
Flat objects — in memory — safely accessed
questions, sample solutions

John Rose, JVM Architect
March 24, 2022

POST-MEETING VERSION: Includes slides omitted from meeting or added as follow-
up.

Copyright © 2022, Oracle and/or its affiliates2 [2020-7-15]

Demo
Flat objects — in memory — safely accessed

 ⇒ Vector atomics?

Copyright © 2022, Oracle and/or its affiliates

OpenJDK Project Valhalla, a very very short summary

• Java objects today are accessed indirectly, via pointer-to-header

• The “payload” of an object lives in a different D$ block than the reference

• Reference word sits in a “container” — payload is displaced elsewhere.

• Typical costs of pointer-chasing, from reference in D$[i] to payload in D$[k]

• With Valhalla, the JVM “flattens” the object, like an inlined C/C++ struct

• The whole object sits in its “container” (array/field)

• Good density too: Both the reference word and header word(s) disappear

• Goal: cut out up to half of the D$ traffic, which was due to pointer-chasing.

• Our early testing supports this as a realistic goal! (Faster sorting…)

• Problem: Flattened data is subject to “struct tearing”.

3 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

Problem: Flattened data is subject to “struct tearing”

• Struct tearing is what happens when 2 words inside one object “diverge”

• (By “diverge” I mean 2 visible writes are “mixed up” from 2 threads.)

• (By “mixed up” I mean that class invariants require 2 writes be from 1 thread.)

• “Just a SW problem?” (Mixing writes from 2 threads is a HW expense too!)

• With Java/JVM, an object is entitled to define and protect multi-word invariants

• (Simple example invariant: Two fields are never both zero at the same time.)

• A non-flattened object can “synchronize” (header mutex); a flattened one cannot.

• A non-flattened object can make itself immutable, so one write per field.

• Valhalla objects are logically immutable, so problem solved?

• Problem.next: All fields of a flattened object must rewritten simultaneously.

4 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

Problem: All fields of a flattened object must rewritten simultaneously.

• The object is logically immutable, but the container can update the whole object.

• (This was trivial with non-flat pointer+header objects: Just update the pointer.)

• Updating the whole object, in a mutable container field, must be atomic.

• “Atomic” is the hard part here. Flat-object update is a transaction! (Ouch.)

• Software transactional memory is our fallback, our slow path.

• But what is our fast path?? That’s where we need guidance.

• Note: Guidance at this point is probably the same as for C++ multi-word atomics!

• (What you advise us today will be helpful in the C++ ecosystem also.) 

• Problem.last: We need a current or future hardware fast path for R/W.

5 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

More on Valhalla trade-offs [followup slide from verbal discussion]

• Assumption: Almost all Valhalla flattened objects will fit in a D$ line.

• “Sweet spot” = inline flattened objects of ≈ 1/2/3/4/?5 words. (Mask odd sizes.)

• (Per usual observations of typical object sizes as coded by programmers.)

• It is OK to optimize smaller ones (1/2) better than larger ones (3/4/5).

• Desired fully-optimized size ≈ 192-256 bits (3-4 words); 512 must mask.

• Note: Power-of-two sizing works against the Valhalla benefits of flattening

• Adding a wasted 64-bit word to round up a 192-bit structure dilutes memory.

• Very large flattened objects (equal to or larger than a D$ line) will be rare.

• They do not require full optimization, and/or will use different techniques.

• A large object can “afford” an embedded monitor and/or an indirection.

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

Valhalla trade-off Implications [followup slide from verbal discussion]

• 128-bit atomics are great; they handle the 2-word case.

• 3/4/5 word objects will require much slower handling (buffer/version/lock)

• Please consider 3-word objects, masked in 256-bit container

• not aligned to 256-bit address boundary

• really masked: no accidental “tearing write” to unused memory

• byte-wise masking not needed here

• D$ line crosses not needed here (would be nice, but can avoid)

• Similar “ask” for 5-word objects, but somewhat less important. Also 6/7/8.

• AVX-2 4-word 256-bit objects are part of 3/4/5 word size sequence.

• not aligned; implicitly masked to avoid “tearing write” to unused memory

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

Hardware fast path for atomic update of flat objects: Candidates that fail

• MOVDQ[A/U]: Normal vector-wise, masked as necessary: Not guaranteed

• Testing suggests that 99.9+% of vector R/Ws are atomic; 0.1-% = problem.

• TSX: Too much unpredictable power: Solves bigger “many-location” problems.

• Flattened object update touches 1 D$ line (maybe two, if bad alignment…)

• HLE: Would require an extra “mutex word” somewhere near the container

• (Maybe the containing object’s header, but that may not be on same D$ line)

• LOCK CMPXCHG16B: Works on aligned 64-bit word pairs. Improvable?

• Could possibly help with 2-word value types. Tests show it’s very slow.

• MOVDIR[64B/I]: Direct cache-bypassing store for 512 bits (for journalling?).

• Slow; requires fence; skips D$. Not for Java object computing

6 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

So, how to update a Java flat object? (And a multi-word C++ atomic?)

• SW problem only? (Just write portable code and forget HW tricks…)

• Use a mutex or SeqLock: Maybe tune up with HLE?

• Use object versioning: Pointer swapping; GC cleans the old versions later.

• These options are expensive relative to primitive scalar (int64) read/write.

• Valhalla aspires to make flat objects perform close to primitive scalars.

• Add guarantees to MOVDQ[A/U]? — No, disruptive and always-expensive

• Tune TSX for Java flat objects (and C++ atomics)? — Still needs STM fallback.

• Faster LOCK CMPXCHG16B? — Only reaches 25% of D$ line; want %zmm.

• MOVDIR[64B/I] variant? — Needs a cached, masked version for true density.

• Or some new SW/HW combination?

7 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

Naive sample proposal: LOCK MOVDQA vector move instructions.

• Locked vector load, unmasked

• Allocate LSU queue resources, lock one D$ line (or two if unaligned?)

• Transfer indicated VPU lanes into value tracking registers; release D$ line

• Locked vector load, masked — similar to unmasked

• Might lock only one cache line where unmasked would lock two

• Locked vector store, unmasked

• RTO (read-to-own) D$ line(s), wait for all VPU lanes ready

• Allocate LSU queue resources, lock one D$ lines (or two if unaligned?)

• Drain LSU queue entries under lock; release D$ line

• Locked vector store, masked — similar to unmasked

• Might lock only one cache line depending on mask?

8 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

Naive sample proposal #2: CMPXCHGDQA vector CAS instruction.

• Inputs: Two (xyzmm) vectors A, B, one mask K, one address M

• Output: A vector C (ignored for the write use case)

• Operation (omitting narrative about LSU and D$):

• Load C=(M){K}, compare to C and A under mask K

• Store (M){K}=B under mask, but only if C{K}=A{K} 

• Possible restriction: test mask K is limited in size/shape

• Memory transaction is always one D$ line (or 2 if DQU not DQA?)

• Not a general TSX-like DCAS/CAS2; more like a “whole cache line” CAS

• Scales CMPXCHG16B to a whole D$ line; might be slow as well.

9 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

Naive sample proposal #2b: CMPXCHGDQA2M vector CAS instruction.

• Inputs: Two (xyzmm) vectors A, B, two masks K, K2, one address M

• Output: A vector C (ignored for the write use case)

• Operation (omitting narrative about LSU and D$):

• Load C=(M){K}, compare to C and A under mask K

• Store (M){K2}=B under mask, but only if C{K}=A{K}

• Same possible restrictions or extensions as #2a.

• This #2b version is not necessary for Valhalla or C++ atomics

• But it looks useful as a STM building block, e.g., queue management

• User-space multiprocessor queues are hard and useful at the same time!

• Could be the basis for an enhanced SeqLock mechanism (HLE for SeqLock)

10 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

The underlying realities of memory operations (an educated guess)

• Memory travels in D$ blocks (with update masks)

• The CPU decomposes D$ operations into smaller units, tracking data as scalars (words, bytes, …)

• This happens in the LSU (load-store unit).

• Existing locking operations briefly pin D$ blocks and suppress decomposition

• Sometimes they pin adjacent blocks when a locked operation crosses a D$ line  

• Presumably there are difficulties with suppressing decomposition of vectors

• Decomposing memory operations supports value numbering and reordering

• Suppressing decomposition breaks those optimizations

• Decomposing operations also allows more flexible fit to internal queue limits

• Suppressing decomposition requires more resource allocation for internal queues 

• Still, it is possible, in principle, to consider cache-locked versions of vector operations

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

While we are here, some other queries: Sort/unsort cross-lane ops

• Need fuller conversation later about the design space vector permutations

• compress : expand :: sort : permute(=“unsort”) :: summarize : parse

• I think there is processing potential here to be unlocked

• …By reasonable (incremental) modifications of existing HW function

• Key thoughts:

• Compress is (1/2 of) radix-sort on 1-bit key

• Expand is the inverse of compress

• Permute is inverse of radix-sort on n-bit keys (n = lg(#lanes))

• Radix sort on lane numbers is multi-bucket compress

• Routing hardware for all of the above is in a common family

11 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

more on cross-lane motion [followup slide from verbal discussion]

• A butterfly network with suitable routing logic can sort/unsort lanes.

• There are many ways to use this, if the “hooks” are right.

• (I learned this in the ‘80s working on the Connection Machine.)

• When sorting, key-collisions need to be handled usefully.

• Many possible collision actions: Pick-first, keep-all, add-values, etc.

• The primitive is probably “keep-all” in stable order.

• But that requires a segmented reduction to do “add-values”, etc.

• Segmented reduction or scan is a fundamental primitive. (The C.M. again.)

• Use a mask register to define segments, then add/xor/mul/… in each.

• “Scan” means accumulate partials along each segment.

• Compress can collect the final value from each segment if desired.

• For numbering applications, you want all the partials (scan values).

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

While we are here, some other queries: HW support for advanced GC

• HotSpot Java-JVM Garbage Collection engineers ask…

• What is the best way to work with “colored” pointers?

• (Colored pointer is a machine address with a few extra bits for SW.)

• Key operations: 1. color, 2. un-color, 3. test and branch on (unexpected) color

• LAM (linear address masking) is a long-term goal (handles 2. un-color)

• One current or potential technique is to use shifting for 1./2. and bit-test for 3.

• Today’s ask: Can this be made a fused op please?

• SHRQ %RAW_PTR, #1; JA SLOW_PATH

• Note that JA tests the carry bit that was produced as a flag by SHRQ (ugh!)

• This handles de-color (ptr>>1) and test-color (ptr&1) in one frequent idiom

12 [2020-7-15]

Copyright © 2022, Oracle and/or its affiliates

mixing LAM into JVM GC [followup slide from verbal discussion]

• JVM needs fast instruction idiom for test-color + remove-color

• Best case: A fused test-branch (single micro-op)

• Without LAM, fast SHRQ %RAW_PTR, #1; JA SLOW_PATH

• Delivers both a condition code and an un-colored PTR value.

• With LAM, fast BT %PTR, #61; JC SLOW_PATH (or JNC or #62…)

• This is because with LAM the un-color operation is implicit

• Full disclosure: It’s better for the JVM if long offsets are supported

• If only short offsets, then it’s a frequent jump-around-long-jump

• Alternative in some ISAs might be a trap-on-condition w/ fast-fast traps.

• That would avoid the whole question of branch offsets.

• But the SLOW_PATH is not rare enough to use regular traps.

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

non-crypto compute with AES [followup slide from verbal discussion]

• Many algorithms (both JVM and user) feature non-crypto hashes

• Requirements 1,2,3: Low latency, high throughput, very good dispersion.

• Requirement 4: Parametric (“saltable”) family of hash functions.

• Random parameter (64b-128b) is used to prevent hash-prediction attacks.

• Salting is also used to search for and instantiate perfect hash functions.

• Zero-cost if salt is just a multiplier; can also be “whitening” pattern to XOR

• Portable solution is 64-bit [I]MUL, followed by 1-2 SHR+XOR.

• MUL is uneven; SHR+XOR required to cascade MSB effects to LSB positions

• Better portable solution is 1-2 AES steps, “salted” by XOR patterns.

• Faster and more even mixing across 128 bits than 64-bit MUL+XOR+XOR

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

non-crypto compute with AES #2 [followup slide from verbal discussion]

• AES is non-linear (has S-boxes) compared with MUL or GF2P8AFFIN

• (AES = either AESENC/DEC… AESKEYGENASSIST not so good)

• Easy to salt, since ASEENC takes a second input to XOR (the “salt”)

• AES cascade (bit-per-bit, out-from-in) is 1-in-32-out in a regular pattern

• This means a second AES step is needed for a full 128b cascade

• By comparison MUL is 1-in-32.5-out (avg.) in a skewed pattern

• GF2P8AFFIN is 1-in-8 out in a regular pattern (localized to bytes)

• To hash 128 bits of source material, 2 x AES is faster/better than MUL, GF2.

• Suggestion: Maybe fuse back-to-back AESENC pairs?

• VAES is useful to hash array input: Independently hash each chunk.

X [2020-7-15]

SL
ID

E

M

IS
SI

NG
/O

M
IT

TE
D

FR
OM

 M
EE

TI
NG

Copyright © 2022, Oracle and/or its affiliates

Thank You

Questions? Comments?

13 [2020-7-15]

Our mission is to help people 
see data in new ways, discover insights, 
unlock endless possibilities.

