1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [Op_RegI] = NULL;
  78   idealreg2spillmask  [Op_RegN] = NULL;
  79   idealreg2spillmask  [Op_RegL] = NULL;
  80   idealreg2spillmask  [Op_RegF] = NULL;
  81   idealreg2spillmask  [Op_RegD] = NULL;
  82   idealreg2spillmask  [Op_RegP] = NULL;
  83   idealreg2spillmask  [Op_VecS] = NULL;
  84   idealreg2spillmask  [Op_VecD] = NULL;
  85   idealreg2spillmask  [Op_VecX] = NULL;
  86   idealreg2spillmask  [Op_VecY] = NULL;
  87   idealreg2spillmask  [Op_VecZ] = NULL;
  88 
  89   idealreg2debugmask  [Op_RegI] = NULL;
  90   idealreg2debugmask  [Op_RegN] = NULL;
  91   idealreg2debugmask  [Op_RegL] = NULL;
  92   idealreg2debugmask  [Op_RegF] = NULL;
  93   idealreg2debugmask  [Op_RegD] = NULL;
  94   idealreg2debugmask  [Op_RegP] = NULL;
  95   idealreg2debugmask  [Op_VecS] = NULL;
  96   idealreg2debugmask  [Op_VecD] = NULL;
  97   idealreg2debugmask  [Op_VecX] = NULL;
  98   idealreg2debugmask  [Op_VecY] = NULL;
  99   idealreg2debugmask  [Op_VecZ] = NULL;
 100 
 101   idealreg2mhdebugmask[Op_RegI] = NULL;
 102   idealreg2mhdebugmask[Op_RegN] = NULL;
 103   idealreg2mhdebugmask[Op_RegL] = NULL;
 104   idealreg2mhdebugmask[Op_RegF] = NULL;
 105   idealreg2mhdebugmask[Op_RegD] = NULL;
 106   idealreg2mhdebugmask[Op_RegP] = NULL;
 107   idealreg2mhdebugmask[Op_VecS] = NULL;
 108   idealreg2mhdebugmask[Op_VecD] = NULL;
 109   idealreg2mhdebugmask[Op_VecX] = NULL;
 110   idealreg2mhdebugmask[Op_VecY] = NULL;
 111   idealreg2mhdebugmask[Op_VecZ] = NULL;
 112 
 113   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 114 }
 115 
 116 //------------------------------warp_incoming_stk_arg------------------------
 117 // This warps a VMReg into an OptoReg::Name
 118 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 119   OptoReg::Name warped;
 120   if( reg->is_stack() ) {  // Stack slot argument?
 121     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 122     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 123     if( warped >= _in_arg_limit )
 124       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 125     if (!RegMask::can_represent_arg(warped)) {
 126       // the compiler cannot represent this method's calling sequence
 127       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 128       return OptoReg::Bad;
 129     }
 130     return warped;
 131   }
 132   return OptoReg::as_OptoReg(reg);
 133 }
 134 
 135 //---------------------------compute_old_SP------------------------------------
 136 OptoReg::Name Compile::compute_old_SP() {
 137   int fixed    = fixed_slots();
 138   int preserve = in_preserve_stack_slots();
 139   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 140 }
 141 
 142 
 143 
 144 #ifdef ASSERT
 145 void Matcher::verify_new_nodes_only(Node* xroot) {
 146   // Make sure that the new graph only references new nodes
 147   ResourceMark rm;
 148   Unique_Node_List worklist;
 149   VectorSet visited(Thread::current()->resource_area());
 150   worklist.push(xroot);
 151   while (worklist.size() > 0) {
 152     Node* n = worklist.pop();
 153     visited <<= n->_idx;
 154     assert(C->node_arena()->contains(n), "dead node");
 155     for (uint j = 0; j < n->req(); j++) {
 156       Node* in = n->in(j);
 157       if (in != NULL) {
 158         assert(C->node_arena()->contains(in), "dead node");
 159         if (!visited.test(in->_idx)) {
 160           worklist.push(in);
 161         }
 162       }
 163     }
 164   }
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------match---------------------------------------------
 170 void Matcher::match( ) {
 171   if( MaxLabelRootDepth < 100 ) { // Too small?
 172     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 173     MaxLabelRootDepth = 100;
 174   }
 175   // One-time initialization of some register masks.
 176   init_spill_mask( C->root()->in(1) );
 177   _return_addr_mask = return_addr();
 178 #ifdef _LP64
 179   // Pointers take 2 slots in 64-bit land
 180   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 181 #endif
 182 
 183   // Map a Java-signature return type into return register-value
 184   // machine registers for 0, 1 and 2 returned values.
 185   const TypeTuple *range = C->tf()->range();
 186   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 187     // Get ideal-register return type
 188     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 189     // Get machine return register
 190     uint sop = C->start()->Opcode();
 191     OptoRegPair regs = return_value(ireg, false);
 192 
 193     // And mask for same
 194     _return_value_mask = RegMask(regs.first());
 195     if( OptoReg::is_valid(regs.second()) )
 196       _return_value_mask.Insert(regs.second());
 197   }
 198 
 199   // ---------------
 200   // Frame Layout
 201 
 202   // Need the method signature to determine the incoming argument types,
 203   // because the types determine which registers the incoming arguments are
 204   // in, and this affects the matched code.
 205   const TypeTuple *domain = C->tf()->domain();
 206   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 207   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 208   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 209   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 210   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 211   uint i;
 212   for( i = 0; i<argcnt; i++ ) {
 213     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 214   }
 215 
 216   // Pass array of ideal registers and length to USER code (from the AD file)
 217   // that will convert this to an array of register numbers.
 218   const StartNode *start = C->start();
 219   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 220 #ifdef ASSERT
 221   // Sanity check users' calling convention.  Real handy while trying to
 222   // get the initial port correct.
 223   { for (uint i = 0; i<argcnt; i++) {
 224       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 225         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 226         _parm_regs[i].set_bad();
 227         continue;
 228       }
 229       VMReg parm_reg = vm_parm_regs[i].first();
 230       assert(parm_reg->is_valid(), "invalid arg?");
 231       if (parm_reg->is_reg()) {
 232         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 233         assert(can_be_java_arg(opto_parm_reg) ||
 234                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 235                opto_parm_reg == inline_cache_reg(),
 236                "parameters in register must be preserved by runtime stubs");
 237       }
 238       for (uint j = 0; j < i; j++) {
 239         assert(parm_reg != vm_parm_regs[j].first(),
 240                "calling conv. must produce distinct regs");
 241       }
 242     }
 243   }
 244 #endif
 245 
 246   // Do some initial frame layout.
 247 
 248   // Compute the old incoming SP (may be called FP) as
 249   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 250   _old_SP = C->compute_old_SP();
 251   assert( is_even(_old_SP), "must be even" );
 252 
 253   // Compute highest incoming stack argument as
 254   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 255   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 256   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 257   for( i = 0; i < argcnt; i++ ) {
 258     // Permit args to have no register
 259     _calling_convention_mask[i].Clear();
 260     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 261       continue;
 262     }
 263     // calling_convention returns stack arguments as a count of
 264     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 265     // the allocators point of view, taking into account all the
 266     // preserve area, locks & pad2.
 267 
 268     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 269     if( OptoReg::is_valid(reg1))
 270       _calling_convention_mask[i].Insert(reg1);
 271 
 272     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 273     if( OptoReg::is_valid(reg2))
 274       _calling_convention_mask[i].Insert(reg2);
 275 
 276     // Saved biased stack-slot register number
 277     _parm_regs[i].set_pair(reg2, reg1);
 278   }
 279 
 280   // Finally, make sure the incoming arguments take up an even number of
 281   // words, in case the arguments or locals need to contain doubleword stack
 282   // slots.  The rest of the system assumes that stack slot pairs (in
 283   // particular, in the spill area) which look aligned will in fact be
 284   // aligned relative to the stack pointer in the target machine.  Double
 285   // stack slots will always be allocated aligned.
 286   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 287 
 288   // Compute highest outgoing stack argument as
 289   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 290   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 291   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 292 
 293   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 294     // the compiler cannot represent this method's calling sequence
 295     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 296   }
 297 
 298   if (C->failing())  return;  // bailed out on incoming arg failure
 299 
 300   // ---------------
 301   // Collect roots of matcher trees.  Every node for which
 302   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 303   // can be a valid interior of some tree.
 304   find_shared( C->root() );
 305   find_shared( C->top() );
 306 
 307   C->print_method(PHASE_BEFORE_MATCHING);
 308 
 309   // Create new ideal node ConP #NULL even if it does exist in old space
 310   // to avoid false sharing if the corresponding mach node is not used.
 311   // The corresponding mach node is only used in rare cases for derived
 312   // pointers.
 313   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 314 
 315   // Swap out to old-space; emptying new-space
 316   Arena *old = C->node_arena()->move_contents(C->old_arena());
 317 
 318   // Save debug and profile information for nodes in old space:
 319   _old_node_note_array = C->node_note_array();
 320   if (_old_node_note_array != NULL) {
 321     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 322                            (C->comp_arena(), _old_node_note_array->length(),
 323                             0, NULL));
 324   }
 325 
 326   // Pre-size the new_node table to avoid the need for range checks.
 327   grow_new_node_array(C->unique());
 328 
 329   // Reset node counter so MachNodes start with _idx at 0
 330   int live_nodes = C->live_nodes();
 331   C->set_unique(0);
 332   C->reset_dead_node_list();
 333 
 334   // Recursively match trees from old space into new space.
 335   // Correct leaves of new-space Nodes; they point to old-space.
 336   _visited.Clear();             // Clear visit bits for xform call
 337   C->set_cached_top_node(xform( C->top(), live_nodes ));
 338   if (!C->failing()) {
 339     Node* xroot =        xform( C->root(), 1 );
 340     if (xroot == NULL) {
 341       Matcher::soft_match_failure();  // recursive matching process failed
 342       C->record_method_not_compilable("instruction match failed");
 343     } else {
 344       // During matching shared constants were attached to C->root()
 345       // because xroot wasn't available yet, so transfer the uses to
 346       // the xroot.
 347       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 348         Node* n = C->root()->fast_out(j);
 349         if (C->node_arena()->contains(n)) {
 350           assert(n->in(0) == C->root(), "should be control user");
 351           n->set_req(0, xroot);
 352           --j;
 353           --jmax;
 354         }
 355       }
 356 
 357       // Generate new mach node for ConP #NULL
 358       assert(new_ideal_null != NULL, "sanity");
 359       _mach_null = match_tree(new_ideal_null);
 360       // Don't set control, it will confuse GCM since there are no uses.
 361       // The control will be set when this node is used first time
 362       // in find_base_for_derived().
 363       assert(_mach_null != NULL, "");
 364 
 365       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 366 
 367 #ifdef ASSERT
 368       verify_new_nodes_only(xroot);
 369 #endif
 370     }
 371   }
 372   if (C->top() == NULL || C->root() == NULL) {
 373     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 374   }
 375   if (C->failing()) {
 376     // delete old;
 377     old->destruct_contents();
 378     return;
 379   }
 380   assert( C->top(), "" );
 381   assert( C->root(), "" );
 382   validate_null_checks();
 383 
 384   // Now smoke old-space
 385   NOT_DEBUG( old->destruct_contents() );
 386 
 387   // ------------------------
 388   // Set up save-on-entry registers
 389   Fixup_Save_On_Entry( );
 390 }
 391 
 392 
 393 //------------------------------Fixup_Save_On_Entry----------------------------
 394 // The stated purpose of this routine is to take care of save-on-entry
 395 // registers.  However, the overall goal of the Match phase is to convert into
 396 // machine-specific instructions which have RegMasks to guide allocation.
 397 // So what this procedure really does is put a valid RegMask on each input
 398 // to the machine-specific variations of all Return, TailCall and Halt
 399 // instructions.  It also adds edgs to define the save-on-entry values (and of
 400 // course gives them a mask).
 401 
 402 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 403   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 404   // Do all the pre-defined register masks
 405   rms[TypeFunc::Control  ] = RegMask::Empty;
 406   rms[TypeFunc::I_O      ] = RegMask::Empty;
 407   rms[TypeFunc::Memory   ] = RegMask::Empty;
 408   rms[TypeFunc::ReturnAdr] = ret_adr;
 409   rms[TypeFunc::FramePtr ] = fp;
 410   return rms;
 411 }
 412 
 413 //---------------------------init_first_stack_mask-----------------------------
 414 // Create the initial stack mask used by values spilling to the stack.
 415 // Disallow any debug info in outgoing argument areas by setting the
 416 // initial mask accordingly.
 417 void Matcher::init_first_stack_mask() {
 418 
 419   // Allocate storage for spill masks as masks for the appropriate load type.
 420   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 421 
 422   idealreg2spillmask  [Op_RegN] = &rms[0];
 423   idealreg2spillmask  [Op_RegI] = &rms[1];
 424   idealreg2spillmask  [Op_RegL] = &rms[2];
 425   idealreg2spillmask  [Op_RegF] = &rms[3];
 426   idealreg2spillmask  [Op_RegD] = &rms[4];
 427   idealreg2spillmask  [Op_RegP] = &rms[5];
 428 
 429   idealreg2debugmask  [Op_RegN] = &rms[6];
 430   idealreg2debugmask  [Op_RegI] = &rms[7];
 431   idealreg2debugmask  [Op_RegL] = &rms[8];
 432   idealreg2debugmask  [Op_RegF] = &rms[9];
 433   idealreg2debugmask  [Op_RegD] = &rms[10];
 434   idealreg2debugmask  [Op_RegP] = &rms[11];
 435 
 436   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 437   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 438   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 439   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 440   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 441   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 442 
 443   idealreg2spillmask  [Op_VecS] = &rms[18];
 444   idealreg2spillmask  [Op_VecD] = &rms[19];
 445   idealreg2spillmask  [Op_VecX] = &rms[20];
 446   idealreg2spillmask  [Op_VecY] = &rms[21];
 447   idealreg2spillmask  [Op_VecZ] = &rms[22];
 448 
 449   OptoReg::Name i;
 450 
 451   // At first, start with the empty mask
 452   C->FIRST_STACK_mask().Clear();
 453 
 454   // Add in the incoming argument area
 455   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 456   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 457     C->FIRST_STACK_mask().Insert(i);
 458   }
 459   // Add in all bits past the outgoing argument area
 460   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 461             "must be able to represent all call arguments in reg mask");
 462   OptoReg::Name init = _out_arg_limit;
 463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 464     C->FIRST_STACK_mask().Insert(i);
 465   }
 466   // Finally, set the "infinite stack" bit.
 467   C->FIRST_STACK_mask().set_AllStack();
 468 
 469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 470   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 471   // Keep spill masks aligned.
 472   aligned_stack_mask.clear_to_pairs();
 473   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 474 
 475   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 476 #ifdef _LP64
 477   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 478    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 479    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 480 #else
 481    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 482 #endif
 483   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 484    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 486    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 487   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 488    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 489   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 490    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 491 
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 494      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 497     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 498     // RA guarantees such alignment since it is needed for Double and Long values.
 499     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 500      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 501   }
 502   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 503     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 504     //
 505     // RA can use input arguments stack slots for spills but until RA
 506     // we don't know frame size and offset of input arg stack slots.
 507     //
 508     // Exclude last input arg stack slots to avoid spilling vectors there
 509     // otherwise vector spills could stomp over stack slots in caller frame.
 510     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 511     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 512       aligned_stack_mask.Remove(in);
 513       in = OptoReg::add(in, -1);
 514     }
 515      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 516      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 517     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 518      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 519   }
 520   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 521     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 524       aligned_stack_mask.Remove(in);
 525       in = OptoReg::add(in, -1);
 526     }
 527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 529     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 530      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 531   }
 532   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 533     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 536       aligned_stack_mask.Remove(in);
 537       in = OptoReg::add(in, -1);
 538     }
 539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 541     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 542      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 543   }
 544    if (UseFPUForSpilling) {
 545      // This mask logic assumes that the spill operations are
 546      // symmetric and that the registers involved are the same size.
 547      // On sparc for instance we may have to use 64 bit moves will
 548      // kill 2 registers when used with F0-F31.
 549      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 550      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 551 #ifdef _LP64
 552      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 553      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 554      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 555      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 556 #else
 557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 558 #ifdef ARM
 559      // ARM has support for moving 64bit values between a pair of
 560      // integer registers and a double register
 561      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 562      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 563 #endif
 564 #endif
 565    }
 566 
 567   // Make up debug masks.  Any spill slot plus callee-save registers.
 568   // Caller-save registers are assumed to be trashable by the various
 569   // inline-cache fixup routines.
 570   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 571   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 572   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 573   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 574   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 575   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 576 
 577   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 578   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 579   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 580   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 581   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 582   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 583 
 584   // Prevent stub compilations from attempting to reference
 585   // callee-saved registers from debug info
 586   bool exclude_soe = !Compile::current()->is_method_compilation();
 587 
 588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 589     // registers the caller has to save do not work
 590     if( _register_save_policy[i] == 'C' ||
 591         _register_save_policy[i] == 'A' ||
 592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 593       idealreg2debugmask  [Op_RegN]->Remove(i);
 594       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 595       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 596       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 597       idealreg2debugmask  [Op_RegD]->Remove(i);
 598       idealreg2debugmask  [Op_RegP]->Remove(i);
 599 
 600       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 601       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 602       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 603       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 606     }
 607   }
 608 
 609   // Subtract the register we use to save the SP for MethodHandle
 610   // invokes to from the debug mask.
 611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 612   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 613   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 614   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 618 }
 619 
 620 //---------------------------is_save_on_entry----------------------------------
 621 bool Matcher::is_save_on_entry( int reg ) {
 622   return
 623     _register_save_policy[reg] == 'E' ||
 624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 625     // Also save argument registers in the trampolining stubs
 626     (C->save_argument_registers() && is_spillable_arg(reg));
 627 }
 628 
 629 //---------------------------Fixup_Save_On_Entry-------------------------------
 630 void Matcher::Fixup_Save_On_Entry( ) {
 631   init_first_stack_mask();
 632 
 633   Node *root = C->root();       // Short name for root
 634   // Count number of save-on-entry registers.
 635   uint soe_cnt = number_of_saved_registers();
 636   uint i;
 637 
 638   // Find the procedure Start Node
 639   StartNode *start = C->start();
 640   assert( start, "Expect a start node" );
 641 
 642   // Save argument registers in the trampolining stubs
 643   if( C->save_argument_registers() )
 644     for( i = 0; i < _last_Mach_Reg; i++ )
 645       if( is_spillable_arg(i) )
 646         soe_cnt++;
 647 
 648   // Input RegMask array shared by all Returns.
 649   // The type for doubles and longs has a count of 2, but
 650   // there is only 1 returned value
 651   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 652   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 653   // Returns have 0 or 1 returned values depending on call signature.
 654   // Return register is specified by return_value in the AD file.
 655   if (ret_edge_cnt > TypeFunc::Parms)
 656     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 657 
 658   // Input RegMask array shared by all Rethrows.
 659   uint reth_edge_cnt = TypeFunc::Parms+1;
 660   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 661   // Rethrow takes exception oop only, but in the argument 0 slot.
 662   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 663 #ifdef _LP64
 664   // Need two slots for ptrs in 64-bit land
 665   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 666 #endif
 667 
 668   // Input RegMask array shared by all TailCalls
 669   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 670   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 671 
 672   // Input RegMask array shared by all TailJumps
 673   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 674   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 675 
 676   // TailCalls have 2 returned values (target & moop), whose masks come
 677   // from the usual MachNode/MachOper mechanism.  Find a sample
 678   // TailCall to extract these masks and put the correct masks into
 679   // the tail_call_rms array.
 680   for( i=1; i < root->req(); i++ ) {
 681     MachReturnNode *m = root->in(i)->as_MachReturn();
 682     if( m->ideal_Opcode() == Op_TailCall ) {
 683       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 684       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 685       break;
 686     }
 687   }
 688 
 689   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 690   // from the usual MachNode/MachOper mechanism.  Find a sample
 691   // TailJump to extract these masks and put the correct masks into
 692   // the tail_jump_rms array.
 693   for( i=1; i < root->req(); i++ ) {
 694     MachReturnNode *m = root->in(i)->as_MachReturn();
 695     if( m->ideal_Opcode() == Op_TailJump ) {
 696       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 697       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 698       break;
 699     }
 700   }
 701 
 702   // Input RegMask array shared by all Halts
 703   uint halt_edge_cnt = TypeFunc::Parms;
 704   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 705 
 706   // Capture the return input masks into each exit flavor
 707   for( i=1; i < root->req(); i++ ) {
 708     MachReturnNode *exit = root->in(i)->as_MachReturn();
 709     switch( exit->ideal_Opcode() ) {
 710       case Op_Return   : exit->_in_rms = ret_rms;  break;
 711       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 712       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 713       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 714       case Op_Halt     : exit->_in_rms = halt_rms; break;
 715       default          : ShouldNotReachHere();
 716     }
 717   }
 718 
 719   // Next unused projection number from Start.
 720   int proj_cnt = C->tf()->domain()->cnt();
 721 
 722   // Do all the save-on-entry registers.  Make projections from Start for
 723   // them, and give them a use at the exit points.  To the allocator, they
 724   // look like incoming register arguments.
 725   for( i = 0; i < _last_Mach_Reg; i++ ) {
 726     if( is_save_on_entry(i) ) {
 727 
 728       // Add the save-on-entry to the mask array
 729       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 730       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 731       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 732       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 733       // Halts need the SOE registers, but only in the stack as debug info.
 734       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 735       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 736 
 737       Node *mproj;
 738 
 739       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 740       // into a single RegD.
 741       if( (i&1) == 0 &&
 742           _register_save_type[i  ] == Op_RegF &&
 743           _register_save_type[i+1] == Op_RegF &&
 744           is_save_on_entry(i+1) ) {
 745         // Add other bit for double
 746         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 747         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 748         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 749         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 750         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 751         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 752         proj_cnt += 2;          // Skip 2 for doubles
 753       }
 754       else if( (i&1) == 1 &&    // Else check for high half of double
 755                _register_save_type[i-1] == Op_RegF &&
 756                _register_save_type[i  ] == Op_RegF &&
 757                is_save_on_entry(i-1) ) {
 758         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 759         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 760         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 761         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 762         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 763         mproj = C->top();
 764       }
 765       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 766       // into a single RegL.
 767       else if( (i&1) == 0 &&
 768           _register_save_type[i  ] == Op_RegI &&
 769           _register_save_type[i+1] == Op_RegI &&
 770         is_save_on_entry(i+1) ) {
 771         // Add other bit for long
 772         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 773         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 774         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 775         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 776         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 777         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 778         proj_cnt += 2;          // Skip 2 for longs
 779       }
 780       else if( (i&1) == 1 &&    // Else check for high half of long
 781                _register_save_type[i-1] == Op_RegI &&
 782                _register_save_type[i  ] == Op_RegI &&
 783                is_save_on_entry(i-1) ) {
 784         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 785         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 786         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 787         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 788         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 789         mproj = C->top();
 790       } else {
 791         // Make a projection for it off the Start
 792         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 793       }
 794 
 795       ret_edge_cnt ++;
 796       reth_edge_cnt ++;
 797       tail_call_edge_cnt ++;
 798       tail_jump_edge_cnt ++;
 799       halt_edge_cnt ++;
 800 
 801       // Add a use of the SOE register to all exit paths
 802       for( uint j=1; j < root->req(); j++ )
 803         root->in(j)->add_req(mproj);
 804     } // End of if a save-on-entry register
 805   } // End of for all machine registers
 806 }
 807 
 808 //------------------------------init_spill_mask--------------------------------
 809 void Matcher::init_spill_mask( Node *ret ) {
 810   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 811 
 812   OptoReg::c_frame_pointer = c_frame_pointer();
 813   c_frame_ptr_mask = c_frame_pointer();
 814 #ifdef _LP64
 815   // pointers are twice as big
 816   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 817 #endif
 818 
 819   // Start at OptoReg::stack0()
 820   STACK_ONLY_mask.Clear();
 821   OptoReg::Name init = OptoReg::stack2reg(0);
 822   // STACK_ONLY_mask is all stack bits
 823   OptoReg::Name i;
 824   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 825     STACK_ONLY_mask.Insert(i);
 826   // Also set the "infinite stack" bit.
 827   STACK_ONLY_mask.set_AllStack();
 828 
 829   // Copy the register names over into the shared world
 830   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 831     // SharedInfo::regName[i] = regName[i];
 832     // Handy RegMasks per machine register
 833     mreg2regmask[i].Insert(i);
 834   }
 835 
 836   // Grab the Frame Pointer
 837   Node *fp  = ret->in(TypeFunc::FramePtr);
 838   Node *mem = ret->in(TypeFunc::Memory);
 839   const TypePtr* atp = TypePtr::BOTTOM;
 840   // Share frame pointer while making spill ops
 841   set_shared(fp);
 842 
 843   // Compute generic short-offset Loads
 844 #ifdef _LP64
 845   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 846 #endif
 847   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 848   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 849   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 850   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 851   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 852   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 853          spillD != NULL && spillP != NULL, "");
 854   // Get the ADLC notion of the right regmask, for each basic type.
 855 #ifdef _LP64
 856   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 857 #endif
 858   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 859   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 860   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 861   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 862   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 863 
 864   // Vector regmasks.
 865   if (Matcher::vector_size_supported(T_BYTE,4)) {
 866     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 867     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 868     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 869   }
 870   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 871     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 872     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 873   }
 874   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 875     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 876     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 877   }
 878   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 879     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 880     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 881   }
 882   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 883     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 884     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 885   }
 886 }
 887 
 888 #ifdef ASSERT
 889 static void match_alias_type(Compile* C, Node* n, Node* m) {
 890   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 891   const TypePtr* nat = n->adr_type();
 892   const TypePtr* mat = m->adr_type();
 893   int nidx = C->get_alias_index(nat);
 894   int midx = C->get_alias_index(mat);
 895   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 896   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 897     for (uint i = 1; i < n->req(); i++) {
 898       Node* n1 = n->in(i);
 899       const TypePtr* n1at = n1->adr_type();
 900       if (n1at != NULL) {
 901         nat = n1at;
 902         nidx = C->get_alias_index(n1at);
 903       }
 904     }
 905   }
 906   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 907   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 908     switch (n->Opcode()) {
 909     case Op_PrefetchAllocation:
 910       nidx = Compile::AliasIdxRaw;
 911       nat = TypeRawPtr::BOTTOM;
 912       break;
 913     }
 914   }
 915   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 916     switch (n->Opcode()) {
 917     case Op_ClearArray:
 918       midx = Compile::AliasIdxRaw;
 919       mat = TypeRawPtr::BOTTOM;
 920       break;
 921     }
 922   }
 923   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 924     switch (n->Opcode()) {
 925     case Op_Return:
 926     case Op_Rethrow:
 927     case Op_Halt:
 928     case Op_TailCall:
 929     case Op_TailJump:
 930       nidx = Compile::AliasIdxBot;
 931       nat = TypePtr::BOTTOM;
 932       break;
 933     }
 934   }
 935   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 936     switch (n->Opcode()) {
 937     case Op_StrComp:
 938     case Op_StrEquals:
 939     case Op_StrIndexOf:
 940     case Op_StrIndexOfChar:
 941     case Op_AryEq:
 942     case Op_HasNegatives:
 943     case Op_MemBarVolatile:
 944     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 945     case Op_StrInflatedCopy:
 946     case Op_StrCompressedCopy:
 947     case Op_EncodeISOArray:
 948       nidx = Compile::AliasIdxTop;
 949       nat = NULL;
 950       break;
 951     }
 952   }
 953   if (nidx != midx) {
 954     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 955       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 956       n->dump();
 957       m->dump();
 958     }
 959     assert(C->subsume_loads() && C->must_alias(nat, midx),
 960            "must not lose alias info when matching");
 961   }
 962 }
 963 #endif
 964 
 965 
 966 //------------------------------MStack-----------------------------------------
 967 // State and MStack class used in xform() and find_shared() iterative methods.
 968 enum Node_State { Pre_Visit,  // node has to be pre-visited
 969                       Visit,  // visit node
 970                  Post_Visit,  // post-visit node
 971              Alt_Post_Visit   // alternative post-visit path
 972                 };
 973 
 974 class MStack: public Node_Stack {
 975   public:
 976     MStack(int size) : Node_Stack(size) { }
 977 
 978     void push(Node *n, Node_State ns) {
 979       Node_Stack::push(n, (uint)ns);
 980     }
 981     void push(Node *n, Node_State ns, Node *parent, int indx) {
 982       ++_inode_top;
 983       if ((_inode_top + 1) >= _inode_max) grow();
 984       _inode_top->node = parent;
 985       _inode_top->indx = (uint)indx;
 986       ++_inode_top;
 987       _inode_top->node = n;
 988       _inode_top->indx = (uint)ns;
 989     }
 990     Node *parent() {
 991       pop();
 992       return node();
 993     }
 994     Node_State state() const {
 995       return (Node_State)index();
 996     }
 997     void set_state(Node_State ns) {
 998       set_index((uint)ns);
 999     }
1000 };
1001 
1002 
1003 //------------------------------xform------------------------------------------
1004 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1005 // Node in new-space.  Given a new-space Node, recursively walk his children.
1006 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1007 Node *Matcher::xform( Node *n, int max_stack ) {
1008   // Use one stack to keep both: child's node/state and parent's node/index
1009   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1010   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1011 
1012   while (mstack.is_nonempty()) {
1013     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1014     if (C->failing()) return NULL;
1015     n = mstack.node();          // Leave node on stack
1016     Node_State nstate = mstack.state();
1017     if (nstate == Visit) {
1018       mstack.set_state(Post_Visit);
1019       Node *oldn = n;
1020       // Old-space or new-space check
1021       if (!C->node_arena()->contains(n)) {
1022         // Old space!
1023         Node* m;
1024         if (has_new_node(n)) {  // Not yet Label/Reduced
1025           m = new_node(n);
1026         } else {
1027           if (!is_dontcare(n)) { // Matcher can match this guy
1028             // Calls match special.  They match alone with no children.
1029             // Their children, the incoming arguments, match normally.
1030             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1031             if (C->failing())  return NULL;
1032             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1033           } else {                  // Nothing the matcher cares about
1034             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1035               // Convert to machine-dependent projection
1036               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1037 #ifdef ASSERT
1038               _new2old_map.map(m->_idx, n);
1039 #endif
1040               if (m->in(0) != NULL) // m might be top
1041                 collect_null_checks(m, n);
1042             } else {                // Else just a regular 'ol guy
1043               m = n->clone();       // So just clone into new-space
1044 #ifdef ASSERT
1045               _new2old_map.map(m->_idx, n);
1046 #endif
1047               // Def-Use edges will be added incrementally as Uses
1048               // of this node are matched.
1049               assert(m->outcnt() == 0, "no Uses of this clone yet");
1050             }
1051           }
1052 
1053           set_new_node(n, m);       // Map old to new
1054           if (_old_node_note_array != NULL) {
1055             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1056                                                   n->_idx);
1057             C->set_node_notes_at(m->_idx, nn);
1058           }
1059           debug_only(match_alias_type(C, n, m));
1060         }
1061         n = m;    // n is now a new-space node
1062         mstack.set_node(n);
1063       }
1064 
1065       // New space!
1066       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1067 
1068       int i;
1069       // Put precedence edges on stack first (match them last).
1070       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1071         Node *m = oldn->in(i);
1072         if (m == NULL) break;
1073         // set -1 to call add_prec() instead of set_req() during Step1
1074         mstack.push(m, Visit, n, -1);
1075       }
1076 
1077       // Handle precedence edges for interior nodes
1078       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1079         Node *m = n->in(i);
1080         if (m == NULL || C->node_arena()->contains(m)) continue;
1081         n->rm_prec(i);
1082         // set -1 to call add_prec() instead of set_req() during Step1
1083         mstack.push(m, Visit, n, -1);
1084       }
1085 
1086       // For constant debug info, I'd rather have unmatched constants.
1087       int cnt = n->req();
1088       JVMState* jvms = n->jvms();
1089       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1090 
1091       // Now do only debug info.  Clone constants rather than matching.
1092       // Constants are represented directly in the debug info without
1093       // the need for executable machine instructions.
1094       // Monitor boxes are also represented directly.
1095       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1096         Node *m = n->in(i);          // Get input
1097         int op = m->Opcode();
1098         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1099         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1100             op == Op_ConF || op == Op_ConD || op == Op_ConL
1101             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1102             ) {
1103           m = m->clone();
1104 #ifdef ASSERT
1105           _new2old_map.map(m->_idx, n);
1106 #endif
1107           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1108           mstack.push(m->in(0), Visit, m, 0);
1109         } else {
1110           mstack.push(m, Visit, n, i);
1111         }
1112       }
1113 
1114       // And now walk his children, and convert his inputs to new-space.
1115       for( ; i >= 0; --i ) { // For all normal inputs do
1116         Node *m = n->in(i);  // Get input
1117         if(m != NULL)
1118           mstack.push(m, Visit, n, i);
1119       }
1120 
1121     }
1122     else if (nstate == Post_Visit) {
1123       // Set xformed input
1124       Node *p = mstack.parent();
1125       if (p != NULL) { // root doesn't have parent
1126         int i = (int)mstack.index();
1127         if (i >= 0)
1128           p->set_req(i, n); // required input
1129         else if (i == -1)
1130           p->add_prec(n);   // precedence input
1131         else
1132           ShouldNotReachHere();
1133       }
1134       mstack.pop(); // remove processed node from stack
1135     }
1136     else {
1137       ShouldNotReachHere();
1138     }
1139   } // while (mstack.is_nonempty())
1140   return n; // Return new-space Node
1141 }
1142 
1143 //------------------------------warp_outgoing_stk_arg------------------------
1144 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1145   // Convert outgoing argument location to a pre-biased stack offset
1146   if (reg->is_stack()) {
1147     OptoReg::Name warped = reg->reg2stack();
1148     // Adjust the stack slot offset to be the register number used
1149     // by the allocator.
1150     warped = OptoReg::add(begin_out_arg_area, warped);
1151     // Keep track of the largest numbered stack slot used for an arg.
1152     // Largest used slot per call-site indicates the amount of stack
1153     // that is killed by the call.
1154     if( warped >= out_arg_limit_per_call )
1155       out_arg_limit_per_call = OptoReg::add(warped,1);
1156     if (!RegMask::can_represent_arg(warped)) {
1157       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1158       return OptoReg::Bad;
1159     }
1160     return warped;
1161   }
1162   return OptoReg::as_OptoReg(reg);
1163 }
1164 
1165 
1166 //------------------------------match_sfpt-------------------------------------
1167 // Helper function to match call instructions.  Calls match special.
1168 // They match alone with no children.  Their children, the incoming
1169 // arguments, match normally.
1170 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1171   MachSafePointNode *msfpt = NULL;
1172   MachCallNode      *mcall = NULL;
1173   uint               cnt;
1174   // Split out case for SafePoint vs Call
1175   CallNode *call;
1176   const TypeTuple *domain;
1177   ciMethod*        method = NULL;
1178   bool             is_method_handle_invoke = false;  // for special kill effects
1179   if( sfpt->is_Call() ) {
1180     call = sfpt->as_Call();
1181     domain = call->tf()->domain();
1182     cnt = domain->cnt();
1183 
1184     // Match just the call, nothing else
1185     MachNode *m = match_tree(call);
1186     if (C->failing())  return NULL;
1187     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1188 
1189     // Copy data from the Ideal SafePoint to the machine version
1190     mcall = m->as_MachCall();
1191 
1192     mcall->set_tf(         call->tf());
1193     mcall->set_entry_point(call->entry_point());
1194     mcall->set_cnt(        call->cnt());
1195 
1196     if( mcall->is_MachCallJava() ) {
1197       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1198       const CallJavaNode *call_java =  call->as_CallJava();
1199       method = call_java->method();
1200       mcall_java->_method = method;
1201       mcall_java->_bci = call_java->_bci;
1202       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1203       is_method_handle_invoke = call_java->is_method_handle_invoke();
1204       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1205       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1206       if (is_method_handle_invoke) {
1207         C->set_has_method_handle_invokes(true);
1208       }
1209       if( mcall_java->is_MachCallStaticJava() )
1210         mcall_java->as_MachCallStaticJava()->_name =
1211          call_java->as_CallStaticJava()->_name;
1212       if( mcall_java->is_MachCallDynamicJava() )
1213         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1214          call_java->as_CallDynamicJava()->_vtable_index;
1215     }
1216     else if( mcall->is_MachCallRuntime() ) {
1217       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1218     }
1219     msfpt = mcall;
1220   }
1221   // This is a non-call safepoint
1222   else {
1223     call = NULL;
1224     domain = NULL;
1225     MachNode *mn = match_tree(sfpt);
1226     if (C->failing())  return NULL;
1227     msfpt = mn->as_MachSafePoint();
1228     cnt = TypeFunc::Parms;
1229   }
1230 
1231   // Advertise the correct memory effects (for anti-dependence computation).
1232   msfpt->set_adr_type(sfpt->adr_type());
1233 
1234   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1235   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1236   // Empty them all.
1237   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1238 
1239   // Do all the pre-defined non-Empty register masks
1240   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1241   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1242 
1243   // Place first outgoing argument can possibly be put.
1244   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1245   assert( is_even(begin_out_arg_area), "" );
1246   // Compute max outgoing register number per call site.
1247   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1248   // Calls to C may hammer extra stack slots above and beyond any arguments.
1249   // These are usually backing store for register arguments for varargs.
1250   if( call != NULL && call->is_CallRuntime() )
1251     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1252 
1253 
1254   // Do the normal argument list (parameters) register masks
1255   int argcnt = cnt - TypeFunc::Parms;
1256   if( argcnt > 0 ) {          // Skip it all if we have no args
1257     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1258     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1259     int i;
1260     for( i = 0; i < argcnt; i++ ) {
1261       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1262     }
1263     // V-call to pick proper calling convention
1264     call->calling_convention( sig_bt, parm_regs, argcnt );
1265 
1266 #ifdef ASSERT
1267     // Sanity check users' calling convention.  Really handy during
1268     // the initial porting effort.  Fairly expensive otherwise.
1269     { for (int i = 0; i<argcnt; i++) {
1270       if( !parm_regs[i].first()->is_valid() &&
1271           !parm_regs[i].second()->is_valid() ) continue;
1272       VMReg reg1 = parm_regs[i].first();
1273       VMReg reg2 = parm_regs[i].second();
1274       for (int j = 0; j < i; j++) {
1275         if( !parm_regs[j].first()->is_valid() &&
1276             !parm_regs[j].second()->is_valid() ) continue;
1277         VMReg reg3 = parm_regs[j].first();
1278         VMReg reg4 = parm_regs[j].second();
1279         if( !reg1->is_valid() ) {
1280           assert( !reg2->is_valid(), "valid halvsies" );
1281         } else if( !reg3->is_valid() ) {
1282           assert( !reg4->is_valid(), "valid halvsies" );
1283         } else {
1284           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1285           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1286           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1287           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1288           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1289           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1290         }
1291       }
1292     }
1293     }
1294 #endif
1295 
1296     // Visit each argument.  Compute its outgoing register mask.
1297     // Return results now can have 2 bits returned.
1298     // Compute max over all outgoing arguments both per call-site
1299     // and over the entire method.
1300     for( i = 0; i < argcnt; i++ ) {
1301       // Address of incoming argument mask to fill in
1302       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1303       if( !parm_regs[i].first()->is_valid() &&
1304           !parm_regs[i].second()->is_valid() ) {
1305         continue;               // Avoid Halves
1306       }
1307       // Grab first register, adjust stack slots and insert in mask.
1308       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1309       if (OptoReg::is_valid(reg1))
1310         rm->Insert( reg1 );
1311       // Grab second register (if any), adjust stack slots and insert in mask.
1312       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1313       if (OptoReg::is_valid(reg2))
1314         rm->Insert( reg2 );
1315     } // End of for all arguments
1316 
1317     // Compute number of stack slots needed to restore stack in case of
1318     // Pascal-style argument popping.
1319     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1320   }
1321 
1322   // Compute the max stack slot killed by any call.  These will not be
1323   // available for debug info, and will be used to adjust FIRST_STACK_mask
1324   // after all call sites have been visited.
1325   if( _out_arg_limit < out_arg_limit_per_call)
1326     _out_arg_limit = out_arg_limit_per_call;
1327 
1328   if (mcall) {
1329     // Kill the outgoing argument area, including any non-argument holes and
1330     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1331     // Since the max-per-method covers the max-per-call-site and debug info
1332     // is excluded on the max-per-method basis, debug info cannot land in
1333     // this killed area.
1334     uint r_cnt = mcall->tf()->range()->cnt();
1335     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1336     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1337       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1338     } else {
1339       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1340         proj->_rout.Insert(OptoReg::Name(i));
1341     }
1342     if (proj->_rout.is_NotEmpty()) {
1343       push_projection(proj);
1344     }
1345   }
1346   // Transfer the safepoint information from the call to the mcall
1347   // Move the JVMState list
1348   msfpt->set_jvms(sfpt->jvms());
1349   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1350     jvms->set_map(sfpt);
1351   }
1352 
1353   // Debug inputs begin just after the last incoming parameter
1354   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1355          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1356 
1357   // Move the OopMap
1358   msfpt->_oop_map = sfpt->_oop_map;
1359 
1360   // Add additional edges.
1361   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1362     // For these calls we can not add MachConstantBase in expand(), as the
1363     // ins are not complete then.
1364     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1365     if (msfpt->jvms() &&
1366         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1367       // We added an edge before jvms, so we must adapt the position of the ins.
1368       msfpt->jvms()->adapt_position(+1);
1369     }
1370   }
1371 
1372   // Registers killed by the call are set in the local scheduling pass
1373   // of Global Code Motion.
1374   return msfpt;
1375 }
1376 
1377 //---------------------------match_tree----------------------------------------
1378 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1379 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1380 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1381 // a Load's result RegMask for memoization in idealreg2regmask[]
1382 MachNode *Matcher::match_tree( const Node *n ) {
1383   assert( n->Opcode() != Op_Phi, "cannot match" );
1384   assert( !n->is_block_start(), "cannot match" );
1385   // Set the mark for all locally allocated State objects.
1386   // When this call returns, the _states_arena arena will be reset
1387   // freeing all State objects.
1388   ResourceMark rm( &_states_arena );
1389 
1390   LabelRootDepth = 0;
1391 
1392   // StoreNodes require their Memory input to match any LoadNodes
1393   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1394 #ifdef ASSERT
1395   Node* save_mem_node = _mem_node;
1396   _mem_node = n->is_Store() ? (Node*)n : NULL;
1397 #endif
1398   // State object for root node of match tree
1399   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1400   State *s = new (&_states_arena) State;
1401   s->_kids[0] = NULL;
1402   s->_kids[1] = NULL;
1403   s->_leaf = (Node*)n;
1404   // Label the input tree, allocating labels from top-level arena
1405   Label_Root( n, s, n->in(0), mem );
1406   if (C->failing())  return NULL;
1407 
1408   // The minimum cost match for the whole tree is found at the root State
1409   uint mincost = max_juint;
1410   uint cost = max_juint;
1411   uint i;
1412   for( i = 0; i < NUM_OPERANDS; i++ ) {
1413     if( s->valid(i) &&                // valid entry and
1414         s->_cost[i] < cost &&         // low cost and
1415         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1416       cost = s->_cost[mincost=i];
1417   }
1418   if (mincost == max_juint) {
1419 #ifndef PRODUCT
1420     tty->print("No matching rule for:");
1421     s->dump();
1422 #endif
1423     Matcher::soft_match_failure();
1424     return NULL;
1425   }
1426   // Reduce input tree based upon the state labels to machine Nodes
1427   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1428 #ifdef ASSERT
1429   _old2new_map.map(n->_idx, m);
1430   _new2old_map.map(m->_idx, (Node*)n);
1431 #endif
1432 
1433   // Add any Matcher-ignored edges
1434   uint cnt = n->req();
1435   uint start = 1;
1436   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1437   if( n->is_AddP() ) {
1438     assert( mem == (Node*)1, "" );
1439     start = AddPNode::Base+1;
1440   }
1441   for( i = start; i < cnt; i++ ) {
1442     if( !n->match_edge(i) ) {
1443       if( i < m->req() )
1444         m->ins_req( i, n->in(i) );
1445       else
1446         m->add_req( n->in(i) );
1447     }
1448   }
1449 
1450   debug_only( _mem_node = save_mem_node; )
1451   return m;
1452 }
1453 
1454 
1455 //------------------------------match_into_reg---------------------------------
1456 // Choose to either match this Node in a register or part of the current
1457 // match tree.  Return true for requiring a register and false for matching
1458 // as part of the current match tree.
1459 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1460 
1461   const Type *t = m->bottom_type();
1462 
1463   if (t->singleton()) {
1464     // Never force constants into registers.  Allow them to match as
1465     // constants or registers.  Copies of the same value will share
1466     // the same register.  See find_shared_node.
1467     return false;
1468   } else {                      // Not a constant
1469     // Stop recursion if they have different Controls.
1470     Node* m_control = m->in(0);
1471     // Control of load's memory can post-dominates load's control.
1472     // So use it since load can't float above its memory.
1473     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1474     if (control && m_control && control != m_control && control != mem_control) {
1475 
1476       // Actually, we can live with the most conservative control we
1477       // find, if it post-dominates the others.  This allows us to
1478       // pick up load/op/store trees where the load can float a little
1479       // above the store.
1480       Node *x = control;
1481       const uint max_scan = 6;  // Arbitrary scan cutoff
1482       uint j;
1483       for (j=0; j<max_scan; j++) {
1484         if (x->is_Region())     // Bail out at merge points
1485           return true;
1486         x = x->in(0);
1487         if (x == m_control)     // Does 'control' post-dominate
1488           break;                // m->in(0)?  If so, we can use it
1489         if (x == mem_control)   // Does 'control' post-dominate
1490           break;                // mem_control?  If so, we can use it
1491       }
1492       if (j == max_scan)        // No post-domination before scan end?
1493         return true;            // Then break the match tree up
1494     }
1495     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1496         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1497       // These are commonly used in address expressions and can
1498       // efficiently fold into them on X64 in some cases.
1499       return false;
1500     }
1501   }
1502 
1503   // Not forceable cloning.  If shared, put it into a register.
1504   return shared;
1505 }
1506 
1507 
1508 //------------------------------Instruction Selection--------------------------
1509 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1510 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1511 // things the Matcher does not match (e.g., Memory), and things with different
1512 // Controls (hence forced into different blocks).  We pass in the Control
1513 // selected for this entire State tree.
1514 
1515 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1516 // Store and the Load must have identical Memories (as well as identical
1517 // pointers).  Since the Matcher does not have anything for Memory (and
1518 // does not handle DAGs), I have to match the Memory input myself.  If the
1519 // Tree root is a Store, I require all Loads to have the identical memory.
1520 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1521   // Since Label_Root is a recursive function, its possible that we might run
1522   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1523   LabelRootDepth++;
1524   if (LabelRootDepth > MaxLabelRootDepth) {
1525     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1526     return NULL;
1527   }
1528   uint care = 0;                // Edges matcher cares about
1529   uint cnt = n->req();
1530   uint i = 0;
1531 
1532   // Examine children for memory state
1533   // Can only subsume a child into your match-tree if that child's memory state
1534   // is not modified along the path to another input.
1535   // It is unsafe even if the other inputs are separate roots.
1536   Node *input_mem = NULL;
1537   for( i = 1; i < cnt; i++ ) {
1538     if( !n->match_edge(i) ) continue;
1539     Node *m = n->in(i);         // Get ith input
1540     assert( m, "expect non-null children" );
1541     if( m->is_Load() ) {
1542       if( input_mem == NULL ) {
1543         input_mem = m->in(MemNode::Memory);
1544       } else if( input_mem != m->in(MemNode::Memory) ) {
1545         input_mem = NodeSentinel;
1546       }
1547     }
1548   }
1549 
1550   for( i = 1; i < cnt; i++ ){// For my children
1551     if( !n->match_edge(i) ) continue;
1552     Node *m = n->in(i);         // Get ith input
1553     // Allocate states out of a private arena
1554     State *s = new (&_states_arena) State;
1555     svec->_kids[care++] = s;
1556     assert( care <= 2, "binary only for now" );
1557 
1558     // Recursively label the State tree.
1559     s->_kids[0] = NULL;
1560     s->_kids[1] = NULL;
1561     s->_leaf = m;
1562 
1563     // Check for leaves of the State Tree; things that cannot be a part of
1564     // the current tree.  If it finds any, that value is matched as a
1565     // register operand.  If not, then the normal matching is used.
1566     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1567         //
1568         // Stop recursion if this is LoadNode and the root of this tree is a
1569         // StoreNode and the load & store have different memories.
1570         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1571         // Can NOT include the match of a subtree when its memory state
1572         // is used by any of the other subtrees
1573         (input_mem == NodeSentinel) ) {
1574       // Print when we exclude matching due to different memory states at input-loads
1575       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1576         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1577         tty->print_cr("invalid input_mem");
1578       }
1579       // Switch to a register-only opcode; this value must be in a register
1580       // and cannot be subsumed as part of a larger instruction.
1581       s->DFA( m->ideal_reg(), m );
1582 
1583     } else {
1584       // If match tree has no control and we do, adopt it for entire tree
1585       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1586         control = m->in(0);         // Pick up control
1587       // Else match as a normal part of the match tree.
1588       control = Label_Root(m,s,control,mem);
1589       if (C->failing()) return NULL;
1590     }
1591   }
1592 
1593 
1594   // Call DFA to match this node, and return
1595   svec->DFA( n->Opcode(), n );
1596 
1597 #ifdef ASSERT
1598   uint x;
1599   for( x = 0; x < _LAST_MACH_OPER; x++ )
1600     if( svec->valid(x) )
1601       break;
1602 
1603   if (x >= _LAST_MACH_OPER) {
1604     n->dump();
1605     svec->dump();
1606     assert( false, "bad AD file" );
1607   }
1608 #endif
1609   return control;
1610 }
1611 
1612 
1613 // Con nodes reduced using the same rule can share their MachNode
1614 // which reduces the number of copies of a constant in the final
1615 // program.  The register allocator is free to split uses later to
1616 // split live ranges.
1617 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1618   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1619 
1620   // See if this Con has already been reduced using this rule.
1621   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1622   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1623   if (last != NULL && rule == last->rule()) {
1624     // Don't expect control change for DecodeN
1625     if (leaf->is_DecodeNarrowPtr())
1626       return last;
1627     // Get the new space root.
1628     Node* xroot = new_node(C->root());
1629     if (xroot == NULL) {
1630       // This shouldn't happen give the order of matching.
1631       return NULL;
1632     }
1633 
1634     // Shared constants need to have their control be root so they
1635     // can be scheduled properly.
1636     Node* control = last->in(0);
1637     if (control != xroot) {
1638       if (control == NULL || control == C->root()) {
1639         last->set_req(0, xroot);
1640       } else {
1641         assert(false, "unexpected control");
1642         return NULL;
1643       }
1644     }
1645     return last;
1646   }
1647   return NULL;
1648 }
1649 
1650 
1651 //------------------------------ReduceInst-------------------------------------
1652 // Reduce a State tree (with given Control) into a tree of MachNodes.
1653 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1654 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1655 // Each MachNode has a number of complicated MachOper operands; each
1656 // MachOper also covers a further tree of Ideal Nodes.
1657 
1658 // The root of the Ideal match tree is always an instruction, so we enter
1659 // the recursion here.  After building the MachNode, we need to recurse
1660 // the tree checking for these cases:
1661 // (1) Child is an instruction -
1662 //     Build the instruction (recursively), add it as an edge.
1663 //     Build a simple operand (register) to hold the result of the instruction.
1664 // (2) Child is an interior part of an instruction -
1665 //     Skip over it (do nothing)
1666 // (3) Child is the start of a operand -
1667 //     Build the operand, place it inside the instruction
1668 //     Call ReduceOper.
1669 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1670   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1671 
1672   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1673   if (shared_node != NULL) {
1674     return shared_node;
1675   }
1676 
1677   // Build the object to represent this state & prepare for recursive calls
1678   MachNode *mach = s->MachNodeGenerator(rule);
1679   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1680   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1681   Node *leaf = s->_leaf;
1682   // Check for instruction or instruction chain rule
1683   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1684     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1685            "duplicating node that's already been matched");
1686     // Instruction
1687     mach->add_req( leaf->in(0) ); // Set initial control
1688     // Reduce interior of complex instruction
1689     ReduceInst_Interior( s, rule, mem, mach, 1 );
1690   } else {
1691     // Instruction chain rules are data-dependent on their inputs
1692     mach->add_req(0);             // Set initial control to none
1693     ReduceInst_Chain_Rule( s, rule, mem, mach );
1694   }
1695 
1696   // If a Memory was used, insert a Memory edge
1697   if( mem != (Node*)1 ) {
1698     mach->ins_req(MemNode::Memory,mem);
1699 #ifdef ASSERT
1700     // Verify adr type after matching memory operation
1701     const MachOper* oper = mach->memory_operand();
1702     if (oper != NULL && oper != (MachOper*)-1) {
1703       // It has a unique memory operand.  Find corresponding ideal mem node.
1704       Node* m = NULL;
1705       if (leaf->is_Mem()) {
1706         m = leaf;
1707       } else {
1708         m = _mem_node;
1709         assert(m != NULL && m->is_Mem(), "expecting memory node");
1710       }
1711       const Type* mach_at = mach->adr_type();
1712       // DecodeN node consumed by an address may have different type
1713       // then its input. Don't compare types for such case.
1714       if (m->adr_type() != mach_at &&
1715           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1716            m->in(MemNode::Address)->is_AddP() &&
1717            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1718            m->in(MemNode::Address)->is_AddP() &&
1719            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1720            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1721         mach_at = m->adr_type();
1722       }
1723       if (m->adr_type() != mach_at) {
1724         m->dump();
1725         tty->print_cr("mach:");
1726         mach->dump(1);
1727       }
1728       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1729     }
1730 #endif
1731   }
1732 
1733   // If the _leaf is an AddP, insert the base edge
1734   if (leaf->is_AddP()) {
1735     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1736   }
1737 
1738   uint number_of_projections_prior = number_of_projections();
1739 
1740   // Perform any 1-to-many expansions required
1741   MachNode *ex = mach->Expand(s, _projection_list, mem);
1742   if (ex != mach) {
1743     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1744     if( ex->in(1)->is_Con() )
1745       ex->in(1)->set_req(0, C->root());
1746     // Remove old node from the graph
1747     for( uint i=0; i<mach->req(); i++ ) {
1748       mach->set_req(i,NULL);
1749     }
1750 #ifdef ASSERT
1751     _new2old_map.map(ex->_idx, s->_leaf);
1752 #endif
1753   }
1754 
1755   // PhaseChaitin::fixup_spills will sometimes generate spill code
1756   // via the matcher.  By the time, nodes have been wired into the CFG,
1757   // and any further nodes generated by expand rules will be left hanging
1758   // in space, and will not get emitted as output code.  Catch this.
1759   // Also, catch any new register allocation constraints ("projections")
1760   // generated belatedly during spill code generation.
1761   if (_allocation_started) {
1762     guarantee(ex == mach, "no expand rules during spill generation");
1763     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1764   }
1765 
1766   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1767     // Record the con for sharing
1768     _shared_nodes.map(leaf->_idx, ex);
1769   }
1770 
1771   return ex;
1772 }
1773 
1774 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1775   for (uint i = n->req(); i < n->len(); i++) {
1776     if (n->in(i) != NULL) {
1777       mach->add_prec(n->in(i));
1778     }
1779   }
1780 }
1781 
1782 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1783   // 'op' is what I am expecting to receive
1784   int op = _leftOp[rule];
1785   // Operand type to catch childs result
1786   // This is what my child will give me.
1787   int opnd_class_instance = s->_rule[op];
1788   // Choose between operand class or not.
1789   // This is what I will receive.
1790   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1791   // New rule for child.  Chase operand classes to get the actual rule.
1792   int newrule = s->_rule[catch_op];
1793 
1794   if( newrule < NUM_OPERANDS ) {
1795     // Chain from operand or operand class, may be output of shared node
1796     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1797             "Bad AD file: Instruction chain rule must chain from operand");
1798     // Insert operand into array of operands for this instruction
1799     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1800 
1801     ReduceOper( s, newrule, mem, mach );
1802   } else {
1803     // Chain from the result of an instruction
1804     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1805     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1806     Node *mem1 = (Node*)1;
1807     debug_only(Node *save_mem_node = _mem_node;)
1808     mach->add_req( ReduceInst(s, newrule, mem1) );
1809     debug_only(_mem_node = save_mem_node;)
1810   }
1811   return;
1812 }
1813 
1814 
1815 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1816   handle_precedence_edges(s->_leaf, mach);
1817 
1818   if( s->_leaf->is_Load() ) {
1819     Node *mem2 = s->_leaf->in(MemNode::Memory);
1820     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1821     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1822     mem = mem2;
1823   }
1824   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1825     if( mach->in(0) == NULL )
1826       mach->set_req(0, s->_leaf->in(0));
1827   }
1828 
1829   // Now recursively walk the state tree & add operand list.
1830   for( uint i=0; i<2; i++ ) {   // binary tree
1831     State *newstate = s->_kids[i];
1832     if( newstate == NULL ) break;      // Might only have 1 child
1833     // 'op' is what I am expecting to receive
1834     int op;
1835     if( i == 0 ) {
1836       op = _leftOp[rule];
1837     } else {
1838       op = _rightOp[rule];
1839     }
1840     // Operand type to catch childs result
1841     // This is what my child will give me.
1842     int opnd_class_instance = newstate->_rule[op];
1843     // Choose between operand class or not.
1844     // This is what I will receive.
1845     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1846     // New rule for child.  Chase operand classes to get the actual rule.
1847     int newrule = newstate->_rule[catch_op];
1848 
1849     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1850       // Operand/operandClass
1851       // Insert operand into array of operands for this instruction
1852       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1853       ReduceOper( newstate, newrule, mem, mach );
1854 
1855     } else {                    // Child is internal operand or new instruction
1856       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1857         // internal operand --> call ReduceInst_Interior
1858         // Interior of complex instruction.  Do nothing but recurse.
1859         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1860       } else {
1861         // instruction --> call build operand(  ) to catch result
1862         //             --> ReduceInst( newrule )
1863         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1864         Node *mem1 = (Node*)1;
1865         debug_only(Node *save_mem_node = _mem_node;)
1866         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1867         debug_only(_mem_node = save_mem_node;)
1868       }
1869     }
1870     assert( mach->_opnds[num_opnds-1], "" );
1871   }
1872   return num_opnds;
1873 }
1874 
1875 // This routine walks the interior of possible complex operands.
1876 // At each point we check our children in the match tree:
1877 // (1) No children -
1878 //     We are a leaf; add _leaf field as an input to the MachNode
1879 // (2) Child is an internal operand -
1880 //     Skip over it ( do nothing )
1881 // (3) Child is an instruction -
1882 //     Call ReduceInst recursively and
1883 //     and instruction as an input to the MachNode
1884 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1885   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1886   State *kid = s->_kids[0];
1887   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1888 
1889   // Leaf?  And not subsumed?
1890   if( kid == NULL && !_swallowed[rule] ) {
1891     mach->add_req( s->_leaf );  // Add leaf pointer
1892     return;                     // Bail out
1893   }
1894 
1895   if( s->_leaf->is_Load() ) {
1896     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1897     mem = s->_leaf->in(MemNode::Memory);
1898     debug_only(_mem_node = s->_leaf;)
1899   }
1900 
1901   handle_precedence_edges(s->_leaf, mach);
1902 
1903   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1904     if( !mach->in(0) )
1905       mach->set_req(0,s->_leaf->in(0));
1906     else {
1907       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1908     }
1909   }
1910 
1911   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1912     int newrule;
1913     if( i == 0)
1914       newrule = kid->_rule[_leftOp[rule]];
1915     else
1916       newrule = kid->_rule[_rightOp[rule]];
1917 
1918     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1919       // Internal operand; recurse but do nothing else
1920       ReduceOper( kid, newrule, mem, mach );
1921 
1922     } else {                    // Child is a new instruction
1923       // Reduce the instruction, and add a direct pointer from this
1924       // machine instruction to the newly reduced one.
1925       Node *mem1 = (Node*)1;
1926       debug_only(Node *save_mem_node = _mem_node;)
1927       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1928       debug_only(_mem_node = save_mem_node;)
1929     }
1930   }
1931 }
1932 
1933 
1934 // -------------------------------------------------------------------------
1935 // Java-Java calling convention
1936 // (what you use when Java calls Java)
1937 
1938 //------------------------------find_receiver----------------------------------
1939 // For a given signature, return the OptoReg for parameter 0.
1940 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1941   VMRegPair regs;
1942   BasicType sig_bt = T_OBJECT;
1943   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1944   // Return argument 0 register.  In the LP64 build pointers
1945   // take 2 registers, but the VM wants only the 'main' name.
1946   return OptoReg::as_OptoReg(regs.first());
1947 }
1948 
1949 // This function identifies sub-graphs in which a 'load' node is
1950 // input to two different nodes, and such that it can be matched
1951 // with BMI instructions like blsi, blsr, etc.
1952 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1953 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1954 // refers to the same node.
1955 #ifdef X86
1956 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1957 // This is a temporary solution until we make DAGs expressible in ADL.
1958 template<typename ConType>
1959 class FusedPatternMatcher {
1960   Node* _op1_node;
1961   Node* _mop_node;
1962   int _con_op;
1963 
1964   static int match_next(Node* n, int next_op, int next_op_idx) {
1965     if (n->in(1) == NULL || n->in(2) == NULL) {
1966       return -1;
1967     }
1968 
1969     if (next_op_idx == -1) { // n is commutative, try rotations
1970       if (n->in(1)->Opcode() == next_op) {
1971         return 1;
1972       } else if (n->in(2)->Opcode() == next_op) {
1973         return 2;
1974       }
1975     } else {
1976       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1977       if (n->in(next_op_idx)->Opcode() == next_op) {
1978         return next_op_idx;
1979       }
1980     }
1981     return -1;
1982   }
1983 public:
1984   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1985     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1986 
1987   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1988              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1989              typename ConType::NativeType con_value) {
1990     if (_op1_node->Opcode() != op1) {
1991       return false;
1992     }
1993     if (_mop_node->outcnt() > 2) {
1994       return false;
1995     }
1996     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1997     if (op1_op2_idx == -1) {
1998       return false;
1999     }
2000     // Memory operation must be the other edge
2001     int op1_mop_idx = (op1_op2_idx & 1) + 1;
2002 
2003     // Check that the mop node is really what we want
2004     if (_op1_node->in(op1_mop_idx) == _mop_node) {
2005       Node *op2_node = _op1_node->in(op1_op2_idx);
2006       if (op2_node->outcnt() > 1) {
2007         return false;
2008       }
2009       assert(op2_node->Opcode() == op2, "Should be");
2010       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
2011       if (op2_con_idx == -1) {
2012         return false;
2013       }
2014       // Memory operation must be the other edge
2015       int op2_mop_idx = (op2_con_idx & 1) + 1;
2016       // Check that the memory operation is the same node
2017       if (op2_node->in(op2_mop_idx) == _mop_node) {
2018         // Now check the constant
2019         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
2020         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
2021           return true;
2022         }
2023       }
2024     }
2025     return false;
2026   }
2027 };
2028 
2029 
2030 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2031   if (n != NULL && m != NULL) {
2032     if (m->Opcode() == Op_LoadI) {
2033       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2034       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2035              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2036              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2037     } else if (m->Opcode() == Op_LoadL) {
2038       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2039       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2040              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2041              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2042     }
2043   }
2044   return false;
2045 }
2046 #endif // X86
2047 
2048 // A method-klass-holder may be passed in the inline_cache_reg
2049 // and then expanded into the inline_cache_reg and a method_oop register
2050 //   defined in ad_<arch>.cpp
2051 
2052 // Check for shift by small constant as well
2053 static bool clone_shift(Node* shift, Matcher* matcher, MStack& mstack, VectorSet& address_visited) {
2054   if (shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2055       shift->in(2)->get_int() <= 3 &&
2056       // Are there other uses besides address expressions?
2057       !matcher->is_visited(shift)) {
2058     address_visited.set(shift->_idx); // Flag as address_visited
2059     mstack.push(shift->in(2), Visit);
2060     Node *conv = shift->in(1);
2061 #ifdef _LP64
2062     // Allow Matcher to match the rule which bypass
2063     // ConvI2L operation for an array index on LP64
2064     // if the index value is positive.
2065     if (conv->Opcode() == Op_ConvI2L &&
2066         conv->as_Type()->type()->is_long()->_lo >= 0 &&
2067         // Are there other uses besides address expressions?
2068         !matcher->is_visited(conv)) {
2069       address_visited.set(conv->_idx); // Flag as address_visited
2070       mstack.push(conv->in(1), Pre_Visit);
2071     } else
2072 #endif
2073       mstack.push(conv, Pre_Visit);
2074     return true;
2075   }
2076   return false;
2077 }
2078 
2079 
2080 //------------------------------find_shared------------------------------------
2081 // Set bits if Node is shared or otherwise a root
2082 void Matcher::find_shared( Node *n ) {
2083   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2084   MStack mstack(C->live_nodes() * 2);
2085   // Mark nodes as address_visited if they are inputs to an address expression
2086   VectorSet address_visited(Thread::current()->resource_area());
2087   mstack.push(n, Visit);     // Don't need to pre-visit root node
2088   while (mstack.is_nonempty()) {
2089     n = mstack.node();       // Leave node on stack
2090     Node_State nstate = mstack.state();
2091     uint nop = n->Opcode();
2092     if (nstate == Pre_Visit) {
2093       if (address_visited.test(n->_idx)) { // Visited in address already?
2094         // Flag as visited and shared now.
2095         set_visited(n);
2096       }
2097       if (is_visited(n)) {   // Visited already?
2098         // Node is shared and has no reason to clone.  Flag it as shared.
2099         // This causes it to match into a register for the sharing.
2100         set_shared(n);       // Flag as shared and
2101         mstack.pop();        // remove node from stack
2102         continue;
2103       }
2104       nstate = Visit; // Not already visited; so visit now
2105     }
2106     if (nstate == Visit) {
2107       mstack.set_state(Post_Visit);
2108       set_visited(n);   // Flag as visited now
2109       bool mem_op = false;
2110 
2111       switch( nop ) {  // Handle some opcodes special
2112       case Op_Phi:             // Treat Phis as shared roots
2113       case Op_Parm:
2114       case Op_Proj:            // All handled specially during matching
2115       case Op_SafePointScalarObject:
2116         set_shared(n);
2117         set_dontcare(n);
2118         break;
2119       case Op_If:
2120       case Op_CountedLoopEnd:
2121         mstack.set_state(Alt_Post_Visit); // Alternative way
2122         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2123         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2124         // Bool and CmpX side-by-side, because it can only get at constants
2125         // that are at the leaves of Match trees, and the Bool's condition acts
2126         // as a constant here.
2127         mstack.push(n->in(1), Visit);         // Clone the Bool
2128         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2129         continue; // while (mstack.is_nonempty())
2130       case Op_ConvI2D:         // These forms efficiently match with a prior
2131       case Op_ConvI2F:         //   Load but not a following Store
2132         if( n->in(1)->is_Load() &&        // Prior load
2133             n->outcnt() == 1 &&           // Not already shared
2134             n->unique_out()->is_Store() ) // Following store
2135           set_shared(n);       // Force it to be a root
2136         break;
2137       case Op_ReverseBytesI:
2138       case Op_ReverseBytesL:
2139         if( n->in(1)->is_Load() &&        // Prior load
2140             n->outcnt() == 1 )            // Not already shared
2141           set_shared(n);                  // Force it to be a root
2142         break;
2143       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2144       case Op_IfFalse:
2145       case Op_IfTrue:
2146       case Op_MachProj:
2147       case Op_MergeMem:
2148       case Op_Catch:
2149       case Op_CatchProj:
2150       case Op_CProj:
2151       case Op_JumpProj:
2152       case Op_JProj:
2153       case Op_NeverBranch:
2154         set_dontcare(n);
2155         break;
2156       case Op_Jump:
2157         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2158         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2159         continue;                             // while (mstack.is_nonempty())
2160       case Op_StrComp:
2161       case Op_StrEquals:
2162       case Op_StrIndexOf:
2163       case Op_StrIndexOfChar:
2164       case Op_AryEq:
2165       case Op_HasNegatives:
2166       case Op_StrInflatedCopy:
2167       case Op_StrCompressedCopy:
2168       case Op_EncodeISOArray:
2169         set_shared(n); // Force result into register (it will be anyways)
2170         break;
2171       case Op_ConP: {  // Convert pointers above the centerline to NUL
2172         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2173         const TypePtr* tp = tn->type()->is_ptr();
2174         if (tp->_ptr == TypePtr::AnyNull) {
2175           tn->set_type(TypePtr::NULL_PTR);
2176         }
2177         break;
2178       }
2179       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2180         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2181         const TypePtr* tp = tn->type()->make_ptr();
2182         if (tp && tp->_ptr == TypePtr::AnyNull) {
2183           tn->set_type(TypeNarrowOop::NULL_PTR);
2184         }
2185         break;
2186       }
2187       case Op_Binary:         // These are introduced in the Post_Visit state.
2188         ShouldNotReachHere();
2189         break;
2190       case Op_ClearArray:
2191       case Op_SafePoint:
2192         mem_op = true;
2193         break;
2194       default:
2195         if( n->is_Store() ) {
2196           // Do match stores, despite no ideal reg
2197           mem_op = true;
2198           break;
2199         }
2200         if( n->is_Mem() ) { // Loads and LoadStores
2201           mem_op = true;
2202           // Loads must be root of match tree due to prior load conflict
2203           if( C->subsume_loads() == false )
2204             set_shared(n);
2205         }
2206         // Fall into default case
2207         if( !n->ideal_reg() )
2208           set_dontcare(n);  // Unmatchable Nodes
2209       } // end_switch
2210 
2211       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2212         Node *m = n->in(i); // Get ith input
2213         if (m == NULL) continue;  // Ignore NULLs
2214         uint mop = m->Opcode();
2215 
2216         // Must clone all producers of flags, or we will not match correctly.
2217         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2218         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2219         // are also there, so we may match a float-branch to int-flags and
2220         // expect the allocator to haul the flags from the int-side to the
2221         // fp-side.  No can do.
2222         if( _must_clone[mop] ) {
2223           mstack.push(m, Visit);
2224           continue; // for(int i = ...)
2225         }
2226 
2227         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2228           // Bases used in addresses must be shared but since
2229           // they are shared through a DecodeN they may appear
2230           // to have a single use so force sharing here.
2231           set_shared(m->in(AddPNode::Base)->in(1));
2232         }
2233 
2234         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2235 #ifdef X86
2236         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2237           mstack.push(m, Visit);
2238           continue;
2239         }
2240 #endif
2241 
2242         // Clone addressing expressions as they are "free" in memory access instructions
2243         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2244             // When there are other uses besides address expressions
2245             // put it on stack and mark as shared.
2246             !is_visited(m)) {
2247           // Some inputs for address expression are not put on stack
2248           // to avoid marking them as shared and forcing them into register
2249           // if they are used only in address expressions.
2250           // But they should be marked as shared if there are other uses
2251           // besides address expressions.
2252 
2253           Node *off = m->in(AddPNode::Offset);
2254           if (off->is_Con()) {
2255             address_visited.test_set(m->_idx); // Flag as address_visited
2256             Node *adr = m->in(AddPNode::Address);
2257 
2258             // Intel, ARM and friends can handle 2 adds in addressing mode
2259             if( clone_shift_expressions && adr->is_AddP() &&
2260                 // AtomicAdd is not an addressing expression.
2261                 // Cheap to find it by looking for screwy base.
2262                 !adr->in(AddPNode::Base)->is_top() &&
2263                 // Are there other uses besides address expressions?
2264                 !is_visited(adr) ) {
2265               address_visited.set(adr->_idx); // Flag as address_visited
2266               Node *shift = adr->in(AddPNode::Offset);
2267               if (!clone_shift(shift, this, mstack, address_visited)) {
2268                 mstack.push(shift, Pre_Visit);
2269               }
2270               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2271               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2272             } else {  // Sparc, Alpha, PPC and friends
2273               mstack.push(adr, Pre_Visit);
2274             }
2275 
2276             // Clone X+offset as it also folds into most addressing expressions
2277             mstack.push(off, Visit);
2278             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2279             continue; // for(int i = ...)
2280           } else if (clone_shift_expressions &&
2281                      clone_shift(off, this, mstack, address_visited)) {
2282               address_visited.test_set(m->_idx); // Flag as address_visited
2283               mstack.push(m->in(AddPNode::Address), Pre_Visit);
2284               mstack.push(m->in(AddPNode::Base), Pre_Visit);
2285               continue;
2286           } // if( off->is_Con() )
2287         }   // if( mem_op &&
2288         mstack.push(m, Pre_Visit);
2289       }     // for(int i = ...)
2290     }
2291     else if (nstate == Alt_Post_Visit) {
2292       mstack.pop(); // Remove node from stack
2293       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2294       // shared and all users of the Bool need to move the Cmp in parallel.
2295       // This leaves both the Bool and the If pointing at the Cmp.  To
2296       // prevent the Matcher from trying to Match the Cmp along both paths
2297       // BoolNode::match_edge always returns a zero.
2298 
2299       // We reorder the Op_If in a pre-order manner, so we can visit without
2300       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2301       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2302     }
2303     else if (nstate == Post_Visit) {
2304       mstack.pop(); // Remove node from stack
2305 
2306       // Now hack a few special opcodes
2307       switch( n->Opcode() ) {       // Handle some opcodes special
2308       case Op_StorePConditional:
2309       case Op_StoreIConditional:
2310       case Op_StoreLConditional:
2311       case Op_CompareAndExchangeI:
2312       case Op_CompareAndExchangeL:
2313       case Op_CompareAndExchangeP:
2314       case Op_CompareAndExchangeN:
2315       case Op_WeakCompareAndSwapI:
2316       case Op_WeakCompareAndSwapL:
2317       case Op_WeakCompareAndSwapP:
2318       case Op_WeakCompareAndSwapN:
2319       case Op_CompareAndSwapI:
2320       case Op_CompareAndSwapL:
2321       case Op_CompareAndSwapP:
2322       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2323         Node *newval = n->in(MemNode::ValueIn );
2324         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2325         Node *pair = new BinaryNode( oldval, newval );
2326         n->set_req(MemNode::ValueIn,pair);
2327         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2328         break;
2329       }
2330       case Op_CMoveD:              // Convert trinary to binary-tree
2331       case Op_CMoveF:
2332       case Op_CMoveI:
2333       case Op_CMoveL:
2334       case Op_CMoveN:
2335       case Op_CMoveP:
2336       case Op_CMoveVD:  {
2337         // Restructure into a binary tree for Matching.  It's possible that
2338         // we could move this code up next to the graph reshaping for IfNodes
2339         // or vice-versa, but I do not want to debug this for Ladybird.
2340         // 10/2/2000 CNC.
2341         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2342         n->set_req(1,pair1);
2343         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2344         n->set_req(2,pair2);
2345         n->del_req(3);
2346         break;
2347       }
2348       case Op_LoopLimit: {
2349         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2350         n->set_req(1,pair1);
2351         n->set_req(2,n->in(3));
2352         n->del_req(3);
2353         break;
2354       }
2355       case Op_StrEquals:
2356       case Op_StrIndexOfChar: {
2357         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2358         n->set_req(2,pair1);
2359         n->set_req(3,n->in(4));
2360         n->del_req(4);
2361         break;
2362       }
2363       case Op_StrComp:
2364       case Op_StrIndexOf: {
2365         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2366         n->set_req(2,pair1);
2367         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2368         n->set_req(3,pair2);
2369         n->del_req(5);
2370         n->del_req(4);
2371         break;
2372       }
2373       case Op_StrCompressedCopy:
2374       case Op_StrInflatedCopy:
2375       case Op_EncodeISOArray: {
2376         // Restructure into a binary tree for Matching.
2377         Node* pair = new BinaryNode(n->in(3), n->in(4));
2378         n->set_req(3, pair);
2379         n->del_req(4);
2380         break;
2381       }
2382       default:
2383         break;
2384       }
2385     }
2386     else {
2387       ShouldNotReachHere();
2388     }
2389   } // end of while (mstack.is_nonempty())
2390 }
2391 
2392 #ifdef ASSERT
2393 // machine-independent root to machine-dependent root
2394 void Matcher::dump_old2new_map() {
2395   _old2new_map.dump();
2396 }
2397 #endif
2398 
2399 //---------------------------collect_null_checks-------------------------------
2400 // Find null checks in the ideal graph; write a machine-specific node for
2401 // it.  Used by later implicit-null-check handling.  Actually collects
2402 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2403 // value being tested.
2404 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2405   Node *iff = proj->in(0);
2406   if( iff->Opcode() == Op_If ) {
2407     // During matching If's have Bool & Cmp side-by-side
2408     BoolNode *b = iff->in(1)->as_Bool();
2409     Node *cmp = iff->in(2);
2410     int opc = cmp->Opcode();
2411     if (opc != Op_CmpP && opc != Op_CmpN) return;
2412 
2413     const Type* ct = cmp->in(2)->bottom_type();
2414     if (ct == TypePtr::NULL_PTR ||
2415         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2416 
2417       bool push_it = false;
2418       if( proj->Opcode() == Op_IfTrue ) {
2419 #ifndef PRODUCT
2420         extern int all_null_checks_found;
2421         all_null_checks_found++;
2422 #endif
2423         if( b->_test._test == BoolTest::ne ) {
2424           push_it = true;
2425         }
2426       } else {
2427         assert( proj->Opcode() == Op_IfFalse, "" );
2428         if( b->_test._test == BoolTest::eq ) {
2429           push_it = true;
2430         }
2431       }
2432       if( push_it ) {
2433         _null_check_tests.push(proj);
2434         Node* val = cmp->in(1);
2435 #ifdef _LP64
2436         if (val->bottom_type()->isa_narrowoop() &&
2437             !Matcher::narrow_oop_use_complex_address()) {
2438           //
2439           // Look for DecodeN node which should be pinned to orig_proj.
2440           // On platforms (Sparc) which can not handle 2 adds
2441           // in addressing mode we have to keep a DecodeN node and
2442           // use it to do implicit NULL check in address.
2443           //
2444           // DecodeN node was pinned to non-null path (orig_proj) during
2445           // CastPP transformation in final_graph_reshaping_impl().
2446           //
2447           uint cnt = orig_proj->outcnt();
2448           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2449             Node* d = orig_proj->raw_out(i);
2450             if (d->is_DecodeN() && d->in(1) == val) {
2451               val = d;
2452               val->set_req(0, NULL); // Unpin now.
2453               // Mark this as special case to distinguish from
2454               // a regular case: CmpP(DecodeN, NULL).
2455               val = (Node*)(((intptr_t)val) | 1);
2456               break;
2457             }
2458           }
2459         }
2460 #endif
2461         _null_check_tests.push(val);
2462       }
2463     }
2464   }
2465 }
2466 
2467 //---------------------------validate_null_checks------------------------------
2468 // Its possible that the value being NULL checked is not the root of a match
2469 // tree.  If so, I cannot use the value in an implicit null check.
2470 void Matcher::validate_null_checks( ) {
2471   uint cnt = _null_check_tests.size();
2472   for( uint i=0; i < cnt; i+=2 ) {
2473     Node *test = _null_check_tests[i];
2474     Node *val = _null_check_tests[i+1];
2475     bool is_decoden = ((intptr_t)val) & 1;
2476     val = (Node*)(((intptr_t)val) & ~1);
2477     if (has_new_node(val)) {
2478       Node* new_val = new_node(val);
2479       if (is_decoden) {
2480         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2481         // Note: new_val may have a control edge if
2482         // the original ideal node DecodeN was matched before
2483         // it was unpinned in Matcher::collect_null_checks().
2484         // Unpin the mach node and mark it.
2485         new_val->set_req(0, NULL);
2486         new_val = (Node*)(((intptr_t)new_val) | 1);
2487       }
2488       // Is a match-tree root, so replace with the matched value
2489       _null_check_tests.map(i+1, new_val);
2490     } else {
2491       // Yank from candidate list
2492       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2493       _null_check_tests.map(i,_null_check_tests[--cnt]);
2494       _null_check_tests.pop();
2495       _null_check_tests.pop();
2496       i-=2;
2497     }
2498   }
2499 }
2500 
2501 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2502 // atomic instruction acting as a store_load barrier without any
2503 // intervening volatile load, and thus we don't need a barrier here.
2504 // We retain the Node to act as a compiler ordering barrier.
2505 bool Matcher::post_store_load_barrier(const Node* vmb) {
2506   Compile* C = Compile::current();
2507   assert(vmb->is_MemBar(), "");
2508   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2509   const MemBarNode* membar = vmb->as_MemBar();
2510 
2511   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2512   Node* ctrl = NULL;
2513   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2514     Node* p = membar->fast_out(i);
2515     assert(p->is_Proj(), "only projections here");
2516     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2517         !C->node_arena()->contains(p)) { // Unmatched old-space only
2518       ctrl = p;
2519       break;
2520     }
2521   }
2522   assert((ctrl != NULL), "missing control projection");
2523 
2524   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2525     Node *x = ctrl->fast_out(j);
2526     int xop = x->Opcode();
2527 
2528     // We don't need current barrier if we see another or a lock
2529     // before seeing volatile load.
2530     //
2531     // Op_Fastunlock previously appeared in the Op_* list below.
2532     // With the advent of 1-0 lock operations we're no longer guaranteed
2533     // that a monitor exit operation contains a serializing instruction.
2534 
2535     if (xop == Op_MemBarVolatile ||
2536         xop == Op_CompareAndExchangeI ||
2537         xop == Op_CompareAndExchangeL ||
2538         xop == Op_CompareAndExchangeP ||
2539         xop == Op_CompareAndExchangeN ||
2540         xop == Op_WeakCompareAndSwapL ||
2541         xop == Op_WeakCompareAndSwapP ||
2542         xop == Op_WeakCompareAndSwapN ||
2543         xop == Op_WeakCompareAndSwapI ||
2544         xop == Op_CompareAndSwapL ||
2545         xop == Op_CompareAndSwapP ||
2546         xop == Op_CompareAndSwapN ||
2547         xop == Op_CompareAndSwapI) {
2548       return true;
2549     }
2550 
2551     // Op_FastLock previously appeared in the Op_* list above.
2552     // With biased locking we're no longer guaranteed that a monitor
2553     // enter operation contains a serializing instruction.
2554     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2555       return true;
2556     }
2557 
2558     if (x->is_MemBar()) {
2559       // We must retain this membar if there is an upcoming volatile
2560       // load, which will be followed by acquire membar.
2561       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2562         return false;
2563       } else {
2564         // For other kinds of barriers, check by pretending we
2565         // are them, and seeing if we can be removed.
2566         return post_store_load_barrier(x->as_MemBar());
2567       }
2568     }
2569 
2570     // probably not necessary to check for these
2571     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2572       return false;
2573     }
2574   }
2575   return false;
2576 }
2577 
2578 // Check whether node n is a branch to an uncommon trap that we could
2579 // optimize as test with very high branch costs in case of going to
2580 // the uncommon trap. The code must be able to be recompiled to use
2581 // a cheaper test.
2582 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2583   // Don't do it for natives, adapters, or runtime stubs
2584   Compile *C = Compile::current();
2585   if (!C->is_method_compilation()) return false;
2586 
2587   assert(n->is_If(), "You should only call this on if nodes.");
2588   IfNode *ifn = n->as_If();
2589 
2590   Node *ifFalse = NULL;
2591   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2592     if (ifn->fast_out(i)->is_IfFalse()) {
2593       ifFalse = ifn->fast_out(i);
2594       break;
2595     }
2596   }
2597   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2598 
2599   Node *reg = ifFalse;
2600   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2601                // Alternatively use visited set?  Seems too expensive.
2602   while (reg != NULL && cnt > 0) {
2603     CallNode *call = NULL;
2604     RegionNode *nxt_reg = NULL;
2605     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2606       Node *o = reg->fast_out(i);
2607       if (o->is_Call()) {
2608         call = o->as_Call();
2609       }
2610       if (o->is_Region()) {
2611         nxt_reg = o->as_Region();
2612       }
2613     }
2614 
2615     if (call &&
2616         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2617       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2618       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2619         jint tr_con = trtype->is_int()->get_con();
2620         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2621         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2622         assert((int)reason < (int)BitsPerInt, "recode bit map");
2623 
2624         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2625             && action != Deoptimization::Action_none) {
2626           // This uncommon trap is sure to recompile, eventually.
2627           // When that happens, C->too_many_traps will prevent
2628           // this transformation from happening again.
2629           return true;
2630         }
2631       }
2632     }
2633 
2634     reg = nxt_reg;
2635     cnt--;
2636   }
2637 
2638   return false;
2639 }
2640 
2641 //=============================================================================
2642 //---------------------------State---------------------------------------------
2643 State::State(void) {
2644 #ifdef ASSERT
2645   _id = 0;
2646   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2647   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2648   //memset(_cost, -1, sizeof(_cost));
2649   //memset(_rule, -1, sizeof(_rule));
2650 #endif
2651   memset(_valid, 0, sizeof(_valid));
2652 }
2653 
2654 #ifdef ASSERT
2655 State::~State() {
2656   _id = 99;
2657   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2658   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2659   memset(_cost, -3, sizeof(_cost));
2660   memset(_rule, -3, sizeof(_rule));
2661 }
2662 #endif
2663 
2664 #ifndef PRODUCT
2665 //---------------------------dump----------------------------------------------
2666 void State::dump() {
2667   tty->print("\n");
2668   dump(0);
2669 }
2670 
2671 void State::dump(int depth) {
2672   for( int j = 0; j < depth; j++ )
2673     tty->print("   ");
2674   tty->print("--N: ");
2675   _leaf->dump();
2676   uint i;
2677   for( i = 0; i < _LAST_MACH_OPER; i++ )
2678     // Check for valid entry
2679     if( valid(i) ) {
2680       for( int j = 0; j < depth; j++ )
2681         tty->print("   ");
2682         assert(_cost[i] != max_juint, "cost must be a valid value");
2683         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2684         tty->print_cr("%s  %d  %s",
2685                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2686       }
2687   tty->cr();
2688 
2689   for( i=0; i<2; i++ )
2690     if( _kids[i] )
2691       _kids[i]->dump(depth+1);
2692 }
2693 #endif