1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
  26 #define SHARE_VM_MEMORY_BARRIERSET_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "oops/oopsHierarchy.hpp"
  30 
  31 // This class provides the interface between a barrier implementation and
  32 // the rest of the system.
  33 
  34 class BarrierSet: public CHeapObj<mtGC> {
  35   friend class VMStructs;
  36 public:
  37   enum Name {
  38     ModRef,
  39     CardTableModRef,
  40     CardTableExtension,
  41     G1SATBCT,
  42     G1SATBCTLogging
  43   };
  44 
  45   enum Flags {
  46     None                = 0,
  47     TargetUninitialized = 1
  48   };
  49 protected:
  50   // Some barrier sets create tables whose elements correspond to parts of
  51   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
  52   // normally reserve space for such tables, and commit parts of the table
  53   // "covering" parts of the heap that are committed. At most one covered
  54   // region per generation is needed.
  55   static const int _max_covered_regions = 2;
  56   Name _kind;
  57 
  58   BarrierSet(Name kind) : _kind(kind) { }
  59   ~BarrierSet() { }
  60 
  61 public:
  62 
  63   // To get around prohibition on RTTI.
  64   BarrierSet::Name kind() { return _kind; }
  65   virtual bool is_a(BarrierSet::Name bsn) = 0;
  66 
  67   // These operations indicate what kind of barriers the BarrierSet has.
  68   virtual bool has_read_ref_barrier() = 0;
  69   virtual bool has_read_prim_barrier() = 0;
  70   virtual bool has_write_ref_barrier() = 0;
  71   virtual bool has_write_ref_pre_barrier() = 0;
  72   virtual bool has_write_prim_barrier() = 0;
  73 
  74   // These functions indicate whether a particular access of the given
  75   // kinds requires a barrier.
  76   virtual bool read_ref_needs_barrier(void* field) = 0;
  77   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
  78   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
  79                                         juint val1, juint val2) = 0;
  80 
  81   // The first four operations provide a direct implementation of the
  82   // barrier set.  An interpreter loop, for example, could call these
  83   // directly, as appropriate.
  84 
  85   // Invoke the barrier, if any, necessary when reading the given ref field.
  86   virtual void read_ref_field(void* field) = 0;
  87 
  88   // Invoke the barrier, if any, necessary when reading the given primitive
  89   // "field" of "bytes" bytes in "obj".
  90   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
  91 
  92   // Invoke the barrier, if any, necessary when writing "new_val" into the
  93   // ref field at "offset" in "obj".
  94   // (For efficiency reasons, this operation is specialized for certain
  95   // barrier types.  Semantically, it should be thought of as a call to the
  96   // virtual "_work" function below, which must implement the barrier.)
  97   // First the pre-write versions...
  98   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
  99 private:
 100   // Keep this private so as to catch violations at build time.
 101   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
 102 protected:
 103   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
 104   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
 105 public:
 106 
 107   // ...then the post-write version.
 108   inline void write_ref_field(void* field, oop new_val, bool release = false);
 109 protected:
 110   virtual void write_ref_field_work(void* field, oop new_val, bool release = false) = 0;
 111 public:
 112 
 113   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
 114   // value(s) "val1" (and "val2") into the primitive "field".
 115   virtual void write_prim_field(HeapWord* field, size_t bytes,
 116                                 juint val1, juint val2) = 0;
 117 
 118   // Operations on arrays, or general regions (e.g., for "clone") may be
 119   // optimized by some barriers.
 120 
 121   // The first six operations tell whether such an optimization exists for
 122   // the particular barrier.
 123   virtual bool has_read_ref_array_opt() = 0;
 124   virtual bool has_read_prim_array_opt() = 0;
 125   virtual bool has_write_ref_array_pre_opt() { return true; }
 126   virtual bool has_write_ref_array_opt() = 0;
 127   virtual bool has_write_prim_array_opt() = 0;
 128 
 129   virtual bool has_read_region_opt() = 0;
 130   virtual bool has_write_region_opt() = 0;
 131 
 132   // These operations should assert false unless the corresponding operation
 133   // above returns true.  Otherwise, they should perform an appropriate
 134   // barrier for an array whose elements are all in the given memory region.
 135   virtual void read_ref_array(MemRegion mr) = 0;
 136   virtual void read_prim_array(MemRegion mr) = 0;
 137 
 138   // Below length is the # array elements being written
 139   virtual void write_ref_array_pre(oop* dst, int length,
 140                                    bool dest_uninitialized = false) {}
 141   virtual void write_ref_array_pre(narrowOop* dst, int length,
 142                                    bool dest_uninitialized = false) {}
 143   // Below count is the # array elements being written, starting
 144   // at the address "start", which may not necessarily be HeapWord-aligned
 145   inline void write_ref_array(HeapWord* start, size_t count);
 146 
 147   // Static versions, suitable for calling from generated code;
 148   // count is # array elements being written, starting with "start",
 149   // which may not necessarily be HeapWord-aligned.
 150   static void static_write_ref_array_pre(HeapWord* start, size_t count);
 151   static void static_write_ref_array_post(HeapWord* start, size_t count);
 152 
 153 protected:
 154   virtual void write_ref_array_work(MemRegion mr) = 0;
 155 public:
 156   virtual void write_prim_array(MemRegion mr) = 0;
 157 
 158   virtual void read_region(MemRegion mr) = 0;
 159 
 160   // (For efficiency reasons, this operation is specialized for certain
 161   // barrier types.  Semantically, it should be thought of as a call to the
 162   // virtual "_work" function below, which must implement the barrier.)
 163   inline void write_region(MemRegion mr);
 164 protected:
 165   virtual void write_region_work(MemRegion mr) = 0;
 166 public:
 167   // Inform the BarrierSet that the the covered heap region that starts
 168   // with "base" has been changed to have the given size (possibly from 0,
 169   // for initialization.)
 170   virtual void resize_covered_region(MemRegion new_region) = 0;
 171 
 172   // If the barrier set imposes any alignment restrictions on boundaries
 173   // within the heap, this function tells whether they are met.
 174   virtual bool is_aligned(HeapWord* addr) = 0;
 175 
 176   // Print a description of the memory for the barrier set
 177   virtual void print_on(outputStream* st) const = 0;
 178 };
 179 
 180 #endif // SHARE_VM_MEMORY_BARRIERSET_HPP