1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/phaseX.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "utilities/copy.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  51 
  52 //=============================================================================
  53 uint MemNode::size_of() const { return sizeof(*this); }
  54 
  55 const TypePtr *MemNode::adr_type() const {
  56   Node* adr = in(Address);
  57   if (adr == NULL)  return NULL; // node is dead
  58   const TypePtr* cross_check = NULL;
  59   DEBUG_ONLY(cross_check = _adr_type);
  60   return calculate_adr_type(adr->bottom_type(), cross_check);
  61 }
  62 
  63 #ifndef PRODUCT
  64 void MemNode::dump_spec(outputStream *st) const {
  65   if (in(Address) == NULL)  return; // node is dead
  66 #ifndef ASSERT
  67   // fake the missing field
  68   const TypePtr* _adr_type = NULL;
  69   if (in(Address) != NULL)
  70     _adr_type = in(Address)->bottom_type()->isa_ptr();
  71 #endif
  72   dump_adr_type(this, _adr_type, st);
  73 
  74   Compile* C = Compile::current();
  75   if (C->alias_type(_adr_type)->is_volatile()) {
  76     st->print(" Volatile!");
  77   }
  78   if (_unaligned_access) {
  79     st->print(" unaligned");
  80   }
  81   if (_mismatched_access) {
  82     st->print(" mismatched");
  83   }
  84 }
  85 
  86 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  87   st->print(" @");
  88   if (adr_type == NULL) {
  89     st->print("NULL");
  90   } else {
  91     adr_type->dump_on(st);
  92     Compile* C = Compile::current();
  93     Compile::AliasType* atp = NULL;
  94     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  95     if (atp == NULL)
  96       st->print(", idx=?\?;");
  97     else if (atp->index() == Compile::AliasIdxBot)
  98       st->print(", idx=Bot;");
  99     else if (atp->index() == Compile::AliasIdxTop)
 100       st->print(", idx=Top;");
 101     else if (atp->index() == Compile::AliasIdxRaw)
 102       st->print(", idx=Raw;");
 103     else {
 104       ciField* field = atp->field();
 105       if (field) {
 106         st->print(", name=");
 107         field->print_name_on(st);
 108       }
 109       st->print(", idx=%d;", atp->index());
 110     }
 111   }
 112 }
 113 
 114 extern void print_alias_types();
 115 
 116 #endif
 117 
 118 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 119   assert((t_oop != NULL), "sanity");
 120   bool is_instance = t_oop->is_known_instance_field();
 121   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 122                              (load != NULL) && load->is_Load() &&
 123                              (phase->is_IterGVN() != NULL);
 124   if (!(is_instance || is_boxed_value_load))
 125     return mchain;  // don't try to optimize non-instance types
 126   uint instance_id = t_oop->instance_id();
 127   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 128   Node *prev = NULL;
 129   Node *result = mchain;
 130   while (prev != result) {
 131     prev = result;
 132     if (result == start_mem)
 133       break;  // hit one of our sentinels
 134     // skip over a call which does not affect this memory slice
 135     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 136       Node *proj_in = result->in(0);
 137       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 138         break;  // hit one of our sentinels
 139       } else if (proj_in->is_Call()) {
 140         // ArrayCopyNodes processed here as well
 141         CallNode *call = proj_in->as_Call();
 142         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 143           result = call->in(TypeFunc::Memory);
 144         }
 145       } else if (proj_in->is_Initialize()) {
 146         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 147         // Stop if this is the initialization for the object instance which
 148         // contains this memory slice, otherwise skip over it.
 149         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 150           break;
 151         }
 152         if (is_instance) {
 153           result = proj_in->in(TypeFunc::Memory);
 154         } else if (is_boxed_value_load) {
 155           Node* klass = alloc->in(AllocateNode::KlassNode);
 156           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 157           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 158             result = proj_in->in(TypeFunc::Memory); // not related allocation
 159           }
 160         }
 161       } else if (proj_in->is_MemBar()) {
 162         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase)) {
 163           break;
 164         }
 165         result = proj_in->in(TypeFunc::Memory);
 166       } else {
 167         assert(false, "unexpected projection");
 168       }
 169     } else if (result->is_ClearArray()) {
 170       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 171         // Can not bypass initialization of the instance
 172         // we are looking for.
 173         break;
 174       }
 175       // Otherwise skip it (the call updated 'result' value).
 176     } else if (result->is_MergeMem()) {
 177       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 178     }
 179   }
 180   return result;
 181 }
 182 
 183 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 184   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 185   if (t_oop == NULL)
 186     return mchain;  // don't try to optimize non-oop types
 187   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 188   bool is_instance = t_oop->is_known_instance_field();
 189   PhaseIterGVN *igvn = phase->is_IterGVN();
 190   if (is_instance && igvn != NULL  && result->is_Phi()) {
 191     PhiNode *mphi = result->as_Phi();
 192     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 193     const TypePtr *t = mphi->adr_type();
 194     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 195         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 196         t->is_oopptr()->cast_to_exactness(true)
 197          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 198          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 199       // clone the Phi with our address type
 200       result = mphi->split_out_instance(t_adr, igvn);
 201     } else {
 202       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 203     }
 204   }
 205   return result;
 206 }
 207 
 208 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 209   uint alias_idx = phase->C->get_alias_index(tp);
 210   Node *mem = mmem;
 211 #ifdef ASSERT
 212   {
 213     // Check that current type is consistent with the alias index used during graph construction
 214     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 215     bool consistent =  adr_check == NULL || adr_check->empty() ||
 216                        phase->C->must_alias(adr_check, alias_idx );
 217     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 218     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 219                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 220         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 221         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 222           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 223           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 224       // don't assert if it is dead code.
 225       consistent = true;
 226     }
 227     if( !consistent ) {
 228       st->print("alias_idx==%d, adr_check==", alias_idx);
 229       if( adr_check == NULL ) {
 230         st->print("NULL");
 231       } else {
 232         adr_check->dump();
 233       }
 234       st->cr();
 235       print_alias_types();
 236       assert(consistent, "adr_check must match alias idx");
 237     }
 238   }
 239 #endif
 240   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 241   // means an array I have not precisely typed yet.  Do not do any
 242   // alias stuff with it any time soon.
 243   const TypeOopPtr *toop = tp->isa_oopptr();
 244   if( tp->base() != Type::AnyPtr &&
 245       !(toop &&
 246         toop->klass() != NULL &&
 247         toop->klass()->is_java_lang_Object() &&
 248         toop->offset() == Type::OffsetBot) ) {
 249     // compress paths and change unreachable cycles to TOP
 250     // If not, we can update the input infinitely along a MergeMem cycle
 251     // Equivalent code in PhiNode::Ideal
 252     Node* m  = phase->transform(mmem);
 253     // If transformed to a MergeMem, get the desired slice
 254     // Otherwise the returned node represents memory for every slice
 255     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 256     // Update input if it is progress over what we have now
 257   }
 258   return mem;
 259 }
 260 
 261 //--------------------------Ideal_common---------------------------------------
 262 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 263 // Unhook non-raw memories from complete (macro-expanded) initializations.
 264 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 265   // If our control input is a dead region, kill all below the region
 266   Node *ctl = in(MemNode::Control);
 267   if (ctl && remove_dead_region(phase, can_reshape))
 268     return this;
 269   ctl = in(MemNode::Control);
 270   // Don't bother trying to transform a dead node
 271   if (ctl && ctl->is_top())  return NodeSentinel;
 272 
 273   PhaseIterGVN *igvn = phase->is_IterGVN();
 274   // Wait if control on the worklist.
 275   if (ctl && can_reshape && igvn != NULL) {
 276     Node* bol = NULL;
 277     Node* cmp = NULL;
 278     if (ctl->in(0)->is_If()) {
 279       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 280       bol = ctl->in(0)->in(1);
 281       if (bol->is_Bool())
 282         cmp = ctl->in(0)->in(1)->in(1);
 283     }
 284     if (igvn->_worklist.member(ctl) ||
 285         (bol != NULL && igvn->_worklist.member(bol)) ||
 286         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 287       // This control path may be dead.
 288       // Delay this memory node transformation until the control is processed.
 289       phase->is_IterGVN()->_worklist.push(this);
 290       return NodeSentinel; // caller will return NULL
 291     }
 292   }
 293   // Ignore if memory is dead, or self-loop
 294   Node *mem = in(MemNode::Memory);
 295   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 296   assert(mem != this, "dead loop in MemNode::Ideal");
 297 
 298   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 299     // This memory slice may be dead.
 300     // Delay this mem node transformation until the memory is processed.
 301     phase->is_IterGVN()->_worklist.push(this);
 302     return NodeSentinel; // caller will return NULL
 303   }
 304 
 305   Node *address = in(MemNode::Address);
 306   const Type *t_adr = phase->type(address);
 307   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 308 
 309   if (can_reshape && igvn != NULL &&
 310       (igvn->_worklist.member(address) ||
 311        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 312     // The address's base and type may change when the address is processed.
 313     // Delay this mem node transformation until the address is processed.
 314     phase->is_IterGVN()->_worklist.push(this);
 315     return NodeSentinel; // caller will return NULL
 316   }
 317 
 318   // Do NOT remove or optimize the next lines: ensure a new alias index
 319   // is allocated for an oop pointer type before Escape Analysis.
 320   // Note: C++ will not remove it since the call has side effect.
 321   if (t_adr->isa_oopptr()) {
 322     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 323   }
 324 
 325   Node* base = NULL;
 326   if (address->is_AddP()) {
 327     base = address->in(AddPNode::Base);
 328   }
 329   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 330       !t_adr->isa_rawptr()) {
 331     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 332     // Skip this node optimization if its address has TOP base.
 333     return NodeSentinel; // caller will return NULL
 334   }
 335 
 336   // Avoid independent memory operations
 337   Node* old_mem = mem;
 338 
 339   // The code which unhooks non-raw memories from complete (macro-expanded)
 340   // initializations was removed. After macro-expansion all stores catched
 341   // by Initialize node became raw stores and there is no information
 342   // which memory slices they modify. So it is unsafe to move any memory
 343   // operation above these stores. Also in most cases hooked non-raw memories
 344   // were already unhooked by using information from detect_ptr_independence()
 345   // and find_previous_store().
 346 
 347   if (mem->is_MergeMem()) {
 348     MergeMemNode* mmem = mem->as_MergeMem();
 349     const TypePtr *tp = t_adr->is_ptr();
 350 
 351     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 352   }
 353 
 354   if (mem != old_mem) {
 355     set_req(MemNode::Memory, mem);
 356     if (can_reshape && old_mem->outcnt() == 0) {
 357         igvn->_worklist.push(old_mem);
 358     }
 359     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 360     return this;
 361   }
 362 
 363   // let the subclass continue analyzing...
 364   return NULL;
 365 }
 366 
 367 // Helper function for proving some simple control dominations.
 368 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 369 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 370 // is not a constant (dominated by the method's StartNode).
 371 // Used by MemNode::find_previous_store to prove that the
 372 // control input of a memory operation predates (dominates)
 373 // an allocation it wants to look past.
 374 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 375   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 376     return false; // Conservative answer for dead code
 377 
 378   // Check 'dom'. Skip Proj and CatchProj nodes.
 379   dom = dom->find_exact_control(dom);
 380   if (dom == NULL || dom->is_top())
 381     return false; // Conservative answer for dead code
 382 
 383   if (dom == sub) {
 384     // For the case when, for example, 'sub' is Initialize and the original
 385     // 'dom' is Proj node of the 'sub'.
 386     return false;
 387   }
 388 
 389   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 390     return true;
 391 
 392   // 'dom' dominates 'sub' if its control edge and control edges
 393   // of all its inputs dominate or equal to sub's control edge.
 394 
 395   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 396   // Or Region for the check in LoadNode::Ideal();
 397   // 'sub' should have sub->in(0) != NULL.
 398   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 399          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 400 
 401   // Get control edge of 'sub'.
 402   Node* orig_sub = sub;
 403   sub = sub->find_exact_control(sub->in(0));
 404   if (sub == NULL || sub->is_top())
 405     return false; // Conservative answer for dead code
 406 
 407   assert(sub->is_CFG(), "expecting control");
 408 
 409   if (sub == dom)
 410     return true;
 411 
 412   if (sub->is_Start() || sub->is_Root())
 413     return false;
 414 
 415   {
 416     // Check all control edges of 'dom'.
 417 
 418     ResourceMark rm;
 419     Arena* arena = Thread::current()->resource_area();
 420     Node_List nlist(arena);
 421     Unique_Node_List dom_list(arena);
 422 
 423     dom_list.push(dom);
 424     bool only_dominating_controls = false;
 425 
 426     for (uint next = 0; next < dom_list.size(); next++) {
 427       Node* n = dom_list.at(next);
 428       if (n == orig_sub)
 429         return false; // One of dom's inputs dominated by sub.
 430       if (!n->is_CFG() && n->pinned()) {
 431         // Check only own control edge for pinned non-control nodes.
 432         n = n->find_exact_control(n->in(0));
 433         if (n == NULL || n->is_top())
 434           return false; // Conservative answer for dead code
 435         assert(n->is_CFG(), "expecting control");
 436         dom_list.push(n);
 437       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 438         only_dominating_controls = true;
 439       } else if (n->is_CFG()) {
 440         if (n->dominates(sub, nlist))
 441           only_dominating_controls = true;
 442         else
 443           return false;
 444       } else {
 445         // First, own control edge.
 446         Node* m = n->find_exact_control(n->in(0));
 447         if (m != NULL) {
 448           if (m->is_top())
 449             return false; // Conservative answer for dead code
 450           dom_list.push(m);
 451         }
 452         // Now, the rest of edges.
 453         uint cnt = n->req();
 454         for (uint i = 1; i < cnt; i++) {
 455           m = n->find_exact_control(n->in(i));
 456           if (m == NULL || m->is_top())
 457             continue;
 458           dom_list.push(m);
 459         }
 460       }
 461     }
 462     return only_dominating_controls;
 463   }
 464 }
 465 
 466 //---------------------detect_ptr_independence---------------------------------
 467 // Used by MemNode::find_previous_store to prove that two base
 468 // pointers are never equal.
 469 // The pointers are accompanied by their associated allocations,
 470 // if any, which have been previously discovered by the caller.
 471 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 472                                       Node* p2, AllocateNode* a2,
 473                                       PhaseTransform* phase) {
 474   // Attempt to prove that these two pointers cannot be aliased.
 475   // They may both manifestly be allocations, and they should differ.
 476   // Or, if they are not both allocations, they can be distinct constants.
 477   // Otherwise, one is an allocation and the other a pre-existing value.
 478   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 479     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 480   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 481     return (a1 != a2);
 482   } else if (a1 != NULL) {                  // one allocation a1
 483     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 484     return all_controls_dominate(p2, a1);
 485   } else { //(a2 != NULL)                   // one allocation a2
 486     return all_controls_dominate(p1, a2);
 487   }
 488   return false;
 489 }
 490 
 491 
 492 // Find an arraycopy that must have set (can_see_stored_value=true) or
 493 // could have set (can_see_stored_value=false) the value for this load
 494 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 495   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 496                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 497     Node* mb = mem->in(0);
 498     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 499         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 500       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 501       if (ac->is_clonebasic()) {
 502         intptr_t offset;
 503         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 504         assert(alloc != NULL && alloc->initialization()->is_complete_with_arraycopy(), "broken allocation");
 505         if (alloc == ld_alloc) {
 506           return ac;
 507         }
 508       }
 509     }
 510   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 511     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 512 
 513     if (ac->is_arraycopy_validated() ||
 514         ac->is_copyof_validated() ||
 515         ac->is_copyofrange_validated()) {
 516       Node* ld_addp = in(MemNode::Address);
 517       if (ld_addp->is_AddP()) {
 518         Node* ld_base = ld_addp->in(AddPNode::Address);
 519         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 520 
 521         Node* dest = ac->in(ArrayCopyNode::Dest);
 522 
 523         if (dest == ld_base) {
 524           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 525           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 526             return ac;
 527           }
 528           if (!can_see_stored_value) {
 529             mem = ac->in(TypeFunc::Memory);
 530           }
 531         }
 532       }
 533     }
 534   }
 535   return NULL;
 536 }
 537 
 538 // The logic for reordering loads and stores uses four steps:
 539 // (a) Walk carefully past stores and initializations which we
 540 //     can prove are independent of this load.
 541 // (b) Observe that the next memory state makes an exact match
 542 //     with self (load or store), and locate the relevant store.
 543 // (c) Ensure that, if we were to wire self directly to the store,
 544 //     the optimizer would fold it up somehow.
 545 // (d) Do the rewiring, and return, depending on some other part of
 546 //     the optimizer to fold up the load.
 547 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 548 // specific to loads and stores, so they are handled by the callers.
 549 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 550 //
 551 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 552   Node*         ctrl   = in(MemNode::Control);
 553   Node*         adr    = in(MemNode::Address);
 554   intptr_t      offset = 0;
 555   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 556   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 557 
 558   if (offset == Type::OffsetBot)
 559     return NULL;            // cannot unalias unless there are precise offsets
 560 
 561   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 562 
 563   intptr_t size_in_bytes = memory_size();
 564 
 565   Node* mem = in(MemNode::Memory);   // start searching here...
 566 
 567   int cnt = 50;             // Cycle limiter
 568   for (;;) {                // While we can dance past unrelated stores...
 569     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 570 
 571     Node* prev = mem;
 572     if (mem->is_Store()) {
 573       Node* st_adr = mem->in(MemNode::Address);
 574       intptr_t st_offset = 0;
 575       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 576       if (st_base == NULL)
 577         break;              // inscrutable pointer
 578       if (st_offset != offset && st_offset != Type::OffsetBot) {
 579         const int MAX_STORE = BytesPerLong;
 580         if (st_offset >= offset + size_in_bytes ||
 581             st_offset <= offset - MAX_STORE ||
 582             st_offset <= offset - mem->as_Store()->memory_size()) {
 583           // Success:  The offsets are provably independent.
 584           // (You may ask, why not just test st_offset != offset and be done?
 585           // The answer is that stores of different sizes can co-exist
 586           // in the same sequence of RawMem effects.  We sometimes initialize
 587           // a whole 'tile' of array elements with a single jint or jlong.)
 588           mem = mem->in(MemNode::Memory);
 589           continue;           // (a) advance through independent store memory
 590         }
 591       }
 592       if (st_base != base &&
 593           detect_ptr_independence(base, alloc,
 594                                   st_base,
 595                                   AllocateNode::Ideal_allocation(st_base, phase),
 596                                   phase)) {
 597         // Success:  The bases are provably independent.
 598         mem = mem->in(MemNode::Memory);
 599         continue;           // (a) advance through independent store memory
 600       }
 601 
 602       // (b) At this point, if the bases or offsets do not agree, we lose,
 603       // since we have not managed to prove 'this' and 'mem' independent.
 604       if (st_base == base && st_offset == offset) {
 605         return mem;         // let caller handle steps (c), (d)
 606       }
 607 
 608     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 609       InitializeNode* st_init = mem->in(0)->as_Initialize();
 610       AllocateNode*  st_alloc = st_init->allocation();
 611       if (st_alloc == NULL)
 612         break;              // something degenerated
 613       bool known_identical = false;
 614       bool known_independent = false;
 615       if (alloc == st_alloc)
 616         known_identical = true;
 617       else if (alloc != NULL)
 618         known_independent = true;
 619       else if (all_controls_dominate(this, st_alloc))
 620         known_independent = true;
 621 
 622       if (known_independent) {
 623         // The bases are provably independent: Either they are
 624         // manifestly distinct allocations, or else the control
 625         // of this load dominates the store's allocation.
 626         int alias_idx = phase->C->get_alias_index(adr_type());
 627         if (alias_idx == Compile::AliasIdxRaw) {
 628           mem = st_alloc->in(TypeFunc::Memory);
 629         } else {
 630           mem = st_init->memory(alias_idx);
 631         }
 632         continue;           // (a) advance through independent store memory
 633       }
 634 
 635       // (b) at this point, if we are not looking at a store initializing
 636       // the same allocation we are loading from, we lose.
 637       if (known_identical) {
 638         // From caller, can_see_stored_value will consult find_captured_store.
 639         return mem;         // let caller handle steps (c), (d)
 640       }
 641 
 642     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 643       if (prev != mem) {
 644         // Found an arraycopy but it doesn't affect that load
 645         continue;
 646       }
 647       // Found an arraycopy that may affect that load
 648       return mem;
 649     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 650       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 651       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 652         // ArrayCopyNodes processed here as well.
 653         CallNode *call = mem->in(0)->as_Call();
 654         if (!call->may_modify(addr_t, phase)) {
 655           mem = call->in(TypeFunc::Memory);
 656           continue;         // (a) advance through independent call memory
 657         }
 658       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 659         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase)) {
 660           break;
 661         }
 662         mem = mem->in(0)->in(TypeFunc::Memory);
 663         continue;           // (a) advance through independent MemBar memory
 664       } else if (mem->is_ClearArray()) {
 665         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 666           // (the call updated 'mem' value)
 667           continue;         // (a) advance through independent allocation memory
 668         } else {
 669           // Can not bypass initialization of the instance
 670           // we are looking for.
 671           return mem;
 672         }
 673       } else if (mem->is_MergeMem()) {
 674         int alias_idx = phase->C->get_alias_index(adr_type());
 675         mem = mem->as_MergeMem()->memory_at(alias_idx);
 676         continue;           // (a) advance through independent MergeMem memory
 677       }
 678     }
 679 
 680     // Unless there is an explicit 'continue', we must bail out here,
 681     // because 'mem' is an inscrutable memory state (e.g., a call).
 682     break;
 683   }
 684 
 685   return NULL;              // bail out
 686 }
 687 
 688 //----------------------calculate_adr_type-------------------------------------
 689 // Helper function.  Notices when the given type of address hits top or bottom.
 690 // Also, asserts a cross-check of the type against the expected address type.
 691 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 692   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 693   #ifdef PRODUCT
 694   cross_check = NULL;
 695   #else
 696   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 697   #endif
 698   const TypePtr* tp = t->isa_ptr();
 699   if (tp == NULL) {
 700     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 701     return TypePtr::BOTTOM;           // touches lots of memory
 702   } else {
 703     #ifdef ASSERT
 704     // %%%% [phh] We don't check the alias index if cross_check is
 705     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 706     if (cross_check != NULL &&
 707         cross_check != TypePtr::BOTTOM &&
 708         cross_check != TypeRawPtr::BOTTOM) {
 709       // Recheck the alias index, to see if it has changed (due to a bug).
 710       Compile* C = Compile::current();
 711       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 712              "must stay in the original alias category");
 713       // The type of the address must be contained in the adr_type,
 714       // disregarding "null"-ness.
 715       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 716       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 717       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 718              "real address must not escape from expected memory type");
 719     }
 720     #endif
 721     return tp;
 722   }
 723 }
 724 
 725 //=============================================================================
 726 // Should LoadNode::Ideal() attempt to remove control edges?
 727 bool LoadNode::can_remove_control() const {
 728   return true;
 729 }
 730 uint LoadNode::size_of() const { return sizeof(*this); }
 731 uint LoadNode::cmp( const Node &n ) const
 732 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 733 const Type *LoadNode::bottom_type() const { return _type; }
 734 uint LoadNode::ideal_reg() const {
 735   return _type->ideal_reg();
 736 }
 737 
 738 #ifndef PRODUCT
 739 void LoadNode::dump_spec(outputStream *st) const {
 740   MemNode::dump_spec(st);
 741   if( !Verbose && !WizardMode ) {
 742     // standard dump does this in Verbose and WizardMode
 743     st->print(" #"); _type->dump_on(st);
 744   }
 745   if (!_depends_only_on_test) {
 746     st->print(" (does not depend only on test)");
 747   }
 748 }
 749 #endif
 750 
 751 #ifdef ASSERT
 752 //----------------------------is_immutable_value-------------------------------
 753 // Helper function to allow a raw load without control edge for some cases
 754 bool LoadNode::is_immutable_value(Node* adr) {
 755   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 756           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 757           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 758            in_bytes(JavaThread::osthread_offset())));
 759 }
 760 #endif
 761 
 762 //----------------------------LoadNode::make-----------------------------------
 763 // Polymorphic factory method:
 764 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 765                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 766   Compile* C = gvn.C;
 767 
 768   // sanity check the alias category against the created node type
 769   assert(!(adr_type->isa_oopptr() &&
 770            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 771          "use LoadKlassNode instead");
 772   assert(!(adr_type->isa_aryptr() &&
 773            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 774          "use LoadRangeNode instead");
 775   // Check control edge of raw loads
 776   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 777           // oop will be recorded in oop map if load crosses safepoint
 778           rt->isa_oopptr() || is_immutable_value(adr),
 779           "raw memory operations should have control edge");
 780   LoadNode* load = NULL;
 781   switch (bt) {
 782   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 783   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 784   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 785   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 786   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 787   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 788   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 789   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 790   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 791   case T_OBJECT:
 792 #ifdef _LP64
 793     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 794       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 795     } else
 796 #endif
 797     {
 798       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 799       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo, control_dependency);
 800     }
 801     break;
 802   }
 803   assert(load != NULL, "LoadNode should have been created");
 804   if (unaligned) {
 805     load->set_unaligned_access();
 806   }
 807   if (mismatched) {
 808     load->set_mismatched_access();
 809   }
 810   if (load->Opcode() == Op_LoadN) {
 811     Node* ld = gvn.transform(load);
 812     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 813   }
 814 
 815   return load;
 816 }
 817 
 818 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 819                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 820   bool require_atomic = true;
 821   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 822   if (unaligned) {
 823     load->set_unaligned_access();
 824   }
 825   if (mismatched) {
 826     load->set_mismatched_access();
 827   }
 828   return load;
 829 }
 830 
 831 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 832                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 833   bool require_atomic = true;
 834   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 835   if (unaligned) {
 836     load->set_unaligned_access();
 837   }
 838   if (mismatched) {
 839     load->set_mismatched_access();
 840   }
 841   return load;
 842 }
 843 
 844 
 845 
 846 //------------------------------hash-------------------------------------------
 847 uint LoadNode::hash() const {
 848   // unroll addition of interesting fields
 849   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 850 }
 851 
 852 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 853   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 854     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 855     bool is_stable_ary = FoldStableValues &&
 856                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 857                          tp->isa_aryptr()->is_stable();
 858 
 859     return (eliminate_boxing && non_volatile) || is_stable_ary;
 860   }
 861 
 862   return false;
 863 }
 864 
 865 // Is the value loaded previously stored by an arraycopy? If so return
 866 // a load node that reads from the source array so we may be able to
 867 // optimize out the ArrayCopy node later.
 868 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
 869   Node* ld_adr = in(MemNode::Address);
 870   intptr_t ld_off = 0;
 871   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 872   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 873   if (ac != NULL) {
 874     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 875 
 876     Node* ld = clone();
 877     if (ac->as_ArrayCopy()->is_clonebasic()) {
 878       assert(ld_alloc != NULL, "need an alloc");
 879       Node* addp = in(MemNode::Address)->clone();
 880       assert(addp->is_AddP(), "address must be addp");
 881       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 882       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 883       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
 884       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
 885       ld->set_req(MemNode::Address, phase->transform(addp));
 886       if (in(0) != NULL) {
 887         assert(ld_alloc->in(0) != NULL, "alloc must have control");
 888         ld->set_req(0, ld_alloc->in(0));
 889       }
 890     } else {
 891       Node* addp = in(MemNode::Address)->clone();
 892       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 893       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src));
 894       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src));
 895 
 896       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 897       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 898       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 899       uint shift  = exact_log2(type2aelembytes(ary_elem));
 900 
 901       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 902 #ifdef _LP64
 903       diff = phase->transform(new ConvI2LNode(diff));
 904 #endif
 905       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 906 
 907       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 908       addp->set_req(AddPNode::Offset, offset);
 909       ld->set_req(MemNode::Address, phase->transform(addp));
 910 
 911       if (in(0) != NULL) {
 912         assert(ac->in(0) != NULL, "alloc must have control");
 913         ld->set_req(0, ac->in(0));
 914       }
 915     }
 916     // load depends on the tests that validate the arraycopy
 917     ld->as_Load()->_depends_only_on_test = Pinned;
 918     return ld;
 919   }
 920   return NULL;
 921 }
 922 
 923 
 924 //---------------------------can_see_stored_value------------------------------
 925 // This routine exists to make sure this set of tests is done the same
 926 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 927 // will change the graph shape in a way which makes memory alive twice at the
 928 // same time (uses the Oracle model of aliasing), then some
 929 // LoadXNode::Identity will fold things back to the equivalence-class model
 930 // of aliasing.
 931 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 932   Node* ld_adr = in(MemNode::Address);
 933   intptr_t ld_off = 0;
 934   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 935   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 936   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 937   // This is more general than load from boxing objects.
 938   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 939     uint alias_idx = atp->index();
 940     bool final = !atp->is_rewritable();
 941     Node* result = NULL;
 942     Node* current = st;
 943     // Skip through chains of MemBarNodes checking the MergeMems for
 944     // new states for the slice of this load.  Stop once any other
 945     // kind of node is encountered.  Loads from final memory can skip
 946     // through any kind of MemBar but normal loads shouldn't skip
 947     // through MemBarAcquire since the could allow them to move out of
 948     // a synchronized region.
 949     while (current->is_Proj()) {
 950       int opc = current->in(0)->Opcode();
 951       if ((final && (opc == Op_MemBarAcquire ||
 952                      opc == Op_MemBarAcquireLock ||
 953                      opc == Op_LoadFence)) ||
 954           opc == Op_MemBarRelease ||
 955           opc == Op_StoreFence ||
 956           opc == Op_MemBarReleaseLock ||
 957           opc == Op_MemBarStoreStore ||
 958           opc == Op_MemBarCPUOrder) {
 959         Node* mem = current->in(0)->in(TypeFunc::Memory);
 960         if (mem->is_MergeMem()) {
 961           MergeMemNode* merge = mem->as_MergeMem();
 962           Node* new_st = merge->memory_at(alias_idx);
 963           if (new_st == merge->base_memory()) {
 964             // Keep searching
 965             current = new_st;
 966             continue;
 967           }
 968           // Save the new memory state for the slice and fall through
 969           // to exit.
 970           result = new_st;
 971         }
 972       }
 973       break;
 974     }
 975     if (result != NULL) {
 976       st = result;
 977     }
 978   }
 979 
 980   // Loop around twice in the case Load -> Initialize -> Store.
 981   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 982   for (int trip = 0; trip <= 1; trip++) {
 983 
 984     if (st->is_Store()) {
 985       Node* st_adr = st->in(MemNode::Address);
 986       if (!phase->eqv(st_adr, ld_adr)) {
 987         // Try harder before giving up...  Match raw and non-raw pointers.
 988         intptr_t st_off = 0;
 989         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 990         if (alloc == NULL)       return NULL;
 991         if (alloc != ld_alloc)   return NULL;
 992         if (ld_off != st_off)    return NULL;
 993         // At this point we have proven something like this setup:
 994         //  A = Allocate(...)
 995         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 996         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 997         // (Actually, we haven't yet proven the Q's are the same.)
 998         // In other words, we are loading from a casted version of
 999         // the same pointer-and-offset that we stored to.
1000         // Thus, we are able to replace L by V.
1001       }
1002       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1003       if (store_Opcode() != st->Opcode())
1004         return NULL;
1005       return st->in(MemNode::ValueIn);
1006     }
1007 
1008     // A load from a freshly-created object always returns zero.
1009     // (This can happen after LoadNode::Ideal resets the load's memory input
1010     // to find_captured_store, which returned InitializeNode::zero_memory.)
1011     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1012         (st->in(0) == ld_alloc) &&
1013         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1014       // return a zero value for the load's basic type
1015       // (This is one of the few places where a generic PhaseTransform
1016       // can create new nodes.  Think of it as lazily manifesting
1017       // virtually pre-existing constants.)
1018       return phase->zerocon(memory_type());
1019     }
1020 
1021     // A load from an initialization barrier can match a captured store.
1022     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1023       InitializeNode* init = st->in(0)->as_Initialize();
1024       AllocateNode* alloc = init->allocation();
1025       if ((alloc != NULL) && (alloc == ld_alloc)) {
1026         // examine a captured store value
1027         st = init->find_captured_store(ld_off, memory_size(), phase);
1028         if (st != NULL) {
1029           continue;             // take one more trip around
1030         }
1031       }
1032     }
1033 
1034     // Load boxed value from result of valueOf() call is input parameter.
1035     if (this->is_Load() && ld_adr->is_AddP() &&
1036         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1037       intptr_t ignore = 0;
1038       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1039       if (base != NULL && base->is_Proj() &&
1040           base->as_Proj()->_con == TypeFunc::Parms &&
1041           base->in(0)->is_CallStaticJava() &&
1042           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1043         return base->in(0)->in(TypeFunc::Parms);
1044       }
1045     }
1046 
1047     break;
1048   }
1049 
1050   return NULL;
1051 }
1052 
1053 //----------------------is_instance_field_load_with_local_phi------------------
1054 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1055   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1056       in(Address)->is_AddP() ) {
1057     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1058     // Only instances and boxed values.
1059     if( t_oop != NULL &&
1060         (t_oop->is_ptr_to_boxed_value() ||
1061          t_oop->is_known_instance_field()) &&
1062         t_oop->offset() != Type::OffsetBot &&
1063         t_oop->offset() != Type::OffsetTop) {
1064       return true;
1065     }
1066   }
1067   return false;
1068 }
1069 
1070 //------------------------------Identity---------------------------------------
1071 // Loads are identity if previous store is to same address
1072 Node* LoadNode::Identity(PhaseGVN* phase) {
1073   // If the previous store-maker is the right kind of Store, and the store is
1074   // to the same address, then we are equal to the value stored.
1075   Node* mem = in(Memory);
1076   Node* value = can_see_stored_value(mem, phase);
1077   if( value ) {
1078     // byte, short & char stores truncate naturally.
1079     // A load has to load the truncated value which requires
1080     // some sort of masking operation and that requires an
1081     // Ideal call instead of an Identity call.
1082     if (memory_size() < BytesPerInt) {
1083       // If the input to the store does not fit with the load's result type,
1084       // it must be truncated via an Ideal call.
1085       if (!phase->type(value)->higher_equal(phase->type(this)))
1086         return this;
1087     }
1088     // (This works even when value is a Con, but LoadNode::Value
1089     // usually runs first, producing the singleton type of the Con.)
1090     return value;
1091   }
1092 
1093   // Search for an existing data phi which was generated before for the same
1094   // instance's field to avoid infinite generation of phis in a loop.
1095   Node *region = mem->in(0);
1096   if (is_instance_field_load_with_local_phi(region)) {
1097     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1098     int this_index  = phase->C->get_alias_index(addr_t);
1099     int this_offset = addr_t->offset();
1100     int this_iid    = addr_t->instance_id();
1101     if (!addr_t->is_known_instance() &&
1102          addr_t->is_ptr_to_boxed_value()) {
1103       // Use _idx of address base (could be Phi node) for boxed values.
1104       intptr_t   ignore = 0;
1105       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1106       this_iid = base->_idx;
1107     }
1108     const Type* this_type = bottom_type();
1109     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1110       Node* phi = region->fast_out(i);
1111       if (phi->is_Phi() && phi != mem &&
1112           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1113         return phi;
1114       }
1115     }
1116   }
1117 
1118   return this;
1119 }
1120 
1121 // We're loading from an object which has autobox behaviour.
1122 // If this object is result of a valueOf call we'll have a phi
1123 // merging a newly allocated object and a load from the cache.
1124 // We want to replace this load with the original incoming
1125 // argument to the valueOf call.
1126 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1127   assert(phase->C->eliminate_boxing(), "sanity");
1128   intptr_t ignore = 0;
1129   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1130   if ((base == NULL) || base->is_Phi()) {
1131     // Push the loads from the phi that comes from valueOf up
1132     // through it to allow elimination of the loads and the recovery
1133     // of the original value. It is done in split_through_phi().
1134     return NULL;
1135   } else if (base->is_Load() ||
1136              base->is_DecodeN() && base->in(1)->is_Load()) {
1137     // Eliminate the load of boxed value for integer types from the cache
1138     // array by deriving the value from the index into the array.
1139     // Capture the offset of the load and then reverse the computation.
1140 
1141     // Get LoadN node which loads a boxing object from 'cache' array.
1142     if (base->is_DecodeN()) {
1143       base = base->in(1);
1144     }
1145     if (!base->in(Address)->is_AddP()) {
1146       return NULL; // Complex address
1147     }
1148     AddPNode* address = base->in(Address)->as_AddP();
1149     Node* cache_base = address->in(AddPNode::Base);
1150     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1151       // Get ConP node which is static 'cache' field.
1152       cache_base = cache_base->in(1);
1153     }
1154     if ((cache_base != NULL) && cache_base->is_Con()) {
1155       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1156       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1157         Node* elements[4];
1158         int shift = exact_log2(type2aelembytes(T_OBJECT));
1159         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1160         if ((count >  0) && elements[0]->is_Con() &&
1161             ((count == 1) ||
1162              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1163                              elements[1]->in(2) == phase->intcon(shift))) {
1164           ciObjArray* array = base_type->const_oop()->as_obj_array();
1165           // Fetch the box object cache[0] at the base of the array and get its value
1166           ciInstance* box = array->obj_at(0)->as_instance();
1167           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1168           assert(ik->is_box_klass(), "sanity");
1169           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1170           if (ik->nof_nonstatic_fields() == 1) {
1171             // This should be true nonstatic_field_at requires calling
1172             // nof_nonstatic_fields so check it anyway
1173             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1174             BasicType bt = c.basic_type();
1175             // Only integer types have boxing cache.
1176             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1177                    bt == T_BYTE    || bt == T_SHORT ||
1178                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1179             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1180             if (cache_low != (int)cache_low) {
1181               return NULL; // should not happen since cache is array indexed by value
1182             }
1183             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1184             if (offset != (int)offset) {
1185               return NULL; // should not happen since cache is array indexed by value
1186             }
1187            // Add up all the offsets making of the address of the load
1188             Node* result = elements[0];
1189             for (int i = 1; i < count; i++) {
1190               result = phase->transform(new AddXNode(result, elements[i]));
1191             }
1192             // Remove the constant offset from the address and then
1193             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1194             // remove the scaling of the offset to recover the original index.
1195             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1196               // Peel the shift off directly but wrap it in a dummy node
1197               // since Ideal can't return existing nodes
1198               result = new RShiftXNode(result->in(1), phase->intcon(0));
1199             } else if (result->is_Add() && result->in(2)->is_Con() &&
1200                        result->in(1)->Opcode() == Op_LShiftX &&
1201                        result->in(1)->in(2) == phase->intcon(shift)) {
1202               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1203               // but for boxing cache access we know that X<<Z will not overflow
1204               // (there is range check) so we do this optimizatrion by hand here.
1205               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1206               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1207             } else {
1208               result = new RShiftXNode(result, phase->intcon(shift));
1209             }
1210 #ifdef _LP64
1211             if (bt != T_LONG) {
1212               result = new ConvL2INode(phase->transform(result));
1213             }
1214 #else
1215             if (bt == T_LONG) {
1216               result = new ConvI2LNode(phase->transform(result));
1217             }
1218 #endif
1219             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1220             // Need to preserve unboxing load type if it is unsigned.
1221             switch(this->Opcode()) {
1222               case Op_LoadUB:
1223                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1224                 break;
1225               case Op_LoadUS:
1226                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1227                 break;
1228             }
1229             return result;
1230           }
1231         }
1232       }
1233     }
1234   }
1235   return NULL;
1236 }
1237 
1238 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1239   Node* region = phi->in(0);
1240   if (region == NULL) {
1241     return false; // Wait stable graph
1242   }
1243   uint cnt = phi->req();
1244   for (uint i = 1; i < cnt; i++) {
1245     Node* rc = region->in(i);
1246     if (rc == NULL || phase->type(rc) == Type::TOP)
1247       return false; // Wait stable graph
1248     Node* in = phi->in(i);
1249     if (in == NULL || phase->type(in) == Type::TOP)
1250       return false; // Wait stable graph
1251   }
1252   return true;
1253 }
1254 //------------------------------split_through_phi------------------------------
1255 // Split instance or boxed field load through Phi.
1256 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1257   Node* mem     = in(Memory);
1258   Node* address = in(Address);
1259   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1260 
1261   assert((t_oop != NULL) &&
1262          (t_oop->is_known_instance_field() ||
1263           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1264 
1265   Compile* C = phase->C;
1266   intptr_t ignore = 0;
1267   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1268   bool base_is_phi = (base != NULL) && base->is_Phi();
1269   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1270                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1271                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1272 
1273   if (!((mem->is_Phi() || base_is_phi) &&
1274         (load_boxed_values || t_oop->is_known_instance_field()))) {
1275     return NULL; // memory is not Phi
1276   }
1277 
1278   if (mem->is_Phi()) {
1279     if (!stable_phi(mem->as_Phi(), phase)) {
1280       return NULL; // Wait stable graph
1281     }
1282     uint cnt = mem->req();
1283     // Check for loop invariant memory.
1284     if (cnt == 3) {
1285       for (uint i = 1; i < cnt; i++) {
1286         Node* in = mem->in(i);
1287         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1288         if (m == mem) {
1289           set_req(Memory, mem->in(cnt - i));
1290           return this; // made change
1291         }
1292       }
1293     }
1294   }
1295   if (base_is_phi) {
1296     if (!stable_phi(base->as_Phi(), phase)) {
1297       return NULL; // Wait stable graph
1298     }
1299     uint cnt = base->req();
1300     // Check for loop invariant memory.
1301     if (cnt == 3) {
1302       for (uint i = 1; i < cnt; i++) {
1303         if (base->in(i) == base) {
1304           return NULL; // Wait stable graph
1305         }
1306       }
1307     }
1308   }
1309 
1310   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1311 
1312   // Split through Phi (see original code in loopopts.cpp).
1313   assert(C->have_alias_type(t_oop), "instance should have alias type");
1314 
1315   // Do nothing here if Identity will find a value
1316   // (to avoid infinite chain of value phis generation).
1317   if (!phase->eqv(this, this->Identity(phase)))
1318     return NULL;
1319 
1320   // Select Region to split through.
1321   Node* region;
1322   if (!base_is_phi) {
1323     assert(mem->is_Phi(), "sanity");
1324     region = mem->in(0);
1325     // Skip if the region dominates some control edge of the address.
1326     if (!MemNode::all_controls_dominate(address, region))
1327       return NULL;
1328   } else if (!mem->is_Phi()) {
1329     assert(base_is_phi, "sanity");
1330     region = base->in(0);
1331     // Skip if the region dominates some control edge of the memory.
1332     if (!MemNode::all_controls_dominate(mem, region))
1333       return NULL;
1334   } else if (base->in(0) != mem->in(0)) {
1335     assert(base_is_phi && mem->is_Phi(), "sanity");
1336     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1337       region = base->in(0);
1338     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1339       region = mem->in(0);
1340     } else {
1341       return NULL; // complex graph
1342     }
1343   } else {
1344     assert(base->in(0) == mem->in(0), "sanity");
1345     region = mem->in(0);
1346   }
1347 
1348   const Type* this_type = this->bottom_type();
1349   int this_index  = C->get_alias_index(t_oop);
1350   int this_offset = t_oop->offset();
1351   int this_iid    = t_oop->instance_id();
1352   if (!t_oop->is_known_instance() && load_boxed_values) {
1353     // Use _idx of address base for boxed values.
1354     this_iid = base->_idx;
1355   }
1356   PhaseIterGVN* igvn = phase->is_IterGVN();
1357   Node* phi = new PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1358   for (uint i = 1; i < region->req(); i++) {
1359     Node* x;
1360     Node* the_clone = NULL;
1361     if (region->in(i) == C->top()) {
1362       x = C->top();      // Dead path?  Use a dead data op
1363     } else {
1364       x = this->clone();        // Else clone up the data op
1365       the_clone = x;            // Remember for possible deletion.
1366       // Alter data node to use pre-phi inputs
1367       if (this->in(0) == region) {
1368         x->set_req(0, region->in(i));
1369       } else {
1370         x->set_req(0, NULL);
1371       }
1372       if (mem->is_Phi() && (mem->in(0) == region)) {
1373         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1374       }
1375       if (address->is_Phi() && address->in(0) == region) {
1376         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1377       }
1378       if (base_is_phi && (base->in(0) == region)) {
1379         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1380         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1381         x->set_req(Address, adr_x);
1382       }
1383     }
1384     // Check for a 'win' on some paths
1385     const Type *t = x->Value(igvn);
1386 
1387     bool singleton = t->singleton();
1388 
1389     // See comments in PhaseIdealLoop::split_thru_phi().
1390     if (singleton && t == Type::TOP) {
1391       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1392     }
1393 
1394     if (singleton) {
1395       x = igvn->makecon(t);
1396     } else {
1397       // We now call Identity to try to simplify the cloned node.
1398       // Note that some Identity methods call phase->type(this).
1399       // Make sure that the type array is big enough for
1400       // our new node, even though we may throw the node away.
1401       // (This tweaking with igvn only works because x is a new node.)
1402       igvn->set_type(x, t);
1403       // If x is a TypeNode, capture any more-precise type permanently into Node
1404       // otherwise it will be not updated during igvn->transform since
1405       // igvn->type(x) is set to x->Value() already.
1406       x->raise_bottom_type(t);
1407       Node *y = x->Identity(igvn);
1408       if (y != x) {
1409         x = y;
1410       } else {
1411         y = igvn->hash_find_insert(x);
1412         if (y) {
1413           x = y;
1414         } else {
1415           // Else x is a new node we are keeping
1416           // We do not need register_new_node_with_optimizer
1417           // because set_type has already been called.
1418           igvn->_worklist.push(x);
1419         }
1420       }
1421     }
1422     if (x != the_clone && the_clone != NULL) {
1423       igvn->remove_dead_node(the_clone);
1424     }
1425     phi->set_req(i, x);
1426   }
1427   // Record Phi
1428   igvn->register_new_node_with_optimizer(phi);
1429   return phi;
1430 }
1431 
1432 //------------------------------Ideal------------------------------------------
1433 // If the load is from Field memory and the pointer is non-null, it might be possible to
1434 // zero out the control input.
1435 // If the offset is constant and the base is an object allocation,
1436 // try to hook me up to the exact initializing store.
1437 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1438   Node* p = MemNode::Ideal_common(phase, can_reshape);
1439   if (p)  return (p == NodeSentinel) ? NULL : p;
1440 
1441   Node* ctrl    = in(MemNode::Control);
1442   Node* address = in(MemNode::Address);
1443   bool progress = false;
1444 
1445   // Skip up past a SafePoint control.  Cannot do this for Stores because
1446   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1447   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1448       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1449     ctrl = ctrl->in(0);
1450     set_req(MemNode::Control,ctrl);
1451     progress = true;
1452   }
1453 
1454   intptr_t ignore = 0;
1455   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1456   if (base != NULL
1457       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1458     // Check for useless control edge in some common special cases
1459     if (in(MemNode::Control) != NULL
1460         && can_remove_control()
1461         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1462         && all_controls_dominate(base, phase->C->start())) {
1463       // A method-invariant, non-null address (constant or 'this' argument).
1464       set_req(MemNode::Control, NULL);
1465       progress = true;
1466     }
1467   }
1468 
1469   Node* mem = in(MemNode::Memory);
1470   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1471 
1472   if (can_reshape && (addr_t != NULL)) {
1473     // try to optimize our memory input
1474     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1475     if (opt_mem != mem) {
1476       set_req(MemNode::Memory, opt_mem);
1477       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1478       return this;
1479     }
1480     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1481     if ((t_oop != NULL) &&
1482         (t_oop->is_known_instance_field() ||
1483          t_oop->is_ptr_to_boxed_value())) {
1484       PhaseIterGVN *igvn = phase->is_IterGVN();
1485       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1486         // Delay this transformation until memory Phi is processed.
1487         phase->is_IterGVN()->_worklist.push(this);
1488         return NULL;
1489       }
1490       // Split instance field load through Phi.
1491       Node* result = split_through_phi(phase);
1492       if (result != NULL) return result;
1493 
1494       if (t_oop->is_ptr_to_boxed_value()) {
1495         Node* result = eliminate_autobox(phase);
1496         if (result != NULL) return result;
1497       }
1498     }
1499   }
1500 
1501   // Is there a dominating load that loads the same value?  Leave
1502   // anything that is not a load of a field/array element (like
1503   // barriers etc.) alone
1504   if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1505     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1506       Node *use = mem->fast_out(i);
1507       if (use != this &&
1508           use->Opcode() == Opcode() &&
1509           use->in(0) != NULL &&
1510           use->in(0) != in(0) &&
1511           use->in(Address) == in(Address)) {
1512         Node* ctl = in(0);
1513         for (int i = 0; i < 10 && ctl != NULL; i++) {
1514           ctl = IfNode::up_one_dom(ctl);
1515           if (ctl == use->in(0)) {
1516             set_req(0, use->in(0));
1517             return this;
1518           }
1519         }
1520       }
1521     }
1522   }
1523 
1524   // Check for prior store with a different base or offset; make Load
1525   // independent.  Skip through any number of them.  Bail out if the stores
1526   // are in an endless dead cycle and report no progress.  This is a key
1527   // transform for Reflection.  However, if after skipping through the Stores
1528   // we can't then fold up against a prior store do NOT do the transform as
1529   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1530   // array memory alive twice: once for the hoisted Load and again after the
1531   // bypassed Store.  This situation only works if EVERYBODY who does
1532   // anti-dependence work knows how to bypass.  I.e. we need all
1533   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1534   // the alias index stuff.  So instead, peek through Stores and IFF we can
1535   // fold up, do so.
1536   Node* prev_mem = find_previous_store(phase);
1537   if (prev_mem != NULL) {
1538     Node* value = can_see_arraycopy_value(prev_mem, phase);
1539     if (value != NULL) {
1540       return value;
1541     }
1542   }
1543   // Steps (a), (b):  Walk past independent stores to find an exact match.
1544   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1545     // (c) See if we can fold up on the spot, but don't fold up here.
1546     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1547     // just return a prior value, which is done by Identity calls.
1548     if (can_see_stored_value(prev_mem, phase)) {
1549       // Make ready for step (d):
1550       set_req(MemNode::Memory, prev_mem);
1551       return this;
1552     }
1553   }
1554 
1555   return progress ? this : NULL;
1556 }
1557 
1558 // Helper to recognize certain Klass fields which are invariant across
1559 // some group of array types (e.g., int[] or all T[] where T < Object).
1560 const Type*
1561 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1562                                  ciKlass* klass) const {
1563   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1564     // The field is Klass::_modifier_flags.  Return its (constant) value.
1565     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1566     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1567     return TypeInt::make(klass->modifier_flags());
1568   }
1569   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1570     // The field is Klass::_access_flags.  Return its (constant) value.
1571     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1572     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1573     return TypeInt::make(klass->access_flags());
1574   }
1575   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1576     // The field is Klass::_layout_helper.  Return its constant value if known.
1577     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1578     return TypeInt::make(klass->layout_helper());
1579   }
1580 
1581   // No match.
1582   return NULL;
1583 }
1584 
1585 static bool is_mismatched_access(ciConstant con, BasicType loadbt) {
1586   BasicType conbt = con.basic_type();
1587   switch (conbt) {
1588     case T_BOOLEAN: conbt = T_BYTE;   break;
1589     case T_ARRAY:   conbt = T_OBJECT; break;
1590   }
1591   switch (loadbt) {
1592     case T_BOOLEAN:   loadbt = T_BYTE;   break;
1593     case T_NARROWOOP: loadbt = T_OBJECT; break;
1594     case T_ARRAY:     loadbt = T_OBJECT; break;
1595     case T_ADDRESS:   loadbt = T_OBJECT; break;
1596   }
1597   return (conbt != loadbt);
1598 }
1599 
1600 // Try to constant-fold a stable array element.
1601 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1602   assert(ary->const_oop(), "array should be constant");
1603   assert(ary->is_stable(), "array should be stable");
1604 
1605   // Decode the results of GraphKit::array_element_address.
1606   ciArray* aobj = ary->const_oop()->as_array();
1607   ciConstant con = aobj->element_value_by_offset(off);
1608   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1609     bool is_mismatched = is_mismatched_access(con, loadbt);
1610     assert(!is_mismatched, "conbt=%s; loadbt=%s", type2name(con.basic_type()), type2name(loadbt));
1611     const Type* con_type = Type::make_from_constant(con);
1612     // Guard against erroneous constant folding.
1613     if (!is_mismatched && con_type != NULL) {
1614       if (con_type->isa_aryptr()) {
1615         // Join with the array element type, in case it is also stable.
1616         int dim = ary->stable_dimension();
1617         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1618       }
1619       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1620         con_type = con_type->make_narrowoop();
1621       }
1622 #ifndef PRODUCT
1623       if (TraceIterativeGVN) {
1624         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1625         con_type->dump(); tty->cr();
1626       }
1627 #endif //PRODUCT
1628       return con_type;
1629     }
1630   }
1631   return NULL;
1632 }
1633 
1634 //------------------------------Value-----------------------------------------
1635 const Type* LoadNode::Value(PhaseGVN* phase) const {
1636   // Either input is TOP ==> the result is TOP
1637   Node* mem = in(MemNode::Memory);
1638   const Type *t1 = phase->type(mem);
1639   if (t1 == Type::TOP)  return Type::TOP;
1640   Node* adr = in(MemNode::Address);
1641   const TypePtr* tp = phase->type(adr)->isa_ptr();
1642   if (tp == NULL || tp->empty())  return Type::TOP;
1643   int off = tp->offset();
1644   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1645   Compile* C = phase->C;
1646 
1647   // Try to guess loaded type from pointer type
1648   if (tp->isa_aryptr()) {
1649     const TypeAryPtr* ary = tp->is_aryptr();
1650     const Type* t = ary->elem();
1651 
1652     // Determine whether the reference is beyond the header or not, by comparing
1653     // the offset against the offset of the start of the array's data.
1654     // Different array types begin at slightly different offsets (12 vs. 16).
1655     // We choose T_BYTE as an example base type that is least restrictive
1656     // as to alignment, which will therefore produce the smallest
1657     // possible base offset.
1658     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1659     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1660 
1661     // Try to constant-fold a stable array element.
1662     if (FoldStableValues && !is_mismatched_access() && ary->is_stable() && ary->const_oop() != NULL) {
1663       // Make sure the reference is not into the header and the offset is constant
1664       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1665         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1666         if (con_type != NULL) {
1667           return con_type;
1668         }
1669       }
1670     }
1671 
1672     // Don't do this for integer types. There is only potential profit if
1673     // the element type t is lower than _type; that is, for int types, if _type is
1674     // more restrictive than t.  This only happens here if one is short and the other
1675     // char (both 16 bits), and in those cases we've made an intentional decision
1676     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1677     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1678     //
1679     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1680     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1681     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1682     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1683     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1684     // In fact, that could have been the original type of p1, and p1 could have
1685     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1686     // expression (LShiftL quux 3) independently optimized to the constant 8.
1687     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1688         && (_type->isa_vect() == NULL)
1689         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1690       // t might actually be lower than _type, if _type is a unique
1691       // concrete subclass of abstract class t.
1692       if (off_beyond_header) {  // is the offset beyond the header?
1693         const Type* jt = t->join_speculative(_type);
1694         // In any case, do not allow the join, per se, to empty out the type.
1695         if (jt->empty() && !t->empty()) {
1696           // This can happen if a interface-typed array narrows to a class type.
1697           jt = _type;
1698         }
1699 #ifdef ASSERT
1700         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1701           // The pointers in the autobox arrays are always non-null
1702           Node* base = adr->in(AddPNode::Base);
1703           if ((base != NULL) && base->is_DecodeN()) {
1704             // Get LoadN node which loads IntegerCache.cache field
1705             base = base->in(1);
1706           }
1707           if ((base != NULL) && base->is_Con()) {
1708             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1709             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1710               // It could be narrow oop
1711               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1712             }
1713           }
1714         }
1715 #endif
1716         return jt;
1717       }
1718     }
1719   } else if (tp->base() == Type::InstPtr) {
1720     ciEnv* env = C->env();
1721     const TypeInstPtr* tinst = tp->is_instptr();
1722     ciKlass* klass = tinst->klass();
1723     assert( off != Type::OffsetBot ||
1724             // arrays can be cast to Objects
1725             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1726             // unsafe field access may not have a constant offset
1727             C->has_unsafe_access(),
1728             "Field accesses must be precise" );
1729     // For oop loads, we expect the _type to be precise.
1730     // Optimizations for constant objects
1731     ciObject* const_oop = tinst->const_oop();
1732     if (const_oop != NULL) {
1733       // For constant CallSites treat the target field as a compile time constant.
1734       if (const_oop->is_call_site()) {
1735         ciCallSite* call_site = const_oop->as_call_site();
1736         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1737         if (field != NULL && field->is_call_site_target()) {
1738           ciMethodHandle* target = call_site->get_target();
1739           if (target != NULL) {  // just in case
1740             ciConstant constant(T_OBJECT, target);
1741             const Type* t;
1742             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1743               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1744             } else {
1745               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1746             }
1747             // Add a dependence for invalidation of the optimization.
1748             if (!call_site->is_constant_call_site()) {
1749               C->dependencies()->assert_call_site_target_value(call_site, target);
1750             }
1751             return t;
1752           }
1753         }
1754       }
1755     }
1756   } else if (tp->base() == Type::KlassPtr) {
1757     assert( off != Type::OffsetBot ||
1758             // arrays can be cast to Objects
1759             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1760             // also allow array-loading from the primary supertype
1761             // array during subtype checks
1762             Opcode() == Op_LoadKlass,
1763             "Field accesses must be precise" );
1764     // For klass/static loads, we expect the _type to be precise
1765   }
1766 
1767   const TypeKlassPtr *tkls = tp->isa_klassptr();
1768   if (tkls != NULL && !StressReflectiveCode) {
1769     ciKlass* klass = tkls->klass();
1770     if (klass->is_loaded() && tkls->klass_is_exact()) {
1771       // We are loading a field from a Klass metaobject whose identity
1772       // is known at compile time (the type is "exact" or "precise").
1773       // Check for fields we know are maintained as constants by the VM.
1774       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1775         // The field is Klass::_super_check_offset.  Return its (constant) value.
1776         // (Folds up type checking code.)
1777         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1778         return TypeInt::make(klass->super_check_offset());
1779       }
1780       // Compute index into primary_supers array
1781       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1782       // Check for overflowing; use unsigned compare to handle the negative case.
1783       if( depth < ciKlass::primary_super_limit() ) {
1784         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1785         // (Folds up type checking code.)
1786         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1787         ciKlass *ss = klass->super_of_depth(depth);
1788         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1789       }
1790       const Type* aift = load_array_final_field(tkls, klass);
1791       if (aift != NULL)  return aift;
1792       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1793         // The field is Klass::_java_mirror.  Return its (constant) value.
1794         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1795         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1796         return TypeInstPtr::make(klass->java_mirror());
1797       }
1798     }
1799 
1800     // We can still check if we are loading from the primary_supers array at a
1801     // shallow enough depth.  Even though the klass is not exact, entries less
1802     // than or equal to its super depth are correct.
1803     if (klass->is_loaded() ) {
1804       ciType *inner = klass;
1805       while( inner->is_obj_array_klass() )
1806         inner = inner->as_obj_array_klass()->base_element_type();
1807       if( inner->is_instance_klass() &&
1808           !inner->as_instance_klass()->flags().is_interface() ) {
1809         // Compute index into primary_supers array
1810         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1811         // Check for overflowing; use unsigned compare to handle the negative case.
1812         if( depth < ciKlass::primary_super_limit() &&
1813             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1814           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1815           // (Folds up type checking code.)
1816           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1817           ciKlass *ss = klass->super_of_depth(depth);
1818           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1819         }
1820       }
1821     }
1822 
1823     // If the type is enough to determine that the thing is not an array,
1824     // we can give the layout_helper a positive interval type.
1825     // This will help short-circuit some reflective code.
1826     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1827         && !klass->is_array_klass() // not directly typed as an array
1828         && !klass->is_interface()  // specifically not Serializable & Cloneable
1829         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1830         ) {
1831       // Note:  When interfaces are reliable, we can narrow the interface
1832       // test to (klass != Serializable && klass != Cloneable).
1833       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1834       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1835       // The key property of this type is that it folds up tests
1836       // for array-ness, since it proves that the layout_helper is positive.
1837       // Thus, a generic value like the basic object layout helper works fine.
1838       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1839     }
1840   }
1841 
1842   // If we are loading from a freshly-allocated object, produce a zero,
1843   // if the load is provably beyond the header of the object.
1844   // (Also allow a variable load from a fresh array to produce zero.)
1845   const TypeOopPtr *tinst = tp->isa_oopptr();
1846   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1847   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1848   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1849     Node* value = can_see_stored_value(mem,phase);
1850     if (value != NULL && value->is_Con()) {
1851       assert(value->bottom_type()->higher_equal(_type),"sanity");
1852       return value->bottom_type();
1853     }
1854   }
1855 
1856   if (is_instance) {
1857     // If we have an instance type and our memory input is the
1858     // programs's initial memory state, there is no matching store,
1859     // so just return a zero of the appropriate type
1860     Node *mem = in(MemNode::Memory);
1861     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1862       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1863       return Type::get_zero_type(_type->basic_type());
1864     }
1865   }
1866   return _type;
1867 }
1868 
1869 //------------------------------match_edge-------------------------------------
1870 // Do we Match on this edge index or not?  Match only the address.
1871 uint LoadNode::match_edge(uint idx) const {
1872   return idx == MemNode::Address;
1873 }
1874 
1875 //--------------------------LoadBNode::Ideal--------------------------------------
1876 //
1877 //  If the previous store is to the same address as this load,
1878 //  and the value stored was larger than a byte, replace this load
1879 //  with the value stored truncated to a byte.  If no truncation is
1880 //  needed, the replacement is done in LoadNode::Identity().
1881 //
1882 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1883   Node* mem = in(MemNode::Memory);
1884   Node* value = can_see_stored_value(mem,phase);
1885   if( value && !phase->type(value)->higher_equal( _type ) ) {
1886     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1887     return new RShiftINode(result, phase->intcon(24));
1888   }
1889   // Identity call will handle the case where truncation is not needed.
1890   return LoadNode::Ideal(phase, can_reshape);
1891 }
1892 
1893 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1894   Node* mem = in(MemNode::Memory);
1895   Node* value = can_see_stored_value(mem,phase);
1896   if (value != NULL && value->is_Con() &&
1897       !value->bottom_type()->higher_equal(_type)) {
1898     // If the input to the store does not fit with the load's result type,
1899     // it must be truncated. We can't delay until Ideal call since
1900     // a singleton Value is needed for split_thru_phi optimization.
1901     int con = value->get_int();
1902     return TypeInt::make((con << 24) >> 24);
1903   }
1904   return LoadNode::Value(phase);
1905 }
1906 
1907 //--------------------------LoadUBNode::Ideal-------------------------------------
1908 //
1909 //  If the previous store is to the same address as this load,
1910 //  and the value stored was larger than a byte, replace this load
1911 //  with the value stored truncated to a byte.  If no truncation is
1912 //  needed, the replacement is done in LoadNode::Identity().
1913 //
1914 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1915   Node* mem = in(MemNode::Memory);
1916   Node* value = can_see_stored_value(mem, phase);
1917   if (value && !phase->type(value)->higher_equal(_type))
1918     return new AndINode(value, phase->intcon(0xFF));
1919   // Identity call will handle the case where truncation is not needed.
1920   return LoadNode::Ideal(phase, can_reshape);
1921 }
1922 
1923 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1924   Node* mem = in(MemNode::Memory);
1925   Node* value = can_see_stored_value(mem,phase);
1926   if (value != NULL && value->is_Con() &&
1927       !value->bottom_type()->higher_equal(_type)) {
1928     // If the input to the store does not fit with the load's result type,
1929     // it must be truncated. We can't delay until Ideal call since
1930     // a singleton Value is needed for split_thru_phi optimization.
1931     int con = value->get_int();
1932     return TypeInt::make(con & 0xFF);
1933   }
1934   return LoadNode::Value(phase);
1935 }
1936 
1937 //--------------------------LoadUSNode::Ideal-------------------------------------
1938 //
1939 //  If the previous store is to the same address as this load,
1940 //  and the value stored was larger than a char, replace this load
1941 //  with the value stored truncated to a char.  If no truncation is
1942 //  needed, the replacement is done in LoadNode::Identity().
1943 //
1944 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1945   Node* mem = in(MemNode::Memory);
1946   Node* value = can_see_stored_value(mem,phase);
1947   if( value && !phase->type(value)->higher_equal( _type ) )
1948     return new AndINode(value,phase->intcon(0xFFFF));
1949   // Identity call will handle the case where truncation is not needed.
1950   return LoadNode::Ideal(phase, can_reshape);
1951 }
1952 
1953 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1954   Node* mem = in(MemNode::Memory);
1955   Node* value = can_see_stored_value(mem,phase);
1956   if (value != NULL && value->is_Con() &&
1957       !value->bottom_type()->higher_equal(_type)) {
1958     // If the input to the store does not fit with the load's result type,
1959     // it must be truncated. We can't delay until Ideal call since
1960     // a singleton Value is needed for split_thru_phi optimization.
1961     int con = value->get_int();
1962     return TypeInt::make(con & 0xFFFF);
1963   }
1964   return LoadNode::Value(phase);
1965 }
1966 
1967 //--------------------------LoadSNode::Ideal--------------------------------------
1968 //
1969 //  If the previous store is to the same address as this load,
1970 //  and the value stored was larger than a short, replace this load
1971 //  with the value stored truncated to a short.  If no truncation is
1972 //  needed, the replacement is done in LoadNode::Identity().
1973 //
1974 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1975   Node* mem = in(MemNode::Memory);
1976   Node* value = can_see_stored_value(mem,phase);
1977   if( value && !phase->type(value)->higher_equal( _type ) ) {
1978     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1979     return new RShiftINode(result, phase->intcon(16));
1980   }
1981   // Identity call will handle the case where truncation is not needed.
1982   return LoadNode::Ideal(phase, can_reshape);
1983 }
1984 
1985 const Type* LoadSNode::Value(PhaseGVN* phase) const {
1986   Node* mem = in(MemNode::Memory);
1987   Node* value = can_see_stored_value(mem,phase);
1988   if (value != NULL && value->is_Con() &&
1989       !value->bottom_type()->higher_equal(_type)) {
1990     // If the input to the store does not fit with the load's result type,
1991     // it must be truncated. We can't delay until Ideal call since
1992     // a singleton Value is needed for split_thru_phi optimization.
1993     int con = value->get_int();
1994     return TypeInt::make((con << 16) >> 16);
1995   }
1996   return LoadNode::Value(phase);
1997 }
1998 
1999 //=============================================================================
2000 //----------------------------LoadKlassNode::make------------------------------
2001 // Polymorphic factory method:
2002 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2003   // sanity check the alias category against the created node type
2004   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2005   assert(adr_type != NULL, "expecting TypeKlassPtr");
2006 #ifdef _LP64
2007   if (adr_type->is_ptr_to_narrowklass()) {
2008     assert(UseCompressedClassPointers, "no compressed klasses");
2009     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2010     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2011   }
2012 #endif
2013   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2014   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2015 }
2016 
2017 //------------------------------Value------------------------------------------
2018 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2019   return klass_value_common(phase);
2020 }
2021 
2022 // In most cases, LoadKlassNode does not have the control input set. If the control
2023 // input is set, it must not be removed (by LoadNode::Ideal()).
2024 bool LoadKlassNode::can_remove_control() const {
2025   return false;
2026 }
2027 
2028 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2029   // Either input is TOP ==> the result is TOP
2030   const Type *t1 = phase->type( in(MemNode::Memory) );
2031   if (t1 == Type::TOP)  return Type::TOP;
2032   Node *adr = in(MemNode::Address);
2033   const Type *t2 = phase->type( adr );
2034   if (t2 == Type::TOP)  return Type::TOP;
2035   const TypePtr *tp = t2->is_ptr();
2036   if (TypePtr::above_centerline(tp->ptr()) ||
2037       tp->ptr() == TypePtr::Null)  return Type::TOP;
2038 
2039   // Return a more precise klass, if possible
2040   const TypeInstPtr *tinst = tp->isa_instptr();
2041   if (tinst != NULL) {
2042     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2043     int offset = tinst->offset();
2044     if (ik == phase->C->env()->Class_klass()
2045         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2046             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2047       // We are loading a special hidden field from a Class mirror object,
2048       // the field which points to the VM's Klass metaobject.
2049       ciType* t = tinst->java_mirror_type();
2050       // java_mirror_type returns non-null for compile-time Class constants.
2051       if (t != NULL) {
2052         // constant oop => constant klass
2053         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2054           if (t->is_void()) {
2055             // We cannot create a void array.  Since void is a primitive type return null
2056             // klass.  Users of this result need to do a null check on the returned klass.
2057             return TypePtr::NULL_PTR;
2058           }
2059           return TypeKlassPtr::make(ciArrayKlass::make(t));
2060         }
2061         if (!t->is_klass()) {
2062           // a primitive Class (e.g., int.class) has NULL for a klass field
2063           return TypePtr::NULL_PTR;
2064         }
2065         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2066         return TypeKlassPtr::make(t->as_klass());
2067       }
2068       // non-constant mirror, so we can't tell what's going on
2069     }
2070     if( !ik->is_loaded() )
2071       return _type;             // Bail out if not loaded
2072     if (offset == oopDesc::klass_offset_in_bytes()) {
2073       if (tinst->klass_is_exact()) {
2074         return TypeKlassPtr::make(ik);
2075       }
2076       // See if we can become precise: no subklasses and no interface
2077       // (Note:  We need to support verified interfaces.)
2078       if (!ik->is_interface() && !ik->has_subklass()) {
2079         //assert(!UseExactTypes, "this code should be useless with exact types");
2080         // Add a dependence; if any subclass added we need to recompile
2081         if (!ik->is_final()) {
2082           // %%% should use stronger assert_unique_concrete_subtype instead
2083           phase->C->dependencies()->assert_leaf_type(ik);
2084         }
2085         // Return precise klass
2086         return TypeKlassPtr::make(ik);
2087       }
2088 
2089       // Return root of possible klass
2090       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2091     }
2092   }
2093 
2094   // Check for loading klass from an array
2095   const TypeAryPtr *tary = tp->isa_aryptr();
2096   if( tary != NULL ) {
2097     ciKlass *tary_klass = tary->klass();
2098     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2099         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2100       if (tary->klass_is_exact()) {
2101         return TypeKlassPtr::make(tary_klass);
2102       }
2103       ciArrayKlass *ak = tary->klass()->as_array_klass();
2104       // If the klass is an object array, we defer the question to the
2105       // array component klass.
2106       if( ak->is_obj_array_klass() ) {
2107         assert( ak->is_loaded(), "" );
2108         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2109         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2110           ciInstanceKlass* ik = base_k->as_instance_klass();
2111           // See if we can become precise: no subklasses and no interface
2112           if (!ik->is_interface() && !ik->has_subklass()) {
2113             //assert(!UseExactTypes, "this code should be useless with exact types");
2114             // Add a dependence; if any subclass added we need to recompile
2115             if (!ik->is_final()) {
2116               phase->C->dependencies()->assert_leaf_type(ik);
2117             }
2118             // Return precise array klass
2119             return TypeKlassPtr::make(ak);
2120           }
2121         }
2122         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2123       } else {                  // Found a type-array?
2124         //assert(!UseExactTypes, "this code should be useless with exact types");
2125         assert( ak->is_type_array_klass(), "" );
2126         return TypeKlassPtr::make(ak); // These are always precise
2127       }
2128     }
2129   }
2130 
2131   // Check for loading klass from an array klass
2132   const TypeKlassPtr *tkls = tp->isa_klassptr();
2133   if (tkls != NULL && !StressReflectiveCode) {
2134     ciKlass* klass = tkls->klass();
2135     if( !klass->is_loaded() )
2136       return _type;             // Bail out if not loaded
2137     if( klass->is_obj_array_klass() &&
2138         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2139       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2140       // // Always returning precise element type is incorrect,
2141       // // e.g., element type could be object and array may contain strings
2142       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2143 
2144       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2145       // according to the element type's subclassing.
2146       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2147     }
2148     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2149         tkls->offset() == in_bytes(Klass::super_offset())) {
2150       ciKlass* sup = klass->as_instance_klass()->super();
2151       // The field is Klass::_super.  Return its (constant) value.
2152       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2153       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2154     }
2155   }
2156 
2157   // Bailout case
2158   return LoadNode::Value(phase);
2159 }
2160 
2161 //------------------------------Identity---------------------------------------
2162 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2163 // Also feed through the klass in Allocate(...klass...)._klass.
2164 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2165   return klass_identity_common(phase);
2166 }
2167 
2168 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2169   Node* x = LoadNode::Identity(phase);
2170   if (x != this)  return x;
2171 
2172   // Take apart the address into an oop and and offset.
2173   // Return 'this' if we cannot.
2174   Node*    adr    = in(MemNode::Address);
2175   intptr_t offset = 0;
2176   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2177   if (base == NULL)     return this;
2178   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2179   if (toop == NULL)     return this;
2180 
2181   // We can fetch the klass directly through an AllocateNode.
2182   // This works even if the klass is not constant (clone or newArray).
2183   if (offset == oopDesc::klass_offset_in_bytes()) {
2184     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2185     if (allocated_klass != NULL) {
2186       return allocated_klass;
2187     }
2188   }
2189 
2190   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2191   // See inline_native_Class_query for occurrences of these patterns.
2192   // Java Example:  x.getClass().isAssignableFrom(y)
2193   //
2194   // This improves reflective code, often making the Class
2195   // mirror go completely dead.  (Current exception:  Class
2196   // mirrors may appear in debug info, but we could clean them out by
2197   // introducing a new debug info operator for Klass*.java_mirror).
2198   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2199       && offset == java_lang_Class::klass_offset_in_bytes()) {
2200     // We are loading a special hidden field from a Class mirror,
2201     // the field which points to its Klass or ArrayKlass metaobject.
2202     if (base->is_Load()) {
2203       Node* adr2 = base->in(MemNode::Address);
2204       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2205       if (tkls != NULL && !tkls->empty()
2206           && (tkls->klass()->is_instance_klass() ||
2207               tkls->klass()->is_array_klass())
2208           && adr2->is_AddP()
2209           ) {
2210         int mirror_field = in_bytes(Klass::java_mirror_offset());
2211         if (tkls->offset() == mirror_field) {
2212           return adr2->in(AddPNode::Base);
2213         }
2214       }
2215     }
2216   }
2217 
2218   return this;
2219 }
2220 
2221 
2222 //------------------------------Value------------------------------------------
2223 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2224   const Type *t = klass_value_common(phase);
2225   if (t == Type::TOP)
2226     return t;
2227 
2228   return t->make_narrowklass();
2229 }
2230 
2231 //------------------------------Identity---------------------------------------
2232 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2233 // Also feed through the klass in Allocate(...klass...)._klass.
2234 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2235   Node *x = klass_identity_common(phase);
2236 
2237   const Type *t = phase->type( x );
2238   if( t == Type::TOP ) return x;
2239   if( t->isa_narrowklass()) return x;
2240   assert (!t->isa_narrowoop(), "no narrow oop here");
2241 
2242   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2243 }
2244 
2245 //------------------------------Value-----------------------------------------
2246 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2247   // Either input is TOP ==> the result is TOP
2248   const Type *t1 = phase->type( in(MemNode::Memory) );
2249   if( t1 == Type::TOP ) return Type::TOP;
2250   Node *adr = in(MemNode::Address);
2251   const Type *t2 = phase->type( adr );
2252   if( t2 == Type::TOP ) return Type::TOP;
2253   const TypePtr *tp = t2->is_ptr();
2254   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2255   const TypeAryPtr *tap = tp->isa_aryptr();
2256   if( !tap ) return _type;
2257   return tap->size();
2258 }
2259 
2260 //-------------------------------Ideal---------------------------------------
2261 // Feed through the length in AllocateArray(...length...)._length.
2262 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2263   Node* p = MemNode::Ideal_common(phase, can_reshape);
2264   if (p)  return (p == NodeSentinel) ? NULL : p;
2265 
2266   // Take apart the address into an oop and and offset.
2267   // Return 'this' if we cannot.
2268   Node*    adr    = in(MemNode::Address);
2269   intptr_t offset = 0;
2270   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2271   if (base == NULL)     return NULL;
2272   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2273   if (tary == NULL)     return NULL;
2274 
2275   // We can fetch the length directly through an AllocateArrayNode.
2276   // This works even if the length is not constant (clone or newArray).
2277   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2278     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2279     if (alloc != NULL) {
2280       Node* allocated_length = alloc->Ideal_length();
2281       Node* len = alloc->make_ideal_length(tary, phase);
2282       if (allocated_length != len) {
2283         // New CastII improves on this.
2284         return len;
2285       }
2286     }
2287   }
2288 
2289   return NULL;
2290 }
2291 
2292 //------------------------------Identity---------------------------------------
2293 // Feed through the length in AllocateArray(...length...)._length.
2294 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2295   Node* x = LoadINode::Identity(phase);
2296   if (x != this)  return x;
2297 
2298   // Take apart the address into an oop and and offset.
2299   // Return 'this' if we cannot.
2300   Node*    adr    = in(MemNode::Address);
2301   intptr_t offset = 0;
2302   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2303   if (base == NULL)     return this;
2304   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2305   if (tary == NULL)     return this;
2306 
2307   // We can fetch the length directly through an AllocateArrayNode.
2308   // This works even if the length is not constant (clone or newArray).
2309   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2310     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2311     if (alloc != NULL) {
2312       Node* allocated_length = alloc->Ideal_length();
2313       // Do not allow make_ideal_length to allocate a CastII node.
2314       Node* len = alloc->make_ideal_length(tary, phase, false);
2315       if (allocated_length == len) {
2316         // Return allocated_length only if it would not be improved by a CastII.
2317         return allocated_length;
2318       }
2319     }
2320   }
2321 
2322   return this;
2323 
2324 }
2325 
2326 //=============================================================================
2327 //---------------------------StoreNode::make-----------------------------------
2328 // Polymorphic factory method:
2329 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2330   assert((mo == unordered || mo == release), "unexpected");
2331   Compile* C = gvn.C;
2332   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2333          ctl != NULL, "raw memory operations should have control edge");
2334 
2335   switch (bt) {
2336   case T_BOOLEAN:
2337   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2338   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2339   case T_CHAR:
2340   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2341   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2342   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2343   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2344   case T_METADATA:
2345   case T_ADDRESS:
2346   case T_OBJECT:
2347 #ifdef _LP64
2348     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2349       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2350       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2351     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2352                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2353                 adr->bottom_type()->isa_rawptr())) {
2354       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2355       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2356     }
2357 #endif
2358     {
2359       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2360     }
2361   }
2362   ShouldNotReachHere();
2363   return (StoreNode*)NULL;
2364 }
2365 
2366 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2367   bool require_atomic = true;
2368   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2369 }
2370 
2371 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2372   bool require_atomic = true;
2373   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2374 }
2375 
2376 
2377 //--------------------------bottom_type----------------------------------------
2378 const Type *StoreNode::bottom_type() const {
2379   return Type::MEMORY;
2380 }
2381 
2382 //------------------------------hash-------------------------------------------
2383 uint StoreNode::hash() const {
2384   // unroll addition of interesting fields
2385   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2386 
2387   // Since they are not commoned, do not hash them:
2388   return NO_HASH;
2389 }
2390 
2391 //------------------------------Ideal------------------------------------------
2392 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2393 // When a store immediately follows a relevant allocation/initialization,
2394 // try to capture it into the initialization, or hoist it above.
2395 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2396   Node* p = MemNode::Ideal_common(phase, can_reshape);
2397   if (p)  return (p == NodeSentinel) ? NULL : p;
2398 
2399   Node* mem     = in(MemNode::Memory);
2400   Node* address = in(MemNode::Address);
2401   // Back-to-back stores to same address?  Fold em up.  Generally
2402   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2403   // since they must follow each StoreP operation.  Redundant StoreCMs
2404   // are eliminated just before matching in final_graph_reshape.
2405   {
2406     Node* st = mem;
2407     // If Store 'st' has more than one use, we cannot fold 'st' away.
2408     // For example, 'st' might be the final state at a conditional
2409     // return.  Or, 'st' might be used by some node which is live at
2410     // the same time 'st' is live, which might be unschedulable.  So,
2411     // require exactly ONE user until such time as we clone 'mem' for
2412     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2413     // true).
2414     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2415       // Looking at a dead closed cycle of memory?
2416       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2417       assert(Opcode() == st->Opcode() ||
2418              st->Opcode() == Op_StoreVector ||
2419              Opcode() == Op_StoreVector ||
2420              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2421              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2422              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2423              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2424 
2425       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2426           st->as_Store()->memory_size() <= this->memory_size()) {
2427         Node* use = st->raw_out(0);
2428         phase->igvn_rehash_node_delayed(use);
2429         if (can_reshape) {
2430           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2431         } else {
2432           // It's OK to do this in the parser, since DU info is always accurate,
2433           // and the parser always refers to nodes via SafePointNode maps.
2434           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2435         }
2436         return this;
2437       }
2438       st = st->in(MemNode::Memory);
2439     }
2440   }
2441 
2442 
2443   // Capture an unaliased, unconditional, simple store into an initializer.
2444   // Or, if it is independent of the allocation, hoist it above the allocation.
2445   if (ReduceFieldZeroing && /*can_reshape &&*/
2446       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2447     InitializeNode* init = mem->in(0)->as_Initialize();
2448     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2449     if (offset > 0) {
2450       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2451       // If the InitializeNode captured me, it made a raw copy of me,
2452       // and I need to disappear.
2453       if (moved != NULL) {
2454         // %%% hack to ensure that Ideal returns a new node:
2455         mem = MergeMemNode::make(mem);
2456         return mem;             // fold me away
2457       }
2458     }
2459   }
2460 
2461   return NULL;                  // No further progress
2462 }
2463 
2464 //------------------------------Value-----------------------------------------
2465 const Type* StoreNode::Value(PhaseGVN* phase) const {
2466   // Either input is TOP ==> the result is TOP
2467   const Type *t1 = phase->type( in(MemNode::Memory) );
2468   if( t1 == Type::TOP ) return Type::TOP;
2469   const Type *t2 = phase->type( in(MemNode::Address) );
2470   if( t2 == Type::TOP ) return Type::TOP;
2471   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2472   if( t3 == Type::TOP ) return Type::TOP;
2473   return Type::MEMORY;
2474 }
2475 
2476 //------------------------------Identity---------------------------------------
2477 // Remove redundant stores:
2478 //   Store(m, p, Load(m, p)) changes to m.
2479 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2480 Node* StoreNode::Identity(PhaseGVN* phase) {
2481   Node* mem = in(MemNode::Memory);
2482   Node* adr = in(MemNode::Address);
2483   Node* val = in(MemNode::ValueIn);
2484 
2485   // Load then Store?  Then the Store is useless
2486   if (val->is_Load() &&
2487       val->in(MemNode::Address)->eqv_uncast(adr) &&
2488       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2489       val->as_Load()->store_Opcode() == Opcode()) {
2490     return mem;
2491   }
2492 
2493   // Two stores in a row of the same value?
2494   if (mem->is_Store() &&
2495       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2496       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2497       mem->Opcode() == Opcode()) {
2498     return mem;
2499   }
2500 
2501   // Store of zero anywhere into a freshly-allocated object?
2502   // Then the store is useless.
2503   // (It must already have been captured by the InitializeNode.)
2504   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2505     // a newly allocated object is already all-zeroes everywhere
2506     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2507       return mem;
2508     }
2509 
2510     // the store may also apply to zero-bits in an earlier object
2511     Node* prev_mem = find_previous_store(phase);
2512     // Steps (a), (b):  Walk past independent stores to find an exact match.
2513     if (prev_mem != NULL) {
2514       Node* prev_val = can_see_stored_value(prev_mem, phase);
2515       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2516         // prev_val and val might differ by a cast; it would be good
2517         // to keep the more informative of the two.
2518         return mem;
2519       }
2520     }
2521   }
2522 
2523   return this;
2524 }
2525 
2526 //------------------------------match_edge-------------------------------------
2527 // Do we Match on this edge index or not?  Match only memory & value
2528 uint StoreNode::match_edge(uint idx) const {
2529   return idx == MemNode::Address || idx == MemNode::ValueIn;
2530 }
2531 
2532 //------------------------------cmp--------------------------------------------
2533 // Do not common stores up together.  They generally have to be split
2534 // back up anyways, so do not bother.
2535 uint StoreNode::cmp( const Node &n ) const {
2536   return (&n == this);          // Always fail except on self
2537 }
2538 
2539 //------------------------------Ideal_masked_input-----------------------------
2540 // Check for a useless mask before a partial-word store
2541 // (StoreB ... (AndI valIn conIa) )
2542 // If (conIa & mask == mask) this simplifies to
2543 // (StoreB ... (valIn) )
2544 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2545   Node *val = in(MemNode::ValueIn);
2546   if( val->Opcode() == Op_AndI ) {
2547     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2548     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2549       set_req(MemNode::ValueIn, val->in(1));
2550       return this;
2551     }
2552   }
2553   return NULL;
2554 }
2555 
2556 
2557 //------------------------------Ideal_sign_extended_input----------------------
2558 // Check for useless sign-extension before a partial-word store
2559 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2560 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2561 // (StoreB ... (valIn) )
2562 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2563   Node *val = in(MemNode::ValueIn);
2564   if( val->Opcode() == Op_RShiftI ) {
2565     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2566     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2567       Node *shl = val->in(1);
2568       if( shl->Opcode() == Op_LShiftI ) {
2569         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2570         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2571           set_req(MemNode::ValueIn, shl->in(1));
2572           return this;
2573         }
2574       }
2575     }
2576   }
2577   return NULL;
2578 }
2579 
2580 //------------------------------value_never_loaded-----------------------------------
2581 // Determine whether there are any possible loads of the value stored.
2582 // For simplicity, we actually check if there are any loads from the
2583 // address stored to, not just for loads of the value stored by this node.
2584 //
2585 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2586   Node *adr = in(Address);
2587   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2588   if (adr_oop == NULL)
2589     return false;
2590   if (!adr_oop->is_known_instance_field())
2591     return false; // if not a distinct instance, there may be aliases of the address
2592   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2593     Node *use = adr->fast_out(i);
2594     if (use->is_Load() || use->is_LoadStore()) {
2595       return false;
2596     }
2597   }
2598   return true;
2599 }
2600 
2601 //=============================================================================
2602 //------------------------------Ideal------------------------------------------
2603 // If the store is from an AND mask that leaves the low bits untouched, then
2604 // we can skip the AND operation.  If the store is from a sign-extension
2605 // (a left shift, then right shift) we can skip both.
2606 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2607   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2608   if( progress != NULL ) return progress;
2609 
2610   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2611   if( progress != NULL ) return progress;
2612 
2613   // Finally check the default case
2614   return StoreNode::Ideal(phase, can_reshape);
2615 }
2616 
2617 //=============================================================================
2618 //------------------------------Ideal------------------------------------------
2619 // If the store is from an AND mask that leaves the low bits untouched, then
2620 // we can skip the AND operation
2621 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2622   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2623   if( progress != NULL ) return progress;
2624 
2625   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2626   if( progress != NULL ) return progress;
2627 
2628   // Finally check the default case
2629   return StoreNode::Ideal(phase, can_reshape);
2630 }
2631 
2632 //=============================================================================
2633 //------------------------------Identity---------------------------------------
2634 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2635   // No need to card mark when storing a null ptr
2636   Node* my_store = in(MemNode::OopStore);
2637   if (my_store->is_Store()) {
2638     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2639     if( t1 == TypePtr::NULL_PTR ) {
2640       return in(MemNode::Memory);
2641     }
2642   }
2643   return this;
2644 }
2645 
2646 //=============================================================================
2647 //------------------------------Ideal---------------------------------------
2648 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2649   Node* progress = StoreNode::Ideal(phase, can_reshape);
2650   if (progress != NULL) return progress;
2651 
2652   Node* my_store = in(MemNode::OopStore);
2653   if (my_store->is_MergeMem()) {
2654     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2655     set_req(MemNode::OopStore, mem);
2656     return this;
2657   }
2658 
2659   return NULL;
2660 }
2661 
2662 //------------------------------Value-----------------------------------------
2663 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2664   // Either input is TOP ==> the result is TOP
2665   const Type *t = phase->type( in(MemNode::Memory) );
2666   if( t == Type::TOP ) return Type::TOP;
2667   t = phase->type( in(MemNode::Address) );
2668   if( t == Type::TOP ) return Type::TOP;
2669   t = phase->type( in(MemNode::ValueIn) );
2670   if( t == Type::TOP ) return Type::TOP;
2671   // If extra input is TOP ==> the result is TOP
2672   t = phase->type( in(MemNode::OopStore) );
2673   if( t == Type::TOP ) return Type::TOP;
2674 
2675   return StoreNode::Value( phase );
2676 }
2677 
2678 
2679 //=============================================================================
2680 //----------------------------------SCMemProjNode------------------------------
2681 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2682 {
2683   return bottom_type();
2684 }
2685 
2686 //=============================================================================
2687 //----------------------------------LoadStoreNode------------------------------
2688 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2689   : Node(required),
2690     _type(rt),
2691     _adr_type(at)
2692 {
2693   init_req(MemNode::Control, c  );
2694   init_req(MemNode::Memory , mem);
2695   init_req(MemNode::Address, adr);
2696   init_req(MemNode::ValueIn, val);
2697   init_class_id(Class_LoadStore);
2698 }
2699 
2700 uint LoadStoreNode::ideal_reg() const {
2701   return _type->ideal_reg();
2702 }
2703 
2704 bool LoadStoreNode::result_not_used() const {
2705   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2706     Node *x = fast_out(i);
2707     if (x->Opcode() == Op_SCMemProj) continue;
2708     return false;
2709   }
2710   return true;
2711 }
2712 
2713 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2714 
2715 //=============================================================================
2716 //----------------------------------LoadStoreConditionalNode--------------------
2717 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2718   init_req(ExpectedIn, ex );
2719 }
2720 
2721 //=============================================================================
2722 //-------------------------------adr_type--------------------------------------
2723 const TypePtr* ClearArrayNode::adr_type() const {
2724   Node *adr = in(3);
2725   if (adr == NULL)  return NULL; // node is dead
2726   return MemNode::calculate_adr_type(adr->bottom_type());
2727 }
2728 
2729 //------------------------------match_edge-------------------------------------
2730 // Do we Match on this edge index or not?  Do not match memory
2731 uint ClearArrayNode::match_edge(uint idx) const {
2732   return idx > 1;
2733 }
2734 
2735 //------------------------------Identity---------------------------------------
2736 // Clearing a zero length array does nothing
2737 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2738   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2739 }
2740 
2741 //------------------------------Idealize---------------------------------------
2742 // Clearing a short array is faster with stores
2743 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2744   const int unit = BytesPerLong;
2745   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2746   if (!t)  return NULL;
2747   if (!t->is_con())  return NULL;
2748   intptr_t raw_count = t->get_con();
2749   intptr_t size = raw_count;
2750   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2751   // Clearing nothing uses the Identity call.
2752   // Negative clears are possible on dead ClearArrays
2753   // (see jck test stmt114.stmt11402.val).
2754   if (size <= 0 || size % unit != 0)  return NULL;
2755   intptr_t count = size / unit;
2756   // Length too long; use fast hardware clear
2757   if (size > Matcher::init_array_short_size)  return NULL;
2758   Node *mem = in(1);
2759   if( phase->type(mem)==Type::TOP ) return NULL;
2760   Node *adr = in(3);
2761   const Type* at = phase->type(adr);
2762   if( at==Type::TOP ) return NULL;
2763   const TypePtr* atp = at->isa_ptr();
2764   // adjust atp to be the correct array element address type
2765   if (atp == NULL)  atp = TypePtr::BOTTOM;
2766   else              atp = atp->add_offset(Type::OffsetBot);
2767   // Get base for derived pointer purposes
2768   if( adr->Opcode() != Op_AddP ) Unimplemented();
2769   Node *base = adr->in(1);
2770 
2771   Node *zero = phase->makecon(TypeLong::ZERO);
2772   Node *off  = phase->MakeConX(BytesPerLong);
2773   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2774   count--;
2775   while( count-- ) {
2776     mem = phase->transform(mem);
2777     adr = phase->transform(new AddPNode(base,adr,off));
2778     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2779   }
2780   return mem;
2781 }
2782 
2783 //----------------------------step_through----------------------------------
2784 // Return allocation input memory edge if it is different instance
2785 // or itself if it is the one we are looking for.
2786 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2787   Node* n = *np;
2788   assert(n->is_ClearArray(), "sanity");
2789   intptr_t offset;
2790   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2791   // This method is called only before Allocate nodes are expanded
2792   // during macro nodes expansion. Before that ClearArray nodes are
2793   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2794   // Allocate nodes are expanded) which follows allocations.
2795   assert(alloc != NULL, "should have allocation");
2796   if (alloc->_idx == instance_id) {
2797     // Can not bypass initialization of the instance we are looking for.
2798     return false;
2799   }
2800   // Otherwise skip it.
2801   InitializeNode* init = alloc->initialization();
2802   if (init != NULL)
2803     *np = init->in(TypeFunc::Memory);
2804   else
2805     *np = alloc->in(TypeFunc::Memory);
2806   return true;
2807 }
2808 
2809 //----------------------------clear_memory-------------------------------------
2810 // Generate code to initialize object storage to zero.
2811 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2812                                    intptr_t start_offset,
2813                                    Node* end_offset,
2814                                    PhaseGVN* phase) {
2815   intptr_t offset = start_offset;
2816 
2817   int unit = BytesPerLong;
2818   if ((offset % unit) != 0) {
2819     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2820     adr = phase->transform(adr);
2821     const TypePtr* atp = TypeRawPtr::BOTTOM;
2822     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2823     mem = phase->transform(mem);
2824     offset += BytesPerInt;
2825   }
2826   assert((offset % unit) == 0, "");
2827 
2828   // Initialize the remaining stuff, if any, with a ClearArray.
2829   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2830 }
2831 
2832 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2833                                    Node* start_offset,
2834                                    Node* end_offset,
2835                                    PhaseGVN* phase) {
2836   if (start_offset == end_offset) {
2837     // nothing to do
2838     return mem;
2839   }
2840 
2841   int unit = BytesPerLong;
2842   Node* zbase = start_offset;
2843   Node* zend  = end_offset;
2844 
2845   // Scale to the unit required by the CPU:
2846   if (!Matcher::init_array_count_is_in_bytes) {
2847     Node* shift = phase->intcon(exact_log2(unit));
2848     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2849     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2850   }
2851 
2852   // Bulk clear double-words
2853   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2854   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2855   mem = new ClearArrayNode(ctl, mem, zsize, adr);
2856   return phase->transform(mem);
2857 }
2858 
2859 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2860                                    intptr_t start_offset,
2861                                    intptr_t end_offset,
2862                                    PhaseGVN* phase) {
2863   if (start_offset == end_offset) {
2864     // nothing to do
2865     return mem;
2866   }
2867 
2868   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2869   intptr_t done_offset = end_offset;
2870   if ((done_offset % BytesPerLong) != 0) {
2871     done_offset -= BytesPerInt;
2872   }
2873   if (done_offset > start_offset) {
2874     mem = clear_memory(ctl, mem, dest,
2875                        start_offset, phase->MakeConX(done_offset), phase);
2876   }
2877   if (done_offset < end_offset) { // emit the final 32-bit store
2878     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2879     adr = phase->transform(adr);
2880     const TypePtr* atp = TypeRawPtr::BOTTOM;
2881     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2882     mem = phase->transform(mem);
2883     done_offset += BytesPerInt;
2884   }
2885   assert(done_offset == end_offset, "");
2886   return mem;
2887 }
2888 
2889 //=============================================================================
2890 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2891   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2892     _adr_type(C->get_adr_type(alias_idx))
2893 {
2894   init_class_id(Class_MemBar);
2895   Node* top = C->top();
2896   init_req(TypeFunc::I_O,top);
2897   init_req(TypeFunc::FramePtr,top);
2898   init_req(TypeFunc::ReturnAdr,top);
2899   if (precedent != NULL)
2900     init_req(TypeFunc::Parms, precedent);
2901 }
2902 
2903 //------------------------------cmp--------------------------------------------
2904 uint MemBarNode::hash() const { return NO_HASH; }
2905 uint MemBarNode::cmp( const Node &n ) const {
2906   return (&n == this);          // Always fail except on self
2907 }
2908 
2909 //------------------------------make-------------------------------------------
2910 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2911   switch (opcode) {
2912   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2913   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2914   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2915   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2916   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2917   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2918   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2919   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2920   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2921   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2922   default: ShouldNotReachHere(); return NULL;
2923   }
2924 }
2925 
2926 //------------------------------Ideal------------------------------------------
2927 // Return a node which is more "ideal" than the current node.  Strip out
2928 // control copies
2929 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2930   if (remove_dead_region(phase, can_reshape)) return this;
2931   // Don't bother trying to transform a dead node
2932   if (in(0) && in(0)->is_top()) {
2933     return NULL;
2934   }
2935 
2936   bool progress = false;
2937   // Eliminate volatile MemBars for scalar replaced objects.
2938   if (can_reshape && req() == (Precedent+1)) {
2939     bool eliminate = false;
2940     int opc = Opcode();
2941     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2942       // Volatile field loads and stores.
2943       Node* my_mem = in(MemBarNode::Precedent);
2944       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2945       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2946         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2947         // replace this Precedent (decodeN) with the Load instead.
2948         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2949           Node* load_node = my_mem->in(1);
2950           set_req(MemBarNode::Precedent, load_node);
2951           phase->is_IterGVN()->_worklist.push(my_mem);
2952           my_mem = load_node;
2953         } else {
2954           assert(my_mem->unique_out() == this, "sanity");
2955           del_req(Precedent);
2956           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2957           my_mem = NULL;
2958         }
2959         progress = true;
2960       }
2961       if (my_mem != NULL && my_mem->is_Mem()) {
2962         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2963         // Check for scalar replaced object reference.
2964         if( t_oop != NULL && t_oop->is_known_instance_field() &&
2965             t_oop->offset() != Type::OffsetBot &&
2966             t_oop->offset() != Type::OffsetTop) {
2967           eliminate = true;
2968         }
2969       }
2970     } else if (opc == Op_MemBarRelease) {
2971       // Final field stores.
2972       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2973       if ((alloc != NULL) && alloc->is_Allocate() &&
2974           alloc->as_Allocate()->does_not_escape_thread()) {
2975         // The allocated object does not escape.
2976         eliminate = true;
2977       }
2978     }
2979     if (eliminate) {
2980       // Replace MemBar projections by its inputs.
2981       PhaseIterGVN* igvn = phase->is_IterGVN();
2982       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2983       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2984       // Must return either the original node (now dead) or a new node
2985       // (Do not return a top here, since that would break the uniqueness of top.)
2986       return new ConINode(TypeInt::ZERO);
2987     }
2988   }
2989   return progress ? this : NULL;
2990 }
2991 
2992 //------------------------------Value------------------------------------------
2993 const Type* MemBarNode::Value(PhaseGVN* phase) const {
2994   if( !in(0) ) return Type::TOP;
2995   if( phase->type(in(0)) == Type::TOP )
2996     return Type::TOP;
2997   return TypeTuple::MEMBAR;
2998 }
2999 
3000 //------------------------------match------------------------------------------
3001 // Construct projections for memory.
3002 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3003   switch (proj->_con) {
3004   case TypeFunc::Control:
3005   case TypeFunc::Memory:
3006     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3007   }
3008   ShouldNotReachHere();
3009   return NULL;
3010 }
3011 
3012 //===========================InitializeNode====================================
3013 // SUMMARY:
3014 // This node acts as a memory barrier on raw memory, after some raw stores.
3015 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3016 // The Initialize can 'capture' suitably constrained stores as raw inits.
3017 // It can coalesce related raw stores into larger units (called 'tiles').
3018 // It can avoid zeroing new storage for memory units which have raw inits.
3019 // At macro-expansion, it is marked 'complete', and does not optimize further.
3020 //
3021 // EXAMPLE:
3022 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3023 //   ctl = incoming control; mem* = incoming memory
3024 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3025 // First allocate uninitialized memory and fill in the header:
3026 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3027 //   ctl := alloc.Control; mem* := alloc.Memory*
3028 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3029 // Then initialize to zero the non-header parts of the raw memory block:
3030 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3031 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3032 // After the initialize node executes, the object is ready for service:
3033 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3034 // Suppose its body is immediately initialized as {1,2}:
3035 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3036 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3037 //   mem.SLICE(#short[*]) := store2
3038 //
3039 // DETAILS:
3040 // An InitializeNode collects and isolates object initialization after
3041 // an AllocateNode and before the next possible safepoint.  As a
3042 // memory barrier (MemBarNode), it keeps critical stores from drifting
3043 // down past any safepoint or any publication of the allocation.
3044 // Before this barrier, a newly-allocated object may have uninitialized bits.
3045 // After this barrier, it may be treated as a real oop, and GC is allowed.
3046 //
3047 // The semantics of the InitializeNode include an implicit zeroing of
3048 // the new object from object header to the end of the object.
3049 // (The object header and end are determined by the AllocateNode.)
3050 //
3051 // Certain stores may be added as direct inputs to the InitializeNode.
3052 // These stores must update raw memory, and they must be to addresses
3053 // derived from the raw address produced by AllocateNode, and with
3054 // a constant offset.  They must be ordered by increasing offset.
3055 // The first one is at in(RawStores), the last at in(req()-1).
3056 // Unlike most memory operations, they are not linked in a chain,
3057 // but are displayed in parallel as users of the rawmem output of
3058 // the allocation.
3059 //
3060 // (See comments in InitializeNode::capture_store, which continue
3061 // the example given above.)
3062 //
3063 // When the associated Allocate is macro-expanded, the InitializeNode
3064 // may be rewritten to optimize collected stores.  A ClearArrayNode
3065 // may also be created at that point to represent any required zeroing.
3066 // The InitializeNode is then marked 'complete', prohibiting further
3067 // capturing of nearby memory operations.
3068 //
3069 // During macro-expansion, all captured initializations which store
3070 // constant values of 32 bits or smaller are coalesced (if advantageous)
3071 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3072 // initialized in fewer memory operations.  Memory words which are
3073 // covered by neither tiles nor non-constant stores are pre-zeroed
3074 // by explicit stores of zero.  (The code shape happens to do all
3075 // zeroing first, then all other stores, with both sequences occurring
3076 // in order of ascending offsets.)
3077 //
3078 // Alternatively, code may be inserted between an AllocateNode and its
3079 // InitializeNode, to perform arbitrary initialization of the new object.
3080 // E.g., the object copying intrinsics insert complex data transfers here.
3081 // The initialization must then be marked as 'complete' disable the
3082 // built-in zeroing semantics and the collection of initializing stores.
3083 //
3084 // While an InitializeNode is incomplete, reads from the memory state
3085 // produced by it are optimizable if they match the control edge and
3086 // new oop address associated with the allocation/initialization.
3087 // They return a stored value (if the offset matches) or else zero.
3088 // A write to the memory state, if it matches control and address,
3089 // and if it is to a constant offset, may be 'captured' by the
3090 // InitializeNode.  It is cloned as a raw memory operation and rewired
3091 // inside the initialization, to the raw oop produced by the allocation.
3092 // Operations on addresses which are provably distinct (e.g., to
3093 // other AllocateNodes) are allowed to bypass the initialization.
3094 //
3095 // The effect of all this is to consolidate object initialization
3096 // (both arrays and non-arrays, both piecewise and bulk) into a
3097 // single location, where it can be optimized as a unit.
3098 //
3099 // Only stores with an offset less than TrackedInitializationLimit words
3100 // will be considered for capture by an InitializeNode.  This puts a
3101 // reasonable limit on the complexity of optimized initializations.
3102 
3103 //---------------------------InitializeNode------------------------------------
3104 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3105   : _is_complete(Incomplete), _does_not_escape(false),
3106     MemBarNode(C, adr_type, rawoop)
3107 {
3108   init_class_id(Class_Initialize);
3109 
3110   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3111   assert(in(RawAddress) == rawoop, "proper init");
3112   // Note:  allocation() can be NULL, for secondary initialization barriers
3113 }
3114 
3115 // Since this node is not matched, it will be processed by the
3116 // register allocator.  Declare that there are no constraints
3117 // on the allocation of the RawAddress edge.
3118 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3119   // This edge should be set to top, by the set_complete.  But be conservative.
3120   if (idx == InitializeNode::RawAddress)
3121     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3122   return RegMask::Empty;
3123 }
3124 
3125 Node* InitializeNode::memory(uint alias_idx) {
3126   Node* mem = in(Memory);
3127   if (mem->is_MergeMem()) {
3128     return mem->as_MergeMem()->memory_at(alias_idx);
3129   } else {
3130     // incoming raw memory is not split
3131     return mem;
3132   }
3133 }
3134 
3135 bool InitializeNode::is_non_zero() {
3136   if (is_complete())  return false;
3137   remove_extra_zeroes();
3138   return (req() > RawStores);
3139 }
3140 
3141 void InitializeNode::set_complete(PhaseGVN* phase) {
3142   assert(!is_complete(), "caller responsibility");
3143   _is_complete = Complete;
3144 
3145   // After this node is complete, it contains a bunch of
3146   // raw-memory initializations.  There is no need for
3147   // it to have anything to do with non-raw memory effects.
3148   // Therefore, tell all non-raw users to re-optimize themselves,
3149   // after skipping the memory effects of this initialization.
3150   PhaseIterGVN* igvn = phase->is_IterGVN();
3151   if (igvn)  igvn->add_users_to_worklist(this);
3152 }
3153 
3154 // convenience function
3155 // return false if the init contains any stores already
3156 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3157   InitializeNode* init = initialization();
3158   if (init == NULL || init->is_complete())  return false;
3159   init->remove_extra_zeroes();
3160   // for now, if this allocation has already collected any inits, bail:
3161   if (init->is_non_zero())  return false;
3162   init->set_complete(phase);
3163   return true;
3164 }
3165 
3166 void InitializeNode::remove_extra_zeroes() {
3167   if (req() == RawStores)  return;
3168   Node* zmem = zero_memory();
3169   uint fill = RawStores;
3170   for (uint i = fill; i < req(); i++) {
3171     Node* n = in(i);
3172     if (n->is_top() || n == zmem)  continue;  // skip
3173     if (fill < i)  set_req(fill, n);          // compact
3174     ++fill;
3175   }
3176   // delete any empty spaces created:
3177   while (fill < req()) {
3178     del_req(fill);
3179   }
3180 }
3181 
3182 // Helper for remembering which stores go with which offsets.
3183 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3184   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3185   intptr_t offset = -1;
3186   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3187                                                phase, offset);
3188   if (base == NULL)     return -1;  // something is dead,
3189   if (offset < 0)       return -1;  //        dead, dead
3190   return offset;
3191 }
3192 
3193 // Helper for proving that an initialization expression is
3194 // "simple enough" to be folded into an object initialization.
3195 // Attempts to prove that a store's initial value 'n' can be captured
3196 // within the initialization without creating a vicious cycle, such as:
3197 //     { Foo p = new Foo(); p.next = p; }
3198 // True for constants and parameters and small combinations thereof.
3199 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3200   if (n == NULL)      return true;   // (can this really happen?)
3201   if (n->is_Proj())   n = n->in(0);
3202   if (n == this)      return false;  // found a cycle
3203   if (n->is_Con())    return true;
3204   if (n->is_Start())  return true;   // params, etc., are OK
3205   if (n->is_Root())   return true;   // even better
3206 
3207   Node* ctl = n->in(0);
3208   if (ctl != NULL && !ctl->is_top()) {
3209     if (ctl->is_Proj())  ctl = ctl->in(0);
3210     if (ctl == this)  return false;
3211 
3212     // If we already know that the enclosing memory op is pinned right after
3213     // the init, then any control flow that the store has picked up
3214     // must have preceded the init, or else be equal to the init.
3215     // Even after loop optimizations (which might change control edges)
3216     // a store is never pinned *before* the availability of its inputs.
3217     if (!MemNode::all_controls_dominate(n, this))
3218       return false;                  // failed to prove a good control
3219   }
3220 
3221   // Check data edges for possible dependencies on 'this'.
3222   if ((count += 1) > 20)  return false;  // complexity limit
3223   for (uint i = 1; i < n->req(); i++) {
3224     Node* m = n->in(i);
3225     if (m == NULL || m == n || m->is_top())  continue;
3226     uint first_i = n->find_edge(m);
3227     if (i != first_i)  continue;  // process duplicate edge just once
3228     if (!detect_init_independence(m, count)) {
3229       return false;
3230     }
3231   }
3232 
3233   return true;
3234 }
3235 
3236 // Here are all the checks a Store must pass before it can be moved into
3237 // an initialization.  Returns zero if a check fails.
3238 // On success, returns the (constant) offset to which the store applies,
3239 // within the initialized memory.
3240 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3241   const int FAIL = 0;
3242   if (st->is_unaligned_access()) {
3243     return FAIL;
3244   }
3245   if (st->req() != MemNode::ValueIn + 1)
3246     return FAIL;                // an inscrutable StoreNode (card mark?)
3247   Node* ctl = st->in(MemNode::Control);
3248   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3249     return FAIL;                // must be unconditional after the initialization
3250   Node* mem = st->in(MemNode::Memory);
3251   if (!(mem->is_Proj() && mem->in(0) == this))
3252     return FAIL;                // must not be preceded by other stores
3253   Node* adr = st->in(MemNode::Address);
3254   intptr_t offset;
3255   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3256   if (alloc == NULL)
3257     return FAIL;                // inscrutable address
3258   if (alloc != allocation())
3259     return FAIL;                // wrong allocation!  (store needs to float up)
3260   Node* val = st->in(MemNode::ValueIn);
3261   int complexity_count = 0;
3262   if (!detect_init_independence(val, complexity_count))
3263     return FAIL;                // stored value must be 'simple enough'
3264 
3265   // The Store can be captured only if nothing after the allocation
3266   // and before the Store is using the memory location that the store
3267   // overwrites.
3268   bool failed = false;
3269   // If is_complete_with_arraycopy() is true the shape of the graph is
3270   // well defined and is safe so no need for extra checks.
3271   if (!is_complete_with_arraycopy()) {
3272     // We are going to look at each use of the memory state following
3273     // the allocation to make sure nothing reads the memory that the
3274     // Store writes.
3275     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3276     int alias_idx = phase->C->get_alias_index(t_adr);
3277     ResourceMark rm;
3278     Unique_Node_List mems;
3279     mems.push(mem);
3280     Node* unique_merge = NULL;
3281     for (uint next = 0; next < mems.size(); ++next) {
3282       Node *m  = mems.at(next);
3283       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3284         Node *n = m->fast_out(j);
3285         if (n->outcnt() == 0) {
3286           continue;
3287         }
3288         if (n == st) {
3289           continue;
3290         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3291           // If the control of this use is different from the control
3292           // of the Store which is right after the InitializeNode then
3293           // this node cannot be between the InitializeNode and the
3294           // Store.
3295           continue;
3296         } else if (n->is_MergeMem()) {
3297           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3298             // We can hit a MergeMemNode (that will likely go away
3299             // later) that is a direct use of the memory state
3300             // following the InitializeNode on the same slice as the
3301             // store node that we'd like to capture. We need to check
3302             // the uses of the MergeMemNode.
3303             mems.push(n);
3304           }
3305         } else if (n->is_Mem()) {
3306           Node* other_adr = n->in(MemNode::Address);
3307           if (other_adr == adr) {
3308             failed = true;
3309             break;
3310           } else {
3311             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3312             if (other_t_adr != NULL) {
3313               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3314               if (other_alias_idx == alias_idx) {
3315                 // A load from the same memory slice as the store right
3316                 // after the InitializeNode. We check the control of the
3317                 // object/array that is loaded from. If it's the same as
3318                 // the store control then we cannot capture the store.
3319                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3320                 Node* base = other_adr;
3321                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3322                 base = base->in(AddPNode::Base);
3323                 if (base != NULL) {
3324                   base = base->uncast();
3325                   if (base->is_Proj() && base->in(0) == alloc) {
3326                     failed = true;
3327                     break;
3328                   }
3329                 }
3330               }
3331             }
3332           }
3333         } else {
3334           failed = true;
3335           break;
3336         }
3337       }
3338     }
3339   }
3340   if (failed) {
3341     if (!can_reshape) {
3342       // We decided we couldn't capture the store during parsing. We
3343       // should try again during the next IGVN once the graph is
3344       // cleaner.
3345       phase->C->record_for_igvn(st);
3346     }
3347     return FAIL;
3348   }
3349 
3350   return offset;                // success
3351 }
3352 
3353 // Find the captured store in(i) which corresponds to the range
3354 // [start..start+size) in the initialized object.
3355 // If there is one, return its index i.  If there isn't, return the
3356 // negative of the index where it should be inserted.
3357 // Return 0 if the queried range overlaps an initialization boundary
3358 // or if dead code is encountered.
3359 // If size_in_bytes is zero, do not bother with overlap checks.
3360 int InitializeNode::captured_store_insertion_point(intptr_t start,
3361                                                    int size_in_bytes,
3362                                                    PhaseTransform* phase) {
3363   const int FAIL = 0, MAX_STORE = BytesPerLong;
3364 
3365   if (is_complete())
3366     return FAIL;                // arraycopy got here first; punt
3367 
3368   assert(allocation() != NULL, "must be present");
3369 
3370   // no negatives, no header fields:
3371   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3372 
3373   // after a certain size, we bail out on tracking all the stores:
3374   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3375   if (start >= ti_limit)  return FAIL;
3376 
3377   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3378     if (i >= limit)  return -(int)i; // not found; here is where to put it
3379 
3380     Node*    st     = in(i);
3381     intptr_t st_off = get_store_offset(st, phase);
3382     if (st_off < 0) {
3383       if (st != zero_memory()) {
3384         return FAIL;            // bail out if there is dead garbage
3385       }
3386     } else if (st_off > start) {
3387       // ...we are done, since stores are ordered
3388       if (st_off < start + size_in_bytes) {
3389         return FAIL;            // the next store overlaps
3390       }
3391       return -(int)i;           // not found; here is where to put it
3392     } else if (st_off < start) {
3393       if (size_in_bytes != 0 &&
3394           start < st_off + MAX_STORE &&
3395           start < st_off + st->as_Store()->memory_size()) {
3396         return FAIL;            // the previous store overlaps
3397       }
3398     } else {
3399       if (size_in_bytes != 0 &&
3400           st->as_Store()->memory_size() != size_in_bytes) {
3401         return FAIL;            // mismatched store size
3402       }
3403       return i;
3404     }
3405 
3406     ++i;
3407   }
3408 }
3409 
3410 // Look for a captured store which initializes at the offset 'start'
3411 // with the given size.  If there is no such store, and no other
3412 // initialization interferes, then return zero_memory (the memory
3413 // projection of the AllocateNode).
3414 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3415                                           PhaseTransform* phase) {
3416   assert(stores_are_sane(phase), "");
3417   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3418   if (i == 0) {
3419     return NULL;                // something is dead
3420   } else if (i < 0) {
3421     return zero_memory();       // just primordial zero bits here
3422   } else {
3423     Node* st = in(i);           // here is the store at this position
3424     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3425     return st;
3426   }
3427 }
3428 
3429 // Create, as a raw pointer, an address within my new object at 'offset'.
3430 Node* InitializeNode::make_raw_address(intptr_t offset,
3431                                        PhaseTransform* phase) {
3432   Node* addr = in(RawAddress);
3433   if (offset != 0) {
3434     Compile* C = phase->C;
3435     addr = phase->transform( new AddPNode(C->top(), addr,
3436                                                  phase->MakeConX(offset)) );
3437   }
3438   return addr;
3439 }
3440 
3441 // Clone the given store, converting it into a raw store
3442 // initializing a field or element of my new object.
3443 // Caller is responsible for retiring the original store,
3444 // with subsume_node or the like.
3445 //
3446 // From the example above InitializeNode::InitializeNode,
3447 // here are the old stores to be captured:
3448 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3449 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3450 //
3451 // Here is the changed code; note the extra edges on init:
3452 //   alloc = (Allocate ...)
3453 //   rawoop = alloc.RawAddress
3454 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3455 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3456 //   init = (Initialize alloc.Control alloc.Memory rawoop
3457 //                      rawstore1 rawstore2)
3458 //
3459 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3460                                     PhaseTransform* phase, bool can_reshape) {
3461   assert(stores_are_sane(phase), "");
3462 
3463   if (start < 0)  return NULL;
3464   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3465 
3466   Compile* C = phase->C;
3467   int size_in_bytes = st->memory_size();
3468   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3469   if (i == 0)  return NULL;     // bail out
3470   Node* prev_mem = NULL;        // raw memory for the captured store
3471   if (i > 0) {
3472     prev_mem = in(i);           // there is a pre-existing store under this one
3473     set_req(i, C->top());       // temporarily disconnect it
3474     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3475   } else {
3476     i = -i;                     // no pre-existing store
3477     prev_mem = zero_memory();   // a slice of the newly allocated object
3478     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3479       set_req(--i, C->top());   // reuse this edge; it has been folded away
3480     else
3481       ins_req(i, C->top());     // build a new edge
3482   }
3483   Node* new_st = st->clone();
3484   new_st->set_req(MemNode::Control, in(Control));
3485   new_st->set_req(MemNode::Memory,  prev_mem);
3486   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3487   new_st = phase->transform(new_st);
3488 
3489   // At this point, new_st might have swallowed a pre-existing store
3490   // at the same offset, or perhaps new_st might have disappeared,
3491   // if it redundantly stored the same value (or zero to fresh memory).
3492 
3493   // In any case, wire it in:
3494   phase->igvn_rehash_node_delayed(this);
3495   set_req(i, new_st);
3496 
3497   // The caller may now kill the old guy.
3498   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3499   assert(check_st == new_st || check_st == NULL, "must be findable");
3500   assert(!is_complete(), "");
3501   return new_st;
3502 }
3503 
3504 static bool store_constant(jlong* tiles, int num_tiles,
3505                            intptr_t st_off, int st_size,
3506                            jlong con) {
3507   if ((st_off & (st_size-1)) != 0)
3508     return false;               // strange store offset (assume size==2**N)
3509   address addr = (address)tiles + st_off;
3510   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3511   switch (st_size) {
3512   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3513   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3514   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3515   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3516   default: return false;        // strange store size (detect size!=2**N here)
3517   }
3518   return true;                  // return success to caller
3519 }
3520 
3521 // Coalesce subword constants into int constants and possibly
3522 // into long constants.  The goal, if the CPU permits,
3523 // is to initialize the object with a small number of 64-bit tiles.
3524 // Also, convert floating-point constants to bit patterns.
3525 // Non-constants are not relevant to this pass.
3526 //
3527 // In terms of the running example on InitializeNode::InitializeNode
3528 // and InitializeNode::capture_store, here is the transformation
3529 // of rawstore1 and rawstore2 into rawstore12:
3530 //   alloc = (Allocate ...)
3531 //   rawoop = alloc.RawAddress
3532 //   tile12 = 0x00010002
3533 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3534 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3535 //
3536 void
3537 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3538                                         Node* size_in_bytes,
3539                                         PhaseGVN* phase) {
3540   Compile* C = phase->C;
3541 
3542   assert(stores_are_sane(phase), "");
3543   // Note:  After this pass, they are not completely sane,
3544   // since there may be some overlaps.
3545 
3546   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3547 
3548   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3549   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3550   size_limit = MIN2(size_limit, ti_limit);
3551   size_limit = align_size_up(size_limit, BytesPerLong);
3552   int num_tiles = size_limit / BytesPerLong;
3553 
3554   // allocate space for the tile map:
3555   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3556   jlong  tiles_buf[small_len];
3557   Node*  nodes_buf[small_len];
3558   jlong  inits_buf[small_len];
3559   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3560                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3561   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3562                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3563   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3564                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3565   // tiles: exact bitwise model of all primitive constants
3566   // nodes: last constant-storing node subsumed into the tiles model
3567   // inits: which bytes (in each tile) are touched by any initializations
3568 
3569   //// Pass A: Fill in the tile model with any relevant stores.
3570 
3571   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3572   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3573   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3574   Node* zmem = zero_memory(); // initially zero memory state
3575   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3576     Node* st = in(i);
3577     intptr_t st_off = get_store_offset(st, phase);
3578 
3579     // Figure out the store's offset and constant value:
3580     if (st_off < header_size)             continue; //skip (ignore header)
3581     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3582     int st_size = st->as_Store()->memory_size();
3583     if (st_off + st_size > size_limit)    break;
3584 
3585     // Record which bytes are touched, whether by constant or not.
3586     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3587       continue;                 // skip (strange store size)
3588 
3589     const Type* val = phase->type(st->in(MemNode::ValueIn));
3590     if (!val->singleton())                continue; //skip (non-con store)
3591     BasicType type = val->basic_type();
3592 
3593     jlong con = 0;
3594     switch (type) {
3595     case T_INT:    con = val->is_int()->get_con();  break;
3596     case T_LONG:   con = val->is_long()->get_con(); break;
3597     case T_FLOAT:  con = jint_cast(val->getf());    break;
3598     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3599     default:                              continue; //skip (odd store type)
3600     }
3601 
3602     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3603         st->Opcode() == Op_StoreL) {
3604       continue;                 // This StoreL is already optimal.
3605     }
3606 
3607     // Store down the constant.
3608     store_constant(tiles, num_tiles, st_off, st_size, con);
3609 
3610     intptr_t j = st_off >> LogBytesPerLong;
3611 
3612     if (type == T_INT && st_size == BytesPerInt
3613         && (st_off & BytesPerInt) == BytesPerInt) {
3614       jlong lcon = tiles[j];
3615       if (!Matcher::isSimpleConstant64(lcon) &&
3616           st->Opcode() == Op_StoreI) {
3617         // This StoreI is already optimal by itself.
3618         jint* intcon = (jint*) &tiles[j];
3619         intcon[1] = 0;  // undo the store_constant()
3620 
3621         // If the previous store is also optimal by itself, back up and
3622         // undo the action of the previous loop iteration... if we can.
3623         // But if we can't, just let the previous half take care of itself.
3624         st = nodes[j];
3625         st_off -= BytesPerInt;
3626         con = intcon[0];
3627         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3628           assert(st_off >= header_size, "still ignoring header");
3629           assert(get_store_offset(st, phase) == st_off, "must be");
3630           assert(in(i-1) == zmem, "must be");
3631           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3632           assert(con == tcon->is_int()->get_con(), "must be");
3633           // Undo the effects of the previous loop trip, which swallowed st:
3634           intcon[0] = 0;        // undo store_constant()
3635           set_req(i-1, st);     // undo set_req(i, zmem)
3636           nodes[j] = NULL;      // undo nodes[j] = st
3637           --old_subword;        // undo ++old_subword
3638         }
3639         continue;               // This StoreI is already optimal.
3640       }
3641     }
3642 
3643     // This store is not needed.
3644     set_req(i, zmem);
3645     nodes[j] = st;              // record for the moment
3646     if (st_size < BytesPerLong) // something has changed
3647           ++old_subword;        // includes int/float, but who's counting...
3648     else  ++old_long;
3649   }
3650 
3651   if ((old_subword + old_long) == 0)
3652     return;                     // nothing more to do
3653 
3654   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3655   // Be sure to insert them before overlapping non-constant stores.
3656   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3657   for (int j = 0; j < num_tiles; j++) {
3658     jlong con  = tiles[j];
3659     jlong init = inits[j];
3660     if (con == 0)  continue;
3661     jint con0,  con1;           // split the constant, address-wise
3662     jint init0, init1;          // split the init map, address-wise
3663     { union { jlong con; jint intcon[2]; } u;
3664       u.con = con;
3665       con0  = u.intcon[0];
3666       con1  = u.intcon[1];
3667       u.con = init;
3668       init0 = u.intcon[0];
3669       init1 = u.intcon[1];
3670     }
3671 
3672     Node* old = nodes[j];
3673     assert(old != NULL, "need the prior store");
3674     intptr_t offset = (j * BytesPerLong);
3675 
3676     bool split = !Matcher::isSimpleConstant64(con);
3677 
3678     if (offset < header_size) {
3679       assert(offset + BytesPerInt >= header_size, "second int counts");
3680       assert(*(jint*)&tiles[j] == 0, "junk in header");
3681       split = true;             // only the second word counts
3682       // Example:  int a[] = { 42 ... }
3683     } else if (con0 == 0 && init0 == -1) {
3684       split = true;             // first word is covered by full inits
3685       // Example:  int a[] = { ... foo(), 42 ... }
3686     } else if (con1 == 0 && init1 == -1) {
3687       split = true;             // second word is covered by full inits
3688       // Example:  int a[] = { ... 42, foo() ... }
3689     }
3690 
3691     // Here's a case where init0 is neither 0 nor -1:
3692     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3693     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3694     // In this case the tile is not split; it is (jlong)42.
3695     // The big tile is stored down, and then the foo() value is inserted.
3696     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3697 
3698     Node* ctl = old->in(MemNode::Control);
3699     Node* adr = make_raw_address(offset, phase);
3700     const TypePtr* atp = TypeRawPtr::BOTTOM;
3701 
3702     // One or two coalesced stores to plop down.
3703     Node*    st[2];
3704     intptr_t off[2];
3705     int  nst = 0;
3706     if (!split) {
3707       ++new_long;
3708       off[nst] = offset;
3709       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3710                                   phase->longcon(con), T_LONG, MemNode::unordered);
3711     } else {
3712       // Omit either if it is a zero.
3713       if (con0 != 0) {
3714         ++new_int;
3715         off[nst]  = offset;
3716         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3717                                     phase->intcon(con0), T_INT, MemNode::unordered);
3718       }
3719       if (con1 != 0) {
3720         ++new_int;
3721         offset += BytesPerInt;
3722         adr = make_raw_address(offset, phase);
3723         off[nst]  = offset;
3724         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3725                                     phase->intcon(con1), T_INT, MemNode::unordered);
3726       }
3727     }
3728 
3729     // Insert second store first, then the first before the second.
3730     // Insert each one just before any overlapping non-constant stores.
3731     while (nst > 0) {
3732       Node* st1 = st[--nst];
3733       C->copy_node_notes_to(st1, old);
3734       st1 = phase->transform(st1);
3735       offset = off[nst];
3736       assert(offset >= header_size, "do not smash header");
3737       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3738       guarantee(ins_idx != 0, "must re-insert constant store");
3739       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3740       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3741         set_req(--ins_idx, st1);
3742       else
3743         ins_req(ins_idx, st1);
3744     }
3745   }
3746 
3747   if (PrintCompilation && WizardMode)
3748     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3749                   old_subword, old_long, new_int, new_long);
3750   if (C->log() != NULL)
3751     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3752                    old_subword, old_long, new_int, new_long);
3753 
3754   // Clean up any remaining occurrences of zmem:
3755   remove_extra_zeroes();
3756 }
3757 
3758 // Explore forward from in(start) to find the first fully initialized
3759 // word, and return its offset.  Skip groups of subword stores which
3760 // together initialize full words.  If in(start) is itself part of a
3761 // fully initialized word, return the offset of in(start).  If there
3762 // are no following full-word stores, or if something is fishy, return
3763 // a negative value.
3764 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3765   int       int_map = 0;
3766   intptr_t  int_map_off = 0;
3767   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3768 
3769   for (uint i = start, limit = req(); i < limit; i++) {
3770     Node* st = in(i);
3771 
3772     intptr_t st_off = get_store_offset(st, phase);
3773     if (st_off < 0)  break;  // return conservative answer
3774 
3775     int st_size = st->as_Store()->memory_size();
3776     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3777       return st_off;            // we found a complete word init
3778     }
3779 
3780     // update the map:
3781 
3782     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3783     if (this_int_off != int_map_off) {
3784       // reset the map:
3785       int_map = 0;
3786       int_map_off = this_int_off;
3787     }
3788 
3789     int subword_off = st_off - this_int_off;
3790     int_map |= right_n_bits(st_size) << subword_off;
3791     if ((int_map & FULL_MAP) == FULL_MAP) {
3792       return this_int_off;      // we found a complete word init
3793     }
3794 
3795     // Did this store hit or cross the word boundary?
3796     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3797     if (next_int_off == this_int_off + BytesPerInt) {
3798       // We passed the current int, without fully initializing it.
3799       int_map_off = next_int_off;
3800       int_map >>= BytesPerInt;
3801     } else if (next_int_off > this_int_off + BytesPerInt) {
3802       // We passed the current and next int.
3803       return this_int_off + BytesPerInt;
3804     }
3805   }
3806 
3807   return -1;
3808 }
3809 
3810 
3811 // Called when the associated AllocateNode is expanded into CFG.
3812 // At this point, we may perform additional optimizations.
3813 // Linearize the stores by ascending offset, to make memory
3814 // activity as coherent as possible.
3815 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3816                                       intptr_t header_size,
3817                                       Node* size_in_bytes,
3818                                       PhaseGVN* phase) {
3819   assert(!is_complete(), "not already complete");
3820   assert(stores_are_sane(phase), "");
3821   assert(allocation() != NULL, "must be present");
3822 
3823   remove_extra_zeroes();
3824 
3825   if (ReduceFieldZeroing || ReduceBulkZeroing)
3826     // reduce instruction count for common initialization patterns
3827     coalesce_subword_stores(header_size, size_in_bytes, phase);
3828 
3829   Node* zmem = zero_memory();   // initially zero memory state
3830   Node* inits = zmem;           // accumulating a linearized chain of inits
3831   #ifdef ASSERT
3832   intptr_t first_offset = allocation()->minimum_header_size();
3833   intptr_t last_init_off = first_offset;  // previous init offset
3834   intptr_t last_init_end = first_offset;  // previous init offset+size
3835   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3836   #endif
3837   intptr_t zeroes_done = header_size;
3838 
3839   bool do_zeroing = true;       // we might give up if inits are very sparse
3840   int  big_init_gaps = 0;       // how many large gaps have we seen?
3841 
3842   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3843   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3844 
3845   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3846     Node* st = in(i);
3847     intptr_t st_off = get_store_offset(st, phase);
3848     if (st_off < 0)
3849       break;                    // unknown junk in the inits
3850     if (st->in(MemNode::Memory) != zmem)
3851       break;                    // complicated store chains somehow in list
3852 
3853     int st_size = st->as_Store()->memory_size();
3854     intptr_t next_init_off = st_off + st_size;
3855 
3856     if (do_zeroing && zeroes_done < next_init_off) {
3857       // See if this store needs a zero before it or under it.
3858       intptr_t zeroes_needed = st_off;
3859 
3860       if (st_size < BytesPerInt) {
3861         // Look for subword stores which only partially initialize words.
3862         // If we find some, we must lay down some word-level zeroes first,
3863         // underneath the subword stores.
3864         //
3865         // Examples:
3866         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3867         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3868         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3869         //
3870         // Note:  coalesce_subword_stores may have already done this,
3871         // if it was prompted by constant non-zero subword initializers.
3872         // But this case can still arise with non-constant stores.
3873 
3874         intptr_t next_full_store = find_next_fullword_store(i, phase);
3875 
3876         // In the examples above:
3877         //   in(i)          p   q   r   s     x   y     z
3878         //   st_off        12  13  14  15    12  13    14
3879         //   st_size        1   1   1   1     1   1     1
3880         //   next_full_s.  12  16  16  16    16  16    16
3881         //   z's_done      12  16  16  16    12  16    12
3882         //   z's_needed    12  16  16  16    16  16    16
3883         //   zsize          0   0   0   0     4   0     4
3884         if (next_full_store < 0) {
3885           // Conservative tack:  Zero to end of current word.
3886           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3887         } else {
3888           // Zero to beginning of next fully initialized word.
3889           // Or, don't zero at all, if we are already in that word.
3890           assert(next_full_store >= zeroes_needed, "must go forward");
3891           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3892           zeroes_needed = next_full_store;
3893         }
3894       }
3895 
3896       if (zeroes_needed > zeroes_done) {
3897         intptr_t zsize = zeroes_needed - zeroes_done;
3898         // Do some incremental zeroing on rawmem, in parallel with inits.
3899         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3900         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3901                                               zeroes_done, zeroes_needed,
3902                                               phase);
3903         zeroes_done = zeroes_needed;
3904         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3905           do_zeroing = false;   // leave the hole, next time
3906       }
3907     }
3908 
3909     // Collect the store and move on:
3910     st->set_req(MemNode::Memory, inits);
3911     inits = st;                 // put it on the linearized chain
3912     set_req(i, zmem);           // unhook from previous position
3913 
3914     if (zeroes_done == st_off)
3915       zeroes_done = next_init_off;
3916 
3917     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3918 
3919     #ifdef ASSERT
3920     // Various order invariants.  Weaker than stores_are_sane because
3921     // a large constant tile can be filled in by smaller non-constant stores.
3922     assert(st_off >= last_init_off, "inits do not reverse");
3923     last_init_off = st_off;
3924     const Type* val = NULL;
3925     if (st_size >= BytesPerInt &&
3926         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3927         (int)val->basic_type() < (int)T_OBJECT) {
3928       assert(st_off >= last_tile_end, "tiles do not overlap");
3929       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3930       last_tile_end = MAX2(last_tile_end, next_init_off);
3931     } else {
3932       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3933       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3934       assert(st_off      >= last_init_end, "inits do not overlap");
3935       last_init_end = next_init_off;  // it's a non-tile
3936     }
3937     #endif //ASSERT
3938   }
3939 
3940   remove_extra_zeroes();        // clear out all the zmems left over
3941   add_req(inits);
3942 
3943   if (!(UseTLAB && ZeroTLAB)) {
3944     // If anything remains to be zeroed, zero it all now.
3945     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3946     // if it is the last unused 4 bytes of an instance, forget about it
3947     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3948     if (zeroes_done + BytesPerLong >= size_limit) {
3949       assert(allocation() != NULL, "");
3950       if (allocation()->Opcode() == Op_Allocate) {
3951         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3952         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3953         if (zeroes_done == k->layout_helper())
3954           zeroes_done = size_limit;
3955       }
3956     }
3957     if (zeroes_done < size_limit) {
3958       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3959                                             zeroes_done, size_in_bytes, phase);
3960     }
3961   }
3962 
3963   set_complete(phase);
3964   return rawmem;
3965 }
3966 
3967 
3968 #ifdef ASSERT
3969 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3970   if (is_complete())
3971     return true;                // stores could be anything at this point
3972   assert(allocation() != NULL, "must be present");
3973   intptr_t last_off = allocation()->minimum_header_size();
3974   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3975     Node* st = in(i);
3976     intptr_t st_off = get_store_offset(st, phase);
3977     if (st_off < 0)  continue;  // ignore dead garbage
3978     if (last_off > st_off) {
3979       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3980       this->dump(2);
3981       assert(false, "ascending store offsets");
3982       return false;
3983     }
3984     last_off = st_off + st->as_Store()->memory_size();
3985   }
3986   return true;
3987 }
3988 #endif //ASSERT
3989 
3990 
3991 
3992 
3993 //============================MergeMemNode=====================================
3994 //
3995 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3996 // contributing store or call operations.  Each contributor provides the memory
3997 // state for a particular "alias type" (see Compile::alias_type).  For example,
3998 // if a MergeMem has an input X for alias category #6, then any memory reference
3999 // to alias category #6 may use X as its memory state input, as an exact equivalent
4000 // to using the MergeMem as a whole.
4001 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4002 //
4003 // (Here, the <N> notation gives the index of the relevant adr_type.)
4004 //
4005 // In one special case (and more cases in the future), alias categories overlap.
4006 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4007 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4008 // it is exactly equivalent to that state W:
4009 //   MergeMem(<Bot>: W) <==> W
4010 //
4011 // Usually, the merge has more than one input.  In that case, where inputs
4012 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4013 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4014 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4015 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4016 //
4017 // A merge can take a "wide" memory state as one of its narrow inputs.
4018 // This simply means that the merge observes out only the relevant parts of
4019 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4020 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4021 //
4022 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4023 // and that memory slices "leak through":
4024 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4025 //
4026 // But, in such a cascade, repeated memory slices can "block the leak":
4027 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4028 //
4029 // In the last example, Y is not part of the combined memory state of the
4030 // outermost MergeMem.  The system must, of course, prevent unschedulable
4031 // memory states from arising, so you can be sure that the state Y is somehow
4032 // a precursor to state Y'.
4033 //
4034 //
4035 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4036 // of each MergeMemNode array are exactly the numerical alias indexes, including
4037 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4038 // Compile::alias_type (and kin) produce and manage these indexes.
4039 //
4040 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4041 // (Note that this provides quick access to the top node inside MergeMem methods,
4042 // without the need to reach out via TLS to Compile::current.)
4043 //
4044 // As a consequence of what was just described, a MergeMem that represents a full
4045 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4046 // containing all alias categories.
4047 //
4048 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4049 //
4050 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4051 // a memory state for the alias type <N>, or else the top node, meaning that
4052 // there is no particular input for that alias type.  Note that the length of
4053 // a MergeMem is variable, and may be extended at any time to accommodate new
4054 // memory states at larger alias indexes.  When merges grow, they are of course
4055 // filled with "top" in the unused in() positions.
4056 //
4057 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4058 // (Top was chosen because it works smoothly with passes like GCM.)
4059 //
4060 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4061 // the type of random VM bits like TLS references.)  Since it is always the
4062 // first non-Bot memory slice, some low-level loops use it to initialize an
4063 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4064 //
4065 //
4066 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4067 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4068 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4069 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4070 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4071 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4072 //
4073 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4074 // really that different from the other memory inputs.  An abbreviation called
4075 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4076 //
4077 //
4078 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4079 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4080 // that "emerges though" the base memory will be marked as excluding the alias types
4081 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4082 //
4083 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4084 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4085 //
4086 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4087 // (It is currently unimplemented.)  As you can see, the resulting merge is
4088 // actually a disjoint union of memory states, rather than an overlay.
4089 //
4090 
4091 //------------------------------MergeMemNode-----------------------------------
4092 Node* MergeMemNode::make_empty_memory() {
4093   Node* empty_memory = (Node*) Compile::current()->top();
4094   assert(empty_memory->is_top(), "correct sentinel identity");
4095   return empty_memory;
4096 }
4097 
4098 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4099   init_class_id(Class_MergeMem);
4100   // all inputs are nullified in Node::Node(int)
4101   // set_input(0, NULL);  // no control input
4102 
4103   // Initialize the edges uniformly to top, for starters.
4104   Node* empty_mem = make_empty_memory();
4105   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4106     init_req(i,empty_mem);
4107   }
4108   assert(empty_memory() == empty_mem, "");
4109 
4110   if( new_base != NULL && new_base->is_MergeMem() ) {
4111     MergeMemNode* mdef = new_base->as_MergeMem();
4112     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4113     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4114       mms.set_memory(mms.memory2());
4115     }
4116     assert(base_memory() == mdef->base_memory(), "");
4117   } else {
4118     set_base_memory(new_base);
4119   }
4120 }
4121 
4122 // Make a new, untransformed MergeMem with the same base as 'mem'.
4123 // If mem is itself a MergeMem, populate the result with the same edges.
4124 MergeMemNode* MergeMemNode::make(Node* mem) {
4125   return new MergeMemNode(mem);
4126 }
4127 
4128 //------------------------------cmp--------------------------------------------
4129 uint MergeMemNode::hash() const { return NO_HASH; }
4130 uint MergeMemNode::cmp( const Node &n ) const {
4131   return (&n == this);          // Always fail except on self
4132 }
4133 
4134 //------------------------------Identity---------------------------------------
4135 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4136   // Identity if this merge point does not record any interesting memory
4137   // disambiguations.
4138   Node* base_mem = base_memory();
4139   Node* empty_mem = empty_memory();
4140   if (base_mem != empty_mem) {  // Memory path is not dead?
4141     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4142       Node* mem = in(i);
4143       if (mem != empty_mem && mem != base_mem) {
4144         return this;            // Many memory splits; no change
4145       }
4146     }
4147   }
4148   return base_mem;              // No memory splits; ID on the one true input
4149 }
4150 
4151 //------------------------------Ideal------------------------------------------
4152 // This method is invoked recursively on chains of MergeMem nodes
4153 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4154   // Remove chain'd MergeMems
4155   //
4156   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4157   // relative to the "in(Bot)".  Since we are patching both at the same time,
4158   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4159   // but rewrite each "in(i)" relative to the new "in(Bot)".
4160   Node *progress = NULL;
4161 
4162 
4163   Node* old_base = base_memory();
4164   Node* empty_mem = empty_memory();
4165   if (old_base == empty_mem)
4166     return NULL; // Dead memory path.
4167 
4168   MergeMemNode* old_mbase;
4169   if (old_base != NULL && old_base->is_MergeMem())
4170     old_mbase = old_base->as_MergeMem();
4171   else
4172     old_mbase = NULL;
4173   Node* new_base = old_base;
4174 
4175   // simplify stacked MergeMems in base memory
4176   if (old_mbase)  new_base = old_mbase->base_memory();
4177 
4178   // the base memory might contribute new slices beyond my req()
4179   if (old_mbase)  grow_to_match(old_mbase);
4180 
4181   // Look carefully at the base node if it is a phi.
4182   PhiNode* phi_base;
4183   if (new_base != NULL && new_base->is_Phi())
4184     phi_base = new_base->as_Phi();
4185   else
4186     phi_base = NULL;
4187 
4188   Node*    phi_reg = NULL;
4189   uint     phi_len = (uint)-1;
4190   if (phi_base != NULL && !phi_base->is_copy()) {
4191     // do not examine phi if degraded to a copy
4192     phi_reg = phi_base->region();
4193     phi_len = phi_base->req();
4194     // see if the phi is unfinished
4195     for (uint i = 1; i < phi_len; i++) {
4196       if (phi_base->in(i) == NULL) {
4197         // incomplete phi; do not look at it yet!
4198         phi_reg = NULL;
4199         phi_len = (uint)-1;
4200         break;
4201       }
4202     }
4203   }
4204 
4205   // Note:  We do not call verify_sparse on entry, because inputs
4206   // can normalize to the base_memory via subsume_node or similar
4207   // mechanisms.  This method repairs that damage.
4208 
4209   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4210 
4211   // Look at each slice.
4212   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4213     Node* old_in = in(i);
4214     // calculate the old memory value
4215     Node* old_mem = old_in;
4216     if (old_mem == empty_mem)  old_mem = old_base;
4217     assert(old_mem == memory_at(i), "");
4218 
4219     // maybe update (reslice) the old memory value
4220 
4221     // simplify stacked MergeMems
4222     Node* new_mem = old_mem;
4223     MergeMemNode* old_mmem;
4224     if (old_mem != NULL && old_mem->is_MergeMem())
4225       old_mmem = old_mem->as_MergeMem();
4226     else
4227       old_mmem = NULL;
4228     if (old_mmem == this) {
4229       // This can happen if loops break up and safepoints disappear.
4230       // A merge of BotPtr (default) with a RawPtr memory derived from a
4231       // safepoint can be rewritten to a merge of the same BotPtr with
4232       // the BotPtr phi coming into the loop.  If that phi disappears
4233       // also, we can end up with a self-loop of the mergemem.
4234       // In general, if loops degenerate and memory effects disappear,
4235       // a mergemem can be left looking at itself.  This simply means
4236       // that the mergemem's default should be used, since there is
4237       // no longer any apparent effect on this slice.
4238       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4239       //       from start.  Update the input to TOP.
4240       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4241     }
4242     else if (old_mmem != NULL) {
4243       new_mem = old_mmem->memory_at(i);
4244     }
4245     // else preceding memory was not a MergeMem
4246 
4247     // replace equivalent phis (unfortunately, they do not GVN together)
4248     if (new_mem != NULL && new_mem != new_base &&
4249         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4250       if (new_mem->is_Phi()) {
4251         PhiNode* phi_mem = new_mem->as_Phi();
4252         for (uint i = 1; i < phi_len; i++) {
4253           if (phi_base->in(i) != phi_mem->in(i)) {
4254             phi_mem = NULL;
4255             break;
4256           }
4257         }
4258         if (phi_mem != NULL) {
4259           // equivalent phi nodes; revert to the def
4260           new_mem = new_base;
4261         }
4262       }
4263     }
4264 
4265     // maybe store down a new value
4266     Node* new_in = new_mem;
4267     if (new_in == new_base)  new_in = empty_mem;
4268 
4269     if (new_in != old_in) {
4270       // Warning:  Do not combine this "if" with the previous "if"
4271       // A memory slice might have be be rewritten even if it is semantically
4272       // unchanged, if the base_memory value has changed.
4273       set_req(i, new_in);
4274       progress = this;          // Report progress
4275     }
4276   }
4277 
4278   if (new_base != old_base) {
4279     set_req(Compile::AliasIdxBot, new_base);
4280     // Don't use set_base_memory(new_base), because we need to update du.
4281     assert(base_memory() == new_base, "");
4282     progress = this;
4283   }
4284 
4285   if( base_memory() == this ) {
4286     // a self cycle indicates this memory path is dead
4287     set_req(Compile::AliasIdxBot, empty_mem);
4288   }
4289 
4290   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4291   // Recursion must occur after the self cycle check above
4292   if( base_memory()->is_MergeMem() ) {
4293     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4294     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4295     if( m != NULL && (m->is_top() ||
4296         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4297       // propagate rollup of dead cycle to self
4298       set_req(Compile::AliasIdxBot, empty_mem);
4299     }
4300   }
4301 
4302   if( base_memory() == empty_mem ) {
4303     progress = this;
4304     // Cut inputs during Parse phase only.
4305     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4306     if( !can_reshape ) {
4307       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4308         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4309       }
4310     }
4311   }
4312 
4313   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4314     // Check if PhiNode::Ideal's "Split phis through memory merges"
4315     // transform should be attempted. Look for this->phi->this cycle.
4316     uint merge_width = req();
4317     if (merge_width > Compile::AliasIdxRaw) {
4318       PhiNode* phi = base_memory()->as_Phi();
4319       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4320         if (phi->in(i) == this) {
4321           phase->is_IterGVN()->_worklist.push(phi);
4322           break;
4323         }
4324       }
4325     }
4326   }
4327 
4328   assert(progress || verify_sparse(), "please, no dups of base");
4329   return progress;
4330 }
4331 
4332 //-------------------------set_base_memory-------------------------------------
4333 void MergeMemNode::set_base_memory(Node *new_base) {
4334   Node* empty_mem = empty_memory();
4335   set_req(Compile::AliasIdxBot, new_base);
4336   assert(memory_at(req()) == new_base, "must set default memory");
4337   // Clear out other occurrences of new_base:
4338   if (new_base != empty_mem) {
4339     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4340       if (in(i) == new_base)  set_req(i, empty_mem);
4341     }
4342   }
4343 }
4344 
4345 //------------------------------out_RegMask------------------------------------
4346 const RegMask &MergeMemNode::out_RegMask() const {
4347   return RegMask::Empty;
4348 }
4349 
4350 //------------------------------dump_spec--------------------------------------
4351 #ifndef PRODUCT
4352 void MergeMemNode::dump_spec(outputStream *st) const {
4353   st->print(" {");
4354   Node* base_mem = base_memory();
4355   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4356     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4357     if (mem == base_mem) { st->print(" -"); continue; }
4358     st->print( " N%d:", mem->_idx );
4359     Compile::current()->get_adr_type(i)->dump_on(st);
4360   }
4361   st->print(" }");
4362 }
4363 #endif // !PRODUCT
4364 
4365 
4366 #ifdef ASSERT
4367 static bool might_be_same(Node* a, Node* b) {
4368   if (a == b)  return true;
4369   if (!(a->is_Phi() || b->is_Phi()))  return false;
4370   // phis shift around during optimization
4371   return true;  // pretty stupid...
4372 }
4373 
4374 // verify a narrow slice (either incoming or outgoing)
4375 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4376   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4377   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4378   if (Node::in_dump())      return;  // muzzle asserts when printing
4379   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4380   assert(n != NULL, "");
4381   // Elide intervening MergeMem's
4382   while (n->is_MergeMem()) {
4383     n = n->as_MergeMem()->memory_at(alias_idx);
4384   }
4385   Compile* C = Compile::current();
4386   const TypePtr* n_adr_type = n->adr_type();
4387   if (n == m->empty_memory()) {
4388     // Implicit copy of base_memory()
4389   } else if (n_adr_type != TypePtr::BOTTOM) {
4390     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4391     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4392   } else {
4393     // A few places like make_runtime_call "know" that VM calls are narrow,
4394     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4395     bool expected_wide_mem = false;
4396     if (n == m->base_memory()) {
4397       expected_wide_mem = true;
4398     } else if (alias_idx == Compile::AliasIdxRaw ||
4399                n == m->memory_at(Compile::AliasIdxRaw)) {
4400       expected_wide_mem = true;
4401     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4402       // memory can "leak through" calls on channels that
4403       // are write-once.  Allow this also.
4404       expected_wide_mem = true;
4405     }
4406     assert(expected_wide_mem, "expected narrow slice replacement");
4407   }
4408 }
4409 #else // !ASSERT
4410 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4411 #endif
4412 
4413 
4414 //-----------------------------memory_at---------------------------------------
4415 Node* MergeMemNode::memory_at(uint alias_idx) const {
4416   assert(alias_idx >= Compile::AliasIdxRaw ||
4417          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4418          "must avoid base_memory and AliasIdxTop");
4419 
4420   // Otherwise, it is a narrow slice.
4421   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4422   Compile *C = Compile::current();
4423   if (is_empty_memory(n)) {
4424     // the array is sparse; empty slots are the "top" node
4425     n = base_memory();
4426     assert(Node::in_dump()
4427            || n == NULL || n->bottom_type() == Type::TOP
4428            || n->adr_type() == NULL // address is TOP
4429            || n->adr_type() == TypePtr::BOTTOM
4430            || n->adr_type() == TypeRawPtr::BOTTOM
4431            || Compile::current()->AliasLevel() == 0,
4432            "must be a wide memory");
4433     // AliasLevel == 0 if we are organizing the memory states manually.
4434     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4435   } else {
4436     // make sure the stored slice is sane
4437     #ifdef ASSERT
4438     if (is_error_reported() || Node::in_dump()) {
4439     } else if (might_be_same(n, base_memory())) {
4440       // Give it a pass:  It is a mostly harmless repetition of the base.
4441       // This can arise normally from node subsumption during optimization.
4442     } else {
4443       verify_memory_slice(this, alias_idx, n);
4444     }
4445     #endif
4446   }
4447   return n;
4448 }
4449 
4450 //---------------------------set_memory_at-------------------------------------
4451 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4452   verify_memory_slice(this, alias_idx, n);
4453   Node* empty_mem = empty_memory();
4454   if (n == base_memory())  n = empty_mem;  // collapse default
4455   uint need_req = alias_idx+1;
4456   if (req() < need_req) {
4457     if (n == empty_mem)  return;  // already the default, so do not grow me
4458     // grow the sparse array
4459     do {
4460       add_req(empty_mem);
4461     } while (req() < need_req);
4462   }
4463   set_req( alias_idx, n );
4464 }
4465 
4466 
4467 
4468 //--------------------------iteration_setup------------------------------------
4469 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4470   if (other != NULL) {
4471     grow_to_match(other);
4472     // invariant:  the finite support of mm2 is within mm->req()
4473     #ifdef ASSERT
4474     for (uint i = req(); i < other->req(); i++) {
4475       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4476     }
4477     #endif
4478   }
4479   // Replace spurious copies of base_memory by top.
4480   Node* base_mem = base_memory();
4481   if (base_mem != NULL && !base_mem->is_top()) {
4482     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4483       if (in(i) == base_mem)
4484         set_req(i, empty_memory());
4485     }
4486   }
4487 }
4488 
4489 //---------------------------grow_to_match-------------------------------------
4490 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4491   Node* empty_mem = empty_memory();
4492   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4493   // look for the finite support of the other memory
4494   for (uint i = other->req(); --i >= req(); ) {
4495     if (other->in(i) != empty_mem) {
4496       uint new_len = i+1;
4497       while (req() < new_len)  add_req(empty_mem);
4498       break;
4499     }
4500   }
4501 }
4502 
4503 //---------------------------verify_sparse-------------------------------------
4504 #ifndef PRODUCT
4505 bool MergeMemNode::verify_sparse() const {
4506   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4507   Node* base_mem = base_memory();
4508   // The following can happen in degenerate cases, since empty==top.
4509   if (is_empty_memory(base_mem))  return true;
4510   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4511     assert(in(i) != NULL, "sane slice");
4512     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4513   }
4514   return true;
4515 }
4516 
4517 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4518   Node* n;
4519   n = mm->in(idx);
4520   if (mem == n)  return true;  // might be empty_memory()
4521   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4522   if (mem == n)  return true;
4523   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4524     if (mem == n)  return true;
4525     if (n == NULL)  break;
4526   }
4527   return false;
4528 }
4529 #endif // !PRODUCT