1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/jniHandles.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60 #if defined(COMPILER2) || INCLUDE_JVMCI
  61   _default_soft_ref_policy      = new LRUMaxHeapPolicy();
  62 #else
  63   _default_soft_ref_policy      = new LRUCurrentHeapPolicy();
  64 #endif
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _discovering_refs(false),
 103   _enqueuing_is_done(false),
 104   _is_alive_non_header(is_alive_non_header),
 105   _processing_is_mt(mt_processing),
 106   _next_id(0)
 107 {
 108   _span = span;
 109   _discovery_is_atomic = atomic_discovery;
 110   _discovery_is_mt     = mt_discovery;
 111   _num_q               = MAX2(1U, mt_processing_degree);
 112   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 113   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 114             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 115 
 116   if (_discovered_refs == NULL) {
 117     vm_exit_during_initialization("Could not allocated RefProc Array");
 118   }
 119   _discoveredSoftRefs    = &_discovered_refs[0];
 120   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 121   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 122   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 123 
 124   // Initialize all entries to NULL
 125   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 126     _discovered_refs[i].set_head(NULL);
 127     _discovered_refs[i].set_length(0);
 128   }
 129 
 130   setup_policy(false /* default soft ref policy */);
 131 }
 132 
 133 #ifndef PRODUCT
 134 void ReferenceProcessor::verify_no_references_recorded() {
 135   guarantee(!_discovering_refs, "Discovering refs?");
 136   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 137     guarantee(_discovered_refs[i].is_empty(),
 138               "Found non-empty discovered list");
 139   }
 140 }
 141 #endif
 142 
 143 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 144   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 145     if (UseCompressedOops) {
 146       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 147     } else {
 148       f->do_oop((oop*)_discovered_refs[i].adr_head());
 149     }
 150   }
 151 }
 152 
 153 void ReferenceProcessor::update_soft_ref_master_clock() {
 154   // Update (advance) the soft ref master clock field. This must be done
 155   // after processing the soft ref list.
 156 
 157   // We need a monotonically non-decreasing time in ms but
 158   // os::javaTimeMillis() does not guarantee monotonicity.
 159   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 160   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 161   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 162 
 163   NOT_PRODUCT(
 164   if (now < _soft_ref_timestamp_clock) {
 165     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 166                     _soft_ref_timestamp_clock, now);
 167   }
 168   )
 169   // The values of now and _soft_ref_timestamp_clock are set using
 170   // javaTimeNanos(), which is guaranteed to be monotonically
 171   // non-decreasing provided the underlying platform provides such
 172   // a time source (and it is bug free).
 173   // In product mode, however, protect ourselves from non-monotonicity.
 174   if (now > _soft_ref_timestamp_clock) {
 175     _soft_ref_timestamp_clock = now;
 176     java_lang_ref_SoftReference::set_clock(now);
 177   }
 178   // Else leave clock stalled at its old value until time progresses
 179   // past clock value.
 180 }
 181 
 182 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 183   size_t total = 0;
 184   for (uint i = 0; i < _max_num_q; ++i) {
 185     total += lists[i].length();
 186   }
 187   return total;
 188 }
 189 
 190 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 191   BoolObjectClosure*           is_alive,
 192   OopClosure*                  keep_alive,
 193   VoidClosure*                 complete_gc,
 194   AbstractRefProcTaskExecutor* task_executor,
 195   GCTimer*                     gc_timer) {
 196 
 197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 198   // Stop treating discovered references specially.
 199   disable_discovery();
 200 
 201   // If discovery was concurrent, someone could have modified
 202   // the value of the static field in the j.l.r.SoftReference
 203   // class that holds the soft reference timestamp clock using
 204   // reflection or Unsafe between when discovery was enabled and
 205   // now. Unconditionally update the static field in ReferenceProcessor
 206   // here so that we use the new value during processing of the
 207   // discovered soft refs.
 208 
 209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 210 
 211   ReferenceProcessorStats stats(
 212       total_count(_discoveredSoftRefs),
 213       total_count(_discoveredWeakRefs),
 214       total_count(_discoveredFinalRefs),
 215       total_count(_discoveredPhantomRefs));
 216 
 217   // Soft references
 218   {
 219     GCTraceTime(Debug, gc, ref) tt("SoftReference", gc_timer);
 220     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 221                                is_alive, keep_alive, complete_gc, task_executor);
 222   }
 223 
 224   update_soft_ref_master_clock();
 225 
 226   // Weak references
 227   {
 228     GCTraceTime(Debug, gc, ref) tt("WeakReference", gc_timer);
 229     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 230                                is_alive, keep_alive, complete_gc, task_executor);
 231   }
 232 
 233   // Final references
 234   {
 235     GCTraceTime(Debug, gc, ref) tt("FinalReference", gc_timer);
 236     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 237                                is_alive, keep_alive, complete_gc, task_executor);
 238   }
 239 
 240   // Phantom references
 241   {
 242     GCTraceTime(Debug, gc, ref) tt("PhantomReference", gc_timer);
 243     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 244                                is_alive, keep_alive, complete_gc, task_executor);
 245   }
 246 
 247   // Weak global JNI references. It would make more sense (semantically) to
 248   // traverse these simultaneously with the regular weak references above, but
 249   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 250   // thus use JNI weak references to circumvent the phantom references and
 251   // resurrect a "post-mortem" object.
 252   {
 253     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", gc_timer);
 254     if (task_executor != NULL) {
 255       task_executor->set_single_threaded_mode();
 256     }
 257     process_phaseJNI(is_alive, keep_alive, complete_gc);
 258   }
 259 
 260   log_debug(gc, ref)("Ref Counts: Soft: " SIZE_FORMAT " Weak: " SIZE_FORMAT " Final: " SIZE_FORMAT " Phantom: " SIZE_FORMAT,
 261                      stats.soft_count(), stats.weak_count(), stats.final_count(), stats.phantom_count());
 262   log_develop_trace(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 263 
 264   return stats;
 265 }
 266 
 267 #ifndef PRODUCT
 268 // Calculate the number of jni handles.
 269 size_t ReferenceProcessor::count_jni_refs() {
 270   class AlwaysAliveClosure: public BoolObjectClosure {
 271   public:
 272     virtual bool do_object_b(oop obj) { return true; }
 273   };
 274 
 275   class CountHandleClosure: public OopClosure {
 276   private:
 277     size_t _count;
 278   public:
 279     CountHandleClosure(): _count(0) {}
 280     void do_oop(oop* unused)       { _count++; }
 281     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 282     size_t count() { return _count; }
 283   };
 284   CountHandleClosure global_handle_count;
 285   AlwaysAliveClosure always_alive;
 286   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 287   return global_handle_count.count();
 288 }
 289 #endif
 290 
 291 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 292                                           OopClosure*        keep_alive,
 293                                           VoidClosure*       complete_gc) {
 294   JNIHandles::weak_oops_do(is_alive, keep_alive);
 295   complete_gc->do_void();
 296 }
 297 
 298 
 299 template <class T>
 300 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 301                                    AbstractRefProcTaskExecutor* task_executor) {
 302 
 303   // Remember old value of pending references list
 304   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 305   T old_pending_list_value = *pending_list_addr;
 306 
 307   // Enqueue references that are not made active again, and
 308   // clear the decks for the next collection (cycle).
 309   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 310   // Do the post-barrier on pending_list_addr missed in
 311   // enqueue_discovered_reflist.
 312   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 313 
 314   // Stop treating discovered references specially.
 315   ref->disable_discovery();
 316 
 317   // Return true if new pending references were added
 318   return old_pending_list_value != *pending_list_addr;
 319 }
 320 
 321 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 322   if (UseCompressedOops) {
 323     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 324   } else {
 325     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 326   }
 327 }
 328 
 329 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 330                                                     HeapWord* pending_list_addr) {
 331   // Given a list of refs linked through the "discovered" field
 332   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 333   // thus distinguishing them from active References, then
 334   // prepend them to the pending list.
 335   //
 336   // The Java threads will see the Reference objects linked together through
 337   // the discovered field. Instead of trying to do the write barrier updates
 338   // in all places in the reference processor where we manipulate the discovered
 339   // field we make sure to do the barrier here where we anyway iterate through
 340   // all linked Reference objects. Note that it is important to not dirty any
 341   // cards during reference processing since this will cause card table
 342   // verification to fail for G1.
 343   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 344 
 345   oop obj = NULL;
 346   oop next_d = refs_list.head();
 347   // Walk down the list, self-looping the next field
 348   // so that the References are not considered active.
 349   while (obj != next_d) {
 350     obj = next_d;
 351     assert(obj->is_instance(), "should be an instance object");
 352     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 353     next_d = java_lang_ref_Reference::discovered(obj);
 354     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 355     assert(java_lang_ref_Reference::next(obj) == NULL,
 356            "Reference not active; should not be discovered");
 357     // Self-loop next, so as to make Ref not active.
 358     java_lang_ref_Reference::set_next_raw(obj, obj);
 359     if (next_d != obj) {
 360       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 361     } else {
 362       // This is the last object.
 363       // Swap refs_list into pending_list_addr and
 364       // set obj's discovered to what we read from pending_list_addr.
 365       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 366       // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 367       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 368       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 369     }
 370   }
 371 }
 372 
 373 // Parallel enqueue task
 374 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 375 public:
 376   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 377                      DiscoveredList      discovered_refs[],
 378                      HeapWord*           pending_list_addr,
 379                      int                 n_queues)
 380     : EnqueueTask(ref_processor, discovered_refs,
 381                   pending_list_addr, n_queues)
 382   { }
 383 
 384   virtual void work(unsigned int work_id) {
 385     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 386     // Simplest first cut: static partitioning.
 387     int index = work_id;
 388     // The increment on "index" must correspond to the maximum number of queues
 389     // (n_queues) with which that ReferenceProcessor was created.  That
 390     // is because of the "clever" way the discovered references lists were
 391     // allocated and are indexed into.
 392     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 393     for (int j = 0;
 394          j < ReferenceProcessor::number_of_subclasses_of_ref();
 395          j++, index += _n_queues) {
 396       _ref_processor.enqueue_discovered_reflist(
 397         _refs_lists[index], _pending_list_addr);
 398       _refs_lists[index].set_head(NULL);
 399       _refs_lists[index].set_length(0);
 400     }
 401   }
 402 };
 403 
 404 // Enqueue references that are not made active again
 405 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 406   AbstractRefProcTaskExecutor* task_executor) {
 407   if (_processing_is_mt && task_executor != NULL) {
 408     // Parallel code
 409     RefProcEnqueueTask tsk(*this, _discovered_refs,
 410                            pending_list_addr, _max_num_q);
 411     task_executor->execute(tsk);
 412   } else {
 413     // Serial code: call the parent class's implementation
 414     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 415       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 416       _discovered_refs[i].set_head(NULL);
 417       _discovered_refs[i].set_length(0);
 418     }
 419   }
 420 }
 421 
 422 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 423   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 424   oop discovered = java_lang_ref_Reference::discovered(_ref);
 425   assert(_discovered_addr && discovered->is_oop_or_null(),
 426          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 427   _next = discovered;
 428   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 429   _referent = java_lang_ref_Reference::referent(_ref);
 430   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 431          "Wrong oop found in java.lang.Reference object");
 432   assert(allow_null_referent ?
 433              _referent->is_oop_or_null()
 434            : _referent->is_oop(),
 435          "Expected an oop%s for referent field at " PTR_FORMAT,
 436          (allow_null_referent ? " or NULL" : ""),
 437          p2i(_referent));
 438 }
 439 
 440 void DiscoveredListIterator::remove() {
 441   assert(_ref->is_oop(), "Dropping a bad reference");
 442   oop_store_raw(_discovered_addr, NULL);
 443 
 444   // First _prev_next ref actually points into DiscoveredList (gross).
 445   oop new_next;
 446   if (_next == _ref) {
 447     // At the end of the list, we should make _prev point to itself.
 448     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 449     // and _prev will be NULL.
 450     new_next = _prev;
 451   } else {
 452     new_next = _next;
 453   }
 454   // Remove Reference object from discovered list. Note that G1 does not need a
 455   // pre-barrier here because we know the Reference has already been found/marked,
 456   // that's how it ended up in the discovered list in the first place.
 457   oop_store_raw(_prev_next, new_next);
 458   NOT_PRODUCT(_removed++);
 459   _refs_list.dec_length(1);
 460 }
 461 
 462 void DiscoveredListIterator::clear_referent() {
 463   oop_store_raw(_referent_addr, NULL);
 464 }
 465 
 466 // NOTE: process_phase*() are largely similar, and at a high level
 467 // merely iterate over the extant list applying a predicate to
 468 // each of its elements and possibly removing that element from the
 469 // list and applying some further closures to that element.
 470 // We should consider the possibility of replacing these
 471 // process_phase*() methods by abstracting them into
 472 // a single general iterator invocation that receives appropriate
 473 // closures that accomplish this work.
 474 
 475 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 476 // referents are not alive, but that should be kept alive for policy reasons.
 477 // Keep alive the transitive closure of all such referents.
 478 void
 479 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 480                                    ReferencePolicy*   policy,
 481                                    BoolObjectClosure* is_alive,
 482                                    OopClosure*        keep_alive,
 483                                    VoidClosure*       complete_gc) {
 484   assert(policy != NULL, "Must have a non-NULL policy");
 485   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 486   // Decide which softly reachable refs should be kept alive.
 487   while (iter.has_next()) {
 488     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 489     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 490     if (referent_is_dead &&
 491         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 492       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 493                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 494       // Remove Reference object from list
 495       iter.remove();
 496       // keep the referent around
 497       iter.make_referent_alive();
 498       iter.move_to_next();
 499     } else {
 500       iter.next();
 501     }
 502   }
 503   // Close the reachable set
 504   complete_gc->do_void();
 505   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 506                              iter.removed(), iter.processed(), p2i(&refs_list));
 507     }
 508 
 509 // Traverse the list and remove any Refs that are not active, or
 510 // whose referents are either alive or NULL.
 511 void
 512 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 513                              BoolObjectClosure* is_alive,
 514                              OopClosure*        keep_alive) {
 515   assert(discovery_is_atomic(), "Error");
 516   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 517   while (iter.has_next()) {
 518     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 519     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 520     assert(next == NULL, "Should not discover inactive Reference");
 521     if (iter.is_referent_alive()) {
 522       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 523                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 524       // The referent is reachable after all.
 525       // Remove Reference object from list.
 526       iter.remove();
 527       // Update the referent pointer as necessary: Note that this
 528       // should not entail any recursive marking because the
 529       // referent must already have been traversed.
 530       iter.make_referent_alive();
 531       iter.move_to_next();
 532     } else {
 533       iter.next();
 534     }
 535   }
 536   NOT_PRODUCT(
 537     if (iter.processed() > 0) {
 538       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 539         " Refs in discovered list " INTPTR_FORMAT,
 540         iter.removed(), iter.processed(), p2i(&refs_list));
 541     }
 542   )
 543 }
 544 
 545 void
 546 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 547                                                   BoolObjectClosure* is_alive,
 548                                                   OopClosure*        keep_alive,
 549                                                   VoidClosure*       complete_gc) {
 550   assert(!discovery_is_atomic(), "Error");
 551   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 552   while (iter.has_next()) {
 553     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 554     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 555     oop next = java_lang_ref_Reference::next(iter.obj());
 556     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 557          next != NULL)) {
 558       assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 559       // Remove Reference object from list
 560       iter.remove();
 561       // Trace the cohorts
 562       iter.make_referent_alive();
 563       if (UseCompressedOops) {
 564         keep_alive->do_oop((narrowOop*)next_addr);
 565       } else {
 566         keep_alive->do_oop((oop*)next_addr);
 567       }
 568       iter.move_to_next();
 569     } else {
 570       iter.next();
 571     }
 572   }
 573   // Now close the newly reachable set
 574   complete_gc->do_void();
 575   NOT_PRODUCT(
 576     if (iter.processed() > 0) {
 577       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 578         " Refs in discovered list " INTPTR_FORMAT,
 579         iter.removed(), iter.processed(), p2i(&refs_list));
 580     }
 581   )
 582 }
 583 
 584 // Traverse the list and process the referents, by either
 585 // clearing them or keeping them (and their reachable
 586 // closure) alive.
 587 void
 588 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 589                                    bool               clear_referent,
 590                                    BoolObjectClosure* is_alive,
 591                                    OopClosure*        keep_alive,
 592                                    VoidClosure*       complete_gc) {
 593   ResourceMark rm;
 594   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 595   while (iter.has_next()) {
 596     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 597     if (clear_referent) {
 598       // NULL out referent pointer
 599       iter.clear_referent();
 600     } else {
 601       // keep the referent around
 602       iter.make_referent_alive();
 603     }
 604     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 605                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 606     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 607     iter.next();
 608   }
 609   // Close the reachable set
 610   complete_gc->do_void();
 611 }
 612 
 613 void
 614 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 615   oop obj = NULL;
 616   oop next = refs_list.head();
 617   while (next != obj) {
 618     obj = next;
 619     next = java_lang_ref_Reference::discovered(obj);
 620     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 621   }
 622   refs_list.set_head(NULL);
 623   refs_list.set_length(0);
 624 }
 625 
 626 void ReferenceProcessor::abandon_partial_discovery() {
 627   // loop over the lists
 628   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 629     if ((i % _max_num_q) == 0) {
 630       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 631     }
 632     clear_discovered_references(_discovered_refs[i]);
 633   }
 634 }
 635 
 636 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 637 public:
 638   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 639                     DiscoveredList      refs_lists[],
 640                     ReferencePolicy*    policy,
 641                     bool                marks_oops_alive)
 642     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 643       _policy(policy)
 644   { }
 645   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 646                     OopClosure& keep_alive,
 647                     VoidClosure& complete_gc)
 648   {
 649     _ref_processor.process_phase1(_refs_lists[i], _policy,
 650                                   &is_alive, &keep_alive, &complete_gc);
 651   }
 652 private:
 653   ReferencePolicy* _policy;
 654 };
 655 
 656 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 657 public:
 658   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 659                     DiscoveredList      refs_lists[],
 660                     bool                marks_oops_alive)
 661     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 662   { }
 663   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 664                     OopClosure& keep_alive,
 665                     VoidClosure& complete_gc)
 666   {
 667     _ref_processor.process_phase2(_refs_lists[i],
 668                                   &is_alive, &keep_alive, &complete_gc);
 669   }
 670 };
 671 
 672 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 673 public:
 674   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 675                     DiscoveredList      refs_lists[],
 676                     bool                clear_referent,
 677                     bool                marks_oops_alive)
 678     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 679       _clear_referent(clear_referent)
 680   { }
 681   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 682                     OopClosure& keep_alive,
 683                     VoidClosure& complete_gc)
 684   {
 685     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 686                                   &is_alive, &keep_alive, &complete_gc);
 687   }
 688 private:
 689   bool _clear_referent;
 690 };
 691 
 692 #ifndef PRODUCT
 693 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], size_t total_refs) {
 694   if (!log_is_enabled(Trace, gc, ref)) {
 695     return;
 696   }
 697 
 698   stringStream st;
 699   for (uint i = 0; i < _max_num_q; ++i) {
 700     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 701   }
 702   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 703 }
 704 #endif
 705 
 706 // Balances reference queues.
 707 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 708 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 709 // corresponding to the active workers will be processed.
 710 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 711 {
 712   // calculate total length
 713   size_t total_refs = 0;
 714   log_develop_trace(gc, ref)("Balance ref_lists ");
 715 
 716   for (uint i = 0; i < _max_num_q; ++i) {
 717     total_refs += ref_lists[i].length();
 718     }
 719   log_reflist_counts(ref_lists, total_refs);
 720   size_t avg_refs = total_refs / _num_q + 1;
 721   uint to_idx = 0;
 722   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 723     bool move_all = false;
 724     if (from_idx >= _num_q) {
 725       move_all = ref_lists[from_idx].length() > 0;
 726     }
 727     while ((ref_lists[from_idx].length() > avg_refs) ||
 728            move_all) {
 729       assert(to_idx < _num_q, "Sanity Check!");
 730       if (ref_lists[to_idx].length() < avg_refs) {
 731         // move superfluous refs
 732         size_t refs_to_move;
 733         // Move all the Ref's if the from queue will not be processed.
 734         if (move_all) {
 735           refs_to_move = MIN2(ref_lists[from_idx].length(),
 736                               avg_refs - ref_lists[to_idx].length());
 737         } else {
 738           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 739                               avg_refs - ref_lists[to_idx].length());
 740         }
 741 
 742         assert(refs_to_move > 0, "otherwise the code below will fail");
 743 
 744         oop move_head = ref_lists[from_idx].head();
 745         oop move_tail = move_head;
 746         oop new_head  = move_head;
 747         // find an element to split the list on
 748         for (size_t j = 0; j < refs_to_move; ++j) {
 749           move_tail = new_head;
 750           new_head = java_lang_ref_Reference::discovered(new_head);
 751         }
 752 
 753         // Add the chain to the to list.
 754         if (ref_lists[to_idx].head() == NULL) {
 755           // to list is empty. Make a loop at the end.
 756           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 757         } else {
 758           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 759         }
 760         ref_lists[to_idx].set_head(move_head);
 761         ref_lists[to_idx].inc_length(refs_to_move);
 762 
 763         // Remove the chain from the from list.
 764         if (move_tail == new_head) {
 765           // We found the end of the from list.
 766           ref_lists[from_idx].set_head(NULL);
 767         } else {
 768           ref_lists[from_idx].set_head(new_head);
 769         }
 770         ref_lists[from_idx].dec_length(refs_to_move);
 771         if (ref_lists[from_idx].length() == 0) {
 772           break;
 773         }
 774       } else {
 775         to_idx = (to_idx + 1) % _num_q;
 776       }
 777     }
 778   }
 779 #ifdef ASSERT
 780   size_t balanced_total_refs = 0;
 781   for (uint i = 0; i < _max_num_q; ++i) {
 782     balanced_total_refs += ref_lists[i].length();
 783     }
 784   log_reflist_counts(ref_lists, balanced_total_refs);
 785   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 786 #endif
 787 }
 788 
 789 void ReferenceProcessor::balance_all_queues() {
 790   balance_queues(_discoveredSoftRefs);
 791   balance_queues(_discoveredWeakRefs);
 792   balance_queues(_discoveredFinalRefs);
 793   balance_queues(_discoveredPhantomRefs);
 794 }
 795 
 796 void ReferenceProcessor::process_discovered_reflist(
 797   DiscoveredList               refs_lists[],
 798   ReferencePolicy*             policy,
 799   bool                         clear_referent,
 800   BoolObjectClosure*           is_alive,
 801   OopClosure*                  keep_alive,
 802   VoidClosure*                 complete_gc,
 803   AbstractRefProcTaskExecutor* task_executor)
 804 {
 805   bool mt_processing = task_executor != NULL && _processing_is_mt;
 806   // If discovery used MT and a dynamic number of GC threads, then
 807   // the queues must be balanced for correctness if fewer than the
 808   // maximum number of queues were used.  The number of queue used
 809   // during discovery may be different than the number to be used
 810   // for processing so don't depend of _num_q < _max_num_q as part
 811   // of the test.
 812   bool must_balance = _discovery_is_mt;
 813 
 814   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 815       must_balance) {
 816     balance_queues(refs_lists);
 817   }
 818 
 819   // Phase 1 (soft refs only):
 820   // . Traverse the list and remove any SoftReferences whose
 821   //   referents are not alive, but that should be kept alive for
 822   //   policy reasons. Keep alive the transitive closure of all
 823   //   such referents.
 824   if (policy != NULL) {
 825     if (mt_processing) {
 826       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 827       task_executor->execute(phase1);
 828     } else {
 829       for (uint i = 0; i < _max_num_q; i++) {
 830         process_phase1(refs_lists[i], policy,
 831                        is_alive, keep_alive, complete_gc);
 832       }
 833     }
 834   } else { // policy == NULL
 835     assert(refs_lists != _discoveredSoftRefs,
 836            "Policy must be specified for soft references.");
 837   }
 838 
 839   // Phase 2:
 840   // . Traverse the list and remove any refs whose referents are alive.
 841   if (mt_processing) {
 842     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 843     task_executor->execute(phase2);
 844   } else {
 845     for (uint i = 0; i < _max_num_q; i++) {
 846       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 847     }
 848   }
 849 
 850   // Phase 3:
 851   // . Traverse the list and process referents as appropriate.
 852   if (mt_processing) {
 853     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 854     task_executor->execute(phase3);
 855   } else {
 856     for (uint i = 0; i < _max_num_q; i++) {
 857       process_phase3(refs_lists[i], clear_referent,
 858                      is_alive, keep_alive, complete_gc);
 859     }
 860   }
 861 }
 862 
 863 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 864   uint id = 0;
 865   // Determine the queue index to use for this object.
 866   if (_discovery_is_mt) {
 867     // During a multi-threaded discovery phase,
 868     // each thread saves to its "own" list.
 869     Thread* thr = Thread::current();
 870     id = thr->as_Worker_thread()->id();
 871   } else {
 872     // single-threaded discovery, we save in round-robin
 873     // fashion to each of the lists.
 874     if (_processing_is_mt) {
 875       id = next_id();
 876     }
 877   }
 878   assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 879 
 880   // Get the discovered queue to which we will add
 881   DiscoveredList* list = NULL;
 882   switch (rt) {
 883     case REF_OTHER:
 884       // Unknown reference type, no special treatment
 885       break;
 886     case REF_SOFT:
 887       list = &_discoveredSoftRefs[id];
 888       break;
 889     case REF_WEAK:
 890       list = &_discoveredWeakRefs[id];
 891       break;
 892     case REF_FINAL:
 893       list = &_discoveredFinalRefs[id];
 894       break;
 895     case REF_PHANTOM:
 896       list = &_discoveredPhantomRefs[id];
 897       break;
 898     case REF_NONE:
 899       // we should not reach here if we are an InstanceRefKlass
 900     default:
 901       ShouldNotReachHere();
 902   }
 903   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 904   return list;
 905 }
 906 
 907 inline void
 908 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 909                                               oop             obj,
 910                                               HeapWord*       discovered_addr) {
 911   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 912   // First we must make sure this object is only enqueued once. CAS in a non null
 913   // discovered_addr.
 914   oop current_head = refs_list.head();
 915   // The last ref must have its discovered field pointing to itself.
 916   oop next_discovered = (current_head != NULL) ? current_head : obj;
 917 
 918   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 919                                                     NULL);
 920   if (retest == NULL) {
 921     // This thread just won the right to enqueue the object.
 922     // We have separate lists for enqueueing, so no synchronization
 923     // is necessary.
 924     refs_list.set_head(obj);
 925     refs_list.inc_length(1);
 926 
 927     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 928                                p2i(obj), obj->klass()->internal_name());
 929   } else {
 930     // If retest was non NULL, another thread beat us to it:
 931     // The reference has already been discovered...
 932     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 933                                p2i(obj), obj->klass()->internal_name());
 934     }
 935   }
 936 
 937 #ifndef PRODUCT
 938 // Non-atomic (i.e. concurrent) discovery might allow us
 939 // to observe j.l.References with NULL referents, being those
 940 // cleared concurrently by mutators during (or after) discovery.
 941 void ReferenceProcessor::verify_referent(oop obj) {
 942   bool da = discovery_is_atomic();
 943   oop referent = java_lang_ref_Reference::referent(obj);
 944   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 945          "Bad referent " INTPTR_FORMAT " found in Reference "
 946          INTPTR_FORMAT " during %satomic discovery ",
 947          p2i(referent), p2i(obj), da ? "" : "non-");
 948 }
 949 #endif
 950 
 951 // We mention two of several possible choices here:
 952 // #0: if the reference object is not in the "originating generation"
 953 //     (or part of the heap being collected, indicated by our "span"
 954 //     we don't treat it specially (i.e. we scan it as we would
 955 //     a normal oop, treating its references as strong references).
 956 //     This means that references can't be discovered unless their
 957 //     referent is also in the same span. This is the simplest,
 958 //     most "local" and most conservative approach, albeit one
 959 //     that may cause weak references to be enqueued least promptly.
 960 //     We call this choice the "ReferenceBasedDiscovery" policy.
 961 // #1: the reference object may be in any generation (span), but if
 962 //     the referent is in the generation (span) being currently collected
 963 //     then we can discover the reference object, provided
 964 //     the object has not already been discovered by
 965 //     a different concurrently running collector (as may be the
 966 //     case, for instance, if the reference object is in CMS and
 967 //     the referent in DefNewGeneration), and provided the processing
 968 //     of this reference object by the current collector will
 969 //     appear atomic to every other collector in the system.
 970 //     (Thus, for instance, a concurrent collector may not
 971 //     discover references in other generations even if the
 972 //     referent is in its own generation). This policy may,
 973 //     in certain cases, enqueue references somewhat sooner than
 974 //     might Policy #0 above, but at marginally increased cost
 975 //     and complexity in processing these references.
 976 //     We call this choice the "RefeferentBasedDiscovery" policy.
 977 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
 978   // Make sure we are discovering refs (rather than processing discovered refs).
 979   if (!_discovering_refs || !RegisterReferences) {
 980     return false;
 981   }
 982   // We only discover active references.
 983   oop next = java_lang_ref_Reference::next(obj);
 984   if (next != NULL) {   // Ref is no longer active
 985     return false;
 986   }
 987 
 988   HeapWord* obj_addr = (HeapWord*)obj;
 989   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
 990       !_span.contains(obj_addr)) {
 991     // Reference is not in the originating generation;
 992     // don't treat it specially (i.e. we want to scan it as a normal
 993     // object with strong references).
 994     return false;
 995   }
 996 
 997   // We only discover references whose referents are not (yet)
 998   // known to be strongly reachable.
 999   if (is_alive_non_header() != NULL) {
1000     verify_referent(obj);
1001     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1002       return false;  // referent is reachable
1003     }
1004   }
1005   if (rt == REF_SOFT) {
1006     // For soft refs we can decide now if these are not
1007     // current candidates for clearing, in which case we
1008     // can mark through them now, rather than delaying that
1009     // to the reference-processing phase. Since all current
1010     // time-stamp policies advance the soft-ref clock only
1011     // at a full collection cycle, this is always currently
1012     // accurate.
1013     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1014       return false;
1015     }
1016   }
1017 
1018   ResourceMark rm;      // Needed for tracing.
1019 
1020   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1021   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1022   assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1023   if (discovered != NULL) {
1024     // The reference has already been discovered...
1025     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1026                                p2i(obj), obj->klass()->internal_name());
1027     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1028       // assumes that an object is not processed twice;
1029       // if it's been already discovered it must be on another
1030       // generation's discovered list; so we won't discover it.
1031       return false;
1032     } else {
1033       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1034              "Unrecognized policy");
1035       // Check assumption that an object is not potentially
1036       // discovered twice except by concurrent collectors that potentially
1037       // trace the same Reference object twice.
1038       assert(UseConcMarkSweepGC || UseG1GC,
1039              "Only possible with a concurrent marking collector");
1040       return true;
1041     }
1042   }
1043 
1044   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1045     verify_referent(obj);
1046     // Discover if and only if EITHER:
1047     // .. reference is in our span, OR
1048     // .. we are an atomic collector and referent is in our span
1049     if (_span.contains(obj_addr) ||
1050         (discovery_is_atomic() &&
1051          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1052       // should_enqueue = true;
1053     } else {
1054       return false;
1055     }
1056   } else {
1057     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1058            _span.contains(obj_addr), "code inconsistency");
1059   }
1060 
1061   // Get the right type of discovered queue head.
1062   DiscoveredList* list = get_discovered_list(rt);
1063   if (list == NULL) {
1064     return false;   // nothing special needs to be done
1065   }
1066 
1067   if (_discovery_is_mt) {
1068     add_to_discovered_list_mt(*list, obj, discovered_addr);
1069   } else {
1070     // We do a raw store here: the field will be visited later when processing
1071     // the discovered references.
1072     oop current_head = list->head();
1073     // The last ref must have its discovered field pointing to itself.
1074     oop next_discovered = (current_head != NULL) ? current_head : obj;
1075 
1076     assert(discovered == NULL, "control point invariant");
1077     oop_store_raw(discovered_addr, next_discovered);
1078     list->set_head(obj);
1079     list->inc_length(1);
1080 
1081     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1082   }
1083   assert(obj->is_oop(), "Discovered a bad reference");
1084   verify_referent(obj);
1085   return true;
1086 }
1087 
1088 // Preclean the discovered references by removing those
1089 // whose referents are alive, and by marking from those that
1090 // are not active. These lists can be handled here
1091 // in any order and, indeed, concurrently.
1092 void ReferenceProcessor::preclean_discovered_references(
1093   BoolObjectClosure* is_alive,
1094   OopClosure* keep_alive,
1095   VoidClosure* complete_gc,
1096   YieldClosure* yield,
1097   GCTimer* gc_timer) {
1098 
1099   // Soft references
1100   {
1101     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1102     for (uint i = 0; i < _max_num_q; i++) {
1103       if (yield->should_return()) {
1104         return;
1105       }
1106       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1107                                   keep_alive, complete_gc, yield);
1108     }
1109   }
1110 
1111   // Weak references
1112   {
1113     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1114     for (uint i = 0; i < _max_num_q; i++) {
1115       if (yield->should_return()) {
1116         return;
1117       }
1118       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1119                                   keep_alive, complete_gc, yield);
1120     }
1121   }
1122 
1123   // Final references
1124   {
1125     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1126     for (uint i = 0; i < _max_num_q; i++) {
1127       if (yield->should_return()) {
1128         return;
1129       }
1130       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1131                                   keep_alive, complete_gc, yield);
1132     }
1133   }
1134 
1135   // Phantom references
1136   {
1137     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1138     for (uint i = 0; i < _max_num_q; i++) {
1139       if (yield->should_return()) {
1140         return;
1141       }
1142       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1143                                   keep_alive, complete_gc, yield);
1144     }
1145   }
1146 }
1147 
1148 // Walk the given discovered ref list, and remove all reference objects
1149 // whose referents are still alive, whose referents are NULL or which
1150 // are not active (have a non-NULL next field). NOTE: When we are
1151 // thus precleaning the ref lists (which happens single-threaded today),
1152 // we do not disable refs discovery to honor the correct semantics of
1153 // java.lang.Reference. As a result, we need to be careful below
1154 // that ref removal steps interleave safely with ref discovery steps
1155 // (in this thread).
1156 void
1157 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1158                                                 BoolObjectClosure* is_alive,
1159                                                 OopClosure*        keep_alive,
1160                                                 VoidClosure*       complete_gc,
1161                                                 YieldClosure*      yield) {
1162   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1163   while (iter.has_next()) {
1164     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1165     oop obj = iter.obj();
1166     oop next = java_lang_ref_Reference::next(obj);
1167     if (iter.referent() == NULL || iter.is_referent_alive() ||
1168         next != NULL) {
1169       // The referent has been cleared, or is alive, or the Reference is not
1170       // active; we need to trace and mark its cohort.
1171       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1172                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1173       // Remove Reference object from list
1174       iter.remove();
1175       // Keep alive its cohort.
1176       iter.make_referent_alive();
1177       if (UseCompressedOops) {
1178         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1179         keep_alive->do_oop(next_addr);
1180       } else {
1181         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1182         keep_alive->do_oop(next_addr);
1183       }
1184       iter.move_to_next();
1185     } else {
1186       iter.next();
1187     }
1188   }
1189   // Close the reachable set
1190   complete_gc->do_void();
1191 
1192   NOT_PRODUCT(
1193     if (iter.processed() > 0) {
1194       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1195         iter.removed(), iter.processed(), p2i(&refs_list));
1196     }
1197   )
1198 }
1199 
1200 const char* ReferenceProcessor::list_name(uint i) {
1201    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1202           "Out of bounds index");
1203 
1204    int j = i / _max_num_q;
1205    switch (j) {
1206      case 0: return "SoftRef";
1207      case 1: return "WeakRef";
1208      case 2: return "FinalRef";
1209      case 3: return "PhantomRef";
1210    }
1211    ShouldNotReachHere();
1212    return NULL;
1213 }
1214