1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectionSet.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1DefaultPolicy.hpp"
  33 #include "gc/g1/g1HotCardCache.hpp"
  34 #include "gc/g1/g1IHOPControl.hpp"
  35 #include "gc/g1/g1GCPhaseTimes.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1SurvivorRegions.hpp"
  38 #include "gc/g1/g1YoungGenSizer.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/growableArray.hpp"
  48 #include "utilities/pair.hpp"
  49 
  50 G1DefaultPolicy::G1DefaultPolicy() :
  51   _predictor(G1ConfidencePercent / 100.0),
  52   _analytics(new G1Analytics(&_predictor)),
  53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  54   _ihop_control(create_ihop_control(&_predictor)),
  55   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
  56   _young_list_fixed_length(0),
  57   _short_lived_surv_rate_group(new SurvRateGroup()),
  58   _survivor_surv_rate_group(new SurvRateGroup()),
  59   _reserve_factor((double) G1ReservePercent / 100.0),
  60   _reserve_regions(0),
  61   _rs_lengths_prediction(0),
  62   _bytes_allocated_in_old_since_last_gc(0),
  63   _initial_mark_to_mixed(),
  64   _collection_set(NULL),
  65   _g1(NULL),
  66   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
  67   _tenuring_threshold(MaxTenuringThreshold),
  68   _max_survivor_regions(0),
  69   _survivors_age_table(true),
  70   _full_collection_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) { }
  71 
  72 G1DefaultPolicy::~G1DefaultPolicy() {
  73   delete _ihop_control;
  74 }
  75 
  76 G1CollectorState* G1DefaultPolicy::collector_state() const { return _g1->collector_state(); }
  77 
  78 void G1DefaultPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  79   _g1 = g1h;
  80   _collection_set = collection_set;
  81 
  82   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  83 
  84   if (!adaptive_young_list_length()) {
  85     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  86   }
  87   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  88 
  89   _free_regions_at_end_of_collection = _g1->num_free_regions();
  90 
  91   update_young_list_max_and_target_length();
  92   // We may immediately start allocating regions and placing them on the
  93   // collection set list. Initialize the per-collection set info
  94   _collection_set->start_incremental_building();
  95 }
  96 
  97 void G1DefaultPolicy::note_gc_start() {
  98   phase_times()->note_gc_start();
  99 }
 100 
 101 class G1YoungLengthPredictor VALUE_OBJ_CLASS_SPEC {
 102   const bool _during_cm;
 103   const double _base_time_ms;
 104   const double _base_free_regions;
 105   const double _target_pause_time_ms;
 106   const G1DefaultPolicy* const _policy;
 107 
 108  public:
 109   G1YoungLengthPredictor(bool during_cm,
 110                          double base_time_ms,
 111                          double base_free_regions,
 112                          double target_pause_time_ms,
 113                          const G1DefaultPolicy* policy) :
 114     _during_cm(during_cm),
 115     _base_time_ms(base_time_ms),
 116     _base_free_regions(base_free_regions),
 117     _target_pause_time_ms(target_pause_time_ms),
 118     _policy(policy) {}
 119 
 120   bool will_fit(uint young_length) const {
 121     if (young_length >= _base_free_regions) {
 122       // end condition 1: not enough space for the young regions
 123       return false;
 124     }
 125 
 126     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
 127     const size_t bytes_to_copy =
 128                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 129     const double copy_time_ms =
 130       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
 131     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 132     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 133     if (pause_time_ms > _target_pause_time_ms) {
 134       // end condition 2: prediction is over the target pause time
 135       return false;
 136     }
 137 
 138     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 139 
 140     // When copying, we will likely need more bytes free than is live in the region.
 141     // Add some safety margin to factor in the confidence of our guess, and the
 142     // natural expected waste.
 143     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 144     // of the calculation: the lower the confidence, the more headroom.
 145     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 146     // copying due to anticipated waste in the PLABs.
 147     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 148     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 149 
 150     if (expected_bytes_to_copy > free_bytes) {
 151       // end condition 3: out-of-space
 152       return false;
 153     }
 154 
 155     // success!
 156     return true;
 157   }
 158 };
 159 
 160 void G1DefaultPolicy::record_new_heap_size(uint new_number_of_regions) {
 161   // re-calculate the necessary reserve
 162   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 163   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 164   // smaller than 1.0) we'll get 1.
 165   _reserve_regions = (uint) ceil(reserve_regions_d);
 166 
 167   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 168 
 169   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 170 }
 171 
 172 uint G1DefaultPolicy::calculate_young_list_desired_min_length(uint base_min_length) const {
 173   uint desired_min_length = 0;
 174   if (adaptive_young_list_length()) {
 175     if (_analytics->num_alloc_rate_ms() > 3) {
 176       double now_sec = os::elapsedTime();
 177       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 178       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 179       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 180     } else {
 181       // otherwise we don't have enough info to make the prediction
 182     }
 183   }
 184   desired_min_length += base_min_length;
 185   // make sure we don't go below any user-defined minimum bound
 186   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 187 }
 188 
 189 uint G1DefaultPolicy::calculate_young_list_desired_max_length() const {
 190   // Here, we might want to also take into account any additional
 191   // constraints (i.e., user-defined minimum bound). Currently, we
 192   // effectively don't set this bound.
 193   return _young_gen_sizer.max_desired_young_length();
 194 }
 195 
 196 uint G1DefaultPolicy::update_young_list_max_and_target_length() {
 197   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 198 }
 199 
 200 uint G1DefaultPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 201   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 202   update_max_gc_locker_expansion();
 203   return unbounded_target_length;
 204 }
 205 
 206 uint G1DefaultPolicy::update_young_list_target_length(size_t rs_lengths) {
 207   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 208   _young_list_target_length = young_lengths.first;
 209   return young_lengths.second;
 210 }
 211 
 212 G1DefaultPolicy::YoungTargetLengths G1DefaultPolicy::young_list_target_lengths(size_t rs_lengths) const {
 213   YoungTargetLengths result;
 214 
 215   // Calculate the absolute and desired min bounds first.
 216 
 217   // This is how many young regions we already have (currently: the survivors).
 218   const uint base_min_length = _g1->survivor_regions_count();
 219   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 220   // This is the absolute minimum young length. Ensure that we
 221   // will at least have one eden region available for allocation.
 222   uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1);
 223   // If we shrank the young list target it should not shrink below the current size.
 224   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 225   // Calculate the absolute and desired max bounds.
 226 
 227   uint desired_max_length = calculate_young_list_desired_max_length();
 228 
 229   uint young_list_target_length = 0;
 230   if (adaptive_young_list_length()) {
 231     if (collector_state()->gcs_are_young()) {
 232       young_list_target_length =
 233                         calculate_young_list_target_length(rs_lengths,
 234                                                            base_min_length,
 235                                                            desired_min_length,
 236                                                            desired_max_length);
 237     } else {
 238       // Don't calculate anything and let the code below bound it to
 239       // the desired_min_length, i.e., do the next GC as soon as
 240       // possible to maximize how many old regions we can add to it.
 241     }
 242   } else {
 243     // The user asked for a fixed young gen so we'll fix the young gen
 244     // whether the next GC is young or mixed.
 245     young_list_target_length = _young_list_fixed_length;
 246   }
 247 
 248   result.second = young_list_target_length;
 249 
 250   // We will try our best not to "eat" into the reserve.
 251   uint absolute_max_length = 0;
 252   if (_free_regions_at_end_of_collection > _reserve_regions) {
 253     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 254   }
 255   if (desired_max_length > absolute_max_length) {
 256     desired_max_length = absolute_max_length;
 257   }
 258 
 259   // Make sure we don't go over the desired max length, nor under the
 260   // desired min length. In case they clash, desired_min_length wins
 261   // which is why that test is second.
 262   if (young_list_target_length > desired_max_length) {
 263     young_list_target_length = desired_max_length;
 264   }
 265   if (young_list_target_length < desired_min_length) {
 266     young_list_target_length = desired_min_length;
 267   }
 268 
 269   assert(young_list_target_length > base_min_length,
 270          "we should be able to allocate at least one eden region");
 271   assert(young_list_target_length >= absolute_min_length, "post-condition");
 272 
 273   result.first = young_list_target_length;
 274   return result;
 275 }
 276 
 277 uint
 278 G1DefaultPolicy::calculate_young_list_target_length(size_t rs_lengths,
 279                                                     uint base_min_length,
 280                                                     uint desired_min_length,
 281                                                     uint desired_max_length) const {
 282   assert(adaptive_young_list_length(), "pre-condition");
 283   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 284 
 285   // In case some edge-condition makes the desired max length too small...
 286   if (desired_max_length <= desired_min_length) {
 287     return desired_min_length;
 288   }
 289 
 290   // We'll adjust min_young_length and max_young_length not to include
 291   // the already allocated young regions (i.e., so they reflect the
 292   // min and max eden regions we'll allocate). The base_min_length
 293   // will be reflected in the predictions by the
 294   // survivor_regions_evac_time prediction.
 295   assert(desired_min_length > base_min_length, "invariant");
 296   uint min_young_length = desired_min_length - base_min_length;
 297   assert(desired_max_length > base_min_length, "invariant");
 298   uint max_young_length = desired_max_length - base_min_length;
 299 
 300   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 301   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 302   const size_t pending_cards = _analytics->predict_pending_cards();
 303   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 304   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 305   const double base_time_ms =
 306     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 307     survivor_regions_evac_time;
 308   const uint available_free_regions = _free_regions_at_end_of_collection;
 309   const uint base_free_regions =
 310     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 311 
 312   // Here, we will make sure that the shortest young length that
 313   // makes sense fits within the target pause time.
 314 
 315   G1YoungLengthPredictor p(collector_state()->during_concurrent_mark(),
 316                            base_time_ms,
 317                            base_free_regions,
 318                            target_pause_time_ms,
 319                            this);
 320   if (p.will_fit(min_young_length)) {
 321     // The shortest young length will fit into the target pause time;
 322     // we'll now check whether the absolute maximum number of young
 323     // regions will fit in the target pause time. If not, we'll do
 324     // a binary search between min_young_length and max_young_length.
 325     if (p.will_fit(max_young_length)) {
 326       // The maximum young length will fit into the target pause time.
 327       // We are done so set min young length to the maximum length (as
 328       // the result is assumed to be returned in min_young_length).
 329       min_young_length = max_young_length;
 330     } else {
 331       // The maximum possible number of young regions will not fit within
 332       // the target pause time so we'll search for the optimal
 333       // length. The loop invariants are:
 334       //
 335       // min_young_length < max_young_length
 336       // min_young_length is known to fit into the target pause time
 337       // max_young_length is known not to fit into the target pause time
 338       //
 339       // Going into the loop we know the above hold as we've just
 340       // checked them. Every time around the loop we check whether
 341       // the middle value between min_young_length and
 342       // max_young_length fits into the target pause time. If it
 343       // does, it becomes the new min. If it doesn't, it becomes
 344       // the new max. This way we maintain the loop invariants.
 345 
 346       assert(min_young_length < max_young_length, "invariant");
 347       uint diff = (max_young_length - min_young_length) / 2;
 348       while (diff > 0) {
 349         uint young_length = min_young_length + diff;
 350         if (p.will_fit(young_length)) {
 351           min_young_length = young_length;
 352         } else {
 353           max_young_length = young_length;
 354         }
 355         assert(min_young_length <  max_young_length, "invariant");
 356         diff = (max_young_length - min_young_length) / 2;
 357       }
 358       // The results is min_young_length which, according to the
 359       // loop invariants, should fit within the target pause time.
 360 
 361       // These are the post-conditions of the binary search above:
 362       assert(min_young_length < max_young_length,
 363              "otherwise we should have discovered that max_young_length "
 364              "fits into the pause target and not done the binary search");
 365       assert(p.will_fit(min_young_length),
 366              "min_young_length, the result of the binary search, should "
 367              "fit into the pause target");
 368       assert(!p.will_fit(min_young_length + 1),
 369              "min_young_length, the result of the binary search, should be "
 370              "optimal, so no larger length should fit into the pause target");
 371     }
 372   } else {
 373     // Even the minimum length doesn't fit into the pause time
 374     // target, return it as the result nevertheless.
 375   }
 376   return base_min_length + min_young_length;
 377 }
 378 
 379 double G1DefaultPolicy::predict_survivor_regions_evac_time() const {
 380   double survivor_regions_evac_time = 0.0;
 381   const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions();
 382 
 383   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 384        it != survivor_regions->end();
 385        ++it) {
 386     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young());
 387   }
 388   return survivor_regions_evac_time;
 389 }
 390 
 391 void G1DefaultPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 392   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 393 
 394   if (rs_lengths > _rs_lengths_prediction) {
 395     // add 10% to avoid having to recalculate often
 396     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 397     update_rs_lengths_prediction(rs_lengths_prediction);
 398 
 399     update_young_list_max_and_target_length(rs_lengths_prediction);
 400   }
 401 }
 402 
 403 void G1DefaultPolicy::update_rs_lengths_prediction() {
 404   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 405 }
 406 
 407 void G1DefaultPolicy::update_rs_lengths_prediction(size_t prediction) {
 408   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 409     _rs_lengths_prediction = prediction;
 410   }
 411 }
 412 
 413 void G1DefaultPolicy::record_full_collection_start() {
 414   _full_collection_start_sec = os::elapsedTime();
 415   // Release the future to-space so that it is available for compaction into.
 416   collector_state()->set_full_collection(true);
 417 }
 418 
 419 void G1DefaultPolicy::record_full_collection_end() {
 420   // Consider this like a collection pause for the purposes of allocation
 421   // since last pause.
 422   _full_collection_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 423   double end_sec = os::elapsedTime();
 424   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 425   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 426 
 427   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 428 
 429   collector_state()->set_full_collection(false);
 430 
 431   // "Nuke" the heuristics that control the young/mixed GC
 432   // transitions and make sure we start with young GCs after the Full GC.
 433   collector_state()->set_gcs_are_young(true);
 434   collector_state()->set_last_young_gc(false);
 435   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 436   collector_state()->set_during_initial_mark_pause(false);
 437   collector_state()->set_in_marking_window(false);
 438   collector_state()->set_in_marking_window_im(false);
 439 
 440   _short_lived_surv_rate_group->start_adding_regions();
 441   // also call this on any additional surv rate groups
 442 
 443   _free_regions_at_end_of_collection = _g1->num_free_regions();
 444   // Reset survivors SurvRateGroup.
 445   _survivor_surv_rate_group->reset();
 446   update_young_list_max_and_target_length();
 447   update_rs_lengths_prediction();
 448   cset_chooser()->clear();
 449 
 450   _bytes_allocated_in_old_since_last_gc = 0;
 451 
 452   record_pause(FullGC, _full_collection_start_sec, end_sec);
 453 }
 454 
 455 void G1DefaultPolicy::record_collection_pause_start(double start_time_sec) {
 456   // We only need to do this here as the policy will only be applied
 457   // to the GC we're about to start. so, no point is calculating this
 458   // every time we calculate / recalculate the target young length.
 459   update_survivors_policy();
 460 
 461   assert(_g1->used() == _g1->recalculate_used(),
 462          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 463          _g1->used(), _g1->recalculate_used());
 464 
 465   phase_times()->record_cur_collection_start_sec(start_time_sec);
 466   _pending_cards = _g1->pending_card_num();
 467 
 468   _collection_set->reset_bytes_used_before();
 469   _bytes_copied_during_gc = 0;
 470 
 471   collector_state()->set_last_gc_was_young(false);
 472 
 473   // do that for any other surv rate groups
 474   _short_lived_surv_rate_group->stop_adding_regions();
 475   _survivors_age_table.clear();
 476 
 477   assert(_g1->collection_set()->verify_young_ages(), "region age verification failed");
 478 }
 479 
 480 void G1DefaultPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 481   collector_state()->set_during_marking(true);
 482   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 483   collector_state()->set_during_initial_mark_pause(false);
 484 }
 485 
 486 void G1DefaultPolicy::record_concurrent_mark_remark_start() {
 487   _mark_remark_start_sec = os::elapsedTime();
 488   collector_state()->set_during_marking(false);
 489 }
 490 
 491 void G1DefaultPolicy::record_concurrent_mark_remark_end() {
 492   double end_time_sec = os::elapsedTime();
 493   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 494   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 495   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 496 
 497   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 498 }
 499 
 500 void G1DefaultPolicy::record_concurrent_mark_cleanup_start() {
 501   _mark_cleanup_start_sec = os::elapsedTime();
 502 }
 503 
 504 void G1DefaultPolicy::record_concurrent_mark_cleanup_completed() {
 505   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 506                                                               "skip last young-only gc");
 507   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 508   // We skip the marking phase.
 509   if (!should_continue_with_reclaim) {
 510     abort_time_to_mixed_tracking();
 511   }
 512   collector_state()->set_in_marking_window(false);
 513 }
 514 
 515 double G1DefaultPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 516   return phase_times()->average_time_ms(phase);
 517 }
 518 
 519 double G1DefaultPolicy::young_other_time_ms() const {
 520   return phase_times()->young_cset_choice_time_ms() +
 521          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 522 }
 523 
 524 double G1DefaultPolicy::non_young_other_time_ms() const {
 525   return phase_times()->non_young_cset_choice_time_ms() +
 526          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 527 }
 528 
 529 double G1DefaultPolicy::other_time_ms(double pause_time_ms) const {
 530   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 531 }
 532 
 533 double G1DefaultPolicy::constant_other_time_ms(double pause_time_ms) const {
 534   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 535 }
 536 
 537 CollectionSetChooser* G1DefaultPolicy::cset_chooser() const {
 538   return _collection_set->cset_chooser();
 539 }
 540 
 541 bool G1DefaultPolicy::about_to_start_mixed_phase() const {
 542   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 543 }
 544 
 545 bool G1DefaultPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 546   if (about_to_start_mixed_phase()) {
 547     return false;
 548   }
 549 
 550   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 551 
 552   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 553   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 554   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 555 
 556   bool result = false;
 557   if (marking_request_bytes > marking_initiating_used_threshold) {
 558     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 559     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 560                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 561                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 562   }
 563 
 564   return result;
 565 }
 566 
 567 // Anything below that is considered to be zero
 568 #define MIN_TIMER_GRANULARITY 0.0000001
 569 
 570 void G1DefaultPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 571   double end_time_sec = os::elapsedTime();
 572 
 573   size_t cur_used_bytes = _g1->used();
 574   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 575   bool last_pause_included_initial_mark = false;
 576   bool update_stats = !_g1->evacuation_failed();
 577 
 578   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 579 
 580   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 581   if (last_pause_included_initial_mark) {
 582     record_concurrent_mark_init_end(0.0);
 583   } else {
 584     maybe_start_marking();
 585   }
 586 
 587   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 588   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 589     // This usually happens due to the timer not having the required
 590     // granularity. Some Linuxes are the usual culprits.
 591     // We'll just set it to something (arbitrarily) small.
 592     app_time_ms = 1.0;
 593   }
 594 
 595   if (update_stats) {
 596     // We maintain the invariant that all objects allocated by mutator
 597     // threads will be allocated out of eden regions. So, we can use
 598     // the eden region number allocated since the previous GC to
 599     // calculate the application's allocate rate. The only exception
 600     // to that is humongous objects that are allocated separately. But
 601     // given that humongous object allocations do not really affect
 602     // either the pause's duration nor when the next pause will take
 603     // place we can safely ignore them here.
 604     uint regions_allocated = _collection_set->eden_region_length();
 605     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 606     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 607 
 608     double interval_ms =
 609       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 610     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 611     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 612   }
 613 
 614   bool new_in_marking_window = collector_state()->in_marking_window();
 615   bool new_in_marking_window_im = false;
 616   if (last_pause_included_initial_mark) {
 617     new_in_marking_window = true;
 618     new_in_marking_window_im = true;
 619   }
 620 
 621   if (collector_state()->last_young_gc()) {
 622     // This is supposed to to be the "last young GC" before we start
 623     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 624     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 625 
 626     if (next_gc_should_be_mixed("start mixed GCs",
 627                                 "do not start mixed GCs")) {
 628       collector_state()->set_gcs_are_young(false);
 629     } else {
 630       // We aborted the mixed GC phase early.
 631       abort_time_to_mixed_tracking();
 632     }
 633 
 634     collector_state()->set_last_young_gc(false);
 635   }
 636 
 637   if (!collector_state()->last_gc_was_young()) {
 638     // This is a mixed GC. Here we decide whether to continue doing
 639     // mixed GCs or not.
 640     if (!next_gc_should_be_mixed("continue mixed GCs",
 641                                  "do not continue mixed GCs")) {
 642       collector_state()->set_gcs_are_young(true);
 643 
 644       maybe_start_marking();
 645     }
 646   }
 647 
 648   _short_lived_surv_rate_group->start_adding_regions();
 649   // Do that for any other surv rate groups
 650 
 651   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 652 
 653   if (update_stats) {
 654     double cost_per_card_ms = 0.0;
 655     if (_pending_cards > 0) {
 656       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 657       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 658     }
 659     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 660 
 661     double cost_per_entry_ms = 0.0;
 662     if (cards_scanned > 10) {
 663       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 664       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 665     }
 666 
 667     if (_max_rs_lengths > 0) {
 668       double cards_per_entry_ratio =
 669         (double) cards_scanned / (double) _max_rs_lengths;
 670       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 671     }
 672 
 673     // This is defensive. For a while _max_rs_lengths could get
 674     // smaller than _recorded_rs_lengths which was causing
 675     // rs_length_diff to get very large and mess up the RSet length
 676     // predictions. The reason was unsafe concurrent updates to the
 677     // _inc_cset_recorded_rs_lengths field which the code below guards
 678     // against (see CR 7118202). This bug has now been fixed (see CR
 679     // 7119027). However, I'm still worried that
 680     // _inc_cset_recorded_rs_lengths might still end up somewhat
 681     // inaccurate. The concurrent refinement thread calculates an
 682     // RSet's length concurrently with other CR threads updating it
 683     // which might cause it to calculate the length incorrectly (if,
 684     // say, it's in mid-coarsening). So I'll leave in the defensive
 685     // conditional below just in case.
 686     size_t rs_length_diff = 0;
 687     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 688     if (_max_rs_lengths > recorded_rs_lengths) {
 689       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 690     }
 691     _analytics->report_rs_length_diff((double) rs_length_diff);
 692 
 693     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 694     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 695     double cost_per_byte_ms = 0.0;
 696 
 697     if (copied_bytes > 0) {
 698       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 699       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 700     }
 701 
 702     if (_collection_set->young_region_length() > 0) {
 703       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 704                                                         _collection_set->young_region_length());
 705     }
 706 
 707     if (_collection_set->old_region_length() > 0) {
 708       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 709                                                             _collection_set->old_region_length());
 710     }
 711 
 712     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 713 
 714     _analytics->report_pending_cards((double) _pending_cards);
 715     _analytics->report_rs_lengths((double) _max_rs_lengths);
 716   }
 717 
 718   collector_state()->set_in_marking_window(new_in_marking_window);
 719   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 720   _free_regions_at_end_of_collection = _g1->num_free_regions();
 721   // IHOP control wants to know the expected young gen length if it were not
 722   // restrained by the heap reserve. Using the actual length would make the
 723   // prediction too small and the limit the young gen every time we get to the
 724   // predicted target occupancy.
 725   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 726   update_rs_lengths_prediction();
 727 
 728   update_ihop_prediction(app_time_ms / 1000.0,
 729                          _bytes_allocated_in_old_since_last_gc,
 730                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 731   _bytes_allocated_in_old_since_last_gc = 0;
 732 
 733   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 734 
 735   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 736   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 737 
 738   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 739     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 740                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 741                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 742 
 743     update_rs_time_goal_ms = 0;
 744   } else {
 745     update_rs_time_goal_ms -= scan_hcc_time_ms;
 746   }
 747   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 748                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 749                                       update_rs_time_goal_ms);
 750 
 751   cset_chooser()->verify();
 752 }
 753 
 754 G1IHOPControl* G1DefaultPolicy::create_ihop_control(const G1Predictions* predictor){
 755   if (G1UseAdaptiveIHOP) {
 756     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 757                                      predictor,
 758                                      G1ReservePercent,
 759                                      G1HeapWastePercent);
 760   } else {
 761     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 762   }
 763 }
 764 
 765 void G1DefaultPolicy::update_ihop_prediction(double mutator_time_s,
 766                                       size_t mutator_alloc_bytes,
 767                                       size_t young_gen_size) {
 768   // Always try to update IHOP prediction. Even evacuation failures give information
 769   // about e.g. whether to start IHOP earlier next time.
 770 
 771   // Avoid using really small application times that might create samples with
 772   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 773   double const min_valid_time = 1e-6;
 774 
 775   bool report = false;
 776 
 777   double marking_to_mixed_time = -1.0;
 778   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 779     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 780     assert(marking_to_mixed_time > 0.0,
 781            "Initial mark to mixed time must be larger than zero but is %.3f",
 782            marking_to_mixed_time);
 783     if (marking_to_mixed_time > min_valid_time) {
 784       _ihop_control->update_marking_length(marking_to_mixed_time);
 785       report = true;
 786     }
 787   }
 788 
 789   // As an approximation for the young gc promotion rates during marking we use
 790   // all of them. In many applications there are only a few if any young gcs during
 791   // marking, which makes any prediction useless. This increases the accuracy of the
 792   // prediction.
 793   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 794     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 795     report = true;
 796   }
 797 
 798   if (report) {
 799     report_ihop_statistics();
 800   }
 801 }
 802 
 803 void G1DefaultPolicy::report_ihop_statistics() {
 804   _ihop_control->print();
 805 }
 806 
 807 void G1DefaultPolicy::print_phases() {
 808   phase_times()->print();
 809 }
 810 
 811 double G1DefaultPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 812   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 813   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 814   double pred = _predictor.get_new_prediction(seq);
 815   if (pred > 1.0) {
 816     pred = 1.0;
 817   }
 818   return pred;
 819 }
 820 
 821 double G1DefaultPolicy::accum_yg_surv_rate_pred(int age) const {
 822   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 823 }
 824 
 825 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
 826                                               size_t scanned_cards) const {
 827   return
 828     _analytics->predict_rs_update_time_ms(pending_cards) +
 829     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
 830     _analytics->predict_constant_other_time_ms();
 831 }
 832 
 833 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 834   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 835   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
 836   return predict_base_elapsed_time_ms(pending_cards, card_num);
 837 }
 838 
 839 size_t G1DefaultPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
 840   size_t bytes_to_copy;
 841   if (hr->is_marked())
 842     bytes_to_copy = hr->max_live_bytes();
 843   else {
 844     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 845     int age = hr->age_in_surv_rate_group();
 846     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 847     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 848   }
 849   return bytes_to_copy;
 850 }
 851 
 852 double G1DefaultPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
 853                                                 bool for_young_gc) const {
 854   size_t rs_length = hr->rem_set()->occupied();
 855   // Predicting the number of cards is based on which type of GC
 856   // we're predicting for.
 857   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 858   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 859 
 860   double region_elapsed_time_ms =
 861     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
 862     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
 863 
 864   // The prediction of the "other" time for this region is based
 865   // upon the region type and NOT the GC type.
 866   if (hr->is_young()) {
 867     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 868   } else {
 869     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 870   }
 871   return region_elapsed_time_ms;
 872 }
 873 
 874 bool G1DefaultPolicy::should_allocate_mutator_region() const {
 875   uint young_list_length = _g1->young_regions_count();
 876   uint young_list_target_length = _young_list_target_length;
 877   return young_list_length < young_list_target_length;
 878 }
 879 
 880 bool G1DefaultPolicy::can_expand_young_list() const {
 881   uint young_list_length = _g1->young_regions_count();
 882   uint young_list_max_length = _young_list_max_length;
 883   return young_list_length < young_list_max_length;
 884 }
 885 
 886 bool G1DefaultPolicy::adaptive_young_list_length() const {
 887   return _young_gen_sizer.adaptive_young_list_length();
 888 }
 889 
 890 void G1DefaultPolicy::update_max_gc_locker_expansion() {
 891   uint expansion_region_num = 0;
 892   if (GCLockerEdenExpansionPercent > 0) {
 893     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 894     double expansion_region_num_d = perc * (double) _young_list_target_length;
 895     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 896     // less than 1.0) we'll get 1.
 897     expansion_region_num = (uint) ceil(expansion_region_num_d);
 898   } else {
 899     assert(expansion_region_num == 0, "sanity");
 900   }
 901   _young_list_max_length = _young_list_target_length + expansion_region_num;
 902   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 903 }
 904 
 905 // Calculates survivor space parameters.
 906 void G1DefaultPolicy::update_survivors_policy() {
 907   double max_survivor_regions_d =
 908                  (double) _young_list_target_length / (double) SurvivorRatio;
 909   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 910   // smaller than 1.0) we'll get 1.
 911   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 912 
 913   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
 914       HeapRegion::GrainWords * _max_survivor_regions, _policy_counters);
 915 }
 916 
 917 bool G1DefaultPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 918   // We actually check whether we are marking here and not if we are in a
 919   // reclamation phase. This means that we will schedule a concurrent mark
 920   // even while we are still in the process of reclaiming memory.
 921   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
 922   if (!during_cycle) {
 923     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 924     collector_state()->set_initiate_conc_mark_if_possible(true);
 925     return true;
 926   } else {
 927     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 928     return false;
 929   }
 930 }
 931 
 932 void G1DefaultPolicy::initiate_conc_mark() {
 933   collector_state()->set_during_initial_mark_pause(true);
 934   collector_state()->set_initiate_conc_mark_if_possible(false);
 935 }
 936 
 937 void G1DefaultPolicy::decide_on_conc_mark_initiation() {
 938   // We are about to decide on whether this pause will be an
 939   // initial-mark pause.
 940 
 941   // First, collector_state()->during_initial_mark_pause() should not be already set. We
 942   // will set it here if we have to. However, it should be cleared by
 943   // the end of the pause (it's only set for the duration of an
 944   // initial-mark pause).
 945   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
 946 
 947   if (collector_state()->initiate_conc_mark_if_possible()) {
 948     // We had noticed on a previous pause that the heap occupancy has
 949     // gone over the initiating threshold and we should start a
 950     // concurrent marking cycle. So we might initiate one.
 951 
 952     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
 953       // Initiate a new initial mark if there is no marking or reclamation going on.
 954       initiate_conc_mark();
 955       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 956     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 957       // Initiate a user requested initial mark. An initial mark must be young only
 958       // GC, so the collector state must be updated to reflect this.
 959       collector_state()->set_gcs_are_young(true);
 960       collector_state()->set_last_young_gc(false);
 961 
 962       abort_time_to_mixed_tracking();
 963       initiate_conc_mark();
 964       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
 965     } else {
 966       // The concurrent marking thread is still finishing up the
 967       // previous cycle. If we start one right now the two cycles
 968       // overlap. In particular, the concurrent marking thread might
 969       // be in the process of clearing the next marking bitmap (which
 970       // we will use for the next cycle if we start one). Starting a
 971       // cycle now will be bad given that parts of the marking
 972       // information might get cleared by the marking thread. And we
 973       // cannot wait for the marking thread to finish the cycle as it
 974       // periodically yields while clearing the next marking bitmap
 975       // and, if it's in a yield point, it's waiting for us to
 976       // finish. So, at this point we will not start a cycle and we'll
 977       // let the concurrent marking thread complete the last one.
 978       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
 979     }
 980   }
 981 }
 982 
 983 void G1DefaultPolicy::record_concurrent_mark_cleanup_end() {
 984   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
 985 
 986   double end_sec = os::elapsedTime();
 987   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
 988   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
 989   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 990 
 991   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
 992 }
 993 
 994 double G1DefaultPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
 995   // Returns the given amount of reclaimable bytes (that represents
 996   // the amount of reclaimable space still to be collected) as a
 997   // percentage of the current heap capacity.
 998   size_t capacity_bytes = _g1->capacity();
 999   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1000 }
1001 
1002 void G1DefaultPolicy::maybe_start_marking() {
1003   if (need_to_start_conc_mark("end of GC")) {
1004     // Note: this might have already been set, if during the last
1005     // pause we decided to start a cycle but at the beginning of
1006     // this pause we decided to postpone it. That's OK.
1007     collector_state()->set_initiate_conc_mark_if_possible(true);
1008   }
1009 }
1010 
1011 G1DefaultPolicy::PauseKind G1DefaultPolicy::young_gc_pause_kind() const {
1012   assert(!collector_state()->full_collection(), "must be");
1013   if (collector_state()->during_initial_mark_pause()) {
1014     assert(collector_state()->last_gc_was_young(), "must be");
1015     assert(!collector_state()->last_young_gc(), "must be");
1016     return InitialMarkGC;
1017   } else if (collector_state()->last_young_gc()) {
1018     assert(!collector_state()->during_initial_mark_pause(), "must be");
1019     assert(collector_state()->last_gc_was_young(), "must be");
1020     return LastYoungGC;
1021   } else if (!collector_state()->last_gc_was_young()) {
1022     assert(!collector_state()->during_initial_mark_pause(), "must be");
1023     assert(!collector_state()->last_young_gc(), "must be");
1024     return MixedGC;
1025   } else {
1026     assert(collector_state()->last_gc_was_young(), "must be");
1027     assert(!collector_state()->during_initial_mark_pause(), "must be");
1028     assert(!collector_state()->last_young_gc(), "must be");
1029     return YoungOnlyGC;
1030   }
1031 }
1032 
1033 void G1DefaultPolicy::record_pause(PauseKind kind, double start, double end) {
1034   // Manage the MMU tracker. For some reason it ignores Full GCs.
1035   if (kind != FullGC) {
1036     _mmu_tracker->add_pause(start, end);
1037   }
1038   // Manage the mutator time tracking from initial mark to first mixed gc.
1039   switch (kind) {
1040     case FullGC:
1041       abort_time_to_mixed_tracking();
1042       break;
1043     case Cleanup:
1044     case Remark:
1045     case YoungOnlyGC:
1046     case LastYoungGC:
1047       _initial_mark_to_mixed.add_pause(end - start);
1048       break;
1049     case InitialMarkGC:
1050       _initial_mark_to_mixed.record_initial_mark_end(end);
1051       break;
1052     case MixedGC:
1053       _initial_mark_to_mixed.record_mixed_gc_start(start);
1054       break;
1055     default:
1056       ShouldNotReachHere();
1057   }
1058 }
1059 
1060 void G1DefaultPolicy::abort_time_to_mixed_tracking() {
1061   _initial_mark_to_mixed.reset();
1062 }
1063 
1064 bool G1DefaultPolicy::next_gc_should_be_mixed(const char* true_action_str,
1065                                        const char* false_action_str) const {
1066   if (cset_chooser()->is_empty()) {
1067     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1068     return false;
1069   }
1070 
1071   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1072   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1073   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1074   double threshold = (double) G1HeapWastePercent;
1075   if (reclaimable_perc <= threshold) {
1076     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1077                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1078     return false;
1079   }
1080   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1081                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1082   return true;
1083 }
1084 
1085 uint G1DefaultPolicy::calc_min_old_cset_length() const {
1086   // The min old CSet region bound is based on the maximum desired
1087   // number of mixed GCs after a cycle. I.e., even if some old regions
1088   // look expensive, we should add them to the CSet anyway to make
1089   // sure we go through the available old regions in no more than the
1090   // maximum desired number of mixed GCs.
1091   //
1092   // The calculation is based on the number of marked regions we added
1093   // to the CSet chooser in the first place, not how many remain, so
1094   // that the result is the same during all mixed GCs that follow a cycle.
1095 
1096   const size_t region_num = (size_t) cset_chooser()->length();
1097   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1098   size_t result = region_num / gc_num;
1099   // emulate ceiling
1100   if (result * gc_num < region_num) {
1101     result += 1;
1102   }
1103   return (uint) result;
1104 }
1105 
1106 uint G1DefaultPolicy::calc_max_old_cset_length() const {
1107   // The max old CSet region bound is based on the threshold expressed
1108   // as a percentage of the heap size. I.e., it should bound the
1109   // number of old regions added to the CSet irrespective of how many
1110   // of them are available.
1111 
1112   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1113   const size_t region_num = g1h->num_regions();
1114   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1115   size_t result = region_num * perc / 100;
1116   // emulate ceiling
1117   if (100 * result < region_num * perc) {
1118     result += 1;
1119   }
1120   return (uint) result;
1121 }
1122 
1123 void G1DefaultPolicy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1124   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1125   _collection_set->finalize_old_part(time_remaining_ms);
1126 }
1127 
1128 void G1DefaultPolicy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1129 
1130   // Add survivor regions to SurvRateGroup.
1131   note_start_adding_survivor_regions();
1132   finished_recalculating_age_indexes(true /* is_survivors */);
1133 
1134   HeapRegion* last = NULL;
1135   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1136        it != survivors->regions()->end();
1137        ++it) {
1138     HeapRegion* curr = *it;
1139     set_region_survivor(curr);
1140 
1141     // The region is a non-empty survivor so let's add it to
1142     // the incremental collection set for the next evacuation
1143     // pause.
1144     _collection_set->add_survivor_regions(curr);
1145 
1146     last = curr;
1147   }
1148   note_stop_adding_survivor_regions();
1149 
1150   // Don't clear the survivor list handles until the start of
1151   // the next evacuation pause - we need it in order to re-tag
1152   // the survivor regions from this evacuation pause as 'young'
1153   // at the start of the next.
1154 
1155   finished_recalculating_age_indexes(false /* is_survivors */);
1156 }