1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1IHOPControl.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1YoungGenSizer.hpp"
  35 #include "gc/g1/heapRegion.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/shared/gcPolicyCounters.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "utilities/debug.hpp"
  42 #include "utilities/pair.hpp"
  43 
  44 // Different defaults for different number of GC threads
  45 // They were chosen by running GCOld and SPECjbb on debris with different
  46 //   numbers of GC threads and choosing them based on the results
  47 
  48 // all the same
  49 static double rs_length_diff_defaults[] = {
  50   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  51 };
  52 
  53 static double cost_per_card_ms_defaults[] = {
  54   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  55 };
  56 
  57 // all the same
  58 static double young_cards_per_entry_ratio_defaults[] = {
  59   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  60 };
  61 
  62 static double cost_per_entry_ms_defaults[] = {
  63   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  64 };
  65 
  66 static double cost_per_byte_ms_defaults[] = {
  67   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  68 };
  69 
  70 // these should be pretty consistent
  71 static double constant_other_time_ms_defaults[] = {
  72   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  73 };
  74 
  75 
  76 static double young_other_cost_per_region_ms_defaults[] = {
  77   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  78 };
  79 
  80 static double non_young_other_cost_per_region_ms_defaults[] = {
  81   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  82 };
  83 
  84 G1CollectorPolicy::G1CollectorPolicy() :
  85   _predictor(G1ConfidencePercent / 100.0),
  86 
  87   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   // add here any more surv rate groups
 121   _recorded_survivor_regions(0),
 122   _recorded_survivor_head(NULL),
 123   _recorded_survivor_tail(NULL),
 124   _survivors_age_table(true),
 125 
 126   _gc_overhead_perc(0.0),
 127 
 128   _bytes_allocated_in_old_since_last_gc(0),
 129   _ihop_control(NULL),
 130   _initial_mark_to_mixed() {
 131 
 132   // SurvRateGroups below must be initialized after the predictor because they
 133   // indirectly use it through this object passed to their constructor.
 134   _short_lived_surv_rate_group =
 135     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 136   _survivor_surv_rate_group =
 137     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 138 
 139   // Set up the region size and associated fields. Given that the
 140   // policy is created before the heap, we have to set this up here,
 141   // so it's done as soon as possible.
 142 
 143   // It would have been natural to pass initial_heap_byte_size() and
 144   // max_heap_byte_size() to setup_heap_region_size() but those have
 145   // not been set up at this point since they should be aligned with
 146   // the region size. So, there is a circular dependency here. We base
 147   // the region size on the heap size, but the heap size should be
 148   // aligned with the region size. To get around this we use the
 149   // unaligned values for the heap.
 150   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 151   HeapRegionRemSet::setup_remset_size();
 152 
 153   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 154   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 155   clear_ratio_check_data();
 156 
 157   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 158 
 159   int index = MIN2(ParallelGCThreads - 1, 7u);
 160 
 161   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 162   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 163   _cost_scan_hcc_seq->add(0.0);
 164   _young_cards_per_entry_ratio_seq->add(
 165                                   young_cards_per_entry_ratio_defaults[index]);
 166   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 167   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 168   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 169   _young_other_cost_per_region_ms_seq->add(
 170                                young_other_cost_per_region_ms_defaults[index]);
 171   _non_young_other_cost_per_region_ms_seq->add(
 172                            non_young_other_cost_per_region_ms_defaults[index]);
 173 
 174   // Below, we might need to calculate the pause time target based on
 175   // the pause interval. When we do so we are going to give G1 maximum
 176   // flexibility and allow it to do pauses when it needs to. So, we'll
 177   // arrange that the pause interval to be pause time target + 1 to
 178   // ensure that a) the pause time target is maximized with respect to
 179   // the pause interval and b) we maintain the invariant that pause
 180   // time target < pause interval. If the user does not want this
 181   // maximum flexibility, they will have to set the pause interval
 182   // explicitly.
 183 
 184   // First make sure that, if either parameter is set, its value is
 185   // reasonable.
 186   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 187     if (MaxGCPauseMillis < 1) {
 188       vm_exit_during_initialization("MaxGCPauseMillis should be "
 189                                     "greater than 0");
 190     }
 191   }
 192   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 193     if (GCPauseIntervalMillis < 1) {
 194       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 195                                     "greater than 0");
 196     }
 197   }
 198 
 199   // Then, if the pause time target parameter was not set, set it to
 200   // the default value.
 201   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 202     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 203       // The default pause time target in G1 is 200ms
 204       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 205     } else {
 206       // We do not allow the pause interval to be set without the
 207       // pause time target
 208       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 209                                     "without setting MaxGCPauseMillis");
 210     }
 211   }
 212 
 213   // Then, if the interval parameter was not set, set it according to
 214   // the pause time target (this will also deal with the case when the
 215   // pause time target is the default value).
 216   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 217     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 218   }
 219 
 220   // Finally, make sure that the two parameters are consistent.
 221   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 222     char buffer[256];
 223     jio_snprintf(buffer, 256,
 224                  "MaxGCPauseMillis (%u) should be less than "
 225                  "GCPauseIntervalMillis (%u)",
 226                  MaxGCPauseMillis, GCPauseIntervalMillis);
 227     vm_exit_during_initialization(buffer);
 228   }
 229 
 230   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 231   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 232   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 233 
 234   // start conservatively (around 50ms is about right)
 235   _concurrent_mark_remark_times_ms->add(0.05);
 236   _concurrent_mark_cleanup_times_ms->add(0.20);
 237   _tenuring_threshold = MaxTenuringThreshold;
 238 
 239   assert(GCTimeRatio > 0,
 240          "we should have set it to a default value set_g1_gc_flags() "
 241          "if a user set it to 0");
 242   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 243 
 244   uintx reserve_perc = G1ReservePercent;
 245   // Put an artificial ceiling on this so that it's not set to a silly value.
 246   if (reserve_perc > 50) {
 247     reserve_perc = 50;
 248     warning("G1ReservePercent is set to a value that is too large, "
 249             "it's been updated to " UINTX_FORMAT, reserve_perc);
 250   }
 251   _reserve_factor = (double) reserve_perc / 100.0;
 252   // This will be set when the heap is expanded
 253   // for the first time during initialization.
 254   _reserve_regions = 0;
 255 
 256   _ihop_control = create_ihop_control();
 257 }
 258 
 259 G1CollectorPolicy::~G1CollectorPolicy() {
 260   delete _ihop_control;
 261 }
 262 
 263 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 264   return _predictor.get_new_prediction(seq);
 265 }
 266 
 267 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 268   return (size_t)get_new_prediction(seq);
 269 }
 270 
 271 void G1CollectorPolicy::initialize_alignments() {
 272   _space_alignment = HeapRegion::GrainBytes;
 273   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 274   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 275   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 276 }
 277 
 278 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 279 
 280 void G1CollectorPolicy::post_heap_initialize() {
 281   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 282   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 283   if (max_young_size != MaxNewSize) {
 284     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 285   }
 286 }
 287 
 288 void G1CollectorPolicy::initialize_flags() {
 289   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 290     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 291   }
 292 
 293   if (SurvivorRatio < 1) {
 294     vm_exit_during_initialization("Invalid survivor ratio specified");
 295   }
 296   CollectorPolicy::initialize_flags();
 297   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 298 }
 299 
 300 
 301 void G1CollectorPolicy::init() {
 302   // Set aside an initial future to_space.
 303   _g1 = G1CollectedHeap::heap();
 304   _collection_set = _g1->collection_set();
 305   _collection_set->set_policy(this);
 306 
 307   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 308 
 309   initialize_gc_policy_counters();
 310 
 311   if (adaptive_young_list_length()) {
 312     _young_list_fixed_length = 0;
 313   } else {
 314     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 315   }
 316   _free_regions_at_end_of_collection = _g1->num_free_regions();
 317 
 318   update_young_list_max_and_target_length();
 319   // We may immediately start allocating regions and placing them on the
 320   // collection set list. Initialize the per-collection set info
 321   _collection_set->start_incremental_building();
 322 }
 323 
 324 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 325   phase_times()->note_gc_start(num_active_workers);
 326 }
 327 
 328 // Create the jstat counters for the policy.
 329 void G1CollectorPolicy::initialize_gc_policy_counters() {
 330   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 331 }
 332 
 333 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 334                                          double base_time_ms,
 335                                          uint base_free_regions,
 336                                          double target_pause_time_ms) const {
 337   if (young_length >= base_free_regions) {
 338     // end condition 1: not enough space for the young regions
 339     return false;
 340   }
 341 
 342   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 343   size_t bytes_to_copy =
 344                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 345   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 346   double young_other_time_ms = predict_young_other_time_ms(young_length);
 347   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 348   if (pause_time_ms > target_pause_time_ms) {
 349     // end condition 2: prediction is over the target pause time
 350     return false;
 351   }
 352 
 353   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 354 
 355   // When copying, we will likely need more bytes free than is live in the region.
 356   // Add some safety margin to factor in the confidence of our guess, and the
 357   // natural expected waste.
 358   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 359   // of the calculation: the lower the confidence, the more headroom.
 360   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 361   // copying due to anticipated waste in the PLABs.
 362   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 363   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 364 
 365   if (expected_bytes_to_copy > free_bytes) {
 366     // end condition 3: out-of-space
 367     return false;
 368   }
 369 
 370   // success!
 371   return true;
 372 }
 373 
 374 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 375   // re-calculate the necessary reserve
 376   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 377   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 378   // smaller than 1.0) we'll get 1.
 379   _reserve_regions = (uint) ceil(reserve_regions_d);
 380 
 381   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 382 
 383   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 384 }
 385 
 386 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 387                                                        uint base_min_length) const {
 388   uint desired_min_length = 0;
 389   if (adaptive_young_list_length()) {
 390     if (_alloc_rate_ms_seq->num() > 3) {
 391       double now_sec = os::elapsedTime();
 392       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 393       double alloc_rate_ms = predict_alloc_rate_ms();
 394       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 395     } else {
 396       // otherwise we don't have enough info to make the prediction
 397     }
 398   }
 399   desired_min_length += base_min_length;
 400   // make sure we don't go below any user-defined minimum bound
 401   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 402 }
 403 
 404 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 405   // Here, we might want to also take into account any additional
 406   // constraints (i.e., user-defined minimum bound). Currently, we
 407   // effectively don't set this bound.
 408   return _young_gen_sizer->max_desired_young_length();
 409 }
 410 
 411 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 412   return update_young_list_max_and_target_length(get_new_size_prediction(_rs_lengths_seq));
 413 }
 414 
 415 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 416   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 417   update_max_gc_locker_expansion();
 418   return unbounded_target_length;
 419 }
 420 
 421 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 422   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 423   _young_list_target_length = young_lengths.first;
 424   return young_lengths.second;
 425 }
 426 
 427 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 428   YoungTargetLengths result;
 429 
 430   // Calculate the absolute and desired min bounds first.
 431 
 432   // This is how many young regions we already have (currently: the survivors).
 433   uint base_min_length = recorded_survivor_regions();
 434   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 435   // This is the absolute minimum young length. Ensure that we
 436   // will at least have one eden region available for allocation.
 437   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 438   // If we shrank the young list target it should not shrink below the current size.
 439   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 440   // Calculate the absolute and desired max bounds.
 441 
 442   uint desired_max_length = calculate_young_list_desired_max_length();
 443 
 444   uint young_list_target_length = 0;
 445   if (adaptive_young_list_length()) {
 446     if (collector_state()->gcs_are_young()) {
 447       young_list_target_length =
 448                         calculate_young_list_target_length(rs_lengths,
 449                                                            base_min_length,
 450                                                            desired_min_length,
 451                                                            desired_max_length);
 452     } else {
 453       // Don't calculate anything and let the code below bound it to
 454       // the desired_min_length, i.e., do the next GC as soon as
 455       // possible to maximize how many old regions we can add to it.
 456     }
 457   } else {
 458     // The user asked for a fixed young gen so we'll fix the young gen
 459     // whether the next GC is young or mixed.
 460     young_list_target_length = _young_list_fixed_length;
 461   }
 462 
 463   result.second = young_list_target_length;
 464 
 465   // We will try our best not to "eat" into the reserve.
 466   uint absolute_max_length = 0;
 467   if (_free_regions_at_end_of_collection > _reserve_regions) {
 468     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 469   }
 470   if (desired_max_length > absolute_max_length) {
 471     desired_max_length = absolute_max_length;
 472   }
 473 
 474   // Make sure we don't go over the desired max length, nor under the
 475   // desired min length. In case they clash, desired_min_length wins
 476   // which is why that test is second.
 477   if (young_list_target_length > desired_max_length) {
 478     young_list_target_length = desired_max_length;
 479   }
 480   if (young_list_target_length < desired_min_length) {
 481     young_list_target_length = desired_min_length;
 482   }
 483 
 484   assert(young_list_target_length > recorded_survivor_regions(),
 485          "we should be able to allocate at least one eden region");
 486   assert(young_list_target_length >= absolute_min_length, "post-condition");
 487 
 488   result.first = young_list_target_length;
 489   return result;
 490 }
 491 
 492 uint
 493 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 494                                                      uint base_min_length,
 495                                                      uint desired_min_length,
 496                                                      uint desired_max_length) const {
 497   assert(adaptive_young_list_length(), "pre-condition");
 498   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 499 
 500   // In case some edge-condition makes the desired max length too small...
 501   if (desired_max_length <= desired_min_length) {
 502     return desired_min_length;
 503   }
 504 
 505   // We'll adjust min_young_length and max_young_length not to include
 506   // the already allocated young regions (i.e., so they reflect the
 507   // min and max eden regions we'll allocate). The base_min_length
 508   // will be reflected in the predictions by the
 509   // survivor_regions_evac_time prediction.
 510   assert(desired_min_length > base_min_length, "invariant");
 511   uint min_young_length = desired_min_length - base_min_length;
 512   assert(desired_max_length > base_min_length, "invariant");
 513   uint max_young_length = desired_max_length - base_min_length;
 514 
 515   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 516   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 517   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 518   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 519   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 520   double base_time_ms =
 521     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 522     survivor_regions_evac_time;
 523   uint available_free_regions = _free_regions_at_end_of_collection;
 524   uint base_free_regions = 0;
 525   if (available_free_regions > _reserve_regions) {
 526     base_free_regions = available_free_regions - _reserve_regions;
 527   }
 528 
 529   // Here, we will make sure that the shortest young length that
 530   // makes sense fits within the target pause time.
 531 
 532   if (predict_will_fit(min_young_length, base_time_ms,
 533                        base_free_regions, target_pause_time_ms)) {
 534     // The shortest young length will fit into the target pause time;
 535     // we'll now check whether the absolute maximum number of young
 536     // regions will fit in the target pause time. If not, we'll do
 537     // a binary search between min_young_length and max_young_length.
 538     if (predict_will_fit(max_young_length, base_time_ms,
 539                          base_free_regions, target_pause_time_ms)) {
 540       // The maximum young length will fit into the target pause time.
 541       // We are done so set min young length to the maximum length (as
 542       // the result is assumed to be returned in min_young_length).
 543       min_young_length = max_young_length;
 544     } else {
 545       // The maximum possible number of young regions will not fit within
 546       // the target pause time so we'll search for the optimal
 547       // length. The loop invariants are:
 548       //
 549       // min_young_length < max_young_length
 550       // min_young_length is known to fit into the target pause time
 551       // max_young_length is known not to fit into the target pause time
 552       //
 553       // Going into the loop we know the above hold as we've just
 554       // checked them. Every time around the loop we check whether
 555       // the middle value between min_young_length and
 556       // max_young_length fits into the target pause time. If it
 557       // does, it becomes the new min. If it doesn't, it becomes
 558       // the new max. This way we maintain the loop invariants.
 559 
 560       assert(min_young_length < max_young_length, "invariant");
 561       uint diff = (max_young_length - min_young_length) / 2;
 562       while (diff > 0) {
 563         uint young_length = min_young_length + diff;
 564         if (predict_will_fit(young_length, base_time_ms,
 565                              base_free_regions, target_pause_time_ms)) {
 566           min_young_length = young_length;
 567         } else {
 568           max_young_length = young_length;
 569         }
 570         assert(min_young_length <  max_young_length, "invariant");
 571         diff = (max_young_length - min_young_length) / 2;
 572       }
 573       // The results is min_young_length which, according to the
 574       // loop invariants, should fit within the target pause time.
 575 
 576       // These are the post-conditions of the binary search above:
 577       assert(min_young_length < max_young_length,
 578              "otherwise we should have discovered that max_young_length "
 579              "fits into the pause target and not done the binary search");
 580       assert(predict_will_fit(min_young_length, base_time_ms,
 581                               base_free_regions, target_pause_time_ms),
 582              "min_young_length, the result of the binary search, should "
 583              "fit into the pause target");
 584       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 585                                base_free_regions, target_pause_time_ms),
 586              "min_young_length, the result of the binary search, should be "
 587              "optimal, so no larger length should fit into the pause target");
 588     }
 589   } else {
 590     // Even the minimum length doesn't fit into the pause time
 591     // target, return it as the result nevertheless.
 592   }
 593   return base_min_length + min_young_length;
 594 }
 595 
 596 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 597   double survivor_regions_evac_time = 0.0;
 598   for (HeapRegion * r = _recorded_survivor_head;
 599        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 600        r = r->get_next_young_region()) {
 601     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 602   }
 603   return survivor_regions_evac_time;
 604 }
 605 
 606 void G1CollectorPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 607   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 608 
 609   if (rs_lengths > _rs_lengths_prediction) {
 610     // add 10% to avoid having to recalculate often
 611     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 612     update_rs_lengths_prediction(rs_lengths_prediction);
 613 
 614     update_young_list_max_and_target_length(rs_lengths_prediction);
 615   }
 616 }
 617 
 618 void G1CollectorPolicy::update_rs_lengths_prediction() {
 619   update_rs_lengths_prediction(get_new_size_prediction(_rs_lengths_seq));
 620 }
 621 
 622 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 623   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 624     _rs_lengths_prediction = prediction;
 625   }
 626 }
 627 
 628 #ifndef PRODUCT
 629 bool G1CollectorPolicy::verify_young_ages() {
 630   HeapRegion* head = _g1->young_list()->first_region();
 631   return
 632     verify_young_ages(head, _short_lived_surv_rate_group);
 633   // also call verify_young_ages on any additional surv rate groups
 634 }
 635 
 636 bool
 637 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 638                                      SurvRateGroup *surv_rate_group) {
 639   guarantee( surv_rate_group != NULL, "pre-condition" );
 640 
 641   const char* name = surv_rate_group->name();
 642   bool ret = true;
 643   int prev_age = -1;
 644 
 645   for (HeapRegion* curr = head;
 646        curr != NULL;
 647        curr = curr->get_next_young_region()) {
 648     SurvRateGroup* group = curr->surv_rate_group();
 649     if (group == NULL && !curr->is_survivor()) {
 650       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 651       ret = false;
 652     }
 653 
 654     if (surv_rate_group == group) {
 655       int age = curr->age_in_surv_rate_group();
 656 
 657       if (age < 0) {
 658         log_error(gc, verify)("## %s: encountered negative age", name);
 659         ret = false;
 660       }
 661 
 662       if (age <= prev_age) {
 663         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 664         ret = false;
 665       }
 666       prev_age = age;
 667     }
 668   }
 669 
 670   return ret;
 671 }
 672 #endif // PRODUCT
 673 
 674 void G1CollectorPolicy::record_full_collection_start() {
 675   _full_collection_start_sec = os::elapsedTime();
 676   // Release the future to-space so that it is available for compaction into.
 677   collector_state()->set_full_collection(true);
 678 }
 679 
 680 void G1CollectorPolicy::record_full_collection_end() {
 681   // Consider this like a collection pause for the purposes of allocation
 682   // since last pause.
 683   double end_sec = os::elapsedTime();
 684   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 685   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 686 
 687   update_recent_gc_times(end_sec, full_gc_time_ms);
 688 
 689   collector_state()->set_full_collection(false);
 690 
 691   // "Nuke" the heuristics that control the young/mixed GC
 692   // transitions and make sure we start with young GCs after the Full GC.
 693   collector_state()->set_gcs_are_young(true);
 694   collector_state()->set_last_young_gc(false);
 695   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 696   collector_state()->set_during_initial_mark_pause(false);
 697   collector_state()->set_in_marking_window(false);
 698   collector_state()->set_in_marking_window_im(false);
 699 
 700   _short_lived_surv_rate_group->start_adding_regions();
 701   // also call this on any additional surv rate groups
 702 
 703   record_survivor_regions(0, NULL, NULL);
 704 
 705   _free_regions_at_end_of_collection = _g1->num_free_regions();
 706   // Reset survivors SurvRateGroup.
 707   _survivor_surv_rate_group->reset();
 708   update_young_list_max_and_target_length();
 709   update_rs_lengths_prediction();
 710   cset_chooser()->clear();
 711 
 712   _bytes_allocated_in_old_since_last_gc = 0;
 713 
 714   record_pause(FullGC, _full_collection_start_sec, end_sec);
 715 }
 716 
 717 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 718   // We only need to do this here as the policy will only be applied
 719   // to the GC we're about to start. so, no point is calculating this
 720   // every time we calculate / recalculate the target young length.
 721   update_survivors_policy();
 722 
 723   assert(_g1->used() == _g1->recalculate_used(),
 724          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 725          _g1->used(), _g1->recalculate_used());
 726 
 727   phase_times()->record_cur_collection_start_sec(start_time_sec);
 728   _pending_cards = _g1->pending_card_num();
 729 
 730   _collection_set->reset_bytes_used_before();
 731   _bytes_copied_during_gc = 0;
 732 
 733   collector_state()->set_last_gc_was_young(false);
 734 
 735   // do that for any other surv rate groups
 736   _short_lived_surv_rate_group->stop_adding_regions();
 737   _survivors_age_table.clear();
 738 
 739   assert( verify_young_ages(), "region age verification" );
 740 }
 741 
 742 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 743                                                    mark_init_elapsed_time_ms) {
 744   collector_state()->set_during_marking(true);
 745   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 746   collector_state()->set_during_initial_mark_pause(false);
 747 }
 748 
 749 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 750   _mark_remark_start_sec = os::elapsedTime();
 751   collector_state()->set_during_marking(false);
 752 }
 753 
 754 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 755   double end_time_sec = os::elapsedTime();
 756   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 757   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 758   _prev_collection_pause_end_ms += elapsed_time_ms;
 759 
 760   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 761 }
 762 
 763 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 764   _mark_cleanup_start_sec = os::elapsedTime();
 765 }
 766 
 767 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 768   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 769                                                               "skip last young-only gc");
 770   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 771   // We skip the marking phase.
 772   if (!should_continue_with_reclaim) {
 773     abort_time_to_mixed_tracking();
 774   }
 775   collector_state()->set_in_marking_window(false);
 776 }
 777 
 778 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 779   return phase_times()->average_time_ms(phase);
 780 }
 781 
 782 double G1CollectorPolicy::young_other_time_ms() const {
 783   return phase_times()->young_cset_choice_time_ms() +
 784          phase_times()->young_free_cset_time_ms();
 785 }
 786 
 787 double G1CollectorPolicy::non_young_other_time_ms() const {
 788   return phase_times()->non_young_cset_choice_time_ms() +
 789          phase_times()->non_young_free_cset_time_ms();
 790 
 791 }
 792 
 793 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 794   return pause_time_ms -
 795          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 796          average_time_ms(G1GCPhaseTimes::ScanRS) -
 797          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 798          average_time_ms(G1GCPhaseTimes::Termination);
 799 }
 800 
 801 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 802   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 803 }
 804 
 805 CollectionSetChooser* G1CollectorPolicy::cset_chooser() const {
 806   return _collection_set->cset_chooser();
 807 }
 808 
 809 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 810   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 811 }
 812 
 813 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 814   if (about_to_start_mixed_phase()) {
 815     return false;
 816   }
 817 
 818   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 819 
 820   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 821   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 822   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 823 
 824   bool result = false;
 825   if (marking_request_bytes > marking_initiating_used_threshold) {
 826     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 827     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 828                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 829                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 830   }
 831 
 832   return result;
 833 }
 834 
 835 // Anything below that is considered to be zero
 836 #define MIN_TIMER_GRANULARITY 0.0000001
 837 
 838 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 839   double end_time_sec = os::elapsedTime();
 840 
 841   size_t cur_used_bytes = _g1->used();
 842   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 843   bool last_pause_included_initial_mark = false;
 844   bool update_stats = !_g1->evacuation_failed();
 845 
 846   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 847 
 848   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 849 
 850   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 851   if (last_pause_included_initial_mark) {
 852     record_concurrent_mark_init_end(0.0);
 853   } else {
 854     maybe_start_marking();
 855   }
 856 
 857   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 858   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 859     // This usually happens due to the timer not having the required
 860     // granularity. Some Linuxes are the usual culprits.
 861     // We'll just set it to something (arbitrarily) small.
 862     app_time_ms = 1.0;
 863   }
 864 
 865   if (update_stats) {
 866     // We maintain the invariant that all objects allocated by mutator
 867     // threads will be allocated out of eden regions. So, we can use
 868     // the eden region number allocated since the previous GC to
 869     // calculate the application's allocate rate. The only exception
 870     // to that is humongous objects that are allocated separately. But
 871     // given that humongous object allocations do not really affect
 872     // either the pause's duration nor when the next pause will take
 873     // place we can safely ignore them here.
 874     uint regions_allocated = _collection_set->eden_region_length();
 875     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 876     _alloc_rate_ms_seq->add(alloc_rate_ms);
 877 
 878     double interval_ms =
 879       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 880     update_recent_gc_times(end_time_sec, pause_time_ms);
 881     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 882     if (recent_avg_pause_time_ratio() < 0.0 ||
 883         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 884       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 885       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 886       if (_recent_avg_pause_time_ratio < 0.0) {
 887         _recent_avg_pause_time_ratio = 0.0;
 888       } else {
 889         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 890         _recent_avg_pause_time_ratio = 1.0;
 891       }
 892     }
 893 
 894     // Compute the ratio of just this last pause time to the entire time range stored
 895     // in the vectors. Comparing this pause to the entire range, rather than only the
 896     // most recent interval, has the effect of smoothing over a possible transient 'burst'
 897     // of more frequent pauses that don't really reflect a change in heap occupancy.
 898     // This reduces the likelihood of a needless heap expansion being triggered.
 899     _last_pause_time_ratio =
 900       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
 901   }
 902 
 903   bool new_in_marking_window = collector_state()->in_marking_window();
 904   bool new_in_marking_window_im = false;
 905   if (last_pause_included_initial_mark) {
 906     new_in_marking_window = true;
 907     new_in_marking_window_im = true;
 908   }
 909 
 910   if (collector_state()->last_young_gc()) {
 911     // This is supposed to to be the "last young GC" before we start
 912     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 913     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 914 
 915     if (next_gc_should_be_mixed("start mixed GCs",
 916                                 "do not start mixed GCs")) {
 917       collector_state()->set_gcs_are_young(false);
 918     } else {
 919       // We aborted the mixed GC phase early.
 920       abort_time_to_mixed_tracking();
 921     }
 922 
 923     collector_state()->set_last_young_gc(false);
 924   }
 925 
 926   if (!collector_state()->last_gc_was_young()) {
 927     // This is a mixed GC. Here we decide whether to continue doing
 928     // mixed GCs or not.
 929     if (!next_gc_should_be_mixed("continue mixed GCs",
 930                                  "do not continue mixed GCs")) {
 931       collector_state()->set_gcs_are_young(true);
 932 
 933       maybe_start_marking();
 934     }
 935   }
 936 
 937   _short_lived_surv_rate_group->start_adding_regions();
 938   // Do that for any other surv rate groups
 939 
 940   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 941 
 942   if (update_stats) {
 943     double cost_per_card_ms = 0.0;
 944     if (_pending_cards > 0) {
 945       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 946       _cost_per_card_ms_seq->add(cost_per_card_ms);
 947     }
 948     _cost_scan_hcc_seq->add(scan_hcc_time_ms);
 949 
 950     double cost_per_entry_ms = 0.0;
 951     if (cards_scanned > 10) {
 952       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 953       if (collector_state()->last_gc_was_young()) {
 954         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
 955       } else {
 956         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
 957       }
 958     }
 959 
 960     if (_max_rs_lengths > 0) {
 961       double cards_per_entry_ratio =
 962         (double) cards_scanned / (double) _max_rs_lengths;
 963       if (collector_state()->last_gc_was_young()) {
 964         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 965       } else {
 966         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 967       }
 968     }
 969 
 970     // This is defensive. For a while _max_rs_lengths could get
 971     // smaller than _recorded_rs_lengths which was causing
 972     // rs_length_diff to get very large and mess up the RSet length
 973     // predictions. The reason was unsafe concurrent updates to the
 974     // _inc_cset_recorded_rs_lengths field which the code below guards
 975     // against (see CR 7118202). This bug has now been fixed (see CR
 976     // 7119027). However, I'm still worried that
 977     // _inc_cset_recorded_rs_lengths might still end up somewhat
 978     // inaccurate. The concurrent refinement thread calculates an
 979     // RSet's length concurrently with other CR threads updating it
 980     // which might cause it to calculate the length incorrectly (if,
 981     // say, it's in mid-coarsening). So I'll leave in the defensive
 982     // conditional below just in case.
 983     size_t rs_length_diff = 0;
 984     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 985     if (_max_rs_lengths > recorded_rs_lengths) {
 986       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 987     }
 988     _rs_length_diff_seq->add((double) rs_length_diff);
 989 
 990     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 991     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 992     double cost_per_byte_ms = 0.0;
 993 
 994     if (copied_bytes > 0) {
 995       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 996       if (collector_state()->in_marking_window()) {
 997         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
 998       } else {
 999         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1000       }
1001     }
1002 
1003     if (_collection_set->young_region_length() > 0) {
1004       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1005                                                _collection_set->young_region_length());
1006     }
1007 
1008     if (_collection_set->old_region_length() > 0) {
1009       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1010                                                    _collection_set->old_region_length());
1011     }
1012 
1013     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1014 
1015     _pending_cards_seq->add((double) _pending_cards);
1016     _rs_lengths_seq->add((double) _max_rs_lengths);
1017   }
1018 
1019   collector_state()->set_in_marking_window(new_in_marking_window);
1020   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1021   _free_regions_at_end_of_collection = _g1->num_free_regions();
1022   // IHOP control wants to know the expected young gen length if it were not
1023   // restrained by the heap reserve. Using the actual length would make the
1024   // prediction too small and the limit the young gen every time we get to the
1025   // predicted target occupancy.
1026   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1027   update_rs_lengths_prediction();
1028 
1029   update_ihop_prediction(app_time_ms / 1000.0,
1030                          _bytes_allocated_in_old_since_last_gc,
1031                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1032   _bytes_allocated_in_old_since_last_gc = 0;
1033 
1034   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1035 
1036   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1037   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1038 
1039   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1040     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1041                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1042                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1043 
1044     update_rs_time_goal_ms = 0;
1045   } else {
1046     update_rs_time_goal_ms -= scan_hcc_time_ms;
1047   }
1048   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1049                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1050                                update_rs_time_goal_ms);
1051 
1052   cset_chooser()->verify();
1053 }
1054 
1055 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1056   if (G1UseAdaptiveIHOP) {
1057     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1058                                      &_predictor,
1059                                      G1ReservePercent,
1060                                      G1HeapWastePercent);
1061   } else {
1062     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
1063   }
1064 }
1065 
1066 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1067                                                size_t mutator_alloc_bytes,
1068                                                size_t young_gen_size) {
1069   // Always try to update IHOP prediction. Even evacuation failures give information
1070   // about e.g. whether to start IHOP earlier next time.
1071 
1072   // Avoid using really small application times that might create samples with
1073   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1074   double const min_valid_time = 1e-6;
1075 
1076   bool report = false;
1077 
1078   double marking_to_mixed_time = -1.0;
1079   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1080     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1081     assert(marking_to_mixed_time > 0.0,
1082            "Initial mark to mixed time must be larger than zero but is %.3f",
1083            marking_to_mixed_time);
1084     if (marking_to_mixed_time > min_valid_time) {
1085       _ihop_control->update_marking_length(marking_to_mixed_time);
1086       report = true;
1087     }
1088   }
1089 
1090   // As an approximation for the young gc promotion rates during marking we use
1091   // all of them. In many applications there are only a few if any young gcs during
1092   // marking, which makes any prediction useless. This increases the accuracy of the
1093   // prediction.
1094   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1095     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1096     report = true;
1097   }
1098 
1099   if (report) {
1100     report_ihop_statistics();
1101   }
1102 }
1103 
1104 void G1CollectorPolicy::report_ihop_statistics() {
1105   _ihop_control->print();
1106 }
1107 
1108 void G1CollectorPolicy::print_phases() {
1109   phase_times()->print();
1110 }
1111 
1112 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1113                                                      double update_rs_processed_buffers,
1114                                                      double goal_ms) {
1115   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1116   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1117 
1118   if (G1UseAdaptiveConcRefinement) {
1119     const int k_gy = 3, k_gr = 6;
1120     const double inc_k = 1.1, dec_k = 0.9;
1121 
1122     size_t g = cg1r->green_zone();
1123     if (update_rs_time > goal_ms) {
1124       g = (size_t)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1125     } else {
1126       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1127         g = (size_t)MAX2(g * inc_k, g + 1.0);
1128       }
1129     }
1130     // Change the refinement threads params
1131     cg1r->set_green_zone(g);
1132     cg1r->set_yellow_zone(g * k_gy);
1133     cg1r->set_red_zone(g * k_gr);
1134     cg1r->reinitialize_threads();
1135 
1136     size_t processing_threshold_delta = MAX2<size_t>(cg1r->green_zone() * _predictor.sigma(), 1);
1137     size_t processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1138                                     cg1r->yellow_zone());
1139     // Change the barrier params
1140     dcqs.set_process_completed_threshold((int)processing_threshold);
1141     dcqs.set_max_completed_queue((int)cg1r->red_zone());
1142   }
1143 
1144   size_t curr_queue_size = dcqs.completed_buffers_num();
1145   if (curr_queue_size >= cg1r->yellow_zone()) {
1146     dcqs.set_completed_queue_padding(curr_queue_size);
1147   } else {
1148     dcqs.set_completed_queue_padding(0);
1149   }
1150   dcqs.notify_if_necessary();
1151 }
1152 
1153 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1154   return get_new_size_prediction(_rs_length_diff_seq);
1155 }
1156 
1157 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1158   return get_new_prediction(_alloc_rate_ms_seq);
1159 }
1160 
1161 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1162   return get_new_prediction(_cost_per_card_ms_seq);
1163 }
1164 
1165 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1166   return get_new_prediction(_cost_scan_hcc_seq);
1167 }
1168 
1169 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1170   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1171 }
1172 
1173 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1174   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1175 }
1176 
1177 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1178   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1179     return predict_young_cards_per_entry_ratio();
1180   } else {
1181     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1182   }
1183 }
1184 
1185 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1186   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1187 }
1188 
1189 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1190   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1191 }
1192 
1193 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1194   if (collector_state()->gcs_are_young()) {
1195     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1196   } else {
1197     return predict_mixed_rs_scan_time_ms(card_num);
1198   }
1199 }
1200 
1201 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1202   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1203     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1204   } else {
1205     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1206   }
1207 }
1208 
1209 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1210   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1211     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1212   } else {
1213     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1214   }
1215 }
1216 
1217 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1218   if (collector_state()->during_concurrent_mark()) {
1219     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1220   } else {
1221     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1222   }
1223 }
1224 
1225 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1226   return get_new_prediction(_constant_other_time_ms_seq);
1227 }
1228 
1229 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1230   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1231 }
1232 
1233 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1234   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1235 }
1236 
1237 double G1CollectorPolicy::predict_remark_time_ms() const {
1238   return get_new_prediction(_concurrent_mark_remark_times_ms);
1239 }
1240 
1241 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1242   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1243 }
1244 
1245 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1246   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1247   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1248   double pred = get_new_prediction(seq);
1249   if (pred > 1.0) {
1250     pred = 1.0;
1251   }
1252   return pred;
1253 }
1254 
1255 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1256   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1257 }
1258 
1259 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1260   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1261 }
1262 
1263 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1264                                                        size_t scanned_cards) const {
1265   return
1266     predict_rs_update_time_ms(pending_cards) +
1267     predict_rs_scan_time_ms(scanned_cards) +
1268     predict_constant_other_time_ms();
1269 }
1270 
1271 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1272   size_t rs_length = predict_rs_length_diff();
1273   size_t card_num;
1274   if (collector_state()->gcs_are_young()) {
1275     card_num = predict_young_card_num(rs_length);
1276   } else {
1277     card_num = predict_non_young_card_num(rs_length);
1278   }
1279   return predict_base_elapsed_time_ms(pending_cards, card_num);
1280 }
1281 
1282 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1283   size_t bytes_to_copy;
1284   if (hr->is_marked())
1285     bytes_to_copy = hr->max_live_bytes();
1286   else {
1287     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1288     int age = hr->age_in_surv_rate_group();
1289     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1290     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1291   }
1292   return bytes_to_copy;
1293 }
1294 
1295 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1296                                                          bool for_young_gc) const {
1297   size_t rs_length = hr->rem_set()->occupied();
1298   size_t card_num;
1299 
1300   // Predicting the number of cards is based on which type of GC
1301   // we're predicting for.
1302   if (for_young_gc) {
1303     card_num = predict_young_card_num(rs_length);
1304   } else {
1305     card_num = predict_non_young_card_num(rs_length);
1306   }
1307   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1308 
1309   double region_elapsed_time_ms =
1310     predict_rs_scan_time_ms(card_num) +
1311     predict_object_copy_time_ms(bytes_to_copy);
1312 
1313   // The prediction of the "other" time for this region is based
1314   // upon the region type and NOT the GC type.
1315   if (hr->is_young()) {
1316     region_elapsed_time_ms += predict_young_other_time_ms(1);
1317   } else {
1318     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1319   }
1320   return region_elapsed_time_ms;
1321 }
1322 
1323 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1324                                                double elapsed_ms) {
1325   _recent_gc_times_ms->add(elapsed_ms);
1326   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1327   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1328 }
1329 
1330 void G1CollectorPolicy::clear_ratio_check_data() {
1331   _ratio_over_threshold_count = 0;
1332   _ratio_over_threshold_sum = 0.0;
1333   _pauses_since_start = 0;
1334 }
1335 
1336 size_t G1CollectorPolicy::expansion_amount() {
1337   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1338   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1339   double threshold = _gc_overhead_perc;
1340   size_t expand_bytes = 0;
1341 
1342   // If the heap is at less than half its maximum size, scale the threshold down,
1343   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1344   // though the scaling code will likely keep the increase small.
1345   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1346     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1347     threshold = MAX2(threshold, 1.0);
1348   }
1349 
1350   // If the last GC time ratio is over the threshold, increment the count of
1351   // times it has been exceeded, and add this ratio to the sum of exceeded
1352   // ratios.
1353   if (last_gc_overhead > threshold) {
1354     _ratio_over_threshold_count++;
1355     _ratio_over_threshold_sum += last_gc_overhead;
1356   }
1357 
1358   // Check if we've had enough GC time ratio checks that were over the
1359   // threshold to trigger an expansion. We'll also expand if we've
1360   // reached the end of the history buffer and the average of all entries
1361   // is still over the threshold. This indicates a smaller number of GCs were
1362   // long enough to make the average exceed the threshold.
1363   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1364   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1365       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1366     size_t min_expand_bytes = HeapRegion::GrainBytes;
1367     size_t reserved_bytes = _g1->max_capacity();
1368     size_t committed_bytes = _g1->capacity();
1369     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1370     size_t expand_bytes_via_pct =
1371       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1372     double scale_factor = 1.0;
1373 
1374     // If the current size is less than 1/4 of the Initial heap size, expand
1375     // by half of the delta between the current and Initial sizes. IE, grow
1376     // back quickly.
1377     //
1378     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1379     // the available expansion space, whichever is smaller, as the base
1380     // expansion size. Then possibly scale this size according to how much the
1381     // threshold has (on average) been exceeded by. If the delta is small
1382     // (less than the StartScaleDownAt value), scale the size down linearly, but
1383     // not by less than MinScaleDownFactor. If the delta is large (greater than
1384     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1385     // times the base size. The scaling will be linear in the range from
1386     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1387     // ScaleUpRange sets the rate of scaling up.
1388     if (committed_bytes < InitialHeapSize / 4) {
1389       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1390     } else {
1391       double const MinScaleDownFactor = 0.2;
1392       double const MaxScaleUpFactor = 2;
1393       double const StartScaleDownAt = _gc_overhead_perc;
1394       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1395       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1396 
1397       double ratio_delta;
1398       if (filled_history_buffer) {
1399         ratio_delta = recent_gc_overhead - threshold;
1400       } else {
1401         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1402       }
1403 
1404       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1405       if (ratio_delta < StartScaleDownAt) {
1406         scale_factor = ratio_delta / StartScaleDownAt;
1407         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1408       } else if (ratio_delta > StartScaleUpAt) {
1409         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1410         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1411       }
1412     }
1413 
1414     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1415                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1416                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1417 
1418     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1419 
1420     // Ensure the expansion size is at least the minimum growth amount
1421     // and at most the remaining uncommitted byte size.
1422     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1423     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1424 
1425     clear_ratio_check_data();
1426   } else {
1427     // An expansion was not triggered. If we've started counting, increment
1428     // the number of checks we've made in the current window.  If we've
1429     // reached the end of the window without resizing, clear the counters to
1430     // start again the next time we see a ratio above the threshold.
1431     if (_ratio_over_threshold_count > 0) {
1432       _pauses_since_start++;
1433       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1434         clear_ratio_check_data();
1435       }
1436     }
1437   }
1438 
1439   return expand_bytes;
1440 }
1441 
1442 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1443 #ifndef PRODUCT
1444   _short_lived_surv_rate_group->print_surv_rate_summary();
1445   // add this call for any other surv rate groups
1446 #endif // PRODUCT
1447 }
1448 
1449 bool G1CollectorPolicy::is_young_list_full() const {
1450   uint young_list_length = _g1->young_list()->length();
1451   uint young_list_target_length = _young_list_target_length;
1452   return young_list_length >= young_list_target_length;
1453 }
1454 
1455 bool G1CollectorPolicy::can_expand_young_list() const {
1456   uint young_list_length = _g1->young_list()->length();
1457   uint young_list_max_length = _young_list_max_length;
1458   return young_list_length < young_list_max_length;
1459 }
1460 
1461 bool G1CollectorPolicy::adaptive_young_list_length() const {
1462   return _young_gen_sizer->adaptive_young_list_length();
1463 }
1464 
1465 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1466   uint expansion_region_num = 0;
1467   if (GCLockerEdenExpansionPercent > 0) {
1468     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1469     double expansion_region_num_d = perc * (double) _young_list_target_length;
1470     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1471     // less than 1.0) we'll get 1.
1472     expansion_region_num = (uint) ceil(expansion_region_num_d);
1473   } else {
1474     assert(expansion_region_num == 0, "sanity");
1475   }
1476   _young_list_max_length = _young_list_target_length + expansion_region_num;
1477   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1478 }
1479 
1480 // Calculates survivor space parameters.
1481 void G1CollectorPolicy::update_survivors_policy() {
1482   double max_survivor_regions_d =
1483                  (double) _young_list_target_length / (double) SurvivorRatio;
1484   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1485   // smaller than 1.0) we'll get 1.
1486   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1487 
1488   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1489         HeapRegion::GrainWords * _max_survivor_regions, counters());
1490 }
1491 
1492 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1493   // We actually check whether we are marking here and not if we are in a
1494   // reclamation phase. This means that we will schedule a concurrent mark
1495   // even while we are still in the process of reclaiming memory.
1496   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1497   if (!during_cycle) {
1498     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1499     collector_state()->set_initiate_conc_mark_if_possible(true);
1500     return true;
1501   } else {
1502     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1503     return false;
1504   }
1505 }
1506 
1507 void G1CollectorPolicy::initiate_conc_mark() {
1508   collector_state()->set_during_initial_mark_pause(true);
1509   collector_state()->set_initiate_conc_mark_if_possible(false);
1510 }
1511 
1512 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1513   // We are about to decide on whether this pause will be an
1514   // initial-mark pause.
1515 
1516   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1517   // will set it here if we have to. However, it should be cleared by
1518   // the end of the pause (it's only set for the duration of an
1519   // initial-mark pause).
1520   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1521 
1522   if (collector_state()->initiate_conc_mark_if_possible()) {
1523     // We had noticed on a previous pause that the heap occupancy has
1524     // gone over the initiating threshold and we should start a
1525     // concurrent marking cycle. So we might initiate one.
1526 
1527     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1528       // Initiate a new initial mark if there is no marking or reclamation going on.
1529       initiate_conc_mark();
1530       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1531     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1532       // Initiate a user requested initial mark. An initial mark must be young only
1533       // GC, so the collector state must be updated to reflect this.
1534       collector_state()->set_gcs_are_young(true);
1535       collector_state()->set_last_young_gc(false);
1536 
1537       abort_time_to_mixed_tracking();
1538       initiate_conc_mark();
1539       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1540     } else {
1541       // The concurrent marking thread is still finishing up the
1542       // previous cycle. If we start one right now the two cycles
1543       // overlap. In particular, the concurrent marking thread might
1544       // be in the process of clearing the next marking bitmap (which
1545       // we will use for the next cycle if we start one). Starting a
1546       // cycle now will be bad given that parts of the marking
1547       // information might get cleared by the marking thread. And we
1548       // cannot wait for the marking thread to finish the cycle as it
1549       // periodically yields while clearing the next marking bitmap
1550       // and, if it's in a yield point, it's waiting for us to
1551       // finish. So, at this point we will not start a cycle and we'll
1552       // let the concurrent marking thread complete the last one.
1553       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1554     }
1555   }
1556 }
1557 
1558 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1559   G1CollectedHeap* _g1h;
1560   CSetChooserParUpdater _cset_updater;
1561 
1562 public:
1563   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1564                            uint chunk_size) :
1565     _g1h(G1CollectedHeap::heap()),
1566     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1567 
1568   bool doHeapRegion(HeapRegion* r) {
1569     // Do we have any marking information for this region?
1570     if (r->is_marked()) {
1571       // We will skip any region that's currently used as an old GC
1572       // alloc region (we should not consider those for collection
1573       // before we fill them up).
1574       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1575         _cset_updater.add_region(r);
1576       }
1577     }
1578     return false;
1579   }
1580 };
1581 
1582 class ParKnownGarbageTask: public AbstractGangTask {
1583   CollectionSetChooser* _hrSorted;
1584   uint _chunk_size;
1585   G1CollectedHeap* _g1;
1586   HeapRegionClaimer _hrclaimer;
1587 
1588 public:
1589   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1590       AbstractGangTask("ParKnownGarbageTask"),
1591       _hrSorted(hrSorted), _chunk_size(chunk_size),
1592       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1593 
1594   void work(uint worker_id) {
1595     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1596     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1597   }
1598 };
1599 
1600 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1601   assert(n_workers > 0, "Active gc workers should be greater than 0");
1602   const uint overpartition_factor = 4;
1603   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1604   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1605 }
1606 
1607 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1608   cset_chooser()->clear();
1609 
1610   WorkGang* workers = _g1->workers();
1611   uint n_workers = workers->active_workers();
1612 
1613   uint n_regions = _g1->num_regions();
1614   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1615   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1616   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1617   workers->run_task(&par_known_garbage_task);
1618 
1619   cset_chooser()->sort_regions();
1620 
1621   double end_sec = os::elapsedTime();
1622   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1623   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1624   _prev_collection_pause_end_ms += elapsed_time_ms;
1625 
1626   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1627 }
1628 
1629 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1630   // Returns the given amount of reclaimable bytes (that represents
1631   // the amount of reclaimable space still to be collected) as a
1632   // percentage of the current heap capacity.
1633   size_t capacity_bytes = _g1->capacity();
1634   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1635 }
1636 
1637 void G1CollectorPolicy::maybe_start_marking() {
1638   if (need_to_start_conc_mark("end of GC")) {
1639     // Note: this might have already been set, if during the last
1640     // pause we decided to start a cycle but at the beginning of
1641     // this pause we decided to postpone it. That's OK.
1642     collector_state()->set_initiate_conc_mark_if_possible(true);
1643   }
1644 }
1645 
1646 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1647   assert(!collector_state()->full_collection(), "must be");
1648   if (collector_state()->during_initial_mark_pause()) {
1649     assert(collector_state()->last_gc_was_young(), "must be");
1650     assert(!collector_state()->last_young_gc(), "must be");
1651     return InitialMarkGC;
1652   } else if (collector_state()->last_young_gc()) {
1653     assert(!collector_state()->during_initial_mark_pause(), "must be");
1654     assert(collector_state()->last_gc_was_young(), "must be");
1655     return LastYoungGC;
1656   } else if (!collector_state()->last_gc_was_young()) {
1657     assert(!collector_state()->during_initial_mark_pause(), "must be");
1658     assert(!collector_state()->last_young_gc(), "must be");
1659     return MixedGC;
1660   } else {
1661     assert(collector_state()->last_gc_was_young(), "must be");
1662     assert(!collector_state()->during_initial_mark_pause(), "must be");
1663     assert(!collector_state()->last_young_gc(), "must be");
1664     return YoungOnlyGC;
1665   }
1666 }
1667 
1668 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1669   // Manage the MMU tracker. For some reason it ignores Full GCs.
1670   if (kind != FullGC) {
1671     _mmu_tracker->add_pause(start, end);
1672   }
1673   // Manage the mutator time tracking from initial mark to first mixed gc.
1674   switch (kind) {
1675     case FullGC:
1676       abort_time_to_mixed_tracking();
1677       break;
1678     case Cleanup:
1679     case Remark:
1680     case YoungOnlyGC:
1681     case LastYoungGC:
1682       _initial_mark_to_mixed.add_pause(end - start);
1683       break;
1684     case InitialMarkGC:
1685       _initial_mark_to_mixed.record_initial_mark_end(end);
1686       break;
1687     case MixedGC:
1688       _initial_mark_to_mixed.record_mixed_gc_start(start);
1689       break;
1690     default:
1691       ShouldNotReachHere();
1692   }
1693 }
1694 
1695 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
1696   _initial_mark_to_mixed.reset();
1697 }
1698 
1699 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1700                                                 const char* false_action_str) const {
1701   if (cset_chooser()->is_empty()) {
1702     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1703     return false;
1704   }
1705 
1706   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1707   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1708   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1709   double threshold = (double) G1HeapWastePercent;
1710   if (reclaimable_perc <= threshold) {
1711     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1712                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1713     return false;
1714   }
1715   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1716                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1717   return true;
1718 }
1719 
1720 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1721   // The min old CSet region bound is based on the maximum desired
1722   // number of mixed GCs after a cycle. I.e., even if some old regions
1723   // look expensive, we should add them to the CSet anyway to make
1724   // sure we go through the available old regions in no more than the
1725   // maximum desired number of mixed GCs.
1726   //
1727   // The calculation is based on the number of marked regions we added
1728   // to the CSet chooser in the first place, not how many remain, so
1729   // that the result is the same during all mixed GCs that follow a cycle.
1730 
1731   const size_t region_num = (size_t) cset_chooser()->length();
1732   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1733   size_t result = region_num / gc_num;
1734   // emulate ceiling
1735   if (result * gc_num < region_num) {
1736     result += 1;
1737   }
1738   return (uint) result;
1739 }
1740 
1741 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1742   // The max old CSet region bound is based on the threshold expressed
1743   // as a percentage of the heap size. I.e., it should bound the
1744   // number of old regions added to the CSet irrespective of how many
1745   // of them are available.
1746 
1747   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1748   const size_t region_num = g1h->num_regions();
1749   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1750   size_t result = region_num * perc / 100;
1751   // emulate ceiling
1752   if (100 * result < region_num * perc) {
1753     result += 1;
1754   }
1755   return (uint) result;
1756 }
1757 
1758 void G1CollectorPolicy::finalize_collection_set(double target_pause_time_ms) {
1759   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1760   _collection_set->finalize_old_part(time_remaining_ms);
1761 }
1762