
JSR 292 Cookbook:
Fresh Recipes
with New Ingredients

John Rose
Christian Thalinger

Sun Microsystems

Got a language cooking on the JVM?

JSR 292, a set of major changes to the JVM architecture,
provides you with some exciting new ingredients.

Overview

3

Agenda

>  A Discourse on Methods
>  discussion of compiled code

>  Recipes (= use cases):
>  calling Java
>  Curry
>  Fast-and-slow

>  (…with JSR 292 API elements sprinkled in)

4

What’s in a method call?

5

What’s in a method call?

>  Naming — using a symbolic name
>  Linking — reaching out somewhere else
>  Selecting — deciding which one to call

>  Adapting — agreeing on calling conventions

6

What’s in a method call?

>  Naming — using a symbolic name
>  Linking — reaching out somewhere else
>  Selecting — deciding which one to call

>  Adapting — agreeing on calling conventions

>  (…and finally, a parameterized control transfer)

7

A connection from caller A to target B

>  Including naming, linking, selecting, adapting:
>  …where B might be known to A only by a name
>  …and A and B might be far apart

>  …and B might depend on arguments passed by A
>  …and a correct call to B might require adaptations

a)  names are subjected to Java scoping & access

8

A connection from caller A to target B

>  Including naming, linking, selecting, adapting:
>  …where B might be known to A only by a name
>  …and A and B might be far apart

>  …and B might depend on arguments passed by A
>  …and a correct call to B might require adaptations

>  (After everything is decided, A jumps to B’s code.)

9

Example: Fully static invocation

>  For this source code
 String s = System.getProperty("java.home");

 The compiled byte code looks like
 0: ldc #2 //String ”java.home”
 2: invokestatic #3 //Method java/lang/System.getProperty:

 (Ljava/lang/String;)Ljava/lang/String;
 5: astore_1

10

Example: Fully static invocation

>  For this source code
 String s = System.getProperty("java.home");

 The compiled byte code looks like
 0: ldc #2 //String ”java.home”
 2: invokestatic #3 //Method java/lang/System.getProperty:

 (Ljava/lang/String;)Ljava/lang/String;
 5: astore_1

a)  Names are embedded in the bytecode
b)  Linking handled by the JVM with fixed Java rules
c)  Target method selection is not dynamic at all
d)  No adaptation: Signatures must match exactly

How the VM sees it:

(Note: This implementation is typical; VMs vary.)

11

How the VM sees it:

(Note: This implementation is typical; VMs vary.)

12

13

How the VM sees it:

(Note: This implementation is typical; VMs vary.)

14

Example: Class-based single dispatch

>  For this source code
 //PrintStream out = System.out;
out.println("Hello World");

 The compiled byte code looks like
 4: aload_1
 5: ldc #2 //String "Hello World”
 7: invokevirtual #4 //Method java/io/PrintStream.println:

 (Ljava/lang/String;)V

15

Example: Class-based single dispatch

>  For this source code
 //PrintStream out = System.out;
out.println("Hello World");

 The compiled byte code looks like
 4: aload_1
 5: ldc #2 //String "Hello World”
 7: invokevirtual #4 //Method java/io/PrintStream.println:

 (Ljava/lang/String;)V

a)  Again, names in bytecode
b)  Again, linking fixed by JVM
c)  Only the receiver type determines method selection
d)  Only the receiver type can be adapted (narrowed)

How the VM selects the target method:

>  (Note: This implementation is typical; VMs vary.)

16

How the VM selects the target method:

>  (Note: This implementation is typical; VMs vary.)

17

How the VM selects the target method:

>  (Note: This implementation is typical; VMs vary.)

18

How the VM selects the target method:

>  (Note: This implementation is typical; VMs vary.)

19

20

How the VM selects the target method:

(Note: This implementation is typical; VMs vary.)

21

Dynamic method invocation

>  For this source code
 //Object x; Integer y;
if (InvokeDynamic.<boolean>lessThan(x, y))

 A new option:
 0: aload_1; aload_2
 2: invokedynamic #3 //NameAndType lessThan:

 (Ljava/lang/Object;Ljava/lang/Integer;)Z
 5: if_icmpeq

>  Advantages:
●  Compact representation
●  Local argument & return types recorded accurately
●  (Flexibility from signature polymorphism.)

22

How the VM finds the target method:

23

The target method can be a chain:

24

invokedynamic bootstrap logic:

25

Method handles

>  An object of static type java.dyn.MethodHandle
>  Like methods, can have any function type
>  Unlike (other) objects, signature-polymorphic

>  Like methods, can be virtual, static, or “special”
>  Unlike methods, not named
>  Invoked like methods:

 MethodHandle.invoke(args)

26

An invokedynamic call site

>  An invokedynamic call site contains
●  A method signature (immutable)
●  A method name (arbitrary)
●  The enclosing caller class
●  A class-specific bootstrap method
●  A site-specific target method (the payload!)
●  A CallSite which reifies it all

>  All immutable, except for target method

27

An invokedynamic call site (target)

>  The linkage state consists only of the current target
>  Target is a method handle

>  May point directly to a Java method
>  Can optionally test or adjust arguments

>  Mutable property of the instruction
>  (May be managed via a reified CallSite object)
>  May be set at any time, but few changes expected
>  Changing a target may affect compilation, etc.

28

Bootstrap methods

>  The per-class “plug in” is the bootstrap method
>  Its job is to build a reified call site on first execution

>  We consult the bootstrap once,
>  And then it gets out of the way

>  Call site must have call-ready target from the start
>  target can be eagerly or lazily linked
>  can be a method handle for an inline cache
>  …can re-link the call site if prediction fails

29

An invokedynamic call site

>  An invokedynamic call site contains
●  A method signature (immutable)
●  A method name (arbitrary)
●  The enclosing caller class
●  A class-specific bootstrap method
●  A site-specific target method (the payload!)
●  A CallSite which reifies it all

>  All immutable, except for target method

30

An invokedynamic call site (target)

>  The linkage state consists only of the current target
>  Target is a method handle

>  May point directly to a Java method
>  Can optionally test or adjust arguments

>  Mutable property of the instruction
>  (May be managed via a reified CallSite object)
>  May be set at any time, but few changes expected
>  Changing a target may affect compilation, etc.

31

Let’s talk about compiled code

32

A Simple Ruby method

>  For this source code
 def myadd(a, b)

 return a + b
 end

 consider the untyped plus “+” operation…

33

Not-so-simple compiled code

>  The JVM compiles and inlines these methods:

34

Not-so-simple compiled code

>  The JVM compiles and inlines these methods:

35

Not-so-simple compiled code

>  The JVM compiles and inlines these methods:

36

After optimization, optimistic type checks

37

After optimization, optimistic type checks

38

So, what can indy do?

>  Currently only interpreted invokedynamic
supported
>  It's 5 to 25% slower than “normal” Jruby
>  Compiled invokedynamic is almost there

>  but there are still some issues (we are currently
working on that)

39

JRuby is very smart!

>  Generated “invoker” methods are inlined perfectly

>  but you have to generate them

>  these are a lot of bytecodes
>  Makes your implementation complex
>  Default inlining depth can be (and is) hit
>  Linear dispatching pattern hidden in call tree (?)

40

MethodHandles does that for you

>  You get the speed of JRuby out-of-the-box
>  Your language implementation is much simpler

>  you can concentrate on other things
>  Compiled invokedynamic is very likely to have the

same performance as JRuby's invoker methods
>  (but maybe some other compiler optimizations kick

in that we currently don't think about)
>  method handle chains are a clear signal of linear

control flow to the inliner

41

Some code examples…

42

Plain old Java

Method handles can access any method in any Java API.

43

Plain old Java

Primitive types (like int, char) work just fine.

44

Plain old Java

Invokedynamic sites can be bound to Java methods.

45

Curry (chicken or rice)

46

Curry (with everything)

47

Curry (in cascade)

48

Fast food!

49

Slowly brewed

50

Moment of decision

51

Mixing it all together

52

Demo sources…

NetBeans™ code demos are online here:
http://hg.openjdk.java.net/mlvm/mlvm/file/tip/

netbeans/indy-demo

Outline of use:
hg clone http://hg.openjdk.java.net/mlvm/mlvm

cd mlvm/netbeans/indy-demo

vi nbproject/project.properties

ant run

John Rose
John.Rose@sun.com

Christian Thalinger
Christian.Thalinger@sun.com

http://openjdk.java.net/projects/mlvm

