1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/divnode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/superword.hpp"
  41 
  42 //=============================================================================
  43 //------------------------------is_loop_iv-------------------------------------
  44 // Determine if a node is Counted loop induction variable.
  45 // The method is declared in node.hpp.
  46 const Node* Node::is_loop_iv() const {
  47   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  48       this->as_Phi()->region()->is_CountedLoop() &&
  49       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  50     return this;
  51   } else {
  52     return NULL;
  53   }
  54 }
  55 
  56 //=============================================================================
  57 //------------------------------dump_spec--------------------------------------
  58 // Dump special per-node info
  59 #ifndef PRODUCT
  60 void LoopNode::dump_spec(outputStream *st) const {
  61   if (is_inner_loop()) st->print( "inner " );
  62   if (is_partial_peel_loop()) st->print( "partial_peel " );
  63   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  64 }
  65 #endif
  66 
  67 //------------------------------is_valid_counted_loop-------------------------
  68 bool LoopNode::is_valid_counted_loop() const {
  69   if (is_CountedLoop()) {
  70     CountedLoopNode*    l  = as_CountedLoop();
  71     CountedLoopEndNode* le = l->loopexit();
  72     if (le != NULL &&
  73         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  74       Node* phi  = l->phi();
  75       Node* exit = le->proj_out(0 /* false */);
  76       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  77           phi != NULL && phi->is_Phi() &&
  78           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  79           le->loopnode() == l && le->stride_is_con()) {
  80         return true;
  81       }
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 //------------------------------get_early_ctrl---------------------------------
  88 // Compute earliest legal control
  89 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  90   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  91   uint i;
  92   Node *early;
  93   if (n->in(0) && !n->is_expensive()) {
  94     early = n->in(0);
  95     if (!early->is_CFG()) // Might be a non-CFG multi-def
  96       early = get_ctrl(early);        // So treat input as a straight data input
  97     i = 1;
  98   } else {
  99     early = get_ctrl(n->in(1));
 100     i = 2;
 101   }
 102   uint e_d = dom_depth(early);
 103   assert( early, "" );
 104   for (; i < n->req(); i++) {
 105     Node *cin = get_ctrl(n->in(i));
 106     assert( cin, "" );
 107     // Keep deepest dominator depth
 108     uint c_d = dom_depth(cin);
 109     if (c_d > e_d) {           // Deeper guy?
 110       early = cin;              // Keep deepest found so far
 111       e_d = c_d;
 112     } else if (c_d == e_d &&    // Same depth?
 113                early != cin) { // If not equal, must use slower algorithm
 114       // If same depth but not equal, one _must_ dominate the other
 115       // and we want the deeper (i.e., dominated) guy.
 116       Node *n1 = early;
 117       Node *n2 = cin;
 118       while (1) {
 119         n1 = idom(n1);          // Walk up until break cycle
 120         n2 = idom(n2);
 121         if (n1 == cin ||        // Walked early up to cin
 122             dom_depth(n2) < c_d)
 123           break;                // early is deeper; keep him
 124         if (n2 == early ||      // Walked cin up to early
 125             dom_depth(n1) < c_d) {
 126           early = cin;          // cin is deeper; keep him
 127           break;
 128         }
 129       }
 130       e_d = dom_depth(early);   // Reset depth register cache
 131     }
 132   }
 133 
 134   // Return earliest legal location
 135   assert(early == find_non_split_ctrl(early), "unexpected early control");
 136 
 137   if (n->is_expensive() && !_verify_only && !_verify_me) {
 138     assert(n->in(0), "should have control input");
 139     early = get_early_ctrl_for_expensive(n, early);
 140   }
 141 
 142   return early;
 143 }
 144 
 145 //------------------------------get_early_ctrl_for_expensive---------------------------------
 146 // Move node up the dominator tree as high as legal while still beneficial
 147 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 148   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 149   assert(OptimizeExpensiveOps, "optimization off?");
 150 
 151   Node* ctl = n->in(0);
 152   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 153   uint min_dom_depth = dom_depth(earliest);
 154 #ifdef ASSERT
 155   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 156     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 157     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 158   }
 159 #endif
 160   if (dom_depth(ctl) < min_dom_depth) {
 161     return earliest;
 162   }
 163 
 164   while (1) {
 165     Node *next = ctl;
 166     // Moving the node out of a loop on the projection of a If
 167     // confuses loop predication. So once we hit a Loop in a If branch
 168     // that doesn't branch to an UNC, we stop. The code that process
 169     // expensive nodes will notice the loop and skip over it to try to
 170     // move the node further up.
 171     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 172       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 173         break;
 174       }
 175       next = idom(ctl->in(1)->in(0));
 176     } else if (ctl->is_Proj()) {
 177       // We only move it up along a projection if the projection is
 178       // the single control projection for its parent: same code path,
 179       // if it's a If with UNC or fallthrough of a call.
 180       Node* parent_ctl = ctl->in(0);
 181       if (parent_ctl == NULL) {
 182         break;
 183       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 184         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 185       } else if (parent_ctl->is_If()) {
 186         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 187           break;
 188         }
 189         assert(idom(ctl) == parent_ctl, "strange");
 190         next = idom(parent_ctl);
 191       } else if (ctl->is_CatchProj()) {
 192         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 193           break;
 194         }
 195         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 196         next = parent_ctl->in(0)->in(0)->in(0);
 197       } else {
 198         // Check if parent control has a single projection (this
 199         // control is the only possible successor of the parent
 200         // control). If so, we can try to move the node above the
 201         // parent control.
 202         int nb_ctl_proj = 0;
 203         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 204           Node *p = parent_ctl->fast_out(i);
 205           if (p->is_Proj() && p->is_CFG()) {
 206             nb_ctl_proj++;
 207             if (nb_ctl_proj > 1) {
 208               break;
 209             }
 210           }
 211         }
 212 
 213         if (nb_ctl_proj > 1) {
 214           break;
 215         }
 216         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 217         assert(idom(ctl) == parent_ctl, "strange");
 218         next = idom(parent_ctl);
 219       }
 220     } else {
 221       next = idom(ctl);
 222     }
 223     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 224       break;
 225     }
 226     ctl = next;
 227   }
 228 
 229   if (ctl != n->in(0)) {
 230     _igvn.replace_input_of(n, 0, ctl);
 231     _igvn.hash_insert(n);
 232   }
 233 
 234   return ctl;
 235 }
 236 
 237 
 238 //------------------------------set_early_ctrl---------------------------------
 239 // Set earliest legal control
 240 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 241   Node *early = get_early_ctrl(n);
 242 
 243   // Record earliest legal location
 244   set_ctrl(n, early);
 245 }
 246 
 247 //------------------------------set_subtree_ctrl-------------------------------
 248 // set missing _ctrl entries on new nodes
 249 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 250   // Already set?  Get out.
 251   if( _nodes[n->_idx] ) return;
 252   // Recursively set _nodes array to indicate where the Node goes
 253   uint i;
 254   for( i = 0; i < n->req(); ++i ) {
 255     Node *m = n->in(i);
 256     if( m && m != C->root() )
 257       set_subtree_ctrl( m );
 258   }
 259 
 260   // Fixup self
 261   set_early_ctrl( n );
 262 }
 263 
 264 //------------------------------is_counted_loop--------------------------------
 265 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 266   PhaseGVN *gvn = &_igvn;
 267 
 268   // Counted loop head must be a good RegionNode with only 3 not NULL
 269   // control input edges: Self, Entry, LoopBack.
 270   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 271     return false;
 272   }
 273   Node *init_control = x->in(LoopNode::EntryControl);
 274   Node *back_control = x->in(LoopNode::LoopBackControl);
 275   if (init_control == NULL || back_control == NULL)    // Partially dead
 276     return false;
 277   // Must also check for TOP when looking for a dead loop
 278   if (init_control->is_top() || back_control->is_top())
 279     return false;
 280 
 281   // Allow funny placement of Safepoint
 282   if (back_control->Opcode() == Op_SafePoint)
 283     back_control = back_control->in(TypeFunc::Control);
 284 
 285   // Controlling test for loop
 286   Node *iftrue = back_control;
 287   uint iftrue_op = iftrue->Opcode();
 288   if (iftrue_op != Op_IfTrue &&
 289       iftrue_op != Op_IfFalse)
 290     // I have a weird back-control.  Probably the loop-exit test is in
 291     // the middle of the loop and I am looking at some trailing control-flow
 292     // merge point.  To fix this I would have to partially peel the loop.
 293     return false; // Obscure back-control
 294 
 295   // Get boolean guarding loop-back test
 296   Node *iff = iftrue->in(0);
 297   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 298     return false;
 299   BoolNode *test = iff->in(1)->as_Bool();
 300   BoolTest::mask bt = test->_test._test;
 301   float cl_prob = iff->as_If()->_prob;
 302   if (iftrue_op == Op_IfFalse) {
 303     bt = BoolTest(bt).negate();
 304     cl_prob = 1.0 - cl_prob;
 305   }
 306   // Get backedge compare
 307   Node *cmp = test->in(1);
 308   int cmp_op = cmp->Opcode();
 309   if (cmp_op != Op_CmpI)
 310     return false;                // Avoid pointer & float compares
 311 
 312   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 313   Node *incr  = cmp->in(1);
 314   Node *limit = cmp->in(2);
 315 
 316   // ---------
 317   // need 'loop()' test to tell if limit is loop invariant
 318   // ---------
 319 
 320   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 321     Node *tmp = incr;            // Then reverse order into the CmpI
 322     incr = limit;
 323     limit = tmp;
 324     bt = BoolTest(bt).commute(); // And commute the exit test
 325   }
 326   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 327     return false;
 328   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 329     return false;
 330 
 331   Node* phi_incr = NULL;
 332   // Trip-counter increment must be commutative & associative.
 333   if (incr->Opcode() == Op_CastII) {
 334     incr = incr->in(1);
 335   }
 336   if (incr->is_Phi()) {
 337     if (incr->as_Phi()->region() != x || incr->req() != 3)
 338       return false; // Not simple trip counter expression
 339     phi_incr = incr;
 340     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 341     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 342       return false;
 343   }
 344 
 345   Node* trunc1 = NULL;
 346   Node* trunc2 = NULL;
 347   const TypeInt* iv_trunc_t = NULL;
 348   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 349     return false; // Funny increment opcode
 350   }
 351   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 352 
 353   // Get merge point
 354   Node *xphi = incr->in(1);
 355   Node *stride = incr->in(2);
 356   if (!stride->is_Con()) {     // Oops, swap these
 357     if (!xphi->is_Con())       // Is the other guy a constant?
 358       return false;             // Nope, unknown stride, bail out
 359     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 360     xphi = stride;
 361     stride = tmp;
 362   }
 363   if (xphi->Opcode() == Op_CastII) {
 364     xphi = xphi->in(1);
 365   }
 366   // Stride must be constant
 367   int stride_con = stride->get_int();
 368   if (stride_con == 0)
 369     return false; // missed some peephole opt
 370 
 371   if (!xphi->is_Phi())
 372     return false; // Too much math on the trip counter
 373   if (phi_incr != NULL && phi_incr != xphi)
 374     return false;
 375   PhiNode *phi = xphi->as_Phi();
 376 
 377   // Phi must be of loop header; backedge must wrap to increment
 378   if (phi->region() != x)
 379     return false;
 380   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 381       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
 382     return false;
 383   }
 384   Node *init_trip = phi->in(LoopNode::EntryControl);
 385 
 386   // If iv trunc type is smaller than int, check for possible wrap.
 387   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 388     assert(trunc1 != NULL, "must have found some truncation");
 389 
 390     // Get a better type for the phi (filtered thru if's)
 391     const TypeInt* phi_ft = filtered_type(phi);
 392 
 393     // Can iv take on a value that will wrap?
 394     //
 395     // Ensure iv's limit is not within "stride" of the wrap value.
 396     //
 397     // Example for "short" type
 398     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 399     //    If the stride is +10, then the last value of the induction
 400     //    variable before the increment (phi_ft->_hi) must be
 401     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 402     //    ensure no truncation occurs after the increment.
 403 
 404     if (stride_con > 0) {
 405       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 406           iv_trunc_t->_lo > phi_ft->_lo) {
 407         return false;  // truncation may occur
 408       }
 409     } else if (stride_con < 0) {
 410       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 411           iv_trunc_t->_hi < phi_ft->_hi) {
 412         return false;  // truncation may occur
 413       }
 414     }
 415     // No possibility of wrap so truncation can be discarded
 416     // Promote iv type to Int
 417   } else {
 418     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 419   }
 420 
 421   // If the condition is inverted and we will be rolling
 422   // through MININT to MAXINT, then bail out.
 423   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 424       // Odd stride
 425       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
 426       // Count down loop rolls through MAXINT
 427       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
 428       // Count up loop rolls through MININT
 429       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
 430     return false; // Bail out
 431   }
 432 
 433   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 434   const TypeInt* limit_t = gvn->type(limit)->is_int();
 435 
 436   if (stride_con > 0) {
 437     jlong init_p = (jlong)init_t->_lo + stride_con;
 438     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 439       return false; // cyclic loop or this loop trips only once
 440   } else {
 441     jlong init_p = (jlong)init_t->_hi + stride_con;
 442     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 443       return false; // cyclic loop or this loop trips only once
 444   }
 445 
 446   if (phi_incr != NULL) {
 447     // check if there is a possiblity of IV overflowing after the first increment
 448     if (stride_con > 0) {
 449       if (init_t->_hi > max_jint - stride_con) {
 450         return false;
 451       }
 452     } else {
 453       if (init_t->_lo < min_jint - stride_con) {
 454         return false;
 455       }
 456     }
 457   }
 458 
 459   // =================================================
 460   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 461   //
 462   assert(x->Opcode() == Op_Loop, "regular loops only");
 463   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 464 
 465   Node *hook = new Node(6);
 466 
 467   if (LoopLimitCheck) {
 468 
 469   // ===================================================
 470   // Generate loop limit check to avoid integer overflow
 471   // in cases like next (cyclic loops):
 472   //
 473   // for (i=0; i <= max_jint; i++) {}
 474   // for (i=0; i <  max_jint; i+=2) {}
 475   //
 476   //
 477   // Limit check predicate depends on the loop test:
 478   //
 479   // for(;i != limit; i++)       --> limit <= (max_jint)
 480   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 481   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 482   //
 483 
 484   // Check if limit is excluded to do more precise int overflow check.
 485   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 486   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 487 
 488   // If compare points directly to the phi we need to adjust
 489   // the compare so that it points to the incr. Limit have
 490   // to be adjusted to keep trip count the same and the
 491   // adjusted limit should be checked for int overflow.
 492   if (phi_incr != NULL) {
 493     stride_m  += stride_con;
 494   }
 495 
 496   if (limit->is_Con()) {
 497     int limit_con = limit->get_int();
 498     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 499         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 500       // Bailout: it could be integer overflow.
 501       return false;
 502     }
 503   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 504              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 505       // Limit's type may satisfy the condition, for example,
 506       // when it is an array length.
 507   } else {
 508     // Generate loop's limit check.
 509     // Loop limit check predicate should be near the loop.
 510     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 511     if (!limit_check_proj) {
 512       // The limit check predicate is not generated if this method trapped here before.
 513 #ifdef ASSERT
 514       if (TraceLoopLimitCheck) {
 515         tty->print("missing loop limit check:");
 516         loop->dump_head();
 517         x->dump(1);
 518       }
 519 #endif
 520       return false;
 521     }
 522 
 523     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 524     Node* cmp_limit;
 525     Node* bol;
 526 
 527     if (stride_con > 0) {
 528       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 529       bol = new BoolNode(cmp_limit, BoolTest::le);
 530     } else {
 531       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 532       bol = new BoolNode(cmp_limit, BoolTest::ge);
 533     }
 534     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 535     bol = _igvn.register_new_node_with_optimizer(bol);
 536     set_subtree_ctrl(bol);
 537 
 538     // Replace condition in original predicate but preserve Opaque node
 539     // so that previous predicates could be found.
 540     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 541            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 542     Node* opq = check_iff->in(1)->in(1);
 543     _igvn.replace_input_of(opq, 1, bol);
 544     // Update ctrl.
 545     set_ctrl(opq, check_iff->in(0));
 546     set_ctrl(check_iff->in(1), check_iff->in(0));
 547 
 548 #ifndef PRODUCT
 549     // report that the loop predication has been actually performed
 550     // for this loop
 551     if (TraceLoopLimitCheck) {
 552       tty->print_cr("Counted Loop Limit Check generated:");
 553       debug_only( bol->dump(2); )
 554     }
 555 #endif
 556   }
 557 
 558   if (phi_incr != NULL) {
 559     // If compare points directly to the phi we need to adjust
 560     // the compare so that it points to the incr. Limit have
 561     // to be adjusted to keep trip count the same and we
 562     // should avoid int overflow.
 563     //
 564     //   i = init; do {} while(i++ < limit);
 565     // is converted to
 566     //   i = init; do {} while(++i < limit+1);
 567     //
 568     limit = gvn->transform(new AddINode(limit, stride));
 569   }
 570 
 571   // Now we need to canonicalize loop condition.
 572   if (bt == BoolTest::ne) {
 573     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 574     // 'ne' can be replaced with 'lt' only when init < limit.
 575     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 576       bt = BoolTest::lt;
 577     // 'ne' can be replaced with 'gt' only when init > limit.
 578     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 579       bt = BoolTest::gt;
 580   }
 581 
 582   if (incl_limit) {
 583     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 584     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 585     //
 586     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 587     limit = gvn->transform(new AddINode(limit, one));
 588     if (bt == BoolTest::le)
 589       bt = BoolTest::lt;
 590     else if (bt == BoolTest::ge)
 591       bt = BoolTest::gt;
 592     else
 593       ShouldNotReachHere();
 594   }
 595   set_subtree_ctrl( limit );
 596 
 597   } else { // LoopLimitCheck
 598 
 599   // If compare points to incr, we are ok.  Otherwise the compare
 600   // can directly point to the phi; in this case adjust the compare so that
 601   // it points to the incr by adjusting the limit.
 602   if (cmp->in(1) == phi || cmp->in(2) == phi)
 603     limit = gvn->transform(new AddINode(limit,stride));
 604 
 605   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 606   // Final value for iterator should be: trip_count * stride + init_trip.
 607   Node *one_p = gvn->intcon( 1);
 608   Node *one_m = gvn->intcon(-1);
 609 
 610   Node *trip_count = NULL;
 611   switch( bt ) {
 612   case BoolTest::eq:
 613     ShouldNotReachHere();
 614   case BoolTest::ne:            // Ahh, the case we desire
 615     if (stride_con == 1)
 616       trip_count = gvn->transform(new SubINode(limit,init_trip));
 617     else if (stride_con == -1)
 618       trip_count = gvn->transform(new SubINode(init_trip,limit));
 619     else
 620       ShouldNotReachHere();
 621     set_subtree_ctrl(trip_count);
 622     //_loop.map(trip_count->_idx,loop(limit));
 623     break;
 624   case BoolTest::le:            // Maybe convert to '<' case
 625     limit = gvn->transform(new AddINode(limit,one_p));
 626     set_subtree_ctrl( limit );
 627     hook->init_req(4, limit);
 628 
 629     bt = BoolTest::lt;
 630     // Make the new limit be in the same loop nest as the old limit
 631     //_loop.map(limit->_idx,limit_loop);
 632     // Fall into next case
 633   case BoolTest::lt: {          // Maybe convert to '!=' case
 634     if (stride_con < 0) // Count down loop rolls through MAXINT
 635       ShouldNotReachHere();
 636     Node *range = gvn->transform(new SubINode(limit,init_trip));
 637     set_subtree_ctrl( range );
 638     hook->init_req(0, range);
 639 
 640     Node *bias  = gvn->transform(new AddINode(range,stride));
 641     set_subtree_ctrl( bias );
 642     hook->init_req(1, bias);
 643 
 644     Node *bias1 = gvn->transform(new AddINode(bias,one_m));
 645     set_subtree_ctrl( bias1 );
 646     hook->init_req(2, bias1);
 647 
 648     trip_count  = gvn->transform(new DivINode(0,bias1,stride));
 649     set_subtree_ctrl( trip_count );
 650     hook->init_req(3, trip_count);
 651     break;
 652   }
 653 
 654   case BoolTest::ge:            // Maybe convert to '>' case
 655     limit = gvn->transform(new AddINode(limit,one_m));
 656     set_subtree_ctrl( limit );
 657     hook->init_req(4 ,limit);
 658 
 659     bt = BoolTest::gt;
 660     // Make the new limit be in the same loop nest as the old limit
 661     //_loop.map(limit->_idx,limit_loop);
 662     // Fall into next case
 663   case BoolTest::gt: {          // Maybe convert to '!=' case
 664     if (stride_con > 0) // count up loop rolls through MININT
 665       ShouldNotReachHere();
 666     Node *range = gvn->transform(new SubINode(limit,init_trip));
 667     set_subtree_ctrl( range );
 668     hook->init_req(0, range);
 669 
 670     Node *bias  = gvn->transform(new AddINode(range,stride));
 671     set_subtree_ctrl( bias );
 672     hook->init_req(1, bias);
 673 
 674     Node *bias1 = gvn->transform(new AddINode(bias,one_p));
 675     set_subtree_ctrl( bias1 );
 676     hook->init_req(2, bias1);
 677 
 678     trip_count  = gvn->transform(new DivINode(0,bias1,stride));
 679     set_subtree_ctrl( trip_count );
 680     hook->init_req(3, trip_count);
 681     break;
 682   }
 683   } // switch( bt )
 684 
 685   Node *span = gvn->transform(new MulINode(trip_count,stride));
 686   set_subtree_ctrl( span );
 687   hook->init_req(5, span);
 688 
 689   limit = gvn->transform(new AddINode(span,init_trip));
 690   set_subtree_ctrl( limit );
 691 
 692   } // LoopLimitCheck
 693 
 694   if (!UseCountedLoopSafepoints) {
 695     // Check for SafePoint on backedge and remove
 696     Node *sfpt = x->in(LoopNode::LoopBackControl);
 697     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 698       lazy_replace( sfpt, iftrue );
 699       if (loop->_safepts != NULL) {
 700         loop->_safepts->yank(sfpt);
 701       }
 702       loop->_tail = iftrue;
 703     }
 704   }
 705 
 706   // Build a canonical trip test.
 707   // Clone code, as old values may be in use.
 708   incr = incr->clone();
 709   incr->set_req(1,phi);
 710   incr->set_req(2,stride);
 711   incr = _igvn.register_new_node_with_optimizer(incr);
 712   set_early_ctrl( incr );
 713   _igvn.rehash_node_delayed(phi);
 714   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 715 
 716   // If phi type is more restrictive than Int, raise to
 717   // Int to prevent (almost) infinite recursion in igvn
 718   // which can only handle integer types for constants or minint..maxint.
 719   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 720     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 721     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 722     nphi = _igvn.register_new_node_with_optimizer(nphi);
 723     set_ctrl(nphi, get_ctrl(phi));
 724     _igvn.replace_node(phi, nphi);
 725     phi = nphi->as_Phi();
 726   }
 727   cmp = cmp->clone();
 728   cmp->set_req(1,incr);
 729   cmp->set_req(2,limit);
 730   cmp = _igvn.register_new_node_with_optimizer(cmp);
 731   set_ctrl(cmp, iff->in(0));
 732 
 733   test = test->clone()->as_Bool();
 734   (*(BoolTest*)&test->_test)._test = bt;
 735   test->set_req(1,cmp);
 736   _igvn.register_new_node_with_optimizer(test);
 737   set_ctrl(test, iff->in(0));
 738 
 739   // Replace the old IfNode with a new LoopEndNode
 740   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 741   IfNode *le = lex->as_If();
 742   uint dd = dom_depth(iff);
 743   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 744   set_loop(le, loop);
 745 
 746   // Get the loop-exit control
 747   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 748 
 749   // Need to swap loop-exit and loop-back control?
 750   if (iftrue_op == Op_IfFalse) {
 751     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 752     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 753 
 754     loop->_tail = back_control = ift2;
 755     set_loop(ift2, loop);
 756     set_loop(iff2, get_loop(iffalse));
 757 
 758     // Lazy update of 'get_ctrl' mechanism.
 759     lazy_replace(iffalse, iff2);
 760     lazy_replace(iftrue,  ift2);
 761 
 762     // Swap names
 763     iffalse = iff2;
 764     iftrue  = ift2;
 765   } else {
 766     _igvn.rehash_node_delayed(iffalse);
 767     _igvn.rehash_node_delayed(iftrue);
 768     iffalse->set_req_X( 0, le, &_igvn );
 769     iftrue ->set_req_X( 0, le, &_igvn );
 770   }
 771 
 772   set_idom(iftrue,  le, dd+1);
 773   set_idom(iffalse, le, dd+1);
 774   assert(iff->outcnt() == 0, "should be dead now");
 775   lazy_replace( iff, le ); // fix 'get_ctrl'
 776 
 777   // Now setup a new CountedLoopNode to replace the existing LoopNode
 778   CountedLoopNode *l = new CountedLoopNode(init_control, back_control);
 779   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 780   // The following assert is approximately true, and defines the intention
 781   // of can_be_counted_loop.  It fails, however, because phase->type
 782   // is not yet initialized for this loop and its parts.
 783   //assert(l->can_be_counted_loop(this), "sanity");
 784   _igvn.register_new_node_with_optimizer(l);
 785   set_loop(l, loop);
 786   loop->_head = l;
 787   // Fix all data nodes placed at the old loop head.
 788   // Uses the lazy-update mechanism of 'get_ctrl'.
 789   lazy_replace( x, l );
 790   set_idom(l, init_control, dom_depth(x));
 791 
 792   if (!UseCountedLoopSafepoints) {
 793     // Check for immediately preceding SafePoint and remove
 794     Node *sfpt2 = le->in(0);
 795     if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
 796       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 797       if (loop->_safepts != NULL) {
 798         loop->_safepts->yank(sfpt2);
 799       }
 800     }
 801   }
 802 
 803   // Free up intermediate goo
 804   _igvn.remove_dead_node(hook);
 805 
 806 #ifdef ASSERT
 807   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 808   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 809 #endif
 810 #ifndef PRODUCT
 811   if (TraceLoopOpts) {
 812     tty->print("Counted      ");
 813     loop->dump_head();
 814   }
 815 #endif
 816 
 817   C->print_method(PHASE_AFTER_CLOOPS, 3);
 818 
 819   // Capture bounds of the loop in the induction variable Phi before
 820   // subsequent transformation (iteration splitting) obscures the
 821   // bounds
 822   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 823 
 824   return true;
 825 }
 826 
 827 //----------------------exact_limit-------------------------------------------
 828 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 829   assert(loop->_head->is_CountedLoop(), "");
 830   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 831   assert(cl->is_valid_counted_loop(), "");
 832 
 833   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
 834       cl->limit()->Opcode() == Op_LoopLimit) {
 835     // Old code has exact limit (it could be incorrect in case of int overflow).
 836     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 837     return cl->limit();
 838   }
 839   Node *limit = NULL;
 840 #ifdef ASSERT
 841   BoolTest::mask bt = cl->loopexit()->test_trip();
 842   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 843 #endif
 844   if (cl->has_exact_trip_count()) {
 845     // Simple case: loop has constant boundaries.
 846     // Use jlongs to avoid integer overflow.
 847     int stride_con = cl->stride_con();
 848     jlong  init_con = cl->init_trip()->get_int();
 849     jlong limit_con = cl->limit()->get_int();
 850     julong trip_cnt = cl->trip_count();
 851     jlong final_con = init_con + trip_cnt*stride_con;
 852     int final_int = (int)final_con;
 853     // The final value should be in integer range since the loop
 854     // is counted and the limit was checked for overflow.
 855     assert(final_con == (jlong)final_int, "final value should be integer");
 856     limit = _igvn.intcon(final_int);
 857   } else {
 858     // Create new LoopLimit node to get exact limit (final iv value).
 859     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 860     register_new_node(limit, cl->in(LoopNode::EntryControl));
 861   }
 862   assert(limit != NULL, "sanity");
 863   return limit;
 864 }
 865 
 866 //------------------------------Ideal------------------------------------------
 867 // Return a node which is more "ideal" than the current node.
 868 // Attempt to convert into a counted-loop.
 869 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 870   if (!can_be_counted_loop(phase)) {
 871     phase->C->set_major_progress();
 872   }
 873   return RegionNode::Ideal(phase, can_reshape);
 874 }
 875 
 876 
 877 //=============================================================================
 878 //------------------------------Ideal------------------------------------------
 879 // Return a node which is more "ideal" than the current node.
 880 // Attempt to convert into a counted-loop.
 881 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 882   return RegionNode::Ideal(phase, can_reshape);
 883 }
 884 
 885 //------------------------------dump_spec--------------------------------------
 886 // Dump special per-node info
 887 #ifndef PRODUCT
 888 void CountedLoopNode::dump_spec(outputStream *st) const {
 889   LoopNode::dump_spec(st);
 890   if (stride_is_con()) {
 891     st->print("stride: %d ",stride_con());
 892   }
 893   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 894   if (is_main_loop()) st->print("main of N%d", _idx);
 895   if (is_post_loop()) st->print("post of N%d", _main_idx);
 896 }
 897 #endif
 898 
 899 //=============================================================================
 900 int CountedLoopEndNode::stride_con() const {
 901   return stride()->bottom_type()->is_int()->get_con();
 902 }
 903 
 904 //=============================================================================
 905 //------------------------------Value-----------------------------------------
 906 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
 907   const Type* init_t   = phase->type(in(Init));
 908   const Type* limit_t  = phase->type(in(Limit));
 909   const Type* stride_t = phase->type(in(Stride));
 910   // Either input is TOP ==> the result is TOP
 911   if (init_t   == Type::TOP) return Type::TOP;
 912   if (limit_t  == Type::TOP) return Type::TOP;
 913   if (stride_t == Type::TOP) return Type::TOP;
 914 
 915   int stride_con = stride_t->is_int()->get_con();
 916   if (stride_con == 1)
 917     return NULL;  // Identity
 918 
 919   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 920     // Use jlongs to avoid integer overflow.
 921     jlong init_con   =  init_t->is_int()->get_con();
 922     jlong limit_con  = limit_t->is_int()->get_con();
 923     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
 924     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 925     jlong final_con  = init_con + stride_con*trip_count;
 926     int final_int = (int)final_con;
 927     // The final value should be in integer range since the loop
 928     // is counted and the limit was checked for overflow.
 929     assert(final_con == (jlong)final_int, "final value should be integer");
 930     return TypeInt::make(final_int);
 931   }
 932 
 933   return bottom_type(); // TypeInt::INT
 934 }
 935 
 936 //------------------------------Ideal------------------------------------------
 937 // Return a node which is more "ideal" than the current node.
 938 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 939   if (phase->type(in(Init))   == Type::TOP ||
 940       phase->type(in(Limit))  == Type::TOP ||
 941       phase->type(in(Stride)) == Type::TOP)
 942     return NULL;  // Dead
 943 
 944   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 945   if (stride_con == 1)
 946     return NULL;  // Identity
 947 
 948   if (in(Init)->is_Con() && in(Limit)->is_Con())
 949     return NULL;  // Value
 950 
 951   // Delay following optimizations until all loop optimizations
 952   // done to keep Ideal graph simple.
 953   if (!can_reshape || phase->C->major_progress())
 954     return NULL;
 955 
 956   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
 957   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
 958   int stride_p;
 959   jlong lim, ini;
 960   julong max;
 961   if (stride_con > 0) {
 962     stride_p = stride_con;
 963     lim = limit_t->_hi;
 964     ini = init_t->_lo;
 965     max = (julong)max_jint;
 966   } else {
 967     stride_p = -stride_con;
 968     lim = init_t->_hi;
 969     ini = limit_t->_lo;
 970     max = (julong)min_jint;
 971   }
 972   julong range = lim - ini + stride_p;
 973   if (range <= max) {
 974     // Convert to integer expression if it is not overflow.
 975     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
 976     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
 977     Node *bias  = phase->transform(new AddINode(range, stride_m));
 978     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
 979     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
 980     return new AddINode(span, in(Init)); // exact limit
 981   }
 982 
 983   if (is_power_of_2(stride_p) ||                // divisor is 2^n
 984       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
 985     // Convert to long expression to avoid integer overflow
 986     // and let igvn optimizer convert this division.
 987     //
 988     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
 989     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
 990     Node* stride   = phase->longcon(stride_con);
 991     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
 992 
 993     Node *range = phase->transform(new SubLNode(limit, init));
 994     Node *bias  = phase->transform(new AddLNode(range, stride_m));
 995     Node *span;
 996     if (stride_con > 0 && is_power_of_2(stride_p)) {
 997       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
 998       // and avoid generating rounding for division. Zero trip guard should
 999       // guarantee that init < limit but sometimes the guard is missing and
1000       // we can get situation when init > limit. Note, for the empty loop
1001       // optimization zero trip guard is generated explicitly which leaves
1002       // only RCE predicate where exact limit is used and the predicate
1003       // will simply fail forcing recompilation.
1004       Node* neg_stride   = phase->longcon(-stride_con);
1005       span = phase->transform(new AndLNode(bias, neg_stride));
1006     } else {
1007       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1008       span = phase->transform(new MulLNode(trip, stride));
1009     }
1010     // Convert back to int
1011     Node *span_int = phase->transform(new ConvL2INode(span));
1012     return new AddINode(span_int, in(Init)); // exact limit
1013   }
1014 
1015   return NULL;    // No progress
1016 }
1017 
1018 //------------------------------Identity---------------------------------------
1019 // If stride == 1 return limit node.
1020 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1021   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1022   if (stride_con == 1 || stride_con == -1)
1023     return in(Limit);
1024   return this;
1025 }
1026 
1027 //=============================================================================
1028 //----------------------match_incr_with_optional_truncation--------------------
1029 // Match increment with optional truncation:
1030 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1031 // Return NULL for failure. Success returns the increment node.
1032 Node* CountedLoopNode::match_incr_with_optional_truncation(
1033                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1034   // Quick cutouts:
1035   if (expr == NULL || expr->req() != 3)  return NULL;
1036 
1037   Node *t1 = NULL;
1038   Node *t2 = NULL;
1039   const TypeInt* trunc_t = TypeInt::INT;
1040   Node* n1 = expr;
1041   int   n1op = n1->Opcode();
1042 
1043   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1044   if (n1op == Op_AndI &&
1045       n1->in(2)->is_Con() &&
1046       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1047     // %%% This check should match any mask of 2**K-1.
1048     t1 = n1;
1049     n1 = t1->in(1);
1050     n1op = n1->Opcode();
1051     trunc_t = TypeInt::CHAR;
1052   } else if (n1op == Op_RShiftI &&
1053              n1->in(1) != NULL &&
1054              n1->in(1)->Opcode() == Op_LShiftI &&
1055              n1->in(2) == n1->in(1)->in(2) &&
1056              n1->in(2)->is_Con()) {
1057     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1058     // %%% This check should match any shift in [1..31].
1059     if (shift == 16 || shift == 8) {
1060       t1 = n1;
1061       t2 = t1->in(1);
1062       n1 = t2->in(1);
1063       n1op = n1->Opcode();
1064       if (shift == 16) {
1065         trunc_t = TypeInt::SHORT;
1066       } else if (shift == 8) {
1067         trunc_t = TypeInt::BYTE;
1068       }
1069     }
1070   }
1071 
1072   // If (maybe after stripping) it is an AddI, we won:
1073   if (n1op == Op_AddI) {
1074     *trunc1 = t1;
1075     *trunc2 = t2;
1076     *trunc_type = trunc_t;
1077     return n1;
1078   }
1079 
1080   // failed
1081   return NULL;
1082 }
1083 
1084 
1085 //------------------------------filtered_type--------------------------------
1086 // Return a type based on condition control flow
1087 // A successful return will be a type that is restricted due
1088 // to a series of dominating if-tests, such as:
1089 //    if (i < 10) {
1090 //       if (i > 0) {
1091 //          here: "i" type is [1..10)
1092 //       }
1093 //    }
1094 // or a control flow merge
1095 //    if (i < 10) {
1096 //       do {
1097 //          phi( , ) -- at top of loop type is [min_int..10)
1098 //         i = ?
1099 //       } while ( i < 10)
1100 //
1101 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1102   assert(n && n->bottom_type()->is_int(), "must be int");
1103   const TypeInt* filtered_t = NULL;
1104   if (!n->is_Phi()) {
1105     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1106     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1107 
1108   } else {
1109     Node* phi    = n->as_Phi();
1110     Node* region = phi->in(0);
1111     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1112     if (region && region != C->top()) {
1113       for (uint i = 1; i < phi->req(); i++) {
1114         Node* val   = phi->in(i);
1115         Node* use_c = region->in(i);
1116         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1117         if (val_t != NULL) {
1118           if (filtered_t == NULL) {
1119             filtered_t = val_t;
1120           } else {
1121             filtered_t = filtered_t->meet(val_t)->is_int();
1122           }
1123         }
1124       }
1125     }
1126   }
1127   const TypeInt* n_t = _igvn.type(n)->is_int();
1128   if (filtered_t != NULL) {
1129     n_t = n_t->join(filtered_t)->is_int();
1130   }
1131   return n_t;
1132 }
1133 
1134 
1135 //------------------------------filtered_type_from_dominators--------------------------------
1136 // Return a possibly more restrictive type for val based on condition control flow of dominators
1137 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1138   if (val->is_Con()) {
1139      return val->bottom_type()->is_int();
1140   }
1141   uint if_limit = 10; // Max number of dominating if's visited
1142   const TypeInt* rtn_t = NULL;
1143 
1144   if (use_ctrl && use_ctrl != C->top()) {
1145     Node* val_ctrl = get_ctrl(val);
1146     uint val_dom_depth = dom_depth(val_ctrl);
1147     Node* pred = use_ctrl;
1148     uint if_cnt = 0;
1149     while (if_cnt < if_limit) {
1150       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1151         if_cnt++;
1152         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1153         if (if_t != NULL) {
1154           if (rtn_t == NULL) {
1155             rtn_t = if_t;
1156           } else {
1157             rtn_t = rtn_t->join(if_t)->is_int();
1158           }
1159         }
1160       }
1161       pred = idom(pred);
1162       if (pred == NULL || pred == C->top()) {
1163         break;
1164       }
1165       // Stop if going beyond definition block of val
1166       if (dom_depth(pred) < val_dom_depth) {
1167         break;
1168       }
1169     }
1170   }
1171   return rtn_t;
1172 }
1173 
1174 
1175 //------------------------------dump_spec--------------------------------------
1176 // Dump special per-node info
1177 #ifndef PRODUCT
1178 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1179   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1180     BoolTest bt( test_trip()); // Added this for g++.
1181 
1182     st->print("[");
1183     bt.dump_on(st);
1184     st->print("]");
1185   }
1186   st->print(" ");
1187   IfNode::dump_spec(st);
1188 }
1189 #endif
1190 
1191 //=============================================================================
1192 //------------------------------is_member--------------------------------------
1193 // Is 'l' a member of 'this'?
1194 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1195   while( l->_nest > _nest ) l = l->_parent;
1196   return l == this;
1197 }
1198 
1199 //------------------------------set_nest---------------------------------------
1200 // Set loop tree nesting depth.  Accumulate _has_call bits.
1201 int IdealLoopTree::set_nest( uint depth ) {
1202   _nest = depth;
1203   int bits = _has_call;
1204   if( _child ) bits |= _child->set_nest(depth+1);
1205   if( bits ) _has_call = 1;
1206   if( _next  ) bits |= _next ->set_nest(depth  );
1207   return bits;
1208 }
1209 
1210 //------------------------------split_fall_in----------------------------------
1211 // Split out multiple fall-in edges from the loop header.  Move them to a
1212 // private RegionNode before the loop.  This becomes the loop landing pad.
1213 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1214   PhaseIterGVN &igvn = phase->_igvn;
1215   uint i;
1216 
1217   // Make a new RegionNode to be the landing pad.
1218   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1219   phase->set_loop(landing_pad,_parent);
1220   // Gather all the fall-in control paths into the landing pad
1221   uint icnt = fall_in_cnt;
1222   uint oreq = _head->req();
1223   for( i = oreq-1; i>0; i-- )
1224     if( !phase->is_member( this, _head->in(i) ) )
1225       landing_pad->set_req(icnt--,_head->in(i));
1226 
1227   // Peel off PhiNode edges as well
1228   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1229     Node *oj = _head->fast_out(j);
1230     if( oj->is_Phi() ) {
1231       PhiNode* old_phi = oj->as_Phi();
1232       assert( old_phi->region() == _head, "" );
1233       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1234       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1235       uint icnt = fall_in_cnt;
1236       for( i = oreq-1; i>0; i-- ) {
1237         if( !phase->is_member( this, _head->in(i) ) ) {
1238           p->init_req(icnt--, old_phi->in(i));
1239           // Go ahead and clean out old edges from old phi
1240           old_phi->del_req(i);
1241         }
1242       }
1243       // Search for CSE's here, because ZKM.jar does a lot of
1244       // loop hackery and we need to be a little incremental
1245       // with the CSE to avoid O(N^2) node blow-up.
1246       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1247       if( p2 ) {                // Found CSE
1248         p->destruct();          // Recover useless new node
1249         p = p2;                 // Use old node
1250       } else {
1251         igvn.register_new_node_with_optimizer(p, old_phi);
1252       }
1253       // Make old Phi refer to new Phi.
1254       old_phi->add_req(p);
1255       // Check for the special case of making the old phi useless and
1256       // disappear it.  In JavaGrande I have a case where this useless
1257       // Phi is the loop limit and prevents recognizing a CountedLoop
1258       // which in turn prevents removing an empty loop.
1259       Node *id_old_phi = old_phi->Identity( &igvn );
1260       if( id_old_phi != old_phi ) { // Found a simple identity?
1261         // Note that I cannot call 'replace_node' here, because
1262         // that will yank the edge from old_phi to the Region and
1263         // I'm mid-iteration over the Region's uses.
1264         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1265           Node* use = old_phi->last_out(i);
1266           igvn.rehash_node_delayed(use);
1267           uint uses_found = 0;
1268           for (uint j = 0; j < use->len(); j++) {
1269             if (use->in(j) == old_phi) {
1270               if (j < use->req()) use->set_req (j, id_old_phi);
1271               else                use->set_prec(j, id_old_phi);
1272               uses_found++;
1273             }
1274           }
1275           i -= uses_found;    // we deleted 1 or more copies of this edge
1276         }
1277       }
1278       igvn._worklist.push(old_phi);
1279     }
1280   }
1281   // Finally clean out the fall-in edges from the RegionNode
1282   for( i = oreq-1; i>0; i-- ) {
1283     if( !phase->is_member( this, _head->in(i) ) ) {
1284       _head->del_req(i);
1285     }
1286   }
1287   igvn.rehash_node_delayed(_head);
1288   // Transform landing pad
1289   igvn.register_new_node_with_optimizer(landing_pad, _head);
1290   // Insert landing pad into the header
1291   _head->add_req(landing_pad);
1292 }
1293 
1294 //------------------------------split_outer_loop-------------------------------
1295 // Split out the outermost loop from this shared header.
1296 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1297   PhaseIterGVN &igvn = phase->_igvn;
1298 
1299   // Find index of outermost loop; it should also be my tail.
1300   uint outer_idx = 1;
1301   while( _head->in(outer_idx) != _tail ) outer_idx++;
1302 
1303   // Make a LoopNode for the outermost loop.
1304   Node *ctl = _head->in(LoopNode::EntryControl);
1305   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1306   outer = igvn.register_new_node_with_optimizer(outer, _head);
1307   phase->set_created_loop_node();
1308 
1309   // Outermost loop falls into '_head' loop
1310   _head->set_req(LoopNode::EntryControl, outer);
1311   _head->del_req(outer_idx);
1312   // Split all the Phis up between '_head' loop and 'outer' loop.
1313   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1314     Node *out = _head->fast_out(j);
1315     if( out->is_Phi() ) {
1316       PhiNode *old_phi = out->as_Phi();
1317       assert( old_phi->region() == _head, "" );
1318       Node *phi = PhiNode::make_blank(outer, old_phi);
1319       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1320       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1321       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1322       // Make old Phi point to new Phi on the fall-in path
1323       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1324       old_phi->del_req(outer_idx);
1325     }
1326   }
1327 
1328   // Use the new loop head instead of the old shared one
1329   _head = outer;
1330   phase->set_loop(_head, this);
1331 }
1332 
1333 //------------------------------fix_parent-------------------------------------
1334 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1335   loop->_parent = parent;
1336   if( loop->_child ) fix_parent( loop->_child, loop   );
1337   if( loop->_next  ) fix_parent( loop->_next , parent );
1338 }
1339 
1340 //------------------------------estimate_path_freq-----------------------------
1341 static float estimate_path_freq( Node *n ) {
1342   // Try to extract some path frequency info
1343   IfNode *iff;
1344   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1345     uint nop = n->Opcode();
1346     if( nop == Op_SafePoint ) {   // Skip any safepoint
1347       n = n->in(0);
1348       continue;
1349     }
1350     if( nop == Op_CatchProj ) {   // Get count from a prior call
1351       // Assume call does not always throw exceptions: means the call-site
1352       // count is also the frequency of the fall-through path.
1353       assert( n->is_CatchProj(), "" );
1354       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1355         return 0.0f;            // Assume call exception path is rare
1356       Node *call = n->in(0)->in(0)->in(0);
1357       assert( call->is_Call(), "expect a call here" );
1358       const JVMState *jvms = ((CallNode*)call)->jvms();
1359       ciMethodData* methodData = jvms->method()->method_data();
1360       if (!methodData->is_mature())  return 0.0f; // No call-site data
1361       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1362       if ((data == NULL) || !data->is_CounterData()) {
1363         // no call profile available, try call's control input
1364         n = n->in(0);
1365         continue;
1366       }
1367       return data->as_CounterData()->count()/FreqCountInvocations;
1368     }
1369     // See if there's a gating IF test
1370     Node *n_c = n->in(0);
1371     if( !n_c->is_If() ) break;       // No estimate available
1372     iff = n_c->as_If();
1373     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1374       // Compute how much count comes on this path
1375       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1376     // Have no count info.  Skip dull uncommon-trap like branches.
1377     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1378         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1379       break;
1380     // Skip through never-taken branch; look for a real loop exit.
1381     n = iff->in(0);
1382   }
1383   return 0.0f;                  // No estimate available
1384 }
1385 
1386 //------------------------------merge_many_backedges---------------------------
1387 // Merge all the backedges from the shared header into a private Region.
1388 // Feed that region as the one backedge to this loop.
1389 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1390   uint i;
1391 
1392   // Scan for the top 2 hottest backedges
1393   float hotcnt = 0.0f;
1394   float warmcnt = 0.0f;
1395   uint hot_idx = 0;
1396   // Loop starts at 2 because slot 1 is the fall-in path
1397   for( i = 2; i < _head->req(); i++ ) {
1398     float cnt = estimate_path_freq(_head->in(i));
1399     if( cnt > hotcnt ) {       // Grab hottest path
1400       warmcnt = hotcnt;
1401       hotcnt = cnt;
1402       hot_idx = i;
1403     } else if( cnt > warmcnt ) { // And 2nd hottest path
1404       warmcnt = cnt;
1405     }
1406   }
1407 
1408   // See if the hottest backedge is worthy of being an inner loop
1409   // by being much hotter than the next hottest backedge.
1410   if( hotcnt <= 0.0001 ||
1411       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1412 
1413   // Peel out the backedges into a private merge point; peel
1414   // them all except optionally hot_idx.
1415   PhaseIterGVN &igvn = phase->_igvn;
1416 
1417   Node *hot_tail = NULL;
1418   // Make a Region for the merge point
1419   Node *r = new RegionNode(1);
1420   for( i = 2; i < _head->req(); i++ ) {
1421     if( i != hot_idx )
1422       r->add_req( _head->in(i) );
1423     else hot_tail = _head->in(i);
1424   }
1425   igvn.register_new_node_with_optimizer(r, _head);
1426   // Plug region into end of loop _head, followed by hot_tail
1427   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1428   igvn.replace_input_of(_head, 2, r);
1429   if( hot_idx ) _head->add_req(hot_tail);
1430 
1431   // Split all the Phis up between '_head' loop and the Region 'r'
1432   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1433     Node *out = _head->fast_out(j);
1434     if( out->is_Phi() ) {
1435       PhiNode* n = out->as_Phi();
1436       igvn.hash_delete(n);      // Delete from hash before hacking edges
1437       Node *hot_phi = NULL;
1438       Node *phi = new PhiNode(r, n->type(), n->adr_type());
1439       // Check all inputs for the ones to peel out
1440       uint j = 1;
1441       for( uint i = 2; i < n->req(); i++ ) {
1442         if( i != hot_idx )
1443           phi->set_req( j++, n->in(i) );
1444         else hot_phi = n->in(i);
1445       }
1446       // Register the phi but do not transform until whole place transforms
1447       igvn.register_new_node_with_optimizer(phi, n);
1448       // Add the merge phi to the old Phi
1449       while( n->req() > 3 ) n->del_req( n->req()-1 );
1450       igvn.replace_input_of(n, 2, phi);
1451       if( hot_idx ) n->add_req(hot_phi);
1452     }
1453   }
1454 
1455 
1456   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1457   // of self loop tree.  Turn self into a loop headed by _head and with
1458   // tail being the new merge point.
1459   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1460   phase->set_loop(_tail,ilt);   // Adjust tail
1461   _tail = r;                    // Self's tail is new merge point
1462   phase->set_loop(r,this);
1463   ilt->_child = _child;         // New guy has my children
1464   _child = ilt;                 // Self has new guy as only child
1465   ilt->_parent = this;          // new guy has self for parent
1466   ilt->_nest = _nest;           // Same nesting depth (for now)
1467 
1468   // Starting with 'ilt', look for child loop trees using the same shared
1469   // header.  Flatten these out; they will no longer be loops in the end.
1470   IdealLoopTree **pilt = &_child;
1471   while( ilt ) {
1472     if( ilt->_head == _head ) {
1473       uint i;
1474       for( i = 2; i < _head->req(); i++ )
1475         if( _head->in(i) == ilt->_tail )
1476           break;                // Still a loop
1477       if( i == _head->req() ) { // No longer a loop
1478         // Flatten ilt.  Hang ilt's "_next" list from the end of
1479         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1480         IdealLoopTree **cp = &ilt->_child;
1481         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1482         *cp = ilt->_next;       // Hang next list at end of child list
1483         *pilt = ilt->_child;    // Move child up to replace ilt
1484         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1485         ilt = ilt->_child;      // Repeat using new ilt
1486         continue;               // do not advance over ilt->_child
1487       }
1488       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1489       phase->set_loop(_head,ilt);
1490     }
1491     pilt = &ilt->_child;        // Advance to next
1492     ilt = *pilt;
1493   }
1494 
1495   if( _child ) fix_parent( _child, this );
1496 }
1497 
1498 //------------------------------beautify_loops---------------------------------
1499 // Split shared headers and insert loop landing pads.
1500 // Insert a LoopNode to replace the RegionNode.
1501 // Return TRUE if loop tree is structurally changed.
1502 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1503   bool result = false;
1504   // Cache parts in locals for easy
1505   PhaseIterGVN &igvn = phase->_igvn;
1506 
1507   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1508 
1509   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1510   int fall_in_cnt = 0;
1511   for( uint i = 1; i < _head->req(); i++ )
1512     if( !phase->is_member( this, _head->in(i) ) )
1513       fall_in_cnt++;
1514   assert( fall_in_cnt, "at least 1 fall-in path" );
1515   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1516     split_fall_in( phase, fall_in_cnt );
1517 
1518   // Swap inputs to the _head and all Phis to move the fall-in edge to
1519   // the left.
1520   fall_in_cnt = 1;
1521   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1522     fall_in_cnt++;
1523   if( fall_in_cnt > 1 ) {
1524     // Since I am just swapping inputs I do not need to update def-use info
1525     Node *tmp = _head->in(1);
1526     igvn.rehash_node_delayed(_head);
1527     _head->set_req( 1, _head->in(fall_in_cnt) );
1528     _head->set_req( fall_in_cnt, tmp );
1529     // Swap also all Phis
1530     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1531       Node* phi = _head->fast_out(i);
1532       if( phi->is_Phi() ) {
1533         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
1534         tmp = phi->in(1);
1535         phi->set_req( 1, phi->in(fall_in_cnt) );
1536         phi->set_req( fall_in_cnt, tmp );
1537       }
1538     }
1539   }
1540   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1541   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1542 
1543   // If I am a shared header (multiple backedges), peel off the many
1544   // backedges into a private merge point and use the merge point as
1545   // the one true backedge.
1546   if( _head->req() > 3 ) {
1547     // Merge the many backedges into a single backedge but leave
1548     // the hottest backedge as separate edge for the following peel.
1549     merge_many_backedges( phase );
1550     result = true;
1551   }
1552 
1553   // If I have one hot backedge, peel off myself loop.
1554   // I better be the outermost loop.
1555   if (_head->req() > 3 && !_irreducible) {
1556     split_outer_loop( phase );
1557     result = true;
1558 
1559   } else if (!_head->is_Loop() && !_irreducible) {
1560     // Make a new LoopNode to replace the old loop head
1561     Node *l = new LoopNode( _head->in(1), _head->in(2) );
1562     l = igvn.register_new_node_with_optimizer(l, _head);
1563     phase->set_created_loop_node();
1564     // Go ahead and replace _head
1565     phase->_igvn.replace_node( _head, l );
1566     _head = l;
1567     phase->set_loop(_head, this);
1568   }
1569 
1570   // Now recursively beautify nested loops
1571   if( _child ) result |= _child->beautify_loops( phase );
1572   if( _next  ) result |= _next ->beautify_loops( phase );
1573   return result;
1574 }
1575 
1576 //------------------------------allpaths_check_safepts----------------------------
1577 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1578 // encountered.  Helper for check_safepts.
1579 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1580   assert(stack.size() == 0, "empty stack");
1581   stack.push(_tail);
1582   visited.Clear();
1583   visited.set(_tail->_idx);
1584   while (stack.size() > 0) {
1585     Node* n = stack.pop();
1586     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1587       // Terminate this path
1588     } else if (n->Opcode() == Op_SafePoint) {
1589       if (_phase->get_loop(n) != this) {
1590         if (_required_safept == NULL) _required_safept = new Node_List();
1591         _required_safept->push(n);  // save the one closest to the tail
1592       }
1593       // Terminate this path
1594     } else {
1595       uint start = n->is_Region() ? 1 : 0;
1596       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1597       for (uint i = start; i < end; i++) {
1598         Node* in = n->in(i);
1599         assert(in->is_CFG(), "must be");
1600         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1601           stack.push(in);
1602         }
1603       }
1604     }
1605   }
1606 }
1607 
1608 //------------------------------check_safepts----------------------------
1609 // Given dominators, try to find loops with calls that must always be
1610 // executed (call dominates loop tail).  These loops do not need non-call
1611 // safepoints (ncsfpt).
1612 //
1613 // A complication is that a safepoint in a inner loop may be needed
1614 // by an outer loop. In the following, the inner loop sees it has a
1615 // call (block 3) on every path from the head (block 2) to the
1616 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1617 // in block 2, _but_ this leaves the outer loop without a safepoint.
1618 //
1619 //          entry  0
1620 //                 |
1621 //                 v
1622 // outer 1,2    +->1
1623 //              |  |
1624 //              |  v
1625 //              |  2<---+  ncsfpt in 2
1626 //              |_/|\   |
1627 //                 | v  |
1628 // inner 2,3      /  3  |  call in 3
1629 //               /   |  |
1630 //              v    +--+
1631 //        exit  4
1632 //
1633 //
1634 // This method creates a list (_required_safept) of ncsfpt nodes that must
1635 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1636 // is first looked for in the lists for the outer loops of the current loop.
1637 //
1638 // The insights into the problem:
1639 //  A) counted loops are okay
1640 //  B) innermost loops are okay (only an inner loop can delete
1641 //     a ncsfpt needed by an outer loop)
1642 //  C) a loop is immune from an inner loop deleting a safepoint
1643 //     if the loop has a call on the idom-path
1644 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1645 //     idom-path that is not in a nested loop
1646 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1647 //     loop needs to be prevented from deletion by an inner loop
1648 //
1649 // There are two analyses:
1650 //  1) The first, and cheaper one, scans the loop body from
1651 //     tail to head following the idom (immediate dominator)
1652 //     chain, looking for the cases (C,D,E) above.
1653 //     Since inner loops are scanned before outer loops, there is summary
1654 //     information about inner loops.  Inner loops can be skipped over
1655 //     when the tail of an inner loop is encountered.
1656 //
1657 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1658 //     the idom path (which is rare), scans all predecessor control paths
1659 //     from the tail to the head, terminating a path when a call or sfpt
1660 //     is encountered, to find the ncsfpt's that are closest to the tail.
1661 //
1662 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1663   // Bottom up traversal
1664   IdealLoopTree* ch = _child;
1665   if (_child) _child->check_safepts(visited, stack);
1666   if (_next)  _next ->check_safepts(visited, stack);
1667 
1668   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1669     bool  has_call         = false; // call on dom-path
1670     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1671     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1672     // Scan the dom-path nodes from tail to head
1673     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1674       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1675         has_call = true;
1676         _has_sfpt = 1;          // Then no need for a safept!
1677         break;
1678       } else if (n->Opcode() == Op_SafePoint) {
1679         if (_phase->get_loop(n) == this) {
1680           has_local_ncsfpt = true;
1681           break;
1682         }
1683         if (nonlocal_ncsfpt == NULL) {
1684           nonlocal_ncsfpt = n; // save the one closest to the tail
1685         }
1686       } else {
1687         IdealLoopTree* nlpt = _phase->get_loop(n);
1688         if (this != nlpt) {
1689           // If at an inner loop tail, see if the inner loop has already
1690           // recorded seeing a call on the dom-path (and stop.)  If not,
1691           // jump to the head of the inner loop.
1692           assert(is_member(nlpt), "nested loop");
1693           Node* tail = nlpt->_tail;
1694           if (tail->in(0)->is_If()) tail = tail->in(0);
1695           if (n == tail) {
1696             // If inner loop has call on dom-path, so does outer loop
1697             if (nlpt->_has_sfpt) {
1698               has_call = true;
1699               _has_sfpt = 1;
1700               break;
1701             }
1702             // Skip to head of inner loop
1703             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1704             n = nlpt->_head;
1705           }
1706         }
1707       }
1708     }
1709     // Record safept's that this loop needs preserved when an
1710     // inner loop attempts to delete it's safepoints.
1711     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1712       if (nonlocal_ncsfpt != NULL) {
1713         if (_required_safept == NULL) _required_safept = new Node_List();
1714         _required_safept->push(nonlocal_ncsfpt);
1715       } else {
1716         // Failed to find a suitable safept on the dom-path.  Now use
1717         // an all paths walk from tail to head, looking for safepoints to preserve.
1718         allpaths_check_safepts(visited, stack);
1719       }
1720     }
1721   }
1722 }
1723 
1724 //---------------------------is_deleteable_safept----------------------------
1725 // Is safept not required by an outer loop?
1726 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1727   assert(sfpt->Opcode() == Op_SafePoint, "");
1728   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1729   while (lp != NULL) {
1730     Node_List* sfpts = lp->_required_safept;
1731     if (sfpts != NULL) {
1732       for (uint i = 0; i < sfpts->size(); i++) {
1733         if (sfpt == sfpts->at(i))
1734           return false;
1735       }
1736     }
1737     lp = lp->_parent;
1738   }
1739   return true;
1740 }
1741 
1742 //---------------------------replace_parallel_iv-------------------------------
1743 // Replace parallel induction variable (parallel to trip counter)
1744 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1745   assert(loop->_head->is_CountedLoop(), "");
1746   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1747   if (!cl->is_valid_counted_loop())
1748     return;         // skip malformed counted loop
1749   Node *incr = cl->incr();
1750   if (incr == NULL)
1751     return;         // Dead loop?
1752   Node *init = cl->init_trip();
1753   Node *phi  = cl->phi();
1754   int stride_con = cl->stride_con();
1755 
1756   // Visit all children, looking for Phis
1757   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1758     Node *out = cl->out(i);
1759     // Look for other phis (secondary IVs). Skip dead ones
1760     if (!out->is_Phi() || out == phi || !has_node(out))
1761       continue;
1762     PhiNode* phi2 = out->as_Phi();
1763     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1764     // Look for induction variables of the form:  X += constant
1765     if (phi2->region() != loop->_head ||
1766         incr2->req() != 3 ||
1767         incr2->in(1) != phi2 ||
1768         incr2 == incr ||
1769         incr2->Opcode() != Op_AddI ||
1770         !incr2->in(2)->is_Con())
1771       continue;
1772 
1773     // Check for parallel induction variable (parallel to trip counter)
1774     // via an affine function.  In particular, count-down loops with
1775     // count-up array indices are common. We only RCE references off
1776     // the trip-counter, so we need to convert all these to trip-counter
1777     // expressions.
1778     Node *init2 = phi2->in( LoopNode::EntryControl );
1779     int stride_con2 = incr2->in(2)->get_int();
1780 
1781     // The general case here gets a little tricky.  We want to find the
1782     // GCD of all possible parallel IV's and make a new IV using this
1783     // GCD for the loop.  Then all possible IVs are simple multiples of
1784     // the GCD.  In practice, this will cover very few extra loops.
1785     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1786     // where +/-1 is the common case, but other integer multiples are
1787     // also easy to handle.
1788     int ratio_con = stride_con2/stride_con;
1789 
1790     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1791 #ifndef PRODUCT
1792       if (TraceLoopOpts) {
1793         tty->print("Parallel IV: %d ", phi2->_idx);
1794         loop->dump_head();
1795       }
1796 #endif
1797       // Convert to using the trip counter.  The parallel induction
1798       // variable differs from the trip counter by a loop-invariant
1799       // amount, the difference between their respective initial values.
1800       // It is scaled by the 'ratio_con'.
1801       Node* ratio = _igvn.intcon(ratio_con);
1802       set_ctrl(ratio, C->root());
1803       Node* ratio_init = new MulINode(init, ratio);
1804       _igvn.register_new_node_with_optimizer(ratio_init, init);
1805       set_early_ctrl(ratio_init);
1806       Node* diff = new SubINode(init2, ratio_init);
1807       _igvn.register_new_node_with_optimizer(diff, init2);
1808       set_early_ctrl(diff);
1809       Node* ratio_idx = new MulINode(phi, ratio);
1810       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1811       set_ctrl(ratio_idx, cl);
1812       Node* add = new AddINode(ratio_idx, diff);
1813       _igvn.register_new_node_with_optimizer(add);
1814       set_ctrl(add, cl);
1815       _igvn.replace_node( phi2, add );
1816       // Sometimes an induction variable is unused
1817       if (add->outcnt() == 0) {
1818         _igvn.remove_dead_node(add);
1819       }
1820       --i; // deleted this phi; rescan starting with next position
1821       continue;
1822     }
1823   }
1824 }
1825 
1826 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
1827   Node* keep = NULL;
1828   if (keep_one) {
1829     // Look for a safepoint on the idom-path.
1830     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
1831       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
1832         keep = i;
1833         break; // Found one
1834       }
1835     }
1836   }
1837 
1838   // Don't remove any safepoints if it is requested to keep a single safepoint and
1839   // no safepoint was found on idom-path. It is not safe to remove any safepoint
1840   // in this case since there's no safepoint dominating all paths in the loop body.
1841   bool prune = !keep_one || keep != NULL;
1842 
1843   // Delete other safepoints in this loop.
1844   Node_List* sfpts = _safepts;
1845   if (prune && sfpts != NULL) {
1846     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
1847     for (uint i = 0; i < sfpts->size(); i++) {
1848       Node* n = sfpts->at(i);
1849       assert(phase->get_loop(n) == this, "");
1850       if (n != keep && phase->is_deleteable_safept(n)) {
1851         phase->lazy_replace(n, n->in(TypeFunc::Control));
1852       }
1853     }
1854   }
1855 }
1856 
1857 //------------------------------counted_loop-----------------------------------
1858 // Convert to counted loops where possible
1859 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1860 
1861   // For grins, set the inner-loop flag here
1862   if (!_child) {
1863     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1864   }
1865 
1866   if (_head->is_CountedLoop() ||
1867       phase->is_counted_loop(_head, this)) {
1868 
1869     if (!UseCountedLoopSafepoints) {
1870       // Indicate we do not need a safepoint here
1871       _has_sfpt = 1;
1872     }
1873 
1874     // Remove safepoints
1875     bool keep_one_sfpt = !(_has_call || _has_sfpt);
1876     remove_safepoints(phase, keep_one_sfpt);
1877 
1878     // Look for induction variables
1879     phase->replace_parallel_iv(this);
1880 
1881   } else if (_parent != NULL && !_irreducible) {
1882     // Not a counted loop. Keep one safepoint.
1883     bool keep_one_sfpt = true;
1884     remove_safepoints(phase, keep_one_sfpt);
1885   }
1886 
1887   // Recursively
1888   if (_child) _child->counted_loop( phase );
1889   if (_next)  _next ->counted_loop( phase );
1890 }
1891 
1892 #ifndef PRODUCT
1893 //------------------------------dump_head--------------------------------------
1894 // Dump 1 liner for loop header info
1895 void IdealLoopTree::dump_head( ) const {
1896   for (uint i=0; i<_nest; i++)
1897     tty->print("  ");
1898   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1899   if (_irreducible) tty->print(" IRREDUCIBLE");
1900   Node* entry = _head->in(LoopNode::EntryControl);
1901   if (LoopLimitCheck) {
1902     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1903     if (predicate != NULL ) {
1904       tty->print(" limit_check");
1905       entry = entry->in(0)->in(0);
1906     }
1907   }
1908   if (UseLoopPredicate) {
1909     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1910     if (entry != NULL) {
1911       tty->print(" predicated");
1912     }
1913   }
1914   if (_head->is_CountedLoop()) {
1915     CountedLoopNode *cl = _head->as_CountedLoop();
1916     tty->print(" counted");
1917 
1918     Node* init_n = cl->init_trip();
1919     if (init_n  != NULL &&  init_n->is_Con())
1920       tty->print(" [%d,", cl->init_trip()->get_int());
1921     else
1922       tty->print(" [int,");
1923     Node* limit_n = cl->limit();
1924     if (limit_n  != NULL &&  limit_n->is_Con())
1925       tty->print("%d),", cl->limit()->get_int());
1926     else
1927       tty->print("int),");
1928     int stride_con  = cl->stride_con();
1929     if (stride_con > 0) tty->print("+");
1930     tty->print("%d", stride_con);
1931 
1932     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
1933 
1934     if (cl->is_pre_loop ()) tty->print(" pre" );
1935     if (cl->is_main_loop()) tty->print(" main");
1936     if (cl->is_post_loop()) tty->print(" post");
1937   }
1938   if (_has_call) tty->print(" has_call");
1939   if (_has_sfpt) tty->print(" has_sfpt");
1940   if (_rce_candidate) tty->print(" rce");
1941   if (_safepts != NULL && _safepts->size() > 0) {
1942     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
1943   }
1944   if (_required_safept != NULL && _required_safept->size() > 0) {
1945     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
1946   }
1947   tty->cr();
1948 }
1949 
1950 //------------------------------dump-------------------------------------------
1951 // Dump loops by loop tree
1952 void IdealLoopTree::dump( ) const {
1953   dump_head();
1954   if (_child) _child->dump();
1955   if (_next)  _next ->dump();
1956 }
1957 
1958 #endif
1959 
1960 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1961   if (loop == root) {
1962     if (loop->_child != NULL) {
1963       log->begin_head("loop_tree");
1964       log->end_head();
1965       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1966       log->tail("loop_tree");
1967       assert(loop->_next == NULL, "what?");
1968     }
1969   } else {
1970     Node* head = loop->_head;
1971     log->begin_head("loop");
1972     log->print(" idx='%d' ", head->_idx);
1973     if (loop->_irreducible) log->print("irreducible='1' ");
1974     if (head->is_Loop()) {
1975       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1976       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1977     }
1978     if (head->is_CountedLoop()) {
1979       CountedLoopNode* cl = head->as_CountedLoop();
1980       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1981       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1982       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1983     }
1984     log->end_head();
1985     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1986     log->tail("loop");
1987     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1988   }
1989 }
1990 
1991 //---------------------collect_potentially_useful_predicates-----------------------
1992 // Helper function to collect potentially useful predicates to prevent them from
1993 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1994 void PhaseIdealLoop::collect_potentially_useful_predicates(
1995                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1996   if (loop->_child) { // child
1997     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1998   }
1999 
2000   // self (only loops that we can apply loop predication may use their predicates)
2001   if (loop->_head->is_Loop() &&
2002       !loop->_irreducible    &&
2003       !loop->tail()->is_top()) {
2004     LoopNode* lpn = loop->_head->as_Loop();
2005     Node* entry = lpn->in(LoopNode::EntryControl);
2006     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2007     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2008       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2009       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2010       entry = entry->in(0)->in(0);
2011     }
2012     predicate_proj = find_predicate(entry); // Predicate
2013     if (predicate_proj != NULL ) {
2014       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2015     }
2016   }
2017 
2018   if (loop->_next) { // sibling
2019     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2020   }
2021 }
2022 
2023 //------------------------eliminate_useless_predicates-----------------------------
2024 // Eliminate all inserted predicates if they could not be used by loop predication.
2025 // Note: it will also eliminates loop limits check predicate since it also uses
2026 // Opaque1 node (see Parse::add_predicate()).
2027 void PhaseIdealLoop::eliminate_useless_predicates() {
2028   if (C->predicate_count() == 0)
2029     return; // no predicate left
2030 
2031   Unique_Node_List useful_predicates; // to store useful predicates
2032   if (C->has_loops()) {
2033     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2034   }
2035 
2036   for (int i = C->predicate_count(); i > 0; i--) {
2037      Node * n = C->predicate_opaque1_node(i-1);
2038      assert(n->Opcode() == Op_Opaque1, "must be");
2039      if (!useful_predicates.member(n)) { // not in the useful list
2040        _igvn.replace_node(n, n->in(1));
2041      }
2042   }
2043 }
2044 
2045 //------------------------process_expensive_nodes-----------------------------
2046 // Expensive nodes have their control input set to prevent the GVN
2047 // from commoning them and as a result forcing the resulting node to
2048 // be in a more frequent path. Use CFG information here, to change the
2049 // control inputs so that some expensive nodes can be commoned while
2050 // not executed more frequently.
2051 bool PhaseIdealLoop::process_expensive_nodes() {
2052   assert(OptimizeExpensiveOps, "optimization off?");
2053 
2054   // Sort nodes to bring similar nodes together
2055   C->sort_expensive_nodes();
2056 
2057   bool progress = false;
2058 
2059   for (int i = 0; i < C->expensive_count(); ) {
2060     Node* n = C->expensive_node(i);
2061     int start = i;
2062     // Find nodes similar to n
2063     i++;
2064     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2065     int end = i;
2066     // And compare them two by two
2067     for (int j = start; j < end; j++) {
2068       Node* n1 = C->expensive_node(j);
2069       if (is_node_unreachable(n1)) {
2070         continue;
2071       }
2072       for (int k = j+1; k < end; k++) {
2073         Node* n2 = C->expensive_node(k);
2074         if (is_node_unreachable(n2)) {
2075           continue;
2076         }
2077 
2078         assert(n1 != n2, "should be pair of nodes");
2079 
2080         Node* c1 = n1->in(0);
2081         Node* c2 = n2->in(0);
2082 
2083         Node* parent_c1 = c1;
2084         Node* parent_c2 = c2;
2085 
2086         // The call to get_early_ctrl_for_expensive() moves the
2087         // expensive nodes up but stops at loops that are in a if
2088         // branch. See whether we can exit the loop and move above the
2089         // If.
2090         if (c1->is_Loop()) {
2091           parent_c1 = c1->in(1);
2092         }
2093         if (c2->is_Loop()) {
2094           parent_c2 = c2->in(1);
2095         }
2096 
2097         if (parent_c1 == parent_c2) {
2098           _igvn._worklist.push(n1);
2099           _igvn._worklist.push(n2);
2100           continue;
2101         }
2102 
2103         // Look for identical expensive node up the dominator chain.
2104         if (is_dominator(c1, c2)) {
2105           c2 = c1;
2106         } else if (is_dominator(c2, c1)) {
2107           c1 = c2;
2108         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2109                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2110           // Both branches have the same expensive node so move it up
2111           // before the if.
2112           c1 = c2 = idom(parent_c1->in(0));
2113         }
2114         // Do the actual moves
2115         if (n1->in(0) != c1) {
2116           _igvn.hash_delete(n1);
2117           n1->set_req(0, c1);
2118           _igvn.hash_insert(n1);
2119           _igvn._worklist.push(n1);
2120           progress = true;
2121         }
2122         if (n2->in(0) != c2) {
2123           _igvn.hash_delete(n2);
2124           n2->set_req(0, c2);
2125           _igvn.hash_insert(n2);
2126           _igvn._worklist.push(n2);
2127           progress = true;
2128         }
2129       }
2130     }
2131   }
2132 
2133   return progress;
2134 }
2135 
2136 
2137 //=============================================================================
2138 //----------------------------build_and_optimize-------------------------------
2139 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2140 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2141 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2142   ResourceMark rm;
2143 
2144   int old_progress = C->major_progress();
2145   uint orig_worklist_size = _igvn._worklist.size();
2146 
2147   // Reset major-progress flag for the driver's heuristics
2148   C->clear_major_progress();
2149 
2150 #ifndef PRODUCT
2151   // Capture for later assert
2152   uint unique = C->unique();
2153   _loop_invokes++;
2154   _loop_work += unique;
2155 #endif
2156 
2157   // True if the method has at least 1 irreducible loop
2158   _has_irreducible_loops = false;
2159 
2160   _created_loop_node = false;
2161 
2162   Arena *a = Thread::current()->resource_area();
2163   VectorSet visited(a);
2164   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2165   _nodes.map(C->unique(), NULL);
2166   memset(_nodes.adr(), 0, wordSize * C->unique());
2167 
2168   // Pre-build the top-level outermost loop tree entry
2169   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2170   // Do not need a safepoint at the top level
2171   _ltree_root->_has_sfpt = 1;
2172 
2173   // Initialize Dominators.
2174   // Checked in clone_loop_predicate() during beautify_loops().
2175   _idom_size = 0;
2176   _idom      = NULL;
2177   _dom_depth = NULL;
2178   _dom_stk   = NULL;
2179 
2180   // Empty pre-order array
2181   allocate_preorders();
2182 
2183   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2184   // IdealLoopTree entries.  Data nodes are NOT walked.
2185   build_loop_tree();
2186   // Check for bailout, and return
2187   if (C->failing()) {
2188     return;
2189   }
2190 
2191   // No loops after all
2192   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2193 
2194   // There should always be an outer loop containing the Root and Return nodes.
2195   // If not, we have a degenerate empty program.  Bail out in this case.
2196   if (!has_node(C->root())) {
2197     if (!_verify_only) {
2198       C->clear_major_progress();
2199       C->record_method_not_compilable("empty program detected during loop optimization");
2200     }
2201     return;
2202   }
2203 
2204   // Nothing to do, so get out
2205   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2206   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2207   if (stop_early && !do_expensive_nodes) {
2208     _igvn.optimize();           // Cleanup NeverBranches
2209     return;
2210   }
2211 
2212   // Set loop nesting depth
2213   _ltree_root->set_nest( 0 );
2214 
2215   // Split shared headers and insert loop landing pads.
2216   // Do not bother doing this on the Root loop of course.
2217   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2218     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2219     if( _ltree_root->_child->beautify_loops( this ) ) {
2220       // Re-build loop tree!
2221       _ltree_root->_child = NULL;
2222       _nodes.clear();
2223       reallocate_preorders();
2224       build_loop_tree();
2225       // Check for bailout, and return
2226       if (C->failing()) {
2227         return;
2228       }
2229       // Reset loop nesting depth
2230       _ltree_root->set_nest( 0 );
2231 
2232       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2233     }
2234   }
2235 
2236   // Build Dominators for elision of NULL checks & loop finding.
2237   // Since nodes do not have a slot for immediate dominator, make
2238   // a persistent side array for that info indexed on node->_idx.
2239   _idom_size = C->unique();
2240   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2241   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2242   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2243   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2244 
2245   Dominators();
2246 
2247   if (!_verify_only) {
2248     // As a side effect, Dominators removed any unreachable CFG paths
2249     // into RegionNodes.  It doesn't do this test against Root, so
2250     // we do it here.
2251     for( uint i = 1; i < C->root()->req(); i++ ) {
2252       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2253         _igvn.delete_input_of(C->root(), i);
2254         i--;                      // Rerun same iteration on compressed edges
2255       }
2256     }
2257 
2258     // Given dominators, try to find inner loops with calls that must
2259     // always be executed (call dominates loop tail).  These loops do
2260     // not need a separate safepoint.
2261     Node_List cisstack(a);
2262     _ltree_root->check_safepts(visited, cisstack);
2263   }
2264 
2265   // Walk the DATA nodes and place into loops.  Find earliest control
2266   // node.  For CFG nodes, the _nodes array starts out and remains
2267   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2268   // _nodes array holds the earliest legal controlling CFG node.
2269 
2270   // Allocate stack with enough space to avoid frequent realloc
2271   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2272   Node_Stack nstack( a, stack_size );
2273 
2274   visited.Clear();
2275   Node_List worklist(a);
2276   // Don't need C->root() on worklist since
2277   // it will be processed among C->top() inputs
2278   worklist.push( C->top() );
2279   visited.set( C->top()->_idx ); // Set C->top() as visited now
2280   build_loop_early( visited, worklist, nstack );
2281 
2282   // Given early legal placement, try finding counted loops.  This placement
2283   // is good enough to discover most loop invariants.
2284   if( !_verify_me && !_verify_only )
2285     _ltree_root->counted_loop( this );
2286 
2287   // Find latest loop placement.  Find ideal loop placement.
2288   visited.Clear();
2289   init_dom_lca_tags();
2290   // Need C->root() on worklist when processing outs
2291   worklist.push( C->root() );
2292   NOT_PRODUCT( C->verify_graph_edges(); )
2293   worklist.push( C->top() );
2294   build_loop_late( visited, worklist, nstack );
2295 
2296   if (_verify_only) {
2297     // restore major progress flag
2298     for (int i = 0; i < old_progress; i++)
2299       C->set_major_progress();
2300     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2301     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2302     return;
2303   }
2304 
2305   // clear out the dead code after build_loop_late
2306   while (_deadlist.size()) {
2307     _igvn.remove_globally_dead_node(_deadlist.pop());
2308   }
2309 
2310   if (stop_early) {
2311     assert(do_expensive_nodes, "why are we here?");
2312     if (process_expensive_nodes()) {
2313       // If we made some progress when processing expensive nodes then
2314       // the IGVN may modify the graph in a way that will allow us to
2315       // make some more progress: we need to try processing expensive
2316       // nodes again.
2317       C->set_major_progress();
2318     }
2319     _igvn.optimize();
2320     return;
2321   }
2322 
2323   // Some parser-inserted loop predicates could never be used by loop
2324   // predication or they were moved away from loop during some optimizations.
2325   // For example, peeling. Eliminate them before next loop optimizations.
2326   if (UseLoopPredicate || LoopLimitCheck) {
2327     eliminate_useless_predicates();
2328   }
2329 
2330 #ifndef PRODUCT
2331   C->verify_graph_edges();
2332   if (_verify_me) {             // Nested verify pass?
2333     // Check to see if the verify mode is broken
2334     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2335     return;
2336   }
2337   if(VerifyLoopOptimizations) verify();
2338   if(TraceLoopOpts && C->has_loops()) {
2339     _ltree_root->dump();
2340   }
2341 #endif
2342 
2343   if (skip_loop_opts) {
2344     // restore major progress flag
2345     for (int i = 0; i < old_progress; i++) {
2346       C->set_major_progress();
2347     }
2348 
2349     // Cleanup any modified bits
2350     _igvn.optimize();
2351 
2352     if (C->log() != NULL) {
2353       log_loop_tree(_ltree_root, _ltree_root, C->log());
2354     }
2355     return;
2356   }
2357 
2358   if (ReassociateInvariants) {
2359     // Reassociate invariants and prep for split_thru_phi
2360     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2361       IdealLoopTree* lpt = iter.current();
2362       bool is_counted = lpt->is_counted();
2363       if (!is_counted || !lpt->is_inner()) continue;
2364 
2365       // check for vectorized loops, any reassociation of invariants was already done
2366       if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2367 
2368       lpt->reassociate_invariants(this);
2369 
2370       // Because RCE opportunities can be masked by split_thru_phi,
2371       // look for RCE candidates and inhibit split_thru_phi
2372       // on just their loop-phi's for this pass of loop opts
2373       if (SplitIfBlocks && do_split_ifs) {
2374         if (lpt->policy_range_check(this)) {
2375           lpt->_rce_candidate = 1; // = true
2376         }
2377       }
2378     }
2379   }
2380 
2381   // Check for aggressive application of split-if and other transforms
2382   // that require basic-block info (like cloning through Phi's)
2383   if( SplitIfBlocks && do_split_ifs ) {
2384     visited.Clear();
2385     split_if_with_blocks( visited, nstack );
2386     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2387   }
2388 
2389   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2390     C->set_major_progress();
2391   }
2392 
2393   // Perform loop predication before iteration splitting
2394   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2395     _ltree_root->_child->loop_predication(this);
2396   }
2397 
2398   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2399     if (do_intrinsify_fill()) {
2400       C->set_major_progress();
2401     }
2402   }
2403 
2404   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2405   // range checks or one-shot null checks.
2406 
2407   // If split-if's didn't hack the graph too bad (no CFG changes)
2408   // then do loop opts.
2409   if (C->has_loops() && !C->major_progress()) {
2410     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2411     _ltree_root->_child->iteration_split( this, worklist );
2412     // No verify after peeling!  GCM has hoisted code out of the loop.
2413     // After peeling, the hoisted code could sink inside the peeled area.
2414     // The peeling code does not try to recompute the best location for
2415     // all the code before the peeled area, so the verify pass will always
2416     // complain about it.
2417   }
2418   // Do verify graph edges in any case
2419   NOT_PRODUCT( C->verify_graph_edges(); );
2420 
2421   if (!do_split_ifs) {
2422     // We saw major progress in Split-If to get here.  We forced a
2423     // pass with unrolling and not split-if, however more split-if's
2424     // might make progress.  If the unrolling didn't make progress
2425     // then the major-progress flag got cleared and we won't try
2426     // another round of Split-If.  In particular the ever-common
2427     // instance-of/check-cast pattern requires at least 2 rounds of
2428     // Split-If to clear out.
2429     C->set_major_progress();
2430   }
2431 
2432   // Repeat loop optimizations if new loops were seen
2433   if (created_loop_node()) {
2434     C->set_major_progress();
2435   }
2436 
2437   // Keep loop predicates and perform optimizations with them
2438   // until no more loop optimizations could be done.
2439   // After that switch predicates off and do more loop optimizations.
2440   if (!C->major_progress() && (C->predicate_count() > 0)) {
2441      C->cleanup_loop_predicates(_igvn);
2442      if (TraceLoopOpts) {
2443        tty->print_cr("PredicatesOff");
2444      }
2445      C->set_major_progress();
2446   }
2447 
2448   // Convert scalar to superword operations at the end of all loop opts.
2449   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2450     // SuperWord transform
2451     SuperWord sw(this);
2452     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2453       IdealLoopTree* lpt = iter.current();
2454       if (lpt->is_counted()) {
2455         sw.transform_loop(lpt, true);
2456       }
2457     }
2458   }
2459 
2460   // Cleanup any modified bits
2461   _igvn.optimize();
2462 
2463   // disable assert until issue with split_flow_path is resolved (6742111)
2464   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2465   //        "shouldn't introduce irreducible loops");
2466 
2467   if (C->log() != NULL) {
2468     log_loop_tree(_ltree_root, _ltree_root, C->log());
2469   }
2470 }
2471 
2472 #ifndef PRODUCT
2473 //------------------------------print_statistics-------------------------------
2474 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2475 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2476 void PhaseIdealLoop::print_statistics() {
2477   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2478 }
2479 
2480 //------------------------------verify-----------------------------------------
2481 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2482 static int fail;                // debug only, so its multi-thread dont care
2483 void PhaseIdealLoop::verify() const {
2484   int old_progress = C->major_progress();
2485   ResourceMark rm;
2486   PhaseIdealLoop loop_verify( _igvn, this );
2487   VectorSet visited(Thread::current()->resource_area());
2488 
2489   fail = 0;
2490   verify_compare( C->root(), &loop_verify, visited );
2491   assert( fail == 0, "verify loops failed" );
2492   // Verify loop structure is the same
2493   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2494   // Reset major-progress.  It was cleared by creating a verify version of
2495   // PhaseIdealLoop.
2496   for( int i=0; i<old_progress; i++ )
2497     C->set_major_progress();
2498 }
2499 
2500 //------------------------------verify_compare---------------------------------
2501 // Make sure me and the given PhaseIdealLoop agree on key data structures
2502 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2503   if( !n ) return;
2504   if( visited.test_set( n->_idx ) ) return;
2505   if( !_nodes[n->_idx] ) {      // Unreachable
2506     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2507     return;
2508   }
2509 
2510   uint i;
2511   for( i = 0; i < n->req(); i++ )
2512     verify_compare( n->in(i), loop_verify, visited );
2513 
2514   // Check the '_nodes' block/loop structure
2515   i = n->_idx;
2516   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2517     if( _nodes[i] != loop_verify->_nodes[i] &&
2518         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2519       tty->print("Mismatched control setting for: ");
2520       n->dump();
2521       if( fail++ > 10 ) return;
2522       Node *c = get_ctrl_no_update(n);
2523       tty->print("We have it as: ");
2524       if( c->in(0) ) c->dump();
2525         else tty->print_cr("N%d",c->_idx);
2526       tty->print("Verify thinks: ");
2527       if( loop_verify->has_ctrl(n) )
2528         loop_verify->get_ctrl_no_update(n)->dump();
2529       else
2530         loop_verify->get_loop_idx(n)->dump();
2531       tty->cr();
2532     }
2533   } else {                    // We have a loop
2534     IdealLoopTree *us = get_loop_idx(n);
2535     if( loop_verify->has_ctrl(n) ) {
2536       tty->print("Mismatched loop setting for: ");
2537       n->dump();
2538       if( fail++ > 10 ) return;
2539       tty->print("We have it as: ");
2540       us->dump();
2541       tty->print("Verify thinks: ");
2542       loop_verify->get_ctrl_no_update(n)->dump();
2543       tty->cr();
2544     } else if (!C->major_progress()) {
2545       // Loop selection can be messed up if we did a major progress
2546       // operation, like split-if.  Do not verify in that case.
2547       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2548       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2549         tty->print("Unequals loops for: ");
2550         n->dump();
2551         if( fail++ > 10 ) return;
2552         tty->print("We have it as: ");
2553         us->dump();
2554         tty->print("Verify thinks: ");
2555         them->dump();
2556         tty->cr();
2557       }
2558     }
2559   }
2560 
2561   // Check for immediate dominators being equal
2562   if( i >= _idom_size ) {
2563     if( !n->is_CFG() ) return;
2564     tty->print("CFG Node with no idom: ");
2565     n->dump();
2566     return;
2567   }
2568   if( !n->is_CFG() ) return;
2569   if( n == C->root() ) return; // No IDOM here
2570 
2571   assert(n->_idx == i, "sanity");
2572   Node *id = idom_no_update(n);
2573   if( id != loop_verify->idom_no_update(n) ) {
2574     tty->print("Unequals idoms for: ");
2575     n->dump();
2576     if( fail++ > 10 ) return;
2577     tty->print("We have it as: ");
2578     id->dump();
2579     tty->print("Verify thinks: ");
2580     loop_verify->idom_no_update(n)->dump();
2581     tty->cr();
2582   }
2583 
2584 }
2585 
2586 //------------------------------verify_tree------------------------------------
2587 // Verify that tree structures match.  Because the CFG can change, siblings
2588 // within the loop tree can be reordered.  We attempt to deal with that by
2589 // reordering the verify's loop tree if possible.
2590 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2591   assert( _parent == parent, "Badly formed loop tree" );
2592 
2593   // Siblings not in same order?  Attempt to re-order.
2594   if( _head != loop->_head ) {
2595     // Find _next pointer to update
2596     IdealLoopTree **pp = &loop->_parent->_child;
2597     while( *pp != loop )
2598       pp = &((*pp)->_next);
2599     // Find proper sibling to be next
2600     IdealLoopTree **nn = &loop->_next;
2601     while( (*nn) && (*nn)->_head != _head )
2602       nn = &((*nn)->_next);
2603 
2604     // Check for no match.
2605     if( !(*nn) ) {
2606       // Annoyingly, irreducible loops can pick different headers
2607       // after a major_progress operation, so the rest of the loop
2608       // tree cannot be matched.
2609       if (_irreducible && Compile::current()->major_progress())  return;
2610       assert( 0, "failed to match loop tree" );
2611     }
2612 
2613     // Move (*nn) to (*pp)
2614     IdealLoopTree *hit = *nn;
2615     *nn = hit->_next;
2616     hit->_next = loop;
2617     *pp = loop;
2618     loop = hit;
2619     // Now try again to verify
2620   }
2621 
2622   assert( _head  == loop->_head , "mismatched loop head" );
2623   Node *tail = _tail;           // Inline a non-updating version of
2624   while( !tail->in(0) )         // the 'tail()' call.
2625     tail = tail->in(1);
2626   assert( tail == loop->_tail, "mismatched loop tail" );
2627 
2628   // Counted loops that are guarded should be able to find their guards
2629   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2630     CountedLoopNode *cl = _head->as_CountedLoop();
2631     Node *init = cl->init_trip();
2632     Node *ctrl = cl->in(LoopNode::EntryControl);
2633     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2634     Node *iff  = ctrl->in(0);
2635     assert( iff->Opcode() == Op_If, "" );
2636     Node *bol  = iff->in(1);
2637     assert( bol->Opcode() == Op_Bool, "" );
2638     Node *cmp  = bol->in(1);
2639     assert( cmp->Opcode() == Op_CmpI, "" );
2640     Node *add  = cmp->in(1);
2641     Node *opaq;
2642     if( add->Opcode() == Op_Opaque1 ) {
2643       opaq = add;
2644     } else {
2645       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2646       assert( add == init, "" );
2647       opaq = cmp->in(2);
2648     }
2649     assert( opaq->Opcode() == Op_Opaque1, "" );
2650 
2651   }
2652 
2653   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2654   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2655   // Innermost loops need to verify loop bodies,
2656   // but only if no 'major_progress'
2657   int fail = 0;
2658   if (!Compile::current()->major_progress() && _child == NULL) {
2659     for( uint i = 0; i < _body.size(); i++ ) {
2660       Node *n = _body.at(i);
2661       if (n->outcnt() == 0)  continue; // Ignore dead
2662       uint j;
2663       for( j = 0; j < loop->_body.size(); j++ )
2664         if( loop->_body.at(j) == n )
2665           break;
2666       if( j == loop->_body.size() ) { // Not found in loop body
2667         // Last ditch effort to avoid assertion: Its possible that we
2668         // have some users (so outcnt not zero) but are still dead.
2669         // Try to find from root.
2670         if (Compile::current()->root()->find(n->_idx)) {
2671           fail++;
2672           tty->print("We have that verify does not: ");
2673           n->dump();
2674         }
2675       }
2676     }
2677     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2678       Node *n = loop->_body.at(i2);
2679       if (n->outcnt() == 0)  continue; // Ignore dead
2680       uint j;
2681       for( j = 0; j < _body.size(); j++ )
2682         if( _body.at(j) == n )
2683           break;
2684       if( j == _body.size() ) { // Not found in loop body
2685         // Last ditch effort to avoid assertion: Its possible that we
2686         // have some users (so outcnt not zero) but are still dead.
2687         // Try to find from root.
2688         if (Compile::current()->root()->find(n->_idx)) {
2689           fail++;
2690           tty->print("Verify has that we do not: ");
2691           n->dump();
2692         }
2693       }
2694     }
2695     assert( !fail, "loop body mismatch" );
2696   }
2697 }
2698 
2699 #endif
2700 
2701 //------------------------------set_idom---------------------------------------
2702 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2703   uint idx = d->_idx;
2704   if (idx >= _idom_size) {
2705     uint newsize = _idom_size<<1;
2706     while( idx >= newsize ) {
2707       newsize <<= 1;
2708     }
2709     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2710     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2711     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2712     _idom_size = newsize;
2713   }
2714   _idom[idx] = n;
2715   _dom_depth[idx] = dom_depth;
2716 }
2717 
2718 //------------------------------recompute_dom_depth---------------------------------------
2719 // The dominator tree is constructed with only parent pointers.
2720 // This recomputes the depth in the tree by first tagging all
2721 // nodes as "no depth yet" marker.  The next pass then runs up
2722 // the dom tree from each node marked "no depth yet", and computes
2723 // the depth on the way back down.
2724 void PhaseIdealLoop::recompute_dom_depth() {
2725   uint no_depth_marker = C->unique();
2726   uint i;
2727   // Initialize depth to "no depth yet"
2728   for (i = 0; i < _idom_size; i++) {
2729     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2730      _dom_depth[i] = no_depth_marker;
2731     }
2732   }
2733   if (_dom_stk == NULL) {
2734     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
2735     if (init_size < 10) init_size = 10;
2736     _dom_stk = new GrowableArray<uint>(init_size);
2737   }
2738   // Compute new depth for each node.
2739   for (i = 0; i < _idom_size; i++) {
2740     uint j = i;
2741     // Run up the dom tree to find a node with a depth
2742     while (_dom_depth[j] == no_depth_marker) {
2743       _dom_stk->push(j);
2744       j = _idom[j]->_idx;
2745     }
2746     // Compute the depth on the way back down this tree branch
2747     uint dd = _dom_depth[j] + 1;
2748     while (_dom_stk->length() > 0) {
2749       uint j = _dom_stk->pop();
2750       _dom_depth[j] = dd;
2751       dd++;
2752     }
2753   }
2754 }
2755 
2756 //------------------------------sort-------------------------------------------
2757 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2758 // loop tree, not the root.
2759 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2760   if( !innermost ) return loop; // New innermost loop
2761 
2762   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2763   assert( loop_preorder, "not yet post-walked loop" );
2764   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2765   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2766 
2767   // Insert at start of list
2768   while( l ) {                  // Insertion sort based on pre-order
2769     if( l == loop ) return innermost; // Already on list!
2770     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2771     assert( l_preorder, "not yet post-walked l" );
2772     // Check header pre-order number to figure proper nesting
2773     if( loop_preorder > l_preorder )
2774       break;                    // End of insertion
2775     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2776     // Since I split shared headers, you'd think this could not happen.
2777     // BUT: I must first do the preorder numbering before I can discover I
2778     // have shared headers, so the split headers all get the same preorder
2779     // number as the RegionNode they split from.
2780     if( loop_preorder == l_preorder &&
2781         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2782       break;                    // Also check for shared headers (same pre#)
2783     pp = &l->_parent;           // Chain up list
2784     l = *pp;
2785   }
2786   // Link into list
2787   // Point predecessor to me
2788   *pp = loop;
2789   // Point me to successor
2790   IdealLoopTree *p = loop->_parent;
2791   loop->_parent = l;            // Point me to successor
2792   if( p ) sort( p, innermost ); // Insert my parents into list as well
2793   return innermost;
2794 }
2795 
2796 //------------------------------build_loop_tree--------------------------------
2797 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2798 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2799 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2800 // tightest enclosing IdealLoopTree for post-walked.
2801 //
2802 // During my forward walk I do a short 1-layer lookahead to see if I can find
2803 // a loop backedge with that doesn't have any work on the backedge.  This
2804 // helps me construct nested loops with shared headers better.
2805 //
2806 // Once I've done the forward recursion, I do the post-work.  For each child
2807 // I check to see if there is a backedge.  Backedges define a loop!  I
2808 // insert an IdealLoopTree at the target of the backedge.
2809 //
2810 // During the post-work I also check to see if I have several children
2811 // belonging to different loops.  If so, then this Node is a decision point
2812 // where control flow can choose to change loop nests.  It is at this
2813 // decision point where I can figure out how loops are nested.  At this
2814 // time I can properly order the different loop nests from my children.
2815 // Note that there may not be any backedges at the decision point!
2816 //
2817 // Since the decision point can be far removed from the backedges, I can't
2818 // order my loops at the time I discover them.  Thus at the decision point
2819 // I need to inspect loop header pre-order numbers to properly nest my
2820 // loops.  This means I need to sort my childrens' loops by pre-order.
2821 // The sort is of size number-of-control-children, which generally limits
2822 // it to size 2 (i.e., I just choose between my 2 target loops).
2823 void PhaseIdealLoop::build_loop_tree() {
2824   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
2825   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
2826   Node *n = C->root();
2827   bltstack.push(n);
2828   int pre_order = 1;
2829   int stack_size;
2830 
2831   while ( ( stack_size = bltstack.length() ) != 0 ) {
2832     n = bltstack.top(); // Leave node on stack
2833     if ( !is_visited(n) ) {
2834       // ---- Pre-pass Work ----
2835       // Pre-walked but not post-walked nodes need a pre_order number.
2836 
2837       set_preorder_visited( n, pre_order ); // set as visited
2838 
2839       // ---- Scan over children ----
2840       // Scan first over control projections that lead to loop headers.
2841       // This helps us find inner-to-outer loops with shared headers better.
2842 
2843       // Scan children's children for loop headers.
2844       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2845         Node* m = n->raw_out(i);       // Child
2846         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2847           // Scan over children's children to find loop
2848           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2849             Node* l = m->fast_out(j);
2850             if( is_visited(l) &&       // Been visited?
2851                 !is_postvisited(l) &&  // But not post-visited
2852                 get_preorder(l) < pre_order ) { // And smaller pre-order
2853               // Found!  Scan the DFS down this path before doing other paths
2854               bltstack.push(m);
2855               break;
2856             }
2857           }
2858         }
2859       }
2860       pre_order++;
2861     }
2862     else if ( !is_postvisited(n) ) {
2863       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2864       // such as com.sun.rsasign.am::a.
2865       // For non-recursive version, first, process current children.
2866       // On next iteration, check if additional children were added.
2867       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2868         Node* u = n->raw_out(k);
2869         if ( u->is_CFG() && !is_visited(u) ) {
2870           bltstack.push(u);
2871         }
2872       }
2873       if ( bltstack.length() == stack_size ) {
2874         // There were no additional children, post visit node now
2875         (void)bltstack.pop(); // Remove node from stack
2876         pre_order = build_loop_tree_impl( n, pre_order );
2877         // Check for bailout
2878         if (C->failing()) {
2879           return;
2880         }
2881         // Check to grow _preorders[] array for the case when
2882         // build_loop_tree_impl() adds new nodes.
2883         check_grow_preorders();
2884       }
2885     }
2886     else {
2887       (void)bltstack.pop(); // Remove post-visited node from stack
2888     }
2889   }
2890 }
2891 
2892 //------------------------------build_loop_tree_impl---------------------------
2893 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2894   // ---- Post-pass Work ----
2895   // Pre-walked but not post-walked nodes need a pre_order number.
2896 
2897   // Tightest enclosing loop for this Node
2898   IdealLoopTree *innermost = NULL;
2899 
2900   // For all children, see if any edge is a backedge.  If so, make a loop
2901   // for it.  Then find the tightest enclosing loop for the self Node.
2902   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2903     Node* m = n->fast_out(i);   // Child
2904     if( n == m ) continue;      // Ignore control self-cycles
2905     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2906 
2907     IdealLoopTree *l;           // Child's loop
2908     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2909       // Found a backedge
2910       assert( get_preorder(m) < pre_order, "should be backedge" );
2911       // Check for the RootNode, which is already a LoopNode and is allowed
2912       // to have multiple "backedges".
2913       if( m == C->root()) {     // Found the root?
2914         l = _ltree_root;        // Root is the outermost LoopNode
2915       } else {                  // Else found a nested loop
2916         // Insert a LoopNode to mark this loop.
2917         l = new IdealLoopTree(this, m, n);
2918       } // End of Else found a nested loop
2919       if( !has_loop(m) )        // If 'm' does not already have a loop set
2920         set_loop(m, l);         // Set loop header to loop now
2921 
2922     } else {                    // Else not a nested loop
2923       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2924       l = get_loop(m);          // Get previously determined loop
2925       // If successor is header of a loop (nest), move up-loop till it
2926       // is a member of some outer enclosing loop.  Since there are no
2927       // shared headers (I've split them already) I only need to go up
2928       // at most 1 level.
2929       while( l && l->_head == m ) // Successor heads loop?
2930         l = l->_parent;         // Move up 1 for me
2931       // If this loop is not properly parented, then this loop
2932       // has no exit path out, i.e. its an infinite loop.
2933       if( !l ) {
2934         // Make loop "reachable" from root so the CFG is reachable.  Basically
2935         // insert a bogus loop exit that is never taken.  'm', the loop head,
2936         // points to 'n', one (of possibly many) fall-in paths.  There may be
2937         // many backedges as well.
2938 
2939         // Here I set the loop to be the root loop.  I could have, after
2940         // inserting a bogus loop exit, restarted the recursion and found my
2941         // new loop exit.  This would make the infinite loop a first-class
2942         // loop and it would then get properly optimized.  What's the use of
2943         // optimizing an infinite loop?
2944         l = _ltree_root;        // Oops, found infinite loop
2945 
2946         if (!_verify_only) {
2947           // Insert the NeverBranch between 'm' and it's control user.
2948           NeverBranchNode *iff = new NeverBranchNode( m );
2949           _igvn.register_new_node_with_optimizer(iff);
2950           set_loop(iff, l);
2951           Node *if_t = new CProjNode( iff, 0 );
2952           _igvn.register_new_node_with_optimizer(if_t);
2953           set_loop(if_t, l);
2954 
2955           Node* cfg = NULL;       // Find the One True Control User of m
2956           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2957             Node* x = m->fast_out(j);
2958             if (x->is_CFG() && x != m && x != iff)
2959               { cfg = x; break; }
2960           }
2961           assert(cfg != NULL, "must find the control user of m");
2962           uint k = 0;             // Probably cfg->in(0)
2963           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2964           cfg->set_req( k, if_t ); // Now point to NeverBranch
2965           _igvn._worklist.push(cfg);
2966 
2967           // Now create the never-taken loop exit
2968           Node *if_f = new CProjNode( iff, 1 );
2969           _igvn.register_new_node_with_optimizer(if_f);
2970           set_loop(if_f, l);
2971           // Find frame ptr for Halt.  Relies on the optimizer
2972           // V-N'ing.  Easier and quicker than searching through
2973           // the program structure.
2974           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
2975           _igvn.register_new_node_with_optimizer(frame);
2976           // Halt & Catch Fire
2977           Node *halt = new HaltNode( if_f, frame );
2978           _igvn.register_new_node_with_optimizer(halt);
2979           set_loop(halt, l);
2980           C->root()->add_req(halt);
2981         }
2982         set_loop(C->root(), _ltree_root);
2983       }
2984     }
2985     // Weeny check for irreducible.  This child was already visited (this
2986     // IS the post-work phase).  Is this child's loop header post-visited
2987     // as well?  If so, then I found another entry into the loop.
2988     if (!_verify_only) {
2989       while( is_postvisited(l->_head) ) {
2990         // found irreducible
2991         l->_irreducible = 1; // = true
2992         l = l->_parent;
2993         _has_irreducible_loops = true;
2994         // Check for bad CFG here to prevent crash, and bailout of compile
2995         if (l == NULL) {
2996           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2997           return pre_order;
2998         }
2999       }
3000       C->set_has_irreducible_loop(_has_irreducible_loops);
3001     }
3002 
3003     // This Node might be a decision point for loops.  It is only if
3004     // it's children belong to several different loops.  The sort call
3005     // does a trivial amount of work if there is only 1 child or all
3006     // children belong to the same loop.  If however, the children
3007     // belong to different loops, the sort call will properly set the
3008     // _parent pointers to show how the loops nest.
3009     //
3010     // In any case, it returns the tightest enclosing loop.
3011     innermost = sort( l, innermost );
3012   }
3013 
3014   // Def-use info will have some dead stuff; dead stuff will have no
3015   // loop decided on.
3016 
3017   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3018   if( innermost && innermost->_head == n ) {
3019     assert( get_loop(n) == innermost, "" );
3020     IdealLoopTree *p = innermost->_parent;
3021     IdealLoopTree *l = innermost;
3022     while( p && l->_head == n ) {
3023       l->_next = p->_child;     // Put self on parents 'next child'
3024       p->_child = l;            // Make self as first child of parent
3025       l = p;                    // Now walk up the parent chain
3026       p = l->_parent;
3027     }
3028   } else {
3029     // Note that it is possible for a LoopNode to reach here, if the
3030     // backedge has been made unreachable (hence the LoopNode no longer
3031     // denotes a Loop, and will eventually be removed).
3032 
3033     // Record tightest enclosing loop for self.  Mark as post-visited.
3034     set_loop(n, innermost);
3035     // Also record has_call flag early on
3036     if( innermost ) {
3037       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3038         // Do not count uncommon calls
3039         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3040           Node *iff = n->in(0)->in(0);
3041           // No any calls for vectorized loops.
3042           if( UseSuperWord || !iff->is_If() ||
3043               (n->in(0)->Opcode() == Op_IfFalse &&
3044                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3045               (iff->as_If()->_prob >= 0.01) )
3046             innermost->_has_call = 1;
3047         }
3048       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3049         // Disable loop optimizations if the loop has a scalar replaceable
3050         // allocation. This disabling may cause a potential performance lost
3051         // if the allocation is not eliminated for some reason.
3052         innermost->_allow_optimizations = false;
3053         innermost->_has_call = 1; // = true
3054       } else if (n->Opcode() == Op_SafePoint) {
3055         // Record all safepoints in this loop.
3056         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3057         innermost->_safepts->push(n);
3058       }
3059     }
3060   }
3061 
3062   // Flag as post-visited now
3063   set_postvisited(n);
3064   return pre_order;
3065 }
3066 
3067 
3068 //------------------------------build_loop_early-------------------------------
3069 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3070 // First pass computes the earliest controlling node possible.  This is the
3071 // controlling input with the deepest dominating depth.
3072 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3073   while (worklist.size() != 0) {
3074     // Use local variables nstack_top_n & nstack_top_i to cache values
3075     // on nstack's top.
3076     Node *nstack_top_n = worklist.pop();
3077     uint  nstack_top_i = 0;
3078 //while_nstack_nonempty:
3079     while (true) {
3080       // Get parent node and next input's index from stack's top.
3081       Node  *n = nstack_top_n;
3082       uint   i = nstack_top_i;
3083       uint cnt = n->req(); // Count of inputs
3084       if (i == 0) {        // Pre-process the node.
3085         if( has_node(n) &&            // Have either loop or control already?
3086             !has_ctrl(n) ) {          // Have loop picked out already?
3087           // During "merge_many_backedges" we fold up several nested loops
3088           // into a single loop.  This makes the members of the original
3089           // loop bodies pointing to dead loops; they need to move up
3090           // to the new UNION'd larger loop.  I set the _head field of these
3091           // dead loops to NULL and the _parent field points to the owning
3092           // loop.  Shades of UNION-FIND algorithm.
3093           IdealLoopTree *ilt;
3094           while( !(ilt = get_loop(n))->_head ) {
3095             // Normally I would use a set_loop here.  But in this one special
3096             // case, it is legal (and expected) to change what loop a Node
3097             // belongs to.
3098             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3099           }
3100           // Remove safepoints ONLY if I've already seen I don't need one.
3101           // (the old code here would yank a 2nd safepoint after seeing a
3102           // first one, even though the 1st did not dominate in the loop body
3103           // and thus could be avoided indefinitely)
3104           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3105               is_deleteable_safept(n)) {
3106             Node *in = n->in(TypeFunc::Control);
3107             lazy_replace(n,in);       // Pull safepoint now
3108             if (ilt->_safepts != NULL) {
3109               ilt->_safepts->yank(n);
3110             }
3111             // Carry on with the recursion "as if" we are walking
3112             // only the control input
3113             if( !visited.test_set( in->_idx ) ) {
3114               worklist.push(in);      // Visit this guy later, using worklist
3115             }
3116             // Get next node from nstack:
3117             // - skip n's inputs processing by setting i > cnt;
3118             // - we also will not call set_early_ctrl(n) since
3119             //   has_node(n) == true (see the condition above).
3120             i = cnt + 1;
3121           }
3122         }
3123       } // if (i == 0)
3124 
3125       // Visit all inputs
3126       bool done = true;       // Assume all n's inputs will be processed
3127       while (i < cnt) {
3128         Node *in = n->in(i);
3129         ++i;
3130         if (in == NULL) continue;
3131         if (in->pinned() && !in->is_CFG())
3132           set_ctrl(in, in->in(0));
3133         int is_visited = visited.test_set( in->_idx );
3134         if (!has_node(in)) {  // No controlling input yet?
3135           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3136           assert( !is_visited, "visit only once" );
3137           nstack.push(n, i);  // Save parent node and next input's index.
3138           nstack_top_n = in;  // Process current input now.
3139           nstack_top_i = 0;
3140           done = false;       // Not all n's inputs processed.
3141           break; // continue while_nstack_nonempty;
3142         } else if (!is_visited) {
3143           // This guy has a location picked out for him, but has not yet
3144           // been visited.  Happens to all CFG nodes, for instance.
3145           // Visit him using the worklist instead of recursion, to break
3146           // cycles.  Since he has a location already we do not need to
3147           // find his location before proceeding with the current Node.
3148           worklist.push(in);  // Visit this guy later, using worklist
3149         }
3150       }
3151       if (done) {
3152         // All of n's inputs have been processed, complete post-processing.
3153 
3154         // Compute earliest point this Node can go.
3155         // CFG, Phi, pinned nodes already know their controlling input.
3156         if (!has_node(n)) {
3157           // Record earliest legal location
3158           set_early_ctrl( n );
3159         }
3160         if (nstack.is_empty()) {
3161           // Finished all nodes on stack.
3162           // Process next node on the worklist.
3163           break;
3164         }
3165         // Get saved parent node and next input's index.
3166         nstack_top_n = nstack.node();
3167         nstack_top_i = nstack.index();
3168         nstack.pop();
3169       }
3170     } // while (true)
3171   }
3172 }
3173 
3174 //------------------------------dom_lca_internal--------------------------------
3175 // Pair-wise LCA
3176 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3177   if( !n1 ) return n2;          // Handle NULL original LCA
3178   assert( n1->is_CFG(), "" );
3179   assert( n2->is_CFG(), "" );
3180   // find LCA of all uses
3181   uint d1 = dom_depth(n1);
3182   uint d2 = dom_depth(n2);
3183   while (n1 != n2) {
3184     if (d1 > d2) {
3185       n1 =      idom(n1);
3186       d1 = dom_depth(n1);
3187     } else if (d1 < d2) {
3188       n2 =      idom(n2);
3189       d2 = dom_depth(n2);
3190     } else {
3191       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3192       // of the tree might have the same depth.  These sections have
3193       // to be searched more carefully.
3194 
3195       // Scan up all the n1's with equal depth, looking for n2.
3196       Node *t1 = idom(n1);
3197       while (dom_depth(t1) == d1) {
3198         if (t1 == n2)  return n2;
3199         t1 = idom(t1);
3200       }
3201       // Scan up all the n2's with equal depth, looking for n1.
3202       Node *t2 = idom(n2);
3203       while (dom_depth(t2) == d2) {
3204         if (t2 == n1)  return n1;
3205         t2 = idom(t2);
3206       }
3207       // Move up to a new dominator-depth value as well as up the dom-tree.
3208       n1 = t1;
3209       n2 = t2;
3210       d1 = dom_depth(n1);
3211       d2 = dom_depth(n2);
3212     }
3213   }
3214   return n1;
3215 }
3216 
3217 //------------------------------compute_idom-----------------------------------
3218 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3219 // IDOMs are correct.
3220 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3221   assert( region->is_Region(), "" );
3222   Node *LCA = NULL;
3223   for( uint i = 1; i < region->req(); i++ ) {
3224     if( region->in(i) != C->top() )
3225       LCA = dom_lca( LCA, region->in(i) );
3226   }
3227   return LCA;
3228 }
3229 
3230 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3231   bool had_error = false;
3232 #ifdef ASSERT
3233   if (early != C->root()) {
3234     // Make sure that there's a dominance path from LCA to early
3235     Node* d = LCA;
3236     while (d != early) {
3237       if (d == C->root()) {
3238         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3239         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3240         had_error = true;
3241         break;
3242       }
3243       d = idom(d);
3244     }
3245   }
3246 #endif
3247   return had_error;
3248 }
3249 
3250 
3251 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3252   // Compute LCA over list of uses
3253   bool had_error = false;
3254   Node *LCA = NULL;
3255   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3256     Node* c = n->fast_out(i);
3257     if (_nodes[c->_idx] == NULL)
3258       continue;                 // Skip the occasional dead node
3259     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3260       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3261         if( c->in(j) == n ) {   // Found matching input?
3262           Node *use = c->in(0)->in(j);
3263           if (_verify_only && use->is_top()) continue;
3264           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3265           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3266         }
3267       }
3268     } else {
3269       // For CFG data-users, use is in the block just prior
3270       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3271       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3272       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3273     }
3274   }
3275   assert(!had_error, "bad dominance");
3276   return LCA;
3277 }
3278 
3279 //------------------------------get_late_ctrl----------------------------------
3280 // Compute latest legal control.
3281 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3282   assert(early != NULL, "early control should not be NULL");
3283 
3284   Node* LCA = compute_lca_of_uses(n, early);
3285 #ifdef ASSERT
3286   if (LCA == C->root() && LCA != early) {
3287     // def doesn't dominate uses so print some useful debugging output
3288     compute_lca_of_uses(n, early, true);
3289   }
3290 #endif
3291 
3292   // if this is a load, check for anti-dependent stores
3293   // We use a conservative algorithm to identify potential interfering
3294   // instructions and for rescheduling the load.  The users of the memory
3295   // input of this load are examined.  Any use which is not a load and is
3296   // dominated by early is considered a potentially interfering store.
3297   // This can produce false positives.
3298   if (n->is_Load() && LCA != early) {
3299     Node_List worklist;
3300 
3301     Node *mem = n->in(MemNode::Memory);
3302     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3303       Node* s = mem->fast_out(i);
3304       worklist.push(s);
3305     }
3306     while(worklist.size() != 0 && LCA != early) {
3307       Node* s = worklist.pop();
3308       if (s->is_Load()) {
3309         continue;
3310       } else if (s->is_MergeMem()) {
3311         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3312           Node* s1 = s->fast_out(i);
3313           worklist.push(s1);
3314         }
3315       } else {
3316         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3317         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3318         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3319           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3320         }
3321       }
3322     }
3323   }
3324 
3325   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3326   return LCA;
3327 }
3328 
3329 // true if CFG node d dominates CFG node n
3330 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3331   if (d == n)
3332     return true;
3333   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3334   uint dd = dom_depth(d);
3335   while (dom_depth(n) >= dd) {
3336     if (n == d)
3337       return true;
3338     n = idom(n);
3339   }
3340   return false;
3341 }
3342 
3343 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3344 // Pair-wise LCA with tags.
3345 // Tag each index with the node 'tag' currently being processed
3346 // before advancing up the dominator chain using idom().
3347 // Later calls that find a match to 'tag' know that this path has already
3348 // been considered in the current LCA (which is input 'n1' by convention).
3349 // Since get_late_ctrl() is only called once for each node, the tag array
3350 // does not need to be cleared between calls to get_late_ctrl().
3351 // Algorithm trades a larger constant factor for better asymptotic behavior
3352 //
3353 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3354   uint d1 = dom_depth(n1);
3355   uint d2 = dom_depth(n2);
3356 
3357   do {
3358     if (d1 > d2) {
3359       // current lca is deeper than n2
3360       _dom_lca_tags.map(n1->_idx, tag);
3361       n1 =      idom(n1);
3362       d1 = dom_depth(n1);
3363     } else if (d1 < d2) {
3364       // n2 is deeper than current lca
3365       Node *memo = _dom_lca_tags[n2->_idx];
3366       if( memo == tag ) {
3367         return n1;    // Return the current LCA
3368       }
3369       _dom_lca_tags.map(n2->_idx, tag);
3370       n2 =      idom(n2);
3371       d2 = dom_depth(n2);
3372     } else {
3373       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3374       // of the tree might have the same depth.  These sections have
3375       // to be searched more carefully.
3376 
3377       // Scan up all the n1's with equal depth, looking for n2.
3378       _dom_lca_tags.map(n1->_idx, tag);
3379       Node *t1 = idom(n1);
3380       while (dom_depth(t1) == d1) {
3381         if (t1 == n2)  return n2;
3382         _dom_lca_tags.map(t1->_idx, tag);
3383         t1 = idom(t1);
3384       }
3385       // Scan up all the n2's with equal depth, looking for n1.
3386       _dom_lca_tags.map(n2->_idx, tag);
3387       Node *t2 = idom(n2);
3388       while (dom_depth(t2) == d2) {
3389         if (t2 == n1)  return n1;
3390         _dom_lca_tags.map(t2->_idx, tag);
3391         t2 = idom(t2);
3392       }
3393       // Move up to a new dominator-depth value as well as up the dom-tree.
3394       n1 = t1;
3395       n2 = t2;
3396       d1 = dom_depth(n1);
3397       d2 = dom_depth(n2);
3398     }
3399   } while (n1 != n2);
3400   return n1;
3401 }
3402 
3403 //------------------------------init_dom_lca_tags------------------------------
3404 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3405 // Intended use does not involve any growth for the array, so it could
3406 // be of fixed size.
3407 void PhaseIdealLoop::init_dom_lca_tags() {
3408   uint limit = C->unique() + 1;
3409   _dom_lca_tags.map( limit, NULL );
3410 #ifdef ASSERT
3411   for( uint i = 0; i < limit; ++i ) {
3412     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3413   }
3414 #endif // ASSERT
3415 }
3416 
3417 //------------------------------clear_dom_lca_tags------------------------------
3418 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3419 // Intended use does not involve any growth for the array, so it could
3420 // be of fixed size.
3421 void PhaseIdealLoop::clear_dom_lca_tags() {
3422   uint limit = C->unique() + 1;
3423   _dom_lca_tags.map( limit, NULL );
3424   _dom_lca_tags.clear();
3425 #ifdef ASSERT
3426   for( uint i = 0; i < limit; ++i ) {
3427     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3428   }
3429 #endif // ASSERT
3430 }
3431 
3432 //------------------------------build_loop_late--------------------------------
3433 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3434 // Second pass finds latest legal placement, and ideal loop placement.
3435 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3436   while (worklist.size() != 0) {
3437     Node *n = worklist.pop();
3438     // Only visit once
3439     if (visited.test_set(n->_idx)) continue;
3440     uint cnt = n->outcnt();
3441     uint   i = 0;
3442     while (true) {
3443       assert( _nodes[n->_idx], "no dead nodes" );
3444       // Visit all children
3445       if (i < cnt) {
3446         Node* use = n->raw_out(i);
3447         ++i;
3448         // Check for dead uses.  Aggressively prune such junk.  It might be
3449         // dead in the global sense, but still have local uses so I cannot
3450         // easily call 'remove_dead_node'.
3451         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3452           // Due to cycles, we might not hit the same fixed point in the verify
3453           // pass as we do in the regular pass.  Instead, visit such phis as
3454           // simple uses of the loop head.
3455           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3456             if( !visited.test(use->_idx) )
3457               worklist.push(use);
3458           } else if( !visited.test_set(use->_idx) ) {
3459             nstack.push(n, i); // Save parent and next use's index.
3460             n   = use;         // Process all children of current use.
3461             cnt = use->outcnt();
3462             i   = 0;
3463           }
3464         } else {
3465           // Do not visit around the backedge of loops via data edges.
3466           // push dead code onto a worklist
3467           _deadlist.push(use);
3468         }
3469       } else {
3470         // All of n's children have been processed, complete post-processing.
3471         build_loop_late_post(n);
3472         if (nstack.is_empty()) {
3473           // Finished all nodes on stack.
3474           // Process next node on the worklist.
3475           break;
3476         }
3477         // Get saved parent node and next use's index. Visit the rest of uses.
3478         n   = nstack.node();
3479         cnt = n->outcnt();
3480         i   = nstack.index();
3481         nstack.pop();
3482       }
3483     }
3484   }
3485 }
3486 
3487 //------------------------------build_loop_late_post---------------------------
3488 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3489 // Second pass finds latest legal placement, and ideal loop placement.
3490 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3491 
3492   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
3493     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3494   }
3495 
3496 #ifdef ASSERT
3497   if (_verify_only && !n->is_CFG()) {
3498     // Check def-use domination.
3499     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
3500   }
3501 #endif
3502 
3503   // CFG and pinned nodes already handled
3504   if( n->in(0) ) {
3505     if( n->in(0)->is_top() ) return; // Dead?
3506 
3507     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3508     // _must_ be pinned (they have to observe their control edge of course).
3509     // Unlike Stores (which modify an unallocable resource, the memory
3510     // state), Mods/Loads can float around.  So free them up.
3511     bool pinned = true;
3512     switch( n->Opcode() ) {
3513     case Op_DivI:
3514     case Op_DivF:
3515     case Op_DivD:
3516     case Op_ModI:
3517     case Op_ModF:
3518     case Op_ModD:
3519     case Op_LoadB:              // Same with Loads; they can sink
3520     case Op_LoadUB:             // during loop optimizations.
3521     case Op_LoadUS:
3522     case Op_LoadD:
3523     case Op_LoadF:
3524     case Op_LoadI:
3525     case Op_LoadKlass:
3526     case Op_LoadNKlass:
3527     case Op_LoadL:
3528     case Op_LoadS:
3529     case Op_LoadP:
3530     case Op_LoadN:
3531     case Op_LoadRange:
3532     case Op_LoadD_unaligned:
3533     case Op_LoadL_unaligned:
3534     case Op_StrComp:            // Does a bunch of load-like effects
3535     case Op_StrEquals:
3536     case Op_StrIndexOf:
3537     case Op_StrIndexOfChar:
3538     case Op_AryEq:
3539     case Op_HasNegatives:
3540       pinned = false;
3541     }
3542     if( pinned ) {
3543       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3544       if( !chosen_loop->_child )       // Inner loop?
3545         chosen_loop->_body.push(n); // Collect inner loops
3546       return;
3547     }
3548   } else {                      // No slot zero
3549     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3550       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3551       return;
3552     }
3553     assert(!n->is_CFG() || n->outcnt() == 0, "");
3554   }
3555 
3556   // Do I have a "safe range" I can select over?
3557   Node *early = get_ctrl(n);// Early location already computed
3558 
3559   // Compute latest point this Node can go
3560   Node *LCA = get_late_ctrl( n, early );
3561   // LCA is NULL due to uses being dead
3562   if( LCA == NULL ) {
3563 #ifdef ASSERT
3564     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3565       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3566     }
3567 #endif
3568     _nodes.map(n->_idx, 0);     // This node is useless
3569     _deadlist.push(n);
3570     return;
3571   }
3572   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3573 
3574   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3575   Node *least = legal;          // Best legal position so far
3576   while( early != legal ) {     // While not at earliest legal
3577 #ifdef ASSERT
3578     if (legal->is_Start() && !early->is_Root()) {
3579       // Bad graph. Print idom path and fail.
3580       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
3581       assert(false, "Bad graph detected in build_loop_late");
3582     }
3583 #endif
3584     // Find least loop nesting depth
3585     legal = idom(legal);        // Bump up the IDOM tree
3586     // Check for lower nesting depth
3587     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3588       least = legal;
3589   }
3590   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3591 
3592   // Try not to place code on a loop entry projection
3593   // which can inhibit range check elimination.
3594   if (least != early) {
3595     Node* ctrl_out = least->unique_ctrl_out();
3596     if (ctrl_out && ctrl_out->is_CountedLoop() &&
3597         least == ctrl_out->in(LoopNode::EntryControl)) {
3598       Node* least_dom = idom(least);
3599       if (get_loop(least_dom)->is_member(get_loop(least))) {
3600         least = least_dom;
3601       }
3602     }
3603   }
3604 
3605 #ifdef ASSERT
3606   // If verifying, verify that 'verify_me' has a legal location
3607   // and choose it as our location.
3608   if( _verify_me ) {
3609     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3610     Node *legal = LCA;
3611     while( early != legal ) {   // While not at earliest legal
3612       if( legal == v_ctrl ) break;  // Check for prior good location
3613       legal = idom(legal)      ;// Bump up the IDOM tree
3614     }
3615     // Check for prior good location
3616     if( legal == v_ctrl ) least = legal; // Keep prior if found
3617   }
3618 #endif
3619 
3620   // Assign discovered "here or above" point
3621   least = find_non_split_ctrl(least);
3622   set_ctrl(n, least);
3623 
3624   // Collect inner loop bodies
3625   IdealLoopTree *chosen_loop = get_loop(least);
3626   if( !chosen_loop->_child )   // Inner loop?
3627     chosen_loop->_body.push(n);// Collect inner loops
3628 }
3629 
3630 #ifdef ASSERT
3631 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
3632   tty->print_cr("%s", msg);
3633   tty->print("n: "); n->dump();
3634   tty->print("early(n): "); early->dump();
3635   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
3636       n->in(0) != early && !n->in(0)->is_Root()) {
3637     tty->print("n->in(0): "); n->in(0)->dump();
3638   }
3639   for (uint i = 1; i < n->req(); i++) {
3640     Node* in1 = n->in(i);
3641     if (in1 != NULL && in1 != n && !in1->is_top()) {
3642       tty->print("n->in(%d): ", i); in1->dump();
3643       Node* in1_early = get_ctrl(in1);
3644       tty->print("early(n->in(%d)): ", i); in1_early->dump();
3645       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
3646           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
3647         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
3648       }
3649       for (uint j = 1; j < in1->req(); j++) {
3650         Node* in2 = in1->in(j);
3651         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
3652           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
3653           Node* in2_early = get_ctrl(in2);
3654           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
3655           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
3656               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
3657             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
3658           }
3659         }
3660       }
3661     }
3662   }
3663   tty->cr();
3664   tty->print("LCA(n): "); LCA->dump();
3665   for (uint i = 0; i < n->outcnt(); i++) {
3666     Node* u1 = n->raw_out(i);
3667     if (u1 == n)
3668       continue;
3669     tty->print("n->out(%d): ", i); u1->dump();
3670     if (u1->is_CFG()) {
3671       for (uint j = 0; j < u1->outcnt(); j++) {
3672         Node* u2 = u1->raw_out(j);
3673         if (u2 != u1 && u2 != n && u2->is_CFG()) {
3674           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3675         }
3676       }
3677     } else {
3678       Node* u1_later = get_ctrl(u1);
3679       tty->print("later(n->out(%d)): ", i); u1_later->dump();
3680       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
3681           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
3682         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
3683       }
3684       for (uint j = 0; j < u1->outcnt(); j++) {
3685         Node* u2 = u1->raw_out(j);
3686         if (u2 == n || u2 == u1)
3687           continue;
3688         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3689         if (!u2->is_CFG()) {
3690           Node* u2_later = get_ctrl(u2);
3691           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
3692           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
3693               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
3694             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
3695           }
3696         }
3697       }
3698     }
3699   }
3700   tty->cr();
3701   int ct = 0;
3702   Node *dbg_legal = LCA;
3703   while(!dbg_legal->is_Start() && ct < 100) {
3704     tty->print("idom[%d] ",ct); dbg_legal->dump();
3705     ct++;
3706     dbg_legal = idom(dbg_legal);
3707   }
3708   tty->cr();
3709 }
3710 #endif
3711 
3712 #ifndef PRODUCT
3713 //------------------------------dump-------------------------------------------
3714 void PhaseIdealLoop::dump( ) const {
3715   ResourceMark rm;
3716   Arena* arena = Thread::current()->resource_area();
3717   Node_Stack stack(arena, C->live_nodes() >> 2);
3718   Node_List rpo_list;
3719   VectorSet visited(arena);
3720   visited.set(C->top()->_idx);
3721   rpo( C->root(), stack, visited, rpo_list );
3722   // Dump root loop indexed by last element in PO order
3723   dump( _ltree_root, rpo_list.size(), rpo_list );
3724 }
3725 
3726 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3727   loop->dump_head();
3728 
3729   // Now scan for CFG nodes in the same loop
3730   for( uint j=idx; j > 0;  j-- ) {
3731     Node *n = rpo_list[j-1];
3732     if( !_nodes[n->_idx] )      // Skip dead nodes
3733       continue;
3734     if( get_loop(n) != loop ) { // Wrong loop nest
3735       if( get_loop(n)->_head == n &&    // Found nested loop?
3736           get_loop(n)->_parent == loop )
3737         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3738       continue;
3739     }
3740 
3741     // Dump controlling node
3742     for( uint x = 0; x < loop->_nest; x++ )
3743       tty->print("  ");
3744     tty->print("C");
3745     if( n == C->root() ) {
3746       n->dump();
3747     } else {
3748       Node* cached_idom   = idom_no_update(n);
3749       Node *computed_idom = n->in(0);
3750       if( n->is_Region() ) {
3751         computed_idom = compute_idom(n);
3752         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3753         // any MultiBranch ctrl node), so apply a similar transform to
3754         // the cached idom returned from idom_no_update.
3755         cached_idom = find_non_split_ctrl(cached_idom);
3756       }
3757       tty->print(" ID:%d",computed_idom->_idx);
3758       n->dump();
3759       if( cached_idom != computed_idom ) {
3760         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3761                       computed_idom->_idx, cached_idom->_idx);
3762       }
3763     }
3764     // Dump nodes it controls
3765     for( uint k = 0; k < _nodes.Size(); k++ ) {
3766       // (k < C->unique() && get_ctrl(find(k)) == n)
3767       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3768         Node *m = C->root()->find(k);
3769         if( m && m->outcnt() > 0 ) {
3770           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3771             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3772                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3773           }
3774           for( uint j = 0; j < loop->_nest; j++ )
3775             tty->print("  ");
3776           tty->print(" ");
3777           m->dump();
3778         }
3779       }
3780     }
3781   }
3782 }
3783 
3784 // Collect a R-P-O for the whole CFG.
3785 // Result list is in post-order (scan backwards for RPO)
3786 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3787   stk.push(start, 0);
3788   visited.set(start->_idx);
3789 
3790   while (stk.is_nonempty()) {
3791     Node* m   = stk.node();
3792     uint  idx = stk.index();
3793     if (idx < m->outcnt()) {
3794       stk.set_index(idx + 1);
3795       Node* n = m->raw_out(idx);
3796       if (n->is_CFG() && !visited.test_set(n->_idx)) {
3797         stk.push(n, 0);
3798       }
3799     } else {
3800       rpo_list.push(m);
3801       stk.pop();
3802     }
3803   }
3804 }
3805 #endif
3806 
3807 
3808 //=============================================================================
3809 //------------------------------LoopTreeIterator-----------------------------------
3810 
3811 // Advance to next loop tree using a preorder, left-to-right traversal.
3812 void LoopTreeIterator::next() {
3813   assert(!done(), "must not be done.");
3814   if (_curnt->_child != NULL) {
3815     _curnt = _curnt->_child;
3816   } else if (_curnt->_next != NULL) {
3817     _curnt = _curnt->_next;
3818   } else {
3819     while (_curnt != _root && _curnt->_next == NULL) {
3820       _curnt = _curnt->_parent;
3821     }
3822     if (_curnt == _root) {
3823       _curnt = NULL;
3824       assert(done(), "must be done.");
3825     } else {
3826       assert(_curnt->_next != NULL, "must be more to do");
3827       _curnt = _curnt->_next;
3828     }
3829   }
3830 }