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Introduction: Terms, Goals, Requirements 
This document develops the design and use of parametric constants, 
methods, classes, and fields. The parametricity originates in the 
constant pool, and is threaded from there through the definitions and 
uses of parametric methods, classes, and fields. Any group of co-
parametric constants and API points can be specialized coherently 
and efficiently. 
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Design principles: JVM-centric, Factored, 
Predictable, Optimizable 

This design attempts to focus on the actions of the JVM, pushing 
complexity (when possible) onto the language runtime via bootstrap 
methods and other upcalls. The upcalls factor out concerns which 
would be unwieldy to express in JVM specification and code. 

Inside the JVM, we also attempt to factor in the new features so as 
to disturb already delicate parts of the JVM as little as possible. For 
example, the verifier is unchanged, as are inheritance and subtyping 
rules (as far as they are hardwired in the JVM). The structure of 
symbolic references is unchanged, except by addition, and that is in 
the constant pool node structure, not the syntax of class names or 
descriptors. In general, existing structures are enhanced by addition of 
side data, not by intrusive changes. The result is a design which is 
easier to prove safe and sane. 

In validating the design, we have sometimes referred to Maurizio 
Cimadamore’s thesis, which does a heroic job of pushing all of the 
Java 5 language down into the JVM, but does so by adjoining new 
structures to unchanged ones. Relative to that work, our goal here is to 
preserve the basic insights, of what new connections need to be 
“plumbed” to allow APIs to gain parametric aspects, and 
(contrariwise) which aspects of language implementations to keep out 
of the JVM, by referring them to upcalls. In the course of the exercise, 
we have found that parametric specializations look different at the 
JVM level from those at the source level, and have their own natural 
primitives and design space. 

Because at the source level type parameters are part of static type 
information, and because the JVM encodes such information in the 
constant pool, we have integrated the necessary parametric 
“plumbing” into the constant pool, rather than adding either a new 
kind of dynamic argument (somewhere besides method arguments); 
nor have we needed to add a completely new kind of declaration 
(neither method arguments nor class constants). 

The JVM has little to no interest in tracking type system proofs, 
beyond its required attention to the verifier and its own type system. 
The JVM has a compelling interest in tracking parametric information 
so as to build specialized code and data structures. Thus, the end result 
of successfully tracking of parametric constants and API points is the 
specialization and successful optimization of those constants, leading 
to tighter data and faster code. 

By mixing parametrics into the constant pool we find they are 
exactly where we need them (next to symbolic references). As a 
bonus, ad hoc specialization transforms are easy to express using 
condy. 

The shape of these parametric constants may look surprising. 
Language level type parameters are completely invisible. A caller may 
add at most one linkage parameter (a static value) to a symbolic 
reference to given API point, and the corresponding resolved 
declaration may specify a specialization anchor, which receives the 
linkage parameter and makes use of it to drive specialization logic. 
For any given API point, any and all specialization decisions are 
encapsulated within the class file that declares the API point and its 
specialization anchor. These decisions are permanently recorded in the 
caller’s constant pool as resolved linkage state, but they may only be 
inspected by the class file declaring the API point. 

In short, every API point use site can specify an optional linkage 
parameter, and (in aby single class file) any group of API point 
declaration sites can specify a specialization anchor to receive and act 
on linkage parameters. 

One such parameter is enough “envelope”, of course, for a 
language translation strategy to package up any amount of “mail”, 
such as record-like tuples of reflective type variable bindings. The 
option to parameterize and specialize is applied broadly and evenly: 
Classes, interfaces, fields, methods, constructors, both definitions and 
use sites, are all equally and independently open to the presence of 
parametricity. Dynamic linking of separately compiled API points 
works just the same, but with an extra “piece of mail” added to every 
linkage event, and delivered wherever parametric instances are to be 
found, or parametric methods are called. 

When a user of an API point supplies a linkage parameter along 
with a symbolic reference to the API point, the JVM’s linkage 
resolution logic delivers the parameter value to the specialization 
anchor associated with the resolved API point declaration, in a 
particular class file. That anchor then makes a group of specialization 
decisions that include that API point, but may include other co-
parametric API points and constants in the same class file. This set of 
decisions is private to the declaring class file, and the user can see 
only specialization details that the declaring class chooses to reveal. 

All this is done with just two new constant pool types and two new 
class file attribute formats (for linkage parameters and specialization 
anchors), and the Parametric and TypeRestriction 
attributes, which can be attached to classes, fields, or methods. 

We have not tried, yet, to simplify the work of compilers or 
designers of translation strategy. It seems premature to do this, since 
just getting the JVM parts right is plenty hard. Further prototyping is 
likely to show simple but helpful ways for the JVM to make 
compilers a little simpler–of course, short of moving the compiler 
logic into the JVM. We may add new constant pool item types 
(beyond the two we introduce here), if they are deeply useful. For 
now, folks, condy is your friend. 

This design is organized so as to be optimizable using many pre-
existing JVM techniques. It may also enable new techniques, such as 
smarter method customization. We double down on shaping “fast 
paths” (a common condition in the JVM, where speculation pays off) 
as well as “slow paths” (to be handled by deoptimization when 
possible) which cover less-important corner cases, such as support for 
raw types. The design does not, however, allow optimization to 
produce shifts in specified behavior. Specialization can never simply 
be disregarded by the JVM. Thus, a “dumb” JVM implementation and 
a highly optimizing one will process exactly the same linkage 
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parameters and specialiaziton anchors, and so both will get the same 
results (if the latter waits up for the former to finish). 

Our hope is to end up with a design which looks, more than other 
options, almost obvious in hindsight. 

We will make further design observations as we go. 

Terms: Parametric vs. Invariant, Specialized 
vs. Customized, Layout, etc. 

Let’s introduce the following terms with partial definitions. We will 
more fully define them later as needed in context. 

• Variant Type: A type, in the language or VM, whose meaning 
can vary in different contexts. 
In Java source code, a variant type depends on a type 
variable and may vary in different applications of that type 
variable. A type depending on a wildcard is also variant. For 
example, if T is a variant type, then List<T> is, and vice 
versa, but List<String> is not variant. To represent 
types, the JVM uses reflective objects (such as Class 
objects), descriptor strings, and metadata items not directly 
accessible to Java code. 
 
In the JVM, variant types are not represented directly; they 
are erased at translation time to less informative types. (For 
example, List<String> is erased to List and T or ? in 
List<T> or List<?> is erased to Object.) New 
parametric structures in the JVM also assist in tracking the 
identities and effects of variant types, although the JVM does 
not directly model them (beyond their erased forms). Similar 
observations can be made about generic fields, constructors 
and methods in Java source code. 

• Invariant Constant: An item in a class file’s constant pool 
which represents at most one value. Prior to this proposal, 
Java class files have only invariant constants. Note that a 
constant often describes a runtime type, and is often lazily 
resolved (with possible resolution failure). Note that 
invariant constants are used to translate erasures of variant 
types. 

• API Point: A named class, interface, method, constructor, or 
field. Users (sometimes known as “callers”) of API points 
refer to them via symbolic references, which are resolved to 
declarations (sometimes known as “callees”) in specific class 
files. (A non-static API point has a distinguished argument 
called the “receiver” object, or in the case of a field, the 
“container” object.) Methods and fields have type descriptors 
which determine a static type. All API points, even ones 
which implement variant types, are defined in terms of 
invariant constants. API points which implement variant 
types have additional structure beyond their static names and 
types. 

• Specialization: The management of distinct groups of 
constant resolutions and associated behaviors of multiple 
versions of a declared class, interface, field, method, or 
constant, as used by multiple clients. If a type or type 
member is specialized, its behaviors may be specialized. 
Specialization is implemented with a basic mechanism for 
tracking extra parametric constants associated with API 
points (affecting their instantiation, invocation, or access), 
plus runtime library code which shapes the tracked 
information into specialized classes, interfaces, fields, and 

methods. (Specialization does not transform or vary names, 
type descriptors, or bytecodes; these are always invariant.) 

• Specialization Anchor: A new kind of class file constant pool 
item (tagged as CONSTANT_SpecializationAnchor) 
which embodies a single, coherent set of specialization 
decisions. Class file elements that depend on an anchor are 
specialized along with the anchor itself. (Others are 
invariant.) Thus, a single class file element can be 
specialized when and only when that element’s anchor is 
specialized; conversely any specialization of the anchor 
determines a corresponding specialized behavior of the 
element. Specialization decisions embodied in an anchor may 
be accessible from specialized instances of a class or 
interface, or from specialized invocations of a method or 
constructor, as described below. 

• Parametric Constant: An item in a class file constant pool 
which either is a specialization anchor itself, or else depends 
(directly or indirectly) on such an anchor. Its effective type, 
value, and/or behavior may vary across distinct 
specializations associated with the anchor. Many kinds of 
constants (including pre-existing kinds, such as 
CONSTANT_Methodref and CONSTANT_Dynamic) can 
be either parametric or invariant. 

• Parametric Class: A class or interface (as defined by its class 
file) which is declared to depend on a specialization anchor, 
by means of a Parametric attribute that refers to the 
anchor. Specialized constants associated with this anchor are 
accessible from any instance of that class or interface. The 
types of fields in the class may be specialized. (Note: 
Following current usage as documented in class-
terminology-jls.html, we will often use the 
combined phrase “class or interface” to describe an entity 
which is loaded form a class-file. Sometimes the plain term 
“class” will be used when misunderstanding seems unlikely.) 

• Parametric Method: A method or constructor (in its class 
file) which is declared to depend on a specialization anchor, 
by means of a Parametric attribute that refers to the 
anchor. Specialized constants associated with this anchor are 
accessible within any invocation of that method. The 
effective type of the method may be specialized. 

• Parametric Field: A field (in its class file) which is declared 
to depend on a specialization anchor, by means of a 
Parametric attribute that refers to the anchor. The 
effective type of the field may be specialized. The internal 
layout of the field may be optimized. (If the field is non-
static, the enclosing class must be specialized on the same 
anchor.) 

• Type restriction: A rule which applies to a field value, 
method return value, or method parameter, with the effect of 
blocking or excluding a specified subset of the values that are 
naturally available under the declared type of the value. (The 
rule may or may not refer to a subtype denotable by a type 
descriptor. See below.) Type restrictions are applied to API 
points to condition their behavior for better optimization. 
Type restrictions can be specialized. 

• API Point Name, API Point Reference: An API point is used 
(or “called”) by means of a resolved API point reference in 
the user’s constant pool. This reference is often a symbolic 
constant of type CONSTANT_Class, CONSTANT_Field, 
CONSTANT_Methodref, or 
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CONSTANT_InterfaceMethodref. These symbolic 
constant types are called API point names. 
As a new feature, any use of an API point name can also 
refer to a “decorated” API point reference (not just a 
symbolic name) that contains extra constant pool structure. 
The extra “decoration” requests a specialization of the API 
point. The meaning of symbolic references to API points is 
unchanged in this proposal, in the sense that an API point 
reference is symbolically resolved exactly as if the resolution 
were performed on an invariant API point name obtained by 
stripping out any “decoration”. See below. 

• Co-parametric: Two elements (constants, API points) in a 
single class file are co-parametric when they directly depend 
on the same specialization anchor. (In a degenerate sense, 
invariant elements may also be viewed as mutually co-
parametric. In this sense, the constants and API points of a 
class file form equivalence classes of co-parametric 
elements.) Elements that directly depend on a common 
anchor are interoperable under a single specialization of that 
anchor. It is typical for a parametric class to be co-parametric 
with some of its fields, all of its constructors, and some of its 
methods. Parametric elements which are not also co-
parametric with their class may be called independently 
parametric (and may be co-parametric with one another). 
Two API points or constants in different class files are never 
co-parametric. In particular, specializations are not subject to 
inheritance; each level of a class hierarchy manages its own 
specializations. 

• Sub-parametric: Occasionally, one specialization anchor may 
depend on another, specifically when a parametric method 
nests in an independently parametric class. In that case the 
class is not co-parametric with the method, but rather sub-
parametric to the method, and (extending to the above 
equivalence classes), anything co-parametric with the class is 
sub-parametric to anything co-parametric with the method. If 
C is sub-parametric to M, then M can operate on C within a 
single specialization of M, because M’s specialization 
determines another specialization of C, and the anchor for M 
links to the anchor for C. (In a degenerate sense, invariant 
elements may also be viewed as sub-parametric to all other 
API points and constants. In this sense, there is a partial 
order between the previously mentioned equivalence classes. 
A set of co-parametric elements has natural access to 
elements sub-parametric to that set.) 

• (Variant: Generally, the opposite of invariant, so not solely 
dependent on a static or once-resolved constant value. Can be 
used to describe something (constant, class, method, etc.) 
that is not invariant but rather parametric. Variance is an 
implementation requirement for a source code feature. 
Specifically, parametric API points and constants will be the 
recommended means to that goal, as opposed to variance 
obtained by other means, such as bytecode spinning or value-
dependent types. In the JVM, the opposite of invariant is 
parametric, not variant.) 

• Preparation: The phase of class linking which assigns 
memory resources to JVM states associated with a given 
class. In this document, preparation also contemplates the 
process of creating JVM states for resolvable constants. 
(These states are within the run-time constant pool, §5.1, as 
affected by the processes of resolution, §5.4.3.) At runtime, 
preparation is a prerequisite to assigning a fresh value to a 
resolvable constant (or assigning an initial value to a new 
static field). Once a constant (parametric or invariant) is 
prepared, it can then be resolved at most once. When a 

parametric constant is prepared, the run-time constant pool 
containing that constant expands by gaining new a resolution 
state for that constant. Before preparation, a constant is 
simply a static symbolic reference in a run-time constant 
pool, directly derived from a static structure in a class file. 
Immediately after preparation, any constant (invariant or 
parametric) will have a state of being unresolved; thereafter 
it can be either resolved to a value (either a loadable constant 
or an item of metadata) or resolved in error (with a recorded 
exception). Invariant constants are individually prepared “up 
front” during preparation of the containing class class. 
Parametric constants are prepared exactly when a new 
specialization is created. (The constants prepared are exactly 
those co-parametric with the anchor constant for the 
specialization being created.) Both invariant and parametric 
constants have the same rules for resolution, in common, as 
applied to their prepared states. 

• Resolution: At runtime, the process of changing the state of a 
prepared, unresolved constant by permanently associating it 
with a loadable value, or an item of metadata, or a recorded 
exception. Invariant constants are resolved at most once, 
because they are prepared once. Parametric constants are (in 
general) resolved many times, because they are (in general) 
prepared many times. 

• Validation: The process by which a linkage parameter 
proposed by the client of an API point is accepted by the 
specialization anchor of that same API point. A client cannot 
force specialization into an API point without validation. 
Each parametric API point has the “final say” on what values 
it uses, internally, to represent the variant semantics intended 
by the programmer and translation strategy. Validation thus 
defends encapsulation of API points, and supports separate 
compilation. In general, validation replaces a client-supplied 
value with an internal token called a specialization anchor. 
(As we shall see, this internal token is reified by a Java 
object of type SpecializationAnchor.) However, 
clients are allowed and encouraged to propose previously 
validated specialization anchors to API points, and the JVM 
efficiently accepts them without redundant revalidation. 

• Specialized class: Generally, a class or interface which has 
been specialized somehow, with some sort of bookkeeping to 
record the decision. (The phrase class specialization refers 
either to the process of making specialized classs, or to a 
specialized class itself.) Specifically, in this proposal, a class 
(or interface) which depends on a specialization anchor, 
which has in fact been specialized. Subject to type 
restrictions or other variant behavior, a specialized class can 
be used instead of a normal, unspecialized class for at least 
some operations. The symbolic references used are the same 
in both cases. Two specializations of a class are the same 
only if they refer to the same specialization anchor. Differing 
specializations may exhibit differing behaviors or type 
restrictions. 

• Specialized method: Generally, a method or constructor 
which has been specialized somehow, with some sort of 
bookkeeping to record the decision. (The phrase method 
specialization refers either to the process of making 
specialized methods, or to a specialized method itself.) 
Specifically, in this proposal, a method (or constructor) 
which depends on a specialization anchor, which has in fact 
been specialized. Subject to type restrictions or other variant 
behavior, a specialized method can be used instead of a 
normal, unspecialized method for at least some operations. 
The symbolic references used are the same in both cases. 



Two specializations of a method are the same only if they 
refer to the same specialization anchor. Differing 
specializations may exhibit differing behaviors or type 
restrictions. 

• Class species (or interface species): A user-visible type 
mirror for a specialized class (or interface) which can be used 
to manufacture instances (or subtypes), test instances, or 
make type restrictions. In general, class specializations may 
have private constants or API points are not relevant to the 
publicly visible species. Even more, it is possible that several 
specializations share a single species, so that a test for the 
species does not reveal internal distinctions made within the 
specializations. Still, in the simplest use cases for class 
specialization, each class species corresponds to a single 
unique specialization. In the current proposal, a specialized 
class’s layout (field specializations) is linked to the species, 
and not to the specialization anchor (which can have 
additional variability to represent “private opinions”). 

• Customization: Generally, any process which enables the 
JVM to optimize an artifact that uses, accesses, or otherwise 
depends on a parametric API point or constant, by copying 
the artifact with the parametric API point or constant “hard 
coded” to a particular specialization. At the cost of extra 
versions of code and metadata (the customized artifacts) this 
can gains the performance benefits of invariance while 
preserving the flexibility of genericity. Customization can 
involve a mix of speculation, inference, profiling, and/or 
dynamic side channels. Although there are a number of 
occasions and implementations of customization, the 
common thread is extra “bookkeeping” to allow some variant 
type or value to be presented to its point of use without loss 
of necessary information. Classes, variables, and method 
bodies may be customized in various ways. The JVM may 
customize parametric classes with respect to their associated 
co-parametric constants and API points. Independently of 
specialization, the JVM may customize a supertype method 
to a receiver subtype. Also, the JVM may customize a 
method to a particular type or value of one or more 
arguments (either the receiver or not). None of these 
customizations are allowed to violate the semantics of the 
program being run, and they are all optional. 

• Layout: Generally, the size and shape in memory of a data 
structure, notably a class or array instance. If a class has no 
parametric fields, its layout can be fully determined when the 
class file is loaded; this is called an invariant layout. 

• Customized layout: A layout can potentially be customized if 
it has specialized fields that are constrained to hold only 
values consistent with particular types (or values or ranges of 
values). 

• Flat layout: A layout is flat when it presents a set of variables 
without needless indirections or headers. If a variable is of an 
identity class type, it needs an indirection to keep track of 
identity and a header to allow subclasses to interoperate 
polymorphically. But for a variable of an primitive class 
type, any indirection to its fields (e.g., for boxing or 
buffering) is needless. (Likewise, if a class’s contract does 
not mandate the preservation of object identity in some 
stored value, then an inlined representation of a value might 
be selected, even if it loses identity information.) When 
generics and primitives are combined, some kind of layout 
specialization is needed to achieve flat layouts. It is the 
responsibility of the runtime library to communicate to the 
JVM its intentions about which information to record about a 

class species, and whether or how to specialize the layout of 
the class. It is the responsibility of the JVM to customize 
layouts into flatter forms, if it can exploit the specialization 
information from the runtime, and if the effort is profitable. 
As will be seen, specialization anchors provide the necessary 
bookkeeping to track specialized layouts, so they can be 
customized when that is profitable. 

• Object code: Machine instructions (optimized or not) which 
directly implement a method’s actions. (Normally a JIT or 
AOT produces object code. In a certain way, a JVM bytecode 
interpreter can be viewed as object code for all methods.) 
Variant object code depends somehow (either statically or via 
dynamic computations) on one or more variant types or other 
constants. Typically, variant object code works with variables 
of variant types. 

• Specializable object code: Object code is specializable if the 
variant types or values it uses are constrained to be specific 
types or values, so that the instruction sequences used to 
work with those types and values are then specializable to 
those types or values. Just as specialized layouts can 
eliminate useless indirections, specializable object code can 
omit useless boxing or buffering. Specializable object code 
can often devirtualize and inline many virtual calls on values 
of variant type, where unspecialized object code would make 
out-of-line calls through dispatch tables. It is the 
responsibility of the runtime library to communicate to the 
JVM its intentions about which information to record about a 
method species, and whether or how to specialize the code of 
the method. It is the responsibility of the JVM to customize 
object code and calling sequence to flatter forms, if it can 
exploit the specialization from the runtime, and if the effort 
is profitable. Specialization anchors provide the necessary 
bookkeeping to track specializable object code, so it can be 
customized when that is profitable. 

• Calling convention: A convention shared between calling and 
called machine code for where (stack, heap, registers) to put 
arguments and return values during the call and return. 
Calling conventions are needed to coordinate separately 
compiled blocks of object code. In particular, a common 
calling convention must usually be agreed upon by all callers 
and implementors of a given virtual (or interface) method. 

• Customized calling convention: A calling convention, 
appropriate only to a specialized caller and callee, where 
arguments or return values of variant type are represented 
more optimally according to the common constraints of the 
caller and callee. Specialization anchors provide the 
necessary bookkeeping to track calls to specializable 
methods, so the calls (and the methods) can be customized 
when that is profitable. 

• Flat calling convention: A calling convention is flat when it 
presents a set of arguments and return values without 
needless indirections or headers. Primitive objects may be 
stored directly in stack memory or registers, not boxed or 
buffered in the heap. Specialization anchors provide the 
necessary bookkeeping to track specialized fields and their 
access, so their layout can be customized when that is 
profitable. 

• Default class specialization (resp. default method 
specialization): If a class file defines some specialized 
behavior, then for certain “extra-special” purposes (such as 
wildcards or migration compatibility), the JVM will also 
define a standard “raw” layout and behavior as if it were 



unspecialized. 
This layout and behavior is not under user control. It 
minimizes bookkeeping by paying attention only to JVM 
type descriptors. (Recall that these encode the bounds of 
source language type variables, after erasure.) 
The JVM keeps track of this extra case automatically, in 
addition to all other specializations, which are under user 
control. So is it “a unique and very special specialization”? 
Or is it “not a specialization at all”? Sometimes we think of it 
one way, and sometimes another. 
 
Such species and their associated concepts are sometimes 
called “raw”, always with “scare quotes”, to emphasize a 
connection with a similar concept in the present Java 
language, that of a type or method which has “nothing to 
erase”, because it already requires nothing more than the 
expressive capabilities of the present (non-parametric) JVM. 

• Default (or “raw”) layout: The layout of a default class 
species. It is invariant because it forgets about parametric 
type constants and remembers only the bounds. As such, it 
typically uses polymorphic indirections to uniformly 
represent field values of variant types, and therefore is not 
flat. 

• Default (or “raw”) code: The object code compiled for a 
default method species (or for some similar purpose) so as to 
handle all possible type arguments in the finite output of a 
(JIT or AOT) compilation task. It is invariant because it 
forgets parametric type constants and remembers only the 
bounds. (If it is used to execute parametric methods, it must 
rely on some hidden side-channel, managed by the JVM, to 
provide information about specialization decisions.) As such, 
default code typically uses polymorphic indirections (and/or 
data dependencies on specialization information) to 
uniformly represent field values of variant types, and 
therefore is not efficient. Default code is also a “one size fits 
all” fallback which works correctly (though not always 
efficiently) on customized layouts as well as default layouts. 

• Default (or “raw”) calling convention: The calling 
convention used by default method code. It is also a “once 
size fits all” fallback which can be used if a caller and callee 
fail to agree on a common specialized calling convention. 

• Reflective use of default artifacts: When default code or a 
default calling convention is used as a fallback for a more 
desirable form of specialized code or calling convention, we 
say it is being used reflectively. Default calling conventions 
may include side channels for dynamically passed 
specialization information, and default code may use such 
side channels, even though no such side channels are present 
in today’s Java generics. Thus, default code serves two 
purposes: First, to correctly execute in the presence of a 
default specialization (on default or “raw” instances); 
secondly, to correctly execute (perhaps with a performance 
penalty) in the presence of any specialization, by making 
data-dependent references to a runtime value reifying a 
current specializaiton anchor. An optimizing JVM can (if it 
wishes) separate these two concerns, in two (internal) 
versions of a method. 

Goals and Requirements 

Our overall goal is to support efficient generic programming, using 
Java’s current generic constructs. Valhalla’s primitive classes, with 

their characteristic firm guarantees of flattening in memory, add new 
requirements and challenges to generic programming in Java. 

To maintain flattening of fields, arguments, and return values 
through generic code, we must enhance the current translation 
strategy to use techniques beyond erasure. The problem with erasure 
is that it requires pointer polymorphism, in order to retain type 
information about values of variant types, while still erasing the 
variant type down to its head or bound. But pointer polymorphism is 
incompatible with flattening, because it introduces extra indirections 
and/or object headers. Also, existing translation strategies fail to 
provide enough information to recover the original types (before 
erasure), so there is no amount of “extra optimization” that would take 
today’s class files and reliably flatten generic data structures. 

And flattening of instances is not the whole story. To avoid boxing 
or buffering along hot paths, there must also be (at least in some VM 
implementations) a coordinated flattening of calling sequences (when 
callers and callees agree on specializations) and also routine 
customization of method code, to keep primitive objects (both 
specialized and invariant) from falling out of registers, and to avoid 
expensive virtual calls. 

A second overall goal is to design the JVM support for flattening 
and method customization so that it integrates smoothly with existing 
JVM functionality. It would be ineffective to create a new VM-within-
a-VM just for customization, or to permanently hardwire today’s 
exact theories of genericity in the Java language. Instead, as always, 
the quest is to find the correct primitives for the JVM to implement, 
primitives that are scoped to the natural operations and optimizations 
already present, or that cleanly and orthogonally extend those 
operations and optimizations. The result is likely to do both less and 
more than what a language-centric design effort would produce: Less, 
because some policy decisions (such as generic subtyping) might be 
delegated to the language (e.g., via bootstrap methods), and more, 
because some degrees of freedom (such as the “kinding” of 
parametric constants) might be simpler to leave open (e.g., parametric 
non-type values) even if the language has no immediate plans to use 
them. 

FlatLayouts: Generic layouts can be flat 
Specializations of generic classes for primitive classes will be easily 
available for use, and can (in some implementations) be reliably 
customized to use flat layouts containing those values. The size and 
type of fields of a class can thus vary from instance to instance. 

For example: 

• The non-empty payload of an Optional<T> can be stored 
directly in a field of the Optional instance, not indirectly 
via a pointer. 

• The size of Optional<InlineByte> can be less than 
the size of Optional<InlineDouble>. 

• A primitive record-like type InlinePair<T,U> can have 
varying sizes based on both T and U. (Note that this means 
one field must have a varying offset.) 

Flat layouts are most useful when they are adopted from the first, 
even before the JIT has started compiling hot code. Flat layouts are 
not a JIT-time decision or optimization. Type variables must be 
tracked systematically in the interpreter as well as compiled code. 

FlatCalls: Calling sequences can be flat 
When one specialized method calls another, and the caller and callee 
agree on specializations, the calling sequence can (in some 
implementations) be reliably customized, so that boxing and buffering 
is avoided through the whole call chain. 



For example: 

• A flat InlineOptional<InlineLong> argument or 
return value can fit in two registers, one to contain the 
optional 64-bit payload, and the other to signal whether the 
payload is present. 

• A primitive record-like type InlinePair<T,U> can be 
passed as an argument or return value in the union of 
registers and stack locations required to pass the two 
components individually. (There are the usual caveats about 
limited numbers of argument and return registers.) 

• If an argument or return value is nullable, but non-null 
values can be flattened, the JVM can assign a special 
encoding to null to avoid using a physical reference. For 
example, a second register assigned to encode the presence 
or absence of a InlineOptional<InlineLong> value 
could be overloaded (with a third possible value) to 
additionally encode the presence of null. 

For technical reasons, customized flat calling sequences sometimes 
cannot be computed lazily, waiting until after “hot spots” develop. 
This seems especially true in v-tables (type-sensitive dispatch tables). 
In such cases, decisions about flattening data structures and 
scalarizing method APIs must done “up front”, before a JIT can run. 

ScalarCode: Generic method code can scalarize 
Specializations of generic methods to primitive classs will be easily 
available for invocation, and will have access to at least enough 
specialization information to (in some implementations) reliably 
produce and operate on scalarized instances of associated specialized 
generic types. If boxing or buffering of values is a performance 
hazard, there will be a way (for hot paths at least, in some 
implementations) to customize code enough to lift values out of boxes 
and into registers. 

Unlike data structure layout and method APIs, the internal code of 
any single method can be optimized at any time (either early, or after a 
hot spot develops), and reoptimized at will. 

RawSupport: Java “raw” types and methods are supported 
Raw specializations of classes and methods are supported. Whatever 
bookkeeping is used to keep track of parametric constants can also 
record that some species intend for their type parameters to be 
unspecified. (Similarly, the erased and “wildcard” states, if different, 
are also supported, perhaps by different mechanisms.) 

What’s “raw”? At the source code level, “raw” refers to a use of a 
class or method which refuses to specify any type parameters, and 
instead expects that the class or method will behave consistently with 
the rules which predate Java 5 generics. Semantically, “raw” 
behaviors can be identified with the behaviors of Java API points after 
they have been compiled using erasure, and specifically with Java API 
points as observed through the Core Reflection APIs. Even if an 
object has specialized (non-raw) internals, its API points can be 
observed either reflectively or through “raw” symbolic references, 
from legacy code or from intentionally erased modern code. 

RawInstancesUniversal: Raw class instances are always allowed 
Any bytecode which is sensitive to class specialization, and which 
operates on an instance of a specialized class, will always accept 
either an instance of the class specialization proposed by the caller, or 
else provide a compatible fallback behavior when presented (instead) 
with an instance corresponding of the raw type (however that is 
represented). 

This implies alternate paths for handling raw layouts, even in code 
which is optimized for specialized classes. Such alternate paths, if 
used, are likely to carry an extra cost. 

If (as is proposed here) the raw type is represented by a 
distinguished “default specialization” supplied by the JVM, this 
requirement also implies a subtle distinction between the “raw 
species” as a narrow type (e.g., to impose on new instances ), and as a 
universal “wild card” type (which is accepted everywhere). 

RawMethodUniversal: Raw method calls are always allowed 
Any bytecode which is sensitive to method specialization, and which 
invokes a specialized method, will also support a “raw” invocation 
mode which operates correctly on arguments of all specializations, 
and not just on those corresponding to a particular specialization 
requested by the caller. 

Under such an invocation mode, the parametric method behaves as 
a “raw” species of itself. Raw execution will typically be slower than 
specialized execution because of the need to re-derive specialization 
information from arguments. It may also have incompatibilities with 
method code which expects to derive specialization information 
without the help of a “witness instance”. In that latter case, the raw 
method species will supply a fallback behavior, such as creating 
additional instances of “raw” types, instead of parametric types. 

ReflectiveSupport: Reflective access is supported 
Species can be created, queried, instantiated, and invoked reflectively. 
Invocations and instantiations display the same “bytecode behavior” 
as if the call were not reflective but native in equivalent bytecode. 
(This implies that there are reflective API points which reify 
specialization anchors passed into and out of reflected APIs which are 
parametric, as well as reflective API points which present unspecialize 
“raw” bytecode behaviors.) 

If an API point has a type restriction (e.g. of Object to String 
in the get method of List<String>), the restricted type can be 
queried reflectively. 

Within a class file constant pool, there is some means for deriving 
all such reflective entities as loadable constants, relative to resolved 
API point references in the same constant pool. (E.g. ldc of an 
appropriate species reference.) 

Reflective processing may subsume the implementation technique 
of having a fallback for “slow paths” that occasionally branch out 
from failed speculations, such as when code optimized for an flat 
layout containing inline values suddenly encounters a raw layout, 
containing buffered inline values. 

IndependentSpecialization: Specialization is independent at each 
API point 
A symbolic reference to a variant API point can meaningfully resolve 
whether or not the caller and callee have been compiled consistently. 
Inconsistent specializations can be recovered from if the translation 
strategy defines a consistent net semantics. The extra structures 
created by specialization are local to each class file, and require no 
fixed invariants between class files. This is true for all class file 
relations mediated by dynamic linking, including for callers and 
callees, and for subtypes and supertypes. The only way for two API 
points to be co-parametric is for them to be declared in the same class 
file. 

This is a VM-oriented “right-sizing” of the requirement that legacy 
clients be able to operate compatibly on API points which have been 
upgraded to be parametric. Also, it doubles down on the primacy of 
the existing architecture of API points, as classes, interfaces, fields, 
and methods, and avoids surfacing new fundamental API points for 
(e.g.) inheritable type variables. Such new API points can created 
efficiently by translation strategy which mandates new synthetic 
methods, but they are not a direct burden for the JVM. 



As an implication of this, the client of an API point is always free 
to propose a type parameter (or other specialization request), but it 
cannot impose any such condition on an API point that chooses not to 
specialize. (Runtime diagnostics for failed specialization requests are 
a matter for further prototyping TBD. It seems they can be added into 
runtime support code, at the option of the translation strategy.) 

Even within a single class file, most API points can be separately 
and independently specialized. Of course, co-parametric groups of 
API points will typically be generated. 

EncapsulatedSpecialization: Specialization decisions are private 
The full information about a specialized API point is not exposed to 
any client of that API point; it is encapsulated within the class file that 
declares the API point. The class file is in control of how much 
information is exposed to clients of the class file. This control is 
expressed using existing mechanisms of access control, which implies 
that translation strategies may need to create synthetic API points 
(e.g., public or protected methods) to selectively expose 
specialization information that is otherwise encapsulated. 

The encapsulated information will include the 
SpecializationAnchor object described below, which manages 
constant pool states and type restrictions, and is (usually) created in 
response to a bootstrap method upcall. (The upcall is, like other 
similar bootstrap method calls, given full access to the internals of the 
relevant class file, via a Lookup object.) Specialized type 
information for any given API point (if any) is available to any client 
who can access the same API point, since this information is 
necessary to provide to any external client of that API point. The 
number and nature of particular specialization decisions (which are 
reified by various SpecializationAnchor objects) are not 
accessible to clients unless the specializing class chooses to expose 
them somehow, or a reflective API exposes them. 

ClassVariance: A method can be specialized along with its 
enclosing class 
There must be an efficient translation of methods which make non-
trivial use of type parameters from their declaring class or interface. 
In their class file, such methods will be co-parametric with the class or 
interface. 

interface VariantType<T> { 
   void cospecialized(T arg); 
} 
MethodVariance: A method can be specialized independently of 
its enclosing class 
There must be an efficient translation of methods which make non-
trivial use of type parameters declared independently of their 
declaring class or interface. In their class file, such methods will 
independently parametric of (not co-parametric with) the class or 
interface. 

interface InvariantType { 
   <U> void specialized(U arg); 
} 
BiVariance: A method can be specialized to both possible scopes 
There must be an efficient translation of methods which make non-
trivial use of type parameters declared both in their declaring class or 
interface and independently of it. In their class file, such bi-variant 
methods will be co-parametric with the class or interface, and will 
also have independent specialization. 

interface VariantType<T> { 
   <U> void bispecialized(T arg1, U arg2); 
} 

This requirement will be technically more difficult to fulfill than 
the previous two. However, careful implementation of the first two 
requirements makes this one easier to implement also. The key is 
finding the right primitives for the first two, so that the third becomes 
a new combination of existing primitives, rather than a new primitive. 

No other form of multiple specialization is required, as long as a 
single VM-level parameter can represent a whole “pack” of formal 
type variables. This is because the only way that API elements can 
nest, in today’s class file format, is if the outer element is a type and 
the inner one is one of its members. This requirement supports the 
maximum possible amount of specialization nesting, in today’s class 
file format. 

Volume I: A Parametric Classfile (JVMS-4) 
Our starting point is to extend the existing constant pool structure to 
carry the existing variety of constants with a new twist: An entry in 
the constant pool (representing a type, another API point, or a constant 
value) can be declared parametric. The value (after resolution) of a 
parametric constant can be specialized (with resolution occurring once 
per specialization). Thus a single entry in a constant pool can resolve 
to different constant values for different specializations of a single 
class or method. 

Pulling on this string leads us to interesting questions: How are 
specialized values declared and (for each specialization) defined? 
Which variation of a constant is in force at any given point? How are 
multiple specializations created, propagated, and prevented from 
conflicting during JVM execution? Most importantly, are the 
proposed JVM mechanisms simple enough to engineer well, yet 
powerful enough to support a useful range of new language features? 

Parametric Constants 

The constant pool is enhanced with two new structures, which also 
interrelate with many of the existing class file structures. 

CONSTANT_SpecializationAnchor 
The new CONSTANT_SpecializationAnchor_info structure 
is used to declare a distinct degree of freedom of parametricity for 
specializable API points declared in the same class file. It has this 
form: 

CONSTANT_SpecializationAnchor_info { 
    u1 tag;  // CONSTANT_SpecializationAnchor = 
21 
    u1 anchor_kind;  // 
PARAM_{Class,Method{Only,AndClass}} = {1,2,3} 
    u2 bootstrap_method_attr_index; 
} 

In diagrams and informal narrative, 
CONSTANT_SpecializationAnchor may be abbreviated as 
CONSTANT_Anchor or C_Anchor. 

The items of the 
CONSTANT_SpecializationAnchor_info structure are as 
follows: 

• The tag item has the value 
CONSTANT_SpecializationAnchor (21). 

• The value of the anchor_kind item must be in the range 
1..3. The value denotes the kind of this anchor, which 
characterizes the way constants derived from this constant 
may vary relative to other entities in this class file. 

http://docs.oracle.com/javase/specs/jvms/se15/html/jvms-4.html


Note: The same information could be encoded by replacing 
the anchor_kind field with a parent_anchor field 
that either contains a null index (i.e., zero) or points to the 
enclosing class-kinded anchor. This would be more 
appropriate for a scalably nesting multi-class file format; we 
leave it on the shelf for now. 

• The value of the bootstrap_method_attr_index 
item must be a valid index into the bootstrap_methods 
array of the bootstrap method table (§4.7.23) of this class 
file. 

There are three kinds of parametricity: 

• If the value of the anchor_kind item is 1 
(PARAM_Class), the specialization anchor declares a 
degree of freedom which applies to the current class, as a 
whole. Any such PARAM_Class anchor, if it exists, must be 
unique in this class file, and must also be explicitly 
mentioned by the Parametric attribute of this class. 

• If the value of the anchor_kind item is 2 
(PARAM_MethodOnly), the specialization anchor declares 
a degree of freedom which applies to a set of methods of the 
current class. Each PARAM_MethodOnly anchor varies 
independently from all other anchors. 

• If the value of the anchor_kind item is 3 
(PARAM_MethodAndClass), the specialization anchor 
declares a degree of freedom which applies to a set of 
methods of the current class. Each specialization of a 
PARAM_MethodAndClass anchor is defined as dependent 
on another specialization of the PARAM_Class anchor in 
the same class file. If there are any 
PARAM_MethodAndClass anchors in a class file, there 
must also be a (single) PARAM_Class anchor also. 

A CONSTANT_SpecializationAnchor constant is a (new sort 
of) loadable constant (§5.1). The resolved value of this constant is a 
mirror to a set of specialization decisions, also called a 
SpecializationAnchor (§4.1). 

Note that, like CONSTANT_Dynamic_info and 
CONSTANT_InvokeDynamic_info structures, a 
CONSTANT_SpecializationAnchor_info structure refers to 
a bootstrap specifier (i.e., a method plus a static argument list). Unlike 
those other constants, a 
CONSTANT_SpecializationAnchor_info has no additional 
symbolic data in the form of a CONSTANT_NameAndType_info 
structure. As will be seen later, when the JVM invokes a bootstrap 
method for a specialization anchor, the bootstrap method calling 
sequence will be different than in the case of those other constants. 

As will be seen later, 
CONSTANT_SpecializationAnchor_info structures can 
potentially be referenced by other constants in the same class file, 
as well as the current class and any of its fields or methods. Any 
class file structure (constant, class, method, or field) which depends 
on an anchor becomes parametric, and obtains special processing 
from the JVM. Any parametric structure which is variant depends 
directly on a single anchor, which determines the circumstances under 
which the variations take effect. Within broad limits, any two API 
points or constants in the same class file can be co-parametric. 

It is envisioned that, in most cases, each distinctly scoped group of 
type variables in Java source code will correspond to a unique 
CONSTANT_SpecializationAnchor constant. However, if a 
number of generic methods in one classfile have identical type 
parameter declarations, it could be valuable for a translator to assign a 
single CONSTANT_SpecializationAnchor constant to 
represent the parametricity of all the identically declared generic 
methods, in common. If the methods (as seems likely) were to work in 
concert in a larger call tree, that call tree could link itself with fewer 
validation steps, since the methods working in concert would be 
working from a common CONSTANT_SpecializationAnchor 
constant. 

CONSTANT_SpecializationLinkage 
The new CONSTANT_SpecializationLinkage_info 
structure may be used to add parametric information to a symbolic 
reference to a class, interface, method, or field. As such it has two 
components, an invariant symbolic reference (§5.1), and a proposed 
linkage value to use along with the reference. It has this form: 

CONSTANT_SpecializationLinkage_info { 
    u1 tag;  // 
JVM_CONSTANT_SpecializationLinkage = 22 
    u2 parameter_index; 
    u2 reference_index; 
} 

In diagrams and informal narrative, 
CONSTANT_SpecializationLinkage may be abbreviated as 
CONSTANT_Linkage or C_Linkage. 

The items of the 
CONSTANT_SpecializationLinkage_info structure are as 
follows: 

• The tag item has the value 
CONSTANT_SpecializationLinkage (22). 

• The value of the parameter_index item must be a valid 
index into the constant_pool table. The 
constant_pool entry at that index must be a loadable 
constant (§5.1). (It will be proposed as a linkage parameter 
value for the associated API point, and validated produce a 
specialization anchor for that API point.) 

• The value of the reference_index item must be a valid 
index into the constant_pool table. The 
constant_pool entry at index must be an API point 
name, that is, a CONSTANT_Class_info, 
CONSTANT_Methodref_info, 
CONSTANT_InterfaceMethodref_info, or 
CONSTANT_Fieldref_info. 
Note: CONSTANT_InvokeDynamic_info and 
CONSTANT_Dynamic_info are never wrapped in 
CONSTANT_SpecializationLinkage constants, 
because they do not refer directly to API points. They can 
easily propose specializations via their static arguments, 
either directly or indirectly via previously validated 
CONSTANT_SpecializationLinkage constants. 

After successful resolution, a 
CONSTANT_SpecializationLinkage constant will 
permanently refer both to an API point (class, interface, method, or 
field), with an additional specialization anchor. Both components 
(API point metadata pointer and specialization) will be permanently 
available (locally) for all further uses of that API point. In general, 
when that API point is used, that (local) reference value will be bound 



to a corresponding CONSTANT_SpecializationAnchor in the 
(remote) definition of that API point. 

Several CONSTANT_SpecializationLinkage constants 
may propose distinct linkage parameter values to the same API point, 
such as for List<InlineInt> vs. List<InlineDouble>. 
Bytecodes may select a specific linkage parameter value by referring 
to the appropriate CONSTANT_SpecializationLinkage 
constant for that value. Conversely, several 
CONSTANT_SpecializationLinkage constants may apply the 
same linkage parameter value to distinct API points, such as for 
List<InlineInt>.get and List<InlineInt>.set. 
Bytecodes using a set of such linkage parameter constants can expect 
to use those various API points (presumably co-parametric) with a 
single consistent setting of the anchor. 

A CONSTANT_SpecializationLinkage constant is a (new 
sort of) loadable constant (§5.1). When loaded, its resolved value 
denotes a value chosen by the translation strategy during the 
execution of a relevant bootstrap method call during resolution of the 
API point. 

The translation strategy is free to define this value according to its 
own conventions. The value could be the 
SpecializationAnchor that underlies the specialized API point, 
or it could be a reflective species object, or it could be a 
representation of type arguments, or it could be an associated type 
restriction record. The JVM makes no policy about this value. 

The JVM does secretly record any SpecializationAnchor 
associated with the resolution of a specialized API point, so that it can 
be present at all uses of that API point. There is no guaranteed way for 
client code to get access to the SpecializationAnchor 
reference, even though it is sitting in resolution state of the client’s 
constant pool. 

In a previous version of this proposal, the constant value of a 
CONSTANT_SpecializationLinkage constant gave more 
information: It was defined as identical to the corresponding 
specialization anchor of the API point resolved through the linkage 
constant. This semantics is more powerful, but also is thought to 
“leak” too much information from the implementation of the API 
point. Instances of SpecializationAnchor object can be shared, 
of course, via explicit API points created by translation strategies, but 
the present design protects the encapsulation of 
SpecializationAnchor objects by default. 

If the bytecode behavior of a parametric field or method reference 
is desired (as a loadable constant), wrap the appropriate 
CONSTANT_SpecializationLinkage constant in a 
CONSTANT_MethodHandle constant. The MethodType of the 
resolved MethodHandle constant will reflect type restrictions. The 
unrestricted type is recoverable via 
MethodHandleInfo::getMethodType. 

If validation fails, the resulting exception will become the 
resolution state of the constant. Just as in the case of a failed symbolic 
resolution, a failed validation can prevent bytecodes which use a 
specialization from completing normally. If the failing constant is 
parametric, then (consistently with the distinction of resolution states 
of distinct specializations) some specializations can fail while others 
succeed. In all cases, for any given 
CONSTANT_SpecializationLinkage constant, there is just 
one outcome per prepared resolution state. 

In summary, assuming successful resolution of both components of 
a CONSTANT_SpecializationLinkage constant: 

• If the reference_index refers to a method, and that 
method is subsequently invoked (via the same 
CONSTANT_SpecializationLinkage constant), the 
JVM will pass the resolved specialization anchor as an extra 
hidden argument into that method’s call frame. 

• If the reference_index refers to a field, and that field is 
subsequently accessed (via the same 
CONSTANT_SpecializationLinkage constant), the 
JVM uses the resolved class specialization anchor to locate 
that field. The instance containing the field (if it is non-static) 
is dynamically checked to ensure that its class specialization 
is consistent with the one expected by the field reference 
constant. 
Field polymorphism will be allowed in some cases such as 
when the reference uses the default specialization anchor (a 
“raw” reference). In most cases apart from wildcards, there 
will be an expected field type that will be exactly fulfilled 
(modulo a slow path). This code shape is more analogous to 
the invokeExact call on method handles than generic 
invoke. 

• If the reference_index refers to a class or interface, and 
that type is subsequently resolved (via the same 
CONSTANT_SpecializationLinkage constant), the 
JVM records that class’s specialization anchor in the 
resolution state, for use in returning a species (via ldc) or 
performing further linkage to members of that species. 

We say the API point is “remote” to emphasize that it may be 
declared in an arbitrary class file, which in general is separately 
compiled independently of the “local” class file that is performing the 
linkage operations. In these terms, which are client-centric, 
CONSTANT_SpecializationAnchor constants are remote and 
CONSTANT_SpecializationLinkage constants are local. Of 
course, a class file may also resolve symbolic references to API points 
declared in the same class file. (In fact this is how a class gets access 
to its own private members.) 

Just as a plain symbolic reference (of any sort) mediates access to 
an API point agreed upon by two class files, a 
CONSTANT_SpecializationLinkage constant mediates access 
to an API point (in exactly the same way), with the independent 
addition of a linkage parameter specified by the caller’s class file, 
validated by the callee’s class file, and recorded as a specialization 
anchor for the callee. 

The new concept of API point reference extends the pre-existing 
concept of a symbolic reference. An API point reference can be any of 
the following: 

• An invariant constant may represent the name of an API 
point, i.e., a class, interface, field, or method. (This has been 
true in all versions of the JVM.) 

• A CONSTANT_Class may be wrapped in a 
CONSTANT_SpecializationLinkage item, thus 
embodying a parametric API point reference, to a “species” 
of a class or interface. 

• A CONSTANT_Fieldref, CONSTANT_Methodref, or 
CONSTANT_InterfaceMethodref may be wrapped in 
a CONSTANT_SpecializationLinkage item, thus 



embodying a parametric API point reference, to a specialized 
field or method (of a class or interface, or of a species of 
class or interface). 

• A CONSTANT_Fieldref, CONSTANT_Methodref, or 
CONSTANT_InterfaceMethodref may refers to its 
internal CONSTANT_Class item via an intervening 
CONSTANT_SpecializationLinkage item, thus 
embodying an API point reference within a species of the 
class containing the field or method. 

Note that a reference to a field or method can be doubly 
parametric, when its internal CONSTANT_Class item is wrapped in 
an internal CONSTANT_SpecializationLinkage item, and the 
field or method reference is also wrapped, as a whole, in another 
CONSTANT_SpecializationLinkage item. Such a doubly 
parametric API reference typically resolves to a bi-variant member of 
a species. 

All of these symbolic references, both invariant (purely symbolic) 
and parametric, are API point references. Their various configurations 
are summarized in Diagram 4.4-F(b). 

 

Dependencies between constants 
There are new relations between certain existing constants and the 
new constants. By depending (directly or indirectly) on some 
CONSTANT_SpecializationAnchor constant, some existing 
constants can become parametric. 

A constant structure A depends directly on another constant 
structure B if and only if one of the following circumstances is true: 

• A contains an index referring to B. 

• A contains an index referring to an entry E in the bootstrap 
method table (§4.7.23) of this class file, and one of the 
static arguments of E refers to B. 

• A is a CONSTANT_SpecializationAnchor_info of 
kind PARAM_MethodAndClass and B is the 
corresponding 
CONSTANT_SpecializationAnchor_info of kind 
PARAM_Class (which must exist and be unique). 

The transitive closure of direct dependency is simply called 
dependency, and the condition of dependency without direct 
dependency is called indirect dependency. 

Thus, a constant structure A depends indirectly on a constant 
structure C if and only A does not dependent directly on C, but one or 
both of the following circumstances is true: 

• A depends directly on some B which depends directly on C. 

• A depends directly on some B which depends indirectly on C. 

We say simply that a constant A depends on a constant B if A either 
depends directly or depends indirectly on B. 

Dependency is a static, syntactic relation between constant 
structures in the constant pool of a class file. 

Dependency can be circular, although this requires special care to 
avoid infinite regression during resolution. A constant A can depend 
on itself if and only if it depends directly on itself, or else it depends 
directly on another constant B that in turn depends on A. 

The following structural constraints are enforced on dependencies 
between constants within the constant pool of a class file: 

• No CONSTANT_SpecializationAnchor may depend 
on itself. (…Because it must be possible to resolve its 
arguments before it is bootstrapped.) 

• If there is an anchor of kind PARAM_Class, it is unique in 
the constant pool of the current class file. (…Because 
there is exactly one class per file, at least at present, and 
because class specializations don’t nest inside any other 
specializations.) 

• If any constant A depends on some anchor R of kind 
PARAM_MethodOnly, then A depends on no other anchor 
of any kind. (…Because method-only specializations do not 
nest inside any other specializations.) 

• If a constant depends on some anchor of kind 
PARAM_MethodAndClass, it depends on the anchor of 
kind PARAM_Class, and no other anchor. (…Because 
method-and-class specializations nest only in class 
specializations.) 

A constant A is said to be parametric (or sometimes “variant” as 
opposed to “invariant”) when it depends on a 
CONSTANT_SpecializationAnchor constant R. A parametric 
(or variant) constant A is said to be “parametric over” (or “variant 
over”) an anchor R, if it depends on R. (Briefly, we can say “A is R-
variant”.) Also, a CONSTANT_SpecializationAnchor constant 
is said to be parametric over itself, even though it does not depend on 
itself. 

Thus, parametricity (over some R) originates in an anchor (R) and 
is passed to all constants which depend on it. Also, any constant is 
therefore in one of these categories: 

• It is invariant, neither an anchor, nor depending on any 
anchor either directly or indirectly. (This is the status of all 
constants in any class file that lacks specialization anchors.) 

• It is parametric over an anchor (the unique one) of kind 
PARAM_Class, but no other anchor. Such a constant may 



be called “class-variant”, relative to the class or interface 
defined by the class file. 

• It is parametric over a single anchor of kind 
PARAM_MethodOnly. Such a constant may be called 
“method-variant”, in every method which refers to it via its 
Parametric attribute (§4.6). 

• It is parametric over an anchor of kind 
PARAM_MethodAndClass, as well as over the anchor of 
kind PARAM_Class. Such a constant may be called 
“doubly-variant” or “bi-variant”, in every method which 
refers to it via its Parametric attribute (§4.6). For such a 
constant we say that its PARAM_MethodAndClass anchor 
is the “inner” or “more specific” anchor and the 
PARAM_Class it depends on is the “outer” or “less 
specific” anchor". 

If two constants are variant in common over exactly one anchor, we 
say they are co-parametric with each other and with that anchor. If 
two constants are bi-variant in common over exactly the same two 
anchors, we also say they are co-parametric with each other and with 
the inner anchor. If we also say that all invariant constants are 
mutually co-parametric, then the relation between co-parametric 
constants divides the constant pool into 1+N equivalence classes, 
where N is the number of anchors in the class file. 

We may also say that class-variant constants (including the class-
variant anchor itself) are sub-parametric to all bi-variant constants 
(including anchors) in the same class file. 

The resolution of any given 
CONSTANT_SpecializationAnchor constant will be seen 
(§4.X) to make use of the bootstrap method and static arguments. The 
restrictions on constant dependencies listed above imply that the 
bootstrap method and its static arguments must be invariant, unless an 
anchor bi-variant, in which case any of its dependencies may also be 
class-variant (sub-parametric to the bi-variant anchor). 

An invariant constant has at most one resolved value, globally. 
Though it does not depend on any specialization anchor, an invariant 
constant may make use of parametricity mechanisms in the JVM. For 
example, if ArrayList were a class, and 
ArrayList<InlineInt> were a species of that class, a constant 
referring to the latter species would be invariant. 

The following new direct dependencies are allowed between 
existing constants and the new ones: 

• Any constant that refers to a CONSTANT_Class constant 
can instead refer to a 
CONSTANT_SpecializationLinkage constant which 
wraps an equivalent CONSTANT_Class constant. In 
particular, the class_index field of a 
CONSTANT_Methodref, 
CONSTANT_InterfaceMethodref, or 
CONSTANT_Fieldref may refer to a 
CONSTANT_SpecializationLinkage constant that in 
turn refers to a CONSTANT_Class constant via its 
reference_index. 

• Any constant that refers to a bootstrap method 
(CONSTANT_InvokeDynamic, CONSTANT_Dynamic, 
or CONSTANT_SpecializationAnchor) may depend 
directly on a CONSTANT_SpecializationAnchor 
constant or a CONSTANT_SpecializationLinkage 

constant as one of its static arguments, because both of those 
new constants are in the pre-existing category of loadable 
constants. 

• A CONSTANT_MethodHandle constant may depend 
directly to a CONSTANT_SpecializationLinkage 
constant. The behavior of the resulting method handle will be 
derived from the corresponding bytecode behavior (§5.4.3.5), 
as modified by the specialization, which therefore must be 
incorporated into the resolved method handle. 

The meaning of a CONSTANT_SpecializationLinkage 
constant depends on context. When used directly by a bytecode 
instruction to access an API point, it will denote the ordered pair of 
both a symbolic reference to an API point and a linkage parameter to 
validate for that API point. But a 
CONSTANT_SpecializationLinkage constant used as a 
loadable constant (via ldc or as a static argument), if it wraps a 
CONSTANT_Class, resolves simply to a species mirror for a 
specialization of that class. Other linkage constants (not wrapping 
CONSTANT_Class items) have no loadable value at all. 

A CONSTANT_MethodHandle constant that refers to a 
CONSTANT_SpecializationLinkage constant will capture 
both components (API point and specialization anchor), in the form of 
an associated specialized bytecode behavior that depends both on the 
API point and on its specialization. 

The relations between constant pool constants (both old and new) 
are summarized in Diagram 4.4-E. 

 

Parametric API points and the Parametric 
attribute 



The new Parametric attribute is a fixed-length attribute in the 
attributes table of a ClassFile, field_info, or 
method_info structure (§4.1, §4.5, §4.6). 

Its purpose is to mark an API point (a class, interface, method, or 
field) as parametric and therefore specializable (variant) with respect 
to an indicated anchor constant. 

The effect of this attribute is granular and independent for each API 
point. Any API point which lacks a Parametric attribute will be 
invariant and not subject to specialization. In particular, fields and 
methods do not implicitly partake of variance (of kind 
PARAM_Class) from their enclosing class or interface. For a field or 
method to be co-parametric with (or bi-variant over) the enclosing 
class, its field_info or method_info structure must contain a 
separate Parametric attribute selecting the anchor of the class (or a 
PARAM_MethodAndClass anchor, in the bi-variant case). A 
method whose Parametric attribute selects an anchor of kind 
PARAM_MethodOnly is not co-parametric with its enclosing class. 
Because specialization requires extra “bookkeeping” in the JVM, we 
never make fields or methods parametric by default, but rather require 
that parametricity is opted into by each API point. 

The Parametric attribute has the following format: 

Parametric_attribute { 
    u2 attribute_name_index; 
    u4 attribute_length; 
    u2 anchor_index; 
} 
The items of the Parametric_attribute structure are as 
follows: 

• The value of the attribute_name_index indicates the 
string "Parametric". 

• The value of the attribute_length item must be two 
(2). 

• The value of the anchor_index item must be a valid 
index into the constant_pool table. The 
constant_pool entry at that index must be a 
CONSTANT_SpecializationAnchor_info structure 
(§4.4.X) denoting a specialization anchor R and representing 
the parametricity (i.e., variance) of the corresponding class, 
interface, field, or method. 

A API point (class, interface, field, or method) is “parametric” (or 
informally “variant”) if and only if the structure which declares it has 
a Parametric attribute. A parametric API point is “directly 
parametric over” the specialization anchor R indicated by the index 
stored in its Parametric attribute. A parametric API point is 
“indirectly parametric over” a PARAM_Class anchor R if it is 
directly parametric over a PARAM_MethodAndClass anchor Q, 
and it is simply “parametric over” an anchor R if it is either directly or 
indirectly parametric over R. 

A class or interface may only be parametric over the (unique) 
specialization anchor of kind PARAM_Class in the same class 
file. 

A non-static field may only be parametric over the same anchor as 
its enclosing class or interface (which thus must be of kind 
PARAM_Class). 

Since a non-static field is part of the layout of its enclosing class, it 
cannot vary independently of the class itself (barring heroic hidden 
indirections). 

Parametric static fields are TBD. 

It seems likely that parametric static fields will be useful, and that 
their states can be conveniently implemented alongside their split 
constant pool states. Perhaps they can be stored inside relevant 
SpecializationAnchor mirror objects, just as class statics are 
stored in Class mirror objects. But there is no plausible language 
model for them yet. One problem is that <clinit> pseudo-methods 
cannot be made parametric in any useful way. 

A method may be parametric over any kind of specialization 
anchor. 

All API points that are directly parametric over some specialization 
anchor R are said to be co-parametric with each other. They are also 
said to be co-parametric with constants that are co-parametric with the 
same anchor R. 

Loosely speaking, we are extending the dependency relation 
between constants to include API points as well, by defining that an 
API point depends directly on the constant referred to by its 
Parametric attribute. 

As a general principle, any definition of a parametric API point 
(class, interface, method, field) is interpreted in the context of the 
indicated specialization anchor. Also, any parametric API point can be 
called (invoked or accessed) with a caller-proposed value that selects 
a specialization. Because specialization anchors are internal to each 
class file, and are not named directly from outside, the presentation 
of an anchor from a use to a definition is always in the context of 
some named API point. Thus, no additional naming mechanism is 
required to negotiate the mapping of linkage parameters to 
specializations. 

This is in contrast to other systems, where an explicit parametric 
type system is built into the descriptors used by the managed runtime 
to select API points. Such an explicit type system had better be 
perfect, because it is much more difficult to evolve than a system of 
dynamic checks. 

For compatibility and convenience, a caller is always permitted to 
omit a linkage parameter value. The callee is specified to use an 
internally generated default specialization anchor, which is set up 
when the API point’s class is prepared. Also, callers can propose 
linkage parameters for callees which (after link resolution) turn out to 
be declared as invariant. (The treatment of such unused parameters is 
TBD. Perhaps they will be quietly ignored; perhaps there will be a 
diagnostic “hook”.) 

There is no direct mechanism for acquiring the specialized type of 
a parametric class member (field or method), although such data is 
surely useful. It can be acquired simply enough via a dynamic 
constant, which first computes a CONSTANT_MethodHandle 
constant for the specialized API point, and then extracts the 
MethodHandle.type property of the resulting bytecode behavior. 
More direct mechanisms may be created as needed. Translation 
strategies can also supply this information via the assigned loadable 
constant values of resolved 
CONSTANT_SpecializationLinkage constants. 

There is no direct mechanism for acquiring a reflective class or 
interface species, although (again) such data is surely useful. 
Translation strategies can supply this information via the assigned 



loadable constant values of resolved 
CONSTANT_SpecializationLinkage constants. It is 
recommended (though not strictly required) that the resolved constant 
value of a CONSTANT_SpecializationLinkage constant 
which wraps a CONSTANT_Class constant should resolve to a 
species object that reflects the resolved specialization of the class. 

To cover the previous two use cases (reifying specialized field and 
method types, and type species), a direct mechanism for extracting the 
type of an API point could be supported by a third new constant pool 
type, CONSTANT_Species, which extracts the type information 
more directly. Such a feature seems “nice to have”, so we’ll reserve it 
as a possible support for translation strategy. Probably there are more 
such “nice to have” features, which will be discovered as we 
prototype our translation strategies. For now, we will delegate the 
burden of organizing such information onto the translation strategies. 

The relations of the Parametric attribute with other class file 
structures, including its reference to a 
CONSTANT_SpecializableAnchor item in the constant pool, 
are summarized in Diagram 4.7-D(a). 

 

Type-restricted methods and fields and the 
TypeRestriction attribute 

The new TypeRestriction attribute is a fixed-length attribute in 
the attributes table of field_info or method_info 
structure (§4.5, §4.6). 

Its purpose is to mark a field, method parameter, and/or method 
return value as (possibly) excluding values normally permitted by the 
type or types denoted by the type descriptor of the field or method. 

A type restriction cannot add new values to the type of a field or 
method; it can only exclude values. A type restriction may be 
ineffectual, in that it excludes no values from any type denoted by the 
field’s or method’s type descriptor. A type restriction may be 
unpassable by excluding all values from one of the types denoted by 
the type descriptor; this makes a field or method impossible to use, 
causing an exception to be thrown in the excluded circumstances. A 
trivializing type restriction may make a field, method parameter, and/
or method return type trivial (or “unitary”) by excluding all but one 
value (the type’s default value) from the corresponding type. A null-
excluding type restriction may make a field, method parameter, and/or 
method return type non-nullable by excluding the value null from a 
corresponding reference type. 

The preceding paragraph is a provisional account of functional 
requirements for type restriction objects. There is, in fact, no agreed-
upon design yet for a type restriction API or implementation. 

Prototypers should assume, for now, that the following items will be 
acceptable as type restrictions: (a) class mirrors, (b) species mirrors, 
(c) array type mirrors, and possibly (d) primitive mirrors (such as 
int.class) or (e) special tokens for trivializing and/or unpassable 
restrictions or (f) a token which wraps a reference type and declares it 
non-nullable. Perhaps all those will eventually implement some 
common protocol. 

The TypeRestriction attribute has the following format: 

TypeRestriction_attribute { 
    u2 attribute_name_index; 
    u4 attribute_length; 
    u2 restrictions_count; 
    u2 restrictions[restrictions_count]; 
} 
The items of the TypeRestriction_attribute structure are as 
follows: 

• The value of the attribute_name_index indicates the 
string "TypeRestriction". 

• The value of the attribute_length item indicates the 
attribute length, excluding the initial six bytes. (Therefore it 
must be 2+2*N, where N is the value of 
restrictions_count.) 

• The value of the restrictions_count item indicates 
the number of entries in the restrictions array. (There 
are further restrictions on this value, which are described 
below as restrictions on the length of the following 
restrictions array. 

• The value of each restrictions item must be either zero 
(0) or else a valid index into the constant_pool table. 
Each item must correspond to a field type (for the sole item), 
the method return type (for the first item), or a method 
parameter type (for subsequent items). The 
constant_pool entry at that index (if not zero) must be a 
loadable constant K, which when resolved supplies type 
restriction information for a field value, method return value, 
or method parameter value for the field F or method M 
associated with this attribute. This constant K may be co-
parametric with F or M. 

A field or a method which only restricts its return type will only 
need one item in the restrictions array. A method which 
restricts one or more of its parameters will need more than one item 
XXX 

There is a structural constraint on the length of the 
restrictions array. For a field, the array must not have more 
than one item. For a method, the restrictions array must not 
have more than 1+N items, where N is the arity of the method. (The 
arity counts long or double values once, not twice.) Type 
restrictions are applied only to types which correspond to non-zero 
items present in the array. 

Thus, the array is allowed to be shorter than its maximum length, 
and is logically padded out with zeroes. Informally, the array must not 
be so long that it contains elements (whether zero or non-zero) that 
fail to correspond to restrictable types. 

For a method, the first restriction item corresponds to the 
method return value, even if the method returns void. 



Although type restrictions are envisioned as applying primarily to 
classes and interfaces, they may apply in the future to void or built-
in primitive types. For this reason, the restrictions array 
includes entries which correspond to void returns and values of 
primitives like int and long. 

It is recommended that the restrictions array be non-empty, 
and that it end with a non-zero item. However, the JVM must always 
be prepared to deal with either zero items, or non-zero items which 
resolve to ineffectual type restrictions (such as “any Object”). 

As will be seen, a type restriction on a field or method affects all 
accesses to that field or method. 

Any item in the restrictions array may refer to an invariant 
constant. If the field or method it applies to is parametric, any item in 
the array may also be co-parametric with that field or method. 
Parametric type restrictions are applied to parametric accesses and 
also to specialized instance fields or specialized virtual methods. 
Invariant type restrictions are applied to all accesses. 

The effect of a type restriction is granular and independent for each 
field or method declaration. Type restrictions are not transferred to 
related API points, such as overriding methods in other class files. 
Type restrictions can affect the behavior of API points in a way that 
callers can see, since they can block callers from storing or passing or 
receiving excluded values. 

There is no direct mechanism for acquiring the specialized type of 
a type-restricted field or method, although such data is surely useful. 
It is possible to envision special rules for 
CONSTANT_MethodHandle constants for the type-restricted API 
points that somehow use the MethodHandle.type property to 
encode type restrictions, but since type restrictions are not themselves 
types, this seems like the wrong tactic. For now the present, we will 
assume that, at the very least, there will be a reflective API to query 
type restrictions on API points. Perhaps a direct query can be created 
by building up a variation of the CONSTANT_MethodType item, 
which points to a type-restricted API point instead of a descriptor 
string. 

The relations of the TypeRestriction attribute with other 
class file structures, including its reference to type restriction items in 
the constant pool, are summarized in Diagram 4.7-D(b). 

 

(It seems possible, to some observers, that some version of the 
TypeRestriction attribute might appear in the future on a class 
or interface as a whole, rather than merely on its fields or methods. 
This might be the case if it would be useful to declare a parametric 
restriction that somehow applies to the class as a whole, rather than to 
its various members. Note that a species embodies such a whole-class 
type restriction; perhaps there are connections between species and 
type restrictions which are not yet fully understood.) 

Specialized and/or parametric super types 

A class’s superclass and any implemented interfaces are collectively 
called super types (sometimes just supers). 

Unlike fields and methods, whose types are declared via “flat” 
CONSTANT_Utf8 descriptor strings, super types are indicated in the 
class-file by references into the constant pool, to CONSTANT_Class 
constants. This allows them to participate in specialization without 
requiring separate Parametric attributes. 

Independently of whether a class or interface itself is parametric 
(i.e., has a Parametric attribute), any of its super types may be 
accompanied by a proposed linkage parameter, that is, by means of a 
CONSTANT_SpecializationLinkage constant which wraps a 
CONSTANT_Class constant. 

As always, an interface may not specify any super class other than 
the mandatory java.lang.Object. In fact, it must also be a 
simple invariant CONSTANT_Class. 

As always, the super class must be a symbolic reference which 
resolves to a class not an interface, and each super interface must be a 
symbolic reference which resolves to an interface not a class. 

When a class or interface C has a specialized super S, the reference 
to S may take one of three forms: 

• The super reference S is an invariant CONSTANT_Class 
constant, even though S has been declared as parametric. 
(For example, OldList extends ArrayList.) In this 
case, the class or interface is a subtype of the default “raw” 
species of the type named by S. 

• The super reference S is both invariant and is a 
CONSTANT_SpecializationLinkage constant that 
wraps the name of S. (For example, PointList 
extends ArrayList<Point>.) In this case, the class 
or interface is a subtype of the species obtained by resolving 
S. The specialization information for S is recorded locally in 
the constant pool for C (specifically, in the resolution state of 
the CONSTANT_SpecializationLinkage constant for 
S). Before the class or interface C is loaded, the type S is 
loaded in its unspecialized form, temporarily ignoring the 
linkage constant. After C is loaded, when it is prepared, the 
species S is then resolved, using the linkage parameter 
resolved from C’s constant pool. 

• The super reference S is parametric not invariant. In this case 
C must also be parametric, and S must be a 
CONSTANT_SpecializationLinkage constant co-
parametric with C. (For example, MyMaps<K,V> 
extends   ArrayList<Map<K,V>>; note that the 
type variables don’t have to “line up” exactly.) Before the 
class file for C is loaded, the type S is loaded in its 



unspecialized form, temporarily ignoring the linkage 
constant. Later on, when each distinct species of C is 
prepared, the reference S is specialized by the bootstrap 
method for the specialization anchor of C, and the JVM 
records the subtype relation between the species of S and C. 
(See the discussion of “s-tables” below.) 

The third case, of a parametric super, amounts to a super-type 
restriction which is applied differently to different species. 

As discussed elsewhere, the JVM immediately prepares a “raw” 
default species of any variant C that it loads. If this C has a co-
parametric super S, then the JVM records the “raw” default species of 
S as the corresponding super for the default species of C, regardless of 
any structure of the constant pool reference for S. Thus, the co-
parametric supers of a default species will be “raw all the way up”. 

This restriction simplifies the special processing of default species, 
especially in their role as “raw” universally compatible versions of 
specializable types. 

Volume II: Linkage of Specializations 
(JVMS-5.4) 
During execution, any given constant pool entry of type 
CONSTANT_SpecializationAnchor is prepared and 
(eventually) acquires a resolved value as a result of cooperation 
between two class files (containing two constant pools), the caller and 
the callee. The caller proposes a linkage parameter value for an API 
point in the callee. If the API point declaration is in fact variant over 
the anchor in the callee, the callee then validates the linkage 
parameter value, and selects or creates a specialization anchor object 
which embodies the specialization decisions resulting from the 
caller’s request. 

This cooperation occurs in the context of the resolution of the API 
point, which always includes a symbolic reference (to a class, 
interface, method, or field). The extra linkage parameter is resolved in 
the caller’s constant pool, and then validated relative to the API 
point’s declared anchor, as determined by the Parametric attribute 
of that API point in its declaring class file. 

After resolution, the specialization anchor object is recorded as a 
permanent agreement between the caller and callee, specifically in the 
resolution state of the CONSTANT_SpecializationLinkage 
constant in the caller. 

During execution of code in the callee, the specialization anchor 
object reappears as a value of the 
CONSTANT_SpecializationAnchor constant in the callee. The 
callee can make use of the specialization decisions embodied in the 
anchor by feeding the anchor as a proposed linkage parameter to its 
own CONSTANT_SpecializationLinkage constants, or by 
using CONSTANT_Dynamic constants to derive types, constants, 
and behaviors from the anchor. 

Inheritance and overriding have additional effects on anchors, 
which are described elsewhere. It is always the case, however, that 
every symbolic resolution operation determines a particular API point 
declared in a particular class file, and that declaration controls the 
validation of any linkage parameter proposed by the caller. 

Of course a class file can call one of its own API points, in which 
case the caller and callee would be a single class file. Nevertheless it 
is useful to clearly distinguish the responsibilities and actions of the 
caller from those of the callee. Sometimes we will use the caller-

centric terms “local” and “remote” to describe the two perspectives, 
where the caller makes a “local” request to bind a anchor on a 
“remote” API point defined by the callee. 

The validation process includes a decision (by the callee) whether 
to prepare a new resolution state for the 
CONSTANT_SpecializationAnchor constant, or whether to 
reuse a previously prepared resolution state. The JVM always 
supplies, as an option to the callee, a default specialization for every 
anchor, which is prepared at the same time as the invariant constants 
are prepared (during preparation of the class as a whole). 

A “raw” symbolic reference, free of any involvement with 
CONSTANT_SpecializationLinkage wrappers, will always 
select such a default specialization, which in turn will operate (as far 
as the user can see) as if the compilation of generic classes still uses 
erasure as a translation strategy. 

Validation always occurs relative to a particular anchor in a 
particular class file. In order to make the process of validation 
efficiently checkable and idempotent, the JVM defines a special type 
SpecializationAnchor (in package java.lang.invoke) 
which embodies validation of a linkage parameter, and all 
specialization decisions implied by that parameter. Each instance of 
this type is “locked” to a specific 
CONSTANT_SpecializationAnchor constant in a specific 
class file. As such, it is a pre-validated linkage parameter for any API 
point in that same class file that is parametric over the same anchor 
constant. It is invalid for all API points in other class files, or 
differently parametric API points in the same class file. However, the 
same SpecializationAnchor can be reused (efficiently, without 
revalidation) for multiple API points in the same class file, as long as 
they are co-parametric over a common anchor. 

The internal structure of a SpecializationAnchor object can 
be organized so as to make frequent checking operations simple and 
fast. The important operations on it include finding the resolved 
values of derived parametric constant pool constants, checking that 
object instances have congruent species, perhaps finding “friend” 
specialization anchors (such as those for super- or sub-classes), and 
ensuring that CONSTANT_SpecializationLinkage states are 
correctly set up. 

A SpecializationAnchor object is deemed validated “from 
inception”. As soon as one is created, it is immediately valid with 
respect to the CONSTANT_SpecializationAnchor it is created 
with reference to. To protect encapsulation, all public factory methods 
for SpecializationAnchor require a full-power Lookup object 
for the class file that contains the 
CONSTANT_SpecializationAnchor in question. (The 
Lookup can be obtained from inside the class file, or by means of a 
privileged operation performed by a trusted language runtime.) This 
implies that returning a SpecializationAnchor object from a 
bootstrap method does not confer additional validity on it, but simply 
associates it with a particular client of an API point. 

There are many potential language-specific aspects of the 
SpecializationAnchor object’s API, such as a memoization of 
the originally proposed (yet unvalidated) linkage parameter value, or 
some sort of assembled metadata for use by reflection, or derived 
values such as species or specialized field and method types. It is clear 
that we cannot design in such aspects to the core API of 
SpecializationAnchor. It is thus an open issue (TBD) whether 
those aspects should be adjoined to the SpecializationAnchor 
API using inheritance or composition. In the case of composition, 
SpecializationAnchor<T> will be given a language-specific 
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internal variable of type T which carries the weight of the language 
runtime’s bookkeeping requirements, and instances are created (by the 
language runtime) with their partner object. In the case of inheritance, 
SpecializationAnchor is a more open class which can be 
subclassed by language runtimes, even though its constructor is 
(somehow) protected from arbitrary access. The case is complicated 
by the requirement that default specializations (representing “raw” 
types) should be created unilaterally by the JVM; this means that a 
specialization for the “raw” version of a class or interface must have a 
JVM-assigned class, not one determined during the course of a 
bootstrap call. It seems cleaner, for prototyping, to resort to 
composition, and give SpecializationAnchor a few one 
runtime-assigned variables. For JVM-created default specializations, 
the variables can be initialized to “boring” values like null (forcing 
the runtime to “just deal” with the annoying nulls) or else ask an 
anchor’s bootstrap method to create the either all default 
specializations, or else the runtime helper objects for such 
specializations. But running bootstrap methods is not free; it can 
easily cause infinite bootstrap recursion if run in the early phases of 
class loading. For now, “just deal with the nulls” is the easiest way 
forward for JVM prototyping, but it seems a more equitable solution 
(allowing the runtime to participate in default specialization creation) 
is in the cards. 

From the caller’s point of view, a proposed linkage value can be 
any loadable constant pool constant. This loadable constant can be 
either known to be previously validated (e.g., a locally known 
SpecializationAnchor object) or some unvalidated value 
(which can be any object whatsoever). In the validated case, the 
constant value will always be a reference to an object of type 
SpecializationAnchor, produced by the anchor constant 
associated with the callee’s API point. 

In this design, validation is idempotent, not a transform from one 
type to another, from one point in an API scheme to another. It might 
seem cleaner to rigidly separate the “random junk” that callers 
propose for linkage parameters, from the validated 
SpecializationAnchor values, with separately typed API 
points for each. But such a design would satisfy no practical need, 
because in practice, every anchor proposal, at every API point, is 
tentative. This is true because specialization is an internal aspect of 
each API point, and can change (after recompilation of the API point 
declaration) at any time. Callers can guess at proper specializations, 
but the “handshake” between proposed parameters and validated 
anchors must be performed as a part of API point linkage. This is 
seemingly unfortunate, but the situation can be made much more 
tenable by ensuring that callers are likely to guess good (valid) 
anchors, and that the JVM can quickly revalidate them (without 
expensive bootstrap calls). In this setting, we don’t need or want 
separate types; we expect that unvalidated values will (despite 
separate compilation and dynamic linking) quickly converge to 
validated values. And using separate types for both would only delay 
such a convergence. 

Also, from the caller’s point of view, a proposed linkage value can 
be either an invariant constant or a parametric constant. In the latter 
case, some previous caller must have already proposed a value for the 
variant constant’s underlying specialization anchor, and that value was 
validated and agreed upon, so that there is a well-defined current 
resolution state for the variant constant. 

Thus there are four cases for a caller’s constant pool entry to 
propose a linkage parameter: 

• validated, invariant: A SpecializationAnchor 
constant, which once determined is constant for all 
invocations of the caller. Example: A 

SpecializationAnchor object for the 
CONSTANT_SpecializationAnchor of a parametric 
interface java.util.List, denoting a species 
List<Point> for some other type Point. 

• unvalidated, invariant: A value to be passed to an anchor’s 
bootstrap method which is intended to request creation of 
some specialization, and/or a specialization anchor created 
for some other (perhaps related) API point. For example, a 
record instance requesting creation of List<Point> 
whose components are class mirrors for List and Point. 
Or, as another example, a SpecializationAnchor 
object for a class java.util.List, denoting (as before) a 
species ArrayList<Point>, which is being proposed as 
the linkage parameter for an API point (perhaps a 
constructor) of a subtype java.util.ArrayList. 

• validated, variant: A constant of type 
SpecializationAnchor which is also parametric, and 
thus depends on an ambient anchor value (perhaps itself). For 
example, in the context of a generic method 
Arrays.<E>sort, the 
CONSTANT_SpecializationAnchor which 
determines E, and which is used to invoke some private, 
equivalently-parametric subroutine called (say) 
Arrays.<E>mergeSortHelper. Or, as another 
example, in the context of the same method, a call to a 
method in a helper class, SortHelpers<T>, where the 
linkage parameter is obtained from a constant (in the caller 
class Arrays) that reifies the type SortHelpers<E>, for 
each ambient value of E in Arrays.<E>sort. 

• unvalidated, variant: A linkage parameter to be passed to an 
anchor’s bootstrap method which is somehow dependent on 
some (previously determined) ambient specialization anchor. 
For example, in the context of a generic method 
Arrays.<E>sort, a CONSTANT_Dynamic constant 
whose input is the class mirror corresponding to the 
contextual value of E, and which computes the mirror of a 
derived type such as E[] or List<E>, to be further 
proposed as a type parameter value for some other API as 
part of the execution of sort. 

Preparation of Constants 

A constant is prepared when storage for its resolution state is assigned 
to it. When first prepared, most constants are in the unresolved state, 
but some are immediately set to some known value. A 
CONSTANT_SpecializationAnchor is always prepared 
resolved a SpecializationAnchor reference. (Constants which 
are not resolved, or which have trivial resolutions, may also be viewed 
as being prepared in a final state.) The rules for preparation of 
resolution states of constants are as follows: 

• Invariant constants are prepared (if necessary) when their 
declaring class is prepared. 

• Every CONSTANT_SpecializationAnchor is 
prepared once as a default specialization (in a “raw” empty 
state) when its declaring class is prepared. 

• A CONSTANT_SpecializationAnchor is 
(subsequently) prepared in response to a library call (see 
SpecializationAnchorBuilder below) which 
creates a fresh specialization anchor for that specific anchor 



constant. Such a call is typically the result of a validation 
request. 

• Every constant C which is parametric over some anchor R is 
prepared exactly as many times as R itself is prepared. In 
fact, C and R is prepared at the same time as the associated 
SpecializationAnchor object is created. The 
resolution states of R and C can be accessed via that 
SpecializationAnchor object. 

Thus, each SpecializationAnchor object serves as a handle 
on a set of consistently specialized constant resolution states. When a 
method executes bytecodes in the context of a caller-supplied 
SpecializationAnchor object, variant constants are determined 
relative to the resolution states of that same specialization anchor. As 
with all constant pool resolution states, these states start out in a 
neutral state, but eventually resolve to a permanent result, either 
successfully with a metadata reference or value, or else to a 
permanently recorded resolution error. 

The information content of a SpecializationAnchor object 
includes the following items: 

• Anchor identity: An internal reference to the metadata 
describing the CONSTANT_SpecializationAnchor 
constant R which it binds, within the run-time constant pool 
of the particular loaded class file F that defines it. 

• Parameters: One or more arbitrary object references 
permanently associated with the anchor when this 
specialization created by the language runtime. The JVM 
assigns no particular meaning to the runtime value. It may be 
a list or tuple of type mirrors, for example. In the special case 
where this object represents a JVM-created default 
specialization, only a null reference is visible. 

• Species: A species object which represents this specialized 
class in which this specialization is situated. If the class is 
not specialized (with respect to this anchor), then the “raw” 
Class mirror is reported instead. (Or null? TBD.) 

• Dependent constants: A set of resolution states, one for 
each constant C which is parametric over R. (Constants bi-
variant R and Q are omitted from these resolution states if R 
is the outer anchor to Q.) These states are prepared and added 
to the run-time constant pool of the loaded class file F 
when the SpecializationAnchor object is created. 

• Outer specialization: If the anchor R is not of kind 
PARAM_MethodAndClass, a null reference. Otherwise, 
a second SpecializationAnchor object which 
specializes R’s outer anchor Q, which is of kind 
PARAM_Class. Note that the constant pool states for this 
outer specialization may be shared by many specializations 
of R. 

• Associated class: A reference (of type Class<?>) to the 
particular class declared by the class file F, and containing 
the specialization anchor R. (This value is logically derived 
from the anchor identity, but may be physically present in a 
field of the SpecializationAnchor as an 
implementation artifact.) 

• Associated fields: A set of methods which are parametric 
over the anchor of this specialization, along with their type 

restrictions. (This is for reflection only, and may be safely 
omitted while prototyping.) 

• Associated methods: A set of methods which are parametric 
over the anchor of this specialization, along with their type 
restrictions. (This is for reflection only, and may be safely 
omitted while prototyping.) 

• Associated default: The unique 
SpecializationAnchor object representing the default 
specialization for the anchor R. A default specialization 
points to itself as its associated default. (This value is 
logically derived from the anchor identity, but may be 
physically present in a field of the 
SpecializationAnchor as an implementation artifact.) 

The data structure itself appears to require about five fields per 
distinct SpecializationAnchor, plus an array element for each 
distinct resolution state of the dependent constants. It seems likely that 
preparation of resolution states can handled with a simple Java object 
array allocation of an appropriate size, with suitable conventions for 
distinguishing unresolved, resolved, and erroneous states. 

Resolution of 
CONSTANT_SpecializationLinkage 
constants 

Any use of a CONSTANT_SpecializationLinkage in place of 
the symbolic reference that it wraps first resolves the symbolic 
reference to an API point M. 

Next, if the API point M is not parametric, the result is as if the 
CONSTANT_SpecializationLinkage constant were not 
present, but rather the “raw” symbolic reference had been used from 
the start. 

If the API point M is parametric over some R, then the proposed 
linkage parameter value referred to by the 
CONSTANT_SpecializationLinkage constant is resolved. The 
resulting value is then validated against M’s anchor R, using a 
bootstrap method (declared on R) if necessary. 

After successful resolution (including validation) of the 
CONSTANT_SpecializationLinkage constant, both resolved 
components are permanently recorded by the JVM: the symbolic 
reference, and the specialization anchor object. In the case of 
unsuccessful resolution, the appropriate Error object is recorded for 
future uses of the CONSTANT_SpecializationLinkage 
constant. 

For example, if a CONSTANT_Class constant for some C is 
wrapped in a CONSTANT_SpecializationLinkage constant, 
and the latter is resolved, then first C is resolved, and then if C is 
parametric (which is likely), the linkage parameter value proposed by 
the CONSTANT_SpecializationLinkage constant is 
immediately validated against C’s anchor. The resulting specialization 
anchor object is then permanently recorded with the 
CONSTANT_SpecializationLinkage constant. The net result 
is that a specialization of C has been determined in the client’s 
constant pool. The resolved constant may be used with various 
bytecodes, such as ldc (to load the species of C), new (to make a 
specialized instance), instanceof (to test an object whether it 
conforms to that species of C), or as part of a symbolic reference to 
one of C’s members. 



Thus, the resolution state of a 
CONSTANT_SpecializationLinkage constant records not 
only the identity of a remote API point, but also the specialization 
decisions appropriate to that remote API point. 

The full resolution state of a 
CONSTANT_SpecializationLinkage constant is never 
accessible as a loadable constant (CONSTANT_Dynamic argument 
or ldc bytecode); it is opaque to the caller except in the type 
restrictions of the parametric API points, and (of course) in their 
behaviors. 

In one case only, a CONSTANT_SpecializationLinkage 
constant can serve as a loadable constant, and that is when the 
constant it wraps is already a loadable constant, that is, a 
CONSTANT_Class. In that case, the value from the linkage constant 
is the species derived from the specialization anchor (as if by 
SpecializationAnchor.species). Note that a single species 
may, in some cases, be associated with several class specializations. 

A previous version of this proposal exposed an anchor object as the 
constant value of a CONSTANT_SpecializationLinkage 
constant. This behavior would be contrary to the goal of encapsulating 
specialization decisions. The class that produces a 
SpecializationAnchor object may choose to expose it through 
a public static API point. Such decisions, made by whatever runtime 
system implements the bootstrap method, are outside of the JVM’s 
purview. 

Validation of Linkage Parameter Values 

As the latter part of resolving a 
CONSTANT_SpecializationLinkage constant, its proposed 
linkage parameter value is resolved and validated, against the remote 
parametric API point resolved from the symbolic reference. 

If the remote API point is not parametric, the linkage parameter is 
neither resolved nor validated (because there is no anchor constant to 
validate it); instead it is ignored. (This is not an erroneous state; an 
API point is always free to ignore proposed linkage parameters.) As a 
loadable constant, the resolved value of such a 
CONSTANT_SpecializationLinkage constant is a placeholder 
value supplied by the runtime (TBD, probably null) which indicates 
that the resolved API point was, in fact, invariant. 

Otherwise, the API point is parametric over an associated 
CONSTANT_SpecializationAnchor defined in its class file. In 
that case, a proposed linkage parameter is defined as valid for that API 
point if and only if it is a reference to a SpecializationAnchor 
object that was created for that anchor, either by the JVM (as the 
unique default specialization for that anchor) or by successful 
invocation of the anchor’s bootstrap method. 

For a remote API point parametric over some anchor R, if the 
proposed linkage value V is valid for R, then the resolution state of the 
CONSTANT_SpecializationLinkage constant records V. Such 
a V may be called “pre-validated”. The simplest example of pre-
validation occurs is when the 
CONSTANT_SpecializationLinkage constant proposes a 
CONSTANT_SpecializationAnchor local to the class file. 
(This is not automatic: If a translation strategy fails to “thread 
through” a local anchor value to another local API point usage, then 
the “raw” default specialization is selected for that API point.) It may 
also happen if a pre-validated SpecializationAnchor is 
obtained from some other source (via condy), and placed in the 

constant pool where a CONSTANT_SpecializationLinkage 
constant can propose it. 

If the API point is class-variant, then a 
SpecializationAnchor for a bi-variant anchor (in the same 
class file) is treated as pre-validated, as well as a 
SpecializationAnchor for the class anchor itself. 

As a special case, if V is the null reference, and the remote API 
point is parametric over some anchor R, then the JVM substitutes the 
(internally known) default SpecializationAnchor reference for 
that value, and records the latter reference as the pre-validated value. 

In all other cases, the proposed linkage parameter will be 
something like a quasi-symbolic package of type mirrors, which the 
anchor’s bootstrap must validate and map to a species or other 
specialization information. 

Suppose the remote API point is parametric over some anchor R, 
but the proposed linkage value V is not validated for R. In that case, 
the bootstrap method for R is invoked. The bootstrap method receives 
the proposed value V. It is expected to return a 
SpecializationAnchor object reference valid for R, else a 
linkage error will be raised. The possible non-erroneous outcomes are: 

• A freshly created SpecializationAnchor object (over 
R) is returned. The JVM notes the fresh creation, and 
prepares fresh new constant pool states for every constant 
pool entry parametric over R. (In this case, any parametric 
constants of R will be re-resolved, if and when the API point 
referred to by the 
CONSTANT_SpecializationLinkage constant makes 
use of them.) 

• A reference to a default SpecializationAnchor object, 
created for R when its class file was prepared, is returned. 
(In this case, parametric constants of R will continue to be 
resolved according to the prepared resolution states of that 
special object.) 

• A reference to some other pre-existing 
SpecializationAnchor object (over R) is returned. (In 
this case, parametric constants of R will continue to be 
resolved according to the prepared resolution states of that 
pre-existing object.) 

Note that in all these non-erroneous cases, the returned reference is to 
a SpecializationAnchor object which in fact would be pre-
validated in a subsequent linkage request to the same API point. 

The erroneous cases are as follows: 

• The bootstrap method returns something bad: A 
SpecializationAnchor object for some anchor other 
than R, or a null reference, or some object which is not a 
SpecializationAnchor. In this case, a 
BootstrapMethodError is raised instead, just as if the 
bootstrap method had thrown that error. (See next case.) 

• The bootstrap method throws an exception E. In this case, 
validation has failed, and the resolution of the 
CONSTANT_SpecializationLinkage also fails with 
the exception E (if E is an Error) or else a 
BootstrapMethodError wrapping E. (No access to the 
API point is possible via this 
CONSTANT_SpecializationLinkage constant, and 



so there are no resolution states or dependent constants to 
worry about.) 

The null reference is not allowed as a return from the BSM even 
though it is allowed as a pre-validated sentinel selecting a default 
specialization. Also, a bi-variant SpecializationAnchor is not 
allowed as a return from a BSM which is acting for a PARAM_Class 
anchor. The return value must be a SpecializationAnchor 
exactly for the requested anchor constant. 

If an API point is parametric but it is used via a “raw” symbolic 
reference (not augmented by a 
CONSTANT_SpecializationLinkage constant), the the anchor 
is linked to its default “raw” instance, just as if a 
CONSTANT_SpecializationLinkage constant were used, but 
had proposed the default specialization for R (or null, equivalently). 
According to the rules above, this effective proposed value is in fact 
pre-validated, and does not require a bootstrap method call. 

An earlier version of this proposal called for the bootstrap method 
to be executed, but on further consideration this seems to be a feature 
which is both error-prone and not particularly useful. Instead, the 
JVM guarantees that all API points always accept invariant uses, 
applying the JVM-supplied default SpecializationAnchor to 
them. One might wish for a way to prevent some API points from 
accepting “raw” default specializations, but truly effective prevention 
of raw access appears to be a research project, rather than something 
achievable by a simple design decision. (Part of the research would be 
to decide how to adjust the core reflection API, such as 
jlr.Method.invoke, which currently requires some sort of 
default specializiaton setting for API points that it reflects.) Note that 
translation strategies which aim to avoid default specializations (for 
selected API points) can partially avoid default specializations by 
compiling default-rejecting guards into their methods and other paths, 
and can spell names in such a way that legacy code cannot 
accidentally link to them. 

The default specialization can also be used (if desired) for the 
behavior of all kinds of malformed API accesses, allowing out-of-date 
or “type polluted” clients to quietly fall back to the raw behavior of 
the desired API point. This behavior is fully under the control of the 
bootstrap method. The only behaviors “hardwired” into the VM are 
where a non-parametric API point silently ignores a proposed linkage 
parameter, or where a pre-validated SpecializationAnchor 
(such as the “raw” default or a previous BSM result) is proposed 
during the resolution of a 
CONSTANT_SpecializationLinkage constant. 

There is some expressive value in allowing the symbolic reference 
of a CONSTANT_SpecializationLinkage constant to have its 
own variance, so that a method of a parametric class can be 
additionally parametric. To allow this, the JVM accepts a 
CONSTANT_Fieldref, CONSTANT_Methodref, or 
CONSTANT_InterfaceMethodref constant to refer to a 
CONSTANT_SpecializationLinkage constant wrapping a 
CONSTANT_Class, where it would normally simply point to a 
“raw” CONSTANT_Class symbolic reference. Thus, references to 
fields and methods (but not plain types) can inject specializations into 
their class scopes (by wrapping the embedded CONSTANT_Class) 
or directly into the field or method (by wrapping the constant as a 
whole). In fact, linkage parameters can be proposed at both positions. 

There is a loose relation between code and layout customization 
and constant preparation. If the validation of a linkage parameter 
results in a fresh SpecializationAnchor object with freshly 
prepared resolution states for parametric constants, then the VM has 

the option to internally customize code and/or data layouts to those 
states. VM implementations can refrain from exercising such options. 
Conversely, if validation results in the use of a previously created 
SpecializationAnchor object (such as the “raw” default 
specialization for that anchor, or perhaps some general-purpose 
species for a group of erased types), then the VM must use the shared 
(perhaps unspecialized) states of the parametric constants in that 
SpecializationAnchor object. 

There may be library routines and/or optimization directives, 
which affect the VM’s decisions to specialized code and/or layout to 
particular instances of SpecializationAnchor. In some cases, 
the parametric constants within a SpecializationAnchor will 
not require any associated code or data specialization; in those cases, 
the shared code and data will simply make use of the parametric 
constant values as if they were extra invisible arguments to methods 
and extra invisible (final) fields in data. 

Within a stack frame executing a parametric method, that method’s 
CONSTANT_SpecializationAnchor constant resolves (for that 
execution only) to the SpecializationAnchor reference 
validated by the caller when the caller symbolically resolved its API 
point reference to the method. 

Additionally, within a stack frame executing a parametric method 
within a parametric class or interface, that class or interface’s 
CONSTANT_SpecializationAnchor constant resolves (for that 
execution only) to the SpecializationAnchor reference 
validated by the caller when the caller symbolically resolved its API 
point reference to the method. 

Thus, an ldc of a CONSTANT_SpecializationAnchor 
produces a low-level SpecializationAnchor object. At the 
option of the translation strategy, the reflective API of this object can 
be used to obtain additional relevant information, such as species or 
type variable bindings. 

For example, the value method of SpecializationAnchor 
returns a value assigned by the bootstrap method that created the 
SpecializationAnchor (or null for the JVM-created “raw” 
default SpecializationAnchor). 

Non-parametric methods do not have access to parametric 
constants, not even if the non-parametric method is declared in a 
parametric class. In order for a 
CONSTANT_SpecializationAnchor constant to resolve in a 
method, that method must be parametric over that anchor. 
Specifically, in order for a CONSTANT_SpecializationAnchor 
constant of kind PARAM_Class to resolve in a method, that must be 
either co-parametric with its enclosing class, or or bi-variant. In the 
latter case, it can resolve the values of either or both of the relevant 
CONSTANT_SpecializationAnchor constants (one for the 
class, and one of kind PARAM_MethodAndClass). 

The set of loadable constant pool constants (both old and new) is 
summarized in Diagram 4.4-G. These constants are usable as 
bootstrap method arguments, with the ldc family of instructions, and 
as specializations proposed via 
CONSTANT_SpecializationLinkage. 



 

Bootstrap upcall details 

Bootstrap method calls occur when specialization anchors are 
required, but non-valid linkage parameters values are proposed. This 
usually occurs in the context of dynamic linkage between a caller and 
a callee, where the proposed linkage parameter is not already valid for 
the callee. 

Bootstrap methods are made in the usual way, as if by 
MethodHandle.invokeWithArguments on the specified 
bootstrap method, with a leading full-privilege Lookup argument 
followed by fixed task-specific arguments, and any static arguments 
following last. 

It is the responsibility of the language runtime, not the JVM, to 
ensure that the results returned by bootstrap method calls are valid for 
the context of the JVM event which caused the bootstrap method call. 

Default specializations are created for each anchor in a class’s 
constant pool during preparation of that anchor. For a PARAM_Class 
anchor, this occurs before execution of any class initializer. These 
default SpecializationAnchor instances are created 
automatically by the JVM, and their characteristics are set 
automatically, without any appeal to any bootstrap method. 

For any SpecializationAnchor object (default or not) for a 
PARAM_Class anchor Q, and for any anchor R of kind 
PARAM_MethodAndClass in the same class-file, the JVM 
automatically creates (as required) a default specialization for R, 
without the intervention of a bootstrap method, which represents the 
“raw” default version of R in the context of Q’s specialization (default 
or not) represented by the first SpecializationAnchor object. 
Such an “inner” default specialization for R is needed as a bootstrap 
method argument whenever a R-variant method is to be specialized. 

All other SpecializationAnchor objects are created by 
runtime code, and injected into constant pools as the result of 
bootstrap method invocations. 

Validation bootstrap calls 
When some given API point is accessed, validation bootstrap calls 
occur when all of the following conditions are true: 

• The symbolic reference of the API point M resolves to a 
declaration located in the class file of some class or 
interface C. 

• Access checking of M succeeds (relative to the caller). 
• The declaration of M is parametric over some R. 
• A proposed linkage parameter value V is present (via a 

CONSTANT_SpecializationLinkage wrapper on the 
symbolic reference for M.). 

• V is not already a SpecializationAnchor validated for 
R. 

• Even if V is already a SpecializationAnchor 
validated for some related Q, a valid 
SpecializationAnchor for R cannot be derived from 
V automatically. (There is one case of such automatic 
derivation described below.) 

When these conditions all prove true, we may say that “M requires a 
validation bootstrap for V”. In such a case, the bootstrap method for R 
is invoked on these arguments: 

1. A full-privilege Lookup argument for the class or interface 
C. 

2. The default SpecializationAnchor object B0 for this 
anchor R, as previously generated internally by the JVM. (If 
R is bi-variant, its outer link may or may not be default, and 
in any event carries the result of a previous bootstrap.) 

3. The proposed linkage parameter value V, which has failed to 
validate to R. 

4. …Any static arguments associated with the bootstrap 
method. 

Note that the specific identity of M is irrelevant to the validation 
bootstrap. It may be the case that several methods in C share a 
common anchor; any one of them could trigger the same validation 
bootstrap, and all of them could contrive to use the single 
SpecializationAnchor result in common, if they call each 
other using their CONSTANT_SpecializationAnchor constant. 

In order for the validation to succeed, the following conditions 
must all hold true: 

• The bootstrap method call returns normally. 
• The result of the call is a reference to a 

SpecializationAnchor object B. 
• The JVM can observe that B was created for R (as defined by 

C). 
The “raw” default specialization B0 is always a legitimate return 

value for this bootstrap method call. If returned, that specialization B0 
selects, on behalf of the requesting client, the default unspecialized 
behavior that the JVM would assign to the API point if the client had 
not proposed any linkage parameter value V. 

Otherwise, the validation will fail with an instance of Error. A 
BootstrapMethodError will be created, if no instance of 
Error is already being thrown. 

The bootstrap when M is a field is provided mainly for symmetry 
with the other cases. For parametric field references, it is expected 
that the linkage parameter R will be injected into the 
CONSTANT_Class component of the CONSTANT_Fieldref, and 



not at “top level” on the CONSTANT_Fieldref itself. If this feature 
proves incrementally difficult to implement, it can be omitted. 

The bootstrap method may consult the API of B0 to learn various 
details about the structure of the anchor being specialized and its class 
file. This uses a Reflective API available on all 
SpecializationAnchor objects. 

The bootstrap method may use a factory API for 
SpecializationAnchor objects to create a brand new 
specialization. This new specialization by default will possess a new 
species, if B0 is class-variant. The factory API also allows the 
bootstrap method to link two specializations together sharing a 
common species. 

The bootstrap method is responsible for validating the proposed 
linkage parameter V, and for storing appropriate parameter 
information in standard locations on the resulting 
SpecializationAnchor object. In this way, even if the 
specialization anchor is lost, a species all by itself can serve as a 
“key” to recover the same specialization state, or an equivalent one. 

The JVM may supply a fast path for validating a species when 
presented as a linkage parameter, expanding it into a corresponding 
specialization anchor. 

Reflective API of SpecializationAnchor 
Principally for the use of bootstrap methods, a substantial amount of 
information is exposed by the API of the Java type 
SpecializationAnchor. For any given specialization B, for an 
anchor R in the class-file of a class or interface C, the following data 
are defined and exposed by the JVM through B’s API: 

• The class C which declared the anchor for this anchor. 
• An opaque numeric value which uniquely identifies R 

(within C). 
• Whether R is of kind PARAM_Class, 

PARAM_MethodAndClass, or PARAM_MethodOnly. 
• A parametric super list describing all parametric supers of C. 

(This list will be empty unless R is of kind PARAM_Class.) 
• A parametric field list describing all fields F which are co-

parametric with R. (This list will be empty unless R is of kind 
PARAM_Class.) 

• A parametric method list describing all methods M which are 
co-parametric with R. 

• If R is of kind PARAM_MethodAndClass parametric over 
a Q of kind PARAM_Class, a SpecializationAnchor 
object for Q that supplies the class context for B. 

• The corresponding “raw” default specialization B0 for B. 
In fact, the default specialization B0, in common with all (present 

and future) specializations of R, supports reflective queries which 
expose all API points in C (including but not limited to M) which are 
parametric over R. Their names and descriptors are available to the 
bootstrap method logic. Also, the JVM exposes, via B0, the resolved 
values corresponding to the anchor_index in the Parametric 
attribute of each API point. (If there is no such constant, the 
corresponding value is reported as a null reference.) 

For additional concrete details, see the section Sample bootstrap 
API below. 

Because none of the above information is changed by 
specialization, all SpecializationAnchor objects B0, B, etc., 
for a given anchor R, whether default or not, report the same reflective 
information about R. 

A specialization B can be tested whether it is a JVM-prepared 
default specialization B0 simply by testing whether a query the 
corresponding “raw” default yields B itself again. 

Thus the default specialization B0 can also serve as a reflective 
proxy unambiguously identifying the anchor R. This may be useful if 
the bootstrap wishes to perform some kind of reflection on the class 
file to gather more information about the anchor, such as which parts 
of class refer to it via Parametric attributes. Such additional 
reflective queries are TBD, and are not necessary for Java generics. 
The API for SpecializationAnchor may also (TBD) include 
(privileged) queries about which constant pool structure, in which 
class file, it corresponds to. 

As described below, if M is bi-variant, B0 may be a regular default 
specialization for R (which is of kind PARAM_MethodAndClass), 
or an “inner default” which is previously specialized to some non-
default outer specialization (of kind PARAM_Class). Thus, B0 can 
carry “outer” information from an enclosing parametric class, 
allowing the bootstrap method to consult the details of the enclosing 
specialization in case they are relevant to the further “inner” 
specialization of M (and its co-parametric siblings under R). 

The bootstrap method is allowed (though not required) to use all 
relevant reflected data to create a new specialization encoded in a 
fresh SpecializationAnchor B which assigns arbitrarily 
specialized types and values to each of the API points parametric over 
R. The specialized types are enforced on all clients which use M (or 
any of its co-parametric siblings) via such a B. The specialized values 
are freely available (as ldc constant values) to all clients which link 
to the API points via B. 

The parametric super, field, and method lists are all simple arrays. 
The elements of these arrays are presented in an arbitrary order 
selected by the JVM. 

The parametric super array contains nested array items of the form 
{x,s}, where each x is a Class mirror for a super S of C that was 
declared (using a CONSTANT_SpecializationLinkage 
wrapper) as co-parametric with C, and each s is a specializer datum 
for S. The specializer datum is derived from the constant pool 
structure of the co-parametric reference S in a form which a bootstrap 
method can inspect and execute as needed. (The design is TBD; it 
may be a reflected ConstantDesc for the variant constant S, or 
perhaps a functional transform object.) 

Factory API for SpecializationAnchor 
When a new SpecializationAnchor must be created, the 
bootstrap method is responsible for marshalling all specialization 
decisions and handing them to a factory method, which then creates a 
fresh SpecializationAnchor object which can then serve as a 
record of those decisions, and a location where specialized constants 
can be derived. 

The factory method takes the following arguments: 

• A full-power Lookup object on the class declaring the 
anchor, enabling the privilege of creating a new 
specialization. 

• A default SpecializationAnchor for the same anchor 
constant, serving as a template for the new specialization. 

For an example, see 
SpecializationAnchorBuilder::start below. 

The factory method returns a builder object which holds a “larval” 
SpecializationAnchor object of the correct shape. 



While the specialization object is larval, the builder object can be 
requested to initialize the specialization object’s record of parameter 
bindings and species. (Other actions are TBD.) 

This information is stored permanently in a newly created 
SpecializationAnchor object and returned to the bootstrap 
method. 

When the builder object is told to finish building, it returns the 
same SpecializationAnchor object, now permanently in a 
state usable by the JVM. 

If the anchor is of kind PARAM_Class, the JVM also creates a 
species object (of type Species or perhaps Class, TBD) which 
embodies and reflects the decisions about supers and field types. The 
species method of SpecializationAnchor provides access 
to this JVM-created value. 

The loadable constant value of a 
CONSTANT_SpecializationLinkage constant in any client 
which links to this species is that species. This is the only case of a 
CONSTANT_SpecializationLinkage constant functioning as a 
loadable constant. 

The species is automatically created by the JVM when the builder 
finishes the object, if none was previously requested via the builder 
API. 

The bootstrap method is free at any time to discard the builder and 
the larval anchor object, and return some other (compatible) anchor 
object to use instead. 

Effects of type restrictions on parametric fields and methods 
The JVM carefully records the association of type restrictions with 
specialized fields and methods. It enforces field type restrictions by 
requiring all stored values (even the initial default value) to conform 
to the restriction. It enforces method argument type restrictions by 
casting (or otherwise checking) all passed arguments before method 
entry (and even before virtual method selection). It enforces method 
return type restrictions by casting (or otherwise checking) all returned 
values on method return. 

When a field is written, or a method parameter is bound to a value, 
its type restriction (if any) is applied as a runtime check. Again, when 
a field is read, or a method return value is received, a type restriction 
is applied as a runtime check. In any case, when such a runtime check 
fails, the access is aborted and a subclass of RuntimeException is 
thrown. 

For example, a failed check may be reported via a 
ClassCastException or NullPointerException or 
IllegalArgumentException, depending on the nature of the 
type restriction. 

Furthermore, even in the case of unspecialized (“raw”) access, 
“raw” values stored to specialized instance fields and “raw” 
specializations passed to specialized methods are subject to type 
restrictions derived from the specialization of the containing object, as 
determined dynamically. Untyped reflective APIs also enforce type 
restrictions. 

In the case of method overrides, two sets of type restrictions are 
applied, the type restrictions (if any) for the resolved symbolic 
reference to the method (at its call site) and also the type restrictions 
(if any) for the selected method. Type restrictions on unresolved, 
unselected methods are ignored by virtual calls. 

In keeping with the order of operations in a virtual method call, 
type restrictions on the resolved methods are applied to arguments 
before type restrictions of the selected method. Similarly, a type on 
the return type of the selected method is applied before a type 
restriction on the return type of the resolved method. 

The JVM may simplify the checking process if it can determine 
that the type restrictions on the resolved and selected methods are 
somehow identical or compatible. It does not enforce any kind of 
compatibility on resolved and selected methods. 

For non-virtual calls (special and static) only the type restrictions 
of the resolved method are consulted. 

The JVM is allowed but not required to use type restrictions to 
customize internal implementation choices about field layout and 
method calling sequence. Whether or not it does so, it must enforce all 
type restrictions, whether invariant or parametric. 

The effect of such type restrictions is to allow (though not require) 
the JVM to organize the storage and representation of fields, 
arguments, and return values to “fit exactly” into the restricted types. 
Primitive values can be unboxed and stored directly in object layouts 
or registers. 

In at least some circumstances (discussed below), a restricted type 
is allowed to be disjoint from the declared type of the field or method. 
In such a case, the field or method is inaccessible (in that particular 
specialization). Such a field need not occupy any space in an instance 
layout, and such a method cannot be invoked (or cannot return) 
without an exception. 

Because default specializations contain no type restrictions, the 
only field and method types that matter are those reported by the 
descriptor strings of the field_info and method_info 
structures. Again, because of this, legacy clients of parametric classes 
will always see the unrestricted versions of their various API point 
types. This lack of type restrictions is one reason we informally refer 
to default specializations as “raw”. 

Current JVM implementations usually contrive to the layout of 
objects so that each (non-static) field has a unique offset within all 
objects that contain that field. Doing this requires (typically) a 
prefixing scheme where the fields of each superclass precede the 
fields of any of its subclasses, in the order of memory layout within 
instances of such a subclass. Parametric field types disturb this tidy 
algorithm, since a superclass can introduce a field whose size varies 
from species to species, thus perturbing the otherwise-constant field 
offsets in all the subclasses. This tidy algorithm can be rescued by a 
simple expedient: Always allocate all parametric fields (or at least, all 
size-variant fields) after all invariant fields. The ordering in the 
instance layout would thus be all invariant fields in super- to sub-class 
order, followed by all variant fields, in some arbitrary order 
(convenient to the JVM). Locating a variant requires an extra 
indirection somewhere to find a field offset, and accessing it will in 
general require another indirection to determine its type and/or size. 

Type restrictions are enforced by the JVM in addition to each 
corresponding type enforced by the verifier. This enforcement must 
amount to a pointwise narrowing, as if by checkcast, of each field, 
argument, and return type. (Any enforcement which cannot be 
simulated by checkcast is not attempted, but rather leads to an 
error.) This design preserves stack effects and types mandated by the 
verifier. 

Because the API type information is co-parametric with the API 
point, and is enforced exactly wherever this API point is, the JVM is 



allowed to construct customized calling sequences or layouts for 
specialized API points, if it so chooses. 

If we were to allow a method returning a non-void T to specialize 
to a void-returning method, the preservation of verifier effects would 
require that a default value of T be pushed on the stack. It seems 
simpler to disallow any change which would change stack effects, 
such as changing between non-void and void, or changing the arity 
of a method type, or changing between a primitive type and any other 
type. Although it does not seem to buy us anything, we could also 
reject valid type conversions that are widenings (e.g., from Number 
to Object) or are not proper narrowings (e.g., from Number to 
Comparable). We can revisit these questions as we further converge 
primitives with class types. 

The second set of enforcements, to specialized types, is performed 
dynamically, at each invocation or access, by referring to information 
stored in the link resolution state at each specialized use point. 

The effect is analogous to that of statically inserted casts, in 
previous versions of Java generics. Unlike those previous versions, 
the casting depends not on a static decision by the bytecode compiler, 
but rather by a request from a caller who wishes for a particular 
specialization of a parametric API point, after runtime linking to the 
declaring class of that API point. There are no bytecoded casts at 
specialization points, and generic code is capable of making 
specialized type restrictions as well as client code. Also, the final 
decisions about type restrictions are made by the generic API point 
declaration, and not by its callers. 

It may be useful that if a specialized type constant resolves to the 
type reflector void.class (or some other sentinel value), the 
corresponding API point would produce a LinkageError when 
used with the same specialization. This unpassible type restriction 
would make the API point inpossible to use for that specialization. 

This provides a useful way to translate “logically optional but 
physically required” methods and fields. For example, if either a field 
or method happens to specialize to void, it becomes unlinkable (in 
that specialization). The exact encoding of a vacuous type is TBD; it 
may use void.class, null, or some other special token. 

If the narrowing of types proves to be inconsistent in some other 
way, an error (such as a LinkageError) will also be reported. (In 
this case an appropriate BootstrapMethodError might be a 
useful diagnostic. This is TBD.) 

Reflective APIs will provide access to specialized types assigned to 
specialized API points. The special case of void is likely to map to a 
sentinel value (such as null) meaning “no valid type is available”. 

Note that methods which must return a null value could be 
encoded using a hypothetical NullReference token in return 
position, if that is an important use case. Likewise, specializing a field 
to this token would amount to deleting it from the specialized layout, 
and forcing getfield to return a constant null. This may be 
useful for solving some compatibility problems, where a rarely used 
legacy field must still be accessible to getfield. 

Unpassable restrictions and impossible values 
Because type descriptors are static while type restrictions are 
dynamic, it is possible that a type restriction on a field or method can 
conflict with the type descriptor on a field or method, to the extent 
that no value that is compatible with the type descriptor is also 
compatible with the type restriction. The JVM does not treat an 
incompatible type restriction as a malformed input, but simply 

enforces it as fully unpassable, declaring its corresponding values to 
be impossible. An impossible method parameter is not simply dropped 
from a calling sequence; it prevents any call to the method from ever 
getting started. Simiarly, an impossible return value is not simply 
omitted from a method’s result; it prevents any call to the method 
from returning normally. An impossible instance field is not simply 
omitted from an object layout; it prevents the object as a whole from 
ever being instantiated. (Alternatively, such an impossible field can be 
treated similarly to a failed resolution of a type restriction, which 
would fail a class loading operation in the case of an invariant 
restriction, or a specialization operation in the case of a parametric 
restriction; this is TBD.) 

Other upcalls 
Although specialization creation (of non-default specializations) is the 
main focus of bootstrap calls, there are other kinds of upcalls which 
are performed in the usual course of executing parametric code. Here 
is a list; further details are presented elsewhere in context: 

• Constant derivation: A parametric CONSTANT_Dynamic 
constant can be used to compute and cache useful values 
which are dependent on a validated linkage parameter. The 
bootstrap method for such a constant may refer directly to a 
SpecializationAnchor object, or (less directly) to a 
type species, or a specialized field or method type, or a 
derived type or species (such as List<T> or T[] from T or 
vice versa). All of these operations can be assembled from 
appropriate bootstrap methods, plus calls to the 
SpecializationAnchor API. 

• Virtual dispatch: When a virtual call selects a method other 
than its statically resolved method (i.e., an override), and that 
overriding method is parametric, linkage parameter 
revalidation must be performed. In this case, the JVM gives 
the language runtime wide latitude for invoking the 
overridden method. It performs an upcall to the 
SpecializationAnchor object which is statically 
present on the call, and permanently records the result of the 
upcall as a virtual call connector, in association with the 
constant pool structure which was used to make the virtual 
call. All future virtual calls (to parametric overrides, from 
that particular call site) are handled by this connector, by 
means of upcalls that originate from the JVM but are 
implemented in the code of the virtual call connector. 

• Virtual fields: A field reference instruction might access (read 
or update) a field, but the containing instance specialization 
might not be identical with the specialization required by the 
field. This can occur, for example, if the field reference is 
specialized to particular container species, but the container 
itself is the default species for the container class. On the 
other hand, the field reference might be “raw” (thus 
validating to the default specialization of the class) yet the 
instance is specialized to some non-default specialization. In 
all such cases, the JVM could give the language runtime 
wide latitude for performing the field access. It might 
perform an upcall to the SpecializationAnchor object 
which is statically present on the field reference, and 
permanently records the result of the upcall as a virtual field 
connector, in association with the constant pool structure 
which was used to make the field access. All future field 
accesses (that do not exactly match the intended anchor) are 
handled by this connector, by means of upcalls that originate 
from the JVM but are implemented in the code of the virtual 
field connector. 



• Type testing: A parametric instanceof instruction (or any 
equivalent type test) could be implemented by an upcall on 
the species object’s isAssignableFrom method, except 
in cases of exact match. This would allow the language 
runtime to implement appropriate subtyping rules, such as 
those which make the default specialization for a 
KIND_Class anchor appear to be a supertype of all other 
specializations. It may (for some languages) also allow 
species to have more complicated subtyping rules. For now, 
it seems best to build a couple of really obvious rules, directy 
inside the JVM, and see how far that takes us. 

• Array creation: The JVM is capable of creating an array for 
any plain class or interface, without special assistance. Its 
abilities to create arrays of specialized types are probably 
more limited, although certainly flat arrays of types like 
InlineOptional<InlineByte> are highly desirable. 
In any case, the ability to create specialized array types is 
decoupled from the bytecode design by funnelling the 
creation of specialized arrays through an upcall to the 
associated species object. 

These upcalls will be bypassed (short-circuited through JVM logic) 
for cases which the JVM already knows are “hardwired”. For 
example, type tests of a species against its “raw” default species or its 
super-species are hardwired this way. 

It may be that not all of these upcalls will be needed. Further 
experimentation will guide us. 

Bi-variant specialization linkage 

A bi-variant method M in C is one where C is parametric over some R, 
and M is also parametric over some other Q of kind 
PARAM_MethodAndClass. A call site for such a method can refer 
to a constant which is comprised of all of these elements: 

• The “raw” reference to C, a CONSTANT_Class constant. 
• Optionally, a parametric reference to C, a 

CONSTANT_SpecializationLinkage 
• wrapping the “raw” reference to C, and also proposing some 
• linkage parameter value V. Call this the “scope wrapper” if 

it’s present. 
• The “raw” name and type of M, encoded in a 

CONSTANT_NameAndType constant. 
• A CONSTANT_Methodref (or 

CONSTANT_InterfaceMethodref) which refers to 
both the reference to C (whether parametric or not) and the 
name and type of “M”. 

• Optionally, a “top level” parametric reference to M, a 
CONSTANT_SpecializationLinkage wrapping the 
previous reference to M (whether “raw” or not), and also 
proposing some linkage parameter value W. Call this the 
“member wrapper” if it is present. 

It is thus possible that a parametric reference can propose two linkage 
parameters, one to be validated on the anchor R on the containing type 
C and the other to be validated on the “inner” anchor Q for M. 

A simpler reference might propose just one of the two proposed 
anchors, using either the scope wrapper or the member wrapper. The 
simplest possible reference omits both wrappers; this would be a 
completely “raw” (but still legitimate) reference to M. 

If the reference to C contains a scope wrapper, V is validated (for 
R) during the parametric resolution of C, without reference to M. The 
resulting SpecializationAnchor value is V1. 

If there is no scope wrapper (the reference to C is “raw”), then the 
default specialization (for R) is obtained as V1 as part of the resolution 
of the reference to C, again without reference to M. 

If the reference to M has no member wrapper, then the previously 
validated value V1 is proposed as the linkage parameter for M. If M 
were simply parametric (over R again), this would be exactly correct. 
But since M (in this scenario) is bi-variant, the proposed value V1 fails 
to validate for Q. 

Instead, as a special case, the JVM automatically derives from V1 
(validated for R), an inner default for Q. This is a default 
specialization for Q within the outer specialization V1. 

This inner default was already created when C was prepared, as the 
regular default for Q, in the case where V1 is the default for R. But 
even if V1 is not the default specialization, the JVM must prepare and 
record an inner default for Q which is specialized within V1. This 
preparation must occur at most once, lest there appear to be multiple 
“raw” PARAM_MethodAndClass method specializations within 
some type specialization. 

An implementation can eagerly prepare all possible inner defaults 
for an anchor of kind PARAM_Class when the outer 
SpecializationAnchor is prepared. Alternatively, it can 
prepare them lazily as needed. In any case, the metadata for a 
specialization of kind PARAM_Class should reserve space to link to 
each default (“raw”) specialization of kind 
PARAM_MethodAndClass that might be built within it. 

Because the JVM can automatically derive an inner default for V1, 
then there is no need for a second bootstrap method call. The inner 
default for Q (within any V1) is by definition valid for Q. 

Finally, the reference to M can have a member wrapper which 
proposes a second linkage parameter W, to be applied in the presence 
of V1. In this case, it may be that W is already a valid 
SpecializationAnchor for Q, in which case V1 can be ignored 
and the resolution is complete. 

(We could mandate an error check to detect if V1 is not the 
enclosing specialization when W is valid for Q. This seems not worth 
the effort, as it would detect only minor irregularities in the shape of 
the class file, which do not entail dangerous type errors.) 

Otherwise, the inner default for Q within V1 is obtained (as in the 
earlier case of a missing member wrapper), and supplied, along with 
the unvalidated W, to the bootstrap method for Q. Although V1 is not 
directly passed to the bootstrap method, it may be readily obtained, 
since it is the outer specialization for Q, and the inner default is 
passed as the argument B0 to the bootstrap method. 

Volume III: Parametric Bytecode Instructions 
(JVMS-6.5) 

Review: “Nominal” bytecodes and symbolic 
references 

Some bytecode instructions can refer symbolically to API points. 
These instructions, sometimes called “nominal” bytecodes, contain 
the index (in their associated constant pool) of a symbolic reference to 
an API point, a class, interface, method, or field (depending on the 
particular bytecode). These instructions are: 
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• ldc and ldc_w may resolve a symbolic reference to a class 
or interface (via a CONSTANT_Class) or a symbolic 
reference to a field, method, or constructor (via a 
CONSTANT_MethodHandle) 

• The getfield, putfield, withfield, getstatic, 
and putstatic bytecodes (which may collectively be 
called access bytecodes) resolve a symbolic reference to a 
field, via a CONSTANT_Fieldref. 

• The invokestatic, invokevirtual, 
invokeinterface, and invokespecial bytecodes 
(which may collectively be called invocation bytecodes) 
resolve a symbolic reference to a method via a 
CONSTANT_Methodref or 
CONSTANT_InterfaceMethodref constant. 

• The new, instanceof, checkcast, anewarray, 
multianewarray, and defaultvalue bytecodes 
(which may collectively be called type-using bytecodes) 
resolve a symbolic reference to a class or interface via a 
CONSTANT_Class constant. 

The first execution of a nominal bytecode instructions of any kind 
generally entails resolution of its symbolic reference. The resolution is 
stored permanently in an associated constant pool state for the 
symbolic reference constant, and used for all executions of the 
instruction. 

If two or more bytecodes share a single constant pool entry, they 
also share the associated resolution state. This sharing does not hold 
true for the non-nominal invokedynamic instruction. 

Thus, nominal bytecodes resolve API point references (as defined 
above) to API points (also defined above). Since API point references 
can be parametric, it follows that nominal bytecodes may also be 
parametric. The behavior of such bytecodes is modified by the extra 
information in the specialization determined during resolution of a 
parametric API point reference. 

All nominal bytecodes can be parametric 

The bytecode instructions of a method may refer to a parametric 
constant A over some anchor R only if the method itself is parametric 
over R. 

Therefore, if a method is not parametric at all, its bytecodes can 
only use invariant constants. Recall that all 
CONSTANT_SpecializationAnchor constants are parametric, 
but a CONSTANT_SpecializationLinkage constant may be 
either parametric or invariant, as determined by its specific 
dependencies. 

In the context of bytecode execution of a method which is 
parametric over some anchor R, this anchor is bound to 
SpecializationAnchor object indirectly requested by a linkage 
parameter supplied by the caller. This contextual specialization is 
permanent for the duration of the stack frame. If the method is 
parametric over two anchors (bi-variant), both anchors are 
contextually bound; in fact the inner anchor uniquely determines the 
specialization of the outer anchor. 

Wherever some R is bound, if R depends on some other anchor Q, 
Q is bound also. That can only happen if R and Q are of kinds 
PARAM_MethodAndClass and PARAM_Class respectively. In 

the future, if additional nesting modes are made available in class 
files, additional dependencies between anchors may become possible, 
and more complex simultaneous specializations may appear, 
reflecting multiple levels of scoping or nesting defined by one 
constant pool. 

The following bytecode instructions potentially interact with 
parametric constants: 

• The ldc bytecode (as well as ldc_w) may refer to a 
parametric constant of tag CONSTANT_Class, 
CONSTANT_MethodHandle, CONSTANT_Dynamic, 
CONSTANT_SpecializationAnchor, or 
CONSTANT_SpecializationLinkage (the last two 
are new tags, for a new kind of loadable constant). 

• The ldc2_w bytecode may (as type-appropriate) may refer 
to a parametric constant of tag CONSTANT_Dynamic. 

• The getfield bytecode (as well as the other access 
bytecodes putfield, withfield, getstatic, and 
putstatic) may refer to a parametric constant of the new 
tag CONSTANT_SpecializationLinkage, as well as a 
plain (or perhaps parametric) CONSTANT_Fieldref 
constant. 

• The invokestatic bytecode (as well as the other 
invocation bytecodes) may refer to a parametric constant of 
tag CONSTANT_SpecializationLinkage, as well as a 
plain (or perhaps parametric) CONSTANT_Methodref or 
CONSTANT_InterfaceMethodref constant. 

• The new bytecode (as well as instanceof, checkcast, 
anewarray, multianewarray, and defaultvalue) 
may refer to a parametric constant of tag 
CONSTANT_SpecializationLinkage, as well as a 
plain CONSTANT_Class constant. 

In all cases, the resolution of the referenced parametric constant 
depends on the contextual specialization anchor, which in turn 
determines the preparation of the resolution state of each constant that 
depends on it. 

Note that both old and new tags can be parametric. Conversely, a 
constant with new tag CONSTANT_SpecializationLinkage 
may be invariant, if it depends only on invariant component constants. 
A constant with new tag CONSTANT_SpecializationAnchor is 
always parametric; indeed such constants are the source of 
parametricity in all other constants. Any bytecode that uses a 
CONSTANT_SpecializationLinkage constant validates a 
proposed linkage parameter for the indicated API point, and uses the 
resulting specialization anchor as part of its execution, as described 
below. This is true whether that 
CONSTANT_SpecializationLinkage constant is itself 
parametric (e.g., List<T>.get for some local type T) or invariant 
(e.g., List<InlineInt>.get). Any invocation bytecode that uses 
a CONSTANT_SpecializationLinkage constant (whether 
parametric or invariant) to invoke a parametric callee method 
influences the selection of that callee’s specialization anchor. 

Method Invocation 

The bytecode instructions invokestatic, invokespecial, 
invokevirtual, invokeinterface, and invokedynamic 
are collectively called “invocation instructions”. All of them encode 



their stack effects by means of a descriptor string which contains 
descriptor types for arguments and return values. All but the last are 
so-called “nominal instructions”, which incorporate a symbolic 
reference to a method (or constructor) as the target of the invocation. 

The execution of any invocation bytecode presupposes correctly 
typed arguments already pushed on the stack. It pops these values (if 
any) and passes them to a receiving method. The receiving method, if 
it does not terminate with an exception, will return any result value (as 
required by the descriptor), and the invocation bytecode will finish 
with that result value (if any) pushed on the stack. 

These stack effects are strongly typed according to the JVM’s 
descriptor type system, as enforced by the verifier. Note that all such 
verified types are invariant; they are not affected at all by 
parametricity. Thus, although a parametric method may logically work 
with arguments or return values of parametrically defined types, it 
will physically use an invariant supertype (typically a type parameter 
bound), as encoded in a descriptor string, to describe the stack effects 
of the method. The verifier, which is plenty complex already, is 
mercifully ignorant of parametric effects. 

Execution of a nominal invocation bytecode starts by resolving the 
symbolic reference to determine a specific method (or constructor) to 
execute. The resolution of the API point is unaffected by the presence 
of parametricity. In particular, a symbolic reference is always 
invariant, a hard-coded name and type, and located in a named class. 

For simplicity, we are not extending symbolic resolution to locate 
methods in variant types such as species. The parametricity 
mechanism is cleanly separated from the complexities of the JVM’s 
class and interface type hierarchies and their members. It may be 
natural to allow type species some activity where today we only allow 
classes and interfaces; this is TBD for now. We are certainly not 
allowing variance in method signatures; this would greatly explode 
the complexity of every part of the JVM that needs to understand type 
descriptors and signatures. 

If the operand of a nominal invocation bytecode is a 
CONSTANT_SpecializationLinkage constant, the symbolic 
reference and the associated linkage parameter are resolved, in that 
order. During resolution, if the method is parametric, the linkage 
parameter is validated and the resulting specialization anchor is 
permanently recorded with the resolved symbolic reference. This 
anchor is then passed, along with the arguments, to the callee method, 
for every invocation. 

Some nominal invocation instructions perform “virtual method 
invocation”, which incorporates an extra method selection step to 
replace the resolved method (from the symbolic reference) by an 
overriding method. The overriding method has the same name and 
type descriptor, and is always concrete, but maybe be defined by a 
different class or interface, and (crucially) may be parametric. (If it is 
parametric, it will be so in a different class file from the class file of 
the overridden method.) The rules for this are complex and are 
described elsewhere. 

The opposite of virtual method invocation is “direct method 
invocation”. Each invocation instruction performs virtual or direct 
invocation, based on its kind and result of resolution: 

• invokeinterface invocation is virtual. 

• invokevirtual invocation is virtual unless the resolved 
method is final, in which case it is direct. 

• invokestatic, invokespecial, and 
invokedynamic are direct. 

(Note that method handle invocation is direct, since the signature 
polymorphic invocation methods are final. The method handle may 
internally perform additional method invocation of one or more target 
methods. Since invokedynamic performs a method handle 
invocation, it is also direct.) 

When a parametric method is invoked directly, the relevant 
specialization anchor is passed directly to the callee, and becomes 
available to execution in that callee’s stack frame, if the callee is in 
fact a method with a bytecode attribute (neither abstract nor 
native). 

The processing of specialization anchors during abstract and/or 
virtual method invocation will be discussed in its own place later on. 

Parametric Method Execution 

Every parametric constant is resolved from a constant pool state that 
is associated with the validation of its associated (inner-most) 
specialization anchor. Thus, if a method is not parametric, its bytecode 
instructions must not resolve any parametric constants. If a method is 
parametric over some constant R, it may not resolve any parametric 
constant which is not also parametric over R. In both cases, a method 
bytecode attempting to resolve an inappropriately parametric constant 
will complete abnormally with a subclass of LinkageError 
(TBD). 

(Inappropriately variant constant references could also be checked 
earlier, in the verifier. This does not seems to confer any performance 
benefit on the JVM, and the verifier is already complicated enough, so 
we won’t burden the verifier with this chore. Compilers can catch 
their own bugs without the JVM’s help on this. Because it works on 
“raw” JVM type descriptors, the verifier is blissfully oblivious to the 
effects of specializations.) 

Every stack frame (§2.6) in the Java virtual machine contains an 
associated reference to the run-time constant pool (§2.5.5) of the class 
of the current method. (This is true in all versions of the JVM.) If the 
method is parametric over some specialization anchor R, this 
reference to the constant pool contains two component references, one 
to (the resolution states of) the invariant constants, and one to (the 
resolution states of) those constants which are parametric over R. 

The resolution state of the latter constants is tracked distinctly for 
distinct specializations of R. Thus, the second component reference, to 
the parametric constant states, may vary from invocation to invocation 
of the method. This reference, however, is constant in any particular 
stack frame, and across any call chain that starts with some invariant 
CONSTANT_SpecializationLinkage that selects R, and 
continues to use the same specialization R for callees. 

The first time a parametric constant C is resolved, its specialization 
anchor R (co-parametric with C) is consulted. The anchor R contains 
(along with other data) a set of resolution states for all R-variant 
constants, including C. As with an invariant constant, C is resolved in 
terms of its own structure and the constants it depends on. Since C is 
R-variant, its resolution can query the value of R or other R-variant 
constants, and so C’s resolution makes use of R’s associated resolution 
states and other data (such as a validated linkage parameter value). 
When C is resolved, the result of the resolution (whether normal or 
erroneous) is recorded in the same associated resolution states within 
R. Further resolutions of C relative to R produce the same result. 



Later on, if the same method is called with a specialization anchor 
R2 which (though derived from the same class file constant) is 
different from the previous R, C’s resolution state will be unaffected 
from any of the outcomes described in the previous paragraph, since 
the resolution states of R and R2 are unrelated. 

It is the responsibility of the bootstrap method of R to decide when 
and whether to create fresh specialization anchors for R-variant 
constants, or whether to find and reuse pre-existing specializations, 
with their pre-existing resolution states. 

It is legitimate to return fresh specializations every time from the 
bootstrap method; in that case, if the caller of the R-variant method 
records their anchors in a 
CONSTANT_SpecializationLinkage state, then 
specializations are reused in the R-variant method only for calls from 
the same caller. This can enable a level of customization for a whole 
static call tree, independent of JIT inlining decisions. 

Note that a method can be parametric over any kind of anchor, 
even the PARAM_Class kind. Although it seems odd to give a class 
anchor to a method, it is the most natural and efficient thing to do, in 
the common case where a class has just one specialization anchor 
(representing one group of type variables) shared everywhere. In 
particular, the constructor of a class (which for a primitive class is 
really a static factory) should be co-specialized with the class, so that 
specializations can be computed at call sites and then used 
(unchanged) by the new instruction (or defaultvalue instruction) 
which creates instances to be initialized by the constructor, and/or 
which creates instances within a factory method. 

Note also that if a method does not make use of a class anchor, 
either in its type restrictions or in its body, it should be declared 
invariant in its class file, even if the source-level type parameters 
were in scope. If the method is overridden by another method which 
uses another anchor (as declared in a subtype), the linkage parameter 
may be loaded from the instance, if only reflective use is needed. 

The anchor kinds besides PARAM_Class are expected to be 
useful for driving type information in complex parametric algorithms 
such as Arrays.sort, where there is no object instance to act as a 
direct “witness” to types or other contextual information. Even if there 
were only PARAM_Class anchors, the JVM would be required to 
treat them (for some API points) identically to non-PARAM_Class 
anchors, starting with parametric constructors and factory methods. 
Given the need to plumb such pathways, supporting algorithms like 
Arrays.sort is simply a matter of decoupling the JVM’s 
legitimate need to associate specialization with instances 
(PARAM_Class) from its equally legitimate need to associate 
specialization with methods, including situations where there is no 
class specialization in sight. 

The third anchor kind arises from this factoring by an observation 
that such split specialization scopes arise, sometimes, in source code, 
and can be supported by a modest incremental JVM effort. 

Class specialization anchors are heavyweight compared with non-
class anchors, because they record object layouts and other schema 
information. Non-class anchors amount to small heap objects that 
carry around type tokens and associated resolution states (as needed), 
and perhaps point to an enclosing class specialization. 

Instance Creation 

The new and defaultvalue instructions are called “instance 
creation instructions”. 

The new bytecode creates a new object instance, in a blank state, 
to be completed by a direct call to a constructor (<init> method). 
Its operand is a CONSTANT_Class constant which directs which 
class to create. The verifier ensures that each execution must be 
coupled (along every non-exceptional path) with exactly one 
invocation of a constructor of the same class. 

A defaultvalue instruction does the same, except for an 
primitive class. It typically executes inside of a static factory for the 
class. The details of the two instructions are different, but the operand 
processing is the same, when the class is parametric. 

The operand of a new or defaultvalue bytecode may also be a 
CONSTANT_SpecializationLinkage constant which wraps a 
CONSTANT_Class constant. Such a bytecode is called a “parametric 
instance creation instruction”. 

Much as with method invocation, when the JVM executes a 
parametric instance creation instruction, it first computes a class 
specialization and then applies it to the creation of the instance of the 
resolved class. 

The kind of the specialization anchor must be PARAM_Class, and 
it determines the size and layout of the instance created, if the 
instances class (or any super class) contains any parametric fields. 

If, conversely, an instance creation instruction is executed on a 
plain CONSTANT_Class constant, and the resolved class is 
parametric, then the default specialization (for that class) is implicitly 
used. 

Due to layout customization, a highly optimized JVM might assign 
different sizes to different species of the same class. The sizing 
information in such a JVM is presumably stored on the validated 
SpecializationAnchor object of the PARAM_Class-kinded 
anchor. 

If a supertype S (class or interface) of a class C is parametric, then 
the reference to S in the class file for C could have been either a “raw” 
CONSTANT_Class or else a wrapped 
CONSTANT_SpecializationLinkage. In either case, when C 
is loaded the reference to S is resolved and assigned its own 
specialization. When the instance of C is created, any fields defined 
by S are accordingly specialized, and may in fact participate in layout 
customization. This can happen even if C is not parametric. 

The JVM ensures, as a global invariant, that every validated 
PARAM_Class anchor, for a concrete class, contains all required 
information about the size and layout of parametric fields declared in 
that class and all its super classes. This information is recorded by the 
JVM in association with every SpecializationAnchor object 
for an anchor of kind PARAM_Class, and specifically for each 
parametric non-static field in the class and in each of its parametric 
supers. See discussion about “f-tables” below. 

For the new instruction, as with other possibly-parametric 
instructions, the verifier ignores the 
CONSTANT_SpecializationLinkage wrapper as if only the 
wrapped CONSTANT_Class constant were present. 

The new instance, in turn, is permanently associated with the 
specialization anchor object. Note that the new instruction may be 
executed many times, but the resolution step (which computes and 
records the anchor) happens just once, before the first instance is 
created. 



These rules ensure that the new object immediately “knows” which 
species it belongs to, just as all objects “know” which class they are 
in. This opens the door for JVM implementations to aggressively 
customize the layout of the new object for its particular species. 

It is also a consequence of these rules that all instances created 
from the same CONSTANT_SpecializationLinkage constant 
state will share a common species. For a generic factory method, this 
means that every distinct species of C created by the method is 
logically associated with (at least) one 
CONSTANT_SpecializationLinkage constant state. The 
actual bookkeeping for this state is organized so that each 
monomorphic caller of the factory remembers the associated linkage 
state, and the factory method can use common code (and/or 
customized code) to perform the instance creations. These linkage 
states are designed so as to allow lightweight implementations in the 
JVM, while still supporting significant optimizations when desired. 

Parametric field types (i.e., sizes and layouts) are determined by 
the bootstrap method call that originally produced the validated 
species of C that is applicable to a particular new or 
defaultvalue bytecode execution. See the section below on 
specialized types. 

The Java language encourages constructors to perform a series of 
putfield (or withfield) instructions on each fresh object 
instance. This is especially true for blank final instance variables. 
Fresh instance creation, constructor invocation, and field access can 
all be parametric operations, both individually and in larger 
cooperative patterns, defined by a translation strategy. 

Note that a specialized parametric field will incorporate a runtime 
check (as if by checkcast) that can enforce a specialized type 
restriction on the stored value. This is true even if (for some reason) 
the constructor is unspecialized, or is invoked with the default “raw” 
specialization and passes that specialization to its putfield or 
withfield instructions. 

As with non-parametric new instructions, the blank new instance 
created by a parametric new instruction will be unusable until a 
corresponding call to the constructor has completed. But the verifier 
does not track specializations at all, and so has no role in aligning the 
specialization of the new bytecode and the subsequent 
invokespecial of a constructor. (A similar point can be made 
about a defaultvalue bytecode and subsequent withfield 
operations.) Thus it is possible that the constructor invocation after 
parametric new instruction will use a different specialization, or none 
at all. (A new instruction for a non-parametric class might also be 
followed by a parametric constructor invocation, useless as this would 
seem.) The JVM makes not attempt to validate the overall consistency 
of specializations in such code shapes, leaving them to translation 
strategies to define and enforce, on top of the dynamic effects of 
individual bytecodes. 

The rules for checking and using specializations are defined by the 
JVM on the basis of single instruction executions, not on the basis of 
larger bytecode patterns which the verifier might enforce. This choice 
is made because the verifier is a relatively poor way to ensure general 
well-formedness of bytecodes; it should only be used in those rare 
circumstances where there is some proven need to improve interpreter 
performance. 

Array creation 

The array creation instructions are anewarray and 
multianewarray. They both accept CONSTANT_Class 

operands, and can also accept species operands, in the form of 
CONSTANT_SpecializationLinkage operands which wrap 
CONSTANT_Class operands. 

As has always been the case, the operand of the array creation 
instruction is first resolved, and may resolve to a species or (in the 
case of multianewarray) into an array of species type. The 
appropriate array type is determined and instantiated. If a species 
supports reified array types, that is determined by the runtime support. 

The resolution of CONSTANT_SpecializationLinkage 
constants in the presence of array type descriptors has been glossed 
over so far, but is simple to specify: First the element type of the array 
is resolved, and then, if it is parametric, the proposed linkage constant 
is resolved and validated. (This is just as if the array type descriptor 
had not been present, but instead the plain element type name were 
the subject of the CONSTANT_Class constant.) Once a species is 
determined, an upcall to the species reflector object determines an 
array type that will contain it (as a Class object). The array creation 
instruction then makes use of that array type to build the required 
array. Note that because the verifier does not track species, only a cast 
to the “raw” array type is needed to maintain correct types in the 
bytecode. 

Field Access 

The bytecode instructions getfield, putfield, withfield, 
getstatic, and putstatic are collectively called “field access 
instructions”. As with invocation instructions, they encode a symbolic 
reference to a class member (a field not a method). They also accept 
CONSTANT_SpecializationLinkage constants which wrap 
their symbolic reference. 

The JVM keeps careful track of the layout of each specialized 
class. When accessing parametric fields within that layout, it 
concentrates on implementing one particular fast path, the path that 
occurs when the field access instruction uses exactly the same 
specialization as the object instance’s class C. 

The JVM ensures that if two instances have the same species, then 
their layouts are completely compatible; in particular the type 
restrictions are the same. Normally, if two instances have the same 
species, their class specialization anchors are identical, but in some 
cases this may not be the case. Though it is possible to create two 
class specialization anchors with a common species, it is impossible 
for the two specializations to differ in their layouts. (The factory 
methods for specialization anchors ensure this.) 

In particular, the object instance’s species (C with a class 
specialization anchor R) is examined to see if the object was created 
with the identical species as is being proposed by the field access 
instruction (after resolution). If the match is exact, then the JVM can 
confidently access internal layout and type information and load the 
specialized field. 

• For getfield, the specialized value is loaded and then (if 
necessary) cast to the unspecialized type in the field’s 
symbolic reference. 

• For putfield, the unspecialized value is popped from the 
stack, and then cast (if necessary) to the specialized type and 
copied into the identity object. 

• For withfield, the unspecialized value is popped from the 
stack, and then cast (if necessary) to the specialized type and 
incorporated into a new version of the primitive object. 



If the field is in a superclass S of the instance class C, the JVM checks 
for the fast path by matching the species of the field reference 
constant (which can “see” S despite mentioning only C) to the 
corresponding supertype species declared by C (assuming C’s anchor 
R, if relevant). 

Since the superclass is parametric, the symbolic reference in C to 
its super S must either be an invariant constant (either a 
CONSTANT_SpecializationLinkage or a “raw” 
CONSTANT_Class) or a parametric 
CONSTANT_SpecializationLinkage constant depending on 
C’s anchor R. In either case, the instance type C (accompanied by a 
species object from R if C is parametric) must always determine an 
associated “push up” spcies for the super S. This latter species is the 
subject of the fast path check when the field is inherited. 

There is also a slow path which is used when the layouts do not 
match. This is used to implement raw access, and perhaps other type 
relations between specializations. Other than support for raw access, it 
is TBD. 

Type checking 

The bytecode instructions instanceof and checkcast are called 
“type checking instructions”. Both of them refer to constant pool 
entries which represent the types being checked. Both of them accept 
CONSTANT_SpecializationLinkage as well as 
CONSTANT_Class constants. 

When their operand is a class specialization, they operate on the 
species associated with that specialization. 

The constant is resolved in either case. The following cases apply: 

• The constant resolves to an array type, with either a 
parametric or non-parametric component type. In that case, 
the array type is directly checked, as resolved. (If the 
specialization did not “refine” the actual array type, arrays of 
different specializations might be confused. This issue is 
TBD.) 

• The constant resolves to a non-parametric class or interface, 
The behavior is unchanged from previous versions of the 
JVM. (One difference: The symbolic reference is resolved 
even if the stacked operand is null.) 

• The constant resolves to a parametric class or interface (with 
the default specialization or some other specialization). In 
that case, the instruction first checks the class or interface as 
if no specialization were present, and then checks the species 
against the corresponding species recorded in the object 
instance. (See discussion of “s-tables” below.) As a special 
case, if the corresponding object species is a “raw” default 
specialization, the check succeeds, because “raw” objects are 
welcome everywhere. 

In the last case, there is a fast path and slow path. If the species linked 
into the type check instruction is identical to the species recorded in 
the instance, the check succeeds. 

Otherwise, the slow path is taken. It is possible to design an upcall 
to the species object recorded in the constant pool for the resolved 
operand, allowing a certain amount of user programmability. 

As a special rule, if a checkcast instruction refers to a 
CONSTANT_SpecializationLinkage constant instead of as 

CONSTANT_Class constant, the constant is resolved even if the 
stacked operand is null. 

This allows the enhanced checkcast logic for primitive objects 
to reject null references. Recall that even if a primitive class is 
invariant, it is legitimate to refer to it via a 
CONSTANT_SpecializationLinkage constant; the proposed 
linkage parameter is simply ignored. 

Somewhat uncomfortably, the constant pool does not distinguish 
between a parametric type Foo<?> and the “raw” instance of that 
type Foo<raw>. In fact, it uses Foo<raw> (with the built-in default 
specialization) as the meaning of all “raw” Foo symbolic references. 
This ambiguity causes some pain with type checking instructions, 
because if Foo is shorthand for Foo<raw>, you can only ask one of 
the following two questions: (a) Is an object X an instance of any 
species of class Foo? Or, (b) is an object X an instance of the default 
specialization (the “raw” one, not any more specialized one) of class 
Foo? For now we suggest papering over this distinction by asking the 
species object for Foo<raw> to serve double duty as Foo<?>, by 
recognizing, even if only via a slow path, all specializations of Foo, 
and not just the instances which pass the fast path. This means that 
some other idiom must be used to classify instances of the “raw” 
specialization, such as (hypothetically) x instanceof Foo && 
x.getSpecies().isDefault(). 

The relations between API points and structures which refer to 
them (both old and new) are summarized in Diagram 4.4-F(a). 

 



Volume IV: Virtual Dispatch and Calling 
Sequences 
Apart from specialization, virtual method invocation is a relatively 
simple enhancement of simple direct invocation. Direct invocation is 
a simple relation from a caller to a statically resolved callee, 
embodied (usually) as a jump to a known function address. The caller 
and callee might agree exactly on the type declaring the method being 
invoked. Or, if the callee is declared by a supertype of the type 
mentioned by the caller, the lookup can be performed negotiated once, 
when the symbolic reference in the caller is statically resolved. For 
example, MyNode::hashCode() might resolve statically to 
Object::hashCode() if MyNode does not override the method 
from Object. 

With virtual method invocation, the caller and callee can disagree 
about the receiver type, and the disagreement can be different for each 
execution of the call site. This is because the callee has two aspects: 
static and dynamic. The static identity of the callee depends on the 
symbolic reference at the call site, and is determined the same way as 
for a non-virtual call. For example, a call to 
MyAbstractNode::hashCode() might resolve statically to 
Object::hashCode() if MyAbstractNode does not override 
the method from Object, but if MyConcreteNode is a subtype of 
both, and it overrides hashCode, then a call site might statically 
resolve to Object::hashCode() while will choose a range of 
methods, including MyConcreteNode::hashCode (and 
MyConcreteNode2::hashCode, etc.). 

The dynamic receiver type determines the dynamic callee method, 
by an extra process called called method selection. The effect of 
method selection is as if the call site were temporarily rewritten to 
mention the exact type of the receiver (for just this one call), and 
resolved from that very specific type, instead of the more general type 
mentioned statically by the caller. A call with a dynamic receiver thus 
breaks down, functionally, into two non-virtual direct calls. 

Here are the steps to execute a single virutal call that requires 
method selection: 

1a. Determine the caller’s symbolic reference, including a receiver 
type R1a and a name and method descriptor. 

1b. Using inheritance, determine a method declaration M1 in some 
R1b (a super of R1a) which exactly matches the name and descriptor. 
Record information about M1, once per constant pool entry in the 
caller, as the static callee. (This is the last step, if M1 has no 
overrides.) 

2a. Determine the receiver’s dynamic type R2a, which must be R1a 
or a subtype. (With interfaces there may be an extra cast to R1a.) 
Recall information about M1 from step 1a. 

2b. Using inheritance, determine a method declaration M2 in some 
R2b (a super of R2a) which exactly matches the name and descriptor 
of M1. Invoke M2 immediately. 

Thus, when method selection is present, there are (for each 
dynamic call) four relevant receiver types, and up to two distinct 
methods. Luckily, the interactions between these moving parts can be 
partitioned. 

For example, if the caller specifies the descriptor 
MyNumeric::compareTo(Object), if MyNumeric (R1a) does 
not declare compareTo, then the static callee might resolve to the 
same method (M1) in java.lang.Comparable (R1b). 

Meanwhile, method selection on an instance of MyInt32 (R2a) 
could select an inherited method 
MyAbstractInt::compareTo(Object) (M2, in R2b = 
MyAbstractInt). 

In simple cases of method selection, we can add a small extra 
wrinkle to the basic action of jumping to a known function address: 
We look up a function pointer for M2 in a known location relative to 
the dynamic receiver type R2a, and jump there. The famous “v-table” 
supplies this knokwn location for single-inheritance cases, and the 
computation of M1 amounts to identifying a v-table offset, if the v-
tables are set up with care (and they are). This simplicity begins to 
disappear when the dynamic type of the receiver is complex enough 
that the “known location” requires a search of several possible 
locations; this is (often) true in the case of multiple inheritance. 

Specialization adds yet more complexity to the four receiver types 
and the relations between the methods M1 and M2. Because of the 
structure of the parametric class file, there is no support for optional 
methods, and so the method selection process finds M2 just the same 
with specializations as without. (That is the good news.) However, if 
the selected method M2 is parametric, an appropriate specialization 
anchor must be computed for that selected method, and (in general) 
the class file for R2b (which declares M2) is independent of the class 
files for R1a, R1b, and R2a. Yet an anchor must be computed to feed 
to M2. 

The amended calling process looks like this: 

1a. Determine the caller’s symbolic reference… 

1b. Using inheritance, determine a method declaration M1 in some 
R1b… 

1c. If a CONSTANT_SpecializationLinkage constant is 
present, resolve a proposed linkage value L1. (This step 1c. can be 
done either before or after step 1b. A translation strategy has typically 
arranged the L1 is appropriate to an API point in R1a.) 

1d. If M1 is parametric, compute a specialization for it by 
validating L1 against M1’s anchor constant, to produce a 
specialization anchor A1. (This may need a bootstrap method call in 
R1b.) Record A1 permanently in the constant pool of the caller, 
alongside the identity of M1 itself. (This is the last step, if M1 has no 
overrides.) 

2a. Determine the receiver’s dynamic type R2a… 

2b. Using inheritance, determine a method declaration M2 in some 
R2b… 

2c. If R2b is parametric, recover the specialization anchor A2 
associated with R2b when the receiver (of type R2a) was created. 
(Thus, a virtual call may need to use specialization information 
associated with any super-type of the dynamic type of the receiver. 
See discussion of “s-tables” below.) 

2d. If M2 is parametric, compute its specialization anchor by 
jointly validating A1 (the anchor for M1) and A2 (the specialization 
for R2b). The validated result A3 (for M2) may be cached, or it may 
be recomputed on every virtual call. If A2 (for R2b) is already valid 
for M2 it can be used as-is. (This will be true if M2 and R2b are co-
parametric.) 

The joint validation step described above takes a specialization A1 
for M1, which might in general be a method specialization, and an 
independently determined class specialization A2 for a super R2b of 
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the receiver R2a. In general, the required result A3 might itself be 
another method specialization, which is “inner” to A2 (i.e., A2 is sub-
parametric to A3). If A1 was also “inner” to some specialization A0 of 
the static callee R1b, then the joint validation must apply language-
specific rules to determine the value of A3 such that the following 
ratio-like relation holds: A0 is sub-parametric to A1 just as A2 is sub-
parametric to A3. 

Luckily, none of this needs to be encoded in the JVM specification. 

Note that the class specialization for the dynamic receiver (A2) can 
be inconsistent with the static specialization anchor for the virtual call 
to M1 (A1), due to heap pollution or similar effects outside the 
purview of the JVM. A bootstrap method in step 2d can enforce any 
language-level policy required concerning the various corner cases. 

Parametric abstract methods 

Although it would seem that abstract methods are mere 
placeholders, an abstract API (such as an interface) has a strong effect 
on specializations simply by declaring its abstract methods to be 
parametric. By declaring its dependency on an anchor, an abstract 
method forces a client’s link resolution (against the abstract API, not 
any concrete implementation) to compute a specialization when using 
that API. That specialization is then made available to assist in 
specializing the eventual implementing method, if the latter method is 
also parametric. 

The mapping of the specialization from superclass to subclass is 
probably language-specific, and in any case is (currently) the object of 
a runtime-supplied virtual call connector object. This object is created 
the first time a call site is executed (on a parametric abstract 
method), by means of an upcall (TBD). After this, every time a 
parametric method is selected, the JVM refers to the virtual call 
connector to supply a specialization anchor object for that method. 

The virtual call connector may, at the language runtime’s option, 
return the corresponding default specialization, extract an unvalidated 
“key” value from the abstract method’s specialization anchor and 
revalidated that, or perform some other “pull down” mapping for the 
override method. It may (at the language runtime’s option) cache the 
specialization anchor object, keying on the receiver class, its species, 
or some other value derived from the receiver. The cache may be kept 
local (a good thing since specialization information in the supertype is 
likely to be 1-1 with specialization information in the override), or it 
may be backed by some global table. The JVM stays out of the 
engineering details. 

Parametric concrete non-final methods 

The case of a parametric concrete method is essentially the same as 
for an abstract method, with the only difference being that the 
concrete method might be selected during a method call, if it there is 
no override (in the receiver class). The JVM has a fast path which, 
after the selection check, simply treates such a call as if it were a 
regular direct call. 

If there is an override, the concrete method body is ignored, and 
the JVM’s logic is the same as in the case of an abstract 
parametric method. 

Thus, each invocation constant for a parametric method M has 
several possible components of state after resolution and invocation: 

• The location of M’s declaration. 
• A specialization anchor object for M. 

• The identity of M (as a metadata pointer and/or v-table 
offset). 

• A call connector for this call site (if a parametric override of 
M is called). 

The need for call connectors can be reduced in by various 
expedients, and perhaps implementation of them can be deferred, by 
careful arrangement of translation strategy, at least early in 
prototyping. For example, perhaps types can be made parametric but 
methods can be invariant. This precludes customized calling 
sequences, but may be good for a start. If a supertype is parametric 
and its methods are parametric also, perhaps the overriding methods 
in subtypes can be made invariant. The hitch there is customized 
calling sequences may not be readily available if something prevents 
us from “copying them down” from the supertype. Also, if an 
overriding method happens to need access to a reified type, it will 
have to make a call to a synthetic API point defined (as a concrete 
parametric method) in the supertype. 

Volume V: Specialized Class Layouts 
Specialized class layouts are driven by the anchor_index items in 
Parametric attributes of parametric fields. This can be done 
automatically by the JVM in most cases, perhaps all. 

If it is necessary for the runtime to give advice and consent on 
parametric field layouts, the natural place to do this is inside the 
bootstrap method upcall for a PARAM_Class anchor, before the call 
returns a fresh SpecializationAnchor object. Any special rules 
not encoded in anchor_index items can be injected into the 
creation of that object. In any case, this can be done reflectively, and 
so does not impose new requirements on the basic structure of class 
files, or the semantics of constants or bytecode instructions. 

In a cooperating JVM implementation, a field type which is 
marked as void could be given a zero-byte presence in an affected 
class layout, as if it were an empty primitive class. Either tactic seems 
to lead to an efficient way to allocate a boolean-like flag field 
which is physically present in the layout of 
InlineOptional<InlineLong> but disappears in the layout of 
InlineOptional<Object>. 

(More TBW, but see comments scattered throughout.) 

Volume VI: Implementation Considerations 
As a whole, this design attempts to push doubtful matters of language 
design and runtime implementation upward to the language runtime, 
via bootstrap methods and other upcalls. 

When an upcall yields information to the JVM, there is a reliable 
specification of how and where that information is preserved. The 
presence or absence of optimization (at the JVM level) is no excuse 
for indeterminate behavior. 

The splitting or lumping of type information into runtime species is 
a language decision. Once the JVM decides on a specialization, 
though, it treats it seriously and prepares constant pool states for 
resolving and recording constant pool entries and API points that are 
co-parametric with that specialization’s anchor. The language 
translation strategy may take steps to minimize the number of such 
entries, but they are also probably inexpensive, on the order of one or 
two heap variables (machine words) per parametric constant pool 
entry. 

Callers and callees perform handshakes to agree on specializations 
at every API point usage. If a specialization “splits out” a locally 



relevant species, it will be recorded at the call site, and its callees can 
develop their own dependent constants and recursive call sites, based 
on that recorded specialization and its resolution states. The result is 
that an invariant call to generic code creates a static tree of resolution 
states (prepared constant pool entries inside of specializations) which 
mirrors the dynamic shape of the generic code, including all of its 
generic subroutine calls, into and out of multiple class file artifacts. 

For example, if Arrays.sort were made parametric, then 
similar static call trees (of sort and its helper methods) could be 
rooted at different user call sites, each call site specifying a different 
specialization: One for arrays of Point, another for Color, etc., 
where the array elements are primitive classes that are useful to 
specialize over, even customize over. Because specializations are 
associated with the resolution states of call sites, the call sites for 
sorting Point arrays will be kept distinct from those which sort 
Color arrays. In fact, the technique may help to refactor together the 
hand-maintained code which currently handles arrays of built-in 
primitives: Common code can (perhaps) handle not only (hypothetical 
primitive types) Color and Point, but also int, long, float, 
etc. 

After a given generic call returns, if the call site is executed again, 
the static tree of resolution states is immediately available. If a 
method involved in this call tree becomes hot, the JVM can obtain 
good information on which constants might be useful to inline into 
customized code. 

Data structures 

Constant pool indexing 
Resolution states 
When an API point reference constant is resolved, the resulting state 
in the constant pool of the caller always includes a metadata reference 
to the resolved class, interface, field, or method. 

In addition, the resolved API point is parametric, and if the API 
point reference specifies a linkage parameter that requests something 
other than a “raw” default specialization, then additional state 
information must be recorded in the caller to allow correct use of that 
API point. 

These are the additional resolution states required to manage 
specialization: 

• For a CONSTANT_SpecializationAnchor constant, a 
SpecializationAnchor object that reifies each of its 
specializations. 

• For a CONSTANT_SpecializationLinkage constant 
(i.e., an API point reference), the validated 
SpecializationAnchor object obtained as part of the 
resolution of that constant’s API point. 

• For a CONSTANT_SpecializationLinkage constant 
which wraps a CONSTANT_Class, the validated 
SpecializationAnchor object must also supply 
species metadata for the specialized class or interface. 

• For a CONSTANT_SpecializationLinkage constant 
which wraps a non-type API point reference (a 
CONSTANT_Fieldref, CONSTANT_Methodref, or 
CONSTANT_InterfaceMethodref constant), the the 
validated SpecializationAnchor object must also 
supply type restriction information for the specialized field or 
method. 

• If used without a 
CONSTANT_SpecializationLinkage wrapper, a non-
type API point reference may yet have its 
CONSTANT_Class API point reference wrapped a 
CONSTANT_SpecializationLinkage, and if the API 
point is co-parametric with its enclosing class or interface, 
the linkage state in the client must record a 
SpecializationAnchor object for the field or method, 
as well as any relevant type restriction. 

An example constant pool, showing constants necessary for a 
hypothetical client of some interface species List<Point> to 
invoke a specialized method, along with a summary of their resolution 
states, is sketched in Diagram 4.4-H(a). 

 

In this example, the resolution state for the 
CONSTANT_InterfaceMethodref for List<Point>.get 
has a SpecializationAnchor plus a type restriction for the get 
method (presumably requiring it to return a Point instead of a 
regular Object). The species reference List<Point> also stores a 
SpecializationAnchor, as well as a species descriptor for 
List<Point>. The SpecializationAnchor value is the same 
for both constants, assuming List and its get method are co-
parametric. Note also that this class file has only invariant constants, 
although it will link to parametric API points in the class file for 
List. 

An example constant pool and class file structure for a hypothetical 
interface List which matches the client in the previous example is 
sketched in Diagram 4.4-H(b). 



 

An example constant pool and class file structure for a hypothetical 
implementor ArrayList which matches the previous two examples 
is sketched in Diagram 4.4-H(c). 

 

Here is another example constant pool, for a hypothetical subclass 
MyList of java.util.Vector that makes access to the inherited 
elementData field (hypothetically specialized), in sketched in 
Diagram 4.4-H(d). 

 

Discarding the linear structure of constant pools, we can create a 
textual sketch of the same relations, as follows: 

Diagram 4.4-H(a). Example constant pool: 
client of List<Point> 

invokeinterface #M56 
#M56 = IMethodref[#T57.get(int)Object] 
#M56.State = get:(int)Point in List<Point> 
#T67 = Linkage[Class[List], Class[Point]] 
#T67.State = species List<Point> 

Diagram 4.4-H(b). Example parametric interface 
interface List<T> { ...get... } 

ClassFile { 
  this = j/u/List 
  interface = Linkage[Collection<#P83.T>] 
  Parametric = #P83 
  (self species reference, if any: 
Linkage[List<#P83.T>]) 
  method_info { 
    name/type = get/"(I)Ljava/lang/Object;" 
    TypeRestriction = {#P83.T} 
    Parametric = #P83 
    Code = none (ACC_ABSTRACT) 
  } 
  #P83 = Anchor[BSM = make List species & 
anchor] 
  #P83.T = ConDy[extract T from #P83] 
} 

Diagram 4.4-H(c). Example parametric 
implementation 
class ArrayList<T> implements List<T> 
{ ...get... } 

ClassFile { 
  this = j/u/ArrayList 
  interface = Linkage[Class[j/u/List], #P42.T] 



  Parametric = #P42 
  (self species reference, if any: #T21) 
  #T21 = Linkage[Class[ArrayList], #P42.T] 
  method_info { 
    name/type = get/"(I)Ljava/lang/Object;" 
    TypeRestriction = {#P42.T} 
    Parametric = #P42 
    Code = { 
      ... 
      getfield #FR56 //
ArrayList<T>.elements:Object[] 
      ... 
    } 
  } 
  field_info { 
    name = elements 
    type = "[Ljava/lang/Object;" 
    TypeRestriction = {ConDy[#P42.T[]]} 
    Parametric = #P42 
  } 
  #FR56 = Fieldref[#T21, #NAT57] 
  #NAT57 = NameAndType[elements, "[Ljava/lang/
Object;"] 
  #P42 = Anchor[BSM = make ArrayList species & 
anchor] 
  #P42.T = ConDy[extract T from #P42] 
} 

Diagram 4.4-H(d). Example parametric subclass 
class MyVector<T> extends ju.Vector<T> 
{ ...get... } 
class Vector<T> { ... protected T[] 
elementData; ... } 

ClassFile { 
  this = MyVector 
  super = #T20 //Vector<T> 
  Parametric = #P51 
  (self species reference, if any: #T19) 
  #T19 = Linkage[Class[MyVector], #P51.T] 
  #T20 = Linkage[Class[java/util/Vector], 
#P51.T] 
  method_info { 
    name/type = get/"(I)Ljava/lang/Object;" 
    TypeRestriction = {#P51.T} 
    Parametric = #P51 
    Code = { 
      ... 
      getfield #FR66 //
Vector<T>.elementData:Object[] 
      iload_1 
      aaload 
      ... 
    } 
  } 
  #FR66 = Fieldref[#T20, #NAT67] 
  #NAT67 = NameAndType[elementData, "[Ljava/
lang/Object;"] 
  #P51 = Anchor[BSM = make MyVector species & 
anchor] 
  #P51.T = ConDy[extract T from #P51] 
} 
Compact resolution states 
A reasonable implementation strategy for recording resolution states 
is to store them in the Java heap, using plain Object[] arrays to 
store SpecializationAnchor objects, species (as mirrors), and 
type restriction information. Race-free update requires that each 
resolution state be patched in as a single word. Also, the initial null 

value in the array must represent an unset state, and there must also be 
provision for recording resolution errors. One way to meet these 
requirements would be a two-component ResolutionResult 
record which stores either a value or an error. For the normal case of a 
resolution value which is neither null, nor an error, or a particular 
ResolutionResult record, the value can be stored directly in the 
state array, without the overhead of a ResolutionResult record. 

record ResolutionResult(Object value, Error 
error) { 
  public ResolutionResult { 
    if (value != null && error != null) { 
      throw new 
IllegalArgumentException("cannot have both 
value and error"); 
    } 
    if (value == null && error == null) { 
      throw new IllegalArgumentException("must 
have either value or error"); 
    } 
    // Note: The all-null state is reserved for 
unresolved constants. 
  } 
  public boolean hasError() { return error != 
null; } 
  public Object decode() throws Error { 
    if (hasError())  throw error; 
    return value; 
  } 
  public static Object decode(Object result) 
throws Error { 
    assert(result != null);  // caller 
responsibility 
    if (result instanceof ResolutionResult) 
       return 
((ResolutionResult)result).decode(); 
    return result; 
  } 
  public static Object encode(Object result) { 
    return new ResolutionResult(result, 
null).encode(); 
  } 
  public static Object encodeError(Error error) 
{ 
    return new ResolutionResult(null, error); 
  } 
  private boolean valueIsEnough() { 
    // determine if the value itself is fully 
informative (usual case) 
    return error == null && value != null && !
(value instanceof ResolutionResult); 
  } 
  public Object encode() { 
    if (!valueIsEnough())  return this; 
    return value; 
  } 
} 

Fast paths 

Certain “fast paths” are directly executed by the JVM, without further 
reference to upcalls. The general rule is that a call site (or access site), 
as represented by a resolved constant pool entry, will execute at “full 
speed” after (at most) a check that a caller’s idea of a specialization is 
identical with a callee’s (or container’s) idea. 

Graceful degradation on mismatch is also possible. (It is required, 
to support various roles of “raw” types with default specializations as 



legacy types and/or “wild” types.) The notions of virtual call 
connectors and virtual field connectors appear to supply a “fast 
enough” slow path, while allowing unpolluted code to speculate that 
such slow paths are, usually, irrelevant. 

It might be possible to hardwire the default specializations even 
more into the JVM, so that every use point (over a non-default 
specialization) is bimorphic, allowing both default and (a single) non-
default specialization. Maybe, maybe not. The number “two” is 
suspiciously close to the number “many” in software system design, 
and while “fast” and “slow” often coexist, “slow” tends to develop 
multiple purposes and aspects. Thus we propose the “connectors” as a 
way of implementing raw types as a language policy, rather than as a 
hardwired JVM behavior. If the only use of connectors is to 
implement raw types (unlikely but possible) the extra effort 
maintaining JDK code will still be balanced by the blissful ignorance 
of the JVM code, of the rules for raw types, even after paying for the 
plumbing of the connector APIs. 

Fast revalidation 
If a parametric API point M in some class C is linked with a proposed 
value which may already be a validated SpecializationAnchor 
for that API point, it is a matter of a few machine instructions to check 
for a fast path: 

• If the value is in fact refers to a 
SpecializationAnchor. 

• If the SpecializationAnchor is in fact for an anchor 
declared in C. 

• If the SpecializationAnchor is associated with the 
correct anchor constant in C. 

In that case, the linkage can be performed without invoking a 
bootstrap method. This is a common fast path when a class is linking 
to its own API points. It may also be a common fast path if translation 
strategies elect to expose SpecializationAnchor objects across 
classes. 

A further fast test can detect if the anchor is for a default 
specialization, in which case no type restrictions will be present, and 
the call site may use legacy “raw” semantics. 

Fast access to parametric constants 
When a parametric constant A is resolved during method execution, 
there must be a specialization anchor R present, for the present 
method call, which contains a resolution state for A. 

The interpreter must perform the steps such as the following: 

• Determine which anchor constant N is co-parametric with A. 
• Check whether the constant pool entry for R is N; if so, use 

R. 
• If not, then constant pool entry for the outer specialization to 

R must be N. In that case, replace R by its outer 
specialization anchor. 

• Find the table of resolution states in R. 
• Determine the index I of A in that table. (This should be a 

statically assigned indexm, determined at class load time.) 
• Inspect item I in R’s resolution state table. 
• If item I is unresolved,, perform resolution logic and record 

the result. 
• Then, if item I has a resolved value, use that value. 
• Otherwise, item I has a recorded exception, so throw that 

exception. 
When a constant pool is first parsed, a table can be built that classifies 
each constant, producing the following information: 

• Which anchor is this constant co-parametric with (else 0)? 

• What is the index of this constant in a compact numbering of 
it and its co-parametric constants? 

These two values can help the interpreter quicklyl find split resolution 
states. 

This compact numbering is similar to the compact numbering 
performed today for method and field references in HotSpot, in the 
so-called “constant pool cache”. It may be the techniques can be 
unified, so that the CP cache is really just a compact array of a certain 
population of CP constants, just as specialization state tables are a 
compact array of a different population of CP constants. 

The resolved value of a CONSTANT_Methodref can be 
specialized, if its class link is specialized (i.e., is a C_Linkage). The 
metadata pointer (or index) can be stored in an invariant side table 
(the “constant pool cache”) but the specialization data for the class 
must be passed to the method call. This may need to be accessed from 
a split constant pool entry, not for the CONSTANT_Methodref, but 
rather for the CONSTANT_SpecializationLinkage that it 
refers to. A flag in the CP cache can give the interpreter a heads-up, to 
go hunting for this information. 

Fast access to parametric fields: f-tables 
When a class C is first loaded, the JVM must keep track of all its non-
static fields, so it can compute a data layout for the class. Fields 
contributed by supers must also be tracked. It is useful to think of the 
JVM as making a table of all these fields, and to observe that each 
field has a unique position in this table. Even better, if a field F is 
inherited from a super S of C, the position of F can be contrived to be 
the same in the table for C as it is in the table for S. 

If a non-static field is specialized with a type restriction which 
changes its layout (e.g., an inline primitive) or other access behavior 
(e.g., a cast), then this information must be tracked as well, and it 
differs in different specialization anchors. This information can also 
be thought of as being stored in a table with the same layout as the 
previous field table, except that it contains entries only for the 
parametric fields. This table may be called the “f-table”, by analogy 
with the well-known “v-table” which selects virtual methods; this f-
table selects fields with virtualized semantics. 

While the layout of an f-table may be settled statically when a class 
is loaded, its contents must be computed separately within every 
specialization of C. This implies that every specialization anchor 
links, somehow, to an f-table that provides the specialized field access 
behaviors. 

What’s in an f-table entry? Well, there might be any number of 
things, depending on engineering decisions: 

• metadata about the original field (or maybe that’s in a central 
table) 

• the offset of the field in the specialized layout 
• the specialized type restriction (if any) that applies to the 

field 
• a format token describing the field’s format (as determined 

by the JVM) 
• an optimized bit of code for reading the field 
• an optimized bit of code for writing the field 
• an optimized bit of code or data to process the field in the 

GC 
When the JVM needs to read a specialized field, it takes these actions: 

• compute (at resolution time) the f-table index I 
• also compute (at resolution time) the expected species (raw 

or not) 
• if the expected species is not raw, check-cast the instance 



• find an f-table that matches the instance, and load item I 
• use the item’s offset to address the field 
• use the item’s format token (or reading code) to load the field 

It is probably desirable that all invariant fields be located at fixed 
locations, reportable in the static field layout table created when C is 
loaded. That way the normal fixed-offset access methods can be used 
for these simple fields. It follows, then, that all specializable fields 
should come at the end of the instance layout (or maybe in available 
padding holes). This is true even if a parametric field is inherited from 
a super, and the sub-class contains invariant fields. 

Fast parametric type checks: s-tables 
When a class or interface C is loaded, the JVM must keep track of all 
the supers (super classes and interfaces) of C. Initially, these are 
resolved in unspecialized form, just as if no specialization were 
present. It is useful to think of the JVM as making a table of all these 
supers, and to observe that each super has a unique position in this 
table. 

If a class or interface has specialized supers, those specializations 
are computed when the class or interface is prepared. (This must be 
after loading.) If a species has specialized supers, those specializations 
are computed when the species is prepared. 

When a specialized super S of a class, interface, or species C is 
computed, the specialization anchor computed for S (during 
resolution) is recorded in a table of specialized supers for C, which 
may be called the “s-table”. It is useful to think of the s-table as 
having the same layout and contents as the previously mentioned table 
of raw supers, except that each raw super is replaced in the s-table by 
its corresponding specialization anchor. An implementation can surely 
contrive to avoid allocating space for the non-anchor contents by 
appropriate numbering tricks. 

When an object is queried (via instanceof or a type restriction) 
whether it is some raw type, the raw type table can be consulted, just 
as in the non-parametric case. When the query is against a species S, 
then the s-table can be consulted at the appropriate position 
(determined by the head type of the species S), and S compared 
against the species defined by the anchor R in the s-table. 

One might think that the s-table entries should be species, instead 
of specialization anchors. That is reasonable, but note that the table of 
anchors is still needed for other purposes. Notably, when a class or 
species C is asked to resolve a member which is inherited from some 
super-species S, the resolution logic must be ready to apply the correct 
specialization anchor to the member of S, if it is co-parametric with its 
declaring class S. Which anchor is that? It is simply the anchor that 
was first computed when the link from C to the super S was resolved 
when C was prepared. That may be identical with the anchor species 
for S, or it may also include some private parametric data that is not 
reflected in the species per se. 

When method selection is performed during virtual method 
invocation, s-tables can also be used to derive the correct 
specialization anchor for teh selected method. Alternatively, a v-table 
structure could be enhanced to hold not only method metadata 
references, but also the anchor corresponding to each such metadata 
reference. 

These table structures can be engineered in many different ways. 
The layouts of the tables can be carefully tuned relative to a hashing 
or indexing scheme, or organized randomly and searched by linear 
search, or a combination of the two. The new requirement for 
specialization of supers is that such tables need to hold specialization 
anchors, as well as regular “raw” classes and interfaces. 

It may be fruitful to adapt v-table layouts to hold s-table contents 
as well. In any case, a selectable method might hold an index or other 
key to retrieve its corresponding anchor from the v-table it was 
selected from, or else a nearby but distinct s-table. 

Sample bootstrap API 

package java.lang; 

public sealed 
interface Species 
  permits Species.Impl 
{ 
  /** The head type of this species. 
   *  This is also the "raw" default layout and 
behavior of this species. 
   */ 
  Class<?> head(); 

  /** An object which the language 
   *  runtime deems to be the validated 
representation 
   *  of a linkage parameter that could produce 
this species. 
   *  Typically a list or tuple of reflected 
type arguments. 
   *  Always returns {@code null} for default 
specializations. 
   *  Specialized fields should depend only on 
this value. 
   */ 
  Object parameters(); 

  /** Whether this object is a default "raw" 
specialization, 
   *  automatically created by the JVM. 
   */ 
  boolean isDefault(); 

  /** A specialization anchor which defines 
this species. 
   *  Note that a species can be refined by 
multiple 
   *  specializations, so species can be one-
to-many 
   *  relative to specializations. 
   */ 
  SpecializationAnchor specialization(); 
} 
package java.lang.invoke; 

public sealed 
interface SpecializationAnchor 
  permits SpecializationAnchor.Impl 
{ 
  /** Whether this object is a default 
specialization, 
   *  automatically created by the JVM. 
   */ 
  boolean isDefault(); 

  /** An object which the language 
   *  runtime deems to be the representation of 
a validated 
   *  parameter bundle that matches this 
specialization. 
   *  Typically a list or tuple of reflected 
type arguments. 



   *  Always returns {@code null} for default 
specializations. 
   *  Specialized fields should depend only on 
this value. 
   */ 
  Object parameters(); 

  /** An object which the language 
   *  runtime deems to be internal data to 
track, and 
   *  not a component of the species or type 
parameters. 
   *  It might be reflective annotations or 
private behaviors. 
   *  Specialized fields should not depend on 
this value, 
   *  because their type restrictions are 
resolved when 
   *  a species is created. 
   */ 
  Object privateParameter(); 

  /** The corresponding default specialization 
anchor 
   *  for this anchor, which is a very special 
"raw" 
   *  specialization. 
   *  If this anchor is already the default of 
its kind, 
   *  returns {@code this} object. 
   */ 
  SpecializationAnchor defaultSpecialization(); 

  /** The class whose class file created the 
   *  {@code CONSTANT_SpecializationAnchor} 
constant 
   *  that created this specialization anchor. 
   */ 
  Class<?> declaringClass(); 

  /** A value which uniquely distinguishes 
   *  {@code CONSTANT_SpecializationAnchor} 
constant 
   *  pool entry that created this 
specialization anchor, 
   *  within its class file. 
   *  An adequate implementation would return 
the 
   *  index of the anchor constant in its 
constant pool. 
   */ 
  long specializationAnchorID(); 

  /** The enclosing specialization anchor, if 
any, 
   *  else {@code null}.  Only anchors of 
   *  kind {@code PARAM_MethodAndClass} can 
have 
   *  enclosing specialization anchors. 
   *  An enclosing specialization is always of 
kind 
   *  {@code PARAM_Class} and is sub-parametric 
   *  to the {@code PARAM_MethodAndClass} 
anchor. 
   */ 
  SpecializationAnchor 
enclosingSpecialization(); 

  /** The class specialization which this 
anchor exports 
   *  else {@code null} if it specializes 
methods only. 
   *  Only anchors of kinds {@code PARAM_Class} 
   *  and {@code PARAM_MethodAndClass} can 
return 
   *  non-null. 
   */ 
  Species species(); 

  /** Reflection of parametric information. 
   *  The lookup object is checked against the 
declaring 
   *  class to unlock access to this 
information. 
   *  The format of these lists is TBD. 
   */ 
  List<Object> parametricSuperList(Lookup 
lookup); 
  List<Object> parametricFieldList(Lookup 
lookup); 
  List<Object> parametricMethodList(Lookup 
lookup); 
} 

public sealed 
interface SpecializationAnchorBuilder 
  permits SpecializationAnchorBuilder.Impl 
{ 
  /** A pointer to the anchor being built, in a 
mutable 
   *  larval form.  The JVM cannot use it until 
the 
   *  builder builds the adult form. 
   */ 
  SpecializationAnchor larva(); 

  /** Initialize the validated parameter bundle 
of the 
   *  anchor.  This must be done exactly once, 
   *  and before the larva is promoted to 
adult. 
   *  The value must not be null. 
   *  The value is immediately observable in 
the 
   *  larval anchor object. 
   */ 
  void setupParameters(Object obj); 

  /** Initialize the private parameter of the 
   *  anchor.  This may be done at most once, 
   *  and before the larva is promoted to 
adult. 
   *  The value must not be null. 
   *  The value is immediately observable in 
the 
   *  larval anchor object. 
   */ 
  void setupPrivateParameter(Object obj); 

  /** Associate this new specialization with a 
pre-existing 
   *  species from a previous specialization. 
   *  The anchor of the pre-existing species 
must match 
   *  this specialization anchor (both class 
and anchor ID). 



   *  This creates a one-to-many relation 
between a single 
   *  species and multiple specializations. 
   *  The anchor must be of kind {@code 
PARAM_Class}, 
   *  and must not already have a species set. 
   *  The set species is immediately observable 
in the 
   *  larval anchor object. 
   *  <p> 
   *  If this method is not called, 
   *  the JVM will create a fresh species 
automatically, 
   *  when the larva is promoted to adult, or 
   *  when the larva is queried for its 
species, 
   *  whichever comes first. 
   *  After that, any call to setupSpecies is 
invalid. 
   */ 
  void setupSpecies(Species species); 

  /** Build the adult form of the anchor. 
   *  At this point any required species 
   *  is built unless it has already been set. 
   *  A validated parameter bundle must already 
be set. 
   *  A private parameter may or may not be 
set, 
   *  and if not set will be reported as null. 
   */ 
  SpecializationAnchor build(); 

  /** Start building a new specialization 
anchor, 
   *  starting with a pre-existing one as a 
template. 
   *  The template must be a default 
specialization 
   *  anchor. 
   *  The lookup must be a private-access 
lookup for 
   *  the class declaring the specialization. 
   */ 
  static SpecializationAnchorBuilder 
    start(Lookup lookup, SpecializationAnchor 
template); 
} 
(More TBW, but see comments scattered throughout.) 

Appendix: Translation Tricks and Strategems 

Optional fields 

Sometimes specialized types need optional fields. For example, a 
numeric type which supports NaN might need an extra boolean field if 
its underlying type doesn’t already have a NaN encoding. 

If a field is type-restricted to a zero-bit primitive type then it 
(presumably) occupies no space in its container. Loading this field 
produces a constant value (the only value of that zero-bit type). 
Storing a value into such a field must first cast to the zero-bit type, 
which requires that the value being stored is just another copy of the 
singleton value that populates the type. Anything other value stored (a 
null or a different species) will elicit an exception. 

Such a field can be viewed as an optional field which has been 
discarded (for a particular species of the container). 

In addition, we may define some sentinel empty type which has no 
values at all, not even a default. Such a paradoxical type, if assigned 
as a type restriction on a field, would ensure that any access to the 
field must elicit an exception. This would be a stronger version of an 
optional field, one unwilling even to produce the default singleton 
value of some zero-bit type. 

Such a field would be regarded (by the user and the JVM) as 
somehow present but “poisoned”; if you touch it you throw an 
exception. 

Optional methods 

If a method can be type-restricted so radically that it cannot be 
invoked, then the result is as if the species has omitted that method. 
This is sometimes useful, as when a box type supports comparison, 
but only if its contained type supports comparison first. (Or, a sum 
method makes sense only on a species of stream over things you can 
add.) 

The tricks which allow us to simulate optional fields can be 
adjusted to simulate optional methods (and constructors). An empty 
type can be assigned to more or more argument types of the method, 
ensuring that it cannot be called. Or, an empty type can be assigned to 
the return value, ensuring that it cannot return. 

Better yet, a simple sentinel value (such as void) could be 
accepted by the JVM as a type restriction of any method (regardless 
of argument or return arity), and the JVM would simply refuse to link 
such calls. Such a method would be regarded (by the user and the 
JVM) as present but “poisoned”. 

The ad hoc type restrictions computed by a species on its fields 
and/or methods could then be used to drive optionality of fields or 
methods. 

Optional super types 

Supers are harder to treat as optional with corresponding tricks. This 
is a topic to investigate further. The problem appears to be that a super 
S of a class C must be minimally present on all species of C, so that 
name lookup rules are not disturbed by parametric effects. 

A partial solution would be to treat all methods of some optional 
interface as optional, in the sense outlined just above. But this appears 
to be invasive, because the optional interface might quite innocently 
wish to have invariant methods; these would not be subject to type 
restrictions (unless we make new restriction mechanisms besides 
specialization). 

Another possible solution would be to allow some sort of “empty” 
specialization for an optional super that effectively nullifies all 
inheritance from that super. (Reflective or “raw” accesses would still 
reach the super, of course, but perhaps type restrictions would 
dynamically block all calls to methods on the super.) 

A more promising solution is to allow an ad hoc type restriction of 
the super type to some sentinel (void again?) for a specialized super 
(not the default one), and somehow break field and method 
inheritance for such a specialization, so that methods and fields 
resolved by inheritance from the blocked super are themselves 
“poisoned” by the same mechanism as for piecemeal optional 
methods. 



Optionality of object identity 

In Valhalla, the association of object identity with types is flexible. A 
type that is a primitive class has no instances with object identity. All 
instances of a type that is an identity class have object identity. In 
between those extremes, some types (Object, interfaces, perhaps 
some abstract classes) allow a mix of subtypes, identity classes, 
primitive classes, or both. 

Specialization can extend this flexibility to the level of the species 
type hierarchy, as follows. First, the class as a whole is defined as an 
abstract which allows both identity and primitive classes. (This would 
follow rules yet to be finalized, but perhaps the class as a whole is 
merely an interface, endowed with static factory methods.) Second, 
the class is made parametric, with a bootstrap method that selects a 
“type kind” (primitive, identity, or abstract) based on the proposed 
linkage parameter value. Third, the JVM supplies a species 
construction factory that allows the “type kind” to be determined in a 
way that is decoupled from the “type kind” of the variant class. 

This might not work, or might require special pleading, if the “type 
kind” of a type is rigorously defined in terms of the class file supers, 
and not (also) on some special flag bit (e.g., ACC_PRIMITIVE). It 
seems not impossible that a species factory could start with a variant 
interface and come up with either kind of concrete implementation. 

If all this were possible, then the class java.lang.Integer 
could be retrofitted to support both old-school identity instances and 
new primitive instances, by manipulating its parametric variance. 

Appendix: False Starts and Roads Not Taken 
In some interesting cases the JVM is already able to recognize, today, 
that a dynamic value or type is actually a static constant. If this 
happens, the JIT can “fold” it into optimized code. After subsequent 
devirtualizations and inlinings, the resulting code can avoid lots of 
virtual dispatch and boxing, and boil down hot loops to their essential 
operations. 

Here are some of those cases: 

• inlined call chain: A caller uses an ldc or static final 
to send a static (or statically typed) value X as a dynamic 
argument down a call chain. If the whole call chain is inlined 
into a single JIT compilation task, then constant propagation 
turns the dynamic value into a static value, or at least gives it 
a static type. Precondition: Inlining the callee into the caller. 

• type speculation: A caller chooses a static type T and passes 
an object A of that type under a dull type (like Object). The 
callee guesses that A is of type T, and after verifying that is 
the case, can use T as a static type. Precondition: The callee 
should be able to guess all relevant types T from all callers; 
the practical maximum number is 2 or 3 distinct types. 

• cast to type: A caller chooses a static type T and passes an 
object A of that type under a dull type (like Object). If the 
callee can be induced to treat the value T.class as a 
constant, then it can compute T.class.cast(A) (or the 
equivalent instanceof instruction) and can then access all 
of the T-features of A. Precondition: Positioning the dynamic 
type T as a static value in the callee. 

• trusted final: A caller stores a static constant X into a holder 
object Y, using a trusted final field. If Y can be treated as a 

static value, so can X. Precondition: Positioning the holder 
object Y as a static value in the callee. 

• customized method handle: A method handle M0; is bound to 
an argument value X, yielding a new method handle M1. If 
M1; is subsequently recompiled, then X becomes a static 
value within the compilation of M1. Precondition: Calling the 
hot path through M1. 

• the constant pool: A caller decides some global static value is 
needed, and arranges to store it in a constant pool. The value 
can be something built in or an arbitrary value (using 
invokedynamic or CONSTANT_Dynamic). 
Precondition: The number of cached values must be fixed at 
class load time, and caller and callee must somehow share 
access to a constant pool holding the values. 

Note that these cases all depend on specialized preconditions. Some 
are under control of the programmer, while others depend on JVM 
heuristics. 

One simple example where none of the above tactics help is a B-
tree library where all the arrays are of a common length (say, 64) but 
the JVM is forced to check at every array reference that the array 
length is, once again, 64. The value 64 is surely declared prominently 
somewhere as a static constant, and yet by the time it is stored in the 
header of an array, it has become indistinguishable from a dynamic 
value. Yes, we could add an optimization for array-length profiling 
and speculation; maybe we will someday, but there are many similar 
problems of the same sort. Covering them all seems to be an unending 
game of whack-a-mole. What’s needed is help from the user to keep 
static values and types static, even in places where, today, they 
“decay” into dynamic values and types after parameter passing. 

The root difficulty with passing a static value or type as a dynamic 
parameter is that its static character is obscured. Callers and callees 
are often decoupled and processed by different JIT tasks, especially 
when a callee is a reusable algorithm. After decoupling, a constant in 
a caller becomes difficult to recover as a constant in a callee, even by 
speculative or heroic optimizations. 

The new parametric constants proposed here overcome that root 
difficulty exactly when inlining fails: A static decision about a linkage 
parameter is bound into a caller, and becomes available in the callee, 
even when the callee fails to be inlined. The specialization decision is 
recorded in the caller, and is perhaps shared among multiple callers, as 
with class layouts. The JVM is then given the option to customize 
multiple versions of the callee, based on the behavior (especially the 
“hotness”) of the various callers. 

Non-proposals 

What about templates in the static compiler? 
C++ has a code customization mechanism called templates. They 
allow a wide variety of arguments, including types, primitive values, 
and functions. Within the context of a template, the template 
arguments are reliably treated as constants. The arguments to a 
template are thus true static type (and value and function) parameters. 
There is a big downside: C++ templates are resolved and fully 
compiled before the program executes. This workflow does not fit 
well into Java’s paradigm of dynamic class loading and lazy linking 
and initialization. In addition, any mechanism that eagerly generates 
many customized versions of the same bytecode will tend to load 
down the class loader and JIT. A better fit would be a mechanism 
which would allow expansion during the JVM’s dynamic link phases, 
or even later, when the JIT optimizes hot code paths. 



What about more and better inlining? 
It is quite true that many programs can exhibit optimized behavior 
equivalent to customization of data and code, given enough rounds of 
the following optimizations in the JIT: 

• inline a callee into a caller 
• propagate constants from the caller to the inlined callee 
• deduce types of data shared by caller and callee 
• customize the inlined caller code using the value types and 

constants 
• lift shared data structures out of the heap 
• customize those data structures to the value types and 

constants actually used 
• when information is missing, try profiling and speculating 

This is a very powerful toolkit of techniques which collectively make 
Java competitive with languages that are statically compiled and 
linked. We can and will ask the JIT to work harder on specialized 
generics, but there are three limitations to the above toolkit which are 
exacerbated by specialization: 

1. Inlining is not reliable. Deep call chains must include out of 
line calls. Also, generic code, because of its greater 
reusability, may be factored into relatively deeper call chains. 

2. Heap structures can only be transformed after the JIT runs. 
Data created during JVM warmup cannot assume JIT 
optimizations, and yet must support full speed processing, if 
it survives. 

3. Speculation becomes less accurate as types and values 
become more differentiated due to type specialization, and/or 
profiles become more polluted due to sharing of well-
factored generic code. 

Explicit specialization signals, captured at the JVM level, at link 
resolution time, between caller and callee, provide the framework the 
JVM needs to produce customized data structures up front, and 
customized code as hot spots develop, even where inlining fails (as it 
sometimes must). 

Weren’t you implementing specialization via bytecode spinning? 
Earlier prototypes of Valhalla specialization used bytecode spinning, 
so that each specialization of a class or interface had its own class file, 
with bytecodes (and other information) customized to the required 
types. Class loaders could be “hooked” to spin specialized versions of 
a type on demand. 

This was a good way to experiment with (some) language designs 
and flesh out requirements, but it didn’t hang together well enough to 
continue with. Here is a partial list of reasons the approach didn’t pan 
out: 

• Subclassing (with overrides) and specialization are 
independent dimensions of type variation, so implementing 
them using the same mechanism causes conflicts. 

• Wildcard and raw types don’t have a natural relation to other 
specializations of the same type, when overrides are use to 
model the interconnections. 

• Specialization at class load time commits the JVM to a 
separate copy of specialized code for each specialization. In 
essence, there is no separate, later choice to customize 
specializations based on profile feedback (as may be done in 
the Parametric VM). The JIT has to separately compile and 
optimize load-time specializations whether or not the extra 
work is profitable. 

• However much (or little) the trick works for specialized 
types, spinning instances of specialized methods seems to 
require lifting each generic method into its own class, which 
is a large overhead. 

• Specialized fields must be wrapped in access methods, and 
each specialized data structure must be represented as a new 
class. Such classes “leak” into the user model as classes that 
the user didn’t intend to create. 

• Generation of specialized bytecodes from a pre-existing 
template is a complicated business. One corner case gives a 
flavor of the kind of problem that arises: If a type variable is 
replaced by long, suddenly the stack effects of affected 
internal variables must be expanded to stack slot pairs, with 
relevant bytecode changes. In general, there is little 
assurance that specialized bytecodes can be generated from 
some intermediate form, short of recompiling the source 
code for each specialization. 

What about dependent types in the VM? 
Dependent types are a theoretical language concept which could 
address the problem of code and data customization. If the JVM type 
system were upgraded so that the static types of methods could 
depend on dynamic values (or types) then users could choose to route 
static specialization information through a shim of dependent types. 
And the JVM would surely do the right thing. There are two 
problems: Such type systems are poorly understood, and their 
connections to the existing optimization tactics of the JVM are even 
less understood. In any case, this would be a large change to the JVM 
type system. 

What about extending the language of type descriptors? 
One light version of dependent types, in the JVM, would be a way of 
introducing descriptors (of fields, arguments, and returns) which 
include “holes” filled by resolved type information, differently at 
different points in the program. This could be specified and 
engineered, at the cost of reinventing the JVM’s symbolic resolution 
mechanisms and type systems, to extend the syntax and semantics of 
descriptors and class names, to take account of such “holes”. But it is 
much easier to plumb such dependencies through a separate channel 
(as in this proposal), which leaves descriptors untouched. The 
dependencies are similar, but the paths by which they are introduced 
are through a cleanly factored side channel, not a complexification of 
the JVM’s type and descriptor system. One benefit of such a factoring 
is that, in the setting of such a side channel, language-level semantics 
can be more readily defined by reference library code invoked by a 
bootstrap method, not descriptor processing logic hardwired into the 
JVM. 

In the end, it seems likely that whatever might be done with 
enhanced descriptors could also be represented with parametric side 
channels (assuming they are “just as constant” as the descriptors being 
represented). The side channel approach is simpler and cleaner to 
engineer in the JVM. 

In some very narrow cases, enhanced type descriptors might 
possibly assist in organizing method overloads, such as 
m(List<InlineDouble>) versus m(List<InlineInt>). 
The JVM could possibly assist with this by allowing the parameter 
tokens (<InlineDouble> and <InlineInt>) be stored in a 
side-channel associated with the symbolic reference, perhaps a name 
mangling or some other place. For this to work, the JVM would not be 
required to interpret those extra descriptor tokens. Alternatively, those 
extra tokens could be used to derive implicit type restrictions to apply 
to the affected methods. All of this is doable, but none of it has very 
compelling use cases. What is interesting, though, is it seems possible 



to layer traditional (CLR-style) parametric type descriptor syntaxes on 
top of this parametric VM design, as sugar that expands into the 
lower-level primitives of this proposal. 

What about type tokens in this? 
On paper, the problem of representing type variables of all kinds can 
be reduced to representing species information in ad hoc object fields, 
secretly injected by javac or by the JVM. 

This is option 1(a) or 1(b) as discussed in section 4.2 of Kennedy 
and Syme’s CLR generics paper. This may also be a good way to 
prototype the plumbing of specialization information. However, 
adding even one extra word to every specialized object would be a 
noticeable overhead, especially for small objects. Inevitably, it turns 
out to be preferable to access specialization information via the pre-
existing runtime type pointer at the head of every Java object. This is 
the route taken by us and by CLR. 

Noticing that all API points (not just generic classes) benefit from 
parametricity, we could try to pass type tokens through the bytecodes 
which manage method and even field access, as well as class creation. 
Pushing on this goal, we find that constant pool slots already carry 
resolved symbolic references, and thus are an ideal place to store 
whatever additional data works like type tokens. Turning to the 
problem of managing that data at the definition site of parametric API 
points, we find that we need constant pool structures to work with 
specialization anchors, which become the source of type tokens, if 
those are used. The constant pool structures are the primitives, and the 
type tokens are translation artifacts that can be plumbed as needed. 

Method specialization information could also be encoded using 
invisible synthetic helper instances, created on each call. Also, each 
generic method might be relocated, from the class it is declared in, to 
a synthetic inner helper class (perhaps one per generic method). 
Normal nested class links would allow the method to access the real 
this as well as the synthetic helper. Such an approach is disruptive 
to translation strategy, creating many synthetic classes “under the 
hoods”, which the JVM has to untangle in order to optimize. The 
helper instances would look like regular objects to the JVM, and so 
would not provide clearly marked points for the JVM to invest 
customization effort, compared to a purpose-built specialization 
framework in the classfile. These simulation overheads would not be 
present in a corner case, but rather would appear wherever a factory 
method serves to create generic instances: Clearly, a factory method is 
not able to refer to type variable bindings encoded in an instance, 
since its job is to create the instance. The simulation in such a case 
requires the caller to first build a helper object to contain the type 
variable bindings, and then immediately copy those bindings into the 
real, user-visible object. 

Given that the JVM must have special data paths to manage 
customizable layouts of objects created by the new instruction inside 
the factory method, it is a no-brainer to ditch the helper object and 
plumb those special data paths (with the help of a split constant pool) 
all the way out through the factory method and to its callers. The use 
case of factory methods is one reason the emphasis in the present 
design is on uniform specialization of all API points, not a type-only 
specialization mechanism. 

(Extending uniform specialization to fields as well as types and 
methods provides an apt way to represent and process variant fields in 
customizable layouts, and simpler options for extensions in the future, 
such as species statics.) 
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