
Project Leyden

Mark Reinhold
Chief Architect, Java Pla1orm Group, Oracle

John Rose
JVM Senior Architect, Java Pla1orm Group, Oracle

JVM Language Summit
2023/8/8

Capturing Lightning in a Bo?le

Copyright © 2023, Oracle and/or its affiliates

StaIc AOT vs. dynamic JIT… a dilemma
• The Java answer is never “Choose One, Lose One”:

Java balances both staIc and dynamic reasoning.

• HotSpot speculaIvely op0mizes dynamic states,
in effect converIng them to staIc states.

• In Leyden, such opImizaIons can be shiNed,
speculaIvely opImizing before app. startup.

• Result: Users can drive startup Ime and warmup Ime into the noise,
maintaining compa0bility

– No new constraints, no code change required

15

(image from JVMLS 2010)

Copyright © 2023, Oracle and/or its affiliates

• Startup ac0vity is setup computaIon to get through a first task, used for all tasks.

• Startup 0me is therefore (at most) the Ime of the first task, less other tasks.
Time[Startup] ≤ Time[Task 1] - Time[Task 2]
Caveat: Not all apps have a repeatable representaNve task. Take with grains of salt…

• Warmup ac0vity is opImizaIon effort (by JVM, not app) to reach peak performance.

• Peak performance may be defined as a staIsIcal maximum, minus variance (noise).
(Noise is oNen in the 3-5% range: say peak is reached at 95% throughput or beMer.)

• Warmup 0me is therefore the Ime it takes to reach 95% or higher of eventual peak.

• Startup 0me may also be measured as Ime to reach 80% (Pareto…) of eventual peak.

(This is the startup Nme and warmup Nme we wish to drive into the noise.)

Concepts and metrics (some definiIons)

16Copyright © 2023, Oracle and/or its affiliates

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

<clinit> activity unique to first iteration,
measured in CPU milliseconds

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

17

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

A tale of two graphs: What startup looks like today

Copyright © 2023, Oracle and/or its affiliates

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

note new time scale,
expanded from 20

measurements to 100

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

18

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

A tale of two graphs: At larger scales it’s all warmup

Copyright © 2023, Oracle and/or its affiliates

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

CHALLENGE: We wish to push the
blue line downward, closer to the

ideal. (“Closer” simply means less
total area between the curves.)

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

19

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

Challenge: Make startup/warmup faster at mulIple scales

Copyright © 2023, Oracle and/or its affiliates

• Tiers 0..4 are execuIon modes, transparent except for performance.

• Tier 0 is the JVM bytecode interpreter. It collects full profiling.

• Tier 1 is the simplest possible (C1) code. No profiling. Use is rare.

• Tier 2 is simple code with profiling at method entry (only). Limited use.

• Tier 3 is simple code which also collects full profiling. Spins up quickly.

• Tier 4 is opImized code which benefits from profiling, but collects none.

• Tier 4 may de-opImize on awkward inputs; lower Tiers may not.

• De-opImizaIon is followed by further profiling, and re-opImizaIon.

HotSpot Tiered CompilaIon: A primer

20Copyright © 2023, Oracle and/or its affiliates

HotSpot Tiered CompilaIon: A primer

21Copyright © 2023, Oracle and/or its affiliates

T3 (C1 JIT)
handles inits
full profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

deoptimization,
reprofiling

START

T2 (C1 JIT)
handles inits

limited profiling

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions
in the standard HotSpot execution policy.

Rare T1 states are omitted.

JVM execution modes
and transitions in the standard

HotSpot execution policy.

(Rare T1 states are omitted.)

• Startup is handled by slower Tiers 0..3, starIng with the interpreter.

• Startup resolves symbols, runs class inits (<clinit>), runs indy BSMs.

• Warmup happens as code shiNs from lower Iers to higher ones.

• First, lower Iers must gather profiles (execuIon paths and types).

• The JIT then uses those profiles to op0mize Tier 4 code. This takes Ime.

• Peak is reached when (most) code stabilizes in the highest Tier 4.

Speedups are courtesy of HotSpot Tiered CompilaIon

22Copyright © 2023, Oracle and/or its affiliates

• Leyden can shiN the effort of collecIng profiles and generaIng JIT code.

• An earlier run that gathers JVM informaIon for Leyden is a training run.

• A later run that uses such informaIon is called a deployment run.

• Some iniIalizaIon states can be recorded for replay in deployment.

• Persistent profiles gathered in training can be applied in deployment.

• JIT code can be generated at startup from persistent profiles. (Helpful.)

• Or else, JIT code can be archived AOT for fast loading. (Very helpful!)

Leyden can shiN work to link, profile, iniIalize, & compile

23Copyright © 2023, Oracle and/or its affiliates

• DefiniIon: A training run is a representaIve execuIon of an applicaIon.

• Typical inputs and config. drive training run startup through expected paths and states.

• Preferably, training run warmup (repeIIve tasks) leads to peak performance.

• During training, the JVM gathers iniIal states, profiles, JIT code, into CDS and/or logs.
OpIonally, mulIple training runs are executed, and resulIng logs of data are merged.

• The applicaIon is then dis0lled (terminal condensaIon step) into the opImized version.

• ExecuIng the opImized applicaIon is called a deployment run.

• The deployment run starts with iniIal states, benefits from archived profiles and code.

• OpIonally auto-train: Hide these steps “under the hood” for conInuous improvement.

If you can compose a system benchmark, you can compose a warmup training run.

Key concepts: How training prepares for deployment

24Copyright © 2023, Oracle and/or its affiliates

• Java has always been both staIc and dynamic: Locally staIc, and globally dynamic.

• Training runs, which observe the app, are the dynamic “flip side” of staIc app analysis.

• We can use a Turing Machine (training) to exercise another T. M. (app), capturing
reusable code and replayable profile and data states.

• StaIc views, though rich, tend to build models that are fragile, “needy” of constraints.

• Dynamic observaIons, if speculated, can be used as if they were staIcally deduced.

• This approach copes well with surprises during deployment. It is not surprising, since
on-the-fly adaptaIon is Java’s disInct strength. (SpeculaIve techniques allow for
unplanned futures; this is a HotSpot core competency.)

• During deployment, we invisibly re-opImize JIT states captured from the training run.

The unreasonable effecIveness of training runs

25Copyright © 2023, Oracle and/or its affiliates

• We can now persist many states from training runs. (See next slide.)
– Using these states improves startup/warmup Imes for many use cases.

• SpeculaIng on these states is robust, giving balance points between all-
staIc and all-dynamic soluIons.
–Many recorded states can soNly speculated, not firmly constrained.
–With speculaIve opImizaIons, success is a habit, but failure is also an opIon.

• Online adapIve opImizaIons (JIT Tier 4) sIll get best performance.
–We use HotSpot’s JIT re-compilaIon to fill lingering performance gaps.

• Policy challenge: Combine the old and new tacIcs as needed, smoothly.

Our results are now promising enough to share

26Copyright © 2023, Oracle and/or its affiliates

(image from JVMLS 2010)

• Class file events and other historical data:
load, link, iniIalize (<clinit>), JIT compiles.

• ResoluIon of API points and indy (stored in
constant pool images in the CDS archive).

• ExecuIon profiles, code (all Iers).

• (And more later, such as lazy states…)

Once captured, such data “looks staNc”,

helping opNmizaNons. But it was “born

dynamic”. And it can change, triggering re-

opNmizaNon.

States we can capture from training

27Copyright © 2023, Oracle and/or its affiliates

• Key idea: premain, a specified locaIon for re-execuIng recorded acIons.
– Java defines main as the first event of an applicaIon.
– Leyden adds premain, an earlier event.
– Premain warms up the applicaIon, rebuilding recorded states from training run.

• Some states which evolve from training runs are deemed safe to
checkpoint. Other states are discarded.
– The saved states from training are formalized as premain acIons.
– Some are irreversible, others are subject to speculaIon.
– The JVM can (or might not) use CDS-like tech to set up these states before

deployment. If it does, it appears that parts of premain “run super fast”.

Can this be made safe and sane?

28Copyright © 2023, Oracle and/or its affiliates

• Profiles from end of training run are preserved in CDS, for online re-opImizaIon.

• Code is generated throughout training run and stored in archive for use with CDS.

• Code states include C1 (Tier 2 mainly) and opImized code (Tier 4).

• Code not classified as “hot” (i.e., used infrequently or only for setup) stays in Tier 2.
Improves startup, as an alternaIve between the interpreter and aggressive opImizaIon.

• Code is loaded from archive to online 5x to 500x faster than recompilaIon!

• Net savings can be seconds or even minutes, from online JIT avoidance.

• More savings from interpreter avoidance: The app. runs JIT code immediately.
Archived code can de-opt into interpreter for corner cases, but is seldom discarded.

• Using the best available archived code improves startup and warmup (Ime to peak).

• These savings are significant. They can make the 2nd task run fast like the 100th.

Archived code states arise from training run warmup

29Copyright © 2023, Oracle and/or its affiliates

T3 (C1 JIT)
handles inits
full profiling

T4 (AOT)
init barriers
uses profile

T2 (C1 JIT)
handles inits

limited profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

T4 (AOT)
init dependencies
re-opt. as needed

uses profile

default
policy

(untrained)

cooler
methods
(trained)

warmer
methods
(trained)

after
dependent

classes
load

deoptimization,
reprofiling

background
reoptimization

T2 (C1 AOT)
handles inits

limited profiling

START

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions,
as extended by Project Leyden.

Note: Heavy lines mark new modes & transitions.
Rare T1 states are omitted.JVM execuIon modes and transiIons (new)

30Copyright © 2023, Oracle and/or its affiliates

JVM execution modes
and transitions, as

extended by 
Project Leyden.

Note: Heavy lines mark
new modes & transitions.

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

31

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A tale of three graphs: BeMer startup

Copyright © 2023, Oracle and/or its affiliates

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

32

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A tale of three graphs: BeMer warmup

Copyright © 2023, Oracle and/or its affiliates

(c
um

ul
at

iv
e

tim
e

–
un

sp
ec

ifi
c

un
its

)

0

1000

2000

3000

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

4. Highly-optimized code is installed from archive
 after deps ripen.

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

33

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A tale of three graphs: The long-term view

Copyright © 2023, Oracle and/or its affiliates

• Use javac to compile a series of 100 small source files. First task triggers startup.
Each sub-task does it all again, and discards results. RepeIIon triggers warmup.

• States from training run are stored in CDS archive (with JIT cache).
These AOT states include loaded metadata, selected resoluIon results.
Indy resoluIons include hidden class metadata and method handles in Java heap.
CDS does this already, but this use is broader and deeper — CDS has been

underuNlized!

• Init-barriers code (Tier 4, C2) traps ONCE to interpreter to handle <clinit> events.
Unlike default Tier 4, init-barriers code has a usable fast path aNer <clinit>.

• Regular archived code is loaded only when all <clinit> deps “ripen”.

• When most or all archived code is installed, Tier 4 recompilaIon begins.
CAVEAT: Work in progress. More tuning needed for machinery, policy, user model.

Case study: javac startup, warmup, peak

34Copyright © 2023, Oracle and/or its affiliates

0

150

300

450

600

1 4 7 10

baseline premain ideal

javac, the first few iteraIons

35Copyright © 2023, Oracle and/or its affiliates

STARTUP

WARMUP

N
O

T
E: A

CT
U

A
L M

EA
SU

R
EM

EN
T

S

0

25

50

75

100

1 34 67 100

baseline premain ideal

javac, more iteraIons, showing start of recompilaIon

36Copyright © 2023, Oracle and/or its affiliates

← STARTUP

WARMUP
RECOMPILATION

0

1750

3500

5250

7000

1 34 67 100 133 166 199

baseline premain ideal

javac, viewed cumulaIvely (total execuIon Ime)

37Copyright © 2023, Oracle and/or its affiliates

Tuning and policy work is needed
 to bring down the green line further.

0

11

22

33

44

55

baseline premain ideal

javac, in the longest Ime scales, experiences GC noise

38Copyright © 2023, Oracle and/or its affiliates

PEAK

WARMUP

RECOMPILE CONTINUALLY …

← STARTUP Integral
millisecond
scale shows
quantization
noise also.

The baseline
policy is still
champion,

for now.

But it is
early days.

• It works: We can shiN computaIon to premain, via CDS back to training runs.

• There are lots of startup and warmup states to push back to premain.

• There is no one “magic bullet” technique. Let’s keep hunIng for more.

• MulIple Ime-scales (of warmup) are important. Let’s try to chase them all.

• When AOT stuff can go wrong, use JIT re-opImizaIon as a fallback.

• Machinery doesn’t tune itself. Well-tuned policy is a way of life, not a possession.

Lessons from javac case study

39Copyright © 2023, Oracle and/or its affiliates

Case study: JVM2008 XML validaIon benchmark

40Copyright © 2023, Oracle and/or its affiliates

XML Validation, lower is better

m
ill

is
ec

on
ds

 p
er

 o
p

100

225

350

475

600

seconds (samples)
0 5 10 15 20 25 30

baseline
CDS only (no archived code)
premain (with archived code)

one-second samplesstartup is instant
(within first second)

average op time, sampled at 1 second intervals, lower is better

• SomeImes startup is the only interesIng win; warmup is already OK for smaller apps.

• In this case, we can decisively improve startup, compared to the baseline policy.

• Benchmark noise can make it hard to decide where is the peak performance.

• Over Ime, the baseline policy sIll seems to win by a hair; this may need more work.

Lessons from XML validaIon case study

41Copyright © 2023, Oracle and/or its affiliates

42

Spring v3.1.2 Hello World boot times
seconds, average of 3 runs, lower is better

0.400

0.800

1.200

1.600

wall clock from JVM boot Spring self-measurement

default (JDK 22)
AppCDS only (no premain)
premain (no indy or clinit)
premain (no clinit)
premain
SBaot + PM (no indy, clinit)
SBaot + PM (no clinit)
SBaot + premain

Spring v3.1.2 Hello
World boot times
for premain, with
and without
various options.

Time in seconds,
average of 3 runs,
lower is better

wall clock from JVM boot Spring self-measurement

Case study: Spring Boot applicaIon framework startup

Copyright © 2023, Oracle and/or its affiliates

• There are many tacIcs which can improve startup.

• We win big because the tacIcs all work in synergy (are not mutually exclusive).

• AppCDS is a win, back-shiNing loading and resoluIon through premain.
Code archiving is further win, back-shiNing JIT work through premain.

• Back-shiNing indy resoluIon states unlocks further opImizaIons.
The clever Tier 4 code which checks for <clinit> wins, but only a liMle.

• Low-level JVM metrics give a liMle more data than Spring self-reported Ime.

Lessons from Spring Boot case study

43Copyright © 2023, Oracle and/or its affiliates

• For now, premain acIviIes are derived automaIcally from training runs.

• OpImizable states generated by premain are dumped into the CDS/JIT archive.
(Other premain states are dropped, assumed to be reconstructed at deployment.)

• In the future, user-defined acIviIes can march in this parade, as well.
This requires work on characterizing which of those acIviIes are trusted as pure.

• No loss of Java’s natural dynamism, no new constraints on the programming model.

• Need user-friendly workflows (not flag soup): mulI-run condensaIon, “auto-train”.
This requires more work on moving CDS/JIT states into log files and vice versa.

• Plenty of addiIonal opportunity for performance tuning, policy integraIon, JIT work.

There is so much more we can do. Join us! openjdk.org/projects/leyden

Current status of premain work: Fresh beginnings

44Copyright © 2023, Oracle and/or its affiliates

https://openjdk.org/projects/leyden/

QuesIons?

45Copyright © 2023, Oracle and/or its affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/

