1 /*
   2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/superword.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "opto/movenode.hpp"
  42 
  43 //
  44 //                  S U P E R W O R D   T R A N S F O R M
  45 //=============================================================================
  46 
  47 //------------------------------SuperWord---------------------------
  48 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  49   _phase(phase),
  50   _igvn(phase->_igvn),
  51   _arena(phase->C->comp_arena()),
  52   _packset(arena(), 8,  0, NULL),         // packs for the current block
  53   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  54   _block(arena(), 8,  0, NULL),           // nodes in current block
  55   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  56   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  57   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  58   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  59   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
  60   _cmovev_kit(_arena, this),              // map to facilitate CMoveVD creation
  61   _align_to_ref(NULL),                    // memory reference to align vectors to
  62   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  63   _dg(_arena),                            // dependence graph
  64   _visited(arena()),                      // visited node set
  65   _post_visited(arena()),                 // post visited node set
  66   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  67   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  68   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  69   _lpt(NULL),                             // loop tree node
  70   _lp(NULL),                              // LoopNode
  71   _bb(NULL),                              // basic block
  72   _iv(NULL),                              // induction var
  73   _race_possible(false),                  // cases where SDMU is true
  74   _early_return(true),                    // analysis evaluations routine
  75   _num_work_vecs(0),                      // amount of vector work we have
  76   _num_reductions(0),                     // amount of reduction work we have
  77   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
  78   _do_reserve_copy(DoReserveCopyInSuperWord),
  79   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
  80   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
  81   _ii_order(arena(), 8, 0, 0)
  82 {
  83 #ifndef PRODUCT
  84   _vector_loop_debug = 0;
  85   if (_phase->C->method() != NULL) {
  86     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
  87   }
  88 
  89 #endif
  90 }
  91 
  92 //------------------------------transform_loop---------------------------
  93 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
  94   assert(UseSuperWord, "should be");
  95   // Do vectors exist on this architecture?
  96   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  97 
  98   assert(lpt->_head->is_CountedLoop(), "must be");
  99   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
 100 
 101   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
 102 
 103   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
 104   // Check for no control flow in body (other than exit)
 105   Node *cl_exit = cl->loopexit();
 106   if (cl_exit->in(0) != lpt->_head) {
 107     #ifndef PRODUCT
 108       if (TraceSuperWord) {
 109         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
 110         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
 111         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
 112         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
 113         lpt->dump_head();
 114       }
 115     #endif
 116     return;
 117   }
 118 
 119   // Make sure the are no extra control users of the loop backedge
 120   if (cl->back_control()->outcnt() != 1) {
 121     return;
 122   }
 123 
 124   // We only re-enter slp when we vector mapped a queried loop and we want to
 125   // continue unrolling, in this case, slp is not subsequently done.
 126   if (cl->do_unroll_only()) return;
 127 
 128   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
 129   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
 130   if (pre_end == NULL) return;
 131   Node *pre_opaq1 = pre_end->limit();
 132   if (pre_opaq1->Opcode() != Op_Opaque1) return;
 133 
 134   init(); // initialize data structures
 135 
 136   set_lpt(lpt);
 137   set_lp(cl);
 138 
 139   // For now, define one block which is the entire loop body
 140   set_bb(cl);
 141 
 142   if (do_optimization) {
 143     assert(_packset.length() == 0, "packset must be empty");
 144     SLP_extract();
 145   }
 146 }
 147 
 148 //------------------------------early unrolling analysis------------------------------
 149 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
 150   bool is_slp = true;
 151   ResourceMark rm;
 152   size_t ignored_size = lpt()->_body.size();
 153   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
 154   Node_Stack nstack((int)ignored_size);
 155   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 156   Node *cl_exit = cl->loopexit();
 157 
 158   // First clear the entries
 159   for (uint i = 0; i < lpt()->_body.size(); i++) {
 160     ignored_loop_nodes[i] = -1;
 161   }
 162 
 163   int max_vector = Matcher::max_vector_size(T_INT);
 164 
 165   // Process the loop, some/all of the stack entries will not be in order, ergo
 166   // need to preprocess the ignored initial state before we process the loop
 167   for (uint i = 0; i < lpt()->_body.size(); i++) {
 168     Node* n = lpt()->_body.at(i);
 169     if (n == cl->incr() ||
 170       n->is_reduction() ||
 171       n->is_AddP() ||
 172       n->is_Cmp() ||
 173       n->is_IfTrue() ||
 174       n->is_CountedLoop() ||
 175       (n == cl_exit)) {
 176       ignored_loop_nodes[i] = n->_idx;
 177       continue;
 178     }
 179 
 180     if (n->is_If()) {
 181       IfNode *iff = n->as_If();
 182       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 183         if (lpt()->is_loop_exit(iff)) {
 184           ignored_loop_nodes[i] = n->_idx;
 185           continue;
 186         }
 187       }
 188     }
 189 
 190     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 191       Node* n_tail = n->in(LoopNode::LoopBackControl);
 192       if (n_tail != n->in(LoopNode::EntryControl)) {
 193         if (!n_tail->is_Mem()) {
 194           is_slp = false;
 195           break;
 196         }
 197       }
 198     }
 199 
 200     // This must happen after check of phi/if
 201     if (n->is_Phi() || n->is_If()) {
 202       ignored_loop_nodes[i] = n->_idx;
 203       continue;
 204     }
 205 
 206     if (n->is_LoadStore() || n->is_MergeMem() ||
 207       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 208       is_slp = false;
 209       break;
 210     }
 211 
 212     // Ignore nodes with non-primitive type.
 213     BasicType bt;
 214     if (n->is_Mem()) {
 215       bt = n->as_Mem()->memory_type();
 216     } else {
 217       bt = n->bottom_type()->basic_type();
 218     }
 219     if (is_java_primitive(bt) == false) {
 220       ignored_loop_nodes[i] = n->_idx;
 221       continue;
 222     }
 223 
 224     if (n->is_Mem()) {
 225       MemNode* current = n->as_Mem();
 226       Node* adr = n->in(MemNode::Address);
 227       Node* n_ctrl = _phase->get_ctrl(adr);
 228 
 229       // save a queue of post process nodes
 230       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
 231         // Process the memory expression
 232         int stack_idx = 0;
 233         bool have_side_effects = true;
 234         if (adr->is_AddP() == false) {
 235           nstack.push(adr, stack_idx++);
 236         } else {
 237           // Mark the components of the memory operation in nstack
 238           SWPointer p1(current, this, &nstack, true);
 239           have_side_effects = p1.node_stack()->is_nonempty();
 240         }
 241 
 242         // Process the pointer stack
 243         while (have_side_effects) {
 244           Node* pointer_node = nstack.node();
 245           for (uint j = 0; j < lpt()->_body.size(); j++) {
 246             Node* cur_node = lpt()->_body.at(j);
 247             if (cur_node == pointer_node) {
 248               ignored_loop_nodes[j] = cur_node->_idx;
 249               break;
 250             }
 251           }
 252           nstack.pop();
 253           have_side_effects = nstack.is_nonempty();
 254         }
 255       }
 256     }
 257   }
 258 
 259   if (is_slp) {
 260     // Now we try to find the maximum supported consistent vector which the machine
 261     // description can use
 262     for (uint i = 0; i < lpt()->_body.size(); i++) {
 263       if (ignored_loop_nodes[i] != -1) continue;
 264 
 265       BasicType bt;
 266       Node* n = lpt()->_body.at(i);
 267       if (n->is_Mem()) {
 268         bt = n->as_Mem()->memory_type();
 269       } else {
 270         bt = n->bottom_type()->basic_type();
 271       }
 272       if (is_java_primitive(bt) == false) continue;
 273 
 274       int cur_max_vector = Matcher::max_vector_size(bt);
 275 
 276       // If a max vector exists which is not larger than _local_loop_unroll_factor
 277       // stop looking, we already have the max vector to map to.
 278       if (cur_max_vector < local_loop_unroll_factor) {
 279         is_slp = false;
 280         if (TraceSuperWordLoopUnrollAnalysis) {
 281           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
 282         }
 283         break;
 284       }
 285 
 286       // Map the maximal common vector
 287       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 288         if (cur_max_vector < max_vector) {
 289           max_vector = cur_max_vector;
 290         }
 291       }
 292     }
 293     if (is_slp) {
 294       local_loop_unroll_factor = max_vector;
 295       cl->mark_passed_slp();
 296     }
 297     cl->mark_was_slp();
 298     cl->set_slp_max_unroll(local_loop_unroll_factor);
 299   }
 300 }
 301 
 302 //------------------------------SLP_extract---------------------------
 303 // Extract the superword level parallelism
 304 //
 305 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 306 //    this list from first to last, all definitions are visited before their uses.
 307 //
 308 // 2) A point-to-point dependence graph is constructed between memory references.
 309 //    This simplies the upcoming "independence" checker.
 310 //
 311 // 3) The maximum depth in the node graph from the beginning of the block
 312 //    to each node is computed.  This is used to prune the graph search
 313 //    in the independence checker.
 314 //
 315 // 4) For integer types, the necessary bit width is propagated backwards
 316 //    from stores to allow packed operations on byte, char, and short
 317 //    integers.  This reverses the promotion to type "int" that javac
 318 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 319 //
 320 // 5) One of the memory references is picked to be an aligned vector reference.
 321 //    The pre-loop trip count is adjusted to align this reference in the
 322 //    unrolled body.
 323 //
 324 // 6) The initial set of pack pairs is seeded with memory references.
 325 //
 326 // 7) The set of pack pairs is extended by following use->def and def->use links.
 327 //
 328 // 8) The pairs are combined into vector sized packs.
 329 //
 330 // 9) Reorder the memory slices to co-locate members of the memory packs.
 331 //
 332 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 333 //    inserting scalar promotion, vector creation from multiple scalars, and
 334 //    extraction of scalar values from vectors.
 335 //
 336 void SuperWord::SLP_extract() {
 337 
 338 #ifndef PRODUCT
 339   if (_do_vector_loop && TraceSuperWord) {
 340     tty->print("SuperWord::SLP_extract\n");
 341     tty->print("input loop\n");
 342     _lpt->dump_head();
 343     _lpt->dump();
 344     for (uint i = 0; i < _lpt->_body.size(); i++) {
 345       _lpt->_body.at(i)->dump();
 346     }
 347   }
 348 #endif
 349   // Ready the block
 350   if (!construct_bb()) {
 351     return; // Exit if no interesting nodes or complex graph.
 352   }
 353   // build    _dg, _disjoint_ptrs
 354   dependence_graph();
 355 
 356   // compute function depth(Node*)
 357   compute_max_depth();
 358 
 359   if (_do_vector_loop) {
 360     if (mark_generations() != -1) {
 361       hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
 362 
 363       if (!construct_bb()) {
 364         return; // Exit if no interesting nodes or complex graph.
 365       }
 366       dependence_graph();
 367       compute_max_depth();
 368     }
 369 
 370 #ifndef PRODUCT
 371     if (TraceSuperWord) {
 372       tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
 373       _lpt->dump_head();
 374       for (int j = 0; j < _block.length(); j++) {
 375         Node* n = _block.at(j);
 376         int d = depth(n);
 377         for (int i = 0;  i < d; i++) tty->print("%s", "  ");
 378         tty->print("%d :", d);
 379         n->dump();
 380       }
 381     }
 382 #endif
 383   }
 384 
 385   compute_vector_element_type();
 386 
 387   // Attempt vectorization
 388 
 389   find_adjacent_refs();
 390 
 391   extend_packlist();
 392 
 393   if (_do_vector_loop) {
 394     if (_packset.length() == 0) {
 395       if (TraceSuperWord) {
 396         tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
 397       }
 398       pack_parallel();
 399     }
 400   }
 401 
 402   combine_packs();
 403 
 404   construct_my_pack_map();
 405 
 406   if (_do_vector_loop) {
 407     merge_packs_to_cmovd();
 408   }
 409 
 410   filter_packs();
 411 
 412   schedule();
 413 
 414   output();
 415 }
 416 
 417 //------------------------------find_adjacent_refs---------------------------
 418 // Find the adjacent memory references and create pack pairs for them.
 419 // This is the initial set of packs that will then be extended by
 420 // following use->def and def->use links.  The align positions are
 421 // assigned relative to the reference "align_to_ref"
 422 void SuperWord::find_adjacent_refs() {
 423   // Get list of memory operations
 424   Node_List memops;
 425   for (int i = 0; i < _block.length(); i++) {
 426     Node* n = _block.at(i);
 427     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 428         is_java_primitive(n->as_Mem()->memory_type())) {
 429       int align = memory_alignment(n->as_Mem(), 0);
 430       if (align != bottom_align) {
 431         memops.push(n);
 432       }
 433     }
 434   }
 435 
 436   Node_List align_to_refs;
 437   int best_iv_adjustment = 0;
 438   MemNode* best_align_to_mem_ref = NULL;
 439 
 440   while (memops.size() != 0) {
 441     // Find a memory reference to align to.
 442     MemNode* mem_ref = find_align_to_ref(memops);
 443     if (mem_ref == NULL) break;
 444     align_to_refs.push(mem_ref);
 445     int iv_adjustment = get_iv_adjustment(mem_ref);
 446 
 447     if (best_align_to_mem_ref == NULL) {
 448       // Set memory reference which is the best from all memory operations
 449       // to be used for alignment. The pre-loop trip count is modified to align
 450       // this reference to a vector-aligned address.
 451       best_align_to_mem_ref = mem_ref;
 452       best_iv_adjustment = iv_adjustment;
 453       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 454     }
 455 
 456     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 457     // Set alignment relative to "align_to_ref" for all related memory operations.
 458     for (int i = memops.size() - 1; i >= 0; i--) {
 459       MemNode* s = memops.at(i)->as_Mem();
 460       if (isomorphic(s, mem_ref) &&
 461            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
 462         SWPointer p2(s, this, NULL, false);
 463         if (p2.comparable(align_to_ref_p)) {
 464           int align = memory_alignment(s, iv_adjustment);
 465           set_alignment(s, align);
 466         }
 467       }
 468     }
 469 
 470     // Create initial pack pairs of memory operations for which
 471     // alignment is set and vectors will be aligned.
 472     bool create_pack = true;
 473     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
 474       if (!Matcher::misaligned_vectors_ok()) {
 475         int vw = vector_width(mem_ref);
 476         int vw_best = vector_width(best_align_to_mem_ref);
 477         if (vw > vw_best) {
 478           // Do not vectorize a memory access with more elements per vector
 479           // if unaligned memory access is not allowed because number of
 480           // iterations in pre-loop will be not enough to align it.
 481           create_pack = false;
 482         } else {
 483           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
 484           if (align_to_ref_p.invar() != p2.invar()) {
 485             // Do not vectorize memory accesses with different invariants
 486             // if unaligned memory accesses are not allowed.
 487             create_pack = false;
 488           }
 489         }
 490       }
 491     } else {
 492       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 493         // Can't allow vectorization of unaligned memory accesses with the
 494         // same type since it could be overlapped accesses to the same array.
 495         create_pack = false;
 496       } else {
 497         // Allow independent (different type) unaligned memory operations
 498         // if HW supports them.
 499         if (!Matcher::misaligned_vectors_ok()) {
 500           create_pack = false;
 501         } else {
 502           // Check if packs of the same memory type but
 503           // with a different alignment were created before.
 504           for (uint i = 0; i < align_to_refs.size(); i++) {
 505             MemNode* mr = align_to_refs.at(i)->as_Mem();
 506             if (same_velt_type(mr, mem_ref) &&
 507                 memory_alignment(mr, iv_adjustment) != 0)
 508               create_pack = false;
 509           }
 510         }
 511       }
 512     }
 513     if (create_pack) {
 514       for (uint i = 0; i < memops.size(); i++) {
 515         Node* s1 = memops.at(i);
 516         int align = alignment(s1);
 517         if (align == top_align) continue;
 518         for (uint j = 0; j < memops.size(); j++) {
 519           Node* s2 = memops.at(j);
 520           if (alignment(s2) == top_align) continue;
 521           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 522             if (stmts_can_pack(s1, s2, align)) {
 523               Node_List* pair = new Node_List();
 524               pair->push(s1);
 525               pair->push(s2);
 526               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
 527                 _packset.append(pair);
 528               }
 529             }
 530           }
 531         }
 532       }
 533     } else { // Don't create unaligned pack
 534       // First, remove remaining memory ops of the same type from the list.
 535       for (int i = memops.size() - 1; i >= 0; i--) {
 536         MemNode* s = memops.at(i)->as_Mem();
 537         if (same_velt_type(s, mem_ref)) {
 538           memops.remove(i);
 539         }
 540       }
 541 
 542       // Second, remove already constructed packs of the same type.
 543       for (int i = _packset.length() - 1; i >= 0; i--) {
 544         Node_List* p = _packset.at(i);
 545         MemNode* s = p->at(0)->as_Mem();
 546         if (same_velt_type(s, mem_ref)) {
 547           remove_pack_at(i);
 548         }
 549       }
 550 
 551       // If needed find the best memory reference for loop alignment again.
 552       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 553         // Put memory ops from remaining packs back on memops list for
 554         // the best alignment search.
 555         uint orig_msize = memops.size();
 556         for (int i = 0; i < _packset.length(); i++) {
 557           Node_List* p = _packset.at(i);
 558           MemNode* s = p->at(0)->as_Mem();
 559           assert(!same_velt_type(s, mem_ref), "sanity");
 560           memops.push(s);
 561         }
 562         best_align_to_mem_ref = find_align_to_ref(memops);
 563         if (best_align_to_mem_ref == NULL) {
 564           if (TraceSuperWord) {
 565             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
 566           }
 567           break;
 568         }
 569         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 570         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 571         // Restore list.
 572         while (memops.size() > orig_msize)
 573           (void)memops.pop();
 574       }
 575     } // unaligned memory accesses
 576 
 577     // Remove used mem nodes.
 578     for (int i = memops.size() - 1; i >= 0; i--) {
 579       MemNode* m = memops.at(i)->as_Mem();
 580       if (alignment(m) != top_align) {
 581         memops.remove(i);
 582       }
 583     }
 584 
 585   } // while (memops.size() != 0
 586   set_align_to_ref(best_align_to_mem_ref);
 587 
 588   if (TraceSuperWord) {
 589     tty->print_cr("\nAfter find_adjacent_refs");
 590     print_packset();
 591   }
 592 }
 593 
 594 #ifndef PRODUCT
 595 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
 596   if (is_trace_adjacent()) {
 597     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
 598        best_align_to_mem_ref->_idx, best_iv_adjustment);
 599        best_align_to_mem_ref->dump();
 600   }
 601 }
 602 #endif
 603 
 604 //------------------------------find_align_to_ref---------------------------
 605 // Find a memory reference to align the loop induction variable to.
 606 // Looks first at stores then at loads, looking for a memory reference
 607 // with the largest number of references similar to it.
 608 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 609   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 610 
 611   // Count number of comparable memory ops
 612   for (uint i = 0; i < memops.size(); i++) {
 613     MemNode* s1 = memops.at(i)->as_Mem();
 614     SWPointer p1(s1, this, NULL, false);
 615     // Discard if pre loop can't align this reference
 616     if (!ref_is_alignable(p1)) {
 617       *cmp_ct.adr_at(i) = 0;
 618       continue;
 619     }
 620     for (uint j = i+1; j < memops.size(); j++) {
 621       MemNode* s2 = memops.at(j)->as_Mem();
 622       if (isomorphic(s1, s2)) {
 623         SWPointer p2(s2, this, NULL, false);
 624         if (p1.comparable(p2)) {
 625           (*cmp_ct.adr_at(i))++;
 626           (*cmp_ct.adr_at(j))++;
 627         }
 628       }
 629     }
 630   }
 631 
 632   // Find Store (or Load) with the greatest number of "comparable" references,
 633   // biggest vector size, smallest data size and smallest iv offset.
 634   int max_ct        = 0;
 635   int max_vw        = 0;
 636   int max_idx       = -1;
 637   int min_size      = max_jint;
 638   int min_iv_offset = max_jint;
 639   for (uint j = 0; j < memops.size(); j++) {
 640     MemNode* s = memops.at(j)->as_Mem();
 641     if (s->is_Store()) {
 642       int vw = vector_width_in_bytes(s);
 643       assert(vw > 1, "sanity");
 644       SWPointer p(s, this, NULL, false);
 645       if (cmp_ct.at(j) >  max_ct ||
 646           cmp_ct.at(j) == max_ct &&
 647             (vw >  max_vw ||
 648              vw == max_vw &&
 649               (data_size(s) <  min_size ||
 650                data_size(s) == min_size &&
 651                  (p.offset_in_bytes() < min_iv_offset)))) {
 652         max_ct = cmp_ct.at(j);
 653         max_vw = vw;
 654         max_idx = j;
 655         min_size = data_size(s);
 656         min_iv_offset = p.offset_in_bytes();
 657       }
 658     }
 659   }
 660   // If no stores, look at loads
 661   if (max_ct == 0) {
 662     for (uint j = 0; j < memops.size(); j++) {
 663       MemNode* s = memops.at(j)->as_Mem();
 664       if (s->is_Load()) {
 665         int vw = vector_width_in_bytes(s);
 666         assert(vw > 1, "sanity");
 667         SWPointer p(s, this, NULL, false);
 668         if (cmp_ct.at(j) >  max_ct ||
 669             cmp_ct.at(j) == max_ct &&
 670               (vw >  max_vw ||
 671                vw == max_vw &&
 672                 (data_size(s) <  min_size ||
 673                  data_size(s) == min_size &&
 674                    (p.offset_in_bytes() < min_iv_offset)))) {
 675           max_ct = cmp_ct.at(j);
 676           max_vw = vw;
 677           max_idx = j;
 678           min_size = data_size(s);
 679           min_iv_offset = p.offset_in_bytes();
 680         }
 681       }
 682     }
 683   }
 684 
 685 #ifdef ASSERT
 686   if (TraceSuperWord && Verbose) {
 687     tty->print_cr("\nVector memops after find_align_to_ref");
 688     for (uint i = 0; i < memops.size(); i++) {
 689       MemNode* s = memops.at(i)->as_Mem();
 690       s->dump();
 691     }
 692   }
 693 #endif
 694 
 695   if (max_ct > 0) {
 696 #ifdef ASSERT
 697     if (TraceSuperWord) {
 698       tty->print("\nVector align to node: ");
 699       memops.at(max_idx)->as_Mem()->dump();
 700     }
 701 #endif
 702     return memops.at(max_idx)->as_Mem();
 703   }
 704   return NULL;
 705 }
 706 
 707 //------------------------------ref_is_alignable---------------------------
 708 // Can the preloop align the reference to position zero in the vector?
 709 bool SuperWord::ref_is_alignable(SWPointer& p) {
 710   if (!p.has_iv()) {
 711     return true;   // no induction variable
 712   }
 713   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 714   assert(pre_end != NULL, "we must have a correct pre-loop");
 715   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 716   int preloop_stride = pre_end->stride_con();
 717 
 718   int span = preloop_stride * p.scale_in_bytes();
 719   int mem_size = p.memory_size();
 720   int offset   = p.offset_in_bytes();
 721   // Stride one accesses are alignable if offset is aligned to memory operation size.
 722   // Offset can be unaligned when UseUnalignedAccesses is used.
 723   if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
 724     return true;
 725   }
 726   // If the initial offset from start of the object is computable,
 727   // check if the pre-loop can align the final offset accordingly.
 728   //
 729   // In other words: Can we find an i such that the offset
 730   // after i pre-loop iterations is aligned to vw?
 731   //   (init_offset + pre_loop) % vw == 0              (1)
 732   // where
 733   //   pre_loop = i * span
 734   // is the number of bytes added to the offset by i pre-loop iterations.
 735   //
 736   // For this to hold we need pre_loop to increase init_offset by
 737   //   pre_loop = vw - (init_offset % vw)
 738   //
 739   // This is only possible if pre_loop is divisible by span because each
 740   // pre-loop iteration increases the initial offset by 'span' bytes:
 741   //   (vw - (init_offset % vw)) % span == 0
 742   //
 743   int vw = vector_width_in_bytes(p.mem());
 744   assert(vw > 1, "sanity");
 745   Node* init_nd = pre_end->init_trip();
 746   if (init_nd->is_Con() && p.invar() == NULL) {
 747     int init = init_nd->bottom_type()->is_int()->get_con();
 748     int init_offset = init * p.scale_in_bytes() + offset;
 749     assert(init_offset >= 0, "positive offset from object start");
 750     if (vw % span == 0) {
 751       // If vm is a multiple of span, we use formula (1).
 752       if (span > 0) {
 753         return (vw - (init_offset % vw)) % span == 0;
 754       } else {
 755         assert(span < 0, "nonzero stride * scale");
 756         return (init_offset % vw) % -span == 0;
 757       }
 758     } else if (span % vw == 0) {
 759       // If span is a multiple of vw, we can simplify formula (1) to:
 760       //   (init_offset + i * span) % vw == 0
 761       //     =>
 762       //   (init_offset % vw) + ((i * span) % vw) == 0
 763       //     =>
 764       //   init_offset % vw == 0
 765       //
 766       // Because we add a multiple of vw to the initial offset, the final
 767       // offset is a multiple of vw if and only if init_offset is a multiple.
 768       //
 769       return (init_offset % vw) == 0;
 770     }
 771   }
 772   return false;
 773 }
 774 
 775 //---------------------------get_iv_adjustment---------------------------
 776 // Calculate loop's iv adjustment for this memory ops.
 777 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 778   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 779   int offset = align_to_ref_p.offset_in_bytes();
 780   int scale  = align_to_ref_p.scale_in_bytes();
 781   int elt_size = align_to_ref_p.memory_size();
 782   int vw       = vector_width_in_bytes(mem_ref);
 783   assert(vw > 1, "sanity");
 784   int iv_adjustment;
 785   if (scale != 0) {
 786     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
 787     // At least one iteration is executed in pre-loop by default. As result
 788     // several iterations are needed to align memory operations in main-loop even
 789     // if offset is 0.
 790     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 791     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 792            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
 793     iv_adjustment = iv_adjustment_in_bytes/elt_size;
 794   } else {
 795     // This memory op is not dependent on iv (scale == 0)
 796     iv_adjustment = 0;
 797   }
 798 
 799 #ifndef PRODUCT
 800   if (TraceSuperWord) {
 801     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
 802       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 803     mem_ref->dump();
 804   }
 805 #endif
 806   return iv_adjustment;
 807 }
 808 
 809 //---------------------------dependence_graph---------------------------
 810 // Construct dependency graph.
 811 // Add dependence edges to load/store nodes for memory dependence
 812 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 813 void SuperWord::dependence_graph() {
 814   // First, assign a dependence node to each memory node
 815   for (int i = 0; i < _block.length(); i++ ) {
 816     Node *n = _block.at(i);
 817     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 818       _dg.make_node(n);
 819     }
 820   }
 821 
 822   // For each memory slice, create the dependences
 823   for (int i = 0; i < _mem_slice_head.length(); i++) {
 824     Node* n      = _mem_slice_head.at(i);
 825     Node* n_tail = _mem_slice_tail.at(i);
 826 
 827     // Get slice in predecessor order (last is first)
 828     mem_slice_preds(n_tail, n, _nlist);
 829 
 830 #ifndef PRODUCT
 831     if(TraceSuperWord && Verbose) {
 832       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
 833       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 834         _nlist.at(j)->dump();
 835       }
 836     }
 837 #endif
 838     // Make the slice dependent on the root
 839     DepMem* slice = _dg.dep(n);
 840     _dg.make_edge(_dg.root(), slice);
 841 
 842     // Create a sink for the slice
 843     DepMem* slice_sink = _dg.make_node(NULL);
 844     _dg.make_edge(slice_sink, _dg.tail());
 845 
 846     // Now visit each pair of memory ops, creating the edges
 847     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 848       Node* s1 = _nlist.at(j);
 849 
 850       // If no dependency yet, use slice
 851       if (_dg.dep(s1)->in_cnt() == 0) {
 852         _dg.make_edge(slice, s1);
 853       }
 854       SWPointer p1(s1->as_Mem(), this, NULL, false);
 855       bool sink_dependent = true;
 856       for (int k = j - 1; k >= 0; k--) {
 857         Node* s2 = _nlist.at(k);
 858         if (s1->is_Load() && s2->is_Load())
 859           continue;
 860         SWPointer p2(s2->as_Mem(), this, NULL, false);
 861 
 862         int cmp = p1.cmp(p2);
 863         if (SuperWordRTDepCheck &&
 864             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 865           // Create a runtime check to disambiguate
 866           OrderedPair pp(p1.base(), p2.base());
 867           _disjoint_ptrs.append_if_missing(pp);
 868         } else if (!SWPointer::not_equal(cmp)) {
 869           // Possibly same address
 870           _dg.make_edge(s1, s2);
 871           sink_dependent = false;
 872         }
 873       }
 874       if (sink_dependent) {
 875         _dg.make_edge(s1, slice_sink);
 876       }
 877     }
 878 
 879     if (TraceSuperWord) {
 880       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 881       for (int q = 0; q < _nlist.length(); q++) {
 882         _dg.print(_nlist.at(q));
 883       }
 884       tty->cr();
 885     }
 886 
 887     _nlist.clear();
 888   }
 889 
 890   if (TraceSuperWord) {
 891     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 892     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 893       _disjoint_ptrs.at(r).print();
 894       tty->cr();
 895     }
 896     tty->cr();
 897   }
 898 
 899 }
 900 
 901 //---------------------------mem_slice_preds---------------------------
 902 // Return a memory slice (node list) in predecessor order starting at "start"
 903 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 904   assert(preds.length() == 0, "start empty");
 905   Node* n = start;
 906   Node* prev = NULL;
 907   while (true) {
 908     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
 909     assert(in_bb(n), "must be in block");
 910     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 911       Node* out = n->fast_out(i);
 912       if (out->is_Load()) {
 913         if (in_bb(out)) {
 914           preds.push(out);
 915           if (TraceSuperWord && Verbose) {
 916             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
 917           }
 918         }
 919       } else {
 920         // FIXME
 921         if (out->is_MergeMem() && !in_bb(out)) {
 922           // Either unrolling is causing a memory edge not to disappear,
 923           // or need to run igvn.optimize() again before SLP
 924         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 925           // Ditto.  Not sure what else to check further.
 926         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 927           // StoreCM has an input edge used as a precedence edge.
 928           // Maybe an issue when oop stores are vectorized.
 929         } else {
 930           assert(out == prev || prev == NULL, "no branches off of store slice");
 931         }
 932       }//else
 933     }//for
 934     if (n == stop) break;
 935     preds.push(n);
 936     if (TraceSuperWord && Verbose) {
 937       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
 938     }
 939     prev = n;
 940     assert(n->is_Mem(), "unexpected node %s", n->Name());
 941     n = n->in(MemNode::Memory);
 942   }
 943 }
 944 
 945 //------------------------------stmts_can_pack---------------------------
 946 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 947 // s1 aligned at "align"
 948 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 949 
 950   // Do not use superword for non-primitives
 951   BasicType bt1 = velt_basic_type(s1);
 952   BasicType bt2 = velt_basic_type(s2);
 953   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
 954     return false;
 955   if (Matcher::max_vector_size(bt1) < 2) {
 956     return false; // No vectors for this type
 957   }
 958 
 959   if (isomorphic(s1, s2)) {
 960     if (independent(s1, s2) || reduction(s1, s2)) {
 961       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 962         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 963           int s1_align = alignment(s1);
 964           int s2_align = alignment(s2);
 965           if (s1_align == top_align || s1_align == align) {
 966             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 967               return true;
 968             }
 969           }
 970         }
 971       }
 972     }
 973   }
 974   return false;
 975 }
 976 
 977 //------------------------------exists_at---------------------------
 978 // Does s exist in a pack at position pos?
 979 bool SuperWord::exists_at(Node* s, uint pos) {
 980   for (int i = 0; i < _packset.length(); i++) {
 981     Node_List* p = _packset.at(i);
 982     if (p->at(pos) == s) {
 983       return true;
 984     }
 985   }
 986   return false;
 987 }
 988 
 989 //------------------------------are_adjacent_refs---------------------------
 990 // Is s1 immediately before s2 in memory?
 991 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 992   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 993   if (!in_bb(s1)    || !in_bb(s2))    return false;
 994 
 995   // Do not use superword for non-primitives
 996   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 997       !is_java_primitive(s2->as_Mem()->memory_type())) {
 998     return false;
 999   }
1000 
1001   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1002   // only pack memops that are in the same alias set until that's fixed.
1003   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1004       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1005     return false;
1006   SWPointer p1(s1->as_Mem(), this, NULL, false);
1007   SWPointer p2(s2->as_Mem(), this, NULL, false);
1008   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1009   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1010   return diff == data_size(s1);
1011 }
1012 
1013 //------------------------------isomorphic---------------------------
1014 // Are s1 and s2 similar?
1015 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1016   if (s1->Opcode() != s2->Opcode()) return false;
1017   if (s1->req() != s2->req()) return false;
1018   if (s1->in(0) != s2->in(0)) return false;
1019   if (!same_velt_type(s1, s2)) return false;
1020   return true;
1021 }
1022 
1023 //------------------------------independent---------------------------
1024 // Is there no data path from s1 to s2 or s2 to s1?
1025 bool SuperWord::independent(Node* s1, Node* s2) {
1026   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1027   int d1 = depth(s1);
1028   int d2 = depth(s2);
1029   if (d1 == d2) return s1 != s2;
1030   Node* deep    = d1 > d2 ? s1 : s2;
1031   Node* shallow = d1 > d2 ? s2 : s1;
1032 
1033   visited_clear();
1034 
1035   return independent_path(shallow, deep);
1036 }
1037 
1038 //------------------------------reduction---------------------------
1039 // Is there a data path between s1 and s2 and the nodes reductions?
1040 bool SuperWord::reduction(Node* s1, Node* s2) {
1041   bool retValue = false;
1042   int d1 = depth(s1);
1043   int d2 = depth(s2);
1044   if (d1 + 1 == d2) {
1045     if (s1->is_reduction() && s2->is_reduction()) {
1046       // This is an ordered set, so s1 should define s2
1047       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1048         Node* t1 = s1->fast_out(i);
1049         if (t1 == s2) {
1050           // both nodes are reductions and connected
1051           retValue = true;
1052         }
1053       }
1054     }
1055   }
1056 
1057   return retValue;
1058 }
1059 
1060 //------------------------------independent_path------------------------------
1061 // Helper for independent
1062 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1063   if (dp >= 1000) return false; // stop deep recursion
1064   visited_set(deep);
1065   int shal_depth = depth(shallow);
1066   assert(shal_depth <= depth(deep), "must be");
1067   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1068     Node* pred = preds.current();
1069     if (in_bb(pred) && !visited_test(pred)) {
1070       if (shallow == pred) {
1071         return false;
1072       }
1073       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1074         return false;
1075       }
1076     }
1077   }
1078   return true;
1079 }
1080 
1081 //------------------------------set_alignment---------------------------
1082 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1083   set_alignment(s1, align);
1084   if (align == top_align || align == bottom_align) {
1085     set_alignment(s2, align);
1086   } else {
1087     set_alignment(s2, align + data_size(s1));
1088   }
1089 }
1090 
1091 //------------------------------data_size---------------------------
1092 int SuperWord::data_size(Node* s) {
1093   Node* use = NULL; //test if the node is a candidate for CMoveVD optimization, then return the size of CMov
1094   if (_do_vector_loop) {
1095     use = _cmovev_kit.is_Bool_candidate(s);
1096     if (use != NULL) {
1097       return data_size(use);
1098     }
1099     use = _cmovev_kit.is_CmpD_candidate(s);
1100     if (use != NULL) {
1101       return data_size(use);
1102     }
1103   }
1104   int bsize = type2aelembytes(velt_basic_type(s));
1105   assert(bsize != 0, "valid size");
1106   return bsize;
1107 }
1108 
1109 //------------------------------extend_packlist---------------------------
1110 // Extend packset by following use->def and def->use links from pack members.
1111 void SuperWord::extend_packlist() {
1112   bool changed;
1113   do {
1114     packset_sort(_packset.length());
1115     changed = false;
1116     for (int i = 0; i < _packset.length(); i++) {
1117       Node_List* p = _packset.at(i);
1118       changed |= follow_use_defs(p);
1119       changed |= follow_def_uses(p);
1120     }
1121   } while (changed);
1122 
1123   if (_race_possible) {
1124     for (int i = 0; i < _packset.length(); i++) {
1125       Node_List* p = _packset.at(i);
1126       order_def_uses(p);
1127     }
1128   }
1129 
1130   if (TraceSuperWord) {
1131     tty->print_cr("\nAfter extend_packlist");
1132     print_packset();
1133   }
1134 }
1135 
1136 //------------------------------follow_use_defs---------------------------
1137 // Extend the packset by visiting operand definitions of nodes in pack p
1138 bool SuperWord::follow_use_defs(Node_List* p) {
1139   assert(p->size() == 2, "just checking");
1140   Node* s1 = p->at(0);
1141   Node* s2 = p->at(1);
1142   assert(s1->req() == s2->req(), "just checking");
1143   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1144 
1145   if (s1->is_Load()) return false;
1146 
1147   int align = alignment(s1);
1148   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1149   bool changed = false;
1150   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1151   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1152   for (int j = start; j < end; j++) {
1153     Node* t1 = s1->in(j);
1154     Node* t2 = s2->in(j);
1155     if (!in_bb(t1) || !in_bb(t2))
1156       continue;
1157     if (stmts_can_pack(t1, t2, align)) {
1158       if (est_savings(t1, t2) >= 0) {
1159         Node_List* pair = new Node_List();
1160         pair->push(t1);
1161         pair->push(t2);
1162         _packset.append(pair);
1163         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1164         set_alignment(t1, t2, align);
1165         changed = true;
1166       }
1167     }
1168   }
1169   return changed;
1170 }
1171 
1172 //------------------------------follow_def_uses---------------------------
1173 // Extend the packset by visiting uses of nodes in pack p
1174 bool SuperWord::follow_def_uses(Node_List* p) {
1175   bool changed = false;
1176   Node* s1 = p->at(0);
1177   Node* s2 = p->at(1);
1178   assert(p->size() == 2, "just checking");
1179   assert(s1->req() == s2->req(), "just checking");
1180   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1181 
1182   if (s1->is_Store()) return false;
1183 
1184   int align = alignment(s1);
1185   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1186   int savings = -1;
1187   int num_s1_uses = 0;
1188   Node* u1 = NULL;
1189   Node* u2 = NULL;
1190   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1191     Node* t1 = s1->fast_out(i);
1192     num_s1_uses++;
1193     if (!in_bb(t1)) continue;
1194     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1195       Node* t2 = s2->fast_out(j);
1196       if (!in_bb(t2)) continue;
1197       if (!opnd_positions_match(s1, t1, s2, t2))
1198         continue;
1199       if (stmts_can_pack(t1, t2, align)) {
1200         int my_savings = est_savings(t1, t2);
1201         if (my_savings > savings) {
1202           savings = my_savings;
1203           u1 = t1;
1204           u2 = t2;
1205         }
1206       }
1207     }
1208   }
1209   if (num_s1_uses > 1) {
1210     _race_possible = true;
1211   }
1212   if (savings >= 0) {
1213     Node_List* pair = new Node_List();
1214     pair->push(u1);
1215     pair->push(u2);
1216     _packset.append(pair);
1217     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1218     set_alignment(u1, u2, align);
1219     changed = true;
1220   }
1221   return changed;
1222 }
1223 
1224 //------------------------------order_def_uses---------------------------
1225 // For extended packsets, ordinally arrange uses packset by major component
1226 void SuperWord::order_def_uses(Node_List* p) {
1227   Node* s1 = p->at(0);
1228 
1229   if (s1->is_Store()) return;
1230 
1231   // reductions are always managed beforehand
1232   if (s1->is_reduction()) return;
1233 
1234   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1235     Node* t1 = s1->fast_out(i);
1236 
1237     // Only allow operand swap on commuting operations
1238     if (!t1->is_Add() && !t1->is_Mul()) {
1239       break;
1240     }
1241 
1242     // Now find t1's packset
1243     Node_List* p2 = NULL;
1244     for (int j = 0; j < _packset.length(); j++) {
1245       p2 = _packset.at(j);
1246       Node* first = p2->at(0);
1247       if (t1 == first) {
1248         break;
1249       }
1250       p2 = NULL;
1251     }
1252     // Arrange all sub components by the major component
1253     if (p2 != NULL) {
1254       for (uint j = 1; j < p->size(); j++) {
1255         Node* d1 = p->at(j);
1256         Node* u1 = p2->at(j);
1257         opnd_positions_match(s1, t1, d1, u1);
1258       }
1259     }
1260   }
1261 }
1262 
1263 //---------------------------opnd_positions_match-------------------------
1264 // Is the use of d1 in u1 at the same operand position as d2 in u2?
1265 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1266   // check reductions to see if they are marshalled to represent the reduction
1267   // operator in a specified opnd
1268   if (u1->is_reduction() && u2->is_reduction()) {
1269     // ensure reductions have phis and reduction definitions feeding the 1st operand
1270     Node* first = u1->in(2);
1271     if (first->is_Phi() || first->is_reduction()) {
1272       u1->swap_edges(1, 2);
1273     }
1274     // ensure reductions have phis and reduction definitions feeding the 1st operand
1275     first = u2->in(2);
1276     if (first->is_Phi() || first->is_reduction()) {
1277       u2->swap_edges(1, 2);
1278     }
1279     return true;
1280   }
1281 
1282   uint ct = u1->req();
1283   if (ct != u2->req()) return false;
1284   uint i1 = 0;
1285   uint i2 = 0;
1286   do {
1287     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1288     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1289     if (i1 != i2) {
1290       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1291         // Further analysis relies on operands position matching.
1292         u2->swap_edges(i1, i2);
1293       } else {
1294         return false;
1295       }
1296     }
1297   } while (i1 < ct);
1298   return true;
1299 }
1300 
1301 //------------------------------est_savings---------------------------
1302 // Estimate the savings from executing s1 and s2 as a pack
1303 int SuperWord::est_savings(Node* s1, Node* s2) {
1304   int save_in = 2 - 1; // 2 operations per instruction in packed form
1305 
1306   // inputs
1307   for (uint i = 1; i < s1->req(); i++) {
1308     Node* x1 = s1->in(i);
1309     Node* x2 = s2->in(i);
1310     if (x1 != x2) {
1311       if (are_adjacent_refs(x1, x2)) {
1312         save_in += adjacent_profit(x1, x2);
1313       } else if (!in_packset(x1, x2)) {
1314         save_in -= pack_cost(2);
1315       } else {
1316         save_in += unpack_cost(2);
1317       }
1318     }
1319   }
1320 
1321   // uses of result
1322   uint ct = 0;
1323   int save_use = 0;
1324   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1325     Node* s1_use = s1->fast_out(i);
1326     for (int j = 0; j < _packset.length(); j++) {
1327       Node_List* p = _packset.at(j);
1328       if (p->at(0) == s1_use) {
1329         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1330           Node* s2_use = s2->fast_out(k);
1331           if (p->at(p->size()-1) == s2_use) {
1332             ct++;
1333             if (are_adjacent_refs(s1_use, s2_use)) {
1334               save_use += adjacent_profit(s1_use, s2_use);
1335             }
1336           }
1337         }
1338       }
1339     }
1340   }
1341 
1342   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1343   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1344 
1345   return MAX2(save_in, save_use);
1346 }
1347 
1348 //------------------------------costs---------------------------
1349 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1350 int SuperWord::pack_cost(int ct)   { return ct; }
1351 int SuperWord::unpack_cost(int ct) { return ct; }
1352 
1353 //------------------------------combine_packs---------------------------
1354 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1355 void SuperWord::combine_packs() {
1356   bool changed = true;
1357   // Combine packs regardless max vector size.
1358   while (changed) {
1359     changed = false;
1360     for (int i = 0; i < _packset.length(); i++) {
1361       Node_List* p1 = _packset.at(i);
1362       if (p1 == NULL) continue;
1363       // Because of sorting we can start at i + 1
1364       for (int j = i + 1; j < _packset.length(); j++) {
1365         Node_List* p2 = _packset.at(j);
1366         if (p2 == NULL) continue;
1367         if (i == j) continue;
1368         if (p1->at(p1->size()-1) == p2->at(0)) {
1369           for (uint k = 1; k < p2->size(); k++) {
1370             p1->push(p2->at(k));
1371           }
1372           _packset.at_put(j, NULL);
1373           changed = true;
1374         }
1375       }
1376     }
1377   }
1378 
1379   // Split packs which have size greater then max vector size.
1380   for (int i = 0; i < _packset.length(); i++) {
1381     Node_List* p1 = _packset.at(i);
1382     if (p1 != NULL) {
1383       BasicType bt = velt_basic_type(p1->at(0));
1384       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1385       assert(is_power_of_2(max_vlen), "sanity");
1386       uint psize = p1->size();
1387       if (!is_power_of_2(psize)) {
1388         // Skip pack which can't be vector.
1389         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1390         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1391         _packset.at_put(i, NULL);
1392         continue;
1393       }
1394       if (psize > max_vlen) {
1395         Node_List* pack = new Node_List();
1396         for (uint j = 0; j < psize; j++) {
1397           pack->push(p1->at(j));
1398           if (pack->size() >= max_vlen) {
1399             assert(is_power_of_2(pack->size()), "sanity");
1400             _packset.append(pack);
1401             pack = new Node_List();
1402           }
1403         }
1404         _packset.at_put(i, NULL);
1405       }
1406     }
1407   }
1408 
1409   // Compress list.
1410   for (int i = _packset.length() - 1; i >= 0; i--) {
1411     Node_List* p1 = _packset.at(i);
1412     if (p1 == NULL) {
1413       _packset.remove_at(i);
1414     }
1415   }
1416 
1417   if (TraceSuperWord) {
1418     tty->print_cr("\nAfter combine_packs");
1419     print_packset();
1420   }
1421 }
1422 
1423 //-----------------------------construct_my_pack_map--------------------------
1424 // Construct the map from nodes to packs.  Only valid after the
1425 // point where a node is only in one pack (after combine_packs).
1426 void SuperWord::construct_my_pack_map() {
1427   Node_List* rslt = NULL;
1428   for (int i = 0; i < _packset.length(); i++) {
1429     Node_List* p = _packset.at(i);
1430     for (uint j = 0; j < p->size(); j++) {
1431       Node* s = p->at(j);
1432       assert(my_pack(s) == NULL, "only in one pack");
1433       set_my_pack(s, p);
1434     }
1435   }
1436 }
1437 
1438 //------------------------------filter_packs---------------------------
1439 // Remove packs that are not implemented or not profitable.
1440 void SuperWord::filter_packs() {
1441   // Remove packs that are not implemented
1442   for (int i = _packset.length() - 1; i >= 0; i--) {
1443     Node_List* pk = _packset.at(i);
1444     bool impl = implemented(pk);
1445     if (!impl) {
1446 #ifndef PRODUCT
1447       if (TraceSuperWord && Verbose) {
1448         tty->print_cr("Unimplemented");
1449         pk->at(0)->dump();
1450       }
1451 #endif
1452       remove_pack_at(i);
1453     }
1454     Node *n = pk->at(0);
1455     if (n->is_reduction()) {
1456       _num_reductions++;
1457     } else {
1458       _num_work_vecs++;
1459     }
1460   }
1461 
1462   // Remove packs that are not profitable
1463   bool changed;
1464   do {
1465     changed = false;
1466     for (int i = _packset.length() - 1; i >= 0; i--) {
1467       Node_List* pk = _packset.at(i);
1468       bool prof = profitable(pk);
1469       if (!prof) {
1470 #ifndef PRODUCT
1471         if (TraceSuperWord && Verbose) {
1472           tty->print_cr("Unprofitable");
1473           pk->at(0)->dump();
1474         }
1475 #endif
1476         remove_pack_at(i);
1477         changed = true;
1478       }
1479     }
1480   } while (changed);
1481 
1482 #ifndef PRODUCT
1483   if (TraceSuperWord) {
1484     tty->print_cr("\nAfter filter_packs");
1485     print_packset();
1486     tty->cr();
1487   }
1488 #endif
1489 }
1490 
1491 //------------------------------merge_packs_to_cmovd---------------------------
1492 // Merge CMoveD into new vector-nodes
1493 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1494 //
1495 //                   SubD             ConD
1496 //                  /  |               /
1497 //                 /   |           /   /
1498 //                /    |       /      /
1499 //               /     |   /         /
1500 //              /      /            /
1501 //             /    /  |           /
1502 //            v /      |          /
1503 //         CmpD        |         /
1504 //          |          |        /
1505 //          v          |       /
1506 //         Bool        |      /
1507 //           \         |     /
1508 //             \       |    /
1509 //               \     |   /
1510 //                 \   |  /
1511 //                   \ v /
1512 //                   CMoveD
1513 //
1514 
1515 void SuperWord::merge_packs_to_cmovd() {
1516   for (int i = _packset.length() - 1; i >= 0; i--) {
1517     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1518   }
1519   #ifndef PRODUCT
1520     if (TraceSuperWord) {
1521       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1522       print_packset();
1523       tty->cr();
1524     }
1525   #endif
1526 }
1527 
1528 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1529   Node* use = NULL;
1530   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1531     return NULL;
1532   }
1533   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1534     use = def->fast_out(j);
1535     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1536       return NULL;
1537     }
1538   }
1539   return use;
1540 }
1541 
1542 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1543   Node* use = NULL;
1544   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1545     return NULL;
1546   }
1547   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1548     use = def->fast_out(j);
1549     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1550       return NULL;
1551     }
1552   }
1553   return use;
1554 }
1555 
1556 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1557   Node *cmovd = cmovd_pk->at(0);
1558   if (!cmovd->is_CMove()) {
1559     return NULL;
1560   }
1561   if (pack(cmovd) != NULL) { // already in the cmov pack
1562     return NULL;
1563   }
1564   if (cmovd->in(0) != NULL) {
1565     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1566     return NULL;
1567   }
1568 
1569   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1570   if (!bol->is_Bool()
1571       || bol->outcnt() != 1
1572       || !_sw->same_generation(bol, cmovd)
1573       || bol->in(0) != NULL  // BoolNode has control flow!!
1574       || _sw->my_pack(bol) == NULL) {
1575       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1576       return NULL;
1577   }
1578   Node_List* bool_pk = _sw->my_pack(bol);
1579   if (bool_pk->size() != cmovd_pk->size() ) {
1580     return NULL;
1581   }
1582 
1583   Node* cmpd = bol->in(1);
1584   if (!cmpd->is_Cmp()
1585       || cmpd->outcnt() != 1
1586       || !_sw->same_generation(cmpd, cmovd)
1587       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1588       || _sw->my_pack(cmpd) == NULL) {
1589       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1590       return NULL;
1591   }
1592   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1593   if (cmpd_pk->size() != cmovd_pk->size() ) {
1594     return NULL;
1595   }
1596 
1597   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1598     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1599     return NULL;
1600   }
1601 
1602   Node_List* new_cmpd_pk = new Node_List();
1603   uint sz = cmovd_pk->size() - 1;
1604   for (uint i = 0; i <= sz; ++i) {
1605     Node* cmov = cmovd_pk->at(i);
1606     Node* bol  = bool_pk->at(i);
1607     Node* cmp  = cmpd_pk->at(i);
1608 
1609     new_cmpd_pk->insert(i, cmov);
1610 
1611     map(cmov, new_cmpd_pk);
1612     map(bol, new_cmpd_pk);
1613     map(cmp, new_cmpd_pk);
1614 
1615     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1616   }
1617   _sw->_packset.remove(cmovd_pk);
1618   _sw->_packset.remove(bool_pk);
1619   _sw->_packset.remove(cmpd_pk);
1620   _sw->_packset.append(new_cmpd_pk);
1621   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1622   return new_cmpd_pk;
1623 }
1624 
1625 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1626   Node* cmpd0 = cmpd_pk->at(0);
1627   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1628   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1629   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1630   Node* in1 = cmpd0->in(1);
1631   Node* in2 = cmpd0->in(2);
1632   Node_List* in1_pk = _sw->my_pack(in1);
1633   Node_List* in2_pk = _sw->my_pack(in2);
1634 
1635   if (in1_pk != NULL && in1_pk->size() != cmpd_pk->size()
1636     || in2_pk != NULL && in2_pk->size() != cmpd_pk->size() ) {
1637     return false;
1638   }
1639 
1640   // test if "all" in1 are in the same pack or the same node
1641   if (in1_pk == NULL) {
1642     for (uint j = 1; j < cmpd_pk->size(); j++) {
1643       if (cmpd_pk->at(j)->in(1) != in1) {
1644         return false;
1645       }
1646     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1647   }
1648   // test if "all" in2 are in the same pack or the same node
1649   if (in2_pk == NULL) {
1650     for (uint j = 1; j < cmpd_pk->size(); j++) {
1651       if (cmpd_pk->at(j)->in(2) != in2) {
1652         return false;
1653       }
1654     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1655   }
1656   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1657   int cmovd_ind1, cmovd_ind2;
1658   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1659    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1660       cmovd_ind1 = CMoveNode::IfFalse;
1661       cmovd_ind2 = CMoveNode::IfTrue;
1662   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1663           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1664       cmovd_ind2 = CMoveNode::IfFalse;
1665       cmovd_ind1 = CMoveNode::IfTrue;
1666   }
1667   else {
1668     return false;
1669   }
1670 
1671   for (uint j = 1; j < cmpd_pk->size(); j++) {
1672     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1673         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1674         return false;
1675     }//if
1676   }
1677   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1678   return true;
1679 }
1680 
1681 //------------------------------implemented---------------------------
1682 // Can code be generated for pack p?
1683 bool SuperWord::implemented(Node_List* p) {
1684   bool retValue = false;
1685   Node* p0 = p->at(0);
1686   if (p0 != NULL) {
1687     int opc = p0->Opcode();
1688     uint size = p->size();
1689     if (p0->is_reduction()) {
1690       const Type *arith_type = p0->bottom_type();
1691       // Length 2 reductions of INT/LONG do not offer performance benefits
1692       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1693         retValue = false;
1694       } else {
1695         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1696       }
1697     } else {
1698       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1699     }
1700     if (!retValue) {
1701       if (is_cmov_pack(p)) {
1702         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1703         return true;
1704       }
1705     }
1706   }
1707   return retValue;
1708 }
1709 
1710 bool SuperWord::is_cmov_pack(Node_List* p) {
1711   return _cmovev_kit.pack(p->at(0)) != NULL;
1712 }
1713 //------------------------------same_inputs--------------------------
1714 // For pack p, are all idx operands the same?
1715 bool SuperWord::same_inputs(Node_List* p, int idx) {
1716   Node* p0 = p->at(0);
1717   uint vlen = p->size();
1718   Node* p0_def = p0->in(idx);
1719   for (uint i = 1; i < vlen; i++) {
1720     Node* pi = p->at(i);
1721     Node* pi_def = pi->in(idx);
1722     if (p0_def != pi_def) {
1723       return false;
1724     }
1725   }
1726   return true;
1727 }
1728 
1729 //------------------------------profitable---------------------------
1730 // For pack p, are all operands and all uses (with in the block) vector?
1731 bool SuperWord::profitable(Node_List* p) {
1732   Node* p0 = p->at(0);
1733   uint start, end;
1734   VectorNode::vector_operands(p0, &start, &end);
1735 
1736   // Return false if some inputs are not vectors or vectors with different
1737   // size or alignment.
1738   // Also, for now, return false if not scalar promotion case when inputs are
1739   // the same. Later, implement PackNode and allow differing, non-vector inputs
1740   // (maybe just the ones from outside the block.)
1741   for (uint i = start; i < end; i++) {
1742     if (!is_vector_use(p0, i)) {
1743       return false;
1744     }
1745   }
1746   // Check if reductions are connected
1747   if (p0->is_reduction()) {
1748     Node* second_in = p0->in(2);
1749     Node_List* second_pk = my_pack(second_in);
1750     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
1751       // Remove reduction flag if no parent pack or if not enough work
1752       // to cover reduction expansion overhead
1753       p0->remove_flag(Node::Flag_is_reduction);
1754       return false;
1755     } else if (second_pk->size() != p->size()) {
1756       return false;
1757     }
1758   }
1759   if (VectorNode::is_shift(p0)) {
1760     // For now, return false if shift count is vector or not scalar promotion
1761     // case (different shift counts) because it is not supported yet.
1762     Node* cnt = p0->in(2);
1763     Node_List* cnt_pk = my_pack(cnt);
1764     if (cnt_pk != NULL)
1765       return false;
1766     if (!same_inputs(p, 2))
1767       return false;
1768   }
1769   if (!p0->is_Store()) {
1770     // For now, return false if not all uses are vector.
1771     // Later, implement ExtractNode and allow non-vector uses (maybe
1772     // just the ones outside the block.)
1773     for (uint i = 0; i < p->size(); i++) {
1774       Node* def = p->at(i);
1775       if (is_cmov_pack_internal_node(p, def)) {
1776         continue;
1777       }
1778       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1779         Node* use = def->fast_out(j);
1780         for (uint k = 0; k < use->req(); k++) {
1781           Node* n = use->in(k);
1782           if (def == n) {
1783             // reductions can be loop carried dependences
1784             if (def->is_reduction() && use->is_Phi())
1785               continue;
1786             if (!is_vector_use(use, k)) {
1787               return false;
1788             }
1789           }
1790         }
1791       }
1792     }
1793   }
1794   return true;
1795 }
1796 
1797 //------------------------------schedule---------------------------
1798 // Adjust the memory graph for the packed operations
1799 void SuperWord::schedule() {
1800 
1801   // Co-locate in the memory graph the members of each memory pack
1802   for (int i = 0; i < _packset.length(); i++) {
1803     co_locate_pack(_packset.at(i));
1804   }
1805 }
1806 
1807 //-------------------------------remove_and_insert-------------------
1808 // Remove "current" from its current position in the memory graph and insert
1809 // it after the appropriate insertion point (lip or uip).
1810 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1811                                   Node *uip, Unique_Node_List &sched_before) {
1812   Node* my_mem = current->in(MemNode::Memory);
1813   bool sched_up = sched_before.member(current);
1814 
1815   // remove current_store from its current position in the memmory graph
1816   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1817     Node* use = current->out(i);
1818     if (use->is_Mem()) {
1819       assert(use->in(MemNode::Memory) == current, "must be");
1820       if (use == prev) { // connect prev to my_mem
1821           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1822           --i; //deleted this edge; rescan position
1823       } else if (sched_before.member(use)) {
1824         if (!sched_up) { // Will be moved together with current
1825           _igvn.replace_input_of(use, MemNode::Memory, uip);
1826           --i; //deleted this edge; rescan position
1827         }
1828       } else {
1829         if (sched_up) { // Will be moved together with current
1830           _igvn.replace_input_of(use, MemNode::Memory, lip);
1831           --i; //deleted this edge; rescan position
1832         }
1833       }
1834     }
1835   }
1836 
1837   Node *insert_pt =  sched_up ?  uip : lip;
1838 
1839   // all uses of insert_pt's memory state should use current's instead
1840   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
1841     Node* use = insert_pt->out(i);
1842     if (use->is_Mem()) {
1843       assert(use->in(MemNode::Memory) == insert_pt, "must be");
1844       _igvn.replace_input_of(use, MemNode::Memory, current);
1845       --i; //deleted this edge; rescan position
1846     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
1847       uint pos; //lip (lower insert point) must be the last one in the memory slice
1848       for (pos=1; pos < use->req(); pos++) {
1849         if (use->in(pos) == insert_pt) break;
1850       }
1851       _igvn.replace_input_of(use, pos, current);
1852       --i;
1853     }
1854   }
1855 
1856   //connect current to insert_pt
1857   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
1858 }
1859 
1860 //------------------------------co_locate_pack----------------------------------
1861 // To schedule a store pack, we need to move any sandwiched memory ops either before
1862 // or after the pack, based upon dependence information:
1863 // (1) If any store in the pack depends on the sandwiched memory op, the
1864 //     sandwiched memory op must be scheduled BEFORE the pack;
1865 // (2) If a sandwiched memory op depends on any store in the pack, the
1866 //     sandwiched memory op must be scheduled AFTER the pack;
1867 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1868 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1869 //     scheduled before the pack, memB must also be scheduled before the pack;
1870 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1871 //     schedule this store AFTER the pack
1872 // (5) We know there is no dependence cycle, so there in no other case;
1873 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1874 //
1875 // To schedule a load pack, we use the memory state of either the first or the last load in
1876 // the pack, based on the dependence constraint.
1877 void SuperWord::co_locate_pack(Node_List* pk) {
1878   if (pk->at(0)->is_Store()) {
1879     MemNode* first     = executed_first(pk)->as_Mem();
1880     MemNode* last      = executed_last(pk)->as_Mem();
1881     Unique_Node_List schedule_before_pack;
1882     Unique_Node_List memops;
1883 
1884     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1885     MemNode* previous  = last;
1886     while (true) {
1887       assert(in_bb(current), "stay in block");
1888       memops.push(previous);
1889       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1890         Node* use = current->out(i);
1891         if (use->is_Mem() && use != previous)
1892           memops.push(use);
1893       }
1894       if (current == first) break;
1895       previous = current;
1896       current  = current->in(MemNode::Memory)->as_Mem();
1897     }
1898 
1899     // determine which memory operations should be scheduled before the pack
1900     for (uint i = 1; i < memops.size(); i++) {
1901       Node *s1 = memops.at(i);
1902       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1903         for (uint j = 0; j< i; j++) {
1904           Node *s2 = memops.at(j);
1905           if (!independent(s1, s2)) {
1906             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1907               schedule_before_pack.push(s1); // s1 must be scheduled before
1908               Node_List* mem_pk = my_pack(s1);
1909               if (mem_pk != NULL) {
1910                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1911                   Node* s = mem_pk->at(ii);  // follow partner
1912                   if (memops.member(s) && !schedule_before_pack.member(s))
1913                     schedule_before_pack.push(s);
1914                 }
1915               }
1916               break;
1917             }
1918           }
1919         }
1920       }
1921     }
1922 
1923     Node*    upper_insert_pt = first->in(MemNode::Memory);
1924     // Following code moves loads connected to upper_insert_pt below aliased stores.
1925     // Collect such loads here and reconnect them back to upper_insert_pt later.
1926     memops.clear();
1927     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
1928       Node* use = upper_insert_pt->out(i);
1929       if (use->is_Mem() && !use->is_Store()) {
1930         memops.push(use);
1931       }
1932     }
1933 
1934     MemNode* lower_insert_pt = last;
1935     previous                 = last; //previous store in pk
1936     current                  = last->in(MemNode::Memory)->as_Mem();
1937 
1938     // start scheduling from "last" to "first"
1939     while (true) {
1940       assert(in_bb(current), "stay in block");
1941       assert(in_pack(previous, pk), "previous stays in pack");
1942       Node* my_mem = current->in(MemNode::Memory);
1943 
1944       if (in_pack(current, pk)) {
1945         // Forward users of my memory state (except "previous) to my input memory state
1946         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1947           Node* use = current->out(i);
1948           if (use->is_Mem() && use != previous) {
1949             assert(use->in(MemNode::Memory) == current, "must be");
1950             if (schedule_before_pack.member(use)) {
1951               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
1952             } else {
1953               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
1954             }
1955             --i; // deleted this edge; rescan position
1956           }
1957         }
1958         previous = current;
1959       } else { // !in_pack(current, pk) ==> a sandwiched store
1960         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1961       }
1962 
1963       if (current == first) break;
1964       current = my_mem->as_Mem();
1965     } // end while
1966 
1967     // Reconnect loads back to upper_insert_pt.
1968     for (uint i = 0; i < memops.size(); i++) {
1969       Node *ld = memops.at(i);
1970       if (ld->in(MemNode::Memory) != upper_insert_pt) {
1971         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
1972       }
1973     }
1974   } else if (pk->at(0)->is_Load()) { //load
1975     // all loads in the pack should have the same memory state. By default,
1976     // we use the memory state of the last load. However, if any load could
1977     // not be moved down due to the dependence constraint, we use the memory
1978     // state of the first load.
1979     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1980     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1981     bool schedule_last = true;
1982     for (uint i = 0; i < pk->size(); i++) {
1983       Node* ld = pk->at(i);
1984       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1985            current=current->in(MemNode::Memory)) {
1986         assert(current != first_mem, "corrupted memory graph");
1987         if(current->is_Mem() && !independent(current, ld)){
1988           schedule_last = false; // a later store depends on this load
1989           break;
1990         }
1991       }
1992     }
1993 
1994     Node* mem_input = schedule_last ? last_mem : first_mem;
1995     _igvn.hash_delete(mem_input);
1996     // Give each load the same memory state
1997     for (uint i = 0; i < pk->size(); i++) {
1998       LoadNode* ld = pk->at(i)->as_Load();
1999       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2000     }
2001   }
2002 }
2003 
2004 #ifndef PRODUCT
2005 void SuperWord::print_loop(bool whole) {
2006   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2007   Node_List rpo_list;
2008   VectorSet visited(_arena);
2009   visited.set(lpt()->_head->_idx);
2010   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2011   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2012   if(whole) {
2013     tty->print_cr("\n Whole loop tree");
2014     _phase->dump();
2015     tty->print_cr(" End of whole loop tree\n");
2016   }
2017 }
2018 #endif
2019 
2020 //------------------------------output---------------------------
2021 // Convert packs into vector node operations
2022 void SuperWord::output() {
2023   if (_packset.length() == 0) return;
2024 
2025 #ifndef PRODUCT
2026   if (TraceLoopOpts) {
2027     tty->print("SuperWord::output    ");
2028     lpt()->dump_head();
2029   }
2030 #endif
2031 
2032   // MUST ENSURE main loop's initial value is properly aligned:
2033   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2034 
2035   align_initial_loop_index(align_to_ref());
2036 
2037   // Insert extract (unpack) operations for scalar uses
2038   for (int i = 0; i < _packset.length(); i++) {
2039     insert_extracts(_packset.at(i));
2040   }
2041 
2042   Compile* C = _phase->C;
2043   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2044   uint max_vlen_in_bytes = 0;
2045   uint max_vlen = 0;
2046 
2047   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2048 
2049   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2050 
2051   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2052 
2053   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2054     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2055     return;
2056   }
2057 
2058   for (int i = 0; i < _block.length(); i++) {
2059     Node* n = _block.at(i);
2060     Node_List* p = my_pack(n);
2061     if (p && n == executed_last(p)) {
2062       uint vlen = p->size();
2063       uint vlen_in_bytes = 0;
2064       Node* vn = NULL;
2065       Node* low_adr = p->at(0);
2066       Node* first   = executed_first(p);
2067       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2068       int   opc = n->Opcode();
2069       if (n->is_Load()) {
2070         Node* ctl = n->in(MemNode::Control);
2071         Node* mem = first->in(MemNode::Memory);
2072         SWPointer p1(n->as_Mem(), this, NULL, false);
2073         // Identify the memory dependency for the new loadVector node by
2074         // walking up through memory chain.
2075         // This is done to give flexibility to the new loadVector node so that
2076         // it can move above independent storeVector nodes.
2077         while (mem->is_StoreVector()) {
2078           SWPointer p2(mem->as_Mem(), this, NULL, false);
2079           int cmp = p1.cmp(p2);
2080           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2081             mem = mem->in(MemNode::Memory);
2082           } else {
2083             break; // dependent memory
2084           }
2085         }
2086         Node* adr = low_adr->in(MemNode::Address);
2087         const TypePtr* atyp = n->adr_type();
2088         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2089         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2090       } else if (n->is_Store()) {
2091         // Promote value to be stored to vector
2092         Node* val = vector_opd(p, MemNode::ValueIn);
2093         if (val == NULL) {
2094           if (do_reserve_copy()) {
2095             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2096             return; //and reverse to backup IG
2097           }
2098           ShouldNotReachHere();
2099         }
2100 
2101         Node* ctl = n->in(MemNode::Control);
2102         Node* mem = first->in(MemNode::Memory);
2103         Node* adr = low_adr->in(MemNode::Address);
2104         const TypePtr* atyp = n->adr_type();
2105         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2106         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2107       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2108         // Promote operands to vector
2109         Node* in1 = NULL;
2110         bool node_isa_reduction = n->is_reduction();
2111         if (node_isa_reduction) {
2112           // the input to the first reduction operation is retained
2113           in1 = low_adr->in(1);
2114         } else {
2115           in1 = vector_opd(p, 1);
2116           if (in1 == NULL) {
2117             if (do_reserve_copy()) {
2118               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2119               return; //and reverse to backup IG
2120             }
2121             ShouldNotReachHere();
2122           }
2123         }
2124         Node* in2 = vector_opd(p, 2);
2125         if (in2 == NULL) {
2126           if (do_reserve_copy()) {
2127             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2128             return; //and reverse to backup IG
2129           }
2130           ShouldNotReachHere();
2131         }
2132         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2133           // Move invariant vector input into second position to avoid register spilling.
2134           Node* tmp = in1;
2135           in1 = in2;
2136           in2 = tmp;
2137         }
2138         if (node_isa_reduction) {
2139           const Type *arith_type = n->bottom_type();
2140           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2141           if (in2->is_Load()) {
2142             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2143           } else {
2144             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2145           }
2146         } else {
2147           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2148           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2149         }
2150       } else if (opc == Op_SqrtD || opc == Op_AbsF || opc == Op_AbsD || opc == Op_NegF || opc == Op_NegD) {
2151         // Promote operand to vector (Sqrt/Abs/Neg are 2 address instructions)
2152         Node* in = vector_opd(p, 1);
2153         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2154         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2155       } else if (is_cmov_pack(p)) {
2156         if (!n->is_CMove()) {
2157           continue;
2158         }
2159         // place here CMoveVDNode
2160         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2161         Node* bol = n->in(CMoveNode::Condition);
2162         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2163           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2164           bol = bol->in(1); //may be ExtractNode
2165         }
2166 
2167         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2168         if (!bol->is_Bool()) {
2169           if (do_reserve_copy()) {
2170             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2171             return; //and reverse to backup IG
2172           }
2173           ShouldNotReachHere();
2174         }
2175 
2176         int cond = (int)bol->as_Bool()->_test._test;
2177         Node* in_cc  = _igvn.intcon(cond);
2178         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2179         Node* cc = bol->clone();
2180         cc->set_req(1, in_cc);
2181         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2182 
2183         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2184         if (src1 == NULL) {
2185           if (do_reserve_copy()) {
2186             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2187             return; //and reverse to backup IG
2188           }
2189           ShouldNotReachHere();
2190         }
2191         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2192         if (src2 == NULL) {
2193           if (do_reserve_copy()) {
2194             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2195             return; //and reverse to backup IG
2196           }
2197           ShouldNotReachHere();
2198         }
2199         BasicType bt = velt_basic_type(n);
2200         const TypeVect* vt = TypeVect::make(bt, vlen);
2201         vn = new CMoveVDNode(cc, src1, src2, vt);
2202         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2203       } else {
2204         if (do_reserve_copy()) {
2205           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2206           return; //and reverse to backup IG
2207         }
2208         ShouldNotReachHere();
2209       }
2210 
2211       assert(vn != NULL, "sanity");
2212       if (vn == NULL) {
2213         if (do_reserve_copy()){
2214           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2215           return; //and reverse to backup IG
2216         }
2217         ShouldNotReachHere();
2218       }
2219 
2220       _igvn.register_new_node_with_optimizer(vn);
2221       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2222       for (uint j = 0; j < p->size(); j++) {
2223         Node* pm = p->at(j);
2224         _igvn.replace_node(pm, vn);
2225       }
2226       _igvn._worklist.push(vn);
2227 
2228       if (vlen_in_bytes > max_vlen_in_bytes) {
2229         max_vlen = vlen;
2230         max_vlen_in_bytes = vlen_in_bytes;
2231       }
2232 #ifdef ASSERT
2233       if (TraceNewVectors) {
2234         tty->print("new Vector node: ");
2235         vn->dump();
2236       }
2237 #endif
2238     }
2239   }//for (int i = 0; i < _block.length(); i++)
2240 
2241   C->set_max_vector_size(max_vlen_in_bytes);
2242 
2243   if (SuperWordLoopUnrollAnalysis) {
2244     if (cl->has_passed_slp()) {
2245       uint slp_max_unroll_factor = cl->slp_max_unroll();
2246       if (slp_max_unroll_factor == max_vlen) {
2247         if (TraceSuperWordLoopUnrollAnalysis) {
2248           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2249         }
2250         // For atomic unrolled loops which are vector mapped, instigate more unrolling.
2251         cl->set_notpassed_slp();
2252         // if vector resources are limited, do not allow additional unrolling
2253         if (FLOATPRESSURE > 8) {
2254           C->set_major_progress();
2255         }
2256         cl->mark_do_unroll_only();
2257         if (do_reserve_copy()) {
2258           cl->mark_loop_vectorized();
2259         }
2260       }
2261     }
2262   }
2263 
2264   if (do_reserve_copy()) {
2265     make_reversable.use_new();
2266   }
2267   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2268   return;
2269 }
2270 
2271 //------------------------------vector_opd---------------------------
2272 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
2273 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2274   Node* p0 = p->at(0);
2275   uint vlen = p->size();
2276   Node* opd = p0->in(opd_idx);
2277 
2278   if (same_inputs(p, opd_idx)) {
2279     if (opd->is_Vector() || opd->is_LoadVector()) {
2280       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2281       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2282         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2283         return NULL;
2284       }
2285       return opd; // input is matching vector
2286     }
2287     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2288       Compile* C = _phase->C;
2289       Node* cnt = opd;
2290       // Vector instructions do not mask shift count, do it here.
2291       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2292       const TypeInt* t = opd->find_int_type();
2293       if (t != NULL && t->is_con()) {
2294         juint shift = t->get_con();
2295         if (shift > mask) { // Unsigned cmp
2296           cnt = ConNode::make(TypeInt::make(shift & mask));
2297         }
2298       } else {
2299         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2300           cnt = ConNode::make(TypeInt::make(mask));
2301           _igvn.register_new_node_with_optimizer(cnt);
2302           cnt = new AndINode(opd, cnt);
2303           _igvn.register_new_node_with_optimizer(cnt);
2304           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2305         }
2306         assert(opd->bottom_type()->isa_int(), "int type only");
2307         if (!opd->bottom_type()->isa_int()) {
2308           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2309           return NULL;
2310         }
2311         // Move non constant shift count into vector register.
2312         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2313       }
2314       if (cnt != opd) {
2315         _igvn.register_new_node_with_optimizer(cnt);
2316         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2317       }
2318       return cnt;
2319     }
2320     assert(!opd->is_StoreVector(), "such vector is not expected here");
2321     if (opd->is_StoreVector()) {
2322       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2323       return NULL;
2324     }
2325     // Convert scalar input to vector with the same number of elements as
2326     // p0's vector. Use p0's type because size of operand's container in
2327     // vector should match p0's size regardless operand's size.
2328     const Type* p0_t = velt_type(p0);
2329     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2330 
2331     _igvn.register_new_node_with_optimizer(vn);
2332     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2333 #ifdef ASSERT
2334     if (TraceNewVectors) {
2335       tty->print("new Vector node: ");
2336       vn->dump();
2337     }
2338 #endif
2339     return vn;
2340   }
2341 
2342   // Insert pack operation
2343   BasicType bt = velt_basic_type(p0);
2344   PackNode* pk = PackNode::make(opd, vlen, bt);
2345   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2346 
2347   for (uint i = 1; i < vlen; i++) {
2348     Node* pi = p->at(i);
2349     Node* in = pi->in(opd_idx);
2350     assert(my_pack(in) == NULL, "Should already have been unpacked");
2351     if (my_pack(in) != NULL) {
2352       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2353       return NULL;
2354     }
2355     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2356     pk->add_opd(in);
2357   }
2358   _igvn.register_new_node_with_optimizer(pk);
2359   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2360 #ifdef ASSERT
2361   if (TraceNewVectors) {
2362     tty->print("new Vector node: ");
2363     pk->dump();
2364   }
2365 #endif
2366   return pk;
2367 }
2368 
2369 //------------------------------insert_extracts---------------------------
2370 // If a use of pack p is not a vector use, then replace the
2371 // use with an extract operation.
2372 void SuperWord::insert_extracts(Node_List* p) {
2373   if (p->at(0)->is_Store()) return;
2374   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2375 
2376   // Inspect each use of each pack member.  For each use that is
2377   // not a vector use, replace the use with an extract operation.
2378 
2379   for (uint i = 0; i < p->size(); i++) {
2380     Node* def = p->at(i);
2381     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2382       Node* use = def->fast_out(j);
2383       for (uint k = 0; k < use->req(); k++) {
2384         Node* n = use->in(k);
2385         if (def == n) {
2386           Node_List* u_pk = my_pack(use);
2387           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2388               _n_idx_list.push(use, k);
2389           }
2390         }
2391       }
2392     }
2393   }
2394 
2395   while (_n_idx_list.is_nonempty()) {
2396     Node* use = _n_idx_list.node();
2397     int   idx = _n_idx_list.index();
2398     _n_idx_list.pop();
2399     Node* def = use->in(idx);
2400 
2401     if (def->is_reduction()) continue;
2402 
2403     // Insert extract operation
2404     _igvn.hash_delete(def);
2405     int def_pos = alignment(def) / data_size(def);
2406 
2407     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2408     _igvn.register_new_node_with_optimizer(ex);
2409     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2410     _igvn.replace_input_of(use, idx, ex);
2411     _igvn._worklist.push(def);
2412 
2413     bb_insert_after(ex, bb_idx(def));
2414     set_velt_type(ex, velt_type(def));
2415   }
2416 }
2417 
2418 //------------------------------is_vector_use---------------------------
2419 // Is use->in(u_idx) a vector use?
2420 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2421   Node_List* u_pk = my_pack(use);
2422   if (u_pk == NULL) return false;
2423   if (use->is_reduction()) return true;
2424   Node* def = use->in(u_idx);
2425   Node_List* d_pk = my_pack(def);
2426   if (d_pk == NULL) {
2427     // check for scalar promotion
2428     Node* n = u_pk->at(0)->in(u_idx);
2429     for (uint i = 1; i < u_pk->size(); i++) {
2430       if (u_pk->at(i)->in(u_idx) != n) return false;
2431     }
2432     return true;
2433   }
2434   if (u_pk->size() != d_pk->size())
2435     return false;
2436   for (uint i = 0; i < u_pk->size(); i++) {
2437     Node* ui = u_pk->at(i);
2438     Node* di = d_pk->at(i);
2439     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2440       return false;
2441   }
2442   return true;
2443 }
2444 
2445 //------------------------------construct_bb---------------------------
2446 // Construct reverse postorder list of block members
2447 bool SuperWord::construct_bb() {
2448   Node* entry = bb();
2449 
2450   assert(_stk.length() == 0,            "stk is empty");
2451   assert(_block.length() == 0,          "block is empty");
2452   assert(_data_entry.length() == 0,     "data_entry is empty");
2453   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2454   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2455 
2456   // Find non-control nodes with no inputs from within block,
2457   // create a temporary map from node _idx to bb_idx for use
2458   // by the visited and post_visited sets,
2459   // and count number of nodes in block.
2460   int bb_ct = 0;
2461   for (uint i = 0; i < lpt()->_body.size(); i++) {
2462     Node *n = lpt()->_body.at(i);
2463     set_bb_idx(n, i); // Create a temporary map
2464     if (in_bb(n)) {
2465       if (n->is_LoadStore() || n->is_MergeMem() ||
2466           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2467         // Bailout if the loop has LoadStore, MergeMem or data Proj
2468         // nodes. Superword optimization does not work with them.
2469         return false;
2470       }
2471       bb_ct++;
2472       if (!n->is_CFG()) {
2473         bool found = false;
2474         for (uint j = 0; j < n->req(); j++) {
2475           Node* def = n->in(j);
2476           if (def && in_bb(def)) {
2477             found = true;
2478             break;
2479           }
2480         }
2481         if (!found) {
2482           assert(n != entry, "can't be entry");
2483           _data_entry.push(n);
2484         }
2485       }
2486     }
2487   }
2488 
2489   // Find memory slices (head and tail)
2490   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2491     Node *n = lp()->fast_out(i);
2492     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2493       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2494       if (n_tail != n->in(LoopNode::EntryControl)) {
2495         if (!n_tail->is_Mem()) {
2496           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2497           return false; // Bailout
2498         }
2499         _mem_slice_head.push(n);
2500         _mem_slice_tail.push(n_tail);
2501       }
2502     }
2503   }
2504 
2505   // Create an RPO list of nodes in block
2506 
2507   visited_clear();
2508   post_visited_clear();
2509 
2510   // Push all non-control nodes with no inputs from within block, then control entry
2511   for (int j = 0; j < _data_entry.length(); j++) {
2512     Node* n = _data_entry.at(j);
2513     visited_set(n);
2514     _stk.push(n);
2515   }
2516   visited_set(entry);
2517   _stk.push(entry);
2518 
2519   // Do a depth first walk over out edges
2520   int rpo_idx = bb_ct - 1;
2521   int size;
2522   int reduction_uses = 0;
2523   while ((size = _stk.length()) > 0) {
2524     Node* n = _stk.top(); // Leave node on stack
2525     if (!visited_test_set(n)) {
2526       // forward arc in graph
2527     } else if (!post_visited_test(n)) {
2528       // cross or back arc
2529       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2530         Node *use = n->fast_out(i);
2531         if (in_bb(use) && !visited_test(use) &&
2532             // Don't go around backedge
2533             (!use->is_Phi() || n == entry)) {
2534           if (use->is_reduction()) {
2535             // First see if we can map the reduction on the given system we are on, then
2536             // make a data entry operation for each reduction we see.
2537             BasicType bt = use->bottom_type()->basic_type();
2538             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2539               reduction_uses++;
2540             }
2541           }
2542           _stk.push(use);
2543         }
2544       }
2545       if (_stk.length() == size) {
2546         // There were no additional uses, post visit node now
2547         _stk.pop(); // Remove node from stack
2548         assert(rpo_idx >= 0, "");
2549         _block.at_put_grow(rpo_idx, n);
2550         rpo_idx--;
2551         post_visited_set(n);
2552         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2553       }
2554     } else {
2555       _stk.pop(); // Remove post-visited node from stack
2556     }
2557   }//while
2558 
2559   int ii_current = -1;
2560   unsigned int load_idx = (unsigned int)-1;
2561   _ii_order.clear();
2562   // Create real map of block indices for nodes
2563   for (int j = 0; j < _block.length(); j++) {
2564     Node* n = _block.at(j);
2565     set_bb_idx(n, j);
2566     if (_do_vector_loop && n->is_Load()) {
2567       if (ii_current == -1) {
2568         ii_current = _clone_map.gen(n->_idx);
2569         _ii_order.push(ii_current);
2570         load_idx = _clone_map.idx(n->_idx);
2571       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2572         ii_current = _clone_map.gen(n->_idx);
2573         _ii_order.push(ii_current);
2574       }
2575     }
2576   }//for
2577 
2578   // Ensure extra info is allocated.
2579   initialize_bb();
2580 
2581 #ifndef PRODUCT
2582   if (_vector_loop_debug && _ii_order.length() > 0) {
2583     tty->print("SuperWord::construct_bb: List of generations: ");
2584     for (int jj = 0; jj < _ii_order.length(); ++jj) {
2585       tty->print("  %d:%d", jj, _ii_order.at(jj));
2586     }
2587     tty->print_cr(" ");
2588   }
2589   if (TraceSuperWord) {
2590     print_bb();
2591     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2592     for (int m = 0; m < _data_entry.length(); m++) {
2593       tty->print("%3d ", m);
2594       _data_entry.at(m)->dump();
2595     }
2596     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2597     for (int m = 0; m < _mem_slice_head.length(); m++) {
2598       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2599       tty->print("    ");    _mem_slice_tail.at(m)->dump();
2600     }
2601   }
2602 #endif
2603   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2604   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2605 }
2606 
2607 //------------------------------initialize_bb---------------------------
2608 // Initialize per node info
2609 void SuperWord::initialize_bb() {
2610   Node* last = _block.at(_block.length() - 1);
2611   grow_node_info(bb_idx(last));
2612 }
2613 
2614 //------------------------------bb_insert_after---------------------------
2615 // Insert n into block after pos
2616 void SuperWord::bb_insert_after(Node* n, int pos) {
2617   int n_pos = pos + 1;
2618   // Make room
2619   for (int i = _block.length() - 1; i >= n_pos; i--) {
2620     _block.at_put_grow(i+1, _block.at(i));
2621   }
2622   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
2623     _node_info.at_put_grow(j+1, _node_info.at(j));
2624   }
2625   // Set value
2626   _block.at_put_grow(n_pos, n);
2627   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
2628   // Adjust map from node->_idx to _block index
2629   for (int i = n_pos; i < _block.length(); i++) {
2630     set_bb_idx(_block.at(i), i);
2631   }
2632 }
2633 
2634 //------------------------------compute_max_depth---------------------------
2635 // Compute max depth for expressions from beginning of block
2636 // Use to prune search paths during test for independence.
2637 void SuperWord::compute_max_depth() {
2638   int ct = 0;
2639   bool again;
2640   do {
2641     again = false;
2642     for (int i = 0; i < _block.length(); i++) {
2643       Node* n = _block.at(i);
2644       if (!n->is_Phi()) {
2645         int d_orig = depth(n);
2646         int d_in   = 0;
2647         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
2648           Node* pred = preds.current();
2649           if (in_bb(pred)) {
2650             d_in = MAX2(d_in, depth(pred));
2651           }
2652         }
2653         if (d_in + 1 != d_orig) {
2654           set_depth(n, d_in + 1);
2655           again = true;
2656         }
2657       }
2658     }
2659     ct++;
2660   } while (again);
2661 
2662   if (TraceSuperWord && Verbose) {
2663     tty->print_cr("compute_max_depth iterated: %d times", ct);
2664   }
2665 }
2666 
2667 //-------------------------compute_vector_element_type-----------------------
2668 // Compute necessary vector element type for expressions
2669 // This propagates backwards a narrower integer type when the
2670 // upper bits of the value are not needed.
2671 // Example:  char a,b,c;  a = b + c;
2672 // Normally the type of the add is integer, but for packed character
2673 // operations the type of the add needs to be char.
2674 void SuperWord::compute_vector_element_type() {
2675   if (TraceSuperWord && Verbose) {
2676     tty->print_cr("\ncompute_velt_type:");
2677   }
2678 
2679   // Initial type
2680   for (int i = 0; i < _block.length(); i++) {
2681     Node* n = _block.at(i);
2682     set_velt_type(n, container_type(n));
2683   }
2684 
2685   // Propagate integer narrowed type backwards through operations
2686   // that don't depend on higher order bits
2687   for (int i = _block.length() - 1; i >= 0; i--) {
2688     Node* n = _block.at(i);
2689     // Only integer types need be examined
2690     const Type* vtn = velt_type(n);
2691     if (vtn->basic_type() == T_INT) {
2692       uint start, end;
2693       VectorNode::vector_operands(n, &start, &end);
2694 
2695       for (uint j = start; j < end; j++) {
2696         Node* in  = n->in(j);
2697         // Don't propagate through a memory
2698         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
2699             data_size(n) < data_size(in)) {
2700           bool same_type = true;
2701           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
2702             Node *use = in->fast_out(k);
2703             if (!in_bb(use) || !same_velt_type(use, n)) {
2704               same_type = false;
2705               break;
2706             }
2707           }
2708           if (same_type) {
2709             // For right shifts of small integer types (bool, byte, char, short)
2710             // we need precise information about sign-ness. Only Load nodes have
2711             // this information because Store nodes are the same for signed and
2712             // unsigned values. And any arithmetic operation after a load may
2713             // expand a value to signed Int so such right shifts can't be used
2714             // because vector elements do not have upper bits of Int.
2715             const Type* vt = vtn;
2716             if (VectorNode::is_shift(in)) {
2717               Node* load = in->in(1);
2718               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
2719                 vt = velt_type(load);
2720               } else if (in->Opcode() != Op_LShiftI) {
2721                 // Widen type to Int to avoid creation of right shift vector
2722                 // (align + data_size(s1) check in stmts_can_pack() will fail).
2723                 // Note, left shifts work regardless type.
2724                 vt = TypeInt::INT;
2725               }
2726             }
2727             set_velt_type(in, vt);
2728           }
2729         }
2730       }
2731     }
2732   }
2733 #ifndef PRODUCT
2734   if (TraceSuperWord && Verbose) {
2735     for (int i = 0; i < _block.length(); i++) {
2736       Node* n = _block.at(i);
2737       velt_type(n)->dump();
2738       tty->print("\t");
2739       n->dump();
2740     }
2741   }
2742 #endif
2743 }
2744 
2745 //------------------------------memory_alignment---------------------------
2746 // Alignment within a vector memory reference
2747 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
2748   #ifndef PRODUCT
2749     if(TraceSuperWord && Verbose) {
2750       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
2751     }
2752   #endif
2753   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
2754   SWPointer p(s, this, NULL, false);
2755   if (!p.valid()) {
2756     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
2757     return bottom_align;
2758   }
2759   int vw = vector_width_in_bytes(s);
2760   if (vw < 2) {
2761     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
2762     return bottom_align; // No vectors for this type
2763   }
2764   int offset  = p.offset_in_bytes();
2765   offset     += iv_adjust*p.memory_size();
2766   int off_rem = offset % vw;
2767   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
2768   if (TraceSuperWord && Verbose) {
2769     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
2770   }
2771   return off_mod;
2772 }
2773 
2774 //---------------------------container_type---------------------------
2775 // Smallest type containing range of values
2776 const Type* SuperWord::container_type(Node* n) {
2777   if (n->is_Mem()) {
2778     BasicType bt = n->as_Mem()->memory_type();
2779     if (n->is_Store() && (bt == T_CHAR)) {
2780       // Use T_SHORT type instead of T_CHAR for stored values because any
2781       // preceding arithmetic operation extends values to signed Int.
2782       bt = T_SHORT;
2783     }
2784     if (n->Opcode() == Op_LoadUB) {
2785       // Adjust type for unsigned byte loads, it is important for right shifts.
2786       // T_BOOLEAN is used because there is no basic type representing type
2787       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
2788       // size (one byte) and sign is important.
2789       bt = T_BOOLEAN;
2790     }
2791     return Type::get_const_basic_type(bt);
2792   }
2793   const Type* t = _igvn.type(n);
2794   if (t->basic_type() == T_INT) {
2795     // A narrow type of arithmetic operations will be determined by
2796     // propagating the type of memory operations.
2797     return TypeInt::INT;
2798   }
2799   return t;
2800 }
2801 
2802 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
2803   const Type* vt1 = velt_type(n1);
2804   const Type* vt2 = velt_type(n2);
2805   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
2806     // Compare vectors element sizes for integer types.
2807     return data_size(n1) == data_size(n2);
2808   }
2809   return vt1 == vt2;
2810 }
2811 
2812 //------------------------------in_packset---------------------------
2813 // Are s1 and s2 in a pack pair and ordered as s1,s2?
2814 bool SuperWord::in_packset(Node* s1, Node* s2) {
2815   for (int i = 0; i < _packset.length(); i++) {
2816     Node_List* p = _packset.at(i);
2817     assert(p->size() == 2, "must be");
2818     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
2819       return true;
2820     }
2821   }
2822   return false;
2823 }
2824 
2825 //------------------------------in_pack---------------------------
2826 // Is s in pack p?
2827 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
2828   for (uint i = 0; i < p->size(); i++) {
2829     if (p->at(i) == s) {
2830       return p;
2831     }
2832   }
2833   return NULL;
2834 }
2835 
2836 //------------------------------remove_pack_at---------------------------
2837 // Remove the pack at position pos in the packset
2838 void SuperWord::remove_pack_at(int pos) {
2839   Node_List* p = _packset.at(pos);
2840   for (uint i = 0; i < p->size(); i++) {
2841     Node* s = p->at(i);
2842     set_my_pack(s, NULL);
2843   }
2844   _packset.remove_at(pos);
2845 }
2846 
2847 void SuperWord::packset_sort(int n) {
2848   // simple bubble sort so that we capitalize with O(n) when its already sorted
2849   while (n != 0) {
2850     bool swapped = false;
2851     for (int i = 1; i < n; i++) {
2852       Node_List* q_low = _packset.at(i-1);
2853       Node_List* q_i = _packset.at(i);
2854 
2855       // only swap when we find something to swap
2856       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
2857         Node_List* t = q_i;
2858         *(_packset.adr_at(i)) = q_low;
2859         *(_packset.adr_at(i-1)) = q_i;
2860         swapped = true;
2861       }
2862     }
2863     if (swapped == false) break;
2864     n--;
2865   }
2866 }
2867 
2868 //------------------------------executed_first---------------------------
2869 // Return the node executed first in pack p.  Uses the RPO block list
2870 // to determine order.
2871 Node* SuperWord::executed_first(Node_List* p) {
2872   Node* n = p->at(0);
2873   int n_rpo = bb_idx(n);
2874   for (uint i = 1; i < p->size(); i++) {
2875     Node* s = p->at(i);
2876     int s_rpo = bb_idx(s);
2877     if (s_rpo < n_rpo) {
2878       n = s;
2879       n_rpo = s_rpo;
2880     }
2881   }
2882   return n;
2883 }
2884 
2885 //------------------------------executed_last---------------------------
2886 // Return the node executed last in pack p.
2887 Node* SuperWord::executed_last(Node_List* p) {
2888   Node* n = p->at(0);
2889   int n_rpo = bb_idx(n);
2890   for (uint i = 1; i < p->size(); i++) {
2891     Node* s = p->at(i);
2892     int s_rpo = bb_idx(s);
2893     if (s_rpo > n_rpo) {
2894       n = s;
2895       n_rpo = s_rpo;
2896     }
2897   }
2898   return n;
2899 }
2900 
2901 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
2902   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
2903   for (uint i = 0; i < p->size(); i++) {
2904     Node* n = p->at(i);
2905     assert(n->is_Load(), "only meaningful for loads");
2906     if (!n->depends_only_on_test()) {
2907       dep = LoadNode::Pinned;
2908     }
2909   }
2910   return dep;
2911 }
2912 
2913 
2914 //----------------------------align_initial_loop_index---------------------------
2915 // Adjust pre-loop limit so that in main loop, a load/store reference
2916 // to align_to_ref will be a position zero in the vector.
2917 //   (iv + k) mod vector_align == 0
2918 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
2919   CountedLoopNode *main_head = lp()->as_CountedLoop();
2920   assert(main_head->is_main_loop(), "");
2921   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
2922   assert(pre_end != NULL, "we must have a correct pre-loop");
2923   Node *pre_opaq1 = pre_end->limit();
2924   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
2925   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2926   Node *lim0 = pre_opaq->in(1);
2927 
2928   // Where we put new limit calculations
2929   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2930 
2931   // Ensure the original loop limit is available from the
2932   // pre-loop Opaque1 node.
2933   Node *orig_limit = pre_opaq->original_loop_limit();
2934   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
2935 
2936   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
2937   assert(align_to_ref_p.valid(), "sanity");
2938 
2939   // Given:
2940   //     lim0 == original pre loop limit
2941   //     V == v_align (power of 2)
2942   //     invar == extra invariant piece of the address expression
2943   //     e == offset [ +/- invar ]
2944   //
2945   // When reassociating expressions involving '%' the basic rules are:
2946   //     (a - b) % k == 0   =>  a % k == b % k
2947   // and:
2948   //     (a + b) % k == 0   =>  a % k == (k - b) % k
2949   //
2950   // For stride > 0 && scale > 0,
2951   //   Derive the new pre-loop limit "lim" such that the two constraints:
2952   //     (1) lim = lim0 + N           (where N is some positive integer < V)
2953   //     (2) (e + lim) % V == 0
2954   //   are true.
2955   //
2956   //   Substituting (1) into (2),
2957   //     (e + lim0 + N) % V == 0
2958   //   solve for N:
2959   //     N = (V - (e + lim0)) % V
2960   //   substitute back into (1), so that new limit
2961   //     lim = lim0 + (V - (e + lim0)) % V
2962   //
2963   // For stride > 0 && scale < 0
2964   //   Constraints:
2965   //     lim = lim0 + N
2966   //     (e - lim) % V == 0
2967   //   Solving for lim:
2968   //     (e - lim0 - N) % V == 0
2969   //     N = (e - lim0) % V
2970   //     lim = lim0 + (e - lim0) % V
2971   //
2972   // For stride < 0 && scale > 0
2973   //   Constraints:
2974   //     lim = lim0 - N
2975   //     (e + lim) % V == 0
2976   //   Solving for lim:
2977   //     (e + lim0 - N) % V == 0
2978   //     N = (e + lim0) % V
2979   //     lim = lim0 - (e + lim0) % V
2980   //
2981   // For stride < 0 && scale < 0
2982   //   Constraints:
2983   //     lim = lim0 - N
2984   //     (e - lim) % V == 0
2985   //   Solving for lim:
2986   //     (e - lim0 + N) % V == 0
2987   //     N = (V - (e - lim0)) % V
2988   //     lim = lim0 - (V - (e - lim0)) % V
2989 
2990   int vw = vector_width_in_bytes(align_to_ref);
2991   int stride   = iv_stride();
2992   int scale    = align_to_ref_p.scale_in_bytes();
2993   int elt_size = align_to_ref_p.memory_size();
2994   int v_align  = vw / elt_size;
2995   assert(v_align > 1, "sanity");
2996   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
2997   Node *offsn  = _igvn.intcon(offset);
2998 
2999   Node *e = offsn;
3000   if (align_to_ref_p.invar() != NULL) {
3001     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3002     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3003     Node* aref     = new URShiftINode(align_to_ref_p.invar(), log2_elt);
3004     _igvn.register_new_node_with_optimizer(aref);
3005     _phase->set_ctrl(aref, pre_ctrl);
3006     if (align_to_ref_p.negate_invar()) {
3007       e = new SubINode(e, aref);
3008     } else {
3009       e = new AddINode(e, aref);
3010     }
3011     _igvn.register_new_node_with_optimizer(e);
3012     _phase->set_ctrl(e, pre_ctrl);
3013   }
3014   if (vw > ObjectAlignmentInBytes) {
3015     // incorporate base e +/- base && Mask >>> log2(elt)
3016     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
3017     _igvn.register_new_node_with_optimizer(xbase);
3018 #ifdef _LP64
3019     xbase  = new ConvL2INode(xbase);
3020     _igvn.register_new_node_with_optimizer(xbase);
3021 #endif
3022     Node* mask = _igvn.intcon(vw-1);
3023     Node* masked_xbase  = new AndINode(xbase, mask);
3024     _igvn.register_new_node_with_optimizer(masked_xbase);
3025     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3026     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3027     _igvn.register_new_node_with_optimizer(bref);
3028     _phase->set_ctrl(bref, pre_ctrl);
3029     e = new AddINode(e, bref);
3030     _igvn.register_new_node_with_optimizer(e);
3031     _phase->set_ctrl(e, pre_ctrl);
3032   }
3033 
3034   // compute e +/- lim0
3035   if (scale < 0) {
3036     e = new SubINode(e, lim0);
3037   } else {
3038     e = new AddINode(e, lim0);
3039   }
3040   _igvn.register_new_node_with_optimizer(e);
3041   _phase->set_ctrl(e, pre_ctrl);
3042 
3043   if (stride * scale > 0) {
3044     // compute V - (e +/- lim0)
3045     Node* va  = _igvn.intcon(v_align);
3046     e = new SubINode(va, e);
3047     _igvn.register_new_node_with_optimizer(e);
3048     _phase->set_ctrl(e, pre_ctrl);
3049   }
3050   // compute N = (exp) % V
3051   Node* va_msk = _igvn.intcon(v_align - 1);
3052   Node* N = new AndINode(e, va_msk);
3053   _igvn.register_new_node_with_optimizer(N);
3054   _phase->set_ctrl(N, pre_ctrl);
3055 
3056   //   substitute back into (1), so that new limit
3057   //     lim = lim0 + N
3058   Node* lim;
3059   if (stride < 0) {
3060     lim = new SubINode(lim0, N);
3061   } else {
3062     lim = new AddINode(lim0, N);
3063   }
3064   _igvn.register_new_node_with_optimizer(lim);
3065   _phase->set_ctrl(lim, pre_ctrl);
3066   Node* constrained =
3067     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3068                  : (Node*) new MaxINode(lim, orig_limit);
3069   _igvn.register_new_node_with_optimizer(constrained);
3070   _phase->set_ctrl(constrained, pre_ctrl);
3071   _igvn.hash_delete(pre_opaq);
3072   pre_opaq->set_req(1, constrained);
3073 }
3074 
3075 //----------------------------get_pre_loop_end---------------------------
3076 // Find pre loop end from main loop.  Returns null if none.
3077 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3078   Node* ctrl = cl->in(LoopNode::EntryControl);
3079   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
3080   Node* iffm = ctrl->in(0);
3081   if (!iffm->is_If()) return NULL;
3082   Node* bolzm = iffm->in(1);
3083   if (!bolzm->is_Bool()) return NULL;
3084   Node* cmpzm = bolzm->in(1);
3085   if (!cmpzm->is_Cmp()) return NULL;
3086   Node* opqzm = cmpzm->in(2);
3087   // Can not optimize a loop if zero-trip Opaque1 node is optimized
3088   // away and then another round of loop opts attempted.
3089   if (opqzm->Opcode() != Op_Opaque1) {
3090     return NULL;
3091   }
3092   Node* p_f = iffm->in(0);
3093   if (!p_f->is_IfFalse()) return NULL;
3094   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3095   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3096   CountedLoopNode* loop_node = pre_end->loopnode();
3097   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3098   return pre_end;
3099 }
3100 
3101 
3102 //------------------------------init---------------------------
3103 void SuperWord::init() {
3104   _dg.init();
3105   _packset.clear();
3106   _disjoint_ptrs.clear();
3107   _block.clear();
3108   _data_entry.clear();
3109   _mem_slice_head.clear();
3110   _mem_slice_tail.clear();
3111   _iteration_first.clear();
3112   _iteration_last.clear();
3113   _node_info.clear();
3114   _align_to_ref = NULL;
3115   _lpt = NULL;
3116   _lp = NULL;
3117   _bb = NULL;
3118   _iv = NULL;
3119   _race_possible = 0;
3120   _early_return = false;
3121   _num_work_vecs = 0;
3122   _num_reductions = 0;
3123 }
3124 
3125 //------------------------------restart---------------------------
3126 void SuperWord::restart() {
3127   _dg.init();
3128   _packset.clear();
3129   _disjoint_ptrs.clear();
3130   _block.clear();
3131   _data_entry.clear();
3132   _mem_slice_head.clear();
3133   _mem_slice_tail.clear();
3134   _node_info.clear();
3135 }
3136 
3137 //------------------------------print_packset---------------------------
3138 void SuperWord::print_packset() {
3139 #ifndef PRODUCT
3140   tty->print_cr("packset");
3141   for (int i = 0; i < _packset.length(); i++) {
3142     tty->print_cr("Pack: %d", i);
3143     Node_List* p = _packset.at(i);
3144     print_pack(p);
3145   }
3146 #endif
3147 }
3148 
3149 //------------------------------print_pack---------------------------
3150 void SuperWord::print_pack(Node_List* p) {
3151   for (uint i = 0; i < p->size(); i++) {
3152     print_stmt(p->at(i));
3153   }
3154 }
3155 
3156 //------------------------------print_bb---------------------------
3157 void SuperWord::print_bb() {
3158 #ifndef PRODUCT
3159   tty->print_cr("\nBlock");
3160   for (int i = 0; i < _block.length(); i++) {
3161     Node* n = _block.at(i);
3162     tty->print("%d ", i);
3163     if (n) {
3164       n->dump();
3165     }
3166   }
3167 #endif
3168 }
3169 
3170 //------------------------------print_stmt---------------------------
3171 void SuperWord::print_stmt(Node* s) {
3172 #ifndef PRODUCT
3173   tty->print(" align: %d \t", alignment(s));
3174   s->dump();
3175 #endif
3176 }
3177 
3178 //------------------------------blank---------------------------
3179 char* SuperWord::blank(uint depth) {
3180   static char blanks[101];
3181   assert(depth < 101, "too deep");
3182   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3183   blanks[depth] = '\0';
3184   return blanks;
3185 }
3186 
3187 
3188 //==============================SWPointer===========================
3189 #ifndef PRODUCT
3190 int SWPointer::Tracer::_depth = 0;
3191 #endif
3192 //----------------------------SWPointer------------------------
3193 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3194   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3195   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3196   _nstack(nstack), _analyze_only(analyze_only),
3197   _stack_idx(0)
3198 #ifndef PRODUCT
3199   , _tracer(slp)
3200 #endif
3201 {
3202   NOT_PRODUCT(_tracer.ctor_1(mem);)
3203 
3204   Node* adr = mem->in(MemNode::Address);
3205   if (!adr->is_AddP()) {
3206     assert(!valid(), "too complex");
3207     return;
3208   }
3209   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3210   Node* base = adr->in(AddPNode::Base);
3211   // The base address should be loop invariant
3212   if (!invariant(base)) {
3213     assert(!valid(), "base address is loop variant");
3214     return;
3215   }
3216   //unsafe reference could not be aligned appropriately without runtime checking
3217   if (base == NULL || base->bottom_type() == Type::TOP) {
3218     assert(!valid(), "unsafe access");
3219     return;
3220   }
3221 
3222   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3223   NOT_PRODUCT(_tracer.ctor_2(adr);)
3224 
3225   int i;
3226   for (i = 0; i < 3; i++) {
3227     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3228 
3229     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3230       assert(!valid(), "too complex");
3231       return;
3232     }
3233     adr = adr->in(AddPNode::Address);
3234     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3235 
3236     if (base == adr || !adr->is_AddP()) {
3237       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3238       break; // stop looking at addp's
3239     }
3240   }
3241   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3242   NOT_PRODUCT(_tracer.ctor_6(mem);)
3243 
3244   _base = base;
3245   _adr  = adr;
3246   assert(valid(), "Usable");
3247 }
3248 
3249 // Following is used to create a temporary object during
3250 // the pattern match of an address expression.
3251 SWPointer::SWPointer(SWPointer* p) :
3252   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3253   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3254   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3255   _stack_idx(p->_stack_idx)
3256   #ifndef PRODUCT
3257   , _tracer(p->_slp)
3258   #endif
3259 {}
3260 
3261 
3262 bool SWPointer::invariant(Node* n) {
3263   NOT_PRODUCT(Tracer::Depth dd;)
3264   Node *n_c = phase()->get_ctrl(n);
3265   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3266   return !lpt()->is_member(phase()->get_loop(n_c));
3267 }
3268 //------------------------scaled_iv_plus_offset--------------------
3269 // Match: k*iv + offset
3270 // where: k is a constant that maybe zero, and
3271 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
3272 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3273   NOT_PRODUCT(Tracer::Depth ddd;)
3274   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3275 
3276   if (scaled_iv(n)) {
3277     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3278     return true;
3279   }
3280 
3281   if (offset_plus_k(n)) {
3282     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3283     return true;
3284   }
3285 
3286   int opc = n->Opcode();
3287   if (opc == Op_AddI) {
3288     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3289       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3290       return true;
3291     }
3292     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3293       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3294       return true;
3295     }
3296   } else if (opc == Op_SubI) {
3297     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3298       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3299       return true;
3300     }
3301     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3302       _scale *= -1;
3303       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3304       return true;
3305     }
3306   }
3307 
3308   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3309   return false;
3310 }
3311 
3312 //----------------------------scaled_iv------------------------
3313 // Match: k*iv where k is a constant that's not zero
3314 bool SWPointer::scaled_iv(Node* n) {
3315   NOT_PRODUCT(Tracer::Depth ddd;)
3316   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3317 
3318   if (_scale != 0) { // already found a scale
3319     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3320     return false;
3321   }
3322 
3323   if (n == iv()) {
3324     _scale = 1;
3325     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3326     return true;
3327   }
3328   if (_analyze_only && (invariant(n) == false)) {
3329     _nstack->push(n, _stack_idx++);
3330   }
3331 
3332   int opc = n->Opcode();
3333   if (opc == Op_MulI) {
3334     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3335       _scale = n->in(2)->get_int();
3336       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3337       return true;
3338     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3339       _scale = n->in(1)->get_int();
3340       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3341       return true;
3342     }
3343   } else if (opc == Op_LShiftI) {
3344     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3345       _scale = 1 << n->in(2)->get_int();
3346       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3347       return true;
3348     }
3349   } else if (opc == Op_ConvI2L) {
3350     if (n->in(1)->Opcode() == Op_CastII &&
3351         n->in(1)->as_CastII()->has_range_check()) {
3352       // Skip range check dependent CastII nodes
3353       n = n->in(1);
3354     }
3355     if (scaled_iv_plus_offset(n->in(1))) {
3356       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3357       return true;
3358     }
3359   } else if (opc == Op_LShiftL) {
3360     if (!has_iv() && _invar == NULL) {
3361       // Need to preserve the current _offset value, so
3362       // create a temporary object for this expression subtree.
3363       // Hacky, so should re-engineer the address pattern match.
3364       NOT_PRODUCT(Tracer::Depth dddd;)
3365       SWPointer tmp(this);
3366       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3367 
3368       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3369         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3370           int mult = 1 << n->in(2)->get_int();
3371           _scale   = tmp._scale  * mult;
3372           _offset += tmp._offset * mult;
3373           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3374           return true;
3375         }
3376       }
3377     }
3378   }
3379   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3380   return false;
3381 }
3382 
3383 //----------------------------offset_plus_k------------------------
3384 // Match: offset is (k [+/- invariant])
3385 // where k maybe zero and invariant is optional, but not both.
3386 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3387   NOT_PRODUCT(Tracer::Depth ddd;)
3388   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3389 
3390   int opc = n->Opcode();
3391   if (opc == Op_ConI) {
3392     _offset += negate ? -(n->get_int()) : n->get_int();
3393     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3394     return true;
3395   } else if (opc == Op_ConL) {
3396     // Okay if value fits into an int
3397     const TypeLong* t = n->find_long_type();
3398     if (t->higher_equal(TypeLong::INT)) {
3399       jlong loff = n->get_long();
3400       jint  off  = (jint)loff;
3401       _offset += negate ? -off : loff;
3402       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3403       return true;
3404     }
3405     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3406     return false;
3407   }
3408   if (_invar != NULL) { // already has an invariant
3409     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3410     return false;
3411   }
3412 
3413   if (_analyze_only && (invariant(n) == false)) {
3414     _nstack->push(n, _stack_idx++);
3415   }
3416   if (opc == Op_AddI) {
3417     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3418       _negate_invar = negate;
3419       _invar = n->in(1);
3420       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3421       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3422       return true;
3423     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3424       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3425       _negate_invar = negate;
3426       _invar = n->in(2);
3427       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3428       return true;
3429     }
3430   }
3431   if (opc == Op_SubI) {
3432     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3433       _negate_invar = negate;
3434       _invar = n->in(1);
3435       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3436       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3437       return true;
3438     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3439       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3440       _negate_invar = !negate;
3441       _invar = n->in(2);
3442       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3443       return true;
3444     }
3445   }
3446   if (invariant(n)) {
3447     if (opc == Op_ConvI2L) {
3448       n = n->in(1);
3449       if (n->Opcode() == Op_CastII &&
3450           n->as_CastII()->has_range_check()) {
3451         // Skip range check dependent CastII nodes
3452         assert(invariant(n), "sanity");
3453         n = n->in(1);
3454       }
3455     }
3456     if (n->bottom_type()->isa_int()) {
3457       _negate_invar = negate;
3458       _invar = n;
3459       NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3460       return true;
3461     }
3462   }
3463 
3464   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3465   return false;
3466 }
3467 
3468 //----------------------------print------------------------
3469 void SWPointer::print() {
3470 #ifndef PRODUCT
3471   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3472              _base != NULL ? _base->_idx : 0,
3473              _adr  != NULL ? _adr->_idx  : 0,
3474              _scale, _offset,
3475              _negate_invar?'-':'+',
3476              _invar != NULL ? _invar->_idx : 0);
3477 #endif
3478 }
3479 
3480 //----------------------------tracing------------------------
3481 #ifndef PRODUCT
3482 void SWPointer::Tracer::print_depth() {
3483   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3484 }
3485 
3486 void SWPointer::Tracer::ctor_1 (Node* mem) {
3487   if(_slp->is_trace_alignment()) {
3488     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3489   }
3490 }
3491 
3492 void SWPointer::Tracer::ctor_2(Node* adr) {
3493   if(_slp->is_trace_alignment()) {
3494     //store_depth();
3495     inc_depth();
3496     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3497     inc_depth();
3498     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3499   }
3500 }
3501 
3502 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3503   if(_slp->is_trace_alignment()) {
3504     inc_depth();
3505     Node* offset = adr->in(AddPNode::Offset);
3506     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3507   }
3508 }
3509 
3510 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3511   if(_slp->is_trace_alignment()) {
3512     inc_depth();
3513     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3514   }
3515 }
3516 
3517 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3518   if(_slp->is_trace_alignment()) {
3519     inc_depth();
3520     if (base == adr) {
3521       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3522     } else if (!adr->is_AddP()) {
3523       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3524     }
3525   }
3526 }
3527 
3528 void SWPointer::Tracer::ctor_6(Node* mem) {
3529   if(_slp->is_trace_alignment()) {
3530     //restore_depth();
3531     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3532   }
3533 }
3534 
3535 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3536   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3537     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3538     int in_bb     =  _slp->in_bb(n);
3539     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3540     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3541     print_depth(); tty->print("  \\ ");  n->dump();
3542     print_depth(); tty->print("  \\ ");  n_c->dump();
3543   }
3544 }
3545 
3546 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3547   if(_slp->is_trace_alignment()) {
3548     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3549     n->dump();
3550   }
3551 }
3552 
3553 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3554   if(_slp->is_trace_alignment()) {
3555     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3556   }
3557 }
3558 
3559 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3560   if(_slp->is_trace_alignment()) {
3561     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3562   }
3563 }
3564 
3565 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3566   if(_slp->is_trace_alignment()) {
3567     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3568     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3569     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3570   }
3571 }
3572 
3573 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3574   if(_slp->is_trace_alignment()) {
3575     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3576     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3577     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3578   }
3579 }
3580 
3581 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3582   if(_slp->is_trace_alignment()) {
3583     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3584     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3585     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3586   }
3587 }
3588 
3589 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3590   if(_slp->is_trace_alignment()) {
3591     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3592     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3593     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3594   }
3595 }
3596 
3597 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3598   if(_slp->is_trace_alignment()) {
3599     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
3600   }
3601 }
3602 
3603 void SWPointer::Tracer::scaled_iv_1(Node* n) {
3604   if(_slp->is_trace_alignment()) {
3605     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
3606   }
3607 }
3608 
3609 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
3610   if(_slp->is_trace_alignment()) {
3611     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
3612     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
3613   }
3614 }
3615 
3616 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
3617   if(_slp->is_trace_alignment()) {
3618     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
3619   }
3620 }
3621 
3622 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
3623   if(_slp->is_trace_alignment()) {
3624     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3625     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3626     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3627   }
3628 }
3629 
3630 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
3631   if(_slp->is_trace_alignment()) {
3632     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3633     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
3634     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3635   }
3636 }
3637 
3638 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
3639   if(_slp->is_trace_alignment()) {
3640     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
3641     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3642     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3643   }
3644 }
3645 
3646 void SWPointer::Tracer::scaled_iv_7(Node* n) {
3647   if(_slp->is_trace_alignment()) {
3648     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
3649     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
3650     inc_depth(); inc_depth();
3651     print_depth(); n->in(1)->dump();
3652     dec_depth(); dec_depth();
3653   }
3654 }
3655 
3656 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
3657   if(_slp->is_trace_alignment()) {
3658     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
3659   }
3660 }
3661 
3662 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
3663   if(_slp->is_trace_alignment()) {
3664     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
3665     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
3666     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
3667     inc_depth(); inc_depth();
3668     print_depth(); n->in(1)->dump();
3669     print_depth(); n->in(2)->dump();
3670     dec_depth(); dec_depth();
3671   }
3672 }
3673 
3674 void SWPointer::Tracer::scaled_iv_10(Node* n) {
3675   if(_slp->is_trace_alignment()) {
3676     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
3677   }
3678 }
3679 
3680 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
3681   if(_slp->is_trace_alignment()) {
3682     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
3683   }
3684 }
3685 
3686 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
3687   if(_slp->is_trace_alignment()) {
3688     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
3689   }
3690 }
3691 
3692 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
3693   if(_slp->is_trace_alignment()) {
3694     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
3695   }
3696 }
3697 
3698 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
3699   if(_slp->is_trace_alignment()) {
3700     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3701     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
3702   }
3703 }
3704 
3705 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
3706   if(_slp->is_trace_alignment()) {
3707     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
3708     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
3709   }
3710 }
3711 
3712 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3713   if(_slp->is_trace_alignment()) {
3714     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3715     n->_idx, _negate_invar, _invar->_idx, _offset);
3716     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3717     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3718   }
3719 }
3720 
3721 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3722   if(_slp->is_trace_alignment()) {
3723     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3724     n->_idx, _negate_invar, _invar->_idx, _offset);
3725     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3726     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3727   }
3728 }
3729 
3730 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3731   if(_slp->is_trace_alignment()) {
3732     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3733     n->_idx, _negate_invar, _invar->_idx, _offset);
3734     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3735     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3736   }
3737 }
3738 
3739 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3740   if(_slp->is_trace_alignment()) {
3741     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3742     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3743     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3744   }
3745 }
3746 
3747 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3748   if(_slp->is_trace_alignment()) {
3749     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3750     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
3751   }
3752 }
3753 
3754 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
3755   if(_slp->is_trace_alignment()) {
3756     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3757   }
3758 }
3759 
3760 #endif
3761 // ========================= OrderedPair =====================
3762 
3763 const OrderedPair OrderedPair::initial;
3764 
3765 // ========================= SWNodeInfo =====================
3766 
3767 const SWNodeInfo SWNodeInfo::initial;
3768 
3769 
3770 // ============================ DepGraph ===========================
3771 
3772 //------------------------------make_node---------------------------
3773 // Make a new dependence graph node for an ideal node.
3774 DepMem* DepGraph::make_node(Node* node) {
3775   DepMem* m = new (_arena) DepMem(node);
3776   if (node != NULL) {
3777     assert(_map.at_grow(node->_idx) == NULL, "one init only");
3778     _map.at_put_grow(node->_idx, m);
3779   }
3780   return m;
3781 }
3782 
3783 //------------------------------make_edge---------------------------
3784 // Make a new dependence graph edge from dpred -> dsucc
3785 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
3786   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
3787   dpred->set_out_head(e);
3788   dsucc->set_in_head(e);
3789   return e;
3790 }
3791 
3792 // ========================== DepMem ========================
3793 
3794 //------------------------------in_cnt---------------------------
3795 int DepMem::in_cnt() {
3796   int ct = 0;
3797   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
3798   return ct;
3799 }
3800 
3801 //------------------------------out_cnt---------------------------
3802 int DepMem::out_cnt() {
3803   int ct = 0;
3804   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
3805   return ct;
3806 }
3807 
3808 //------------------------------print-----------------------------
3809 void DepMem::print() {
3810 #ifndef PRODUCT
3811   tty->print("  DepNode %d (", _node->_idx);
3812   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
3813     Node* pred = p->pred()->node();
3814     tty->print(" %d", pred != NULL ? pred->_idx : 0);
3815   }
3816   tty->print(") [");
3817   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
3818     Node* succ = s->succ()->node();
3819     tty->print(" %d", succ != NULL ? succ->_idx : 0);
3820   }
3821   tty->print_cr(" ]");
3822 #endif
3823 }
3824 
3825 // =========================== DepEdge =========================
3826 
3827 //------------------------------DepPreds---------------------------
3828 void DepEdge::print() {
3829 #ifndef PRODUCT
3830   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
3831 #endif
3832 }
3833 
3834 // =========================== DepPreds =========================
3835 // Iterator over predecessor edges in the dependence graph.
3836 
3837 //------------------------------DepPreds---------------------------
3838 DepPreds::DepPreds(Node* n, DepGraph& dg) {
3839   _n = n;
3840   _done = false;
3841   if (_n->is_Store() || _n->is_Load()) {
3842     _next_idx = MemNode::Address;
3843     _end_idx  = n->req();
3844     _dep_next = dg.dep(_n)->in_head();
3845   } else if (_n->is_Mem()) {
3846     _next_idx = 0;
3847     _end_idx  = 0;
3848     _dep_next = dg.dep(_n)->in_head();
3849   } else {
3850     _next_idx = 1;
3851     _end_idx  = _n->req();
3852     _dep_next = NULL;
3853   }
3854   next();
3855 }
3856 
3857 //------------------------------next---------------------------
3858 void DepPreds::next() {
3859   if (_dep_next != NULL) {
3860     _current  = _dep_next->pred()->node();
3861     _dep_next = _dep_next->next_in();
3862   } else if (_next_idx < _end_idx) {
3863     _current  = _n->in(_next_idx++);
3864   } else {
3865     _done = true;
3866   }
3867 }
3868 
3869 // =========================== DepSuccs =========================
3870 // Iterator over successor edges in the dependence graph.
3871 
3872 //------------------------------DepSuccs---------------------------
3873 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
3874   _n = n;
3875   _done = false;
3876   if (_n->is_Load()) {
3877     _next_idx = 0;
3878     _end_idx  = _n->outcnt();
3879     _dep_next = dg.dep(_n)->out_head();
3880   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
3881     _next_idx = 0;
3882     _end_idx  = 0;
3883     _dep_next = dg.dep(_n)->out_head();
3884   } else {
3885     _next_idx = 0;
3886     _end_idx  = _n->outcnt();
3887     _dep_next = NULL;
3888   }
3889   next();
3890 }
3891 
3892 //-------------------------------next---------------------------
3893 void DepSuccs::next() {
3894   if (_dep_next != NULL) {
3895     _current  = _dep_next->succ()->node();
3896     _dep_next = _dep_next->next_out();
3897   } else if (_next_idx < _end_idx) {
3898     _current  = _n->raw_out(_next_idx++);
3899   } else {
3900     _done = true;
3901   }
3902 }
3903 
3904 //
3905 // --------------------------------- vectorization/simd -----------------------------------
3906 //
3907 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
3908   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
3909 }
3910 bool SuperWord::same_generation(Node* a, Node* b) const {
3911   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
3912 }
3913 
3914 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
3915   assert(in_bb(ld), "must be in block");
3916   if (_clone_map.gen(ld->_idx) == _ii_first) {
3917 #ifndef PRODUCT
3918     if (_vector_loop_debug) {
3919       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
3920         _clone_map.gen(ld->_idx));
3921     }
3922 #endif
3923     return NULL; //we think that any ld in the first gen being vectorizable
3924   }
3925 
3926   Node* mem = ld->in(MemNode::Memory);
3927   if (mem->outcnt() <= 1) {
3928     // we don't want to remove the only edge from mem node to load
3929 #ifndef PRODUCT
3930     if (_vector_loop_debug) {
3931       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
3932         mem->_idx, ld->_idx);
3933       ld->dump();
3934       mem->dump();
3935     }
3936 #endif
3937     return NULL;
3938   }
3939   if (!in_bb(mem) || same_generation(mem, ld)) {
3940 #ifndef PRODUCT
3941     if (_vector_loop_debug) {
3942       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
3943         _clone_map.gen(mem->_idx));
3944     }
3945 #endif
3946     return NULL; // does not depend on loop volatile node or depends on the same generation
3947   }
3948 
3949   //otherwise first node should depend on mem-phi
3950   Node* first = first_node(ld);
3951   assert(first->is_Load(), "must be Load");
3952   Node* phi = first->as_Load()->in(MemNode::Memory);
3953   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
3954 #ifndef PRODUCT
3955     if (_vector_loop_debug) {
3956       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
3957       ld->dump();
3958       first->dump();
3959     }
3960 #endif
3961     return NULL;
3962   }
3963 
3964   Node* tail = 0;
3965   for (int m = 0; m < _mem_slice_head.length(); m++) {
3966     if (_mem_slice_head.at(m) == phi) {
3967       tail = _mem_slice_tail.at(m);
3968     }
3969   }
3970   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
3971 #ifndef PRODUCT
3972     if (_vector_loop_debug) {
3973       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
3974         ld->_idx, phi->_idx);
3975       ld->dump();
3976       phi->dump();
3977     }
3978 #endif
3979     return NULL;
3980   }
3981 
3982   // now all conditions are met
3983   return phi;
3984 }
3985 
3986 Node* SuperWord::first_node(Node* nd) {
3987   for (int ii = 0; ii < _iteration_first.length(); ii++) {
3988     Node* nnn = _iteration_first.at(ii);
3989     if (same_origin_idx(nnn, nd)) {
3990 #ifndef PRODUCT
3991       if (_vector_loop_debug) {
3992         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
3993           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
3994       }
3995 #endif
3996       return nnn;
3997     }
3998   }
3999 
4000 #ifndef PRODUCT
4001   if (_vector_loop_debug) {
4002     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4003       nd->_idx, _clone_map.idx(nd->_idx));
4004   }
4005 #endif
4006   return 0;
4007 }
4008 
4009 Node* SuperWord::last_node(Node* nd) {
4010   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4011     Node* nnn = _iteration_last.at(ii);
4012     if (same_origin_idx(nnn, nd)) {
4013 #ifndef PRODUCT
4014       if (_vector_loop_debug) {
4015         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4016           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4017       }
4018 #endif
4019       return nnn;
4020     }
4021   }
4022   return 0;
4023 }
4024 
4025 int SuperWord::mark_generations() {
4026   Node *ii_err = NULL, *tail_err = NULL;
4027   for (int i = 0; i < _mem_slice_head.length(); i++) {
4028     Node* phi  = _mem_slice_head.at(i);
4029     assert(phi->is_Phi(), "must be phi");
4030 
4031     Node* tail = _mem_slice_tail.at(i);
4032     if (_ii_last == -1) {
4033       tail_err = tail;
4034       _ii_last = _clone_map.gen(tail->_idx);
4035     }
4036     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4037 #ifndef PRODUCT
4038       if (TraceSuperWord && Verbose) {
4039         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4040         tail->dump();
4041         tail_err->dump();
4042       }
4043 #endif
4044       return -1;
4045     }
4046 
4047     // find first iteration in the loop
4048     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4049       Node* ii = phi->fast_out(i);
4050       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4051         if (_ii_first == -1) {
4052           ii_err = ii;
4053           _ii_first = _clone_map.gen(ii->_idx);
4054         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4055 #ifndef PRODUCT
4056           if (TraceSuperWord && Verbose) {
4057             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4058             ii->dump();
4059             if (ii_err!= 0) {
4060               ii_err->dump();
4061             }
4062           }
4063 #endif
4064           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4065         }
4066       }
4067     }//for (DUIterator_Fast imax,
4068   }//for (int i...
4069 
4070   if (_ii_first == -1 || _ii_last == -1) {
4071     if (TraceSuperWord && Verbose) {
4072       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4073     }
4074     return -1; // something vent wrong
4075   }
4076   // collect nodes in the first and last generations
4077   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4078   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4079   for (int j = 0; j < _block.length(); j++) {
4080     Node* n = _block.at(j);
4081     node_idx_t gen = _clone_map.gen(n->_idx);
4082     if ((signed)gen == _ii_first) {
4083       _iteration_first.push(n);
4084     } else if ((signed)gen == _ii_last) {
4085       _iteration_last.push(n);
4086     }
4087   }
4088 
4089   // building order of iterations
4090   if (_ii_order.length() == 0 && ii_err != 0) {
4091     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4092     Node* nd = ii_err;
4093     while(_clone_map.gen(nd->_idx) != _ii_last) {
4094       _ii_order.push(_clone_map.gen(nd->_idx));
4095       bool found = false;
4096       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4097         Node* use = nd->fast_out(i);
4098         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4099           found = true;
4100           nd = use;
4101           break;
4102         }
4103       }//for
4104 
4105       if (found == false) {
4106         if (TraceSuperWord && Verbose) {
4107           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4108         }
4109         _ii_order.clear();
4110         return -1;
4111       }
4112     } //while
4113     _ii_order.push(_clone_map.gen(nd->_idx));
4114   }
4115 
4116 #ifndef PRODUCT
4117   if (_vector_loop_debug) {
4118     tty->print_cr("SuperWord::mark_generations");
4119     tty->print_cr("First generation (%d) nodes:", _ii_first);
4120     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4121     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4122     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4123     tty->print_cr(" ");
4124 
4125     tty->print("SuperWord::List of generations: ");
4126     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4127       tty->print("%d:%d ", jj, _ii_order.at(jj));
4128     }
4129     tty->print_cr(" ");
4130   }
4131 #endif
4132 
4133   return _ii_first;
4134 }
4135 
4136 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4137   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4138   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4139   Node* gin1 = gold->in(1);
4140   Node* gin2 = gold->in(2);
4141   Node* fin1 = fix->in(1);
4142   Node* fin2 = fix->in(2);
4143   bool swapped = false;
4144 
4145   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4146     if (same_origin_idx(gin1, fin1) &&
4147         same_origin_idx(gin2, fin2)) {
4148       return true; // nothing to fix
4149     }
4150     if (same_origin_idx(gin1, fin2) &&
4151         same_origin_idx(gin2, fin1)) {
4152       fix->swap_edges(1, 2);
4153       swapped = true;
4154     }
4155   }
4156   // at least one input comes from outside of bb
4157   if (gin1->_idx == fin1->_idx)  {
4158     return true; // nothing to fix
4159   }
4160   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4161     fix->swap_edges(1, 2);
4162     swapped = true;
4163   }
4164 
4165   if (swapped) {
4166 #ifndef PRODUCT
4167     if (_vector_loop_debug) {
4168       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4169     }
4170 #endif
4171     return true;
4172   }
4173 
4174   if (TraceSuperWord && Verbose) {
4175     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4176   }
4177 
4178   return false;
4179 }
4180 
4181 bool SuperWord::pack_parallel() {
4182 #ifndef PRODUCT
4183   if (_vector_loop_debug) {
4184     tty->print_cr("SuperWord::pack_parallel: START");
4185   }
4186 #endif
4187 
4188   _packset.clear();
4189 
4190   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4191     Node* nd = _iteration_first.at(ii);
4192     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4193       Node_List* pk = new Node_List();
4194       pk->push(nd);
4195       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4196         for (int kk = 0; kk < _block.length(); kk++) {
4197           Node* clone = _block.at(kk);
4198           if (same_origin_idx(clone, nd) &&
4199               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4200             if (nd->is_Add() || nd->is_Mul()) {
4201               fix_commutative_inputs(nd, clone);
4202             }
4203             pk->push(clone);
4204             if (pk->size() == 4) {
4205               _packset.append(pk);
4206 #ifndef PRODUCT
4207               if (_vector_loop_debug) {
4208                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4209                 pk->dump();
4210               }
4211 #endif
4212               if (_clone_map.gen(clone->_idx) != _ii_last) {
4213                 pk = new Node_List();
4214               }
4215             }
4216             break;
4217           }
4218         }
4219       }//for
4220     }//if
4221   }//for
4222 
4223 #ifndef PRODUCT
4224   if (_vector_loop_debug) {
4225     tty->print_cr("SuperWord::pack_parallel: END");
4226   }
4227 #endif
4228 
4229   return true;
4230 }
4231 
4232 bool SuperWord::hoist_loads_in_graph() {
4233   GrowableArray<Node*> loads;
4234 
4235 #ifndef PRODUCT
4236   if (_vector_loop_debug) {
4237     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4238   }
4239 #endif
4240 
4241   for (int i = 0; i < _mem_slice_head.length(); i++) {
4242     Node* n = _mem_slice_head.at(i);
4243     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4244       if (TraceSuperWord && Verbose) {
4245         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4246       }
4247       continue;
4248     }
4249 
4250 #ifndef PRODUCT
4251     if (_vector_loop_debug) {
4252       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4253     }
4254 #endif
4255 
4256     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4257       Node* ld = n->fast_out(i);
4258       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4259         for (int i = 0; i < _block.length(); i++) {
4260           Node* ld2 = _block.at(i);
4261           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4262               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4263 #ifndef PRODUCT
4264             if (_vector_loop_debug) {
4265               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4266                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4267             }
4268 #endif
4269             // could not do on-the-fly, since iterator is immutable
4270             loads.push(ld2);
4271           }
4272         }// for
4273       }//if
4274     }//for (DUIterator_Fast imax,
4275   }//for (int i = 0; i
4276 
4277   for (int i = 0; i < loads.length(); i++) {
4278     LoadNode* ld = loads.at(i)->as_Load();
4279     Node* phi = find_phi_for_mem_dep(ld);
4280     if (phi != NULL) {
4281 #ifndef PRODUCT
4282       if (_vector_loop_debug) {
4283         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4284           MemNode::Memory, ld->_idx, phi->_idx);
4285       }
4286 #endif
4287       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4288     }
4289   }//for
4290 
4291   restart(); // invalidate all basic structures, since we rebuilt the graph
4292 
4293   if (TraceSuperWord && Verbose) {
4294     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4295   }
4296 
4297   return true;
4298 }
4299