1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapTransition.hpp"
  43 #include "gc/g1/g1HeapVerifier.hpp"
  44 #include "gc/g1/g1MarkSweep.hpp"
  45 #include "gc/g1/g1OopClosures.inline.hpp"
  46 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  47 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  48 #include "gc/g1/g1RemSet.inline.hpp"
  49 #include "gc/g1/g1RootClosures.hpp"
  50 #include "gc/g1/g1RootProcessor.hpp"
  51 #include "gc/g1/g1StringDedup.hpp"
  52 #include "gc/g1/g1YCTypes.hpp"
  53 #include "gc/g1/heapRegion.inline.hpp"
  54 #include "gc/g1/heapRegionRemSet.hpp"
  55 #include "gc/g1/heapRegionSet.inline.hpp"
  56 #include "gc/g1/suspendibleThreadSet.hpp"
  57 #include "gc/g1/vm_operations_g1.hpp"
  58 #include "gc/shared/gcHeapSummary.hpp"
  59 #include "gc/shared/gcId.hpp"
  60 #include "gc/shared/gcLocker.inline.hpp"
  61 #include "gc/shared/gcTimer.hpp"
  62 #include "gc/shared/gcTrace.hpp"
  63 #include "gc/shared/gcTraceTime.inline.hpp"
  64 #include "gc/shared/generationSpec.hpp"
  65 #include "gc/shared/isGCActiveMark.hpp"
  66 #include "gc/shared/referenceProcessor.inline.hpp"
  67 #include "gc/shared/taskqueue.inline.hpp"
  68 #include "logging/log.hpp"
  69 #include "memory/allocation.hpp"
  70 #include "memory/iterator.hpp"
  71 #include "oops/oop.inline.hpp"
  72 #include "runtime/atomic.inline.hpp"
  73 #include "runtime/init.hpp"
  74 #include "runtime/orderAccess.inline.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "utilities/globalDefinitions.hpp"
  77 #include "utilities/stack.inline.hpp"
  78 
  79 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_dirtied;
 119   G1CollectedHeap* _g1h;
 120   G1SATBCardTableLoggingModRefBS* _g1_bs;
 121 
 122   HeapRegion* region_for_card(jbyte* card_ptr) const {
 123     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 124   }
 125 
 126   bool will_become_free(HeapRegion* hr) const {
 127     // A region will be freed by free_collection_set if the region is in the
 128     // collection set and has not had an evacuation failure.
 129     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 130   }
 131 
 132  public:
 133   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 134     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 135 
 136   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 137     HeapRegion* hr = region_for_card(card_ptr);
 138 
 139     // Should only dirty cards in regions that won't be freed.
 140     if (!will_become_free(hr)) {
 141       *card_ptr = CardTableModRefBS::dirty_card_val();
 142       _num_dirtied++;
 143     }
 144 
 145     return true;
 146   }
 147 
 148   size_t num_dirtied()   const { return _num_dirtied; }
 149 };
 150 
 151 
 152 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 153   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 157   // The from card cache is not the memory that is actually committed. So we cannot
 158   // take advantage of the zero_filled parameter.
 159   reset_from_card_cache(start_idx, num_regions);
 160 }
 161 
 162 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 163 {
 164   // Claim the right to put the region on the dirty cards region list
 165   // by installing a self pointer.
 166   HeapRegion* next = hr->get_next_dirty_cards_region();
 167   if (next == NULL) {
 168     HeapRegion* res = (HeapRegion*)
 169       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 170                           NULL);
 171     if (res == NULL) {
 172       HeapRegion* head;
 173       do {
 174         // Put the region to the dirty cards region list.
 175         head = _dirty_cards_region_list;
 176         next = (HeapRegion*)
 177           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 178         if (next == head) {
 179           assert(hr->get_next_dirty_cards_region() == hr,
 180                  "hr->get_next_dirty_cards_region() != hr");
 181           if (next == NULL) {
 182             // The last region in the list points to itself.
 183             hr->set_next_dirty_cards_region(hr);
 184           } else {
 185             hr->set_next_dirty_cards_region(next);
 186           }
 187         }
 188       } while (next != head);
 189     }
 190   }
 191 }
 192 
 193 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 194 {
 195   HeapRegion* head;
 196   HeapRegion* hr;
 197   do {
 198     head = _dirty_cards_region_list;
 199     if (head == NULL) {
 200       return NULL;
 201     }
 202     HeapRegion* new_head = head->get_next_dirty_cards_region();
 203     if (head == new_head) {
 204       // The last region.
 205       new_head = NULL;
 206     }
 207     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 208                                           head);
 209   } while (hr != head);
 210   assert(hr != NULL, "invariant");
 211   hr->set_next_dirty_cards_region(NULL);
 212   return hr;
 213 }
 214 
 215 // Returns true if the reference points to an object that
 216 // can move in an incremental collection.
 217 bool G1CollectedHeap::is_scavengable(const void* p) {
 218   HeapRegion* hr = heap_region_containing(p);
 219   return !hr->is_pinned();
 220 }
 221 
 222 // Private methods.
 223 
 224 HeapRegion*
 225 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 226   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 227   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 228     if (!_secondary_free_list.is_empty()) {
 229       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                       "secondary_free_list has %u entries",
 231                                       _secondary_free_list.length());
 232       // It looks as if there are free regions available on the
 233       // secondary_free_list. Let's move them to the free_list and try
 234       // again to allocate from it.
 235       append_secondary_free_list();
 236 
 237       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 238              "empty we should have moved at least one entry to the free_list");
 239       HeapRegion* res = _hrm.allocate_free_region(is_old);
 240       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 241                                       "allocated " HR_FORMAT " from secondary_free_list",
 242                                       HR_FORMAT_PARAMS(res));
 243       return res;
 244     }
 245 
 246     // Wait here until we get notified either when (a) there are no
 247     // more free regions coming or (b) some regions have been moved on
 248     // the secondary_free_list.
 249     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 250   }
 251 
 252   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 253                                   "could not allocate from secondary_free_list");
 254   return NULL;
 255 }
 256 
 257 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 258   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 259          "the only time we use this to allocate a humongous region is "
 260          "when we are allocating a single humongous region");
 261 
 262   HeapRegion* res;
 263   if (G1StressConcRegionFreeing) {
 264     if (!_secondary_free_list.is_empty()) {
 265       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 266                                       "forced to look at the secondary_free_list");
 267       res = new_region_try_secondary_free_list(is_old);
 268       if (res != NULL) {
 269         return res;
 270       }
 271     }
 272   }
 273 
 274   res = _hrm.allocate_free_region(is_old);
 275 
 276   if (res == NULL) {
 277     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 278                                     "res == NULL, trying the secondary_free_list");
 279     res = new_region_try_secondary_free_list(is_old);
 280   }
 281   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 282     // Currently, only attempts to allocate GC alloc regions set
 283     // do_expand to true. So, we should only reach here during a
 284     // safepoint. If this assumption changes we might have to
 285     // reconsider the use of _expand_heap_after_alloc_failure.
 286     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 287 
 288     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 289                               word_size * HeapWordSize);
 290 
 291     if (expand(word_size * HeapWordSize)) {
 292       // Given that expand() succeeded in expanding the heap, and we
 293       // always expand the heap by an amount aligned to the heap
 294       // region size, the free list should in theory not be empty.
 295       // In either case allocate_free_region() will check for NULL.
 296       res = _hrm.allocate_free_region(is_old);
 297     } else {
 298       _expand_heap_after_alloc_failure = false;
 299     }
 300   }
 301   return res;
 302 }
 303 
 304 HeapWord*
 305 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 306                                                            uint num_regions,
 307                                                            size_t word_size,
 308                                                            AllocationContext_t context) {
 309   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 310   assert(is_humongous(word_size), "word_size should be humongous");
 311   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 312 
 313   // Index of last region in the series.
 314   uint last = first + num_regions - 1;
 315 
 316   // We need to initialize the region(s) we just discovered. This is
 317   // a bit tricky given that it can happen concurrently with
 318   // refinement threads refining cards on these regions and
 319   // potentially wanting to refine the BOT as they are scanning
 320   // those cards (this can happen shortly after a cleanup; see CR
 321   // 6991377). So we have to set up the region(s) carefully and in
 322   // a specific order.
 323 
 324   // The word size sum of all the regions we will allocate.
 325   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 326   assert(word_size <= word_size_sum, "sanity");
 327 
 328   // This will be the "starts humongous" region.
 329   HeapRegion* first_hr = region_at(first);
 330   // The header of the new object will be placed at the bottom of
 331   // the first region.
 332   HeapWord* new_obj = first_hr->bottom();
 333   // This will be the new top of the new object.
 334   HeapWord* obj_top = new_obj + word_size;
 335 
 336   // First, we need to zero the header of the space that we will be
 337   // allocating. When we update top further down, some refinement
 338   // threads might try to scan the region. By zeroing the header we
 339   // ensure that any thread that will try to scan the region will
 340   // come across the zero klass word and bail out.
 341   //
 342   // NOTE: It would not have been correct to have used
 343   // CollectedHeap::fill_with_object() and make the space look like
 344   // an int array. The thread that is doing the allocation will
 345   // later update the object header to a potentially different array
 346   // type and, for a very short period of time, the klass and length
 347   // fields will be inconsistent. This could cause a refinement
 348   // thread to calculate the object size incorrectly.
 349   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 350 
 351   // How many words we use for filler objects.
 352   size_t word_fill_size = word_size_sum - word_size;
 353 
 354   // How many words memory we "waste" which cannot hold a filler object.
 355   size_t words_not_fillable = 0;
 356 
 357   if (word_fill_size >= min_fill_size()) {
 358     fill_with_objects(obj_top, word_fill_size);
 359   } else if (word_fill_size > 0) {
 360     // We have space to fill, but we cannot fit an object there.
 361     words_not_fillable = word_fill_size;
 362     word_fill_size = 0;
 363   }
 364 
 365   // We will set up the first region as "starts humongous". This
 366   // will also update the BOT covering all the regions to reflect
 367   // that there is a single object that starts at the bottom of the
 368   // first region.
 369   first_hr->set_starts_humongous(obj_top, word_fill_size);
 370   first_hr->set_allocation_context(context);
 371   // Then, if there are any, we will set up the "continues
 372   // humongous" regions.
 373   HeapRegion* hr = NULL;
 374   for (uint i = first + 1; i <= last; ++i) {
 375     hr = region_at(i);
 376     hr->set_continues_humongous(first_hr);
 377     hr->set_allocation_context(context);
 378   }
 379 
 380   // Up to this point no concurrent thread would have been able to
 381   // do any scanning on any region in this series. All the top
 382   // fields still point to bottom, so the intersection between
 383   // [bottom,top] and [card_start,card_end] will be empty. Before we
 384   // update the top fields, we'll do a storestore to make sure that
 385   // no thread sees the update to top before the zeroing of the
 386   // object header and the BOT initialization.
 387   OrderAccess::storestore();
 388 
 389   // Now, we will update the top fields of the "continues humongous"
 390   // regions except the last one.
 391   for (uint i = first; i < last; ++i) {
 392     hr = region_at(i);
 393     hr->set_top(hr->end());
 394   }
 395 
 396   hr = region_at(last);
 397   // If we cannot fit a filler object, we must set top to the end
 398   // of the humongous object, otherwise we cannot iterate the heap
 399   // and the BOT will not be complete.
 400   hr->set_top(hr->end() - words_not_fillable);
 401 
 402   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 403          "obj_top should be in last region");
 404 
 405   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 406 
 407   assert(words_not_fillable == 0 ||
 408          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 409          "Miscalculation in humongous allocation");
 410 
 411   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 412 
 413   for (uint i = first; i <= last; ++i) {
 414     hr = region_at(i);
 415     _humongous_set.add(hr);
 416     _hr_printer.alloc(hr);
 417   }
 418 
 419   return new_obj;
 420 }
 421 
 422 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 423   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 424   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 425 }
 426 
 427 // If could fit into free regions w/o expansion, try.
 428 // Otherwise, if can expand, do so.
 429 // Otherwise, if using ex regions might help, try with ex given back.
 430 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 431   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 432 
 433   _verifier->verify_region_sets_optional();
 434 
 435   uint first = G1_NO_HRM_INDEX;
 436   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 437 
 438   if (obj_regions == 1) {
 439     // Only one region to allocate, try to use a fast path by directly allocating
 440     // from the free lists. Do not try to expand here, we will potentially do that
 441     // later.
 442     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 443     if (hr != NULL) {
 444       first = hr->hrm_index();
 445     }
 446   } else {
 447     // We can't allocate humongous regions spanning more than one region while
 448     // cleanupComplete() is running, since some of the regions we find to be
 449     // empty might not yet be added to the free list. It is not straightforward
 450     // to know in which list they are on so that we can remove them. We only
 451     // need to do this if we need to allocate more than one region to satisfy the
 452     // current humongous allocation request. If we are only allocating one region
 453     // we use the one-region region allocation code (see above), that already
 454     // potentially waits for regions from the secondary free list.
 455     wait_while_free_regions_coming();
 456     append_secondary_free_list_if_not_empty_with_lock();
 457 
 458     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 459     // are lucky enough to find some.
 460     first = _hrm.find_contiguous_only_empty(obj_regions);
 461     if (first != G1_NO_HRM_INDEX) {
 462       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 463     }
 464   }
 465 
 466   if (first == G1_NO_HRM_INDEX) {
 467     // Policy: We could not find enough regions for the humongous object in the
 468     // free list. Look through the heap to find a mix of free and uncommitted regions.
 469     // If so, try expansion.
 470     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 471     if (first != G1_NO_HRM_INDEX) {
 472       // We found something. Make sure these regions are committed, i.e. expand
 473       // the heap. Alternatively we could do a defragmentation GC.
 474       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 475                                     word_size * HeapWordSize);
 476 
 477 
 478       _hrm.expand_at(first, obj_regions);
 479       g1_policy()->record_new_heap_size(num_regions());
 480 
 481 #ifdef ASSERT
 482       for (uint i = first; i < first + obj_regions; ++i) {
 483         HeapRegion* hr = region_at(i);
 484         assert(hr->is_free(), "sanity");
 485         assert(hr->is_empty(), "sanity");
 486         assert(is_on_master_free_list(hr), "sanity");
 487       }
 488 #endif
 489       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 490     } else {
 491       // Policy: Potentially trigger a defragmentation GC.
 492     }
 493   }
 494 
 495   HeapWord* result = NULL;
 496   if (first != G1_NO_HRM_INDEX) {
 497     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 498                                                        word_size, context);
 499     assert(result != NULL, "it should always return a valid result");
 500 
 501     // A successful humongous object allocation changes the used space
 502     // information of the old generation so we need to recalculate the
 503     // sizes and update the jstat counters here.
 504     g1mm()->update_sizes();
 505   }
 506 
 507   _verifier->verify_region_sets_optional();
 508 
 509   return result;
 510 }
 511 
 512 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 513   assert_heap_not_locked_and_not_at_safepoint();
 514   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 515 
 516   uint dummy_gc_count_before;
 517   uint dummy_gclocker_retry_count = 0;
 518   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 519 }
 520 
 521 HeapWord*
 522 G1CollectedHeap::mem_allocate(size_t word_size,
 523                               bool*  gc_overhead_limit_was_exceeded) {
 524   assert_heap_not_locked_and_not_at_safepoint();
 525 
 526   // Loop until the allocation is satisfied, or unsatisfied after GC.
 527   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 528     uint gc_count_before;
 529 
 530     HeapWord* result = NULL;
 531     if (!is_humongous(word_size)) {
 532       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 533     } else {
 534       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 535     }
 536     if (result != NULL) {
 537       return result;
 538     }
 539 
 540     // Create the garbage collection operation...
 541     VM_G1CollectForAllocation op(gc_count_before, word_size);
 542     op.set_allocation_context(AllocationContext::current());
 543 
 544     // ...and get the VM thread to execute it.
 545     VMThread::execute(&op);
 546 
 547     if (op.prologue_succeeded() && op.pause_succeeded()) {
 548       // If the operation was successful we'll return the result even
 549       // if it is NULL. If the allocation attempt failed immediately
 550       // after a Full GC, it's unlikely we'll be able to allocate now.
 551       HeapWord* result = op.result();
 552       if (result != NULL && !is_humongous(word_size)) {
 553         // Allocations that take place on VM operations do not do any
 554         // card dirtying and we have to do it here. We only have to do
 555         // this for non-humongous allocations, though.
 556         dirty_young_block(result, word_size);
 557       }
 558       return result;
 559     } else {
 560       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 561         return NULL;
 562       }
 563       assert(op.result() == NULL,
 564              "the result should be NULL if the VM op did not succeed");
 565     }
 566 
 567     // Give a warning if we seem to be looping forever.
 568     if ((QueuedAllocationWarningCount > 0) &&
 569         (try_count % QueuedAllocationWarningCount == 0)) {
 570       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 571     }
 572   }
 573 
 574   ShouldNotReachHere();
 575   return NULL;
 576 }
 577 
 578 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 579                                                    AllocationContext_t context,
 580                                                    uint* gc_count_before_ret,
 581                                                    uint* gclocker_retry_count_ret) {
 582   // Make sure you read the note in attempt_allocation_humongous().
 583 
 584   assert_heap_not_locked_and_not_at_safepoint();
 585   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 586          "be called for humongous allocation requests");
 587 
 588   // We should only get here after the first-level allocation attempt
 589   // (attempt_allocation()) failed to allocate.
 590 
 591   // We will loop until a) we manage to successfully perform the
 592   // allocation or b) we successfully schedule a collection which
 593   // fails to perform the allocation. b) is the only case when we'll
 594   // return NULL.
 595   HeapWord* result = NULL;
 596   for (int try_count = 1; /* we'll return */; try_count += 1) {
 597     bool should_try_gc;
 598     uint gc_count_before;
 599 
 600     {
 601       MutexLockerEx x(Heap_lock);
 602       result = _allocator->attempt_allocation_locked(word_size, context);
 603       if (result != NULL) {
 604         return result;
 605       }
 606 
 607       if (GCLocker::is_active_and_needs_gc()) {
 608         if (g1_policy()->can_expand_young_list()) {
 609           // No need for an ergo verbose message here,
 610           // can_expand_young_list() does this when it returns true.
 611           result = _allocator->attempt_allocation_force(word_size, context);
 612           if (result != NULL) {
 613             return result;
 614           }
 615         }
 616         should_try_gc = false;
 617       } else {
 618         // The GCLocker may not be active but the GCLocker initiated
 619         // GC may not yet have been performed (GCLocker::needs_gc()
 620         // returns true). In this case we do not try this GC and
 621         // wait until the GCLocker initiated GC is performed, and
 622         // then retry the allocation.
 623         if (GCLocker::needs_gc()) {
 624           should_try_gc = false;
 625         } else {
 626           // Read the GC count while still holding the Heap_lock.
 627           gc_count_before = total_collections();
 628           should_try_gc = true;
 629         }
 630       }
 631     }
 632 
 633     if (should_try_gc) {
 634       bool succeeded;
 635       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 636                                    GCCause::_g1_inc_collection_pause);
 637       if (result != NULL) {
 638         assert(succeeded, "only way to get back a non-NULL result");
 639         return result;
 640       }
 641 
 642       if (succeeded) {
 643         // If we get here we successfully scheduled a collection which
 644         // failed to allocate. No point in trying to allocate
 645         // further. We'll just return NULL.
 646         MutexLockerEx x(Heap_lock);
 647         *gc_count_before_ret = total_collections();
 648         return NULL;
 649       }
 650     } else {
 651       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 652         MutexLockerEx x(Heap_lock);
 653         *gc_count_before_ret = total_collections();
 654         return NULL;
 655       }
 656       // The GCLocker is either active or the GCLocker initiated
 657       // GC has not yet been performed. Stall until it is and
 658       // then retry the allocation.
 659       GCLocker::stall_until_clear();
 660       (*gclocker_retry_count_ret) += 1;
 661     }
 662 
 663     // We can reach here if we were unsuccessful in scheduling a
 664     // collection (because another thread beat us to it) or if we were
 665     // stalled due to the GC locker. In either can we should retry the
 666     // allocation attempt in case another thread successfully
 667     // performed a collection and reclaimed enough space. We do the
 668     // first attempt (without holding the Heap_lock) here and the
 669     // follow-on attempt will be at the start of the next loop
 670     // iteration (after taking the Heap_lock).
 671     result = _allocator->attempt_allocation(word_size, context);
 672     if (result != NULL) {
 673       return result;
 674     }
 675 
 676     // Give a warning if we seem to be looping forever.
 677     if ((QueuedAllocationWarningCount > 0) &&
 678         (try_count % QueuedAllocationWarningCount == 0)) {
 679       warning("G1CollectedHeap::attempt_allocation_slow() "
 680               "retries %d times", try_count);
 681     }
 682   }
 683 
 684   ShouldNotReachHere();
 685   return NULL;
 686 }
 687 
 688 void G1CollectedHeap::begin_archive_alloc_range() {
 689   assert_at_safepoint(true /* should_be_vm_thread */);
 690   if (_archive_allocator == NULL) {
 691     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 692   }
 693 }
 694 
 695 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 696   // Allocations in archive regions cannot be of a size that would be considered
 697   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 698   // may be different at archive-restore time.
 699   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 700 }
 701 
 702 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 703   assert_at_safepoint(true /* should_be_vm_thread */);
 704   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 705   if (is_archive_alloc_too_large(word_size)) {
 706     return NULL;
 707   }
 708   return _archive_allocator->archive_mem_allocate(word_size);
 709 }
 710 
 711 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 712                                               size_t end_alignment_in_bytes) {
 713   assert_at_safepoint(true /* should_be_vm_thread */);
 714   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 715 
 716   // Call complete_archive to do the real work, filling in the MemRegion
 717   // array with the archive regions.
 718   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 719   delete _archive_allocator;
 720   _archive_allocator = NULL;
 721 }
 722 
 723 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 724   assert(ranges != NULL, "MemRegion array NULL");
 725   assert(count != 0, "No MemRegions provided");
 726   MemRegion reserved = _hrm.reserved();
 727   for (size_t i = 0; i < count; i++) {
 728     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 729       return false;
 730     }
 731   }
 732   return true;
 733 }
 734 
 735 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 736   assert(!is_init_completed(), "Expect to be called at JVM init time");
 737   assert(ranges != NULL, "MemRegion array NULL");
 738   assert(count != 0, "No MemRegions provided");
 739   MutexLockerEx x(Heap_lock);
 740 
 741   MemRegion reserved = _hrm.reserved();
 742   HeapWord* prev_last_addr = NULL;
 743   HeapRegion* prev_last_region = NULL;
 744 
 745   // Temporarily disable pretouching of heap pages. This interface is used
 746   // when mmap'ing archived heap data in, so pre-touching is wasted.
 747   FlagSetting fs(AlwaysPreTouch, false);
 748 
 749   // Enable archive object checking in G1MarkSweep. We have to let it know
 750   // about each archive range, so that objects in those ranges aren't marked.
 751   G1MarkSweep::enable_archive_object_check();
 752 
 753   // For each specified MemRegion range, allocate the corresponding G1
 754   // regions and mark them as archive regions. We expect the ranges in
 755   // ascending starting address order, without overlap.
 756   for (size_t i = 0; i < count; i++) {
 757     MemRegion curr_range = ranges[i];
 758     HeapWord* start_address = curr_range.start();
 759     size_t word_size = curr_range.word_size();
 760     HeapWord* last_address = curr_range.last();
 761     size_t commits = 0;
 762 
 763     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 764               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 765               p2i(start_address), p2i(last_address));
 766     guarantee(start_address > prev_last_addr,
 767               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 768               p2i(start_address), p2i(prev_last_addr));
 769     prev_last_addr = last_address;
 770 
 771     // Check for ranges that start in the same G1 region in which the previous
 772     // range ended, and adjust the start address so we don't try to allocate
 773     // the same region again. If the current range is entirely within that
 774     // region, skip it, just adjusting the recorded top.
 775     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 776     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         increase_used(word_size * HeapWordSize);
 780         start_region->set_top(last_address + 1);
 781         continue;
 782       }
 783       start_region->set_top(start_address);
 784       curr_range = MemRegion(start_address, last_address + 1);
 785       start_region = _hrm.addr_to_region(start_address);
 786     }
 787 
 788     // Perform the actual region allocation, exiting if it fails.
 789     // Then note how much new space we have allocated.
 790     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 791       return false;
 792     }
 793     increase_used(word_size * HeapWordSize);
 794     if (commits != 0) {
 795       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 796                                 HeapRegion::GrainWords * HeapWordSize * commits);
 797 
 798     }
 799 
 800     // Mark each G1 region touched by the range as archive, add it to the old set,
 801     // and set the allocation context and top.
 802     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 803     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 804     prev_last_region = last_region;
 805 
 806     while (curr_region != NULL) {
 807       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 808              "Region already in use (index %u)", curr_region->hrm_index());
 809       curr_region->set_allocation_context(AllocationContext::system());
 810       curr_region->set_archive();
 811       _hr_printer.alloc(curr_region);
 812       _old_set.add(curr_region);
 813       if (curr_region != last_region) {
 814         curr_region->set_top(curr_region->end());
 815         curr_region = _hrm.next_region_in_heap(curr_region);
 816       } else {
 817         curr_region->set_top(last_address + 1);
 818         curr_region = NULL;
 819       }
 820     }
 821 
 822     // Notify mark-sweep of the archive range.
 823     G1MarkSweep::set_range_archive(curr_range, true);
 824   }
 825   return true;
 826 }
 827 
 828 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 829   assert(!is_init_completed(), "Expect to be called at JVM init time");
 830   assert(ranges != NULL, "MemRegion array NULL");
 831   assert(count != 0, "No MemRegions provided");
 832   MemRegion reserved = _hrm.reserved();
 833   HeapWord *prev_last_addr = NULL;
 834   HeapRegion* prev_last_region = NULL;
 835 
 836   // For each MemRegion, create filler objects, if needed, in the G1 regions
 837   // that contain the address range. The address range actually within the
 838   // MemRegion will not be modified. That is assumed to have been initialized
 839   // elsewhere, probably via an mmap of archived heap data.
 840   MutexLockerEx x(Heap_lock);
 841   for (size_t i = 0; i < count; i++) {
 842     HeapWord* start_address = ranges[i].start();
 843     HeapWord* last_address = ranges[i].last();
 844 
 845     assert(reserved.contains(start_address) && reserved.contains(last_address),
 846            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 847            p2i(start_address), p2i(last_address));
 848     assert(start_address > prev_last_addr,
 849            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 850            p2i(start_address), p2i(prev_last_addr));
 851 
 852     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 853     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 854     HeapWord* bottom_address = start_region->bottom();
 855 
 856     // Check for a range beginning in the same region in which the
 857     // previous one ended.
 858     if (start_region == prev_last_region) {
 859       bottom_address = prev_last_addr + 1;
 860     }
 861 
 862     // Verify that the regions were all marked as archive regions by
 863     // alloc_archive_regions.
 864     HeapRegion* curr_region = start_region;
 865     while (curr_region != NULL) {
 866       guarantee(curr_region->is_archive(),
 867                 "Expected archive region at index %u", curr_region->hrm_index());
 868       if (curr_region != last_region) {
 869         curr_region = _hrm.next_region_in_heap(curr_region);
 870       } else {
 871         curr_region = NULL;
 872       }
 873     }
 874 
 875     prev_last_addr = last_address;
 876     prev_last_region = last_region;
 877 
 878     // Fill the memory below the allocated range with dummy object(s),
 879     // if the region bottom does not match the range start, or if the previous
 880     // range ended within the same G1 region, and there is a gap.
 881     if (start_address != bottom_address) {
 882       size_t fill_size = pointer_delta(start_address, bottom_address);
 883       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 884       increase_used(fill_size * HeapWordSize);
 885     }
 886   }
 887 }
 888 
 889 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 890                                                      uint* gc_count_before_ret,
 891                                                      uint* gclocker_retry_count_ret) {
 892   assert_heap_not_locked_and_not_at_safepoint();
 893   assert(!is_humongous(word_size), "attempt_allocation() should not "
 894          "be called for humongous allocation requests");
 895 
 896   AllocationContext_t context = AllocationContext::current();
 897   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 898 
 899   if (result == NULL) {
 900     result = attempt_allocation_slow(word_size,
 901                                      context,
 902                                      gc_count_before_ret,
 903                                      gclocker_retry_count_ret);
 904   }
 905   assert_heap_not_locked();
 906   if (result != NULL) {
 907     dirty_young_block(result, word_size);
 908   }
 909   return result;
 910 }
 911 
 912 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 913   assert(!is_init_completed(), "Expect to be called at JVM init time");
 914   assert(ranges != NULL, "MemRegion array NULL");
 915   assert(count != 0, "No MemRegions provided");
 916   MemRegion reserved = _hrm.reserved();
 917   HeapWord* prev_last_addr = NULL;
 918   HeapRegion* prev_last_region = NULL;
 919   size_t size_used = 0;
 920   size_t uncommitted_regions = 0;
 921 
 922   // For each Memregion, free the G1 regions that constitute it, and
 923   // notify mark-sweep that the range is no longer to be considered 'archive.'
 924   MutexLockerEx x(Heap_lock);
 925   for (size_t i = 0; i < count; i++) {
 926     HeapWord* start_address = ranges[i].start();
 927     HeapWord* last_address = ranges[i].last();
 928 
 929     assert(reserved.contains(start_address) && reserved.contains(last_address),
 930            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 931            p2i(start_address), p2i(last_address));
 932     assert(start_address > prev_last_addr,
 933            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 934            p2i(start_address), p2i(prev_last_addr));
 935     size_used += ranges[i].byte_size();
 936     prev_last_addr = last_address;
 937 
 938     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 939     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 940 
 941     // Check for ranges that start in the same G1 region in which the previous
 942     // range ended, and adjust the start address so we don't try to free
 943     // the same region again. If the current range is entirely within that
 944     // region, skip it.
 945     if (start_region == prev_last_region) {
 946       start_address = start_region->end();
 947       if (start_address > last_address) {
 948         continue;
 949       }
 950       start_region = _hrm.addr_to_region(start_address);
 951     }
 952     prev_last_region = last_region;
 953 
 954     // After verifying that each region was marked as an archive region by
 955     // alloc_archive_regions, set it free and empty and uncommit it.
 956     HeapRegion* curr_region = start_region;
 957     while (curr_region != NULL) {
 958       guarantee(curr_region->is_archive(),
 959                 "Expected archive region at index %u", curr_region->hrm_index());
 960       uint curr_index = curr_region->hrm_index();
 961       _old_set.remove(curr_region);
 962       curr_region->set_free();
 963       curr_region->set_top(curr_region->bottom());
 964       if (curr_region != last_region) {
 965         curr_region = _hrm.next_region_in_heap(curr_region);
 966       } else {
 967         curr_region = NULL;
 968       }
 969       _hrm.shrink_at(curr_index, 1);
 970       uncommitted_regions++;
 971     }
 972 
 973     // Notify mark-sweep that this is no longer an archive range.
 974     G1MarkSweep::set_range_archive(ranges[i], false);
 975   }
 976 
 977   if (uncommitted_regions != 0) {
 978     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 979                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 980   }
 981   decrease_used(size_used);
 982 }
 983 
 984 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 985                                                         uint* gc_count_before_ret,
 986                                                         uint* gclocker_retry_count_ret) {
 987   // The structure of this method has a lot of similarities to
 988   // attempt_allocation_slow(). The reason these two were not merged
 989   // into a single one is that such a method would require several "if
 990   // allocation is not humongous do this, otherwise do that"
 991   // conditional paths which would obscure its flow. In fact, an early
 992   // version of this code did use a unified method which was harder to
 993   // follow and, as a result, it had subtle bugs that were hard to
 994   // track down. So keeping these two methods separate allows each to
 995   // be more readable. It will be good to keep these two in sync as
 996   // much as possible.
 997 
 998   assert_heap_not_locked_and_not_at_safepoint();
 999   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1000          "should only be called for humongous allocations");
1001 
1002   // Humongous objects can exhaust the heap quickly, so we should check if we
1003   // need to start a marking cycle at each humongous object allocation. We do
1004   // the check before we do the actual allocation. The reason for doing it
1005   // before the allocation is that we avoid having to keep track of the newly
1006   // allocated memory while we do a GC.
1007   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1008                                            word_size)) {
1009     collect(GCCause::_g1_humongous_allocation);
1010   }
1011 
1012   // We will loop until a) we manage to successfully perform the
1013   // allocation or b) we successfully schedule a collection which
1014   // fails to perform the allocation. b) is the only case when we'll
1015   // return NULL.
1016   HeapWord* result = NULL;
1017   for (int try_count = 1; /* we'll return */; try_count += 1) {
1018     bool should_try_gc;
1019     uint gc_count_before;
1020 
1021     {
1022       MutexLockerEx x(Heap_lock);
1023 
1024       // Given that humongous objects are not allocated in young
1025       // regions, we'll first try to do the allocation without doing a
1026       // collection hoping that there's enough space in the heap.
1027       result = humongous_obj_allocate(word_size, AllocationContext::current());
1028       if (result != NULL) {
1029         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1030         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1031         return result;
1032       }
1033 
1034       if (GCLocker::is_active_and_needs_gc()) {
1035         should_try_gc = false;
1036       } else {
1037          // The GCLocker may not be active but the GCLocker initiated
1038         // GC may not yet have been performed (GCLocker::needs_gc()
1039         // returns true). In this case we do not try this GC and
1040         // wait until the GCLocker initiated GC is performed, and
1041         // then retry the allocation.
1042         if (GCLocker::needs_gc()) {
1043           should_try_gc = false;
1044         } else {
1045           // Read the GC count while still holding the Heap_lock.
1046           gc_count_before = total_collections();
1047           should_try_gc = true;
1048         }
1049       }
1050     }
1051 
1052     if (should_try_gc) {
1053       // If we failed to allocate the humongous object, we should try to
1054       // do a collection pause (if we're allowed) in case it reclaims
1055       // enough space for the allocation to succeed after the pause.
1056 
1057       bool succeeded;
1058       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1059                                    GCCause::_g1_humongous_allocation);
1060       if (result != NULL) {
1061         assert(succeeded, "only way to get back a non-NULL result");
1062         return result;
1063       }
1064 
1065       if (succeeded) {
1066         // If we get here we successfully scheduled a collection which
1067         // failed to allocate. No point in trying to allocate
1068         // further. We'll just return NULL.
1069         MutexLockerEx x(Heap_lock);
1070         *gc_count_before_ret = total_collections();
1071         return NULL;
1072       }
1073     } else {
1074       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1075         MutexLockerEx x(Heap_lock);
1076         *gc_count_before_ret = total_collections();
1077         return NULL;
1078       }
1079       // The GCLocker is either active or the GCLocker initiated
1080       // GC has not yet been performed. Stall until it is and
1081       // then retry the allocation.
1082       GCLocker::stall_until_clear();
1083       (*gclocker_retry_count_ret) += 1;
1084     }
1085 
1086     // We can reach here if we were unsuccessful in scheduling a
1087     // collection (because another thread beat us to it) or if we were
1088     // stalled due to the GC locker. In either can we should retry the
1089     // allocation attempt in case another thread successfully
1090     // performed a collection and reclaimed enough space.  Give a
1091     // warning if we seem to be looping forever.
1092 
1093     if ((QueuedAllocationWarningCount > 0) &&
1094         (try_count % QueuedAllocationWarningCount == 0)) {
1095       warning("G1CollectedHeap::attempt_allocation_humongous() "
1096               "retries %d times", try_count);
1097     }
1098   }
1099 
1100   ShouldNotReachHere();
1101   return NULL;
1102 }
1103 
1104 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1105                                                            AllocationContext_t context,
1106                                                            bool expect_null_mutator_alloc_region) {
1107   assert_at_safepoint(true /* should_be_vm_thread */);
1108   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1109          "the current alloc region was unexpectedly found to be non-NULL");
1110 
1111   if (!is_humongous(word_size)) {
1112     return _allocator->attempt_allocation_locked(word_size, context);
1113   } else {
1114     HeapWord* result = humongous_obj_allocate(word_size, context);
1115     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1116       collector_state()->set_initiate_conc_mark_if_possible(true);
1117     }
1118     return result;
1119   }
1120 
1121   ShouldNotReachHere();
1122 }
1123 
1124 class PostMCRemSetClearClosure: public HeapRegionClosure {
1125   G1CollectedHeap* _g1h;
1126   ModRefBarrierSet* _mr_bs;
1127 public:
1128   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1129     _g1h(g1h), _mr_bs(mr_bs) {}
1130 
1131   void doHeapRegion(HeapRegion* r) {
1132     HeapRegionRemSet* hrrs = r->rem_set();
1133 
1134     _g1h->reset_gc_time_stamps(r);
1135 
1136     if (r->is_continues_humongous()) {
1137       // We'll assert that the strong code root list and RSet is empty
1138       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1139       assert(hrrs->occupied() == 0, "RSet should be empty");
1140     } else {
1141       hrrs->clear();
1142     }
1143     // You might think here that we could clear just the cards
1144     // corresponding to the used region.  But no: if we leave a dirty card
1145     // in a region we might allocate into, then it would prevent that card
1146     // from being enqueued, and cause it to be missed.
1147     // Re: the performance cost: we shouldn't be doing full GC anyway!
1148     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1149   }
1150 };
1151 
1152 void G1CollectedHeap::clear_rsets_post_compaction() {
1153   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1154   heap_region_iterate(&rs_clear);
1155 }
1156 
1157 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1158   G1CollectedHeap*   _g1h;
1159   UpdateRSOopClosure _cl;
1160 public:
1161   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1162     _cl(g1->g1_rem_set(), worker_i),
1163     _g1h(g1)
1164   { }
1165 
1166   void doHeapRegion(HeapRegion* r) {
1167     if (!r->is_continues_humongous()) {
1168       _cl.set_from(r);
1169       r->oop_iterate(&_cl);
1170     }
1171   }
1172 };
1173 
1174 class ParRebuildRSTask: public AbstractGangTask {
1175   G1CollectedHeap* _g1;
1176   HeapRegionClaimer _hrclaimer;
1177 
1178 public:
1179   ParRebuildRSTask(G1CollectedHeap* g1) :
1180       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1181 
1182   void work(uint worker_id) {
1183     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1184     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1185   }
1186 };
1187 
1188 class PostCompactionPrinterClosure: public HeapRegionClosure {
1189 private:
1190   G1HRPrinter* _hr_printer;
1191 public:
1192   void doHeapRegion(HeapRegion* hr) {
1193     assert(!hr->is_young(), "not expecting to find young regions");
1194     _hr_printer->post_compaction(hr);
1195   }
1196 
1197   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1198     : _hr_printer(hr_printer) { }
1199 };
1200 
1201 void G1CollectedHeap::print_hrm_post_compaction() {
1202   if (_hr_printer.is_active()) {
1203     PostCompactionPrinterClosure cl(hr_printer());
1204     heap_region_iterate(&cl);
1205   }
1206 
1207 }
1208 
1209 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1210                                          bool clear_all_soft_refs) {
1211   assert_at_safepoint(true /* should_be_vm_thread */);
1212 
1213   if (GCLocker::check_active_before_gc()) {
1214     return false;
1215   }
1216 
1217   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1218   gc_timer->register_gc_start();
1219 
1220   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1221   GCIdMark gc_id_mark;
1222   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1223 
1224   SvcGCMarker sgcm(SvcGCMarker::FULL);
1225   ResourceMark rm;
1226 
1227   print_heap_before_gc();
1228   trace_heap_before_gc(gc_tracer);
1229 
1230   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1231 
1232   _verifier->verify_region_sets_optional();
1233 
1234   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1235                            collector_policy()->should_clear_all_soft_refs();
1236 
1237   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1238 
1239   {
1240     IsGCActiveMark x;
1241 
1242     // Timing
1243     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1244     GCTraceCPUTime tcpu;
1245 
1246     {
1247       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1248       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1249       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1250 
1251       G1HeapTransition heap_transition(this);
1252       g1_policy()->record_full_collection_start();
1253 
1254       // Note: When we have a more flexible GC logging framework that
1255       // allows us to add optional attributes to a GC log record we
1256       // could consider timing and reporting how long we wait in the
1257       // following two methods.
1258       wait_while_free_regions_coming();
1259       // If we start the compaction before the CM threads finish
1260       // scanning the root regions we might trip them over as we'll
1261       // be moving objects / updating references. So let's wait until
1262       // they are done. By telling them to abort, they should complete
1263       // early.
1264       _cm->root_regions()->abort();
1265       _cm->root_regions()->wait_until_scan_finished();
1266       append_secondary_free_list_if_not_empty_with_lock();
1267 
1268       gc_prologue(true);
1269       increment_total_collections(true /* full gc */);
1270       increment_old_marking_cycles_started();
1271 
1272       assert(used() == recalculate_used(), "Should be equal");
1273 
1274       _verifier->verify_before_gc();
1275 
1276       _verifier->check_bitmaps("Full GC Start");
1277       pre_full_gc_dump(gc_timer);
1278 
1279 #if defined(COMPILER2) || INCLUDE_JVMCI
1280       DerivedPointerTable::clear();
1281 #endif
1282 
1283       // Disable discovery and empty the discovered lists
1284       // for the CM ref processor.
1285       ref_processor_cm()->disable_discovery();
1286       ref_processor_cm()->abandon_partial_discovery();
1287       ref_processor_cm()->verify_no_references_recorded();
1288 
1289       // Abandon current iterations of concurrent marking and concurrent
1290       // refinement, if any are in progress.
1291       concurrent_mark()->abort();
1292 
1293       // Make sure we'll choose a new allocation region afterwards.
1294       _allocator->release_mutator_alloc_region();
1295       _allocator->abandon_gc_alloc_regions();
1296       g1_rem_set()->cleanupHRRS();
1297 
1298       // We may have added regions to the current incremental collection
1299       // set between the last GC or pause and now. We need to clear the
1300       // incremental collection set and then start rebuilding it afresh
1301       // after this full GC.
1302       abandon_collection_set(collection_set()->inc_head());
1303       collection_set()->clear_incremental();
1304       collection_set()->stop_incremental_building();
1305 
1306       tear_down_region_sets(false /* free_list_only */);
1307       collector_state()->set_gcs_are_young(true);
1308 
1309       // See the comments in g1CollectedHeap.hpp and
1310       // G1CollectedHeap::ref_processing_init() about
1311       // how reference processing currently works in G1.
1312 
1313       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1314       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1315 
1316       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1317       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1318 
1319       ref_processor_stw()->enable_discovery();
1320       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1321 
1322       // Do collection work
1323       {
1324         HandleMark hm;  // Discard invalid handles created during gc
1325         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1326       }
1327 
1328       assert(num_free_regions() == 0, "we should not have added any free regions");
1329       rebuild_region_sets(false /* free_list_only */);
1330 
1331       // Enqueue any discovered reference objects that have
1332       // not been removed from the discovered lists.
1333       ref_processor_stw()->enqueue_discovered_references();
1334 
1335 #if defined(COMPILER2) || INCLUDE_JVMCI
1336       DerivedPointerTable::update_pointers();
1337 #endif
1338 
1339       MemoryService::track_memory_usage();
1340 
1341       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1342       ref_processor_stw()->verify_no_references_recorded();
1343 
1344       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1345       ClassLoaderDataGraph::purge();
1346       MetaspaceAux::verify_metrics();
1347 
1348       // Note: since we've just done a full GC, concurrent
1349       // marking is no longer active. Therefore we need not
1350       // re-enable reference discovery for the CM ref processor.
1351       // That will be done at the start of the next marking cycle.
1352       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1353       ref_processor_cm()->verify_no_references_recorded();
1354 
1355       reset_gc_time_stamp();
1356       // Since everything potentially moved, we will clear all remembered
1357       // sets, and clear all cards.  Later we will rebuild remembered
1358       // sets. We will also reset the GC time stamps of the regions.
1359       clear_rsets_post_compaction();
1360       check_gc_time_stamps();
1361 
1362       resize_if_necessary_after_full_collection();
1363 
1364       // We should do this after we potentially resize the heap so
1365       // that all the COMMIT / UNCOMMIT events are generated before
1366       // the compaction events.
1367       print_hrm_post_compaction();
1368 
1369       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1370       if (hot_card_cache->use_cache()) {
1371         hot_card_cache->reset_card_counts();
1372         hot_card_cache->reset_hot_cache();
1373       }
1374 
1375       // Rebuild remembered sets of all regions.
1376       uint n_workers =
1377         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1378                                                 workers()->active_workers(),
1379                                                 Threads::number_of_non_daemon_threads());
1380       workers()->set_active_workers(n_workers);
1381 
1382       ParRebuildRSTask rebuild_rs_task(this);
1383       workers()->run_task(&rebuild_rs_task);
1384 
1385       // Rebuild the strong code root lists for each region
1386       rebuild_strong_code_roots();
1387 
1388       if (true) { // FIXME
1389         MetaspaceGC::compute_new_size();
1390       }
1391 
1392 #ifdef TRACESPINNING
1393       ParallelTaskTerminator::print_termination_counts();
1394 #endif
1395 
1396       // Discard all rset updates
1397       JavaThread::dirty_card_queue_set().abandon_logs();
1398       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1399 
1400       // At this point there should be no regions in the
1401       // entire heap tagged as young.
1402       assert(check_young_list_empty(true /* check_heap */),
1403              "young list should be empty at this point");
1404 
1405       // Update the number of full collections that have been completed.
1406       increment_old_marking_cycles_completed(false /* concurrent */);
1407 
1408       _hrm.verify_optional();
1409       _verifier->verify_region_sets_optional();
1410 
1411       _verifier->verify_after_gc();
1412 
1413       // Clear the previous marking bitmap, if needed for bitmap verification.
1414       // Note we cannot do this when we clear the next marking bitmap in
1415       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1416       // objects marked during a full GC against the previous bitmap.
1417       // But we need to clear it before calling check_bitmaps below since
1418       // the full GC has compacted objects and updated TAMS but not updated
1419       // the prev bitmap.
1420       if (G1VerifyBitmaps) {
1421         ((G1CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1422       }
1423       _verifier->check_bitmaps("Full GC End");
1424 
1425       // Start a new incremental collection set for the next pause
1426       assert(collection_set()->head() == NULL, "must be");
1427       collection_set()->start_incremental_building();
1428 
1429       clear_cset_fast_test();
1430 
1431       _allocator->init_mutator_alloc_region();
1432 
1433       g1_policy()->record_full_collection_end();
1434 
1435       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1436       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1437       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1438       // before any GC notifications are raised.
1439       g1mm()->update_sizes();
1440 
1441       gc_epilogue(true);
1442 
1443       heap_transition.print();
1444 
1445       print_heap_after_gc();
1446       trace_heap_after_gc(gc_tracer);
1447 
1448       post_full_gc_dump(gc_timer);
1449     }
1450 
1451     gc_timer->register_gc_end();
1452     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1453   }
1454 
1455   return true;
1456 }
1457 
1458 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1459   // Currently, there is no facility in the do_full_collection(bool) API to notify
1460   // the caller that the collection did not succeed (e.g., because it was locked
1461   // out by the GC locker). So, right now, we'll ignore the return value.
1462   bool dummy = do_full_collection(true,                /* explicit_gc */
1463                                   clear_all_soft_refs);
1464 }
1465 
1466 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1467   // Include bytes that will be pre-allocated to support collections, as "used".
1468   const size_t used_after_gc = used();
1469   const size_t capacity_after_gc = capacity();
1470   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1471 
1472   // This is enforced in arguments.cpp.
1473   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1474          "otherwise the code below doesn't make sense");
1475 
1476   // We don't have floating point command-line arguments
1477   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1478   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1479   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1480   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1481 
1482   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1483   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1484 
1485   // We have to be careful here as these two calculations can overflow
1486   // 32-bit size_t's.
1487   double used_after_gc_d = (double) used_after_gc;
1488   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1489   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1490 
1491   // Let's make sure that they are both under the max heap size, which
1492   // by default will make them fit into a size_t.
1493   double desired_capacity_upper_bound = (double) max_heap_size;
1494   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1495                                     desired_capacity_upper_bound);
1496   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1497                                     desired_capacity_upper_bound);
1498 
1499   // We can now safely turn them into size_t's.
1500   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1501   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1502 
1503   // This assert only makes sense here, before we adjust them
1504   // with respect to the min and max heap size.
1505   assert(minimum_desired_capacity <= maximum_desired_capacity,
1506          "minimum_desired_capacity = " SIZE_FORMAT ", "
1507          "maximum_desired_capacity = " SIZE_FORMAT,
1508          minimum_desired_capacity, maximum_desired_capacity);
1509 
1510   // Should not be greater than the heap max size. No need to adjust
1511   // it with respect to the heap min size as it's a lower bound (i.e.,
1512   // we'll try to make the capacity larger than it, not smaller).
1513   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1514   // Should not be less than the heap min size. No need to adjust it
1515   // with respect to the heap max size as it's an upper bound (i.e.,
1516   // we'll try to make the capacity smaller than it, not greater).
1517   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1518 
1519   if (capacity_after_gc < minimum_desired_capacity) {
1520     // Don't expand unless it's significant
1521     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1522 
1523     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1524                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1525                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1526 
1527     expand(expand_bytes);
1528 
1529     // No expansion, now see if we want to shrink
1530   } else if (capacity_after_gc > maximum_desired_capacity) {
1531     // Capacity too large, compute shrinking size
1532     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1533 
1534     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1535                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1536                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1537 
1538     shrink(shrink_bytes);
1539   }
1540 }
1541 
1542 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1543                                                             AllocationContext_t context,
1544                                                             bool do_gc,
1545                                                             bool clear_all_soft_refs,
1546                                                             bool expect_null_mutator_alloc_region,
1547                                                             bool* gc_succeeded) {
1548   *gc_succeeded = true;
1549   // Let's attempt the allocation first.
1550   HeapWord* result =
1551     attempt_allocation_at_safepoint(word_size,
1552                                     context,
1553                                     expect_null_mutator_alloc_region);
1554   if (result != NULL) {
1555     assert(*gc_succeeded, "sanity");
1556     return result;
1557   }
1558 
1559   // In a G1 heap, we're supposed to keep allocation from failing by
1560   // incremental pauses.  Therefore, at least for now, we'll favor
1561   // expansion over collection.  (This might change in the future if we can
1562   // do something smarter than full collection to satisfy a failed alloc.)
1563   result = expand_and_allocate(word_size, context);
1564   if (result != NULL) {
1565     assert(*gc_succeeded, "sanity");
1566     return result;
1567   }
1568 
1569   if (do_gc) {
1570     // Expansion didn't work, we'll try to do a Full GC.
1571     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1572                                        clear_all_soft_refs);
1573   }
1574 
1575   return NULL;
1576 }
1577 
1578 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1579                                                      AllocationContext_t context,
1580                                                      bool* succeeded) {
1581   assert_at_safepoint(true /* should_be_vm_thread */);
1582 
1583   // Attempts to allocate followed by Full GC.
1584   HeapWord* result =
1585     satisfy_failed_allocation_helper(word_size,
1586                                      context,
1587                                      true,  /* do_gc */
1588                                      false, /* clear_all_soft_refs */
1589                                      false, /* expect_null_mutator_alloc_region */
1590                                      succeeded);
1591 
1592   if (result != NULL || !*succeeded) {
1593     return result;
1594   }
1595 
1596   // Attempts to allocate followed by Full GC that will collect all soft references.
1597   result = satisfy_failed_allocation_helper(word_size,
1598                                             context,
1599                                             true, /* do_gc */
1600                                             true, /* clear_all_soft_refs */
1601                                             true, /* expect_null_mutator_alloc_region */
1602                                             succeeded);
1603 
1604   if (result != NULL || !*succeeded) {
1605     return result;
1606   }
1607 
1608   // Attempts to allocate, no GC
1609   result = satisfy_failed_allocation_helper(word_size,
1610                                             context,
1611                                             false, /* do_gc */
1612                                             false, /* clear_all_soft_refs */
1613                                             true,  /* expect_null_mutator_alloc_region */
1614                                             succeeded);
1615 
1616   if (result != NULL) {
1617     assert(*succeeded, "sanity");
1618     return result;
1619   }
1620 
1621   assert(!collector_policy()->should_clear_all_soft_refs(),
1622          "Flag should have been handled and cleared prior to this point");
1623 
1624   // What else?  We might try synchronous finalization later.  If the total
1625   // space available is large enough for the allocation, then a more
1626   // complete compaction phase than we've tried so far might be
1627   // appropriate.
1628   assert(*succeeded, "sanity");
1629   return NULL;
1630 }
1631 
1632 // Attempting to expand the heap sufficiently
1633 // to support an allocation of the given "word_size".  If
1634 // successful, perform the allocation and return the address of the
1635 // allocated block, or else "NULL".
1636 
1637 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1638   assert_at_safepoint(true /* should_be_vm_thread */);
1639 
1640   _verifier->verify_region_sets_optional();
1641 
1642   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1643   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1644                             word_size * HeapWordSize);
1645 
1646 
1647   if (expand(expand_bytes)) {
1648     _hrm.verify_optional();
1649     _verifier->verify_region_sets_optional();
1650     return attempt_allocation_at_safepoint(word_size,
1651                                            context,
1652                                            false /* expect_null_mutator_alloc_region */);
1653   }
1654   return NULL;
1655 }
1656 
1657 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1658   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1659   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1660                                        HeapRegion::GrainBytes);
1661 
1662   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1663                             expand_bytes, aligned_expand_bytes);
1664 
1665   if (is_maximal_no_gc()) {
1666     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1667     return false;
1668   }
1669 
1670   double expand_heap_start_time_sec = os::elapsedTime();
1671   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1672   assert(regions_to_expand > 0, "Must expand by at least one region");
1673 
1674   uint expanded_by = _hrm.expand_by(regions_to_expand);
1675   if (expand_time_ms != NULL) {
1676     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1677   }
1678 
1679   if (expanded_by > 0) {
1680     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1681     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1682     g1_policy()->record_new_heap_size(num_regions());
1683   } else {
1684     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1685 
1686     // The expansion of the virtual storage space was unsuccessful.
1687     // Let's see if it was because we ran out of swap.
1688     if (G1ExitOnExpansionFailure &&
1689         _hrm.available() >= regions_to_expand) {
1690       // We had head room...
1691       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1692     }
1693   }
1694   return regions_to_expand > 0;
1695 }
1696 
1697 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1698   size_t aligned_shrink_bytes =
1699     ReservedSpace::page_align_size_down(shrink_bytes);
1700   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1701                                          HeapRegion::GrainBytes);
1702   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1703 
1704   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1705   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1706 
1707 
1708   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1709                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1710   if (num_regions_removed > 0) {
1711     g1_policy()->record_new_heap_size(num_regions());
1712   } else {
1713     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1714   }
1715 }
1716 
1717 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1718   _verifier->verify_region_sets_optional();
1719 
1720   // We should only reach here at the end of a Full GC which means we
1721   // should not not be holding to any GC alloc regions. The method
1722   // below will make sure of that and do any remaining clean up.
1723   _allocator->abandon_gc_alloc_regions();
1724 
1725   // Instead of tearing down / rebuilding the free lists here, we
1726   // could instead use the remove_all_pending() method on free_list to
1727   // remove only the ones that we need to remove.
1728   tear_down_region_sets(true /* free_list_only */);
1729   shrink_helper(shrink_bytes);
1730   rebuild_region_sets(true /* free_list_only */);
1731 
1732   _hrm.verify_optional();
1733   _verifier->verify_region_sets_optional();
1734 }
1735 
1736 // Public methods.
1737 
1738 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1739   CollectedHeap(),
1740   _g1_policy(policy_),
1741   _collection_set(this),
1742   _dirty_card_queue_set(false),
1743   _is_alive_closure_cm(this),
1744   _is_alive_closure_stw(this),
1745   _ref_processor_cm(NULL),
1746   _ref_processor_stw(NULL),
1747   _bot(NULL),
1748   _cg1r(NULL),
1749   _g1mm(NULL),
1750   _refine_cte_cl(NULL),
1751   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1752   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1753   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1754   _humongous_reclaim_candidates(),
1755   _has_humongous_reclaim_candidates(false),
1756   _archive_allocator(NULL),
1757   _free_regions_coming(false),
1758   _young_list(new YoungList(this)),
1759   _gc_time_stamp(0),
1760   _summary_bytes_used(0),
1761   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1762   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1763   _expand_heap_after_alloc_failure(true),
1764   _old_marking_cycles_started(0),
1765   _old_marking_cycles_completed(0),
1766   _heap_summary_sent(false),
1767   _in_cset_fast_test(),
1768   _dirty_cards_region_list(NULL),
1769   _worker_cset_start_region(NULL),
1770   _worker_cset_start_region_time_stamp(NULL),
1771   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1772   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1773   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1774   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1775 
1776   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1777                           /* are_GC_task_threads */true,
1778                           /* are_ConcurrentGC_threads */false);
1779   _workers->initialize_workers();
1780   _verifier = new G1HeapVerifier(this);
1781 
1782   _allocator = G1Allocator::create_allocator(this);
1783   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1784 
1785   // Override the default _filler_array_max_size so that no humongous filler
1786   // objects are created.
1787   _filler_array_max_size = _humongous_object_threshold_in_words;
1788 
1789   uint n_queues = ParallelGCThreads;
1790   _task_queues = new RefToScanQueueSet(n_queues);
1791 
1792   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1793   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1794   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1795 
1796   for (uint i = 0; i < n_queues; i++) {
1797     RefToScanQueue* q = new RefToScanQueue();
1798     q->initialize();
1799     _task_queues->register_queue(i, q);
1800     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1801   }
1802   clear_cset_start_regions();
1803 
1804   // Initialize the G1EvacuationFailureALot counters and flags.
1805   NOT_PRODUCT(reset_evacuation_should_fail();)
1806 
1807   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1808 }
1809 
1810 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1811                                                                  size_t size,
1812                                                                  size_t translation_factor) {
1813   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1814   // Allocate a new reserved space, preferring to use large pages.
1815   ReservedSpace rs(size, preferred_page_size);
1816   G1RegionToSpaceMapper* result  =
1817     G1RegionToSpaceMapper::create_mapper(rs,
1818                                          size,
1819                                          rs.alignment(),
1820                                          HeapRegion::GrainBytes,
1821                                          translation_factor,
1822                                          mtGC);
1823   if (TracePageSizes) {
1824     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1825                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1826   }
1827   return result;
1828 }
1829 
1830 jint G1CollectedHeap::initialize() {
1831   CollectedHeap::pre_initialize();
1832   os::enable_vtime();
1833 
1834   // Necessary to satisfy locking discipline assertions.
1835 
1836   MutexLocker x(Heap_lock);
1837 
1838   // While there are no constraints in the GC code that HeapWordSize
1839   // be any particular value, there are multiple other areas in the
1840   // system which believe this to be true (e.g. oop->object_size in some
1841   // cases incorrectly returns the size in wordSize units rather than
1842   // HeapWordSize).
1843   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1844 
1845   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1846   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1847   size_t heap_alignment = collector_policy()->heap_alignment();
1848 
1849   // Ensure that the sizes are properly aligned.
1850   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1851   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1852   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1853 
1854   _refine_cte_cl = new RefineCardTableEntryClosure();
1855 
1856   jint ecode = JNI_OK;
1857   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1858   if (_cg1r == NULL) {
1859     return ecode;
1860   }
1861 
1862   // Reserve the maximum.
1863 
1864   // When compressed oops are enabled, the preferred heap base
1865   // is calculated by subtracting the requested size from the
1866   // 32Gb boundary and using the result as the base address for
1867   // heap reservation. If the requested size is not aligned to
1868   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1869   // into the ReservedHeapSpace constructor) then the actual
1870   // base of the reserved heap may end up differing from the
1871   // address that was requested (i.e. the preferred heap base).
1872   // If this happens then we could end up using a non-optimal
1873   // compressed oops mode.
1874 
1875   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1876                                                  heap_alignment);
1877 
1878   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1879 
1880   // Create the barrier set for the entire reserved region.
1881   G1SATBCardTableLoggingModRefBS* bs
1882     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1883   bs->initialize();
1884   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1885   set_barrier_set(bs);
1886 
1887   // Also create a G1 rem set.
1888   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1889 
1890   // Carve out the G1 part of the heap.
1891   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1892   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1893   G1RegionToSpaceMapper* heap_storage =
1894     G1RegionToSpaceMapper::create_mapper(g1_rs,
1895                                          g1_rs.size(),
1896                                          page_size,
1897                                          HeapRegion::GrainBytes,
1898                                          1,
1899                                          mtJavaHeap);
1900   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1901                        max_byte_size, page_size,
1902                        heap_rs.base(),
1903                        heap_rs.size());
1904   heap_storage->set_mapping_changed_listener(&_listener);
1905 
1906   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1907   G1RegionToSpaceMapper* bot_storage =
1908     create_aux_memory_mapper("Block offset table",
1909                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1910                              G1BlockOffsetTable::heap_map_factor());
1911 
1912   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1913   G1RegionToSpaceMapper* cardtable_storage =
1914     create_aux_memory_mapper("Card table",
1915                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1916                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1917 
1918   G1RegionToSpaceMapper* card_counts_storage =
1919     create_aux_memory_mapper("Card counts table",
1920                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1921                              G1CardCounts::heap_map_factor());
1922 
1923   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1924   G1RegionToSpaceMapper* prev_bitmap_storage =
1925     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1926   G1RegionToSpaceMapper* next_bitmap_storage =
1927     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1928 
1929   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1930   g1_barrier_set()->initialize(cardtable_storage);
1931    // Do later initialization work for concurrent refinement.
1932   _cg1r->init(card_counts_storage);
1933 
1934   // 6843694 - ensure that the maximum region index can fit
1935   // in the remembered set structures.
1936   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1937   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1938 
1939   G1RemSet::initialize(max_regions());
1940 
1941   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1942   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1943   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1944             "too many cards per region");
1945 
1946   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1947 
1948   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1949 
1950   {
1951     HeapWord* start = _hrm.reserved().start();
1952     HeapWord* end = _hrm.reserved().end();
1953     size_t granularity = HeapRegion::GrainBytes;
1954 
1955     _in_cset_fast_test.initialize(start, end, granularity);
1956     _humongous_reclaim_candidates.initialize(start, end, granularity);
1957   }
1958 
1959   // Create the G1ConcurrentMark data structure and thread.
1960   // (Must do this late, so that "max_regions" is defined.)
1961   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1962   if (_cm == NULL || !_cm->completed_initialization()) {
1963     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1964     return JNI_ENOMEM;
1965   }
1966   _cmThread = _cm->cmThread();
1967 
1968   // Now expand into the initial heap size.
1969   if (!expand(init_byte_size)) {
1970     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1971     return JNI_ENOMEM;
1972   }
1973 
1974   // Perform any initialization actions delegated to the policy.
1975   g1_policy()->init();
1976 
1977   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1978                                                SATB_Q_FL_lock,
1979                                                G1SATBProcessCompletedThreshold,
1980                                                Shared_SATB_Q_lock);
1981 
1982   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1983                                                 DirtyCardQ_CBL_mon,
1984                                                 DirtyCardQ_FL_lock,
1985                                                 (int)concurrent_g1_refine()->yellow_zone(),
1986                                                 (int)concurrent_g1_refine()->red_zone(),
1987                                                 Shared_DirtyCardQ_lock,
1988                                                 NULL,  // fl_owner
1989                                                 true); // init_free_ids
1990 
1991   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1992                                     DirtyCardQ_CBL_mon,
1993                                     DirtyCardQ_FL_lock,
1994                                     -1, // never trigger processing
1995                                     -1, // no limit on length
1996                                     Shared_DirtyCardQ_lock,
1997                                     &JavaThread::dirty_card_queue_set());
1998 
1999   // Here we allocate the dummy HeapRegion that is required by the
2000   // G1AllocRegion class.
2001   HeapRegion* dummy_region = _hrm.get_dummy_region();
2002 
2003   // We'll re-use the same region whether the alloc region will
2004   // require BOT updates or not and, if it doesn't, then a non-young
2005   // region will complain that it cannot support allocations without
2006   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2007   dummy_region->set_eden();
2008   // Make sure it's full.
2009   dummy_region->set_top(dummy_region->end());
2010   G1AllocRegion::setup(this, dummy_region);
2011 
2012   _allocator->init_mutator_alloc_region();
2013 
2014   // Do create of the monitoring and management support so that
2015   // values in the heap have been properly initialized.
2016   _g1mm = new G1MonitoringSupport(this);
2017 
2018   G1StringDedup::initialize();
2019 
2020   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2021   for (uint i = 0; i < ParallelGCThreads; i++) {
2022     new (&_preserved_objs[i]) OopAndMarkOopStack();
2023   }
2024 
2025   return JNI_OK;
2026 }
2027 
2028 void G1CollectedHeap::stop() {
2029   // Stop all concurrent threads. We do this to make sure these threads
2030   // do not continue to execute and access resources (e.g. logging)
2031   // that are destroyed during shutdown.
2032   _cg1r->stop();
2033   _cmThread->stop();
2034   if (G1StringDedup::is_enabled()) {
2035     G1StringDedup::stop();
2036   }
2037 }
2038 
2039 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2040   return HeapRegion::max_region_size();
2041 }
2042 
2043 void G1CollectedHeap::post_initialize() {
2044   CollectedHeap::post_initialize();
2045   ref_processing_init();
2046 }
2047 
2048 void G1CollectedHeap::ref_processing_init() {
2049   // Reference processing in G1 currently works as follows:
2050   //
2051   // * There are two reference processor instances. One is
2052   //   used to record and process discovered references
2053   //   during concurrent marking; the other is used to
2054   //   record and process references during STW pauses
2055   //   (both full and incremental).
2056   // * Both ref processors need to 'span' the entire heap as
2057   //   the regions in the collection set may be dotted around.
2058   //
2059   // * For the concurrent marking ref processor:
2060   //   * Reference discovery is enabled at initial marking.
2061   //   * Reference discovery is disabled and the discovered
2062   //     references processed etc during remarking.
2063   //   * Reference discovery is MT (see below).
2064   //   * Reference discovery requires a barrier (see below).
2065   //   * Reference processing may or may not be MT
2066   //     (depending on the value of ParallelRefProcEnabled
2067   //     and ParallelGCThreads).
2068   //   * A full GC disables reference discovery by the CM
2069   //     ref processor and abandons any entries on it's
2070   //     discovered lists.
2071   //
2072   // * For the STW processor:
2073   //   * Non MT discovery is enabled at the start of a full GC.
2074   //   * Processing and enqueueing during a full GC is non-MT.
2075   //   * During a full GC, references are processed after marking.
2076   //
2077   //   * Discovery (may or may not be MT) is enabled at the start
2078   //     of an incremental evacuation pause.
2079   //   * References are processed near the end of a STW evacuation pause.
2080   //   * For both types of GC:
2081   //     * Discovery is atomic - i.e. not concurrent.
2082   //     * Reference discovery will not need a barrier.
2083 
2084   MemRegion mr = reserved_region();
2085 
2086   // Concurrent Mark ref processor
2087   _ref_processor_cm =
2088     new ReferenceProcessor(mr,    // span
2089                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2090                                 // mt processing
2091                            ParallelGCThreads,
2092                                 // degree of mt processing
2093                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2094                                 // mt discovery
2095                            MAX2(ParallelGCThreads, ConcGCThreads),
2096                                 // degree of mt discovery
2097                            false,
2098                                 // Reference discovery is not atomic
2099                            &_is_alive_closure_cm);
2100                                 // is alive closure
2101                                 // (for efficiency/performance)
2102 
2103   // STW ref processor
2104   _ref_processor_stw =
2105     new ReferenceProcessor(mr,    // span
2106                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2107                                 // mt processing
2108                            ParallelGCThreads,
2109                                 // degree of mt processing
2110                            (ParallelGCThreads > 1),
2111                                 // mt discovery
2112                            ParallelGCThreads,
2113                                 // degree of mt discovery
2114                            true,
2115                                 // Reference discovery is atomic
2116                            &_is_alive_closure_stw);
2117                                 // is alive closure
2118                                 // (for efficiency/performance)
2119 }
2120 
2121 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2122   return g1_policy();
2123 }
2124 
2125 size_t G1CollectedHeap::capacity() const {
2126   return _hrm.length() * HeapRegion::GrainBytes;
2127 }
2128 
2129 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2130   hr->reset_gc_time_stamp();
2131 }
2132 
2133 #ifndef PRODUCT
2134 
2135 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2136 private:
2137   unsigned _gc_time_stamp;
2138   bool _failures;
2139 
2140 public:
2141   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2142     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2143 
2144   virtual void doHeapRegion(HeapRegion* hr) {
2145     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2146     if (_gc_time_stamp != region_gc_time_stamp) {
2147       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2148                             region_gc_time_stamp, _gc_time_stamp);
2149       _failures = true;
2150     }
2151   }
2152 
2153   bool failures() { return _failures; }
2154 };
2155 
2156 void G1CollectedHeap::check_gc_time_stamps() {
2157   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2158   heap_region_iterate(&cl);
2159   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2160 }
2161 #endif // PRODUCT
2162 
2163 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2164   _cg1r->hot_card_cache()->drain(cl, worker_i);
2165 }
2166 
2167 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2168   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2169   size_t n_completed_buffers = 0;
2170   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2171     n_completed_buffers++;
2172   }
2173   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2174   dcqs.clear_n_completed_buffers();
2175   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2176 }
2177 
2178 // Computes the sum of the storage used by the various regions.
2179 size_t G1CollectedHeap::used() const {
2180   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2181   if (_archive_allocator != NULL) {
2182     result += _archive_allocator->used();
2183   }
2184   return result;
2185 }
2186 
2187 size_t G1CollectedHeap::used_unlocked() const {
2188   return _summary_bytes_used;
2189 }
2190 
2191 class SumUsedClosure: public HeapRegionClosure {
2192   size_t _used;
2193 public:
2194   SumUsedClosure() : _used(0) {}
2195   void doHeapRegion(HeapRegion* r) {
2196     _used += r->used();
2197   }
2198   size_t result() { return _used; }
2199 };
2200 
2201 size_t G1CollectedHeap::recalculate_used() const {
2202   double recalculate_used_start = os::elapsedTime();
2203 
2204   SumUsedClosure blk;
2205   heap_region_iterate(&blk);
2206 
2207   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2208   return blk.result();
2209 }
2210 
2211 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2212   switch (cause) {
2213     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2214     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2215     case GCCause::_update_allocation_context_stats_inc: return true;
2216     case GCCause::_wb_conc_mark:                        return true;
2217     default :                                           return false;
2218   }
2219 }
2220 
2221 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2222   switch (cause) {
2223     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2224     case GCCause::_g1_humongous_allocation: return true;
2225     default:                                return is_user_requested_concurrent_full_gc(cause);
2226   }
2227 }
2228 
2229 #ifndef PRODUCT
2230 void G1CollectedHeap::allocate_dummy_regions() {
2231   // Let's fill up most of the region
2232   size_t word_size = HeapRegion::GrainWords - 1024;
2233   // And as a result the region we'll allocate will be humongous.
2234   guarantee(is_humongous(word_size), "sanity");
2235 
2236   // _filler_array_max_size is set to humongous object threshold
2237   // but temporarily change it to use CollectedHeap::fill_with_object().
2238   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2239 
2240   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2241     // Let's use the existing mechanism for the allocation
2242     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2243                                                  AllocationContext::system());
2244     if (dummy_obj != NULL) {
2245       MemRegion mr(dummy_obj, word_size);
2246       CollectedHeap::fill_with_object(mr);
2247     } else {
2248       // If we can't allocate once, we probably cannot allocate
2249       // again. Let's get out of the loop.
2250       break;
2251     }
2252   }
2253 }
2254 #endif // !PRODUCT
2255 
2256 void G1CollectedHeap::increment_old_marking_cycles_started() {
2257   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2258          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2259          "Wrong marking cycle count (started: %d, completed: %d)",
2260          _old_marking_cycles_started, _old_marking_cycles_completed);
2261 
2262   _old_marking_cycles_started++;
2263 }
2264 
2265 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2266   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2267 
2268   // We assume that if concurrent == true, then the caller is a
2269   // concurrent thread that was joined the Suspendible Thread
2270   // Set. If there's ever a cheap way to check this, we should add an
2271   // assert here.
2272 
2273   // Given that this method is called at the end of a Full GC or of a
2274   // concurrent cycle, and those can be nested (i.e., a Full GC can
2275   // interrupt a concurrent cycle), the number of full collections
2276   // completed should be either one (in the case where there was no
2277   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2278   // behind the number of full collections started.
2279 
2280   // This is the case for the inner caller, i.e. a Full GC.
2281   assert(concurrent ||
2282          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2283          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2284          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2285          "is inconsistent with _old_marking_cycles_completed = %u",
2286          _old_marking_cycles_started, _old_marking_cycles_completed);
2287 
2288   // This is the case for the outer caller, i.e. the concurrent cycle.
2289   assert(!concurrent ||
2290          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2291          "for outer caller (concurrent cycle): "
2292          "_old_marking_cycles_started = %u "
2293          "is inconsistent with _old_marking_cycles_completed = %u",
2294          _old_marking_cycles_started, _old_marking_cycles_completed);
2295 
2296   _old_marking_cycles_completed += 1;
2297 
2298   // We need to clear the "in_progress" flag in the CM thread before
2299   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2300   // is set) so that if a waiter requests another System.gc() it doesn't
2301   // incorrectly see that a marking cycle is still in progress.
2302   if (concurrent) {
2303     _cmThread->set_idle();
2304   }
2305 
2306   // This notify_all() will ensure that a thread that called
2307   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2308   // and it's waiting for a full GC to finish will be woken up. It is
2309   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2310   FullGCCount_lock->notify_all();
2311 }
2312 
2313 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2314   GCIdMarkAndRestore conc_gc_id_mark;
2315   collector_state()->set_concurrent_cycle_started(true);
2316   _gc_timer_cm->register_gc_start(start_time);
2317 
2318   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2319   trace_heap_before_gc(_gc_tracer_cm);
2320   _cmThread->set_gc_id(GCId::current());
2321 }
2322 
2323 void G1CollectedHeap::register_concurrent_cycle_end() {
2324   if (collector_state()->concurrent_cycle_started()) {
2325     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2326     if (_cm->has_aborted()) {
2327       _gc_tracer_cm->report_concurrent_mode_failure();
2328 
2329       // ConcurrentGCTimer will be ended as well.
2330       _cm->register_concurrent_gc_end_and_stop_timer();
2331     } else {
2332       _gc_timer_cm->register_gc_end();
2333     }
2334 
2335     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2336 
2337     // Clear state variables to prepare for the next concurrent cycle.
2338     collector_state()->set_concurrent_cycle_started(false);
2339     _heap_summary_sent = false;
2340   }
2341 }
2342 
2343 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2344   if (collector_state()->concurrent_cycle_started()) {
2345     // This function can be called when:
2346     //  the cleanup pause is run
2347     //  the concurrent cycle is aborted before the cleanup pause.
2348     //  the concurrent cycle is aborted after the cleanup pause,
2349     //   but before the concurrent cycle end has been registered.
2350     // Make sure that we only send the heap information once.
2351     if (!_heap_summary_sent) {
2352       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2353       trace_heap_after_gc(_gc_tracer_cm);
2354       _heap_summary_sent = true;
2355     }
2356   }
2357 }
2358 
2359 void G1CollectedHeap::collect(GCCause::Cause cause) {
2360   assert_heap_not_locked();
2361 
2362   uint gc_count_before;
2363   uint old_marking_count_before;
2364   uint full_gc_count_before;
2365   bool retry_gc;
2366 
2367   do {
2368     retry_gc = false;
2369 
2370     {
2371       MutexLocker ml(Heap_lock);
2372 
2373       // Read the GC count while holding the Heap_lock
2374       gc_count_before = total_collections();
2375       full_gc_count_before = total_full_collections();
2376       old_marking_count_before = _old_marking_cycles_started;
2377     }
2378 
2379     if (should_do_concurrent_full_gc(cause)) {
2380       // Schedule an initial-mark evacuation pause that will start a
2381       // concurrent cycle. We're setting word_size to 0 which means that
2382       // we are not requesting a post-GC allocation.
2383       VM_G1IncCollectionPause op(gc_count_before,
2384                                  0,     /* word_size */
2385                                  true,  /* should_initiate_conc_mark */
2386                                  g1_policy()->max_pause_time_ms(),
2387                                  cause);
2388       op.set_allocation_context(AllocationContext::current());
2389 
2390       VMThread::execute(&op);
2391       if (!op.pause_succeeded()) {
2392         if (old_marking_count_before == _old_marking_cycles_started) {
2393           retry_gc = op.should_retry_gc();
2394         } else {
2395           // A Full GC happened while we were trying to schedule the
2396           // initial-mark GC. No point in starting a new cycle given
2397           // that the whole heap was collected anyway.
2398         }
2399 
2400         if (retry_gc) {
2401           if (GCLocker::is_active_and_needs_gc()) {
2402             GCLocker::stall_until_clear();
2403           }
2404         }
2405       }
2406     } else {
2407       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2408           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2409 
2410         // Schedule a standard evacuation pause. We're setting word_size
2411         // to 0 which means that we are not requesting a post-GC allocation.
2412         VM_G1IncCollectionPause op(gc_count_before,
2413                                    0,     /* word_size */
2414                                    false, /* should_initiate_conc_mark */
2415                                    g1_policy()->max_pause_time_ms(),
2416                                    cause);
2417         VMThread::execute(&op);
2418       } else {
2419         // Schedule a Full GC.
2420         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2421         VMThread::execute(&op);
2422       }
2423     }
2424   } while (retry_gc);
2425 }
2426 
2427 bool G1CollectedHeap::is_in(const void* p) const {
2428   if (_hrm.reserved().contains(p)) {
2429     // Given that we know that p is in the reserved space,
2430     // heap_region_containing() should successfully
2431     // return the containing region.
2432     HeapRegion* hr = heap_region_containing(p);
2433     return hr->is_in(p);
2434   } else {
2435     return false;
2436   }
2437 }
2438 
2439 #ifdef ASSERT
2440 bool G1CollectedHeap::is_in_exact(const void* p) const {
2441   bool contains = reserved_region().contains(p);
2442   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2443   if (contains && available) {
2444     return true;
2445   } else {
2446     return false;
2447   }
2448 }
2449 #endif
2450 
2451 bool G1CollectedHeap::obj_in_cs(oop obj) {
2452   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2453   return r != NULL && r->in_collection_set();
2454 }
2455 
2456 // Iteration functions.
2457 
2458 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2459 
2460 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2461   ExtendedOopClosure* _cl;
2462 public:
2463   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2464   void doHeapRegion(HeapRegion* r) {
2465     if (!r->is_continues_humongous()) {
2466       r->oop_iterate(_cl);
2467     }
2468   }
2469 };
2470 
2471 // Iterates an ObjectClosure over all objects within a HeapRegion.
2472 
2473 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2474   ObjectClosure* _cl;
2475 public:
2476   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2477   void doHeapRegion(HeapRegion* r) {
2478     if (!r->is_continues_humongous()) {
2479       r->object_iterate(_cl);
2480     }
2481   }
2482 };
2483 
2484 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2485   IterateObjectClosureRegionClosure blk(cl);
2486   heap_region_iterate(&blk);
2487 }
2488 
2489 void G1CollectedHeap::heap_region_iterate(AbortableHeapRegionClosure* cl) const {
2490   _hrm.iterate(cl);
2491 }
2492 
2493 void
2494 G1CollectedHeap::heap_region_par_iterate(AbortableHeapRegionClosure* cl,
2495                                          uint worker_id,
2496                                          HeapRegionClaimer *hrclaimer,
2497                                          bool concurrent) const {
2498   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2499 }
2500 
2501 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2502   _hrm.iterate(cl);
2503 }
2504 
2505 void
2506 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2507                                          uint worker_id,
2508                                          HeapRegionClaimer *hrclaimer,
2509                                          bool concurrent) const {
2510   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2511 }
2512 
2513 // Clear the cached CSet starting regions and (more importantly)
2514 // the time stamps. Called when we reset the GC time stamp.
2515 void G1CollectedHeap::clear_cset_start_regions() {
2516   assert(_worker_cset_start_region != NULL, "sanity");
2517   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2518 
2519   for (uint i = 0; i < ParallelGCThreads; i++) {
2520     _worker_cset_start_region[i] = NULL;
2521     _worker_cset_start_region_time_stamp[i] = 0;
2522   }
2523 }
2524 
2525 // Given the id of a worker, obtain or calculate a suitable
2526 // starting region for iterating over the current collection set.
2527 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2528   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2529 
2530   HeapRegion* result = NULL;
2531   unsigned gc_time_stamp = get_gc_time_stamp();
2532 
2533   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2534     // Cached starting region for current worker was set
2535     // during the current pause - so it's valid.
2536     // Note: the cached starting heap region may be NULL
2537     // (when the collection set is empty).
2538     result = _worker_cset_start_region[worker_i];
2539     assert(result == NULL || result->in_collection_set(), "sanity");
2540     return result;
2541   }
2542 
2543   // The cached entry was not valid so let's calculate
2544   // a suitable starting heap region for this worker.
2545 
2546   // We want the parallel threads to start their collection
2547   // set iteration at different collection set regions to
2548   // avoid contention.
2549   // If we have:
2550   //          n collection set regions
2551   //          p threads
2552   // Then thread t will start at region floor ((t * n) / p)
2553 
2554   result = collection_set()->head();
2555   uint cs_size = collection_set()->region_length();
2556   uint active_workers = workers()->active_workers();
2557 
2558   uint end_ind   = (cs_size * worker_i) / active_workers;
2559   uint start_ind = 0;
2560 
2561   if (worker_i > 0 &&
2562       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2563     // Previous workers starting region is valid
2564     // so let's iterate from there
2565     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2566     OrderAccess::loadload();
2567     result = _worker_cset_start_region[worker_i - 1];
2568   }
2569 
2570   for (uint i = start_ind; i < end_ind; i++) {
2571     result = result->next_in_collection_set();
2572   }
2573 
2574   // Note: the calculated starting heap region may be NULL
2575   // (when the collection set is empty).
2576   assert(result == NULL || result->in_collection_set(), "sanity");
2577   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2578          "should be updated only once per pause");
2579   _worker_cset_start_region[worker_i] = result;
2580   OrderAccess::storestore();
2581   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2582   return result;
2583 }
2584 
2585 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2586   HeapRegion* r = collection_set()->head();
2587   while (r != NULL) {
2588     HeapRegion* next = r->next_in_collection_set();
2589     cl->doHeapRegion(r);
2590     r = next;
2591   }
2592 }
2593 
2594 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2595                                                   HeapRegionClosure *cl) {
2596   if (r == NULL) {
2597     // The CSet is empty so there's nothing to do.
2598     return;
2599   }
2600 
2601   assert(r->in_collection_set(),
2602          "Start region must be a member of the collection set.");
2603   HeapRegion* cur = r;
2604   while (cur != NULL) {
2605     HeapRegion* next = cur->next_in_collection_set();
2606     cl->doHeapRegion(cur);
2607     cur = next;
2608   }
2609   cur = collection_set()->head();
2610   while (cur != r) {
2611     HeapRegion* next = cur->next_in_collection_set();
2612     cl->doHeapRegion(cur);
2613     cur = next;
2614   }
2615 }
2616 
2617 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2618   HeapRegion* result = _hrm.next_region_in_heap(from);
2619   while (result != NULL && result->is_pinned()) {
2620     result = _hrm.next_region_in_heap(result);
2621   }
2622   return result;
2623 }
2624 
2625 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2626   HeapRegion* hr = heap_region_containing(addr);
2627   return hr->block_start(addr);
2628 }
2629 
2630 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2631   HeapRegion* hr = heap_region_containing(addr);
2632   return hr->block_size(addr);
2633 }
2634 
2635 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2636   HeapRegion* hr = heap_region_containing(addr);
2637   return hr->block_is_obj(addr);
2638 }
2639 
2640 bool G1CollectedHeap::supports_tlab_allocation() const {
2641   return true;
2642 }
2643 
2644 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2645   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2646 }
2647 
2648 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2649   return young_list()->eden_used_bytes();
2650 }
2651 
2652 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2653 // must be equal to the humongous object limit.
2654 size_t G1CollectedHeap::max_tlab_size() const {
2655   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2656 }
2657 
2658 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2659   AllocationContext_t context = AllocationContext::current();
2660   return _allocator->unsafe_max_tlab_alloc(context);
2661 }
2662 
2663 size_t G1CollectedHeap::max_capacity() const {
2664   return _hrm.reserved().byte_size();
2665 }
2666 
2667 jlong G1CollectedHeap::millis_since_last_gc() {
2668   // assert(false, "NYI");
2669   return 0;
2670 }
2671 
2672 void G1CollectedHeap::prepare_for_verify() {
2673   _verifier->prepare_for_verify();
2674 }
2675 
2676 void G1CollectedHeap::verify(VerifyOption vo) {
2677   _verifier->verify(vo);
2678 }
2679 
2680 class PrintRegionClosure: public HeapRegionClosure {
2681   outputStream* _st;
2682 public:
2683   PrintRegionClosure(outputStream* st) : _st(st) {}
2684   void doHeapRegion(HeapRegion* r) {
2685     r->print_on(_st);
2686   }
2687 };
2688 
2689 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2690                                        const HeapRegion* hr,
2691                                        const VerifyOption vo) const {
2692   switch (vo) {
2693   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2694   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2695   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2696   default:                            ShouldNotReachHere();
2697   }
2698   return false; // keep some compilers happy
2699 }
2700 
2701 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2702                                        const VerifyOption vo) const {
2703   switch (vo) {
2704   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2705   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2706   case VerifyOption_G1UseMarkWord: {
2707     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2708     return !obj->is_gc_marked() && !hr->is_archive();
2709   }
2710   default:                            ShouldNotReachHere();
2711   }
2712   return false; // keep some compilers happy
2713 }
2714 
2715 void G1CollectedHeap::print_on(outputStream* st) const {
2716   st->print(" %-20s", "garbage-first heap");
2717   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2718             capacity()/K, used_unlocked()/K);
2719   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2720             p2i(_hrm.reserved().start()),
2721             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2722             p2i(_hrm.reserved().end()));
2723   st->cr();
2724   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2725   uint young_regions = _young_list->length();
2726   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2727             (size_t) young_regions * HeapRegion::GrainBytes / K);
2728   uint survivor_regions = g1_policy()->recorded_survivor_regions();
2729   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2730             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2731   st->cr();
2732   MetaspaceAux::print_on(st);
2733 }
2734 
2735 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2736   print_on(st);
2737 
2738   // Print the per-region information.
2739   st->cr();
2740   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2741                "HS=humongous(starts), HC=humongous(continues), "
2742                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2743                "AC=allocation context, "
2744                "TAMS=top-at-mark-start (previous, next)");
2745   PrintRegionClosure blk(st);
2746   heap_region_iterate(&blk);
2747 }
2748 
2749 void G1CollectedHeap::print_on_error(outputStream* st) const {
2750   this->CollectedHeap::print_on_error(st);
2751 
2752   if (_cm != NULL) {
2753     st->cr();
2754     _cm->print_on_error(st);
2755   }
2756 }
2757 
2758 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2759   workers()->print_worker_threads_on(st);
2760   _cmThread->print_on(st);
2761   st->cr();
2762   _cm->print_worker_threads_on(st);
2763   _cg1r->print_worker_threads_on(st);
2764   if (G1StringDedup::is_enabled()) {
2765     G1StringDedup::print_worker_threads_on(st);
2766   }
2767 }
2768 
2769 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2770   workers()->threads_do(tc);
2771   tc->do_thread(_cmThread);
2772   _cg1r->threads_do(tc);
2773   if (G1StringDedup::is_enabled()) {
2774     G1StringDedup::threads_do(tc);
2775   }
2776 }
2777 
2778 void G1CollectedHeap::print_tracing_info() const {
2779   g1_rem_set()->print_summary_info();
2780   concurrent_mark()->print_summary_info();
2781   g1_policy()->print_yg_surv_rate_info();
2782 }
2783 
2784 #ifndef PRODUCT
2785 // Helpful for debugging RSet issues.
2786 
2787 class PrintRSetsClosure : public HeapRegionClosure {
2788 private:
2789   const char* _msg;
2790   size_t _occupied_sum;
2791 
2792 public:
2793   void doHeapRegion(HeapRegion* r) {
2794     HeapRegionRemSet* hrrs = r->rem_set();
2795     size_t occupied = hrrs->occupied();
2796     _occupied_sum += occupied;
2797 
2798     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2799     if (occupied == 0) {
2800       tty->print_cr("  RSet is empty");
2801     } else {
2802       hrrs->print();
2803     }
2804     tty->print_cr("----------");
2805   }
2806 
2807   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2808     tty->cr();
2809     tty->print_cr("========================================");
2810     tty->print_cr("%s", msg);
2811     tty->cr();
2812   }
2813 
2814   ~PrintRSetsClosure() {
2815     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2816     tty->print_cr("========================================");
2817     tty->cr();
2818   }
2819 };
2820 
2821 void G1CollectedHeap::print_cset_rsets() {
2822   PrintRSetsClosure cl("Printing CSet RSets");
2823   collection_set_iterate(&cl);
2824 }
2825 
2826 void G1CollectedHeap::print_all_rsets() {
2827   PrintRSetsClosure cl("Printing All RSets");;
2828   heap_region_iterate(&cl);
2829 }
2830 #endif // PRODUCT
2831 
2832 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2833   YoungList* young_list = heap()->young_list();
2834 
2835   size_t eden_used_bytes = young_list->eden_used_bytes();
2836   size_t survivor_used_bytes = young_list->survivor_used_bytes();
2837 
2838   size_t eden_capacity_bytes =
2839     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2840 
2841   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2842   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes, num_regions());
2843 }
2844 
2845 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2846   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2847                        stats->unused(), stats->used(), stats->region_end_waste(),
2848                        stats->regions_filled(), stats->direct_allocated(),
2849                        stats->failure_used(), stats->failure_waste());
2850 }
2851 
2852 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2853   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2854   gc_tracer->report_gc_heap_summary(when, heap_summary);
2855 
2856   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2857   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2858 }
2859 
2860 
2861 G1CollectedHeap* G1CollectedHeap::heap() {
2862   CollectedHeap* heap = Universe::heap();
2863   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2864   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2865   return (G1CollectedHeap*)heap;
2866 }
2867 
2868 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2869   // always_do_update_barrier = false;
2870   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2871   // Fill TLAB's and such
2872   accumulate_statistics_all_tlabs();
2873   ensure_parsability(true);
2874 
2875   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2876 }
2877 
2878 void G1CollectedHeap::gc_epilogue(bool full) {
2879   // we are at the end of the GC. Total collections has already been increased.
2880   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2881 
2882   // FIXME: what is this about?
2883   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2884   // is set.
2885 #if defined(COMPILER2) || INCLUDE_JVMCI
2886   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2887 #endif
2888   // always_do_update_barrier = true;
2889 
2890   resize_all_tlabs();
2891   allocation_context_stats().update(full);
2892 
2893   // We have just completed a GC. Update the soft reference
2894   // policy with the new heap occupancy
2895   Universe::update_heap_info_at_gc();
2896 }
2897 
2898 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2899                                                uint gc_count_before,
2900                                                bool* succeeded,
2901                                                GCCause::Cause gc_cause) {
2902   assert_heap_not_locked_and_not_at_safepoint();
2903   VM_G1IncCollectionPause op(gc_count_before,
2904                              word_size,
2905                              false, /* should_initiate_conc_mark */
2906                              g1_policy()->max_pause_time_ms(),
2907                              gc_cause);
2908 
2909   op.set_allocation_context(AllocationContext::current());
2910   VMThread::execute(&op);
2911 
2912   HeapWord* result = op.result();
2913   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2914   assert(result == NULL || ret_succeeded,
2915          "the result should be NULL if the VM did not succeed");
2916   *succeeded = ret_succeeded;
2917 
2918   assert_heap_not_locked();
2919   return result;
2920 }
2921 
2922 void
2923 G1CollectedHeap::doConcurrentMark() {
2924   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2925   if (!_cmThread->in_progress()) {
2926     _cmThread->set_started();
2927     CGC_lock->notify();
2928   }
2929 }
2930 
2931 size_t G1CollectedHeap::pending_card_num() {
2932   size_t extra_cards = 0;
2933   JavaThread *curr = Threads::first();
2934   while (curr != NULL) {
2935     DirtyCardQueue& dcq = curr->dirty_card_queue();
2936     extra_cards += dcq.size();
2937     curr = curr->next();
2938   }
2939   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2940   size_t buffer_size = dcqs.buffer_size();
2941   size_t buffer_num = dcqs.completed_buffers_num();
2942 
2943   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2944   // in bytes - not the number of 'entries'. We need to convert
2945   // into a number of cards.
2946   return (buffer_size * buffer_num + extra_cards) / oopSize;
2947 }
2948 
2949 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2950  private:
2951   size_t _total_humongous;
2952   size_t _candidate_humongous;
2953 
2954   DirtyCardQueue _dcq;
2955 
2956   // We don't nominate objects with many remembered set entries, on
2957   // the assumption that such objects are likely still live.
2958   bool is_remset_small(HeapRegion* region) const {
2959     HeapRegionRemSet* const rset = region->rem_set();
2960     return G1EagerReclaimHumongousObjectsWithStaleRefs
2961       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2962       : rset->is_empty();
2963   }
2964 
2965   bool is_typeArray_region(HeapRegion* region) const {
2966     return oop(region->bottom())->is_typeArray();
2967   }
2968 
2969   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2970     assert(region->is_starts_humongous(), "Must start a humongous object");
2971 
2972     // Candidate selection must satisfy the following constraints
2973     // while concurrent marking is in progress:
2974     //
2975     // * In order to maintain SATB invariants, an object must not be
2976     // reclaimed if it was allocated before the start of marking and
2977     // has not had its references scanned.  Such an object must have
2978     // its references (including type metadata) scanned to ensure no
2979     // live objects are missed by the marking process.  Objects
2980     // allocated after the start of concurrent marking don't need to
2981     // be scanned.
2982     //
2983     // * An object must not be reclaimed if it is on the concurrent
2984     // mark stack.  Objects allocated after the start of concurrent
2985     // marking are never pushed on the mark stack.
2986     //
2987     // Nominating only objects allocated after the start of concurrent
2988     // marking is sufficient to meet both constraints.  This may miss
2989     // some objects that satisfy the constraints, but the marking data
2990     // structures don't support efficiently performing the needed
2991     // additional tests or scrubbing of the mark stack.
2992     //
2993     // However, we presently only nominate is_typeArray() objects.
2994     // A humongous object containing references induces remembered
2995     // set entries on other regions.  In order to reclaim such an
2996     // object, those remembered sets would need to be cleaned up.
2997     //
2998     // We also treat is_typeArray() objects specially, allowing them
2999     // to be reclaimed even if allocated before the start of
3000     // concurrent mark.  For this we rely on mark stack insertion to
3001     // exclude is_typeArray() objects, preventing reclaiming an object
3002     // that is in the mark stack.  We also rely on the metadata for
3003     // such objects to be built-in and so ensured to be kept live.
3004     // Frequent allocation and drop of large binary blobs is an
3005     // important use case for eager reclaim, and this special handling
3006     // may reduce needed headroom.
3007 
3008     return is_typeArray_region(region) && is_remset_small(region);
3009   }
3010 
3011  public:
3012   RegisterHumongousWithInCSetFastTestClosure()
3013   : _total_humongous(0),
3014     _candidate_humongous(0),
3015     _dcq(&JavaThread::dirty_card_queue_set()) {
3016   }
3017 
3018   virtual void doHeapRegion(HeapRegion* r) {
3019     if (!r->is_starts_humongous()) {
3020       return;
3021     }
3022     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3023 
3024     bool is_candidate = humongous_region_is_candidate(g1h, r);
3025     uint rindex = r->hrm_index();
3026     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3027     if (is_candidate) {
3028       _candidate_humongous++;
3029       g1h->register_humongous_region_with_cset(rindex);
3030       // Is_candidate already filters out humongous object with large remembered sets.
3031       // If we have a humongous object with a few remembered sets, we simply flush these
3032       // remembered set entries into the DCQS. That will result in automatic
3033       // re-evaluation of their remembered set entries during the following evacuation
3034       // phase.
3035       if (!r->rem_set()->is_empty()) {
3036         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3037                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3038         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3039         HeapRegionRemSetIterator hrrs(r->rem_set());
3040         size_t card_index;
3041         while (hrrs.has_next(card_index)) {
3042           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3043           // The remembered set might contain references to already freed
3044           // regions. Filter out such entries to avoid failing card table
3045           // verification.
3046           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3047             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3048               *card_ptr = CardTableModRefBS::dirty_card_val();
3049               _dcq.enqueue(card_ptr);
3050             }
3051           }
3052         }
3053         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3054                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3055                hrrs.n_yielded(), r->rem_set()->occupied());
3056         r->rem_set()->clear_locked();
3057       }
3058       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3059     }
3060     _total_humongous++;
3061   }
3062 
3063   size_t total_humongous() const { return _total_humongous; }
3064   size_t candidate_humongous() const { return _candidate_humongous; }
3065 
3066   void flush_rem_set_entries() { _dcq.flush(); }
3067 };
3068 
3069 void G1CollectedHeap::register_humongous_regions_with_cset() {
3070   if (!G1EagerReclaimHumongousObjects) {
3071     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3072     return;
3073   }
3074   double time = os::elapsed_counter();
3075 
3076   // Collect reclaim candidate information and register candidates with cset.
3077   RegisterHumongousWithInCSetFastTestClosure cl;
3078   heap_region_iterate(&cl);
3079 
3080   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3081   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3082                                                                   cl.total_humongous(),
3083                                                                   cl.candidate_humongous());
3084   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3085 
3086   // Finally flush all remembered set entries to re-check into the global DCQS.
3087   cl.flush_rem_set_entries();
3088 }
3089 
3090 class VerifyRegionRemSetClosure : public HeapRegionClosure {
3091   public:
3092     void doHeapRegion(HeapRegion* hr) {
3093       if (!hr->is_archive() && !hr->is_continues_humongous()) {
3094         hr->verify_rem_set();
3095       }
3096     }
3097 };
3098 
3099 #ifdef ASSERT
3100 class VerifyCSetClosure: public HeapRegionClosure {
3101 public:
3102   void doHeapRegion(HeapRegion* hr) {
3103     // Here we check that the CSet region's RSet is ready for parallel
3104     // iteration. The fields that we'll verify are only manipulated
3105     // when the region is part of a CSet and is collected. Afterwards,
3106     // we reset these fields when we clear the region's RSet (when the
3107     // region is freed) so they are ready when the region is
3108     // re-allocated. The only exception to this is if there's an
3109     // evacuation failure and instead of freeing the region we leave
3110     // it in the heap. In that case, we reset these fields during
3111     // evacuation failure handling.
3112     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3113 
3114     // Here's a good place to add any other checks we'd like to
3115     // perform on CSet regions.
3116   }
3117 };
3118 #endif // ASSERT
3119 
3120 uint G1CollectedHeap::num_task_queues() const {
3121   return _task_queues->size();
3122 }
3123 
3124 #if TASKQUEUE_STATS
3125 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3126   st->print_raw_cr("GC Task Stats");
3127   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3128   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3129 }
3130 
3131 void G1CollectedHeap::print_taskqueue_stats() const {
3132   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
3133     return;
3134   }
3135   LogHandle(gc, task, stats) log;
3136   ResourceMark rm;
3137   outputStream* st = log.trace_stream();
3138 
3139   print_taskqueue_stats_hdr(st);
3140 
3141   TaskQueueStats totals;
3142   const uint n = num_task_queues();
3143   for (uint i = 0; i < n; ++i) {
3144     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3145     totals += task_queue(i)->stats;
3146   }
3147   st->print_raw("tot "); totals.print(st); st->cr();
3148 
3149   DEBUG_ONLY(totals.verify());
3150 }
3151 
3152 void G1CollectedHeap::reset_taskqueue_stats() {
3153   const uint n = num_task_queues();
3154   for (uint i = 0; i < n; ++i) {
3155     task_queue(i)->stats.reset();
3156   }
3157 }
3158 #endif // TASKQUEUE_STATS
3159 
3160 void G1CollectedHeap::wait_for_root_region_scanning() {
3161   double scan_wait_start = os::elapsedTime();
3162   // We have to wait until the CM threads finish scanning the
3163   // root regions as it's the only way to ensure that all the
3164   // objects on them have been correctly scanned before we start
3165   // moving them during the GC.
3166   bool waited = _cm->root_regions()->wait_until_scan_finished();
3167   double wait_time_ms = 0.0;
3168   if (waited) {
3169     double scan_wait_end = os::elapsedTime();
3170     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3171   }
3172   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3173 }
3174 
3175 bool
3176 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3177   assert_at_safepoint(true /* should_be_vm_thread */);
3178   guarantee(!is_gc_active(), "collection is not reentrant");
3179 
3180   if (GCLocker::check_active_before_gc()) {
3181     return false;
3182   }
3183 
3184   _gc_timer_stw->register_gc_start();
3185 
3186   GCIdMark gc_id_mark;
3187   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3188 
3189   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3190   ResourceMark rm;
3191 
3192   wait_for_root_region_scanning();
3193 
3194   print_heap_before_gc();
3195   trace_heap_before_gc(_gc_tracer_stw);
3196 
3197   _verifier->verify_region_sets_optional();
3198   _verifier->verify_dirty_young_regions();
3199 
3200   // This call will decide whether this pause is an initial-mark
3201   // pause. If it is, during_initial_mark_pause() will return true
3202   // for the duration of this pause.
3203   g1_policy()->decide_on_conc_mark_initiation();
3204 
3205   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3206   assert(!collector_state()->during_initial_mark_pause() ||
3207           collector_state()->gcs_are_young(), "sanity");
3208 
3209   // We also do not allow mixed GCs during marking.
3210   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3211 
3212   // Record whether this pause is an initial mark. When the current
3213   // thread has completed its logging output and it's safe to signal
3214   // the CM thread, the flag's value in the policy has been reset.
3215   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3216 
3217   // Inner scope for scope based logging, timers, and stats collection
3218   {
3219     EvacuationInfo evacuation_info;
3220 
3221     if (collector_state()->during_initial_mark_pause()) {
3222       // We are about to start a marking cycle, so we increment the
3223       // full collection counter.
3224       increment_old_marking_cycles_started();
3225       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3226     }
3227 
3228     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3229 
3230     GCTraceCPUTime tcpu;
3231 
3232     FormatBuffer<> gc_string("Pause ");
3233     if (collector_state()->during_initial_mark_pause()) {
3234       gc_string.append("Initial Mark");
3235     } else if (collector_state()->gcs_are_young()) {
3236       gc_string.append("Young");
3237     } else {
3238       gc_string.append("Mixed");
3239     }
3240     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3241 
3242     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3243                                                                   workers()->active_workers(),
3244                                                                   Threads::number_of_non_daemon_threads());
3245     workers()->set_active_workers(active_workers);
3246 
3247     g1_policy()->note_gc_start(active_workers);
3248 
3249     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3250     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3251 
3252     // If the secondary_free_list is not empty, append it to the
3253     // free_list. No need to wait for the cleanup operation to finish;
3254     // the region allocation code will check the secondary_free_list
3255     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3256     // set, skip this step so that the region allocation code has to
3257     // get entries from the secondary_free_list.
3258     if (!G1StressConcRegionFreeing) {
3259       append_secondary_free_list_if_not_empty_with_lock();
3260     }
3261 
3262     G1HeapTransition heap_transition(this);
3263     size_t heap_used_bytes_before_gc = used();
3264 
3265     assert(check_young_list_well_formed(), "young list should be well formed");
3266 
3267     // Don't dynamically change the number of GC threads this early.  A value of
3268     // 0 is used to indicate serial work.  When parallel work is done,
3269     // it will be set.
3270 
3271     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3272       IsGCActiveMark x;
3273 
3274       gc_prologue(false);
3275       increment_total_collections(false /* full gc */);
3276       increment_gc_time_stamp();
3277 
3278       if (VerifyRememberedSets) {
3279         log_info(gc, verify)("[Verifying RemSets before GC]");
3280         VerifyRegionRemSetClosure v_cl;
3281         heap_region_iterate(&v_cl);
3282       }
3283 
3284       _verifier->verify_before_gc();
3285 
3286       _verifier->check_bitmaps("GC Start");
3287 
3288 #if defined(COMPILER2) || INCLUDE_JVMCI
3289       DerivedPointerTable::clear();
3290 #endif
3291 
3292       // Please see comment in g1CollectedHeap.hpp and
3293       // G1CollectedHeap::ref_processing_init() to see how
3294       // reference processing currently works in G1.
3295 
3296       // Enable discovery in the STW reference processor
3297       if (g1_policy()->should_process_references()) {
3298         ref_processor_stw()->enable_discovery();
3299       } else {
3300         ref_processor_stw()->disable_discovery();
3301       }
3302 
3303       {
3304         // We want to temporarily turn off discovery by the
3305         // CM ref processor, if necessary, and turn it back on
3306         // on again later if we do. Using a scoped
3307         // NoRefDiscovery object will do this.
3308         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3309 
3310         // Forget the current alloc region (we might even choose it to be part
3311         // of the collection set!).
3312         _allocator->release_mutator_alloc_region();
3313 
3314         // This timing is only used by the ergonomics to handle our pause target.
3315         // It is unclear why this should not include the full pause. We will
3316         // investigate this in CR 7178365.
3317         //
3318         // Preserving the old comment here if that helps the investigation:
3319         //
3320         // The elapsed time induced by the start time below deliberately elides
3321         // the possible verification above.
3322         double sample_start_time_sec = os::elapsedTime();
3323 
3324         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3325 
3326         if (collector_state()->during_initial_mark_pause()) {
3327           concurrent_mark()->checkpointRootsInitialPre();
3328         }
3329 
3330         g1_policy()->finalize_collection_set(target_pause_time_ms);
3331 
3332         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3333 
3334         // Make sure the remembered sets are up to date. This needs to be
3335         // done before register_humongous_regions_with_cset(), because the
3336         // remembered sets are used there to choose eager reclaim candidates.
3337         // If the remembered sets are not up to date we might miss some
3338         // entries that need to be handled.
3339         g1_rem_set()->cleanupHRRS();
3340 
3341         register_humongous_regions_with_cset();
3342 
3343         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3344 
3345         _cm->note_start_of_gc();
3346         // We call this after finalize_cset() to
3347         // ensure that the CSet has been finalized.
3348         _cm->verify_no_cset_oops();
3349 
3350         if (_hr_printer.is_active()) {
3351           HeapRegion* hr = collection_set()->head();
3352           while (hr != NULL) {
3353             _hr_printer.cset(hr);
3354             hr = hr->next_in_collection_set();
3355           }
3356         }
3357 
3358 #ifdef ASSERT
3359         VerifyCSetClosure cl;
3360         collection_set_iterate(&cl);
3361 #endif // ASSERT
3362 
3363         // Initialize the GC alloc regions.
3364         _allocator->init_gc_alloc_regions(evacuation_info);
3365 
3366         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3367         pre_evacuate_collection_set();
3368 
3369         // Actually do the work...
3370         evacuate_collection_set(evacuation_info, &per_thread_states);
3371 
3372         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3373 
3374         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3375         free_collection_set(collection_set()->head(), evacuation_info, surviving_young_words);
3376 
3377         eagerly_reclaim_humongous_regions();
3378 
3379         collection_set()->clear_head();
3380 
3381         record_obj_copy_mem_stats();
3382         _survivor_evac_stats.adjust_desired_plab_sz();
3383         _old_evac_stats.adjust_desired_plab_sz();
3384 
3385         // Start a new incremental collection set for the next pause.
3386         collection_set()->start_incremental_building();
3387 
3388         clear_cset_fast_test();
3389 
3390         // Don't check the whole heap at this point as the
3391         // GC alloc regions from this pause have been tagged
3392         // as survivors and moved on to the survivor list.
3393         // Survivor regions will fail the !is_young() check.
3394         assert(check_young_list_empty(false /* check_heap */),
3395           "young list should be empty");
3396 
3397         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3398                                              _young_list->first_survivor_region(),
3399                                              _young_list->last_survivor_region());
3400 
3401         _young_list->reset_auxilary_lists();
3402 
3403         if (evacuation_failed()) {
3404           set_used(recalculate_used());
3405           if (_archive_allocator != NULL) {
3406             _archive_allocator->clear_used();
3407           }
3408           for (uint i = 0; i < ParallelGCThreads; i++) {
3409             if (_evacuation_failed_info_array[i].has_failed()) {
3410               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3411             }
3412           }
3413         } else {
3414           // The "used" of the the collection set have already been subtracted
3415           // when they were freed.  Add in the bytes evacuated.
3416           increase_used(g1_policy()->bytes_copied_during_gc());
3417         }
3418 
3419         if (collector_state()->during_initial_mark_pause()) {
3420           // We have to do this before we notify the CM threads that
3421           // they can start working to make sure that all the
3422           // appropriate initialization is done on the CM object.
3423           concurrent_mark()->checkpointRootsInitialPost();
3424           collector_state()->set_mark_in_progress(true);
3425           // Note that we don't actually trigger the CM thread at
3426           // this point. We do that later when we're sure that
3427           // the current thread has completed its logging output.
3428         }
3429 
3430         allocate_dummy_regions();
3431 
3432         _allocator->init_mutator_alloc_region();
3433 
3434         {
3435           size_t expand_bytes = g1_policy()->expansion_amount();
3436           if (expand_bytes > 0) {
3437             size_t bytes_before = capacity();
3438             // No need for an ergo logging here,
3439             // expansion_amount() does this when it returns a value > 0.
3440             double expand_ms;
3441             if (!expand(expand_bytes, &expand_ms)) {
3442               // We failed to expand the heap. Cannot do anything about it.
3443             }
3444             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3445           }
3446         }
3447 
3448         // We redo the verification but now wrt to the new CSet which
3449         // has just got initialized after the previous CSet was freed.
3450         _cm->verify_no_cset_oops();
3451         _cm->note_end_of_gc();
3452 
3453         // This timing is only used by the ergonomics to handle our pause target.
3454         // It is unclear why this should not include the full pause. We will
3455         // investigate this in CR 7178365.
3456         double sample_end_time_sec = os::elapsedTime();
3457         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3458         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3459         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3460 
3461         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3462         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3463 
3464         MemoryService::track_memory_usage();
3465 
3466         // In prepare_for_verify() below we'll need to scan the deferred
3467         // update buffers to bring the RSets up-to-date if
3468         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3469         // the update buffers we'll probably need to scan cards on the
3470         // regions we just allocated to (i.e., the GC alloc
3471         // regions). However, during the last GC we called
3472         // set_saved_mark() on all the GC alloc regions, so card
3473         // scanning might skip the [saved_mark_word()...top()] area of
3474         // those regions (i.e., the area we allocated objects into
3475         // during the last GC). But it shouldn't. Given that
3476         // saved_mark_word() is conditional on whether the GC time stamp
3477         // on the region is current or not, by incrementing the GC time
3478         // stamp here we invalidate all the GC time stamps on all the
3479         // regions and saved_mark_word() will simply return top() for
3480         // all the regions. This is a nicer way of ensuring this rather
3481         // than iterating over the regions and fixing them. In fact, the
3482         // GC time stamp increment here also ensures that
3483         // saved_mark_word() will return top() between pauses, i.e.,
3484         // during concurrent refinement. So we don't need the
3485         // is_gc_active() check to decided which top to use when
3486         // scanning cards (see CR 7039627).
3487         increment_gc_time_stamp();
3488 
3489         if (VerifyRememberedSets) {
3490           log_info(gc, verify)("[Verifying RemSets after GC]");
3491           VerifyRegionRemSetClosure v_cl;
3492           heap_region_iterate(&v_cl);
3493         }
3494 
3495         _verifier->verify_after_gc();
3496         _verifier->check_bitmaps("GC End");
3497 
3498         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3499         ref_processor_stw()->verify_no_references_recorded();
3500 
3501         // CM reference discovery will be re-enabled if necessary.
3502       }
3503 
3504 #ifdef TRACESPINNING
3505       ParallelTaskTerminator::print_termination_counts();
3506 #endif
3507 
3508       gc_epilogue(false);
3509     }
3510 
3511     // Print the remainder of the GC log output.
3512     if (evacuation_failed()) {
3513       log_info(gc)("To-space exhausted");
3514     }
3515 
3516     g1_policy()->print_phases();
3517     heap_transition.print();
3518 
3519     // It is not yet to safe to tell the concurrent mark to
3520     // start as we have some optional output below. We don't want the
3521     // output from the concurrent mark thread interfering with this
3522     // logging output either.
3523 
3524     _hrm.verify_optional();
3525     _verifier->verify_region_sets_optional();
3526 
3527     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3528     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3529 
3530     print_heap_after_gc();
3531     trace_heap_after_gc(_gc_tracer_stw);
3532 
3533     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3534     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3535     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3536     // before any GC notifications are raised.
3537     g1mm()->update_sizes();
3538 
3539     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3540     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3541     _gc_timer_stw->register_gc_end();
3542     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3543   }
3544   // It should now be safe to tell the concurrent mark thread to start
3545   // without its logging output interfering with the logging output
3546   // that came from the pause.
3547 
3548   if (should_start_conc_mark) {
3549     // CAUTION: after the doConcurrentMark() call below,
3550     // the concurrent marking thread(s) could be running
3551     // concurrently with us. Make sure that anything after
3552     // this point does not assume that we are the only GC thread
3553     // running. Note: of course, the actual marking work will
3554     // not start until the safepoint itself is released in
3555     // SuspendibleThreadSet::desynchronize().
3556     doConcurrentMark();
3557   }
3558 
3559   return true;
3560 }
3561 
3562 void G1CollectedHeap::restore_preserved_marks() {
3563   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
3564   workers()->run_task(&rpm_task);
3565 }
3566 
3567 void G1CollectedHeap::remove_self_forwarding_pointers() {
3568   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3569   workers()->run_task(&rsfp_task);
3570 }
3571 
3572 void G1CollectedHeap::restore_after_evac_failure() {
3573   double remove_self_forwards_start = os::elapsedTime();
3574 
3575   remove_self_forwarding_pointers();
3576   restore_preserved_marks();
3577 
3578   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3579 }
3580 
3581 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3582   if (!_evacuation_failed) {
3583     _evacuation_failed = true;
3584   }
3585 
3586   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3587 
3588   // We want to call the "for_promotion_failure" version only in the
3589   // case of a promotion failure.
3590   if (m->must_be_preserved_for_promotion_failure(obj)) {
3591     OopAndMarkOop elem(obj, m);
3592     _preserved_objs[worker_id].push(elem);
3593   }
3594 }
3595 
3596 bool G1ParEvacuateFollowersClosure::offer_termination() {
3597   G1ParScanThreadState* const pss = par_scan_state();
3598   start_term_time();
3599   const bool res = terminator()->offer_termination();
3600   end_term_time();
3601   return res;
3602 }
3603 
3604 void G1ParEvacuateFollowersClosure::do_void() {
3605   G1ParScanThreadState* const pss = par_scan_state();
3606   pss->trim_queue();
3607   do {
3608     pss->steal_and_trim_queue(queues());
3609   } while (!offer_termination());
3610 }
3611 
3612 class G1ParTask : public AbstractGangTask {
3613 protected:
3614   G1CollectedHeap*         _g1h;
3615   G1ParScanThreadStateSet* _pss;
3616   RefToScanQueueSet*       _queues;
3617   G1RootProcessor*         _root_processor;
3618   ParallelTaskTerminator   _terminator;
3619   uint                     _n_workers;
3620 
3621 public:
3622   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3623     : AbstractGangTask("G1 collection"),
3624       _g1h(g1h),
3625       _pss(per_thread_states),
3626       _queues(task_queues),
3627       _root_processor(root_processor),
3628       _terminator(n_workers, _queues),
3629       _n_workers(n_workers)
3630   {}
3631 
3632   void work(uint worker_id) {
3633     if (worker_id >= _n_workers) return;  // no work needed this round
3634 
3635     double start_sec = os::elapsedTime();
3636     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3637 
3638     {
3639       ResourceMark rm;
3640       HandleMark   hm;
3641 
3642       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3643 
3644       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3645       pss->set_ref_processor(rp);
3646 
3647       double start_strong_roots_sec = os::elapsedTime();
3648 
3649       _root_processor->evacuate_roots(pss->closures(), worker_id);
3650 
3651       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3652 
3653       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3654       // treating the nmethods visited to act as roots for concurrent marking.
3655       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3656       // objects copied by the current evacuation.
3657       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3658                                                                              pss->closures()->weak_codeblobs(),
3659                                                                              worker_id);
3660 
3661       _pss->add_cards_scanned(worker_id, cards_scanned);
3662 
3663       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3664 
3665       double term_sec = 0.0;
3666       size_t evac_term_attempts = 0;
3667       {
3668         double start = os::elapsedTime();
3669         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3670         evac.do_void();
3671 
3672         evac_term_attempts = evac.term_attempts();
3673         term_sec = evac.term_time();
3674         double elapsed_sec = os::elapsedTime() - start;
3675         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3676         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3677         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3678       }
3679 
3680       assert(pss->queue_is_empty(), "should be empty");
3681 
3682       if (log_is_enabled(Debug, gc, task, stats)) {
3683         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3684         size_t lab_waste;
3685         size_t lab_undo_waste;
3686         pss->waste(lab_waste, lab_undo_waste);
3687         _g1h->print_termination_stats(worker_id,
3688                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3689                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3690                                       term_sec * 1000.0,                          /* evac term time */
3691                                       evac_term_attempts,                         /* evac term attempts */
3692                                       lab_waste,                                  /* alloc buffer waste */
3693                                       lab_undo_waste                              /* undo waste */
3694                                       );
3695       }
3696 
3697       // Close the inner scope so that the ResourceMark and HandleMark
3698       // destructors are executed here and are included as part of the
3699       // "GC Worker Time".
3700     }
3701     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3702   }
3703 };
3704 
3705 void G1CollectedHeap::print_termination_stats_hdr() {
3706   log_debug(gc, task, stats)("GC Termination Stats");
3707   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3708   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3709   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3710 }
3711 
3712 void G1CollectedHeap::print_termination_stats(uint worker_id,
3713                                               double elapsed_ms,
3714                                               double strong_roots_ms,
3715                                               double term_ms,
3716                                               size_t term_attempts,
3717                                               size_t alloc_buffer_waste,
3718                                               size_t undo_waste) const {
3719   log_debug(gc, task, stats)
3720               ("%3d %9.2f %9.2f %6.2f "
3721                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3722                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3723                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3724                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3725                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3726                alloc_buffer_waste * HeapWordSize / K,
3727                undo_waste * HeapWordSize / K);
3728 }
3729 
3730 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3731 private:
3732   BoolObjectClosure* _is_alive;
3733   int _initial_string_table_size;
3734   int _initial_symbol_table_size;
3735 
3736   bool  _process_strings;
3737   int _strings_processed;
3738   int _strings_removed;
3739 
3740   bool  _process_symbols;
3741   int _symbols_processed;
3742   int _symbols_removed;
3743 
3744 public:
3745   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3746     AbstractGangTask("String/Symbol Unlinking"),
3747     _is_alive(is_alive),
3748     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3749     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3750 
3751     _initial_string_table_size = StringTable::the_table()->table_size();
3752     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3753     if (process_strings) {
3754       StringTable::clear_parallel_claimed_index();
3755     }
3756     if (process_symbols) {
3757       SymbolTable::clear_parallel_claimed_index();
3758     }
3759   }
3760 
3761   ~G1StringSymbolTableUnlinkTask() {
3762     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3763               "claim value %d after unlink less than initial string table size %d",
3764               StringTable::parallel_claimed_index(), _initial_string_table_size);
3765     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3766               "claim value %d after unlink less than initial symbol table size %d",
3767               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3768 
3769     log_debug(gc, stringdedup)("Cleaned string and symbol table, "
3770                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3771                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3772                                strings_processed(), strings_removed(),
3773                                symbols_processed(), symbols_removed());
3774   }
3775 
3776   void work(uint worker_id) {
3777     int strings_processed = 0;
3778     int strings_removed = 0;
3779     int symbols_processed = 0;
3780     int symbols_removed = 0;
3781     if (_process_strings) {
3782       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3783       Atomic::add(strings_processed, &_strings_processed);
3784       Atomic::add(strings_removed, &_strings_removed);
3785     }
3786     if (_process_symbols) {
3787       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3788       Atomic::add(symbols_processed, &_symbols_processed);
3789       Atomic::add(symbols_removed, &_symbols_removed);
3790     }
3791   }
3792 
3793   size_t strings_processed() const { return (size_t)_strings_processed; }
3794   size_t strings_removed()   const { return (size_t)_strings_removed; }
3795 
3796   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3797   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3798 };
3799 
3800 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3801 private:
3802   static Monitor* _lock;
3803 
3804   BoolObjectClosure* const _is_alive;
3805   const bool               _unloading_occurred;
3806   const uint               _num_workers;
3807 
3808   // Variables used to claim nmethods.
3809   nmethod* _first_nmethod;
3810   volatile nmethod* _claimed_nmethod;
3811 
3812   // The list of nmethods that need to be processed by the second pass.
3813   volatile nmethod* _postponed_list;
3814   volatile uint     _num_entered_barrier;
3815 
3816  public:
3817   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3818       _is_alive(is_alive),
3819       _unloading_occurred(unloading_occurred),
3820       _num_workers(num_workers),
3821       _first_nmethod(NULL),
3822       _claimed_nmethod(NULL),
3823       _postponed_list(NULL),
3824       _num_entered_barrier(0)
3825   {
3826     nmethod::increase_unloading_clock();
3827     // Get first alive nmethod
3828     NMethodIterator iter = NMethodIterator();
3829     if(iter.next_alive()) {
3830       _first_nmethod = iter.method();
3831     }
3832     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
3833   }
3834 
3835   ~G1CodeCacheUnloadingTask() {
3836     CodeCache::verify_clean_inline_caches();
3837 
3838     CodeCache::set_needs_cache_clean(false);
3839     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3840 
3841     CodeCache::verify_icholder_relocations();
3842   }
3843 
3844  private:
3845   void add_to_postponed_list(nmethod* nm) {
3846       nmethod* old;
3847       do {
3848         old = (nmethod*)_postponed_list;
3849         nm->set_unloading_next(old);
3850       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3851   }
3852 
3853   void clean_nmethod(nmethod* nm) {
3854     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3855 
3856     if (postponed) {
3857       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3858       add_to_postponed_list(nm);
3859     }
3860 
3861     // Mark that this thread has been cleaned/unloaded.
3862     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3863     nm->set_unloading_clock(nmethod::global_unloading_clock());
3864   }
3865 
3866   void clean_nmethod_postponed(nmethod* nm) {
3867     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3868   }
3869 
3870   static const int MaxClaimNmethods = 16;
3871 
3872   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
3873     nmethod* first;
3874     NMethodIterator last;
3875 
3876     do {
3877       *num_claimed_nmethods = 0;
3878 
3879       first = (nmethod*)_claimed_nmethod;
3880       last = NMethodIterator(first);
3881 
3882       if (first != NULL) {
3883 
3884         for (int i = 0; i < MaxClaimNmethods; i++) {
3885           if (!last.next_alive()) {
3886             break;
3887           }
3888           claimed_nmethods[i] = last.method();
3889           (*num_claimed_nmethods)++;
3890         }
3891       }
3892 
3893     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3894   }
3895 
3896   nmethod* claim_postponed_nmethod() {
3897     nmethod* claim;
3898     nmethod* next;
3899 
3900     do {
3901       claim = (nmethod*)_postponed_list;
3902       if (claim == NULL) {
3903         return NULL;
3904       }
3905 
3906       next = claim->unloading_next();
3907 
3908     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3909 
3910     return claim;
3911   }
3912 
3913  public:
3914   // Mark that we're done with the first pass of nmethod cleaning.
3915   void barrier_mark(uint worker_id) {
3916     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3917     _num_entered_barrier++;
3918     if (_num_entered_barrier == _num_workers) {
3919       ml.notify_all();
3920     }
3921   }
3922 
3923   // See if we have to wait for the other workers to
3924   // finish their first-pass nmethod cleaning work.
3925   void barrier_wait(uint worker_id) {
3926     if (_num_entered_barrier < _num_workers) {
3927       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3928       while (_num_entered_barrier < _num_workers) {
3929           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3930       }
3931     }
3932   }
3933 
3934   // Cleaning and unloading of nmethods. Some work has to be postponed
3935   // to the second pass, when we know which nmethods survive.
3936   void work_first_pass(uint worker_id) {
3937     // The first nmethods is claimed by the first worker.
3938     if (worker_id == 0 && _first_nmethod != NULL) {
3939       clean_nmethod(_first_nmethod);
3940       _first_nmethod = NULL;
3941     }
3942 
3943     int num_claimed_nmethods;
3944     nmethod* claimed_nmethods[MaxClaimNmethods];
3945 
3946     while (true) {
3947       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3948 
3949       if (num_claimed_nmethods == 0) {
3950         break;
3951       }
3952 
3953       for (int i = 0; i < num_claimed_nmethods; i++) {
3954         clean_nmethod(claimed_nmethods[i]);
3955       }
3956     }
3957   }
3958 
3959   void work_second_pass(uint worker_id) {
3960     nmethod* nm;
3961     // Take care of postponed nmethods.
3962     while ((nm = claim_postponed_nmethod()) != NULL) {
3963       clean_nmethod_postponed(nm);
3964     }
3965   }
3966 };
3967 
3968 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3969 
3970 class G1KlassCleaningTask : public StackObj {
3971   BoolObjectClosure*                      _is_alive;
3972   volatile jint                           _clean_klass_tree_claimed;
3973   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3974 
3975  public:
3976   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3977       _is_alive(is_alive),
3978       _clean_klass_tree_claimed(0),
3979       _klass_iterator() {
3980   }
3981 
3982  private:
3983   bool claim_clean_klass_tree_task() {
3984     if (_clean_klass_tree_claimed) {
3985       return false;
3986     }
3987 
3988     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3989   }
3990 
3991   InstanceKlass* claim_next_klass() {
3992     Klass* klass;
3993     do {
3994       klass =_klass_iterator.next_klass();
3995     } while (klass != NULL && !klass->is_instance_klass());
3996 
3997     // this can be null so don't call InstanceKlass::cast
3998     return static_cast<InstanceKlass*>(klass);
3999   }
4000 
4001 public:
4002 
4003   void clean_klass(InstanceKlass* ik) {
4004     ik->clean_weak_instanceklass_links(_is_alive);
4005   }
4006 
4007   void work() {
4008     ResourceMark rm;
4009 
4010     // One worker will clean the subklass/sibling klass tree.
4011     if (claim_clean_klass_tree_task()) {
4012       Klass::clean_subklass_tree(_is_alive);
4013     }
4014 
4015     // All workers will help cleaning the classes,
4016     InstanceKlass* klass;
4017     while ((klass = claim_next_klass()) != NULL) {
4018       clean_klass(klass);
4019     }
4020   }
4021 };
4022 
4023 // To minimize the remark pause times, the tasks below are done in parallel.
4024 class G1ParallelCleaningTask : public AbstractGangTask {
4025 private:
4026   G1StringSymbolTableUnlinkTask _string_symbol_task;
4027   G1CodeCacheUnloadingTask      _code_cache_task;
4028   G1KlassCleaningTask           _klass_cleaning_task;
4029 
4030 public:
4031   // The constructor is run in the VMThread.
4032   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4033       AbstractGangTask("Parallel Cleaning"),
4034       _string_symbol_task(is_alive, process_strings, process_symbols),
4035       _code_cache_task(num_workers, is_alive, unloading_occurred),
4036       _klass_cleaning_task(is_alive) {
4037   }
4038 
4039   // The parallel work done by all worker threads.
4040   void work(uint worker_id) {
4041     // Do first pass of code cache cleaning.
4042     _code_cache_task.work_first_pass(worker_id);
4043 
4044     // Let the threads mark that the first pass is done.
4045     _code_cache_task.barrier_mark(worker_id);
4046 
4047     // Clean the Strings and Symbols.
4048     _string_symbol_task.work(worker_id);
4049 
4050     // Wait for all workers to finish the first code cache cleaning pass.
4051     _code_cache_task.barrier_wait(worker_id);
4052 
4053     // Do the second code cache cleaning work, which realize on
4054     // the liveness information gathered during the first pass.
4055     _code_cache_task.work_second_pass(worker_id);
4056 
4057     // Clean all klasses that were not unloaded.
4058     _klass_cleaning_task.work();
4059   }
4060 };
4061 
4062 
4063 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4064                                         bool process_strings,
4065                                         bool process_symbols,
4066                                         bool class_unloading_occurred) {
4067   uint n_workers = workers()->active_workers();
4068 
4069   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4070                                         n_workers, class_unloading_occurred);
4071   workers()->run_task(&g1_unlink_task);
4072 }
4073 
4074 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4075                                                      bool process_strings, bool process_symbols) {
4076   {
4077     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4078     workers()->run_task(&g1_unlink_task);
4079   }
4080 
4081   if (G1StringDedup::is_enabled()) {
4082     G1StringDedup::unlink(is_alive);
4083   }
4084 }
4085 
4086 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4087  private:
4088   DirtyCardQueueSet* _queue;
4089   G1CollectedHeap* _g1h;
4090  public:
4091   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4092     _queue(queue), _g1h(g1h) { }
4093 
4094   virtual void work(uint worker_id) {
4095     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4096     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4097 
4098     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4099     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4100 
4101     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4102   }
4103 };
4104 
4105 void G1CollectedHeap::redirty_logged_cards() {
4106   double redirty_logged_cards_start = os::elapsedTime();
4107 
4108   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4109   dirty_card_queue_set().reset_for_par_iteration();
4110   workers()->run_task(&redirty_task);
4111 
4112   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4113   dcq.merge_bufferlists(&dirty_card_queue_set());
4114   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4115 
4116   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4117 }
4118 
4119 // Weak Reference Processing support
4120 
4121 // An always "is_alive" closure that is used to preserve referents.
4122 // If the object is non-null then it's alive.  Used in the preservation
4123 // of referent objects that are pointed to by reference objects
4124 // discovered by the CM ref processor.
4125 class G1AlwaysAliveClosure: public BoolObjectClosure {
4126   G1CollectedHeap* _g1;
4127 public:
4128   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4129   bool do_object_b(oop p) {
4130     if (p != NULL) {
4131       return true;
4132     }
4133     return false;
4134   }
4135 };
4136 
4137 bool G1STWIsAliveClosure::do_object_b(oop p) {
4138   // An object is reachable if it is outside the collection set,
4139   // or is inside and copied.
4140   return !_g1->is_in_cset(p) || p->is_forwarded();
4141 }
4142 
4143 // Non Copying Keep Alive closure
4144 class G1KeepAliveClosure: public OopClosure {
4145   G1CollectedHeap* _g1;
4146 public:
4147   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4148   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4149   void do_oop(oop* p) {
4150     oop obj = *p;
4151     assert(obj != NULL, "the caller should have filtered out NULL values");
4152 
4153     const InCSetState cset_state = _g1->in_cset_state(obj);
4154     if (!cset_state.is_in_cset_or_humongous()) {
4155       return;
4156     }
4157     if (cset_state.is_in_cset()) {
4158       assert( obj->is_forwarded(), "invariant" );
4159       *p = obj->forwardee();
4160     } else {
4161       assert(!obj->is_forwarded(), "invariant" );
4162       assert(cset_state.is_humongous(),
4163              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4164       _g1->set_humongous_is_live(obj);
4165     }
4166   }
4167 };
4168 
4169 // Copying Keep Alive closure - can be called from both
4170 // serial and parallel code as long as different worker
4171 // threads utilize different G1ParScanThreadState instances
4172 // and different queues.
4173 
4174 class G1CopyingKeepAliveClosure: public OopClosure {
4175   G1CollectedHeap*         _g1h;
4176   OopClosure*              _copy_non_heap_obj_cl;
4177   G1ParScanThreadState*    _par_scan_state;
4178 
4179 public:
4180   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4181                             OopClosure* non_heap_obj_cl,
4182                             G1ParScanThreadState* pss):
4183     _g1h(g1h),
4184     _copy_non_heap_obj_cl(non_heap_obj_cl),
4185     _par_scan_state(pss)
4186   {}
4187 
4188   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4189   virtual void do_oop(      oop* p) { do_oop_work(p); }
4190 
4191   template <class T> void do_oop_work(T* p) {
4192     oop obj = oopDesc::load_decode_heap_oop(p);
4193 
4194     if (_g1h->is_in_cset_or_humongous(obj)) {
4195       // If the referent object has been forwarded (either copied
4196       // to a new location or to itself in the event of an
4197       // evacuation failure) then we need to update the reference
4198       // field and, if both reference and referent are in the G1
4199       // heap, update the RSet for the referent.
4200       //
4201       // If the referent has not been forwarded then we have to keep
4202       // it alive by policy. Therefore we have copy the referent.
4203       //
4204       // If the reference field is in the G1 heap then we can push
4205       // on the PSS queue. When the queue is drained (after each
4206       // phase of reference processing) the object and it's followers
4207       // will be copied, the reference field set to point to the
4208       // new location, and the RSet updated. Otherwise we need to
4209       // use the the non-heap or metadata closures directly to copy
4210       // the referent object and update the pointer, while avoiding
4211       // updating the RSet.
4212 
4213       if (_g1h->is_in_g1_reserved(p)) {
4214         _par_scan_state->push_on_queue(p);
4215       } else {
4216         assert(!Metaspace::contains((const void*)p),
4217                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4218         _copy_non_heap_obj_cl->do_oop(p);
4219       }
4220     }
4221   }
4222 };
4223 
4224 // Serial drain queue closure. Called as the 'complete_gc'
4225 // closure for each discovered list in some of the
4226 // reference processing phases.
4227 
4228 class G1STWDrainQueueClosure: public VoidClosure {
4229 protected:
4230   G1CollectedHeap* _g1h;
4231   G1ParScanThreadState* _par_scan_state;
4232 
4233   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4234 
4235 public:
4236   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4237     _g1h(g1h),
4238     _par_scan_state(pss)
4239   { }
4240 
4241   void do_void() {
4242     G1ParScanThreadState* const pss = par_scan_state();
4243     pss->trim_queue();
4244   }
4245 };
4246 
4247 // Parallel Reference Processing closures
4248 
4249 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4250 // processing during G1 evacuation pauses.
4251 
4252 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4253 private:
4254   G1CollectedHeap*          _g1h;
4255   G1ParScanThreadStateSet*  _pss;
4256   RefToScanQueueSet*        _queues;
4257   WorkGang*                 _workers;
4258   uint                      _active_workers;
4259 
4260 public:
4261   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4262                            G1ParScanThreadStateSet* per_thread_states,
4263                            WorkGang* workers,
4264                            RefToScanQueueSet *task_queues,
4265                            uint n_workers) :
4266     _g1h(g1h),
4267     _pss(per_thread_states),
4268     _queues(task_queues),
4269     _workers(workers),
4270     _active_workers(n_workers)
4271   {
4272     assert(n_workers > 0, "shouldn't call this otherwise");
4273   }
4274 
4275   // Executes the given task using concurrent marking worker threads.
4276   virtual void execute(ProcessTask& task);
4277   virtual void execute(EnqueueTask& task);
4278 };
4279 
4280 // Gang task for possibly parallel reference processing
4281 
4282 class G1STWRefProcTaskProxy: public AbstractGangTask {
4283   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4284   ProcessTask&     _proc_task;
4285   G1CollectedHeap* _g1h;
4286   G1ParScanThreadStateSet* _pss;
4287   RefToScanQueueSet* _task_queues;
4288   ParallelTaskTerminator* _terminator;
4289 
4290 public:
4291   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4292                         G1CollectedHeap* g1h,
4293                         G1ParScanThreadStateSet* per_thread_states,
4294                         RefToScanQueueSet *task_queues,
4295                         ParallelTaskTerminator* terminator) :
4296     AbstractGangTask("Process reference objects in parallel"),
4297     _proc_task(proc_task),
4298     _g1h(g1h),
4299     _pss(per_thread_states),
4300     _task_queues(task_queues),
4301     _terminator(terminator)
4302   {}
4303 
4304   virtual void work(uint worker_id) {
4305     // The reference processing task executed by a single worker.
4306     ResourceMark rm;
4307     HandleMark   hm;
4308 
4309     G1STWIsAliveClosure is_alive(_g1h);
4310 
4311     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4312     pss->set_ref_processor(NULL);
4313 
4314     // Keep alive closure.
4315     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4316 
4317     // Complete GC closure
4318     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4319 
4320     // Call the reference processing task's work routine.
4321     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4322 
4323     // Note we cannot assert that the refs array is empty here as not all
4324     // of the processing tasks (specifically phase2 - pp2_work) execute
4325     // the complete_gc closure (which ordinarily would drain the queue) so
4326     // the queue may not be empty.
4327   }
4328 };
4329 
4330 // Driver routine for parallel reference processing.
4331 // Creates an instance of the ref processing gang
4332 // task and has the worker threads execute it.
4333 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4334   assert(_workers != NULL, "Need parallel worker threads.");
4335 
4336   ParallelTaskTerminator terminator(_active_workers, _queues);
4337   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4338 
4339   _workers->run_task(&proc_task_proxy);
4340 }
4341 
4342 // Gang task for parallel reference enqueueing.
4343 
4344 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4345   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4346   EnqueueTask& _enq_task;
4347 
4348 public:
4349   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4350     AbstractGangTask("Enqueue reference objects in parallel"),
4351     _enq_task(enq_task)
4352   { }
4353 
4354   virtual void work(uint worker_id) {
4355     _enq_task.work(worker_id);
4356   }
4357 };
4358 
4359 // Driver routine for parallel reference enqueueing.
4360 // Creates an instance of the ref enqueueing gang
4361 // task and has the worker threads execute it.
4362 
4363 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4364   assert(_workers != NULL, "Need parallel worker threads.");
4365 
4366   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4367 
4368   _workers->run_task(&enq_task_proxy);
4369 }
4370 
4371 // End of weak reference support closures
4372 
4373 // Abstract task used to preserve (i.e. copy) any referent objects
4374 // that are in the collection set and are pointed to by reference
4375 // objects discovered by the CM ref processor.
4376 
4377 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4378 protected:
4379   G1CollectedHeap*         _g1h;
4380   G1ParScanThreadStateSet* _pss;
4381   RefToScanQueueSet*       _queues;
4382   ParallelTaskTerminator   _terminator;
4383   uint                     _n_workers;
4384 
4385 public:
4386   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4387     AbstractGangTask("ParPreserveCMReferents"),
4388     _g1h(g1h),
4389     _pss(per_thread_states),
4390     _queues(task_queues),
4391     _terminator(workers, _queues),
4392     _n_workers(workers)
4393   { }
4394 
4395   void work(uint worker_id) {
4396     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4397 
4398     ResourceMark rm;
4399     HandleMark   hm;
4400 
4401     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4402     pss->set_ref_processor(NULL);
4403     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4404 
4405     // Is alive closure
4406     G1AlwaysAliveClosure always_alive(_g1h);
4407 
4408     // Copying keep alive closure. Applied to referent objects that need
4409     // to be copied.
4410     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4411 
4412     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4413 
4414     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4415     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4416 
4417     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4418     // So this must be true - but assert just in case someone decides to
4419     // change the worker ids.
4420     assert(worker_id < limit, "sanity");
4421     assert(!rp->discovery_is_atomic(), "check this code");
4422 
4423     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4424     for (uint idx = worker_id; idx < limit; idx += stride) {
4425       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4426 
4427       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4428       while (iter.has_next()) {
4429         // Since discovery is not atomic for the CM ref processor, we
4430         // can see some null referent objects.
4431         iter.load_ptrs(DEBUG_ONLY(true));
4432         oop ref = iter.obj();
4433 
4434         // This will filter nulls.
4435         if (iter.is_referent_alive()) {
4436           iter.make_referent_alive();
4437         }
4438         iter.move_to_next();
4439       }
4440     }
4441 
4442     // Drain the queue - which may cause stealing
4443     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4444     drain_queue.do_void();
4445     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4446     assert(pss->queue_is_empty(), "should be");
4447   }
4448 };
4449 
4450 void G1CollectedHeap::process_weak_jni_handles() {
4451   double ref_proc_start = os::elapsedTime();
4452 
4453   G1STWIsAliveClosure is_alive(this);
4454   G1KeepAliveClosure keep_alive(this);
4455   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4456 
4457   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4458   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4459 }
4460 
4461 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4462   double preserve_cm_referents_start = os::elapsedTime();
4463   // Any reference objects, in the collection set, that were 'discovered'
4464   // by the CM ref processor should have already been copied (either by
4465   // applying the external root copy closure to the discovered lists, or
4466   // by following an RSet entry).
4467   //
4468   // But some of the referents, that are in the collection set, that these
4469   // reference objects point to may not have been copied: the STW ref
4470   // processor would have seen that the reference object had already
4471   // been 'discovered' and would have skipped discovering the reference,
4472   // but would not have treated the reference object as a regular oop.
4473   // As a result the copy closure would not have been applied to the
4474   // referent object.
4475   //
4476   // We need to explicitly copy these referent objects - the references
4477   // will be processed at the end of remarking.
4478   //
4479   // We also need to do this copying before we process the reference
4480   // objects discovered by the STW ref processor in case one of these
4481   // referents points to another object which is also referenced by an
4482   // object discovered by the STW ref processor.
4483 
4484   uint no_of_gc_workers = workers()->active_workers();
4485 
4486   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4487                                                  per_thread_states,
4488                                                  no_of_gc_workers,
4489                                                  _task_queues);
4490   workers()->run_task(&keep_cm_referents);
4491 
4492   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms((os::elapsedTime() - preserve_cm_referents_start) * 1000.0);
4493 }
4494 
4495 // Weak Reference processing during an evacuation pause (part 1).
4496 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4497   double ref_proc_start = os::elapsedTime();
4498 
4499   ReferenceProcessor* rp = _ref_processor_stw;
4500   assert(rp->discovery_enabled(), "should have been enabled");
4501 
4502   // Closure to test whether a referent is alive.
4503   G1STWIsAliveClosure is_alive(this);
4504 
4505   // Even when parallel reference processing is enabled, the processing
4506   // of JNI refs is serial and performed serially by the current thread
4507   // rather than by a worker. The following PSS will be used for processing
4508   // JNI refs.
4509 
4510   // Use only a single queue for this PSS.
4511   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4512   pss->set_ref_processor(NULL);
4513   assert(pss->queue_is_empty(), "pre-condition");
4514 
4515   // Keep alive closure.
4516   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4517 
4518   // Serial Complete GC closure
4519   G1STWDrainQueueClosure drain_queue(this, pss);
4520 
4521   // Setup the soft refs policy...
4522   rp->setup_policy(false);
4523 
4524   ReferenceProcessorStats stats;
4525   if (!rp->processing_is_mt()) {
4526     // Serial reference processing...
4527     stats = rp->process_discovered_references(&is_alive,
4528                                               &keep_alive,
4529                                               &drain_queue,
4530                                               NULL,
4531                                               _gc_timer_stw);
4532   } else {
4533     uint no_of_gc_workers = workers()->active_workers();
4534 
4535     // Parallel reference processing
4536     assert(rp->num_q() == no_of_gc_workers, "sanity");
4537     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4538 
4539     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4540     stats = rp->process_discovered_references(&is_alive,
4541                                               &keep_alive,
4542                                               &drain_queue,
4543                                               &par_task_executor,
4544                                               _gc_timer_stw);
4545   }
4546 
4547   _gc_tracer_stw->report_gc_reference_stats(stats);
4548 
4549   // We have completed copying any necessary live referent objects.
4550   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4551 
4552   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4553   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4554 }
4555 
4556 // Weak Reference processing during an evacuation pause (part 2).
4557 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4558   double ref_enq_start = os::elapsedTime();
4559 
4560   ReferenceProcessor* rp = _ref_processor_stw;
4561   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4562 
4563   // Now enqueue any remaining on the discovered lists on to
4564   // the pending list.
4565   if (!rp->processing_is_mt()) {
4566     // Serial reference processing...
4567     rp->enqueue_discovered_references();
4568   } else {
4569     // Parallel reference enqueueing
4570 
4571     uint n_workers = workers()->active_workers();
4572 
4573     assert(rp->num_q() == n_workers, "sanity");
4574     assert(n_workers <= rp->max_num_q(), "sanity");
4575 
4576     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4577     rp->enqueue_discovered_references(&par_task_executor);
4578   }
4579 
4580   rp->verify_no_references_recorded();
4581   assert(!rp->discovery_enabled(), "should have been disabled");
4582 
4583   // FIXME
4584   // CM's reference processing also cleans up the string and symbol tables.
4585   // Should we do that here also? We could, but it is a serial operation
4586   // and could significantly increase the pause time.
4587 
4588   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4589   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4590 }
4591 
4592 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4593   double merge_pss_time_start = os::elapsedTime();
4594   per_thread_states->flush();
4595   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4596 }
4597 
4598 void G1CollectedHeap::pre_evacuate_collection_set() {
4599   _expand_heap_after_alloc_failure = true;
4600   _evacuation_failed = false;
4601 
4602   // Disable the hot card cache.
4603   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4604   hot_card_cache->reset_hot_cache_claimed_index();
4605   hot_card_cache->set_use_cache(false);
4606 
4607   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4608 }
4609 
4610 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4611   // Should G1EvacuationFailureALot be in effect for this GC?
4612   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4613 
4614   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4615   double start_par_time_sec = os::elapsedTime();
4616   double end_par_time_sec;
4617 
4618   {
4619     const uint n_workers = workers()->active_workers();
4620     G1RootProcessor root_processor(this, n_workers);
4621     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4622     // InitialMark needs claim bits to keep track of the marked-through CLDs.
4623     if (collector_state()->during_initial_mark_pause()) {
4624       ClassLoaderDataGraph::clear_claimed_marks();
4625     }
4626 
4627     print_termination_stats_hdr();
4628 
4629     workers()->run_task(&g1_par_task);
4630     end_par_time_sec = os::elapsedTime();
4631 
4632     // Closing the inner scope will execute the destructor
4633     // for the G1RootProcessor object. We record the current
4634     // elapsed time before closing the scope so that time
4635     // taken for the destructor is NOT included in the
4636     // reported parallel time.
4637   }
4638 
4639   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4640 
4641   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4642   phase_times->record_par_time(par_time_ms);
4643 
4644   double code_root_fixup_time_ms =
4645         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4646   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4647 }
4648 
4649 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4650   // Process any discovered reference objects - we have
4651   // to do this _before_ we retire the GC alloc regions
4652   // as we may have to copy some 'reachable' referent
4653   // objects (and their reachable sub-graphs) that were
4654   // not copied during the pause.
4655   if (g1_policy()->should_process_references()) {
4656     preserve_cm_referents(per_thread_states);
4657     process_discovered_references(per_thread_states);
4658   } else {
4659     ref_processor_stw()->verify_no_references_recorded();
4660     process_weak_jni_handles();
4661   }
4662 
4663   if (G1StringDedup::is_enabled()) {
4664     double fixup_start = os::elapsedTime();
4665 
4666     G1STWIsAliveClosure is_alive(this);
4667     G1KeepAliveClosure keep_alive(this);
4668     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4669 
4670     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4671     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4672   }
4673 
4674   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4675 
4676   if (evacuation_failed()) {
4677     restore_after_evac_failure();
4678 
4679     // Reset the G1EvacuationFailureALot counters and flags
4680     // Note: the values are reset only when an actual
4681     // evacuation failure occurs.
4682     NOT_PRODUCT(reset_evacuation_should_fail();)
4683   }
4684 
4685   // Enqueue any remaining references remaining on the STW
4686   // reference processor's discovered lists. We need to do
4687   // this after the card table is cleaned (and verified) as
4688   // the act of enqueueing entries on to the pending list
4689   // will log these updates (and dirty their associated
4690   // cards). We need these updates logged to update any
4691   // RSets.
4692   if (g1_policy()->should_process_references()) {
4693     enqueue_discovered_references(per_thread_states);
4694   } else {
4695     g1_policy()->phase_times()->record_ref_enq_time(0);
4696   }
4697 
4698   _allocator->release_gc_alloc_regions(evacuation_info);
4699 
4700   merge_per_thread_state_info(per_thread_states);
4701 
4702   // Reset and re-enable the hot card cache.
4703   // Note the counts for the cards in the regions in the
4704   // collection set are reset when the collection set is freed.
4705   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4706   hot_card_cache->reset_hot_cache();
4707   hot_card_cache->set_use_cache(true);
4708 
4709   purge_code_root_memory();
4710 
4711   redirty_logged_cards();
4712 #if defined(COMPILER2) || INCLUDE_JVMCI
4713   DerivedPointerTable::update_pointers();
4714 #endif
4715 }
4716 
4717 void G1CollectedHeap::record_obj_copy_mem_stats() {
4718   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4719 
4720   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4721                                                create_g1_evac_summary(&_old_evac_stats));
4722 }
4723 
4724 void G1CollectedHeap::free_region(HeapRegion* hr,
4725                                   FreeRegionList* free_list,
4726                                   bool par,
4727                                   bool locked) {
4728   assert(!hr->is_free(), "the region should not be free");
4729   assert(!hr->is_empty(), "the region should not be empty");
4730   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4731   assert(free_list != NULL, "pre-condition");
4732 
4733   if (G1VerifyBitmaps) {
4734     MemRegion mr(hr->bottom(), hr->end());
4735     concurrent_mark()->clearRangePrevBitmap(mr);
4736   }
4737 
4738   // Clear the card counts for this region.
4739   // Note: we only need to do this if the region is not young
4740   // (since we don't refine cards in young regions).
4741   if (!hr->is_young()) {
4742     _cg1r->hot_card_cache()->reset_card_counts(hr);
4743   }
4744   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
4745   free_list->add_ordered(hr);
4746 }
4747 
4748 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4749                                             FreeRegionList* free_list,
4750                                             bool par) {
4751   assert(hr->is_humongous(), "this is only for humongous regions");
4752   assert(free_list != NULL, "pre-condition");
4753   hr->clear_humongous();
4754   free_region(hr, free_list, par);
4755 }
4756 
4757 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4758                                            const uint humongous_regions_removed) {
4759   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4760     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4761     _old_set.bulk_remove(old_regions_removed);
4762     _humongous_set.bulk_remove(humongous_regions_removed);
4763   }
4764 
4765 }
4766 
4767 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4768   assert(list != NULL, "list can't be null");
4769   if (!list->is_empty()) {
4770     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4771     _hrm.insert_list_into_free_list(list);
4772   }
4773 }
4774 
4775 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4776   decrease_used(bytes);
4777 }
4778 
4779 class G1ParCleanupCTTask : public AbstractGangTask {
4780   G1SATBCardTableModRefBS* _ct_bs;
4781   G1CollectedHeap* _g1h;
4782   HeapRegion* volatile _su_head;
4783 public:
4784   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
4785                      G1CollectedHeap* g1h) :
4786     AbstractGangTask("G1 Par Cleanup CT Task"),
4787     _ct_bs(ct_bs), _g1h(g1h) { }
4788 
4789   void work(uint worker_id) {
4790     HeapRegion* r;
4791     while (r = _g1h->pop_dirty_cards_region()) {
4792       clear_cards(r);
4793     }
4794   }
4795 
4796   void clear_cards(HeapRegion* r) {
4797     // Cards of the survivors should have already been dirtied.
4798     if (!r->is_survivor()) {
4799       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4800     }
4801   }
4802 };
4803 
4804 class G1ParScrubRemSetTask: public AbstractGangTask {
4805 protected:
4806   G1RemSet* _g1rs;
4807   BitMap* _region_bm;
4808   BitMap* _card_bm;
4809   HeapRegionClaimer _hrclaimer;
4810 
4811 public:
4812   G1ParScrubRemSetTask(G1RemSet* g1_rs, BitMap* region_bm, BitMap* card_bm, uint num_workers) :
4813     AbstractGangTask("G1 ScrubRS"),
4814     _g1rs(g1_rs),
4815     _region_bm(region_bm),
4816     _card_bm(card_bm),
4817     _hrclaimer(num_workers) {
4818   }
4819 
4820   void work(uint worker_id) {
4821     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
4822   }
4823 };
4824 
4825 void G1CollectedHeap::scrub_rem_set(BitMap* region_bm, BitMap* card_bm) {
4826   uint num_workers = workers()->active_workers();
4827   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), region_bm, card_bm, num_workers);
4828   workers()->run_task(&g1_par_scrub_rs_task);
4829 }
4830 
4831 void G1CollectedHeap::cleanUpCardTable() {
4832   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
4833   double start = os::elapsedTime();
4834 
4835   {
4836     // Iterate over the dirty cards region list.
4837     G1ParCleanupCTTask cleanup_task(ct_bs, this);
4838 
4839     workers()->run_task(&cleanup_task);
4840 #ifndef PRODUCT
4841     _verifier->verify_card_table_cleanup();
4842 #endif
4843   }
4844 
4845   double elapsed = os::elapsedTime() - start;
4846   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
4847 }
4848 
4849 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4850   size_t pre_used = 0;
4851   FreeRegionList local_free_list("Local List for CSet Freeing");
4852 
4853   double young_time_ms     = 0.0;
4854   double non_young_time_ms = 0.0;
4855 
4856   // Since the collection set is a superset of the the young list,
4857   // all we need to do to clear the young list is clear its
4858   // head and length, and unlink any young regions in the code below
4859   _young_list->clear();
4860 
4861   G1CollectorPolicy* policy = g1_policy();
4862 
4863   double start_sec = os::elapsedTime();
4864   bool non_young = true;
4865 
4866   HeapRegion* cur = cs_head;
4867   int age_bound = -1;
4868   size_t rs_lengths = 0;
4869 
4870   while (cur != NULL) {
4871     assert(!is_on_master_free_list(cur), "sanity");
4872     if (non_young) {
4873       if (cur->is_young()) {
4874         double end_sec = os::elapsedTime();
4875         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4876         non_young_time_ms += elapsed_ms;
4877 
4878         start_sec = os::elapsedTime();
4879         non_young = false;
4880       }
4881     } else {
4882       if (!cur->is_young()) {
4883         double end_sec = os::elapsedTime();
4884         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4885         young_time_ms += elapsed_ms;
4886 
4887         start_sec = os::elapsedTime();
4888         non_young = true;
4889       }
4890     }
4891 
4892     rs_lengths += cur->rem_set()->occupied_locked();
4893 
4894     HeapRegion* next = cur->next_in_collection_set();
4895     assert(cur->in_collection_set(), "bad CS");
4896     cur->set_next_in_collection_set(NULL);
4897     clear_in_cset(cur);
4898 
4899     if (cur->is_young()) {
4900       int index = cur->young_index_in_cset();
4901       assert(index != -1, "invariant");
4902       assert((uint) index < collection_set()->young_region_length(), "invariant");
4903       size_t words_survived = surviving_young_words[index];
4904       cur->record_surv_words_in_group(words_survived);
4905 
4906       // At this point the we have 'popped' cur from the collection set
4907       // (linked via next_in_collection_set()) but it is still in the
4908       // young list (linked via next_young_region()). Clear the
4909       // _next_young_region field.
4910       cur->set_next_young_region(NULL);
4911     } else {
4912       int index = cur->young_index_in_cset();
4913       assert(index == -1, "invariant");
4914     }
4915 
4916     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4917             (!cur->is_young() && cur->young_index_in_cset() == -1),
4918             "invariant" );
4919 
4920     if (!cur->evacuation_failed()) {
4921       MemRegion used_mr = cur->used_region();
4922 
4923       // And the region is empty.
4924       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
4925       pre_used += cur->used();
4926       free_region(cur, &local_free_list, false /* par */, true /* locked */);
4927     } else {
4928       cur->uninstall_surv_rate_group();
4929       if (cur->is_young()) {
4930         cur->set_young_index_in_cset(-1);
4931       }
4932       cur->set_evacuation_failed(false);
4933       // When moving a young gen region to old gen, we "allocate" that whole region
4934       // there. This is in addition to any already evacuated objects. Notify the
4935       // policy about that.
4936       // Old gen regions do not cause an additional allocation: both the objects
4937       // still in the region and the ones already moved are accounted for elsewhere.
4938       if (cur->is_young()) {
4939         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
4940       }
4941       // The region is now considered to be old.
4942       cur->set_old();
4943       // Do some allocation statistics accounting. Regions that failed evacuation
4944       // are always made old, so there is no need to update anything in the young
4945       // gen statistics, but we need to update old gen statistics.
4946       size_t used_words = cur->marked_bytes() / HeapWordSize;
4947       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
4948       _old_set.add(cur);
4949       evacuation_info.increment_collectionset_used_after(cur->used());
4950     }
4951     cur = next;
4952   }
4953 
4954   evacuation_info.set_regions_freed(local_free_list.length());
4955   policy->record_max_rs_lengths(rs_lengths);
4956   policy->cset_regions_freed();
4957 
4958   double end_sec = os::elapsedTime();
4959   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4960 
4961   if (non_young) {
4962     non_young_time_ms += elapsed_ms;
4963   } else {
4964     young_time_ms += elapsed_ms;
4965   }
4966 
4967   prepend_to_freelist(&local_free_list);
4968   decrement_summary_bytes(pre_used);
4969   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
4970   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
4971 }
4972 
4973 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4974  private:
4975   FreeRegionList* _free_region_list;
4976   HeapRegionSet* _proxy_set;
4977   uint _humongous_regions_removed;
4978   size_t _freed_bytes;
4979  public:
4980 
4981   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4982     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4983   }
4984 
4985   virtual void doHeapRegion(HeapRegion* r) {
4986     if (!r->is_starts_humongous()) {
4987       return;
4988     }
4989 
4990     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4991 
4992     oop obj = (oop)r->bottom();
4993     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4994 
4995     // The following checks whether the humongous object is live are sufficient.
4996     // The main additional check (in addition to having a reference from the roots
4997     // or the young gen) is whether the humongous object has a remembered set entry.
4998     //
4999     // A humongous object cannot be live if there is no remembered set for it
5000     // because:
5001     // - there can be no references from within humongous starts regions referencing
5002     // the object because we never allocate other objects into them.
5003     // (I.e. there are no intra-region references that may be missed by the
5004     // remembered set)
5005     // - as soon there is a remembered set entry to the humongous starts region
5006     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5007     // until the end of a concurrent mark.
5008     //
5009     // It is not required to check whether the object has been found dead by marking
5010     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5011     // all objects allocated during that time are considered live.
5012     // SATB marking is even more conservative than the remembered set.
5013     // So if at this point in the collection there is no remembered set entry,
5014     // nobody has a reference to it.
5015     // At the start of collection we flush all refinement logs, and remembered sets
5016     // are completely up-to-date wrt to references to the humongous object.
5017     //
5018     // Other implementation considerations:
5019     // - never consider object arrays at this time because they would pose
5020     // considerable effort for cleaning up the the remembered sets. This is
5021     // required because stale remembered sets might reference locations that
5022     // are currently allocated into.
5023     uint region_idx = r->hrm_index();
5024     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5025         !r->rem_set()->is_empty()) {
5026       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5027                                region_idx,
5028                                (size_t)obj->size() * HeapWordSize,
5029                                p2i(r->bottom()),
5030                                r->rem_set()->occupied(),
5031                                r->rem_set()->strong_code_roots_list_length(),
5032                                next_bitmap->isMarked(r->bottom()),
5033                                g1h->is_humongous_reclaim_candidate(region_idx),
5034                                obj->is_typeArray()
5035                               );
5036       return;
5037     }
5038 
5039     guarantee(obj->is_typeArray(),
5040               "Only eagerly reclaiming type arrays is supported, but the object "
5041               PTR_FORMAT " is not.", p2i(r->bottom()));
5042 
5043     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5044                              region_idx,
5045                              (size_t)obj->size() * HeapWordSize,
5046                              p2i(r->bottom()),
5047                              r->rem_set()->occupied(),
5048                              r->rem_set()->strong_code_roots_list_length(),
5049                              next_bitmap->isMarked(r->bottom()),
5050                              g1h->is_humongous_reclaim_candidate(region_idx),
5051                              obj->is_typeArray()
5052                             );
5053 
5054     // Need to clear mark bit of the humongous object if already set.
5055     if (next_bitmap->isMarked(r->bottom())) {
5056       next_bitmap->clear(r->bottom());
5057     }
5058     do {
5059       HeapRegion* next = g1h->next_region_in_humongous(r);
5060       _freed_bytes += r->used();
5061       r->set_containing_set(NULL);
5062       _humongous_regions_removed++;
5063       g1h->free_humongous_region(r, _free_region_list, false);
5064       r = next;
5065     } while (r != NULL);
5066   }
5067 
5068   uint humongous_free_count() {
5069     return _humongous_regions_removed;
5070   }
5071 
5072   size_t bytes_freed() const {
5073     return _freed_bytes;
5074   }
5075 };
5076 
5077 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5078   assert_at_safepoint(true);
5079 
5080   if (!G1EagerReclaimHumongousObjects ||
5081       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5082     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5083     return;
5084   }
5085 
5086   double start_time = os::elapsedTime();
5087 
5088   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5089 
5090   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5091   heap_region_iterate(&cl);
5092 
5093   remove_from_old_sets(0, cl.humongous_free_count());
5094 
5095   G1HRPrinter* hrp = hr_printer();
5096   if (hrp->is_active()) {
5097     FreeRegionListIterator iter(&local_cleanup_list);
5098     while (iter.more_available()) {
5099       HeapRegion* hr = iter.get_next();
5100       hrp->cleanup(hr);
5101     }
5102   }
5103 
5104   prepend_to_freelist(&local_cleanup_list);
5105   decrement_summary_bytes(cl.bytes_freed());
5106 
5107   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5108                                                                     cl.humongous_free_count());
5109 }
5110 
5111 // This routine is similar to the above but does not record
5112 // any policy statistics or update free lists; we are abandoning
5113 // the current incremental collection set in preparation of a
5114 // full collection. After the full GC we will start to build up
5115 // the incremental collection set again.
5116 // This is only called when we're doing a full collection
5117 // and is immediately followed by the tearing down of the young list.
5118 
5119 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5120   HeapRegion* cur = cs_head;
5121 
5122   while (cur != NULL) {
5123     HeapRegion* next = cur->next_in_collection_set();
5124     assert(cur->in_collection_set(), "bad CS");
5125     cur->set_next_in_collection_set(NULL);
5126     clear_in_cset(cur);
5127     cur->set_young_index_in_cset(-1);
5128     cur = next;
5129   }
5130 }
5131 
5132 void G1CollectedHeap::set_free_regions_coming() {
5133   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5134 
5135   assert(!free_regions_coming(), "pre-condition");
5136   _free_regions_coming = true;
5137 }
5138 
5139 void G1CollectedHeap::reset_free_regions_coming() {
5140   assert(free_regions_coming(), "pre-condition");
5141 
5142   {
5143     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5144     _free_regions_coming = false;
5145     SecondaryFreeList_lock->notify_all();
5146   }
5147 
5148   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5149 }
5150 
5151 void G1CollectedHeap::wait_while_free_regions_coming() {
5152   // Most of the time we won't have to wait, so let's do a quick test
5153   // first before we take the lock.
5154   if (!free_regions_coming()) {
5155     return;
5156   }
5157 
5158   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5159 
5160   {
5161     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5162     while (free_regions_coming()) {
5163       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5164     }
5165   }
5166 
5167   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5168 }
5169 
5170 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5171   return _allocator->is_retained_old_region(hr);
5172 }
5173 
5174 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5175   _young_list->push_region(hr);
5176 }
5177 
5178 class NoYoungRegionsClosure: public HeapRegionClosure {
5179 private:
5180   bool _success;
5181 public:
5182   NoYoungRegionsClosure() : _success(true) { }
5183   void doHeapRegion(HeapRegion* r) {
5184     if (r->is_young()) {
5185       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5186                             p2i(r->bottom()), p2i(r->end()));
5187       _success = false;
5188     }
5189   }
5190   bool success() { return _success; }
5191 };
5192 
5193 bool G1CollectedHeap::check_young_list_empty(bool check_heap) {
5194   bool ret = _young_list->check_list_empty();
5195 
5196   if (check_heap) {
5197     NoYoungRegionsClosure closure;
5198     heap_region_iterate(&closure);
5199     ret = ret && closure.success();
5200   }
5201 
5202   return ret;
5203 }
5204 
5205 class TearDownRegionSetsClosure : public HeapRegionClosure {
5206 private:
5207   HeapRegionSet *_old_set;
5208 
5209 public:
5210   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5211 
5212   void doHeapRegion(HeapRegion* r) {
5213     if (r->is_old()) {
5214       _old_set->remove(r);
5215     } else {
5216       // We ignore free regions, we'll empty the free list afterwards.
5217       // We ignore young regions, we'll empty the young list afterwards.
5218       // We ignore humongous regions, we're not tearing down the
5219       // humongous regions set.
5220       assert(r->is_free() || r->is_young() || r->is_humongous(),
5221              "it cannot be another type");
5222     }
5223   }
5224 
5225   ~TearDownRegionSetsClosure() {
5226     assert(_old_set->is_empty(), "post-condition");
5227   }
5228 };
5229 
5230 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5231   assert_at_safepoint(true /* should_be_vm_thread */);
5232 
5233   if (!free_list_only) {
5234     TearDownRegionSetsClosure cl(&_old_set);
5235     heap_region_iterate(&cl);
5236 
5237     // Note that emptying the _young_list is postponed and instead done as
5238     // the first step when rebuilding the regions sets again. The reason for
5239     // this is that during a full GC string deduplication needs to know if
5240     // a collected region was young or old when the full GC was initiated.
5241   }
5242   _hrm.remove_all_free_regions();
5243 }
5244 
5245 void G1CollectedHeap::increase_used(size_t bytes) {
5246   _summary_bytes_used += bytes;
5247 }
5248 
5249 void G1CollectedHeap::decrease_used(size_t bytes) {
5250   assert(_summary_bytes_used >= bytes,
5251          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5252          _summary_bytes_used, bytes);
5253   _summary_bytes_used -= bytes;
5254 }
5255 
5256 void G1CollectedHeap::set_used(size_t bytes) {
5257   _summary_bytes_used = bytes;
5258 }
5259 
5260 class RebuildRegionSetsClosure : public HeapRegionClosure {
5261 private:
5262   bool            _free_list_only;
5263   HeapRegionSet*   _old_set;
5264   HeapRegionManager*   _hrm;
5265   size_t          _total_used;
5266 
5267 public:
5268   RebuildRegionSetsClosure(bool free_list_only,
5269                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5270     _free_list_only(free_list_only),
5271     _old_set(old_set), _hrm(hrm), _total_used(0) {
5272     assert(_hrm->num_free_regions() == 0, "pre-condition");
5273     if (!free_list_only) {
5274       assert(_old_set->is_empty(), "pre-condition");
5275     }
5276   }
5277 
5278   void doHeapRegion(HeapRegion* r) {
5279     if (r->is_empty()) {
5280       // Add free regions to the free list
5281       r->set_free();
5282       r->set_allocation_context(AllocationContext::system());
5283       _hrm->insert_into_free_list(r);
5284     } else if (!_free_list_only) {
5285       assert(!r->is_young(), "we should not come across young regions");
5286 
5287       if (r->is_humongous()) {
5288         // We ignore humongous regions. We left the humongous set unchanged.
5289       } else {
5290         // Objects that were compacted would have ended up on regions
5291         // that were previously old or free.  Archive regions (which are
5292         // old) will not have been touched.
5293         assert(r->is_free() || r->is_old(), "invariant");
5294         // We now consider them old, so register as such. Leave
5295         // archive regions set that way, however, while still adding
5296         // them to the old set.
5297         if (!r->is_archive()) {
5298           r->set_old();
5299         }
5300         _old_set->add(r);
5301       }
5302       _total_used += r->used();
5303     }
5304   }
5305 
5306   size_t total_used() {
5307     return _total_used;
5308   }
5309 };
5310 
5311 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5312   assert_at_safepoint(true /* should_be_vm_thread */);
5313 
5314   if (!free_list_only) {
5315     _young_list->empty_list();
5316   }
5317 
5318   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5319   heap_region_iterate(&cl);
5320 
5321   if (!free_list_only) {
5322     set_used(cl.total_used());
5323     if (_archive_allocator != NULL) {
5324       _archive_allocator->clear_used();
5325     }
5326   }
5327   assert(used_unlocked() == recalculate_used(),
5328          "inconsistent used_unlocked(), "
5329          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5330          used_unlocked(), recalculate_used());
5331 }
5332 
5333 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5334   _refine_cte_cl->set_concurrent(concurrent);
5335 }
5336 
5337 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5338   HeapRegion* hr = heap_region_containing(p);
5339   return hr->is_in(p);
5340 }
5341 
5342 // Methods for the mutator alloc region
5343 
5344 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5345                                                       bool force) {
5346   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5347   assert(!force || g1_policy()->can_expand_young_list(),
5348          "if force is true we should be able to expand the young list");
5349   bool young_list_full = g1_policy()->is_young_list_full();
5350   if (force || !young_list_full) {
5351     HeapRegion* new_alloc_region = new_region(word_size,
5352                                               false /* is_old */,
5353                                               false /* do_expand */);
5354     if (new_alloc_region != NULL) {
5355       set_region_short_lived_locked(new_alloc_region);
5356       _hr_printer.alloc(new_alloc_region, young_list_full);
5357       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5358       return new_alloc_region;
5359     }
5360   }
5361   return NULL;
5362 }
5363 
5364 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5365                                                   size_t allocated_bytes) {
5366   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5367   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5368 
5369   collection_set()->add_eden_region(alloc_region);
5370   increase_used(allocated_bytes);
5371   _hr_printer.retire(alloc_region);
5372   // We update the eden sizes here, when the region is retired,
5373   // instead of when it's allocated, since this is the point that its
5374   // used space has been recored in _summary_bytes_used.
5375   g1mm()->update_eden_size();
5376 }
5377 
5378 // Methods for the GC alloc regions
5379 
5380 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5381                                                  uint count,
5382                                                  InCSetState dest) {
5383   assert(FreeList_lock->owned_by_self(), "pre-condition");
5384 
5385   if (count < g1_policy()->max_regions(dest)) {
5386     const bool is_survivor = (dest.is_young());
5387     HeapRegion* new_alloc_region = new_region(word_size,
5388                                               !is_survivor,
5389                                               true /* do_expand */);
5390     if (new_alloc_region != NULL) {
5391       // We really only need to do this for old regions given that we
5392       // should never scan survivors. But it doesn't hurt to do it
5393       // for survivors too.
5394       new_alloc_region->record_timestamp();
5395       if (is_survivor) {
5396         new_alloc_region->set_survivor();
5397         _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5398       } else {
5399         new_alloc_region->set_old();
5400         _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5401       }
5402       _hr_printer.alloc(new_alloc_region);
5403       bool during_im = collector_state()->during_initial_mark_pause();
5404       new_alloc_region->note_start_of_copying(during_im);
5405       return new_alloc_region;
5406     }
5407   }
5408   return NULL;
5409 }
5410 
5411 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5412                                              size_t allocated_bytes,
5413                                              InCSetState dest) {
5414   bool during_im = collector_state()->during_initial_mark_pause();
5415   alloc_region->note_end_of_copying(during_im);
5416   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5417   if (dest.is_young()) {
5418     young_list()->add_survivor_region(alloc_region);
5419   } else {
5420     _old_set.add(alloc_region);
5421   }
5422   _hr_printer.retire(alloc_region);
5423 }
5424 
5425 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5426   bool expanded = false;
5427   uint index = _hrm.find_highest_free(&expanded);
5428 
5429   if (index != G1_NO_HRM_INDEX) {
5430     if (expanded) {
5431       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5432                                 HeapRegion::GrainWords * HeapWordSize);
5433     }
5434     _hrm.allocate_free_regions_starting_at(index, 1);
5435     return region_at(index);
5436   }
5437   return NULL;
5438 }
5439 
5440 // Optimized nmethod scanning
5441 
5442 class RegisterNMethodOopClosure: public OopClosure {
5443   G1CollectedHeap* _g1h;
5444   nmethod* _nm;
5445 
5446   template <class T> void do_oop_work(T* p) {
5447     T heap_oop = oopDesc::load_heap_oop(p);
5448     if (!oopDesc::is_null(heap_oop)) {
5449       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5450       HeapRegion* hr = _g1h->heap_region_containing(obj);
5451       assert(!hr->is_continues_humongous(),
5452              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5453              " starting at " HR_FORMAT,
5454              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5455 
5456       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5457       hr->add_strong_code_root_locked(_nm);
5458     }
5459   }
5460 
5461 public:
5462   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5463     _g1h(g1h), _nm(nm) {}
5464 
5465   void do_oop(oop* p)       { do_oop_work(p); }
5466   void do_oop(narrowOop* p) { do_oop_work(p); }
5467 };
5468 
5469 class UnregisterNMethodOopClosure: public OopClosure {
5470   G1CollectedHeap* _g1h;
5471   nmethod* _nm;
5472 
5473   template <class T> void do_oop_work(T* p) {
5474     T heap_oop = oopDesc::load_heap_oop(p);
5475     if (!oopDesc::is_null(heap_oop)) {
5476       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5477       HeapRegion* hr = _g1h->heap_region_containing(obj);
5478       assert(!hr->is_continues_humongous(),
5479              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5480              " starting at " HR_FORMAT,
5481              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5482 
5483       hr->remove_strong_code_root(_nm);
5484     }
5485   }
5486 
5487 public:
5488   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5489     _g1h(g1h), _nm(nm) {}
5490 
5491   void do_oop(oop* p)       { do_oop_work(p); }
5492   void do_oop(narrowOop* p) { do_oop_work(p); }
5493 };
5494 
5495 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5496   CollectedHeap::register_nmethod(nm);
5497 
5498   guarantee(nm != NULL, "sanity");
5499   RegisterNMethodOopClosure reg_cl(this, nm);
5500   nm->oops_do(&reg_cl);
5501 }
5502 
5503 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5504   CollectedHeap::unregister_nmethod(nm);
5505 
5506   guarantee(nm != NULL, "sanity");
5507   UnregisterNMethodOopClosure reg_cl(this, nm);
5508   nm->oops_do(&reg_cl, true);
5509 }
5510 
5511 void G1CollectedHeap::purge_code_root_memory() {
5512   double purge_start = os::elapsedTime();
5513   G1CodeRootSet::purge();
5514   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5515   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5516 }
5517 
5518 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5519   G1CollectedHeap* _g1h;
5520 
5521 public:
5522   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5523     _g1h(g1h) {}
5524 
5525   void do_code_blob(CodeBlob* cb) {
5526     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5527     if (nm == NULL) {
5528       return;
5529     }
5530 
5531     if (ScavengeRootsInCode) {
5532       _g1h->register_nmethod(nm);
5533     }
5534   }
5535 };
5536 
5537 void G1CollectedHeap::rebuild_strong_code_roots() {
5538   RebuildStrongCodeRootClosure blob_cl(this);
5539   CodeCache::blobs_do(&blob_cl);
5540 }