2149   // Update registers with resolved info
2150   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2151   __ bind(resolved);
2152 }
2153 
2154 // The cache and index registers must be set before call
2155 void TemplateTable::load_field_cp_cache_entry(Register obj,
2156                                               Register cache,
2157                                               Register index,
2158                                               Register off,
2159                                               Register flags,
2160                                               bool is_static = false) {
2161   assert_different_registers(cache, index, flags, off);
2162 
2163   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2164   // Field offset
2165   __ movptr(off, Address(cache, index, Address::times_ptr,
2166                          in_bytes(cp_base_offset +
2167                                   ConstantPoolCacheEntry::f2_offset())));
2168   // Flags
2169   __ movl(flags, Address(cache, index, Address::times_ptr,
2170                          in_bytes(cp_base_offset +
2171                                   ConstantPoolCacheEntry::flags_offset())));
2172 
2173   // klass overwrite register
2174   if (is_static) {
2175     __ movptr(obj, Address(cache, index, Address::times_ptr,
2176                            in_bytes(cp_base_offset +
2177                                     ConstantPoolCacheEntry::f1_offset())));
2178     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2179     __ movptr(obj, Address(obj, mirror_offset));
2180   }
2181 }
2182 
2183 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2184                                                Register method,
2185                                                Register itable_index,
2186                                                Register flags,
2187                                                bool is_invokevirtual,
2188                                                bool is_invokevfinal, /*unused*/
2189                                                bool is_invokedynamic) {
2190   // setup registers
2191   const Register cache = rcx;
2192   const Register index = rdx;
2193   assert_different_registers(method, flags);
2194   assert_different_registers(method, cache, index);
2195   assert_different_registers(itable_index, flags);
2196   assert_different_registers(itable_index, cache, index);
2197   // determine constant pool cache field offsets
2198   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2199   const int method_offset = in_bytes(
2200     ConstantPoolCache::base_offset() +
2201       ((byte_no == f2_byte)
2202        ? ConstantPoolCacheEntry::f2_offset()
2203        : ConstantPoolCacheEntry::f1_offset()));
2204   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2205                                     ConstantPoolCacheEntry::flags_offset());
2206   // access constant pool cache fields
2207   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2208                                     ConstantPoolCacheEntry::f2_offset());
2209 
2210   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2211   resolve_cache_and_index(byte_no, cache, index, index_size);
2212     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2213 
2214   if (itable_index != noreg) {
2215     // pick up itable or appendix index from f2 also:
2216     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2217   }
2218   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2219 }
2220 
2221 // Correct values of the cache and index registers are preserved.
2222 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2223                                             bool is_static, bool has_tos) {
2224   // do the JVMTI work here to avoid disturbing the register state below
2225   // We use c_rarg registers here because we want to use the register used in
2226   // the call to the VM
2227   if (JvmtiExport::can_post_field_access()) {
2228     // Check to see if a field access watch has been set before we
2229     // take the time to call into the VM.
2230     Label L1;
2231     assert_different_registers(cache, index, rax);
2232     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2233     __ testl(rax, rax);
2234     __ jcc(Assembler::zero, L1);
2235 
2236     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2237 
2238     // cache entry pointer
2239     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
2240     __ shll(c_rarg3, LogBytesPerWord);
2241     __ addptr(c_rarg2, c_rarg3);
2242     if (is_static) {
2243       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2244     } else {
2245       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2246       __ verify_oop(c_rarg1);
2247     }
2248     // c_rarg1: object pointer or NULL
2249     // c_rarg2: cache entry pointer
2250     // c_rarg3: jvalue object on the stack
2251     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2252                                        InterpreterRuntime::post_field_access),
2253                c_rarg1, c_rarg2, c_rarg3);
2254     __ get_cache_and_index_at_bcp(cache, index, 1);
2255     __ bind(L1);
2256   }
2257 }
2258 
2259 void TemplateTable::pop_and_check_object(Register r) {
2260   __ pop_ptr(r);
2261   __ null_check(r);  // for field access must check obj.
2262   __ verify_oop(r);
2263 }
2264 
2265 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2266   transition(vtos, vtos);
2267 
2268   const Register cache = rcx;
2269   const Register index = rdx;
2270   const Register obj   = c_rarg3;
2271   const Register off   = rbx;
2272   const Register flags = rax;
2273   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2274 
2275   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2276   jvmti_post_field_access(cache, index, is_static, false);
2277   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2278 
2279   if (!is_static) {
2280     // obj is on the stack
2281     pop_and_check_object(obj);
2282   }
2283 
2284   const Address field(obj, off, Address::times_1);
2285 
2286   Label Done, notByte, notInt, notShort, notChar,
2287               notLong, notFloat, notObj, notDouble;
2288 
2289   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2290   // Make sure we don't need to mask edx after the above shift
2291   assert(btos == 0, "change code, btos != 0");
2292 
2293   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2294   __ jcc(Assembler::notZero, notByte);
2295   // btos
2296   __ load_signed_byte(rax, field);
2297   __ push(btos);
2298   // Rewrite bytecode to be faster
2299   if (!is_static) {
2300     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2301   }
2302   __ jmp(Done);
2303 
2304   __ bind(notByte);
2305   __ cmpl(flags, atos);
2306   __ jcc(Assembler::notEqual, notObj);
2307   // atos
2308   __ load_heap_oop(rax, field);
2309   __ push(atos);
2310   if (!is_static) {
2311     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2312   }
2313   __ jmp(Done);
2314 
2315   __ bind(notObj);
2316   __ cmpl(flags, itos);
2317   __ jcc(Assembler::notEqual, notInt);
2318   // itos
2319   __ movl(rax, field);
2320   __ push(itos);
2321   // Rewrite bytecode to be faster
2322   if (!is_static) {
2323     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2324   }
2325   __ jmp(Done);
2326 
2327   __ bind(notInt);
2328   __ cmpl(flags, ctos);
2329   __ jcc(Assembler::notEqual, notChar);
2330   // ctos
2331   __ load_unsigned_short(rax, field);
2332   __ push(ctos);
2333   // Rewrite bytecode to be faster
2334   if (!is_static) {
2335     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2336   }
2337   __ jmp(Done);
2338 
2339   __ bind(notChar);
2340   __ cmpl(flags, stos);
2341   __ jcc(Assembler::notEqual, notShort);
2342   // stos
2343   __ load_signed_short(rax, field);
2344   __ push(stos);
2345   // Rewrite bytecode to be faster
2346   if (!is_static) {
2347     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2348   }
2349   __ jmp(Done);
2350 
2351   __ bind(notShort);
2352   __ cmpl(flags, ltos);
2353   __ jcc(Assembler::notEqual, notLong);
2354   // ltos
2355   __ movq(rax, field);
2356   __ push(ltos);
2357   // Rewrite bytecode to be faster
2358   if (!is_static) {
2359     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2360   }
2361   __ jmp(Done);
2362 
2363   __ bind(notLong);
2364   __ cmpl(flags, ftos);
2365   __ jcc(Assembler::notEqual, notFloat);
2366   // ftos
2367   __ movflt(xmm0, field);
2368   __ push(ftos);
2369   // Rewrite bytecode to be faster
2370   if (!is_static) {
2371     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2372   }
2373   __ jmp(Done);
2374 
2375   __ bind(notFloat);
2376 #ifdef ASSERT
2377   __ cmpl(flags, dtos);
2378   __ jcc(Assembler::notEqual, notDouble);
2379 #endif
2380   // dtos
2381   __ movdbl(xmm0, field);
2382   __ push(dtos);
2383   // Rewrite bytecode to be faster
2384   if (!is_static) {
2385     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2386   }
2387 #ifdef ASSERT
2388   __ jmp(Done);
2389 
2390   __ bind(notDouble);
2391   __ stop("Bad state");
2392 #endif
2393 
2394   __ bind(Done);
2395   // [jk] not needed currently
2396   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2397   //                                              Assembler::LoadStore));
2398 }
2399 
2400 
2401 void TemplateTable::getfield(int byte_no) {
2402   getfield_or_static(byte_no, false);
2403 }
2404 
2405 void TemplateTable::getstatic(int byte_no) {
2406   getfield_or_static(byte_no, true);
2407 }
2408 
2409 // The registers cache and index expected to be set before call.
2410 // The function may destroy various registers, just not the cache and index registers.
2411 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2412   transition(vtos, vtos);
2413 
2414   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2415 
2416   if (JvmtiExport::can_post_field_modification()) {
2417     // Check to see if a field modification watch has been set before
2418     // we take the time to call into the VM.
2419     Label L1;
2420     assert_different_registers(cache, index, rax);
2421     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2422     __ testl(rax, rax);
2423     __ jcc(Assembler::zero, L1);
2424 
2425     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2426 
2427     if (is_static) {
2428       // Life is simple.  Null out the object pointer.
2429       __ xorl(c_rarg1, c_rarg1);
2430     } else {
2431       // Life is harder. The stack holds the value on top, followed by
2432       // the object.  We don't know the size of the value, though; it
2433       // could be one or two words depending on its type. As a result,
2434       // we must find the type to determine where the object is.
2435       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2436                            Address::times_8,
2437                            in_bytes(cp_base_offset +
2438                                      ConstantPoolCacheEntry::flags_offset())));
2439       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
2440       // Make sure we don't need to mask rcx after the above shift
2441       ConstantPoolCacheEntry::verify_tos_state_shift();
2442       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2443       __ cmpl(c_rarg3, ltos);
2444       __ cmovptr(Assembler::equal,
2445                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2446       __ cmpl(c_rarg3, dtos);
2447       __ cmovptr(Assembler::equal,
2448                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2449     }
2450     // cache entry pointer
2451     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2452     __ shll(rscratch1, LogBytesPerWord);
2453     __ addptr(c_rarg2, rscratch1);
2454     // object (tos)
2455     __ mov(c_rarg3, rsp);
2456     // c_rarg1: object pointer set up above (NULL if static)
2457     // c_rarg2: cache entry pointer
2458     // c_rarg3: jvalue object on the stack
2459     __ call_VM(noreg,
2460                CAST_FROM_FN_PTR(address,
2461                                 InterpreterRuntime::post_field_modification),
2462                c_rarg1, c_rarg2, c_rarg3);
2463     __ get_cache_and_index_at_bcp(cache, index, 1);
2464     __ bind(L1);
2465   }
2466 }
2467 
2468 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2469   transition(vtos, vtos);
2470 
2471   const Register cache = rcx;
2472   const Register index = rdx;
2473   const Register obj   = rcx;
2474   const Register off   = rbx;
2475   const Register flags = rax;
2476   const Register bc    = c_rarg3;
2477 
2478   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2479   jvmti_post_field_mod(cache, index, is_static);
2480   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2481 
2482   // [jk] not needed currently
2483   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2484   //                                              Assembler::StoreStore));
2485 
2486   Label notVolatile, Done;
2487   __ movl(rdx, flags);
2488   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2489   __ andl(rdx, 0x1);
2490 
2491   // field address
2492   const Address field(obj, off, Address::times_1);
2493 
2494   Label notByte, notInt, notShort, notChar,
2495         notLong, notFloat, notObj, notDouble;
2496 
2497   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2498 
2499   assert(btos == 0, "change code, btos != 0");
2500   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2501   __ jcc(Assembler::notZero, notByte);
2502 
2503   // btos
2504   {
2505     __ pop(btos);
2506     if (!is_static) pop_and_check_object(obj);
2507     __ movb(field, rax);
2508     if (!is_static) {
2509       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2510     }
2511     __ jmp(Done);
2512   }
2513 
2514   __ bind(notByte);
2515   __ cmpl(flags, atos);
2516   __ jcc(Assembler::notEqual, notObj);
2517 
2518   // atos
2519   {
2520     __ pop(atos);
2521     if (!is_static) pop_and_check_object(obj);
2522     // Store into the field
2523     do_oop_store(_masm, field, rax, _bs->kind(), false);
2524     if (!is_static) {
2525       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2526     }
2527     __ jmp(Done);
2528   }
2529 
2530   __ bind(notObj);
2531   __ cmpl(flags, itos);
2532   __ jcc(Assembler::notEqual, notInt);
2533 
2534   // itos
2535   {
2536     __ pop(itos);
2537     if (!is_static) pop_and_check_object(obj);
2538     __ movl(field, rax);
2539     if (!is_static) {
2540       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2541     }
2542     __ jmp(Done);
2543   }
2544 
2545   __ bind(notInt);
2546   __ cmpl(flags, ctos);
2547   __ jcc(Assembler::notEqual, notChar);
2548 
2549   // ctos
2550   {
2551     __ pop(ctos);
2552     if (!is_static) pop_and_check_object(obj);
2553     __ movw(field, rax);
2554     if (!is_static) {
2555       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2556     }
2557     __ jmp(Done);
2558   }
2559 
2560   __ bind(notChar);
2561   __ cmpl(flags, stos);
2562   __ jcc(Assembler::notEqual, notShort);
2563 
2564   // stos
2565   {
2566     __ pop(stos);
2567     if (!is_static) pop_and_check_object(obj);
2568     __ movw(field, rax);
2569     if (!is_static) {
2570       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2571     }
2572     __ jmp(Done);
2573   }
2574 
2575   __ bind(notShort);
2576   __ cmpl(flags, ltos);
2577   __ jcc(Assembler::notEqual, notLong);
2578 
2579   // ltos
2580   {
2581     __ pop(ltos);
2582     if (!is_static) pop_and_check_object(obj);
2583     __ movq(field, rax);
2584     if (!is_static) {
2585       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2586     }
2587     __ jmp(Done);
2588   }
2589 
2590   __ bind(notLong);
2591   __ cmpl(flags, ftos);
2592   __ jcc(Assembler::notEqual, notFloat);
2593 
2594   // ftos
2595   {
2596     __ pop(ftos);
2597     if (!is_static) pop_and_check_object(obj);
2598     __ movflt(field, xmm0);
2599     if (!is_static) {
2600       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2601     }
2602     __ jmp(Done);
2603   }
2604 
2605   __ bind(notFloat);
2606 #ifdef ASSERT
2607   __ cmpl(flags, dtos);
2608   __ jcc(Assembler::notEqual, notDouble);
2609 #endif
2610 
2611   // dtos
2612   {
2613     __ pop(dtos);
2614     if (!is_static) pop_and_check_object(obj);
2615     __ movdbl(field, xmm0);
2616     if (!is_static) {
2617       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2618     }
2619   }
2620 
2621 #ifdef ASSERT
2622   __ jmp(Done);
2623 
2624   __ bind(notDouble);
2625   __ stop("Bad state");
2626 #endif
2627 
2628   __ bind(Done);
2629 
2630   // Check for volatile store
2631   __ testl(rdx, rdx);
2632   __ jcc(Assembler::zero, notVolatile);
2633   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2634                                                Assembler::StoreStore));
2635   __ bind(notVolatile);
2636 }
2637 
2638 void TemplateTable::putfield(int byte_no) {
2639   putfield_or_static(byte_no, false);
2640 }
2641 
2642 void TemplateTable::putstatic(int byte_no) {
2643   putfield_or_static(byte_no, true);
2644 }
2645 
2646 void TemplateTable::jvmti_post_fast_field_mod() {
2647   if (JvmtiExport::can_post_field_modification()) {
2648     // Check to see if a field modification watch has been set before
2649     // we take the time to call into the VM.
2650     Label L2;
2651     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2652     __ testl(c_rarg3, c_rarg3);
2653     __ jcc(Assembler::zero, L2);
2654     __ pop_ptr(rbx);                  // copy the object pointer from tos
2655     __ verify_oop(rbx);
2656     __ push_ptr(rbx);                 // put the object pointer back on tos
2657     // Save tos values before call_VM() clobbers them. Since we have
2658     // to do it for every data type, we use the saved values as the
2659     // jvalue object.
2660     switch (bytecode()) {          // load values into the jvalue object
2661     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2662     case Bytecodes::_fast_bputfield: // fall through
2663     case Bytecodes::_fast_sputfield: // fall through
2664     case Bytecodes::_fast_cputfield: // fall through
2665     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2666     case Bytecodes::_fast_dputfield: __ push_d(); break;
2667     case Bytecodes::_fast_fputfield: __ push_f(); break;
2668     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2669 
2670     default:
2671       ShouldNotReachHere();
2672     }
2673     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
2674     // access constant pool cache entry
2675     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2676     __ verify_oop(rbx);
2677     // rbx: object pointer copied above
2678     // c_rarg2: cache entry pointer
2679     // c_rarg3: jvalue object on the stack
2680     __ call_VM(noreg,
2681                CAST_FROM_FN_PTR(address,
2682                                 InterpreterRuntime::post_field_modification),
2683                rbx, c_rarg2, c_rarg3);
2684 
2685     switch (bytecode()) {             // restore tos values
2686     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2687     case Bytecodes::_fast_bputfield: // fall through
2688     case Bytecodes::_fast_sputfield: // fall through
2689     case Bytecodes::_fast_cputfield: // fall through
2690     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2691     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2692     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2693     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2694     }
2695     __ bind(L2);
2696   }
2697 }
2698 
2699 void TemplateTable::fast_storefield(TosState state) {
2700   transition(state, vtos);
2701 
2702   ByteSize base = ConstantPoolCache::base_offset();
2703 
2704   jvmti_post_fast_field_mod();
2705 
2706   // access constant pool cache
2707   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2708 
2709   // test for volatile with rdx
2710   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2711                        in_bytes(base +
2712                                 ConstantPoolCacheEntry::flags_offset())));
2713 
2714   // replace index with field offset from cache entry
2715   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2716                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2717 
2718   // [jk] not needed currently
2719   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2720   //                                              Assembler::StoreStore));
2721 
2722   Label notVolatile;
2723   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2724   __ andl(rdx, 0x1);
2725 
2726   // Get object from stack
2727   pop_and_check_object(rcx);
2728 
2729   // field address
2730   const Address field(rcx, rbx, Address::times_1);
2731 
2732   // access field
2733   switch (bytecode()) {
2734   case Bytecodes::_fast_aputfield:
2735     do_oop_store(_masm, field, rax, _bs->kind(), false);
2736     break;
2737   case Bytecodes::_fast_lputfield:
2738     __ movq(field, rax);
2739     break;
2740   case Bytecodes::_fast_iputfield:
2741     __ movl(field, rax);
2742     break;
2743   case Bytecodes::_fast_bputfield:
2744     __ movb(field, rax);
2745     break;
2746   case Bytecodes::_fast_sputfield:
2747     // fall through
2748   case Bytecodes::_fast_cputfield:
2749     __ movw(field, rax);
2750     break;
2751   case Bytecodes::_fast_fputfield:
2752     __ movflt(field, xmm0);
2753     break;
2754   case Bytecodes::_fast_dputfield:
2755     __ movdbl(field, xmm0);
2756     break;
2757   default:
2758     ShouldNotReachHere();
2759   }
2760 
2761   // Check for volatile store
2762   __ testl(rdx, rdx);
2763   __ jcc(Assembler::zero, notVolatile);
2764   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2765                                                Assembler::StoreStore));
2766   __ bind(notVolatile);
2767 }
2768 
2769 
2770 void TemplateTable::fast_accessfield(TosState state) {
2771   transition(atos, state);
2772 
2773   // Do the JVMTI work here to avoid disturbing the register state below
2774   if (JvmtiExport::can_post_field_access()) {
2775     // Check to see if a field access watch has been set before we
2776     // take the time to call into the VM.
2777     Label L1;
2778     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2779     __ testl(rcx, rcx);
2780     __ jcc(Assembler::zero, L1);
2781     // access constant pool cache entry
2782     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2783     __ verify_oop(rax);
2784     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2785     __ mov(c_rarg1, rax);
2786     // c_rarg1: object pointer copied above
2787     // c_rarg2: cache entry pointer
2788     __ call_VM(noreg,
2789                CAST_FROM_FN_PTR(address,
2790                                 InterpreterRuntime::post_field_access),
2791                c_rarg1, c_rarg2);
2792     __ pop_ptr(rax); // restore object pointer
2793     __ bind(L1);
2794   }
2795 
2796   // access constant pool cache
2797   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2798   // replace index with field offset from cache entry
2799   // [jk] not needed currently
2800   // if (os::is_MP()) {
2801   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2802   //                        in_bytes(ConstantPoolCache::base_offset() +
2803   //                                 ConstantPoolCacheEntry::flags_offset())));
2804   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2805   //   __ andl(rdx, 0x1);
2806   // }
2807   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2808                          in_bytes(ConstantPoolCache::base_offset() +
2809                                   ConstantPoolCacheEntry::f2_offset())));
2810 
2811   // rax: object
2812   __ verify_oop(rax);
2813   __ null_check(rax);
2814   Address field(rax, rbx, Address::times_1);
2815 
2816   // access field
2817   switch (bytecode()) {
2818   case Bytecodes::_fast_agetfield:
2819     __ load_heap_oop(rax, field);
2820     __ verify_oop(rax);
2821     break;
2822   case Bytecodes::_fast_lgetfield:
2823     __ movq(rax, field);
2824     break;
2825   case Bytecodes::_fast_igetfield:
2826     __ movl(rax, field);
2827     break;
2828   case Bytecodes::_fast_bgetfield:
2829     __ movsbl(rax, field);
2830     break;
2831   case Bytecodes::_fast_sgetfield:
2832     __ load_signed_short(rax, field);
2833     break;
2834   case Bytecodes::_fast_cgetfield:
2835     __ load_unsigned_short(rax, field);
2836     break;
2837   case Bytecodes::_fast_fgetfield:
2838     __ movflt(xmm0, field);
2839     break;
2840   case Bytecodes::_fast_dgetfield:
2841     __ movdbl(xmm0, field);
2842     break;
2843   default:
2844     ShouldNotReachHere();
2845   }
2846   // [jk] not needed currently
2847   // if (os::is_MP()) {
2848   //   Label notVolatile;
2849   //   __ testl(rdx, rdx);
2850   //   __ jcc(Assembler::zero, notVolatile);
2851   //   __ membar(Assembler::LoadLoad);
2852   //   __ bind(notVolatile);
2853   //};
2854 }
2855 
2856 void TemplateTable::fast_xaccess(TosState state) {
2857   transition(vtos, state);
2858 
2859   // get receiver
2860   __ movptr(rax, aaddress(0));
2861   // access constant pool cache
2862   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2863   __ movptr(rbx,
2864             Address(rcx, rdx, Address::times_8,
2865                     in_bytes(ConstantPoolCache::base_offset() +
2866                              ConstantPoolCacheEntry::f2_offset())));
2867   // make sure exception is reported in correct bcp range (getfield is
2868   // next instruction)
2869   __ increment(r13);
2870   __ null_check(rax);
2871   switch (state) {
2872   case itos:
2873     __ movl(rax, Address(rax, rbx, Address::times_1));
2874     break;
2875   case atos:
2876     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2877     __ verify_oop(rax);
2878     break;
2879   case ftos:
2880     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2881     break;
2882   default:
2883     ShouldNotReachHere();
2884   }
2885 
2886   // [jk] not needed currently
2887   // if (os::is_MP()) {
2888   //   Label notVolatile;
2889   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2890   //                        in_bytes(ConstantPoolCache::base_offset() +
2891   //                                 ConstantPoolCacheEntry::flags_offset())));
2892   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2893   //   __ testl(rdx, 0x1);
2894   //   __ jcc(Assembler::zero, notVolatile);
2895   //   __ membar(Assembler::LoadLoad);
2896   //   __ bind(notVolatile);
2897   // }
2898 
2899   __ decrement(r13);
2900 }
2901 
2902 
2903 
2904 //-----------------------------------------------------------------------------
2905 // Calls
2906 
2907 void TemplateTable::count_calls(Register method, Register temp) {
2908   // implemented elsewhere
2909   ShouldNotReachHere();
2910 }
2911 
2912 void TemplateTable::prepare_invoke(int byte_no,
2913                                    Register method,  // linked method (or i-klass)
2914                                    Register index,   // itable index, MethodType, etc.
2915                                    Register recv,    // if caller wants to see it
2916                                    Register flags    // if caller wants to test it
2917                                    ) {
2918   // determine flags
2919   const Bytecodes::Code code = bytecode();
2920   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2921   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2922   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2923   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2924   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2925   const bool load_receiver       = (recv  != noreg);
2926   const bool save_flags          = (flags != noreg);
2927   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2928   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2929   assert(flags == noreg || flags == rdx, "");
2930   assert(recv  == noreg || recv  == rcx, "");
2931 
2932   // setup registers & access constant pool cache
2933   if (recv  == noreg)  recv  = rcx;
2934   if (flags == noreg)  flags = rdx;
2935   assert_different_registers(method, index, recv, flags);
2936 
2937   // save 'interpreter return address'
2938   __ save_bcp();
2939 
2940   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2941 
2942   // maybe push appendix to arguments (just before return address)
2943   if (is_invokedynamic || is_invokehandle) {
2944     Label L_no_push;
2945     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2946     __ jcc(Assembler::zero, L_no_push);
2947     // Push the appendix as a trailing parameter.
2948     // This must be done before we get the receiver,
2949     // since the parameter_size includes it.
2950     __ push(rbx);
2951     __ mov(rbx, index);
2952     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2953     __ load_resolved_reference_at_index(index, rbx);
2954     __ pop(rbx);
2955     __ push(index);  // push appendix (MethodType, CallSite, etc.)
2956     __ bind(L_no_push);
2957   }
2958 
2959   // load receiver if needed (after appendix is pushed so parameter size is correct)
2960   // Note: no return address pushed yet
2961   if (load_receiver) {
2962     __ movl(recv, flags);
2963     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
2964     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
2965     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
2966     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
2967     __ movptr(recv, recv_addr);
2968     __ verify_oop(recv);
2969   }
2970 
2971   if (save_flags) {
2972     __ movl(r13, flags);
2973   }
2974 
2975   // compute return type
2976   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2977   // Make sure we don't need to mask flags after the above shift
2978   ConstantPoolCacheEntry::verify_tos_state_shift();
2979   // load return address
2980   {
2981     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2982     ExternalAddress table(table_addr);
2983     __ lea(rscratch1, table);
2984     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2985   }
2986 
2987   // push return address
2988   __ push(flags);
2989 
2990   // Restore flags value from the constant pool cache, and restore rsi
2991   // for later null checks.  r13 is the bytecode pointer
2992   if (save_flags) {
2993     __ movl(flags, r13);
2994     __ restore_bcp();
2995   }
2996 }
2997 
2998 
2999 void TemplateTable::invokevirtual_helper(Register index,
3000                                          Register recv,
3001                                          Register flags) {
3002   // Uses temporary registers rax, rdx
3003   assert_different_registers(index, recv, rax, rdx);
3004   assert(index == rbx, "");
3005   assert(recv  == rcx, "");
3006 
3007   // Test for an invoke of a final method
3008   Label notFinal;
3009   __ movl(rax, flags);
3010   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3011   __ jcc(Assembler::zero, notFinal);
3012 
3013   const Register method = index;  // method must be rbx
3014   assert(method == rbx,
3015          "Method* must be rbx for interpreter calling convention");
3016 
3017   // do the call - the index is actually the method to call
3018   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3019 
3020   // It's final, need a null check here!
3021   __ null_check(recv);
3022 
3023   // profile this call
3024   __ profile_final_call(rax);
3025   __ profile_arguments_type(rax, method, r13, true);
3026 
3027   __ jump_from_interpreted(method, rax);
3028 
3029   __ bind(notFinal);
3030 
3031   // get receiver klass
3032   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3033   __ load_klass(rax, recv);
3034 
3035   // profile this call
3036   __ profile_virtual_call(rax, r14, rdx);
3037 
3038   // get target Method* & entry point
3039   __ lookup_virtual_method(rax, index, method);
3040   __ profile_arguments_type(rdx, method, r13, true);
3041   __ jump_from_interpreted(method, rdx);
3042 }
3043 
3044 
3045 void TemplateTable::invokevirtual(int byte_no) {
3046   transition(vtos, vtos);
3047   assert(byte_no == f2_byte, "use this argument");
3048   prepare_invoke(byte_no,
3049                  rbx,    // method or vtable index
3050                  noreg,  // unused itable index
3051                  rcx, rdx); // recv, flags
3052 
3053   // rbx: index
3054   // rcx: receiver
3055   // rdx: flags
3056 
3057   invokevirtual_helper(rbx, rcx, rdx);
3058 }
3059 
3060 
3061 void TemplateTable::invokespecial(int byte_no) {
3062   transition(vtos, vtos);
3063   assert(byte_no == f1_byte, "use this argument");
3064   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3065                  rcx);  // get receiver also for null check
3066   __ verify_oop(rcx);
3067   __ null_check(rcx);
3068   // do the call
3069   __ profile_call(rax);
3070   __ profile_arguments_type(rax, rbx, r13, false);
3071   __ jump_from_interpreted(rbx, rax);
3072 }
3073 
3074 
3075 void TemplateTable::invokestatic(int byte_no) {
3076   transition(vtos, vtos);
3077   assert(byte_no == f1_byte, "use this argument");
3078   prepare_invoke(byte_no, rbx);  // get f1 Method*
3079   // do the call
3080   __ profile_call(rax);
3081   __ profile_arguments_type(rax, rbx, r13, false);
3082   __ jump_from_interpreted(rbx, rax);
3083 }
3084 
3085 void TemplateTable::fast_invokevfinal(int byte_no) {
3086   transition(vtos, vtos);
3087   assert(byte_no == f2_byte, "use this argument");
3088   __ stop("fast_invokevfinal not used on amd64");
3089 }
3090 
3091 void TemplateTable::invokeinterface(int byte_no) {
3092   transition(vtos, vtos);
3093   assert(byte_no == f1_byte, "use this argument");
3094   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
3095                  rcx, rdx); // recv, flags
3096 
3097   // rax: interface klass (from f1)
3098   // rbx: itable index (from f2)
3099   // rcx: receiver
3100   // rdx: flags
3101 
3102   // Special case of invokeinterface called for virtual method of
3103   // java.lang.Object.  See cpCacheOop.cpp for details.
3104   // This code isn't produced by javac, but could be produced by
3105   // another compliant java compiler.
3106   Label notMethod;
3107   __ movl(r14, rdx);
3108   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3109   __ jcc(Assembler::zero, notMethod);
3110 
3111   invokevirtual_helper(rbx, rcx, rdx);
3112   __ bind(notMethod);
3113 
3114   // Get receiver klass into rdx - also a null check
3115   __ restore_locals();  // restore r14
3116   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3117   __ load_klass(rdx, rcx);
3118 
3119   // profile this call
3120   __ profile_virtual_call(rdx, r13, r14);
3121 
3122   Label no_such_interface, no_such_method;
3123 
3124   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3125                              rdx, rax, rbx,
3126                              // outputs: method, scan temp. reg
3127                              rbx, r13,
3128                              no_such_interface);
3129 
3130   // rbx: Method* to call
3131   // rcx: receiver
3132   // Check for abstract method error
3133   // Note: This should be done more efficiently via a throw_abstract_method_error
3134   //       interpreter entry point and a conditional jump to it in case of a null
3135   //       method.
3136   __ testptr(rbx, rbx);
3137   __ jcc(Assembler::zero, no_such_method);
3138 
3139   __ profile_arguments_type(rdx, rbx, r13, true);
3140 
3141   // do the call
3142   // rcx: receiver
3143   // rbx,: Method*
3144   __ jump_from_interpreted(rbx, rdx);
3145   __ should_not_reach_here();
3146 
3147   // exception handling code follows...
3148   // note: must restore interpreter registers to canonical
3149   //       state for exception handling to work correctly!
3150 
3151   __ bind(no_such_method);
3152   // throw exception
3153   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3154   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3155   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3156   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3157   // the call_VM checks for exception, so we should never return here.
3158   __ should_not_reach_here();
3159 
3160   __ bind(no_such_interface);
3161   // throw exception
3162   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3163   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3164   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3165   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3166                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3167   // the call_VM checks for exception, so we should never return here.
3168   __ should_not_reach_here();
3169 }
3170 
3171 
3172 void TemplateTable::invokehandle(int byte_no) {
3173   transition(vtos, vtos);
3174   assert(byte_no == f1_byte, "use this argument");
3175   const Register rbx_method = rbx;
3176   const Register rax_mtype  = rax;
3177   const Register rcx_recv   = rcx;
3178   const Register rdx_flags  = rdx;
3179 
3180   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3181   __ verify_method_ptr(rbx_method);
3182   __ verify_oop(rcx_recv);
3183   __ null_check(rcx_recv);
3184 
3185   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3186   // rbx: MH.invokeExact_MT method (from f2)
3187 
3188   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3189 
3190   // FIXME: profile the LambdaForm also
3191   __ profile_final_call(rax);
3192   __ profile_arguments_type(rdx, rbx_method, r13, true);
3193 
3194   __ jump_from_interpreted(rbx_method, rdx);
3195 }
3196 
3197 
3198 void TemplateTable::invokedynamic(int byte_no) {
3199   transition(vtos, vtos);
3200   assert(byte_no == f1_byte, "use this argument");
3201 
3202   const Register rbx_method   = rbx;
3203   const Register rax_callsite = rax;
3204 
3205   prepare_invoke(byte_no, rbx_method, rax_callsite);
3206 
3207   // rax: CallSite object (from cpool->resolved_references[f1])
3208   // rbx: MH.linkToCallSite method (from f2)
3209 
3210   // Note:  rax_callsite is already pushed by prepare_invoke
3211 
3212   // %%% should make a type profile for any invokedynamic that takes a ref argument
3213   // profile this call
3214   __ profile_call(r13);
3215   __ profile_arguments_type(rdx, rbx_method, r13, false);
3216 
3217   __ verify_oop(rax_callsite);
3218 
3219   __ jump_from_interpreted(rbx_method, rdx);
3220 }
3221 
3222 
3223 //-----------------------------------------------------------------------------
3224 // Allocation
3225 
3226 void TemplateTable::_new() {
3227   transition(vtos, atos);
3228   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3229   Label slow_case;
3230   Label done;
3231   Label initialize_header;
3232   Label initialize_object; // including clearing the fields
3233   Label allocate_shared;
3234 
3235   __ get_cpool_and_tags(rsi, rax);
3236   // Make sure the class we're about to instantiate has been resolved.
3237   // This is done before loading InstanceKlass to be consistent with the order
3238   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3239   const int tags_offset = Array<u1>::base_offset_in_bytes();
3240   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3241           JVM_CONSTANT_Class);
3242   __ jcc(Assembler::notEqual, slow_case);
3243 
3244   // get InstanceKlass
3245   __ movptr(rsi, Address(rsi, rdx,
3246             Address::times_8, sizeof(ConstantPool)));
3247 
3248   // make sure klass is initialized & doesn't have finalizer
3249   // make sure klass is fully initialized
3250   __ cmpb(Address(rsi,
3251                   InstanceKlass::init_state_offset()),
3252           InstanceKlass::fully_initialized);
3253   __ jcc(Assembler::notEqual, slow_case);
3254 
3255   // get instance_size in InstanceKlass (scaled to a count of bytes)
3256   __ movl(rdx,
3257           Address(rsi,
3258                   Klass::layout_helper_offset()));
3259   // test to see if it has a finalizer or is malformed in some way
3260   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3261   __ jcc(Assembler::notZero, slow_case);
3262 
3263   // Allocate the instance
3264   // 1) Try to allocate in the TLAB
3265   // 2) if fail and the object is large allocate in the shared Eden
3266   // 3) if the above fails (or is not applicable), go to a slow case
3267   // (creates a new TLAB, etc.)
3268 
3269   const bool allow_shared_alloc =
3270     Universe::heap()->supports_inline_contig_alloc();
3271 
3272   if (UseTLAB) {
3273     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3274     __ lea(rbx, Address(rax, rdx, Address::times_1));
3275     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3276     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3277     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3278     if (ZeroTLAB) {
3279       // the fields have been already cleared
3280       __ jmp(initialize_header);
3281     } else {
3282       // initialize both the header and fields
3283       __ jmp(initialize_object);
3284     }
3285   }
3286 
3287   // Allocation in the shared Eden, if allowed.
3288   //
3289   // rdx: instance size in bytes
3290   if (allow_shared_alloc) {
3291     __ bind(allocate_shared);
3292 
3293     ExternalAddress top((address)Universe::heap()->top_addr());
3294     ExternalAddress end((address)Universe::heap()->end_addr());
3295 
3296     const Register RtopAddr = rscratch1;
3297     const Register RendAddr = rscratch2;
3298 
3299     __ lea(RtopAddr, top);
3300     __ lea(RendAddr, end);
3301     __ movptr(rax, Address(RtopAddr, 0));
3302 
3303     // For retries rax gets set by cmpxchgq
3304     Label retry;
3305     __ bind(retry);
3306     __ lea(rbx, Address(rax, rdx, Address::times_1));
3307     __ cmpptr(rbx, Address(RendAddr, 0));
3308     __ jcc(Assembler::above, slow_case);
3309 
3310     // Compare rax with the top addr, and if still equal, store the new
3311     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3312     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3313     //
3314     // rax: object begin
3315     // rbx: object end
3316     // rdx: instance size in bytes
3317     if (os::is_MP()) {
3318       __ lock();
3319     }
3320     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3321 
3322     // if someone beat us on the allocation, try again, otherwise continue
3323     __ jcc(Assembler::notEqual, retry);
3324 
3325     __ incr_allocated_bytes(r15_thread, rdx, 0);
3326   }
3327 
3328   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3329     // The object is initialized before the header.  If the object size is
3330     // zero, go directly to the header initialization.
3331     __ bind(initialize_object);
3332     __ decrementl(rdx, sizeof(oopDesc));
3333     __ jcc(Assembler::zero, initialize_header);
3334 
3335     // Initialize object fields
3336     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3337     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3338     {
3339       Label loop;
3340       __ bind(loop);
3341       __ movq(Address(rax, rdx, Address::times_8,
3342                       sizeof(oopDesc) - oopSize),
3343               rcx);
3344       __ decrementl(rdx);
3345       __ jcc(Assembler::notZero, loop);
3346     }
3347 
3348     // initialize object header only.
3349     __ bind(initialize_header);
3350     if (UseBiasedLocking) {
3351       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3352       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3353     } else {
3354       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3355                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3356     }
3357     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3358     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3359     __ store_klass(rax, rsi);      // store klass last
3360 
3361     {
3362       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3363       // Trigger dtrace event for fastpath
3364       __ push(atos); // save the return value
3365       __ call_VM_leaf(
3366            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3367       __ pop(atos); // restore the return value
3368 
3369     }
3370     __ jmp(done);
3371   }
3372 
3373 
3374   // slow case
3375   __ bind(slow_case);
3376   __ get_constant_pool(c_rarg1);
3377   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3378   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3379   __ verify_oop(rax);
3380 
3381   // continue
3382   __ bind(done);
3383 }
3384 
3385 void TemplateTable::newarray() {
3386   transition(itos, atos);
3387   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3388   __ movl(c_rarg2, rax);
3389   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3390           c_rarg1, c_rarg2);
3391 }
3392 
3393 void TemplateTable::anewarray() {
3394   transition(itos, atos);
3395   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3396   __ get_constant_pool(c_rarg1);
3397   __ movl(c_rarg3, rax);
3398   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3399           c_rarg1, c_rarg2, c_rarg3);
3400 }
3401 
3402 void TemplateTable::arraylength() {
3403   transition(atos, itos);
3404   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3405   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3406 }
3407 
3408 void TemplateTable::checkcast() {
3409   transition(atos, atos);
3410   Label done, is_null, ok_is_subtype, quicked, resolved;
3411   __ testptr(rax, rax); // object is in rax
3412   __ jcc(Assembler::zero, is_null);
3413 
3414   // Get cpool & tags index
3415   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3416   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3417   // See if bytecode has already been quicked
3418   __ cmpb(Address(rdx, rbx,
3419                   Address::times_1,
3420                   Array<u1>::base_offset_in_bytes()),
3421           JVM_CONSTANT_Class);
3422   __ jcc(Assembler::equal, quicked);
3423   __ push(atos); // save receiver for result, and for GC
3424   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3425   // vm_result_2 has metadata result
3426   __ get_vm_result_2(rax, r15_thread);
3427   __ pop_ptr(rdx); // restore receiver
3428   __ jmpb(resolved);
3429 
3430   // Get superklass in rax and subklass in rbx
3431   __ bind(quicked);
3432   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3433   __ movptr(rax, Address(rcx, rbx,
3434                        Address::times_8, sizeof(ConstantPool)));
3435 
3436   __ bind(resolved);
3437   __ load_klass(rbx, rdx);
3438 
3439   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3440   // Superklass in rax.  Subklass in rbx.
3441   __ gen_subtype_check(rbx, ok_is_subtype);
3442 
3443   // Come here on failure
3444   __ push_ptr(rdx);
3445   // object is at TOS
3446   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3447 
3448   // Come here on success
3449   __ bind(ok_is_subtype);
3450   __ mov(rax, rdx); // Restore object in rdx
3451 
3452   // Collect counts on whether this check-cast sees NULLs a lot or not.
3453   if (ProfileInterpreter) {
3454     __ jmp(done);
3455     __ bind(is_null);
3456     __ profile_null_seen(rcx);
3457   } else {
3458     __ bind(is_null);   // same as 'done'
3459   }
3460   __ bind(done);
3461 }
3462 
3463 void TemplateTable::instanceof() {
3464   transition(atos, itos);
3465   Label done, is_null, ok_is_subtype, quicked, resolved;
3466   __ testptr(rax, rax);
3467   __ jcc(Assembler::zero, is_null);
3468 
3469   // Get cpool & tags index
3470   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3471   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3472   // See if bytecode has already been quicked
3473   __ cmpb(Address(rdx, rbx,
3474                   Address::times_1,
3475                   Array<u1>::base_offset_in_bytes()),
3476           JVM_CONSTANT_Class);
3477   __ jcc(Assembler::equal, quicked);
3478 
3479   __ push(atos); // save receiver for result, and for GC
3480   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3481   // vm_result_2 has metadata result
3482   __ get_vm_result_2(rax, r15_thread);
3483   __ pop_ptr(rdx); // restore receiver
3484   __ verify_oop(rdx);
3485   __ load_klass(rdx, rdx);
3486   __ jmpb(resolved);
3487 
3488   // Get superklass in rax and subklass in rdx
3489   __ bind(quicked);
3490   __ load_klass(rdx, rax);
3491   __ movptr(rax, Address(rcx, rbx,
3492                          Address::times_8, sizeof(ConstantPool)));
3493 
3494   __ bind(resolved);
3495 
3496   // Generate subtype check.  Blows rcx, rdi
3497   // Superklass in rax.  Subklass in rdx.
3498   __ gen_subtype_check(rdx, ok_is_subtype);
3499 
3500   // Come here on failure
3501   __ xorl(rax, rax);
3502   __ jmpb(done);
3503   // Come here on success
3504   __ bind(ok_is_subtype);
3505   __ movl(rax, 1);
3506 
3507   // Collect counts on whether this test sees NULLs a lot or not.
3508   if (ProfileInterpreter) {
3509     __ jmp(done);
3510     __ bind(is_null);
3511     __ profile_null_seen(rcx);
3512   } else {
3513     __ bind(is_null);   // same as 'done'
3514   }
3515   __ bind(done);
3516   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3517   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3518 }
3519 
3520 //-----------------------------------------------------------------------------
3521 // Breakpoints
3522 void TemplateTable::_breakpoint() {
3523   // Note: We get here even if we are single stepping..
3524   // jbug inists on setting breakpoints at every bytecode
3525   // even if we are in single step mode.
3526 
3527   transition(vtos, vtos);
3528 
3529   // get the unpatched byte code
3530   __ get_method(c_rarg1);
3531   __ call_VM(noreg,
3532              CAST_FROM_FN_PTR(address,
3533                               InterpreterRuntime::get_original_bytecode_at),
3534              c_rarg1, r13);
3535   __ mov(rbx, rax);
3536 
3537   // post the breakpoint event
3538   __ get_method(c_rarg1);
3539   __ call_VM(noreg,
3540              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3541              c_rarg1, r13);
3542 
3543   // complete the execution of original bytecode
3544   __ dispatch_only_normal(vtos);
3545 }
3546 
3547 //-----------------------------------------------------------------------------
3548 // Exceptions
3549 
3550 void TemplateTable::athrow() {
3551   transition(atos, vtos);
3552   __ null_check(rax);
3553   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3554 }
3555 
3556 //-----------------------------------------------------------------------------
3557 // Synchronization
3558 //
3559 // Note: monitorenter & exit are symmetric routines; which is reflected
3560 //       in the assembly code structure as well
3561 //
3562 // Stack layout:
3563 //
3564 // [expressions  ] <--- rsp               = expression stack top
3565 // ..
3566 // [expressions  ]
3567 // [monitor entry] <--- monitor block top = expression stack bot
3568 // ..
3569 // [monitor entry]
3570 // [frame data   ] <--- monitor block bot
3571 // ...
3572 // [saved rbp    ] <--- rbp
3573 void TemplateTable::monitorenter() {
3574   transition(atos, vtos);
3575 
3576   // check for NULL object
3577   __ null_check(rax);
3578 
3579   const Address monitor_block_top(
3580         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3581   const Address monitor_block_bot(
3582         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3583   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3584 
3585   Label allocated;
3586 
3587   // initialize entry pointer
3588   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3589 
3590   // find a free slot in the monitor block (result in c_rarg1)
3591   {
3592     Label entry, loop, exit;
3593     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3594                                      // starting with top-most entry
3595     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3596                                      // of monitor block
3597     __ jmpb(entry);
3598 
3599     __ bind(loop);
3600     // check if current entry is used
3601     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3602     // if not used then remember entry in c_rarg1
3603     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3604     // check if current entry is for same object
3605     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3606     // if same object then stop searching
3607     __ jccb(Assembler::equal, exit);
3608     // otherwise advance to next entry
3609     __ addptr(c_rarg3, entry_size);
3610     __ bind(entry);
3611     // check if bottom reached
3612     __ cmpptr(c_rarg3, c_rarg2);
3613     // if not at bottom then check this entry
3614     __ jcc(Assembler::notEqual, loop);
3615     __ bind(exit);
3616   }
3617 
3618   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3619   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3620 
3621   // allocate one if there's no free slot
3622   {
3623     Label entry, loop;
3624     // 1. compute new pointers             // rsp: old expression stack top
3625     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3626     __ subptr(rsp, entry_size);            // move expression stack top
3627     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3628     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3629     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3630     __ jmp(entry);
3631     // 2. move expression stack contents
3632     __ bind(loop);
3633     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3634                                                       // word from old location
3635     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3636     __ addptr(c_rarg3, wordSize);                     // advance to next word
3637     __ bind(entry);
3638     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3639     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3640                                             // copy next word
3641   }
3642 
3643   // call run-time routine
3644   // c_rarg1: points to monitor entry
3645   __ bind(allocated);
3646 
3647   // Increment bcp to point to the next bytecode, so exception
3648   // handling for async. exceptions work correctly.
3649   // The object has already been poped from the stack, so the
3650   // expression stack looks correct.
3651   __ increment(r13);
3652 
3653   // store object
3654   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3655   __ lock_object(c_rarg1);
3656 
3657   // check to make sure this monitor doesn't cause stack overflow after locking
3658   __ save_bcp();  // in case of exception
3659   __ generate_stack_overflow_check(0);
3660 
3661   // The bcp has already been incremented. Just need to dispatch to
3662   // next instruction.
3663   __ dispatch_next(vtos);
3664 }
3665 
3666 
3667 void TemplateTable::monitorexit() {
3668   transition(atos, vtos);
3669 
3670   // check for NULL object
3671   __ null_check(rax);
3672 
3673   const Address monitor_block_top(
3674         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3675   const Address monitor_block_bot(
3676         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3677   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3678 
3679   Label found;
3680 
3681   // find matching slot
3682   {
3683     Label entry, loop;
3684     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3685                                      // starting with top-most entry
3686     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3687                                      // of monitor block
3688     __ jmpb(entry);
3689 
3690     __ bind(loop);
3691     // check if current entry is for same object
3692     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3693     // if same object then stop searching
3694     __ jcc(Assembler::equal, found);
3695     // otherwise advance to next entry
3696     __ addptr(c_rarg1, entry_size);
3697     __ bind(entry);
3698     // check if bottom reached
3699     __ cmpptr(c_rarg1, c_rarg2);
3700     // if not at bottom then check this entry
3701     __ jcc(Assembler::notEqual, loop);
3702   }
3703 
3704   // error handling. Unlocking was not block-structured
3705   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3706                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3707   __ should_not_reach_here();
3708 
3709   // call run-time routine
3710   // rsi: points to monitor entry
3711   __ bind(found);
3712   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3713   __ unlock_object(c_rarg1);
3714   __ pop_ptr(rax); // discard object
3715 }
3716 
3717 
3718 // Wide instructions
3719 void TemplateTable::wide() {
3720   transition(vtos, vtos);
3721   __ load_unsigned_byte(rbx, at_bcp(1));
3722   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3723   __ jmp(Address(rscratch1, rbx, Address::times_8));
3724   // Note: the r13 increment step is part of the individual wide
3725   // bytecode implementations
3726 }
3727 
3728 
3729 // Multi arrays
3730 void TemplateTable::multianewarray() {
3731   transition(vtos, atos);
3732   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3733   // last dim is on top of stack; we want address of first one:
3734   // first_addr = last_addr + (ndims - 1) * wordSize
3735   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3736   call_VM(rax,
3737           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3738           c_rarg1);
3739   __ load_unsigned_byte(rbx, at_bcp(3));
3740   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3741 }
3742 #endif // !CC_INTERP