
The Saga of the Parametric VM
John Rose and the Project Vahalla team
June 2020 to March 2021 (ver-0.4)
References: PDF HTML slides
Introduction: Terms, Goals, Requirements
This document develops the design and use of parametric constants,
methods, classes, and fields. The parametricity originates in the
constant pool, and is threaded from there through the definitions and
uses of parametric methods, classes, and fields. Any group of co-
parametric constants and API points can be specialized coherently
and efficiently.

Acknowledgements

Brian Goetz, Maurizio Cimadamore, Dan Smith, and Fred Parain have
been indispensible in setting requirements for this design, and
discussing various versions of it, along with the whole Vahalla design
team. Dan and Fred originated the idea of type restrictions.

Design principles: JVM-centric, Factored,
Predictable, Optimizable

This design attempts to focus on the actions of the JVM, pushing
complexity (when possible) onto the language runtime via bootstrap
methods and other upcalls. The upcalls factor out concerns which
would be unwieldy to express in JVM specification and code.

Inside the JVM, we also attempt to factor in the new features so as
to disturb already delicate parts of the JVM as little as possible. For
example, the verifier is unchanged, as are inheritance and subtyping
rules (as far as they are hardwired in the JVM). The structure of
symbolic references is unchanged, except by addition, and that is in
the constant pool node structure, not the syntax of class names or
descriptors. In general, existing structures are enhanced by addition of
side data, not by intrusive changes. The result is a design which is
easier to prove safe and sane.

In validating the design, we have sometimes referred to Maurizio
Cimadamore’s thesis, which does a heroic job of pushing all of the
Java 5 language down into the JVM, but does so by adjoining new
structures to unchanged ones. Relative to that work, our goal here is to
preserve the basic insights, of what new connections need to be
“plumbed” to allow APIs to gain parametric aspects, and
(contrariwise) which aspects of language implementations to keep out
of the JVM, by referring them to upcalls. In the course of the exercise,
we have found that parametric specializations look different at the
JVM level from those at the source level, and have their own natural
primitives and design space.

Because at the source level type parameters are part of static type
information, and because the JVM encodes such information in the
constant pool, we have integrated the necessary parametric
“plumbing” into the constant pool, rather than adding either a new
kind of dynamic argument (somewhere besides method arguments);
nor have we needed to add a completely new kind of declaration
(neither method arguments nor class constants).

The JVM has little to no interest in tracking type system proofs,
beyond its required attention to the verifier and its own type system.
The JVM has a compelling interest in tracking parametric information
so as to build specialized code and data structures. Thus, the end result
of successfully tracking of parametric constants and API points is the
specialization and successful optimization of those constants, leading
to tighter data and faster code.

By mixing parametrics into the constant pool we find they are
exactly where we need them (next to symbolic references). As a
bonus, ad hoc specialization transforms are easy to express using
condy.

The shape of these parametric constants may look surprising.
Language level type parameters are completely invisible. A caller may
add at most one linkage parameter (a static value) to a symbolic
reference to given API point, and the corresponding resolved
declaration may specify a specialization anchor, which receives the
linkage parameter and makes use of it to drive specialization logic.
For any given API point, any and all specialization decisions are
encapsulated within the class file that declares the API point and its
specialization anchor. These decisions are permanently recorded in the
caller’s constant pool as resolved linkage state, but they may only be
inspected by the class file declaring the API point.

In short, every API point use site can specify an optional linkage
parameter, and (in aby single class file) any group of API point
declaration sites can specify a specialization anchor to receive and act
on linkage parameters.

One such parameter is enough “envelope”, of course, for a
language translation strategy to package up any amount of “mail”,
such as record-like tuples of reflective type variable bindings. The
option to parameterize and specialize is applied broadly and evenly:
Classes, interfaces, fields, methods, constructors, both definitions and
use sites, are all equally and independently open to the presence of
parametricity. Dynamic linking of separately compiled API points
works just the same, but with an extra “piece of mail” added to every
linkage event, and delivered wherever parametric instances are to be
found, or parametric methods are called.

When a user of an API point supplies a linkage parameter along
with a symbolic reference to the API point, the JVM’s linkage
resolution logic delivers the parameter value to the specialization
anchor associated with the resolved API point declaration, in a
particular class file. That anchor then makes a group of specialization
decisions that include that API point, but may include other co-
parametric API points and constants in the same class file. This set of
decisions is private to the declaring class file, and the user can see
only specialization details that the declaring class chooses to reveal.

All this is done with just two new constant pool types and two new
class file attribute formats (for linkage parameters and specialization
anchors), and the Parametric and TypeRestriction
attributes, which can be attached to classes, fields, or methods.

We have not tried, yet, to simplify the work of compilers or
designers of translation strategy. It seems premature to do this, since
just getting the JVM parts right is plenty hard. Further prototyping is
likely to show simple but helpful ways for the JVM to make
compilers a little simpler–of course, short of moving the compiler
logic into the JVM. We may add new constant pool item types
(beyond the two we introduce here), if they are deeply useful. For
now, folks, condy is your friend.

This design is organized so as to be optimizable using many pre-
existing JVM techniques. It may also enable new techniques, such as
smarter method customization. We double down on shaping “fast
paths” (a common condition in the JVM, where speculation pays off)
as well as “slow paths” (to be handled by deoptimization when
possible) which cover less-important corner cases, such as support for
raw types. The design does not, however, allow optimization to
produce shifts in specified behavior. Specialization can never simply
be disregarded by the JVM. Thus, a “dumb” JVM implementation and
a highly optimizing one will process exactly the same linkage

http://cr.openjdk.java.net/~jrose/values/parametric-vm.pdf
http://cr.openjdk.java.net/~jrose/values/parametric-vm.html
http://cr.openjdk.java.net/~jrose/pres/202103-ParametricVM.pdf
http://amsdottorato.unibo.it/2476/
http://amsdottorato.unibo.it/2476/

parameters and specialiaziton anchors, and so both will get the same
results (if the latter waits up for the former to finish).

Our hope is to end up with a design which looks, more than other
options, almost obvious in hindsight.

We will make further design observations as we go.

Terms: Parametric vs. Invariant, Specialized
vs. Customized, Layout, etc.

Let’s introduce the following terms with partial definitions. We will
more fully define them later as needed in context.

• Variant Type: A type, in the language or VM, whose meaning
can vary in different contexts.
In Java source code, a variant type depends on a type
variable and may vary in different applications of that type
variable. A type depending on a wildcard is also variant. For
example, if T is a variant type, then List<T> is, and vice
versa, but List<String> is not variant. To represent
types, the JVM uses reflective objects (such as Class
objects), descriptor strings, and metadata items not directly
accessible to Java code.

In the JVM, variant types are not represented directly; they
are erased at translation time to less informative types. (For
example, List<String> is erased to List and T or ? in
List<T> or List<?> is erased to Object.) New
parametric structures in the JVM also assist in tracking the
identities and effects of variant types, although the JVM does
not directly model them (beyond their erased forms). Similar
observations can be made about generic fields, constructors
and methods in Java source code.

• Invariant Constant: An item in a class file’s constant pool
which represents at most one value. Prior to this proposal,
Java class files have only invariant constants. Note that a
constant often describes a runtime type, and is often lazily
resolved (with possible resolution failure). Note that
invariant constants are used to translate erasures of variant
types.

• API Point: A named class, interface, method, constructor, or
field. Users (sometimes known as “callers”) of API points
refer to them via symbolic references, which are resolved to
declarations (sometimes known as “callees”) in specific class
files. (A non-static API point has a distinguished argument
called the “receiver” object, or in the case of a field, the
“container” object.) Methods and fields have type descriptors
which determine a static type. All API points, even ones
which implement variant types, are defined in terms of
invariant constants. API points which implement variant
types have additional structure beyond their static names and
types.

• Specialization: The management of distinct groups of
constant resolutions and associated behaviors of multiple
versions of a declared class, interface, field, method, or
constant, as used by multiple clients. If a type or type
member is specialized, its behaviors may be specialized.
Specialization is implemented with a basic mechanism for
tracking extra parametric constants associated with API
points (affecting their instantiation, invocation, or access),
plus runtime library code which shapes the tracked
information into specialized classes, interfaces, fields, and

methods. (Specialization does not transform or vary names,
type descriptors, or bytecodes; these are always invariant.)

• Specialization Anchor: A new kind of class file constant pool
item (tagged as CONSTANT_SpecializationAnchor)
which embodies a single, coherent set of specialization
decisions. Class file elements that depend on an anchor are
specialized along with the anchor itself. (Others are
invariant.) Thus, a single class file element can be
specialized when and only when that element’s anchor is
specialized; conversely any specialization of the anchor
determines a corresponding specialized behavior of the
element. Specialization decisions embodied in an anchor may
be accessible from specialized instances of a class or
interface, or from specialized invocations of a method or
constructor, as described below.

• Parametric Constant: An item in a class file constant pool
which either is a specialization anchor itself, or else depends
(directly or indirectly) on such an anchor. Its effective type,
value, and/or behavior may vary across distinct
specializations associated with the anchor. Many kinds of
constants (including pre-existing kinds, such as
CONSTANT_Methodref and CONSTANT_Dynamic) can
be either parametric or invariant.

• Parametric Class: A class or interface (as defined by its class
file) which is declared to depend on a specialization anchor,
by means of a Parametric attribute that refers to the
anchor. Specialized constants associated with this anchor are
accessible from any instance of that class or interface. The
types of fields in the class may be specialized. (Note:
Following current usage as documented in class-
terminology-jls.html, we will often use the
combined phrase “class or interface” to describe an entity
which is loaded form a class-file. Sometimes the plain term
“class” will be used when misunderstanding seems unlikely.)

• Parametric Method: A method or constructor (in its class
file) which is declared to depend on a specialization anchor,
by means of a Parametric attribute that refers to the
anchor. Specialized constants associated with this anchor are
accessible within any invocation of that method. The
effective type of the method may be specialized.

• Parametric Field: A field (in its class file) which is declared
to depend on a specialization anchor, by means of a
Parametric attribute that refers to the anchor. The
effective type of the field may be specialized. The internal
layout of the field may be optimized. (If the field is non-
static, the enclosing class must be specialized on the same
anchor.)

• Type restriction: A rule which applies to a field value,
method return value, or method parameter, with the effect of
blocking or excluding a specified subset of the values that are
naturally available under the declared type of the value. (The
rule may or may not refer to a subtype denotable by a type
descriptor. See below.) Type restrictions are applied to API
points to condition their behavior for better optimization.
Type restrictions can be specialized.

• API Point Name, API Point Reference: An API point is used
(or “called”) by means of a resolved API point reference in
the user’s constant pool. This reference is often a symbolic
constant of type CONSTANT_Class, CONSTANT_Field,
CONSTANT_Methodref, or

https://download.java.net/java/early_access/jdk16/docs/specs/class-terminology-jls.html
https://download.java.net/java/early_access/jdk16/docs/specs/class-terminology-jls.html

CONSTANT_InterfaceMethodref. These symbolic
constant types are called API point names.
As a new feature, any use of an API point name can also
refer to a “decorated” API point reference (not just a
symbolic name) that contains extra constant pool structure.
The extra “decoration” requests a specialization of the API
point. The meaning of symbolic references to API points is
unchanged in this proposal, in the sense that an API point
reference is symbolically resolved exactly as if the resolution
were performed on an invariant API point name obtained by
stripping out any “decoration”. See below.

• Co-parametric: Two elements (constants, API points) in a
single class file are co-parametric when they directly depend
on the same specialization anchor. (In a degenerate sense,
invariant elements may also be viewed as mutually co-
parametric. In this sense, the constants and API points of a
class file form equivalence classes of co-parametric
elements.) Elements that directly depend on a common
anchor are interoperable under a single specialization of that
anchor. It is typical for a parametric class to be co-parametric
with some of its fields, all of its constructors, and some of its
methods. Parametric elements which are not also co-
parametric with their class may be called independently
parametric (and may be co-parametric with one another).
Two API points or constants in different class files are never
co-parametric. In particular, specializations are not subject to
inheritance; each level of a class hierarchy manages its own
specializations.

• Sub-parametric: Occasionally, one specialization anchor may
depend on another, specifically when a parametric method
nests in an independently parametric class. In that case the
class is not co-parametric with the method, but rather sub-
parametric to the method, and (extending to the above
equivalence classes), anything co-parametric with the class is
sub-parametric to anything co-parametric with the method. If
C is sub-parametric to M, then M can operate on C within a
single specialization of M, because M’s specialization
determines another specialization of C, and the anchor for M
links to the anchor for C. (In a degenerate sense, invariant
elements may also be viewed as sub-parametric to all other
API points and constants. In this sense, there is a partial
order between the previously mentioned equivalence classes.
A set of co-parametric elements has natural access to
elements sub-parametric to that set.)

• (Variant: Generally, the opposite of invariant, so not solely
dependent on a static or once-resolved constant value. Can be
used to describe something (constant, class, method, etc.)
that is not invariant but rather parametric. Variance is an
implementation requirement for a source code feature.
Specifically, parametric API points and constants will be the
recommended means to that goal, as opposed to variance
obtained by other means, such as bytecode spinning or value-
dependent types. In the JVM, the opposite of invariant is
parametric, not variant.)

• Preparation: The phase of class linking which assigns
memory resources to JVM states associated with a given
class. In this document, preparation also contemplates the
process of creating JVM states for resolvable constants.
(These states are within the run-time constant pool, §5.1, as
affected by the processes of resolution, §5.4.3.) At runtime,
preparation is a prerequisite to assigning a fresh value to a
resolvable constant (or assigning an initial value to a new
static field). Once a constant (parametric or invariant) is
prepared, it can then be resolved at most once. When a

parametric constant is prepared, the run-time constant pool
containing that constant expands by gaining new a resolution
state for that constant. Before preparation, a constant is
simply a static symbolic reference in a run-time constant
pool, directly derived from a static structure in a class file.
Immediately after preparation, any constant (invariant or
parametric) will have a state of being unresolved; thereafter
it can be either resolved to a value (either a loadable constant
or an item of metadata) or resolved in error (with a recorded
exception). Invariant constants are individually prepared “up
front” during preparation of the containing class class.
Parametric constants are prepared exactly when a new
specialization is created. (The constants prepared are exactly
those co-parametric with the anchor constant for the
specialization being created.) Both invariant and parametric
constants have the same rules for resolution, in common, as
applied to their prepared states.

• Resolution: At runtime, the process of changing the state of a
prepared, unresolved constant by permanently associating it
with a loadable value, or an item of metadata, or a recorded
exception. Invariant constants are resolved at most once,
because they are prepared once. Parametric constants are (in
general) resolved many times, because they are (in general)
prepared many times.

• Validation: The process by which a linkage parameter
proposed by the client of an API point is accepted by the
specialization anchor of that same API point. A client cannot
force specialization into an API point without validation.
Each parametric API point has the “final say” on what values
it uses, internally, to represent the variant semantics intended
by the programmer and translation strategy. Validation thus
defends encapsulation of API points, and supports separate
compilation. In general, validation replaces a client-supplied
value with an internal token called a specialization anchor.
(As we shall see, this internal token is reified by a Java
object of type SpecializationAnchor.) However,
clients are allowed and encouraged to propose previously
validated specialization anchors to API points, and the JVM
efficiently accepts them without redundant revalidation.

• Specialized class: Generally, a class or interface which has
been specialized somehow, with some sort of bookkeeping to
record the decision. (The phrase class specialization refers
either to the process of making specialized classs, or to a
specialized class itself.) Specifically, in this proposal, a class
(or interface) which depends on a specialization anchor,
which has in fact been specialized. Subject to type
restrictions or other variant behavior, a specialized class can
be used instead of a normal, unspecialized class for at least
some operations. The symbolic references used are the same
in both cases. Two specializations of a class are the same
only if they refer to the same specialization anchor. Differing
specializations may exhibit differing behaviors or type
restrictions.

• Specialized method: Generally, a method or constructor
which has been specialized somehow, with some sort of
bookkeeping to record the decision. (The phrase method
specialization refers either to the process of making
specialized methods, or to a specialized method itself.)
Specifically, in this proposal, a method (or constructor)
which depends on a specialization anchor, which has in fact
been specialized. Subject to type restrictions or other variant
behavior, a specialized method can be used instead of a
normal, unspecialized method for at least some operations.
The symbolic references used are the same in both cases.

Two specializations of a method are the same only if they
refer to the same specialization anchor. Differing
specializations may exhibit differing behaviors or type
restrictions.

• Class species (or interface species): A user-visible type
mirror for a specialized class (or interface) which can be used
to manufacture instances (or subtypes), test instances, or
make type restrictions. In general, class specializations may
have private constants or API points are not relevant to the
publicly visible species. Even more, it is possible that several
specializations share a single species, so that a test for the
species does not reveal internal distinctions made within the
specializations. Still, in the simplest use cases for class
specialization, each class species corresponds to a single
unique specialization. In the current proposal, a specialized
class’s layout (field specializations) is linked to the species,
and not to the specialization anchor (which can have
additional variability to represent “private opinions”).

• Customization: Generally, any process which enables the
JVM to optimize an artifact that uses, accesses, or otherwise
depends on a parametric API point or constant, by copying
the artifact with the parametric API point or constant “hard
coded” to a particular specialization. At the cost of extra
versions of code and metadata (the customized artifacts) this
can gains the performance benefits of invariance while
preserving the flexibility of genericity. Customization can
involve a mix of speculation, inference, profiling, and/or
dynamic side channels. Although there are a number of
occasions and implementations of customization, the
common thread is extra “bookkeeping” to allow some variant
type or value to be presented to its point of use without loss
of necessary information. Classes, variables, and method
bodies may be customized in various ways. The JVM may
customize parametric classes with respect to their associated
co-parametric constants and API points. Independently of
specialization, the JVM may customize a supertype method
to a receiver subtype. Also, the JVM may customize a
method to a particular type or value of one or more
arguments (either the receiver or not). None of these
customizations are allowed to violate the semantics of the
program being run, and they are all optional.

• Layout: Generally, the size and shape in memory of a data
structure, notably a class or array instance. If a class has no
parametric fields, its layout can be fully determined when the
class file is loaded; this is called an invariant layout.

• Customized layout: A layout can potentially be customized if
it has specialized fields that are constrained to hold only
values consistent with particular types (or values or ranges of
values).

• Flat layout: A layout is flat when it presents a set of variables
without needless indirections or headers. If a variable is of an
identity class type, it needs an indirection to keep track of
identity and a header to allow subclasses to interoperate
polymorphically. But for a variable of an primitive class
type, any indirection to its fields (e.g., for boxing or
buffering) is needless. (Likewise, if a class’s contract does
not mandate the preservation of object identity in some
stored value, then an inlined representation of a value might
be selected, even if it loses identity information.) When
generics and primitives are combined, some kind of layout
specialization is needed to achieve flat layouts. It is the
responsibility of the runtime library to communicate to the
JVM its intentions about which information to record about a

class species, and whether or how to specialize the layout of
the class. It is the responsibility of the JVM to customize
layouts into flatter forms, if it can exploit the specialization
information from the runtime, and if the effort is profitable.
As will be seen, specialization anchors provide the necessary
bookkeeping to track specialized layouts, so they can be
customized when that is profitable.

• Object code: Machine instructions (optimized or not) which
directly implement a method’s actions. (Normally a JIT or
AOT produces object code. In a certain way, a JVM bytecode
interpreter can be viewed as object code for all methods.)
Variant object code depends somehow (either statically or via
dynamic computations) on one or more variant types or other
constants. Typically, variant object code works with variables
of variant types.

• Specializable object code: Object code is specializable if the
variant types or values it uses are constrained to be specific
types or values, so that the instruction sequences used to
work with those types and values are then specializable to
those types or values. Just as specialized layouts can
eliminate useless indirections, specializable object code can
omit useless boxing or buffering. Specializable object code
can often devirtualize and inline many virtual calls on values
of variant type, where unspecialized object code would make
out-of-line calls through dispatch tables. It is the
responsibility of the runtime library to communicate to the
JVM its intentions about which information to record about a
method species, and whether or how to specialize the code of
the method. It is the responsibility of the JVM to customize
object code and calling sequence to flatter forms, if it can
exploit the specialization from the runtime, and if the effort
is profitable. Specialization anchors provide the necessary
bookkeeping to track specializable object code, so it can be
customized when that is profitable.

• Calling convention: A convention shared between calling and
called machine code for where (stack, heap, registers) to put
arguments and return values during the call and return.
Calling conventions are needed to coordinate separately
compiled blocks of object code. In particular, a common
calling convention must usually be agreed upon by all callers
and implementors of a given virtual (or interface) method.

• Customized calling convention: A calling convention,
appropriate only to a specialized caller and callee, where
arguments or return values of variant type are represented
more optimally according to the common constraints of the
caller and callee. Specialization anchors provide the
necessary bookkeeping to track calls to specializable
methods, so the calls (and the methods) can be customized
when that is profitable.

• Flat calling convention: A calling convention is flat when it
presents a set of arguments and return values without
needless indirections or headers. Primitive objects may be
stored directly in stack memory or registers, not boxed or
buffered in the heap. Specialization anchors provide the
necessary bookkeeping to track specialized fields and their
access, so their layout can be customized when that is
profitable.

• Default class specialization (resp. default method
specialization): If a class file defines some specialized
behavior, then for certain “extra-special” purposes (such as
wildcards or migration compatibility), the JVM will also
define a standard “raw” layout and behavior as if it were

unspecialized.
This layout and behavior is not under user control. It
minimizes bookkeeping by paying attention only to JVM
type descriptors. (Recall that these encode the bounds of
source language type variables, after erasure.)
The JVM keeps track of this extra case automatically, in
addition to all other specializations, which are under user
control. So is it “a unique and very special specialization”?
Or is it “not a specialization at all”? Sometimes we think of it
one way, and sometimes another.

Such species and their associated concepts are sometimes
called “raw”, always with “scare quotes”, to emphasize a
connection with a similar concept in the present Java
language, that of a type or method which has “nothing to
erase”, because it already requires nothing more than the
expressive capabilities of the present (non-parametric) JVM.

• Default (or “raw”) layout: The layout of a default class
species. It is invariant because it forgets about parametric
type constants and remembers only the bounds. As such, it
typically uses polymorphic indirections to uniformly
represent field values of variant types, and therefore is not
flat.

• Default (or “raw”) code: The object code compiled for a
default method species (or for some similar purpose) so as to
handle all possible type arguments in the finite output of a
(JIT or AOT) compilation task. It is invariant because it
forgets parametric type constants and remembers only the
bounds. (If it is used to execute parametric methods, it must
rely on some hidden side-channel, managed by the JVM, to
provide information about specialization decisions.) As such,
default code typically uses polymorphic indirections (and/or
data dependencies on specialization information) to
uniformly represent field values of variant types, and
therefore is not efficient. Default code is also a “one size fits
all” fallback which works correctly (though not always
efficiently) on customized layouts as well as default layouts.

• Default (or “raw”) calling convention: The calling
convention used by default method code. It is also a “once
size fits all” fallback which can be used if a caller and callee
fail to agree on a common specialized calling convention.

• Reflective use of default artifacts: When default code or a
default calling convention is used as a fallback for a more
desirable form of specialized code or calling convention, we
say it is being used reflectively. Default calling conventions
may include side channels for dynamically passed
specialization information, and default code may use such
side channels, even though no such side channels are present
in today’s Java generics. Thus, default code serves two
purposes: First, to correctly execute in the presence of a
default specialization (on default or “raw” instances);
secondly, to correctly execute (perhaps with a performance
penalty) in the presence of any specialization, by making
data-dependent references to a runtime value reifying a
current specializaiton anchor. An optimizing JVM can (if it
wishes) separate these two concerns, in two (internal)
versions of a method.

Goals and Requirements

Our overall goal is to support efficient generic programming, using
Java’s current generic constructs. Valhalla’s primitive classes, with

their characteristic firm guarantees of flattening in memory, add new
requirements and challenges to generic programming in Java.

To maintain flattening of fields, arguments, and return values
through generic code, we must enhance the current translation
strategy to use techniques beyond erasure. The problem with erasure
is that it requires pointer polymorphism, in order to retain type
information about values of variant types, while still erasing the
variant type down to its head or bound. But pointer polymorphism is
incompatible with flattening, because it introduces extra indirections
and/or object headers. Also, existing translation strategies fail to
provide enough information to recover the original types (before
erasure), so there is no amount of “extra optimization” that would take
today’s class files and reliably flatten generic data structures.

And flattening of instances is not the whole story. To avoid boxing
or buffering along hot paths, there must also be (at least in some VM
implementations) a coordinated flattening of calling sequences (when
callers and callees agree on specializations) and also routine
customization of method code, to keep primitive objects (both
specialized and invariant) from falling out of registers, and to avoid
expensive virtual calls.

A second overall goal is to design the JVM support for flattening
and method customization so that it integrates smoothly with existing
JVM functionality. It would be ineffective to create a new VM-within-
a-VM just for customization, or to permanently hardwire today’s
exact theories of genericity in the Java language. Instead, as always,
the quest is to find the correct primitives for the JVM to implement,
primitives that are scoped to the natural operations and optimizations
already present, or that cleanly and orthogonally extend those
operations and optimizations. The result is likely to do both less and
more than what a language-centric design effort would produce: Less,
because some policy decisions (such as generic subtyping) might be
delegated to the language (e.g., via bootstrap methods), and more,
because some degrees of freedom (such as the “kinding” of
parametric constants) might be simpler to leave open (e.g., parametric
non-type values) even if the language has no immediate plans to use
them.

FlatLayouts: Generic layouts can be flat
Specializations of generic classes for primitive classes will be easily
available for use, and can (in some implementations) be reliably
customized to use flat layouts containing those values. The size and
type of fields of a class can thus vary from instance to instance.

For example:

• The non-empty payload of an Optional<T> can be stored
directly in a field of the Optional instance, not indirectly
via a pointer.

• The size of Optional<InlineByte> can be less than
the size of Optional<InlineDouble>.

• A primitive record-like type InlinePair<T,U> can have
varying sizes based on both T and U. (Note that this means
one field must have a varying offset.)

Flat layouts are most useful when they are adopted from the first,
even before the JIT has started compiling hot code. Flat layouts are
not a JIT-time decision or optimization. Type variables must be
tracked systematically in the interpreter as well as compiled code.

FlatCalls: Calling sequences can be flat
When one specialized method calls another, and the caller and callee
agree on specializations, the calling sequence can (in some
implementations) be reliably customized, so that boxing and buffering
is avoided through the whole call chain.

For example:

• A flat InlineOptional<InlineLong> argument or
return value can fit in two registers, one to contain the
optional 64-bit payload, and the other to signal whether the
payload is present.

• A primitive record-like type InlinePair<T,U> can be
passed as an argument or return value in the union of
registers and stack locations required to pass the two
components individually. (There are the usual caveats about
limited numbers of argument and return registers.)

• If an argument or return value is nullable, but non-null
values can be flattened, the JVM can assign a special
encoding to null to avoid using a physical reference. For
example, a second register assigned to encode the presence
or absence of a InlineOptional<InlineLong> value
could be overloaded (with a third possible value) to
additionally encode the presence of null.

For technical reasons, customized flat calling sequences sometimes
cannot be computed lazily, waiting until after “hot spots” develop.
This seems especially true in v-tables (type-sensitive dispatch tables).
In such cases, decisions about flattening data structures and
scalarizing method APIs must done “up front”, before a JIT can run.

ScalarCode: Generic method code can scalarize
Specializations of generic methods to primitive classs will be easily
available for invocation, and will have access to at least enough
specialization information to (in some implementations) reliably
produce and operate on scalarized instances of associated specialized
generic types. If boxing or buffering of values is a performance
hazard, there will be a way (for hot paths at least, in some
implementations) to customize code enough to lift values out of boxes
and into registers.

Unlike data structure layout and method APIs, the internal code of
any single method can be optimized at any time (either early, or after a
hot spot develops), and reoptimized at will.

RawSupport: Java “raw” types and methods are supported
Raw specializations of classes and methods are supported. Whatever
bookkeeping is used to keep track of parametric constants can also
record that some species intend for their type parameters to be
unspecified. (Similarly, the erased and “wildcard” states, if different,
are also supported, perhaps by different mechanisms.)

What’s “raw”? At the source code level, “raw” refers to a use of a
class or method which refuses to specify any type parameters, and
instead expects that the class or method will behave consistently with
the rules which predate Java 5 generics. Semantically, “raw”
behaviors can be identified with the behaviors of Java API points after
they have been compiled using erasure, and specifically with Java API
points as observed through the Core Reflection APIs. Even if an
object has specialized (non-raw) internals, its API points can be
observed either reflectively or through “raw” symbolic references,
from legacy code or from intentionally erased modern code.

RawInstancesUniversal: Raw class instances are always allowed
Any bytecode which is sensitive to class specialization, and which
operates on an instance of a specialized class, will always accept
either an instance of the class specialization proposed by the caller, or
else provide a compatible fallback behavior when presented (instead)
with an instance corresponding of the raw type (however that is
represented).

This implies alternate paths for handling raw layouts, even in code
which is optimized for specialized classes. Such alternate paths, if
used, are likely to carry an extra cost.

If (as is proposed here) the raw type is represented by a
distinguished “default specialization” supplied by the JVM, this
requirement also implies a subtle distinction between the “raw
species” as a narrow type (e.g., to impose on new instances), and as a
universal “wild card” type (which is accepted everywhere).

RawMethodUniversal: Raw method calls are always allowed
Any bytecode which is sensitive to method specialization, and which
invokes a specialized method, will also support a “raw” invocation
mode which operates correctly on arguments of all specializations,
and not just on those corresponding to a particular specialization
requested by the caller.

Under such an invocation mode, the parametric method behaves as
a “raw” species of itself. Raw execution will typically be slower than
specialized execution because of the need to re-derive specialization
information from arguments. It may also have incompatibilities with
method code which expects to derive specialization information
without the help of a “witness instance”. In that latter case, the raw
method species will supply a fallback behavior, such as creating
additional instances of “raw” types, instead of parametric types.

ReflectiveSupport: Reflective access is supported
Species can be created, queried, instantiated, and invoked reflectively.
Invocations and instantiations display the same “bytecode behavior”
as if the call were not reflective but native in equivalent bytecode.
(This implies that there are reflective API points which reify
specialization anchors passed into and out of reflected APIs which are
parametric, as well as reflective API points which present unspecialize
“raw” bytecode behaviors.)

If an API point has a type restriction (e.g. of Object to String
in the get method of List<String>), the restricted type can be
queried reflectively.

Within a class file constant pool, there is some means for deriving
all such reflective entities as loadable constants, relative to resolved
API point references in the same constant pool. (E.g. ldc of an
appropriate species reference.)

Reflective processing may subsume the implementation technique
of having a fallback for “slow paths” that occasionally branch out
from failed speculations, such as when code optimized for an flat
layout containing inline values suddenly encounters a raw layout,
containing buffered inline values.

IndependentSpecialization: Specialization is independent at each
API point
A symbolic reference to a variant API point can meaningfully resolve
whether or not the caller and callee have been compiled consistently.
Inconsistent specializations can be recovered from if the translation
strategy defines a consistent net semantics. The extra structures
created by specialization are local to each class file, and require no
fixed invariants between class files. This is true for all class file
relations mediated by dynamic linking, including for callers and
callees, and for subtypes and supertypes. The only way for two API
points to be co-parametric is for them to be declared in the same class
file.

This is a VM-oriented “right-sizing” of the requirement that legacy
clients be able to operate compatibly on API points which have been
upgraded to be parametric. Also, it doubles down on the primacy of
the existing architecture of API points, as classes, interfaces, fields,
and methods, and avoids surfacing new fundamental API points for
(e.g.) inheritable type variables. Such new API points can created
efficiently by translation strategy which mandates new synthetic
methods, but they are not a direct burden for the JVM.

As an implication of this, the client of an API point is always free
to propose a type parameter (or other specialization request), but it
cannot impose any such condition on an API point that chooses not to
specialize. (Runtime diagnostics for failed specialization requests are
a matter for further prototyping TBD. It seems they can be added into
runtime support code, at the option of the translation strategy.)

Even within a single class file, most API points can be separately
and independently specialized. Of course, co-parametric groups of
API points will typically be generated.

EncapsulatedSpecialization: Specialization decisions are private
The full information about a specialized API point is not exposed to
any client of that API point; it is encapsulated within the class file that
declares the API point. The class file is in control of how much
information is exposed to clients of the class file. This control is
expressed using existing mechanisms of access control, which implies
that translation strategies may need to create synthetic API points
(e.g., public or protected methods) to selectively expose
specialization information that is otherwise encapsulated.

The encapsulated information will include the
SpecializationAnchor object described below, which manages
constant pool states and type restrictions, and is (usually) created in
response to a bootstrap method upcall. (The upcall is, like other
similar bootstrap method calls, given full access to the internals of the
relevant class file, via a Lookup object.) Specialized type
information for any given API point (if any) is available to any client
who can access the same API point, since this information is
necessary to provide to any external client of that API point. The
number and nature of particular specialization decisions (which are
reified by various SpecializationAnchor objects) are not
accessible to clients unless the specializing class chooses to expose
them somehow, or a reflective API exposes them.

ClassVariance: A method can be specialized along with its
enclosing class
There must be an efficient translation of methods which make non-
trivial use of type parameters from their declaring class or interface.
In their class file, such methods will be co-parametric with the class or
interface.

interface VariantType<T> {
 void cospecialized(T arg);
}
MethodVariance: A method can be specialized independently of
its enclosing class
There must be an efficient translation of methods which make non-
trivial use of type parameters declared independently of their
declaring class or interface. In their class file, such methods will
independently parametric of (not co-parametric with) the class or
interface.

interface InvariantType {
 <U> void specialized(U arg);
}
BiVariance: A method can be specialized to both possible scopes
There must be an efficient translation of methods which make non-
trivial use of type parameters declared both in their declaring class or
interface and independently of it. In their class file, such bi-variant
methods will be co-parametric with the class or interface, and will
also have independent specialization.

interface VariantType<T> {
 <U> void bispecialized(T arg1, U arg2);
}

This requirement will be technically more difficult to fulfill than
the previous two. However, careful implementation of the first two
requirements makes this one easier to implement also. The key is
finding the right primitives for the first two, so that the third becomes
a new combination of existing primitives, rather than a new primitive.

No other form of multiple specialization is required, as long as a
single VM-level parameter can represent a whole “pack” of formal
type variables. This is because the only way that API elements can
nest, in today’s class file format, is if the outer element is a type and
the inner one is one of its members. This requirement supports the
maximum possible amount of specialization nesting, in today’s class
file format.

Volume I: A Parametric Classfile (JVMS-4)
Our starting point is to extend the existing constant pool structure to
carry the existing variety of constants with a new twist: An entry in
the constant pool (representing a type, another API point, or a constant
value) can be declared parametric. The value (after resolution) of a
parametric constant can be specialized (with resolution occurring once
per specialization). Thus a single entry in a constant pool can resolve
to different constant values for different specializations of a single
class or method.

Pulling on this string leads us to interesting questions: How are
specialized values declared and (for each specialization) defined?
Which variation of a constant is in force at any given point? How are
multiple specializations created, propagated, and prevented from
conflicting during JVM execution? Most importantly, are the
proposed JVM mechanisms simple enough to engineer well, yet
powerful enough to support a useful range of new language features?

Parametric Constants

The constant pool is enhanced with two new structures, which also
interrelate with many of the existing class file structures.

CONSTANT_SpecializationAnchor
The new CONSTANT_SpecializationAnchor_info structure
is used to declare a distinct degree of freedom of parametricity for
specializable API points declared in the same class file. It has this
form:

CONSTANT_SpecializationAnchor_info {
 u1 tag; // CONSTANT_SpecializationAnchor =
21
 u1 anchor_kind; //
PARAM_{Class,Method{Only,AndClass}} = {1,2,3}
 u2 bootstrap_method_attr_index;
}

In diagrams and informal narrative,
CONSTANT_SpecializationAnchor may be abbreviated as
CONSTANT_Anchor or C_Anchor.

The items of the
CONSTANT_SpecializationAnchor_info structure are as
follows:

• The tag item has the value
CONSTANT_SpecializationAnchor (21).

• The value of the anchor_kind item must be in the range
1..3. The value denotes the kind of this anchor, which
characterizes the way constants derived from this constant
may vary relative to other entities in this class file.

http://docs.oracle.com/javase/specs/jvms/se15/html/jvms-4.html

Note: The same information could be encoded by replacing
the anchor_kind field with a parent_anchor field
that either contains a null index (i.e., zero) or points to the
enclosing class-kinded anchor. This would be more
appropriate for a scalably nesting multi-class file format; we
leave it on the shelf for now.

• The value of the bootstrap_method_attr_index
item must be a valid index into the bootstrap_methods
array of the bootstrap method table (§4.7.23) of this class
file.

There are three kinds of parametricity:

• If the value of the anchor_kind item is 1
(PARAM_Class), the specialization anchor declares a
degree of freedom which applies to the current class, as a
whole. Any such PARAM_Class anchor, if it exists, must be
unique in this class file, and must also be explicitly
mentioned by the Parametric attribute of this class.

• If the value of the anchor_kind item is 2
(PARAM_MethodOnly), the specialization anchor declares
a degree of freedom which applies to a set of methods of the
current class. Each PARAM_MethodOnly anchor varies
independently from all other anchors.

• If the value of the anchor_kind item is 3
(PARAM_MethodAndClass), the specialization anchor
declares a degree of freedom which applies to a set of
methods of the current class. Each specialization of a
PARAM_MethodAndClass anchor is defined as dependent
on another specialization of the PARAM_Class anchor in
the same class file. If there are any
PARAM_MethodAndClass anchors in a class file, there
must also be a (single) PARAM_Class anchor also.

A CONSTANT_SpecializationAnchor constant is a (new sort
of) loadable constant (§5.1). The resolved value of this constant is a
mirror to a set of specialization decisions, also called a
SpecializationAnchor (§4.1).

Note that, like CONSTANT_Dynamic_info and
CONSTANT_InvokeDynamic_info structures, a
CONSTANT_SpecializationAnchor_info structure refers to
a bootstrap specifier (i.e., a method plus a static argument list). Unlike
those other constants, a
CONSTANT_SpecializationAnchor_info has no additional
symbolic data in the form of a CONSTANT_NameAndType_info
structure. As will be seen later, when the JVM invokes a bootstrap
method for a specialization anchor, the bootstrap method calling
sequence will be different than in the case of those other constants.

As will be seen later,
CONSTANT_SpecializationAnchor_info structures can
potentially be referenced by other constants in the same class file,
as well as the current class and any of its fields or methods. Any
class file structure (constant, class, method, or field) which depends
on an anchor becomes parametric, and obtains special processing
from the JVM. Any parametric structure which is variant depends
directly on a single anchor, which determines the circumstances under
which the variations take effect. Within broad limits, any two API
points or constants in the same class file can be co-parametric.

It is envisioned that, in most cases, each distinctly scoped group of
type variables in Java source code will correspond to a unique
CONSTANT_SpecializationAnchor constant. However, if a
number of generic methods in one classfile have identical type
parameter declarations, it could be valuable for a translator to assign a
single CONSTANT_SpecializationAnchor constant to
represent the parametricity of all the identically declared generic
methods, in common. If the methods (as seems likely) were to work in
concert in a larger call tree, that call tree could link itself with fewer
validation steps, since the methods working in concert would be
working from a common CONSTANT_SpecializationAnchor
constant.

CONSTANT_SpecializationLinkage
The new CONSTANT_SpecializationLinkage_info
structure may be used to add parametric information to a symbolic
reference to a class, interface, method, or field. As such it has two
components, an invariant symbolic reference (§5.1), and a proposed
linkage value to use along with the reference. It has this form:

CONSTANT_SpecializationLinkage_info {
 u1 tag; //
JVM_CONSTANT_SpecializationLinkage = 22
 u2 parameter_index;
 u2 reference_index;
}

In diagrams and informal narrative,
CONSTANT_SpecializationLinkage may be abbreviated as
CONSTANT_Linkage or C_Linkage.

The items of the
CONSTANT_SpecializationLinkage_info structure are as
follows:

• The tag item has the value
CONSTANT_SpecializationLinkage (22).

• The value of the parameter_index item must be a valid
index into the constant_pool table. The
constant_pool entry at that index must be a loadable
constant (§5.1). (It will be proposed as a linkage parameter
value for the associated API point, and validated produce a
specialization anchor for that API point.)

• The value of the reference_index item must be a valid
index into the constant_pool table. The
constant_pool entry at index must be an API point
name, that is, a CONSTANT_Class_info,
CONSTANT_Methodref_info,
CONSTANT_InterfaceMethodref_info, or
CONSTANT_Fieldref_info.
Note: CONSTANT_InvokeDynamic_info and
CONSTANT_Dynamic_info are never wrapped in
CONSTANT_SpecializationLinkage constants,
because they do not refer directly to API points. They can
easily propose specializations via their static arguments,
either directly or indirectly via previously validated
CONSTANT_SpecializationLinkage constants.

After successful resolution, a
CONSTANT_SpecializationLinkage constant will
permanently refer both to an API point (class, interface, method, or
field), with an additional specialization anchor. Both components
(API point metadata pointer and specialization) will be permanently
available (locally) for all further uses of that API point. In general,
when that API point is used, that (local) reference value will be bound

to a corresponding CONSTANT_SpecializationAnchor in the
(remote) definition of that API point.

Several CONSTANT_SpecializationLinkage constants
may propose distinct linkage parameter values to the same API point,
such as for List<InlineInt> vs. List<InlineDouble>.
Bytecodes may select a specific linkage parameter value by referring
to the appropriate CONSTANT_SpecializationLinkage
constant for that value. Conversely, several
CONSTANT_SpecializationLinkage constants may apply the
same linkage parameter value to distinct API points, such as for
List<InlineInt>.get and List<InlineInt>.set.
Bytecodes using a set of such linkage parameter constants can expect
to use those various API points (presumably co-parametric) with a
single consistent setting of the anchor.

A CONSTANT_SpecializationLinkage constant is a (new
sort of) loadable constant (§5.1). When loaded, its resolved value
denotes a value chosen by the translation strategy during the
execution of a relevant bootstrap method call during resolution of the
API point.

The translation strategy is free to define this value according to its
own conventions. The value could be the
SpecializationAnchor that underlies the specialized API point,
or it could be a reflective species object, or it could be a
representation of type arguments, or it could be an associated type
restriction record. The JVM makes no policy about this value.

The JVM does secretly record any SpecializationAnchor
associated with the resolution of a specialized API point, so that it can
be present at all uses of that API point. There is no guaranteed way for
client code to get access to the SpecializationAnchor
reference, even though it is sitting in resolution state of the client’s
constant pool.

In a previous version of this proposal, the constant value of a
CONSTANT_SpecializationLinkage constant gave more
information: It was defined as identical to the corresponding
specialization anchor of the API point resolved through the linkage
constant. This semantics is more powerful, but also is thought to
“leak” too much information from the implementation of the API
point. Instances of SpecializationAnchor object can be shared,
of course, via explicit API points created by translation strategies, but
the present design protects the encapsulation of
SpecializationAnchor objects by default.

If the bytecode behavior of a parametric field or method reference
is desired (as a loadable constant), wrap the appropriate
CONSTANT_SpecializationLinkage constant in a
CONSTANT_MethodHandle constant. The MethodType of the
resolved MethodHandle constant will reflect type restrictions. The
unrestricted type is recoverable via
MethodHandleInfo::getMethodType.

If validation fails, the resulting exception will become the
resolution state of the constant. Just as in the case of a failed symbolic
resolution, a failed validation can prevent bytecodes which use a
specialization from completing normally. If the failing constant is
parametric, then (consistently with the distinction of resolution states
of distinct specializations) some specializations can fail while others
succeed. In all cases, for any given
CONSTANT_SpecializationLinkage constant, there is just
one outcome per prepared resolution state.

In summary, assuming successful resolution of both components of
a CONSTANT_SpecializationLinkage constant:

• If the reference_index refers to a method, and that
method is subsequently invoked (via the same
CONSTANT_SpecializationLinkage constant), the
JVM will pass the resolved specialization anchor as an extra
hidden argument into that method’s call frame.

• If the reference_index refers to a field, and that field is
subsequently accessed (via the same
CONSTANT_SpecializationLinkage constant), the
JVM uses the resolved class specialization anchor to locate
that field. The instance containing the field (if it is non-static)
is dynamically checked to ensure that its class specialization
is consistent with the one expected by the field reference
constant.
Field polymorphism will be allowed in some cases such as
when the reference uses the default specialization anchor (a
“raw” reference). In most cases apart from wildcards, there
will be an expected field type that will be exactly fulfilled
(modulo a slow path). This code shape is more analogous to
the invokeExact call on method handles than generic
invoke.

• If the reference_index refers to a class or interface, and
that type is subsequently resolved (via the same
CONSTANT_SpecializationLinkage constant), the
JVM records that class’s specialization anchor in the
resolution state, for use in returning a species (via ldc) or
performing further linkage to members of that species.

We say the API point is “remote” to emphasize that it may be
declared in an arbitrary class file, which in general is separately
compiled independently of the “local” class file that is performing the
linkage operations. In these terms, which are client-centric,
CONSTANT_SpecializationAnchor constants are remote and
CONSTANT_SpecializationLinkage constants are local. Of
course, a class file may also resolve symbolic references to API points
declared in the same class file. (In fact this is how a class gets access
to its own private members.)

Just as a plain symbolic reference (of any sort) mediates access to
an API point agreed upon by two class files, a
CONSTANT_SpecializationLinkage constant mediates access
to an API point (in exactly the same way), with the independent
addition of a linkage parameter specified by the caller’s class file,
validated by the callee’s class file, and recorded as a specialization
anchor for the callee.

The new concept of API point reference extends the pre-existing
concept of a symbolic reference. An API point reference can be any of
the following:

• An invariant constant may represent the name of an API
point, i.e., a class, interface, field, or method. (This has been
true in all versions of the JVM.)

• A CONSTANT_Class may be wrapped in a
CONSTANT_SpecializationLinkage item, thus
embodying a parametric API point reference, to a “species”
of a class or interface.

• A CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref may be wrapped in
a CONSTANT_SpecializationLinkage item, thus

embodying a parametric API point reference, to a specialized
field or method (of a class or interface, or of a species of
class or interface).

• A CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref may refers to its
internal CONSTANT_Class item via an intervening
CONSTANT_SpecializationLinkage item, thus
embodying an API point reference within a species of the
class containing the field or method.

Note that a reference to a field or method can be doubly
parametric, when its internal CONSTANT_Class item is wrapped in
an internal CONSTANT_SpecializationLinkage item, and the
field or method reference is also wrapped, as a whole, in another
CONSTANT_SpecializationLinkage item. Such a doubly
parametric API reference typically resolves to a bi-variant member of
a species.

All of these symbolic references, both invariant (purely symbolic)
and parametric, are API point references. Their various configurations
are summarized in Diagram 4.4-F(b).

Dependencies between constants
There are new relations between certain existing constants and the
new constants. By depending (directly or indirectly) on some
CONSTANT_SpecializationAnchor constant, some existing
constants can become parametric.

A constant structure A depends directly on another constant
structure B if and only if one of the following circumstances is true:

• A contains an index referring to B.

• A contains an index referring to an entry E in the bootstrap
method table (§4.7.23) of this class file, and one of the
static arguments of E refers to B.

• A is a CONSTANT_SpecializationAnchor_info of
kind PARAM_MethodAndClass and B is the
corresponding
CONSTANT_SpecializationAnchor_info of kind
PARAM_Class (which must exist and be unique).

The transitive closure of direct dependency is simply called
dependency, and the condition of dependency without direct
dependency is called indirect dependency.

Thus, a constant structure A depends indirectly on a constant
structure C if and only A does not dependent directly on C, but one or
both of the following circumstances is true:

• A depends directly on some B which depends directly on C.

• A depends directly on some B which depends indirectly on C.

We say simply that a constant A depends on a constant B if A either
depends directly or depends indirectly on B.

Dependency is a static, syntactic relation between constant
structures in the constant pool of a class file.

Dependency can be circular, although this requires special care to
avoid infinite regression during resolution. A constant A can depend
on itself if and only if it depends directly on itself, or else it depends
directly on another constant B that in turn depends on A.

The following structural constraints are enforced on dependencies
between constants within the constant pool of a class file:

• No CONSTANT_SpecializationAnchor may depend
on itself. (…Because it must be possible to resolve its
arguments before it is bootstrapped.)

• If there is an anchor of kind PARAM_Class, it is unique in
the constant pool of the current class file. (…Because
there is exactly one class per file, at least at present, and
because class specializations don’t nest inside any other
specializations.)

• If any constant A depends on some anchor R of kind
PARAM_MethodOnly, then A depends on no other anchor
of any kind. (…Because method-only specializations do not
nest inside any other specializations.)

• If a constant depends on some anchor of kind
PARAM_MethodAndClass, it depends on the anchor of
kind PARAM_Class, and no other anchor. (…Because
method-and-class specializations nest only in class
specializations.)

A constant A is said to be parametric (or sometimes “variant” as
opposed to “invariant”) when it depends on a
CONSTANT_SpecializationAnchor constant R. A parametric
(or variant) constant A is said to be “parametric over” (or “variant
over”) an anchor R, if it depends on R. (Briefly, we can say “A is R-
variant”.) Also, a CONSTANT_SpecializationAnchor constant
is said to be parametric over itself, even though it does not depend on
itself.

Thus, parametricity (over some R) originates in an anchor (R) and
is passed to all constants which depend on it. Also, any constant is
therefore in one of these categories:

• It is invariant, neither an anchor, nor depending on any
anchor either directly or indirectly. (This is the status of all
constants in any class file that lacks specialization anchors.)

• It is parametric over an anchor (the unique one) of kind
PARAM_Class, but no other anchor. Such a constant may

be called “class-variant”, relative to the class or interface
defined by the class file.

• It is parametric over a single anchor of kind
PARAM_MethodOnly. Such a constant may be called
“method-variant”, in every method which refers to it via its
Parametric attribute (§4.6).

• It is parametric over an anchor of kind
PARAM_MethodAndClass, as well as over the anchor of
kind PARAM_Class. Such a constant may be called
“doubly-variant” or “bi-variant”, in every method which
refers to it via its Parametric attribute (§4.6). For such a
constant we say that its PARAM_MethodAndClass anchor
is the “inner” or “more specific” anchor and the
PARAM_Class it depends on is the “outer” or “less
specific” anchor".

If two constants are variant in common over exactly one anchor, we
say they are co-parametric with each other and with that anchor. If
two constants are bi-variant in common over exactly the same two
anchors, we also say they are co-parametric with each other and with
the inner anchor. If we also say that all invariant constants are
mutually co-parametric, then the relation between co-parametric
constants divides the constant pool into 1+N equivalence classes,
where N is the number of anchors in the class file.

We may also say that class-variant constants (including the class-
variant anchor itself) are sub-parametric to all bi-variant constants
(including anchors) in the same class file.

The resolution of any given
CONSTANT_SpecializationAnchor constant will be seen
(§4.X) to make use of the bootstrap method and static arguments. The
restrictions on constant dependencies listed above imply that the
bootstrap method and its static arguments must be invariant, unless an
anchor bi-variant, in which case any of its dependencies may also be
class-variant (sub-parametric to the bi-variant anchor).

An invariant constant has at most one resolved value, globally.
Though it does not depend on any specialization anchor, an invariant
constant may make use of parametricity mechanisms in the JVM. For
example, if ArrayList were a class, and
ArrayList<InlineInt> were a species of that class, a constant
referring to the latter species would be invariant.

The following new direct dependencies are allowed between
existing constants and the new ones:

• Any constant that refers to a CONSTANT_Class constant
can instead refer to a
CONSTANT_SpecializationLinkage constant which
wraps an equivalent CONSTANT_Class constant. In
particular, the class_index field of a
CONSTANT_Methodref,
CONSTANT_InterfaceMethodref, or
CONSTANT_Fieldref may refer to a
CONSTANT_SpecializationLinkage constant that in
turn refers to a CONSTANT_Class constant via its
reference_index.

• Any constant that refers to a bootstrap method
(CONSTANT_InvokeDynamic, CONSTANT_Dynamic,
or CONSTANT_SpecializationAnchor) may depend
directly on a CONSTANT_SpecializationAnchor
constant or a CONSTANT_SpecializationLinkage

constant as one of its static arguments, because both of those
new constants are in the pre-existing category of loadable
constants.

• A CONSTANT_MethodHandle constant may depend
directly to a CONSTANT_SpecializationLinkage
constant. The behavior of the resulting method handle will be
derived from the corresponding bytecode behavior (§5.4.3.5),
as modified by the specialization, which therefore must be
incorporated into the resolved method handle.

The meaning of a CONSTANT_SpecializationLinkage
constant depends on context. When used directly by a bytecode
instruction to access an API point, it will denote the ordered pair of
both a symbolic reference to an API point and a linkage parameter to
validate for that API point. But a
CONSTANT_SpecializationLinkage constant used as a
loadable constant (via ldc or as a static argument), if it wraps a
CONSTANT_Class, resolves simply to a species mirror for a
specialization of that class. Other linkage constants (not wrapping
CONSTANT_Class items) have no loadable value at all.

A CONSTANT_MethodHandle constant that refers to a
CONSTANT_SpecializationLinkage constant will capture
both components (API point and specialization anchor), in the form of
an associated specialized bytecode behavior that depends both on the
API point and on its specialization.

The relations between constant pool constants (both old and new)
are summarized in Diagram 4.4-E.

Parametric API points and the Parametric
attribute

The new Parametric attribute is a fixed-length attribute in the
attributes table of a ClassFile, field_info, or
method_info structure (§4.1, §4.5, §4.6).

Its purpose is to mark an API point (a class, interface, method, or
field) as parametric and therefore specializable (variant) with respect
to an indicated anchor constant.

The effect of this attribute is granular and independent for each API
point. Any API point which lacks a Parametric attribute will be
invariant and not subject to specialization. In particular, fields and
methods do not implicitly partake of variance (of kind
PARAM_Class) from their enclosing class or interface. For a field or
method to be co-parametric with (or bi-variant over) the enclosing
class, its field_info or method_info structure must contain a
separate Parametric attribute selecting the anchor of the class (or a
PARAM_MethodAndClass anchor, in the bi-variant case). A
method whose Parametric attribute selects an anchor of kind
PARAM_MethodOnly is not co-parametric with its enclosing class.
Because specialization requires extra “bookkeeping” in the JVM, we
never make fields or methods parametric by default, but rather require
that parametricity is opted into by each API point.

The Parametric attribute has the following format:

Parametric_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 anchor_index;
}
The items of the Parametric_attribute structure are as
follows:

• The value of the attribute_name_index indicates the
string "Parametric".

• The value of the attribute_length item must be two
(2).

• The value of the anchor_index item must be a valid
index into the constant_pool table. The
constant_pool entry at that index must be a
CONSTANT_SpecializationAnchor_info structure
(§4.4.X) denoting a specialization anchor R and representing
the parametricity (i.e., variance) of the corresponding class,
interface, field, or method.

A API point (class, interface, field, or method) is “parametric” (or
informally “variant”) if and only if the structure which declares it has
a Parametric attribute. A parametric API point is “directly
parametric over” the specialization anchor R indicated by the index
stored in its Parametric attribute. A parametric API point is
“indirectly parametric over” a PARAM_Class anchor R if it is
directly parametric over a PARAM_MethodAndClass anchor Q,
and it is simply “parametric over” an anchor R if it is either directly or
indirectly parametric over R.

A class or interface may only be parametric over the (unique)
specialization anchor of kind PARAM_Class in the same class
file.

A non-static field may only be parametric over the same anchor as
its enclosing class or interface (which thus must be of kind
PARAM_Class).

Since a non-static field is part of the layout of its enclosing class, it
cannot vary independently of the class itself (barring heroic hidden
indirections).

Parametric static fields are TBD.

It seems likely that parametric static fields will be useful, and that
their states can be conveniently implemented alongside their split
constant pool states. Perhaps they can be stored inside relevant
SpecializationAnchor mirror objects, just as class statics are
stored in Class mirror objects. But there is no plausible language
model for them yet. One problem is that <clinit> pseudo-methods
cannot be made parametric in any useful way.

A method may be parametric over any kind of specialization
anchor.

All API points that are directly parametric over some specialization
anchor R are said to be co-parametric with each other. They are also
said to be co-parametric with constants that are co-parametric with the
same anchor R.

Loosely speaking, we are extending the dependency relation
between constants to include API points as well, by defining that an
API point depends directly on the constant referred to by its
Parametric attribute.

As a general principle, any definition of a parametric API point
(class, interface, method, field) is interpreted in the context of the
indicated specialization anchor. Also, any parametric API point can be
called (invoked or accessed) with a caller-proposed value that selects
a specialization. Because specialization anchors are internal to each
class file, and are not named directly from outside, the presentation
of an anchor from a use to a definition is always in the context of
some named API point. Thus, no additional naming mechanism is
required to negotiate the mapping of linkage parameters to
specializations.

This is in contrast to other systems, where an explicit parametric
type system is built into the descriptors used by the managed runtime
to select API points. Such an explicit type system had better be
perfect, because it is much more difficult to evolve than a system of
dynamic checks.

For compatibility and convenience, a caller is always permitted to
omit a linkage parameter value. The callee is specified to use an
internally generated default specialization anchor, which is set up
when the API point’s class is prepared. Also, callers can propose
linkage parameters for callees which (after link resolution) turn out to
be declared as invariant. (The treatment of such unused parameters is
TBD. Perhaps they will be quietly ignored; perhaps there will be a
diagnostic “hook”.)

There is no direct mechanism for acquiring the specialized type of
a parametric class member (field or method), although such data is
surely useful. It can be acquired simply enough via a dynamic
constant, which first computes a CONSTANT_MethodHandle
constant for the specialized API point, and then extracts the
MethodHandle.type property of the resulting bytecode behavior.
More direct mechanisms may be created as needed. Translation
strategies can also supply this information via the assigned loadable
constant values of resolved
CONSTANT_SpecializationLinkage constants.

There is no direct mechanism for acquiring a reflective class or
interface species, although (again) such data is surely useful.
Translation strategies can supply this information via the assigned

loadable constant values of resolved
CONSTANT_SpecializationLinkage constants. It is
recommended (though not strictly required) that the resolved constant
value of a CONSTANT_SpecializationLinkage constant
which wraps a CONSTANT_Class constant should resolve to a
species object that reflects the resolved specialization of the class.

To cover the previous two use cases (reifying specialized field and
method types, and type species), a direct mechanism for extracting the
type of an API point could be supported by a third new constant pool
type, CONSTANT_Species, which extracts the type information
more directly. Such a feature seems “nice to have”, so we’ll reserve it
as a possible support for translation strategy. Probably there are more
such “nice to have” features, which will be discovered as we
prototype our translation strategies. For now, we will delegate the
burden of organizing such information onto the translation strategies.

The relations of the Parametric attribute with other class file
structures, including its reference to a
CONSTANT_SpecializableAnchor item in the constant pool,
are summarized in Diagram 4.7-D(a).

Type-restricted methods and fields and the
TypeRestriction attribute

The new TypeRestriction attribute is a fixed-length attribute in
the attributes table of field_info or method_info
structure (§4.5, §4.6).

Its purpose is to mark a field, method parameter, and/or method
return value as (possibly) excluding values normally permitted by the
type or types denoted by the type descriptor of the field or method.

A type restriction cannot add new values to the type of a field or
method; it can only exclude values. A type restriction may be
ineffectual, in that it excludes no values from any type denoted by the
field’s or method’s type descriptor. A type restriction may be
unpassable by excluding all values from one of the types denoted by
the type descriptor; this makes a field or method impossible to use,
causing an exception to be thrown in the excluded circumstances. A
trivializing type restriction may make a field, method parameter, and/
or method return type trivial (or “unitary”) by excluding all but one
value (the type’s default value) from the corresponding type. A null-
excluding type restriction may make a field, method parameter, and/or
method return type non-nullable by excluding the value null from a
corresponding reference type.

The preceding paragraph is a provisional account of functional
requirements for type restriction objects. There is, in fact, no agreed-
upon design yet for a type restriction API or implementation.

Prototypers should assume, for now, that the following items will be
acceptable as type restrictions: (a) class mirrors, (b) species mirrors,
(c) array type mirrors, and possibly (d) primitive mirrors (such as
int.class) or (e) special tokens for trivializing and/or unpassable
restrictions or (f) a token which wraps a reference type and declares it
non-nullable. Perhaps all those will eventually implement some
common protocol.

The TypeRestriction attribute has the following format:

TypeRestriction_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 restrictions_count;
 u2 restrictions[restrictions_count];
}
The items of the TypeRestriction_attribute structure are as
follows:

• The value of the attribute_name_index indicates the
string "TypeRestriction".

• The value of the attribute_length item indicates the
attribute length, excluding the initial six bytes. (Therefore it
must be 2+2*N, where N is the value of
restrictions_count.)

• The value of the restrictions_count item indicates
the number of entries in the restrictions array. (There
are further restrictions on this value, which are described
below as restrictions on the length of the following
restrictions array.

• The value of each restrictions item must be either zero
(0) or else a valid index into the constant_pool table.
Each item must correspond to a field type (for the sole item),
the method return type (for the first item), or a method
parameter type (for subsequent items). The
constant_pool entry at that index (if not zero) must be a
loadable constant K, which when resolved supplies type
restriction information for a field value, method return value,
or method parameter value for the field F or method M
associated with this attribute. This constant K may be co-
parametric with F or M.

A field or a method which only restricts its return type will only
need one item in the restrictions array. A method which
restricts one or more of its parameters will need more than one item
XXX

There is a structural constraint on the length of the
restrictions array. For a field, the array must not have more
than one item. For a method, the restrictions array must not
have more than 1+N items, where N is the arity of the method. (The
arity counts long or double values once, not twice.) Type
restrictions are applied only to types which correspond to non-zero
items present in the array.

Thus, the array is allowed to be shorter than its maximum length,
and is logically padded out with zeroes. Informally, the array must not
be so long that it contains elements (whether zero or non-zero) that
fail to correspond to restrictable types.

For a method, the first restriction item corresponds to the
method return value, even if the method returns void.

Although type restrictions are envisioned as applying primarily to
classes and interfaces, they may apply in the future to void or built-
in primitive types. For this reason, the restrictions array
includes entries which correspond to void returns and values of
primitives like int and long.

It is recommended that the restrictions array be non-empty,
and that it end with a non-zero item. However, the JVM must always
be prepared to deal with either zero items, or non-zero items which
resolve to ineffectual type restrictions (such as “any Object”).

As will be seen, a type restriction on a field or method affects all
accesses to that field or method.

Any item in the restrictions array may refer to an invariant
constant. If the field or method it applies to is parametric, any item in
the array may also be co-parametric with that field or method.
Parametric type restrictions are applied to parametric accesses and
also to specialized instance fields or specialized virtual methods.
Invariant type restrictions are applied to all accesses.

The effect of a type restriction is granular and independent for each
field or method declaration. Type restrictions are not transferred to
related API points, such as overriding methods in other class files.
Type restrictions can affect the behavior of API points in a way that
callers can see, since they can block callers from storing or passing or
receiving excluded values.

There is no direct mechanism for acquiring the specialized type of
a type-restricted field or method, although such data is surely useful.
It is possible to envision special rules for
CONSTANT_MethodHandle constants for the type-restricted API
points that somehow use the MethodHandle.type property to
encode type restrictions, but since type restrictions are not themselves
types, this seems like the wrong tactic. For now the present, we will
assume that, at the very least, there will be a reflective API to query
type restrictions on API points. Perhaps a direct query can be created
by building up a variation of the CONSTANT_MethodType item,
which points to a type-restricted API point instead of a descriptor
string.

The relations of the TypeRestriction attribute with other
class file structures, including its reference to type restriction items in
the constant pool, are summarized in Diagram 4.7-D(b).

(It seems possible, to some observers, that some version of the
TypeRestriction attribute might appear in the future on a class
or interface as a whole, rather than merely on its fields or methods.
This might be the case if it would be useful to declare a parametric
restriction that somehow applies to the class as a whole, rather than to
its various members. Note that a species embodies such a whole-class
type restriction; perhaps there are connections between species and
type restrictions which are not yet fully understood.)

Specialized and/or parametric super types

A class’s superclass and any implemented interfaces are collectively
called super types (sometimes just supers).

Unlike fields and methods, whose types are declared via “flat”
CONSTANT_Utf8 descriptor strings, super types are indicated in the
class-file by references into the constant pool, to CONSTANT_Class
constants. This allows them to participate in specialization without
requiring separate Parametric attributes.

Independently of whether a class or interface itself is parametric
(i.e., has a Parametric attribute), any of its super types may be
accompanied by a proposed linkage parameter, that is, by means of a
CONSTANT_SpecializationLinkage constant which wraps a
CONSTANT_Class constant.

As always, an interface may not specify any super class other than
the mandatory java.lang.Object. In fact, it must also be a
simple invariant CONSTANT_Class.

As always, the super class must be a symbolic reference which
resolves to a class not an interface, and each super interface must be a
symbolic reference which resolves to an interface not a class.

When a class or interface C has a specialized super S, the reference
to S may take one of three forms:

• The super reference S is an invariant CONSTANT_Class
constant, even though S has been declared as parametric.
(For example, OldList extends ArrayList.) In this
case, the class or interface is a subtype of the default “raw”
species of the type named by S.

• The super reference S is both invariant and is a
CONSTANT_SpecializationLinkage constant that
wraps the name of S. (For example, PointList
extends ArrayList<Point>.) In this case, the class
or interface is a subtype of the species obtained by resolving
S. The specialization information for S is recorded locally in
the constant pool for C (specifically, in the resolution state of
the CONSTANT_SpecializationLinkage constant for
S). Before the class or interface C is loaded, the type S is
loaded in its unspecialized form, temporarily ignoring the
linkage constant. After C is loaded, when it is prepared, the
species S is then resolved, using the linkage parameter
resolved from C’s constant pool.

• The super reference S is parametric not invariant. In this case
C must also be parametric, and S must be a
CONSTANT_SpecializationLinkage constant co-
parametric with C. (For example, MyMaps<K,V>
extends ArrayList<Map<K,V>>; note that the
type variables don’t have to “line up” exactly.) Before the
class file for C is loaded, the type S is loaded in its

unspecialized form, temporarily ignoring the linkage
constant. Later on, when each distinct species of C is
prepared, the reference S is specialized by the bootstrap
method for the specialization anchor of C, and the JVM
records the subtype relation between the species of S and C.
(See the discussion of “s-tables” below.)

The third case, of a parametric super, amounts to a super-type
restriction which is applied differently to different species.

As discussed elsewhere, the JVM immediately prepares a “raw”
default species of any variant C that it loads. If this C has a co-
parametric super S, then the JVM records the “raw” default species of
S as the corresponding super for the default species of C, regardless of
any structure of the constant pool reference for S. Thus, the co-
parametric supers of a default species will be “raw all the way up”.

This restriction simplifies the special processing of default species,
especially in their role as “raw” universally compatible versions of
specializable types.

Volume II: Linkage of Specializations
(JVMS-5.4)
During execution, any given constant pool entry of type
CONSTANT_SpecializationAnchor is prepared and
(eventually) acquires a resolved value as a result of cooperation
between two class files (containing two constant pools), the caller and
the callee. The caller proposes a linkage parameter value for an API
point in the callee. If the API point declaration is in fact variant over
the anchor in the callee, the callee then validates the linkage
parameter value, and selects or creates a specialization anchor object
which embodies the specialization decisions resulting from the
caller’s request.

This cooperation occurs in the context of the resolution of the API
point, which always includes a symbolic reference (to a class,
interface, method, or field). The extra linkage parameter is resolved in
the caller’s constant pool, and then validated relative to the API
point’s declared anchor, as determined by the Parametric attribute
of that API point in its declaring class file.

After resolution, the specialization anchor object is recorded as a
permanent agreement between the caller and callee, specifically in the
resolution state of the CONSTANT_SpecializationLinkage
constant in the caller.

During execution of code in the callee, the specialization anchor
object reappears as a value of the
CONSTANT_SpecializationAnchor constant in the callee. The
callee can make use of the specialization decisions embodied in the
anchor by feeding the anchor as a proposed linkage parameter to its
own CONSTANT_SpecializationLinkage constants, or by
using CONSTANT_Dynamic constants to derive types, constants,
and behaviors from the anchor.

Inheritance and overriding have additional effects on anchors,
which are described elsewhere. It is always the case, however, that
every symbolic resolution operation determines a particular API point
declared in a particular class file, and that declaration controls the
validation of any linkage parameter proposed by the caller.

Of course a class file can call one of its own API points, in which
case the caller and callee would be a single class file. Nevertheless it
is useful to clearly distinguish the responsibilities and actions of the
caller from those of the callee. Sometimes we will use the caller-

centric terms “local” and “remote” to describe the two perspectives,
where the caller makes a “local” request to bind a anchor on a
“remote” API point defined by the callee.

The validation process includes a decision (by the callee) whether
to prepare a new resolution state for the
CONSTANT_SpecializationAnchor constant, or whether to
reuse a previously prepared resolution state. The JVM always
supplies, as an option to the callee, a default specialization for every
anchor, which is prepared at the same time as the invariant constants
are prepared (during preparation of the class as a whole).

A “raw” symbolic reference, free of any involvement with
CONSTANT_SpecializationLinkage wrappers, will always
select such a default specialization, which in turn will operate (as far
as the user can see) as if the compilation of generic classes still uses
erasure as a translation strategy.

Validation always occurs relative to a particular anchor in a
particular class file. In order to make the process of validation
efficiently checkable and idempotent, the JVM defines a special type
SpecializationAnchor (in package java.lang.invoke)
which embodies validation of a linkage parameter, and all
specialization decisions implied by that parameter. Each instance of
this type is “locked” to a specific
CONSTANT_SpecializationAnchor constant in a specific
class file. As such, it is a pre-validated linkage parameter for any API
point in that same class file that is parametric over the same anchor
constant. It is invalid for all API points in other class files, or
differently parametric API points in the same class file. However, the
same SpecializationAnchor can be reused (efficiently, without
revalidation) for multiple API points in the same class file, as long as
they are co-parametric over a common anchor.

The internal structure of a SpecializationAnchor object can
be organized so as to make frequent checking operations simple and
fast. The important operations on it include finding the resolved
values of derived parametric constant pool constants, checking that
object instances have congruent species, perhaps finding “friend”
specialization anchors (such as those for super- or sub-classes), and
ensuring that CONSTANT_SpecializationLinkage states are
correctly set up.

A SpecializationAnchor object is deemed validated “from
inception”. As soon as one is created, it is immediately valid with
respect to the CONSTANT_SpecializationAnchor it is created
with reference to. To protect encapsulation, all public factory methods
for SpecializationAnchor require a full-power Lookup object
for the class file that contains the
CONSTANT_SpecializationAnchor in question. (The
Lookup can be obtained from inside the class file, or by means of a
privileged operation performed by a trusted language runtime.) This
implies that returning a SpecializationAnchor object from a
bootstrap method does not confer additional validity on it, but simply
associates it with a particular client of an API point.

There are many potential language-specific aspects of the
SpecializationAnchor object’s API, such as a memoization of
the originally proposed (yet unvalidated) linkage parameter value, or
some sort of assembled metadata for use by reflection, or derived
values such as species or specialized field and method types. It is clear
that we cannot design in such aspects to the core API of
SpecializationAnchor. It is thus an open issue (TBD) whether
those aspects should be adjoined to the SpecializationAnchor
API using inheritance or composition. In the case of composition,
SpecializationAnchor<T> will be given a language-specific

https://docs.oracle.com/javase/specs/jvms/se15/html/jvms-5.html#jvms-5.4

internal variable of type T which carries the weight of the language
runtime’s bookkeeping requirements, and instances are created (by the
language runtime) with their partner object. In the case of inheritance,
SpecializationAnchor is a more open class which can be
subclassed by language runtimes, even though its constructor is
(somehow) protected from arbitrary access. The case is complicated
by the requirement that default specializations (representing “raw”
types) should be created unilaterally by the JVM; this means that a
specialization for the “raw” version of a class or interface must have a
JVM-assigned class, not one determined during the course of a
bootstrap call. It seems cleaner, for prototyping, to resort to
composition, and give SpecializationAnchor a few one
runtime-assigned variables. For JVM-created default specializations,
the variables can be initialized to “boring” values like null (forcing
the runtime to “just deal” with the annoying nulls) or else ask an
anchor’s bootstrap method to create the either all default
specializations, or else the runtime helper objects for such
specializations. But running bootstrap methods is not free; it can
easily cause infinite bootstrap recursion if run in the early phases of
class loading. For now, “just deal with the nulls” is the easiest way
forward for JVM prototyping, but it seems a more equitable solution
(allowing the runtime to participate in default specialization creation)
is in the cards.

From the caller’s point of view, a proposed linkage value can be
any loadable constant pool constant. This loadable constant can be
either known to be previously validated (e.g., a locally known
SpecializationAnchor object) or some unvalidated value
(which can be any object whatsoever). In the validated case, the
constant value will always be a reference to an object of type
SpecializationAnchor, produced by the anchor constant
associated with the callee’s API point.

In this design, validation is idempotent, not a transform from one
type to another, from one point in an API scheme to another. It might
seem cleaner to rigidly separate the “random junk” that callers
propose for linkage parameters, from the validated
SpecializationAnchor values, with separately typed API
points for each. But such a design would satisfy no practical need,
because in practice, every anchor proposal, at every API point, is
tentative. This is true because specialization is an internal aspect of
each API point, and can change (after recompilation of the API point
declaration) at any time. Callers can guess at proper specializations,
but the “handshake” between proposed parameters and validated
anchors must be performed as a part of API point linkage. This is
seemingly unfortunate, but the situation can be made much more
tenable by ensuring that callers are likely to guess good (valid)
anchors, and that the JVM can quickly revalidate them (without
expensive bootstrap calls). In this setting, we don’t need or want
separate types; we expect that unvalidated values will (despite
separate compilation and dynamic linking) quickly converge to
validated values. And using separate types for both would only delay
such a convergence.

Also, from the caller’s point of view, a proposed linkage value can
be either an invariant constant or a parametric constant. In the latter
case, some previous caller must have already proposed a value for the
variant constant’s underlying specialization anchor, and that value was
validated and agreed upon, so that there is a well-defined current
resolution state for the variant constant.

Thus there are four cases for a caller’s constant pool entry to
propose a linkage parameter:

• validated, invariant: A SpecializationAnchor
constant, which once determined is constant for all
invocations of the caller. Example: A

SpecializationAnchor object for the
CONSTANT_SpecializationAnchor of a parametric
interface java.util.List, denoting a species
List<Point> for some other type Point.

• unvalidated, invariant: A value to be passed to an anchor’s
bootstrap method which is intended to request creation of
some specialization, and/or a specialization anchor created
for some other (perhaps related) API point. For example, a
record instance requesting creation of List<Point>
whose components are class mirrors for List and Point.
Or, as another example, a SpecializationAnchor
object for a class java.util.List, denoting (as before) a
species ArrayList<Point>, which is being proposed as
the linkage parameter for an API point (perhaps a
constructor) of a subtype java.util.ArrayList.

• validated, variant: A constant of type
SpecializationAnchor which is also parametric, and
thus depends on an ambient anchor value (perhaps itself). For
example, in the context of a generic method
Arrays.<E>sort, the
CONSTANT_SpecializationAnchor which
determines E, and which is used to invoke some private,
equivalently-parametric subroutine called (say)
Arrays.<E>mergeSortHelper. Or, as another
example, in the context of the same method, a call to a
method in a helper class, SortHelpers<T>, where the
linkage parameter is obtained from a constant (in the caller
class Arrays) that reifies the type SortHelpers<E>, for
each ambient value of E in Arrays.<E>sort.

• unvalidated, variant: A linkage parameter to be passed to an
anchor’s bootstrap method which is somehow dependent on
some (previously determined) ambient specialization anchor.
For example, in the context of a generic method
Arrays.<E>sort, a CONSTANT_Dynamic constant
whose input is the class mirror corresponding to the
contextual value of E, and which computes the mirror of a
derived type such as E[] or List<E>, to be further
proposed as a type parameter value for some other API as
part of the execution of sort.

Preparation of Constants

A constant is prepared when storage for its resolution state is assigned
to it. When first prepared, most constants are in the unresolved state,
but some are immediately set to some known value. A
CONSTANT_SpecializationAnchor is always prepared
resolved a SpecializationAnchor reference. (Constants which
are not resolved, or which have trivial resolutions, may also be viewed
as being prepared in a final state.) The rules for preparation of
resolution states of constants are as follows:

• Invariant constants are prepared (if necessary) when their
declaring class is prepared.

• Every CONSTANT_SpecializationAnchor is
prepared once as a default specialization (in a “raw” empty
state) when its declaring class is prepared.

• A CONSTANT_SpecializationAnchor is
(subsequently) prepared in response to a library call (see
SpecializationAnchorBuilder below) which
creates a fresh specialization anchor for that specific anchor

constant. Such a call is typically the result of a validation
request.

• Every constant C which is parametric over some anchor R is
prepared exactly as many times as R itself is prepared. In
fact, C and R is prepared at the same time as the associated
SpecializationAnchor object is created. The
resolution states of R and C can be accessed via that
SpecializationAnchor object.

Thus, each SpecializationAnchor object serves as a handle
on a set of consistently specialized constant resolution states. When a
method executes bytecodes in the context of a caller-supplied
SpecializationAnchor object, variant constants are determined
relative to the resolution states of that same specialization anchor. As
with all constant pool resolution states, these states start out in a
neutral state, but eventually resolve to a permanent result, either
successfully with a metadata reference or value, or else to a
permanently recorded resolution error.

The information content of a SpecializationAnchor object
includes the following items:

• Anchor identity: An internal reference to the metadata
describing the CONSTANT_SpecializationAnchor
constant R which it binds, within the run-time constant pool
of the particular loaded class file F that defines it.

• Parameters: One or more arbitrary object references
permanently associated with the anchor when this
specialization created by the language runtime. The JVM
assigns no particular meaning to the runtime value. It may be
a list or tuple of type mirrors, for example. In the special case
where this object represents a JVM-created default
specialization, only a null reference is visible.

• Species: A species object which represents this specialized
class in which this specialization is situated. If the class is
not specialized (with respect to this anchor), then the “raw”
Class mirror is reported instead. (Or null? TBD.)

• Dependent constants: A set of resolution states, one for
each constant C which is parametric over R. (Constants bi-
variant R and Q are omitted from these resolution states if R
is the outer anchor to Q.) These states are prepared and added
to the run-time constant pool of the loaded class file F
when the SpecializationAnchor object is created.

• Outer specialization: If the anchor R is not of kind
PARAM_MethodAndClass, a null reference. Otherwise,
a second SpecializationAnchor object which
specializes R’s outer anchor Q, which is of kind
PARAM_Class. Note that the constant pool states for this
outer specialization may be shared by many specializations
of R.

• Associated class: A reference (of type Class<?>) to the
particular class declared by the class file F, and containing
the specialization anchor R. (This value is logically derived
from the anchor identity, but may be physically present in a
field of the SpecializationAnchor as an
implementation artifact.)

• Associated fields: A set of methods which are parametric
over the anchor of this specialization, along with their type

restrictions. (This is for reflection only, and may be safely
omitted while prototyping.)

• Associated methods: A set of methods which are parametric
over the anchor of this specialization, along with their type
restrictions. (This is for reflection only, and may be safely
omitted while prototyping.)

• Associated default: The unique
SpecializationAnchor object representing the default
specialization for the anchor R. A default specialization
points to itself as its associated default. (This value is
logically derived from the anchor identity, but may be
physically present in a field of the
SpecializationAnchor as an implementation artifact.)

The data structure itself appears to require about five fields per
distinct SpecializationAnchor, plus an array element for each
distinct resolution state of the dependent constants. It seems likely that
preparation of resolution states can handled with a simple Java object
array allocation of an appropriate size, with suitable conventions for
distinguishing unresolved, resolved, and erroneous states.

Resolution of
CONSTANT_SpecializationLinkage
constants

Any use of a CONSTANT_SpecializationLinkage in place of
the symbolic reference that it wraps first resolves the symbolic
reference to an API point M.

Next, if the API point M is not parametric, the result is as if the
CONSTANT_SpecializationLinkage constant were not
present, but rather the “raw” symbolic reference had been used from
the start.

If the API point M is parametric over some R, then the proposed
linkage parameter value referred to by the
CONSTANT_SpecializationLinkage constant is resolved. The
resulting value is then validated against M’s anchor R, using a
bootstrap method (declared on R) if necessary.

After successful resolution (including validation) of the
CONSTANT_SpecializationLinkage constant, both resolved
components are permanently recorded by the JVM: the symbolic
reference, and the specialization anchor object. In the case of
unsuccessful resolution, the appropriate Error object is recorded for
future uses of the CONSTANT_SpecializationLinkage
constant.

For example, if a CONSTANT_Class constant for some C is
wrapped in a CONSTANT_SpecializationLinkage constant,
and the latter is resolved, then first C is resolved, and then if C is
parametric (which is likely), the linkage parameter value proposed by
the CONSTANT_SpecializationLinkage constant is
immediately validated against C’s anchor. The resulting specialization
anchor object is then permanently recorded with the
CONSTANT_SpecializationLinkage constant. The net result
is that a specialization of C has been determined in the client’s
constant pool. The resolved constant may be used with various
bytecodes, such as ldc (to load the species of C), new (to make a
specialized instance), instanceof (to test an object whether it
conforms to that species of C), or as part of a symbolic reference to
one of C’s members.

Thus, the resolution state of a
CONSTANT_SpecializationLinkage constant records not
only the identity of a remote API point, but also the specialization
decisions appropriate to that remote API point.

The full resolution state of a
CONSTANT_SpecializationLinkage constant is never
accessible as a loadable constant (CONSTANT_Dynamic argument
or ldc bytecode); it is opaque to the caller except in the type
restrictions of the parametric API points, and (of course) in their
behaviors.

In one case only, a CONSTANT_SpecializationLinkage
constant can serve as a loadable constant, and that is when the
constant it wraps is already a loadable constant, that is, a
CONSTANT_Class. In that case, the value from the linkage constant
is the species derived from the specialization anchor (as if by
SpecializationAnchor.species). Note that a single species
may, in some cases, be associated with several class specializations.

A previous version of this proposal exposed an anchor object as the
constant value of a CONSTANT_SpecializationLinkage
constant. This behavior would be contrary to the goal of encapsulating
specialization decisions. The class that produces a
SpecializationAnchor object may choose to expose it through
a public static API point. Such decisions, made by whatever runtime
system implements the bootstrap method, are outside of the JVM’s
purview.

Validation of Linkage Parameter Values

As the latter part of resolving a
CONSTANT_SpecializationLinkage constant, its proposed
linkage parameter value is resolved and validated, against the remote
parametric API point resolved from the symbolic reference.

If the remote API point is not parametric, the linkage parameter is
neither resolved nor validated (because there is no anchor constant to
validate it); instead it is ignored. (This is not an erroneous state; an
API point is always free to ignore proposed linkage parameters.) As a
loadable constant, the resolved value of such a
CONSTANT_SpecializationLinkage constant is a placeholder
value supplied by the runtime (TBD, probably null) which indicates
that the resolved API point was, in fact, invariant.

Otherwise, the API point is parametric over an associated
CONSTANT_SpecializationAnchor defined in its class file. In
that case, a proposed linkage parameter is defined as valid for that API
point if and only if it is a reference to a SpecializationAnchor
object that was created for that anchor, either by the JVM (as the
unique default specialization for that anchor) or by successful
invocation of the anchor’s bootstrap method.

For a remote API point parametric over some anchor R, if the
proposed linkage value V is valid for R, then the resolution state of the
CONSTANT_SpecializationLinkage constant records V. Such
a V may be called “pre-validated”. The simplest example of pre-
validation occurs is when the
CONSTANT_SpecializationLinkage constant proposes a
CONSTANT_SpecializationAnchor local to the class file.
(This is not automatic: If a translation strategy fails to “thread
through” a local anchor value to another local API point usage, then
the “raw” default specialization is selected for that API point.) It may
also happen if a pre-validated SpecializationAnchor is
obtained from some other source (via condy), and placed in the

constant pool where a CONSTANT_SpecializationLinkage
constant can propose it.

If the API point is class-variant, then a
SpecializationAnchor for a bi-variant anchor (in the same
class file) is treated as pre-validated, as well as a
SpecializationAnchor for the class anchor itself.

As a special case, if V is the null reference, and the remote API
point is parametric over some anchor R, then the JVM substitutes the
(internally known) default SpecializationAnchor reference for
that value, and records the latter reference as the pre-validated value.

In all other cases, the proposed linkage parameter will be
something like a quasi-symbolic package of type mirrors, which the
anchor’s bootstrap must validate and map to a species or other
specialization information.

Suppose the remote API point is parametric over some anchor R,
but the proposed linkage value V is not validated for R. In that case,
the bootstrap method for R is invoked. The bootstrap method receives
the proposed value V. It is expected to return a
SpecializationAnchor object reference valid for R, else a
linkage error will be raised. The possible non-erroneous outcomes are:

• A freshly created SpecializationAnchor object (over
R) is returned. The JVM notes the fresh creation, and
prepares fresh new constant pool states for every constant
pool entry parametric over R. (In this case, any parametric
constants of R will be re-resolved, if and when the API point
referred to by the
CONSTANT_SpecializationLinkage constant makes
use of them.)

• A reference to a default SpecializationAnchor object,
created for R when its class file was prepared, is returned.
(In this case, parametric constants of R will continue to be
resolved according to the prepared resolution states of that
special object.)

• A reference to some other pre-existing
SpecializationAnchor object (over R) is returned. (In
this case, parametric constants of R will continue to be
resolved according to the prepared resolution states of that
pre-existing object.)

Note that in all these non-erroneous cases, the returned reference is to
a SpecializationAnchor object which in fact would be pre-
validated in a subsequent linkage request to the same API point.

The erroneous cases are as follows:

• The bootstrap method returns something bad: A
SpecializationAnchor object for some anchor other
than R, or a null reference, or some object which is not a
SpecializationAnchor. In this case, a
BootstrapMethodError is raised instead, just as if the
bootstrap method had thrown that error. (See next case.)

• The bootstrap method throws an exception E. In this case,
validation has failed, and the resolution of the
CONSTANT_SpecializationLinkage also fails with
the exception E (if E is an Error) or else a
BootstrapMethodError wrapping E. (No access to the
API point is possible via this
CONSTANT_SpecializationLinkage constant, and

so there are no resolution states or dependent constants to
worry about.)

The null reference is not allowed as a return from the BSM even
though it is allowed as a pre-validated sentinel selecting a default
specialization. Also, a bi-variant SpecializationAnchor is not
allowed as a return from a BSM which is acting for a PARAM_Class
anchor. The return value must be a SpecializationAnchor
exactly for the requested anchor constant.

If an API point is parametric but it is used via a “raw” symbolic
reference (not augmented by a
CONSTANT_SpecializationLinkage constant), the the anchor
is linked to its default “raw” instance, just as if a
CONSTANT_SpecializationLinkage constant were used, but
had proposed the default specialization for R (or null, equivalently).
According to the rules above, this effective proposed value is in fact
pre-validated, and does not require a bootstrap method call.

An earlier version of this proposal called for the bootstrap method
to be executed, but on further consideration this seems to be a feature
which is both error-prone and not particularly useful. Instead, the
JVM guarantees that all API points always accept invariant uses,
applying the JVM-supplied default SpecializationAnchor to
them. One might wish for a way to prevent some API points from
accepting “raw” default specializations, but truly effective prevention
of raw access appears to be a research project, rather than something
achievable by a simple design decision. (Part of the research would be
to decide how to adjust the core reflection API, such as
jlr.Method.invoke, which currently requires some sort of
default specializiaton setting for API points that it reflects.) Note that
translation strategies which aim to avoid default specializations (for
selected API points) can partially avoid default specializations by
compiling default-rejecting guards into their methods and other paths,
and can spell names in such a way that legacy code cannot
accidentally link to them.

The default specialization can also be used (if desired) for the
behavior of all kinds of malformed API accesses, allowing out-of-date
or “type polluted” clients to quietly fall back to the raw behavior of
the desired API point. This behavior is fully under the control of the
bootstrap method. The only behaviors “hardwired” into the VM are
where a non-parametric API point silently ignores a proposed linkage
parameter, or where a pre-validated SpecializationAnchor
(such as the “raw” default or a previous BSM result) is proposed
during the resolution of a
CONSTANT_SpecializationLinkage constant.

There is some expressive value in allowing the symbolic reference
of a CONSTANT_SpecializationLinkage constant to have its
own variance, so that a method of a parametric class can be
additionally parametric. To allow this, the JVM accepts a
CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref constant to refer to a
CONSTANT_SpecializationLinkage constant wrapping a
CONSTANT_Class, where it would normally simply point to a
“raw” CONSTANT_Class symbolic reference. Thus, references to
fields and methods (but not plain types) can inject specializations into
their class scopes (by wrapping the embedded CONSTANT_Class)
or directly into the field or method (by wrapping the constant as a
whole). In fact, linkage parameters can be proposed at both positions.

There is a loose relation between code and layout customization
and constant preparation. If the validation of a linkage parameter
results in a fresh SpecializationAnchor object with freshly
prepared resolution states for parametric constants, then the VM has

the option to internally customize code and/or data layouts to those
states. VM implementations can refrain from exercising such options.
Conversely, if validation results in the use of a previously created
SpecializationAnchor object (such as the “raw” default
specialization for that anchor, or perhaps some general-purpose
species for a group of erased types), then the VM must use the shared
(perhaps unspecialized) states of the parametric constants in that
SpecializationAnchor object.

There may be library routines and/or optimization directives,
which affect the VM’s decisions to specialized code and/or layout to
particular instances of SpecializationAnchor. In some cases,
the parametric constants within a SpecializationAnchor will
not require any associated code or data specialization; in those cases,
the shared code and data will simply make use of the parametric
constant values as if they were extra invisible arguments to methods
and extra invisible (final) fields in data.

Within a stack frame executing a parametric method, that method’s
CONSTANT_SpecializationAnchor constant resolves (for that
execution only) to the SpecializationAnchor reference
validated by the caller when the caller symbolically resolved its API
point reference to the method.

Additionally, within a stack frame executing a parametric method
within a parametric class or interface, that class or interface’s
CONSTANT_SpecializationAnchor constant resolves (for that
execution only) to the SpecializationAnchor reference
validated by the caller when the caller symbolically resolved its API
point reference to the method.

Thus, an ldc of a CONSTANT_SpecializationAnchor
produces a low-level SpecializationAnchor object. At the
option of the translation strategy, the reflective API of this object can
be used to obtain additional relevant information, such as species or
type variable bindings.

For example, the value method of SpecializationAnchor
returns a value assigned by the bootstrap method that created the
SpecializationAnchor (or null for the JVM-created “raw”
default SpecializationAnchor).

Non-parametric methods do not have access to parametric
constants, not even if the non-parametric method is declared in a
parametric class. In order for a
CONSTANT_SpecializationAnchor constant to resolve in a
method, that method must be parametric over that anchor.
Specifically, in order for a CONSTANT_SpecializationAnchor
constant of kind PARAM_Class to resolve in a method, that must be
either co-parametric with its enclosing class, or or bi-variant. In the
latter case, it can resolve the values of either or both of the relevant
CONSTANT_SpecializationAnchor constants (one for the
class, and one of kind PARAM_MethodAndClass).

The set of loadable constant pool constants (both old and new) is
summarized in Diagram 4.4-G. These constants are usable as
bootstrap method arguments, with the ldc family of instructions, and
as specializations proposed via
CONSTANT_SpecializationLinkage.

Bootstrap upcall details

Bootstrap method calls occur when specialization anchors are
required, but non-valid linkage parameters values are proposed. This
usually occurs in the context of dynamic linkage between a caller and
a callee, where the proposed linkage parameter is not already valid for
the callee.

Bootstrap methods are made in the usual way, as if by
MethodHandle.invokeWithArguments on the specified
bootstrap method, with a leading full-privilege Lookup argument
followed by fixed task-specific arguments, and any static arguments
following last.

It is the responsibility of the language runtime, not the JVM, to
ensure that the results returned by bootstrap method calls are valid for
the context of the JVM event which caused the bootstrap method call.

Default specializations are created for each anchor in a class’s
constant pool during preparation of that anchor. For a PARAM_Class
anchor, this occurs before execution of any class initializer. These
default SpecializationAnchor instances are created
automatically by the JVM, and their characteristics are set
automatically, without any appeal to any bootstrap method.

For any SpecializationAnchor object (default or not) for a
PARAM_Class anchor Q, and for any anchor R of kind
PARAM_MethodAndClass in the same class-file, the JVM
automatically creates (as required) a default specialization for R,
without the intervention of a bootstrap method, which represents the
“raw” default version of R in the context of Q’s specialization (default
or not) represented by the first SpecializationAnchor object.
Such an “inner” default specialization for R is needed as a bootstrap
method argument whenever a R-variant method is to be specialized.

All other SpecializationAnchor objects are created by
runtime code, and injected into constant pools as the result of
bootstrap method invocations.

Validation bootstrap calls
When some given API point is accessed, validation bootstrap calls
occur when all of the following conditions are true:

• The symbolic reference of the API point M resolves to a
declaration located in the class file of some class or
interface C.

• Access checking of M succeeds (relative to the caller).
• The declaration of M is parametric over some R.
• A proposed linkage parameter value V is present (via a

CONSTANT_SpecializationLinkage wrapper on the
symbolic reference for M.).

• V is not already a SpecializationAnchor validated for
R.

• Even if V is already a SpecializationAnchor
validated for some related Q, a valid
SpecializationAnchor for R cannot be derived from
V automatically. (There is one case of such automatic
derivation described below.)

When these conditions all prove true, we may say that “M requires a
validation bootstrap for V”. In such a case, the bootstrap method for R
is invoked on these arguments:

1. A full-privilege Lookup argument for the class or interface
C.

2. The default SpecializationAnchor object B0 for this
anchor R, as previously generated internally by the JVM. (If
R is bi-variant, its outer link may or may not be default, and
in any event carries the result of a previous bootstrap.)

3. The proposed linkage parameter value V, which has failed to
validate to R.

4. …Any static arguments associated with the bootstrap
method.

Note that the specific identity of M is irrelevant to the validation
bootstrap. It may be the case that several methods in C share a
common anchor; any one of them could trigger the same validation
bootstrap, and all of them could contrive to use the single
SpecializationAnchor result in common, if they call each
other using their CONSTANT_SpecializationAnchor constant.

In order for the validation to succeed, the following conditions
must all hold true:

• The bootstrap method call returns normally.
• The result of the call is a reference to a

SpecializationAnchor object B.
• The JVM can observe that B was created for R (as defined by

C).
The “raw” default specialization B0 is always a legitimate return

value for this bootstrap method call. If returned, that specialization B0
selects, on behalf of the requesting client, the default unspecialized
behavior that the JVM would assign to the API point if the client had
not proposed any linkage parameter value V.

Otherwise, the validation will fail with an instance of Error. A
BootstrapMethodError will be created, if no instance of
Error is already being thrown.

The bootstrap when M is a field is provided mainly for symmetry
with the other cases. For parametric field references, it is expected
that the linkage parameter R will be injected into the
CONSTANT_Class component of the CONSTANT_Fieldref, and

not at “top level” on the CONSTANT_Fieldref itself. If this feature
proves incrementally difficult to implement, it can be omitted.

The bootstrap method may consult the API of B0 to learn various
details about the structure of the anchor being specialized and its class
file. This uses a Reflective API available on all
SpecializationAnchor objects.

The bootstrap method may use a factory API for
SpecializationAnchor objects to create a brand new
specialization. This new specialization by default will possess a new
species, if B0 is class-variant. The factory API also allows the
bootstrap method to link two specializations together sharing a
common species.

The bootstrap method is responsible for validating the proposed
linkage parameter V, and for storing appropriate parameter
information in standard locations on the resulting
SpecializationAnchor object. In this way, even if the
specialization anchor is lost, a species all by itself can serve as a
“key” to recover the same specialization state, or an equivalent one.

The JVM may supply a fast path for validating a species when
presented as a linkage parameter, expanding it into a corresponding
specialization anchor.

Reflective API of SpecializationAnchor
Principally for the use of bootstrap methods, a substantial amount of
information is exposed by the API of the Java type
SpecializationAnchor. For any given specialization B, for an
anchor R in the class-file of a class or interface C, the following data
are defined and exposed by the JVM through B’s API:

• The class C which declared the anchor for this anchor.
• An opaque numeric value which uniquely identifies R

(within C).
• Whether R is of kind PARAM_Class,

PARAM_MethodAndClass, or PARAM_MethodOnly.
• A parametric super list describing all parametric supers of C.

(This list will be empty unless R is of kind PARAM_Class.)
• A parametric field list describing all fields F which are co-

parametric with R. (This list will be empty unless R is of kind
PARAM_Class.)

• A parametric method list describing all methods M which are
co-parametric with R.

• If R is of kind PARAM_MethodAndClass parametric over
a Q of kind PARAM_Class, a SpecializationAnchor
object for Q that supplies the class context for B.

• The corresponding “raw” default specialization B0 for B.
In fact, the default specialization B0, in common with all (present

and future) specializations of R, supports reflective queries which
expose all API points in C (including but not limited to M) which are
parametric over R. Their names and descriptors are available to the
bootstrap method logic. Also, the JVM exposes, via B0, the resolved
values corresponding to the anchor_index in the Parametric
attribute of each API point. (If there is no such constant, the
corresponding value is reported as a null reference.)

For additional concrete details, see the section Sample bootstrap
API below.

Because none of the above information is changed by
specialization, all SpecializationAnchor objects B0, B, etc.,
for a given anchor R, whether default or not, report the same reflective
information about R.

A specialization B can be tested whether it is a JVM-prepared
default specialization B0 simply by testing whether a query the
corresponding “raw” default yields B itself again.

Thus the default specialization B0 can also serve as a reflective
proxy unambiguously identifying the anchor R. This may be useful if
the bootstrap wishes to perform some kind of reflection on the class
file to gather more information about the anchor, such as which parts
of class refer to it via Parametric attributes. Such additional
reflective queries are TBD, and are not necessary for Java generics.
The API for SpecializationAnchor may also (TBD) include
(privileged) queries about which constant pool structure, in which
class file, it corresponds to.

As described below, if M is bi-variant, B0 may be a regular default
specialization for R (which is of kind PARAM_MethodAndClass),
or an “inner default” which is previously specialized to some non-
default outer specialization (of kind PARAM_Class). Thus, B0 can
carry “outer” information from an enclosing parametric class,
allowing the bootstrap method to consult the details of the enclosing
specialization in case they are relevant to the further “inner”
specialization of M (and its co-parametric siblings under R).

The bootstrap method is allowed (though not required) to use all
relevant reflected data to create a new specialization encoded in a
fresh SpecializationAnchor B which assigns arbitrarily
specialized types and values to each of the API points parametric over
R. The specialized types are enforced on all clients which use M (or
any of its co-parametric siblings) via such a B. The specialized values
are freely available (as ldc constant values) to all clients which link
to the API points via B.

The parametric super, field, and method lists are all simple arrays.
The elements of these arrays are presented in an arbitrary order
selected by the JVM.

The parametric super array contains nested array items of the form
{x,s}, where each x is a Class mirror for a super S of C that was
declared (using a CONSTANT_SpecializationLinkage
wrapper) as co-parametric with C, and each s is a specializer datum
for S. The specializer datum is derived from the constant pool
structure of the co-parametric reference S in a form which a bootstrap
method can inspect and execute as needed. (The design is TBD; it
may be a reflected ConstantDesc for the variant constant S, or
perhaps a functional transform object.)

Factory API for SpecializationAnchor
When a new SpecializationAnchor must be created, the
bootstrap method is responsible for marshalling all specialization
decisions and handing them to a factory method, which then creates a
fresh SpecializationAnchor object which can then serve as a
record of those decisions, and a location where specialized constants
can be derived.

The factory method takes the following arguments:

• A full-power Lookup object on the class declaring the
anchor, enabling the privilege of creating a new
specialization.

• A default SpecializationAnchor for the same anchor
constant, serving as a template for the new specialization.

For an example, see
SpecializationAnchorBuilder::start below.

The factory method returns a builder object which holds a “larval”
SpecializationAnchor object of the correct shape.

While the specialization object is larval, the builder object can be
requested to initialize the specialization object’s record of parameter
bindings and species. (Other actions are TBD.)

This information is stored permanently in a newly created
SpecializationAnchor object and returned to the bootstrap
method.

When the builder object is told to finish building, it returns the
same SpecializationAnchor object, now permanently in a
state usable by the JVM.

If the anchor is of kind PARAM_Class, the JVM also creates a
species object (of type Species or perhaps Class, TBD) which
embodies and reflects the decisions about supers and field types. The
species method of SpecializationAnchor provides access
to this JVM-created value.

The loadable constant value of a
CONSTANT_SpecializationLinkage constant in any client
which links to this species is that species. This is the only case of a
CONSTANT_SpecializationLinkage constant functioning as a
loadable constant.

The species is automatically created by the JVM when the builder
finishes the object, if none was previously requested via the builder
API.

The bootstrap method is free at any time to discard the builder and
the larval anchor object, and return some other (compatible) anchor
object to use instead.

Effects of type restrictions on parametric fields and methods
The JVM carefully records the association of type restrictions with
specialized fields and methods. It enforces field type restrictions by
requiring all stored values (even the initial default value) to conform
to the restriction. It enforces method argument type restrictions by
casting (or otherwise checking) all passed arguments before method
entry (and even before virtual method selection). It enforces method
return type restrictions by casting (or otherwise checking) all returned
values on method return.

When a field is written, or a method parameter is bound to a value,
its type restriction (if any) is applied as a runtime check. Again, when
a field is read, or a method return value is received, a type restriction
is applied as a runtime check. In any case, when such a runtime check
fails, the access is aborted and a subclass of RuntimeException is
thrown.

For example, a failed check may be reported via a
ClassCastException or NullPointerException or
IllegalArgumentException, depending on the nature of the
type restriction.

Furthermore, even in the case of unspecialized (“raw”) access,
“raw” values stored to specialized instance fields and “raw”
specializations passed to specialized methods are subject to type
restrictions derived from the specialization of the containing object, as
determined dynamically. Untyped reflective APIs also enforce type
restrictions.

In the case of method overrides, two sets of type restrictions are
applied, the type restrictions (if any) for the resolved symbolic
reference to the method (at its call site) and also the type restrictions
(if any) for the selected method. Type restrictions on unresolved,
unselected methods are ignored by virtual calls.

In keeping with the order of operations in a virtual method call,
type restrictions on the resolved methods are applied to arguments
before type restrictions of the selected method. Similarly, a type on
the return type of the selected method is applied before a type
restriction on the return type of the resolved method.

The JVM may simplify the checking process if it can determine
that the type restrictions on the resolved and selected methods are
somehow identical or compatible. It does not enforce any kind of
compatibility on resolved and selected methods.

For non-virtual calls (special and static) only the type restrictions
of the resolved method are consulted.

The JVM is allowed but not required to use type restrictions to
customize internal implementation choices about field layout and
method calling sequence. Whether or not it does so, it must enforce all
type restrictions, whether invariant or parametric.

The effect of such type restrictions is to allow (though not require)
the JVM to organize the storage and representation of fields,
arguments, and return values to “fit exactly” into the restricted types.
Primitive values can be unboxed and stored directly in object layouts
or registers.

In at least some circumstances (discussed below), a restricted type
is allowed to be disjoint from the declared type of the field or method.
In such a case, the field or method is inaccessible (in that particular
specialization). Such a field need not occupy any space in an instance
layout, and such a method cannot be invoked (or cannot return)
without an exception.

Because default specializations contain no type restrictions, the
only field and method types that matter are those reported by the
descriptor strings of the field_info and method_info
structures. Again, because of this, legacy clients of parametric classes
will always see the unrestricted versions of their various API point
types. This lack of type restrictions is one reason we informally refer
to default specializations as “raw”.

Current JVM implementations usually contrive to the layout of
objects so that each (non-static) field has a unique offset within all
objects that contain that field. Doing this requires (typically) a
prefixing scheme where the fields of each superclass precede the
fields of any of its subclasses, in the order of memory layout within
instances of such a subclass. Parametric field types disturb this tidy
algorithm, since a superclass can introduce a field whose size varies
from species to species, thus perturbing the otherwise-constant field
offsets in all the subclasses. This tidy algorithm can be rescued by a
simple expedient: Always allocate all parametric fields (or at least, all
size-variant fields) after all invariant fields. The ordering in the
instance layout would thus be all invariant fields in super- to sub-class
order, followed by all variant fields, in some arbitrary order
(convenient to the JVM). Locating a variant requires an extra
indirection somewhere to find a field offset, and accessing it will in
general require another indirection to determine its type and/or size.

Type restrictions are enforced by the JVM in addition to each
corresponding type enforced by the verifier. This enforcement must
amount to a pointwise narrowing, as if by checkcast, of each field,
argument, and return type. (Any enforcement which cannot be
simulated by checkcast is not attempted, but rather leads to an
error.) This design preserves stack effects and types mandated by the
verifier.

Because the API type information is co-parametric with the API
point, and is enforced exactly wherever this API point is, the JVM is

allowed to construct customized calling sequences or layouts for
specialized API points, if it so chooses.

If we were to allow a method returning a non-void T to specialize
to a void-returning method, the preservation of verifier effects would
require that a default value of T be pushed on the stack. It seems
simpler to disallow any change which would change stack effects,
such as changing between non-void and void, or changing the arity
of a method type, or changing between a primitive type and any other
type. Although it does not seem to buy us anything, we could also
reject valid type conversions that are widenings (e.g., from Number
to Object) or are not proper narrowings (e.g., from Number to
Comparable). We can revisit these questions as we further converge
primitives with class types.

The second set of enforcements, to specialized types, is performed
dynamically, at each invocation or access, by referring to information
stored in the link resolution state at each specialized use point.

The effect is analogous to that of statically inserted casts, in
previous versions of Java generics. Unlike those previous versions,
the casting depends not on a static decision by the bytecode compiler,
but rather by a request from a caller who wishes for a particular
specialization of a parametric API point, after runtime linking to the
declaring class of that API point. There are no bytecoded casts at
specialization points, and generic code is capable of making
specialized type restrictions as well as client code. Also, the final
decisions about type restrictions are made by the generic API point
declaration, and not by its callers.

It may be useful that if a specialized type constant resolves to the
type reflector void.class (or some other sentinel value), the
corresponding API point would produce a LinkageError when
used with the same specialization. This unpassible type restriction
would make the API point inpossible to use for that specialization.

This provides a useful way to translate “logically optional but
physically required” methods and fields. For example, if either a field
or method happens to specialize to void, it becomes unlinkable (in
that specialization). The exact encoding of a vacuous type is TBD; it
may use void.class, null, or some other special token.

If the narrowing of types proves to be inconsistent in some other
way, an error (such as a LinkageError) will also be reported. (In
this case an appropriate BootstrapMethodError might be a
useful diagnostic. This is TBD.)

Reflective APIs will provide access to specialized types assigned to
specialized API points. The special case of void is likely to map to a
sentinel value (such as null) meaning “no valid type is available”.

Note that methods which must return a null value could be
encoded using a hypothetical NullReference token in return
position, if that is an important use case. Likewise, specializing a field
to this token would amount to deleting it from the specialized layout,
and forcing getfield to return a constant null. This may be
useful for solving some compatibility problems, where a rarely used
legacy field must still be accessible to getfield.

Unpassable restrictions and impossible values
Because type descriptors are static while type restrictions are
dynamic, it is possible that a type restriction on a field or method can
conflict with the type descriptor on a field or method, to the extent
that no value that is compatible with the type descriptor is also
compatible with the type restriction. The JVM does not treat an
incompatible type restriction as a malformed input, but simply

enforces it as fully unpassable, declaring its corresponding values to
be impossible. An impossible method parameter is not simply dropped
from a calling sequence; it prevents any call to the method from ever
getting started. Simiarly, an impossible return value is not simply
omitted from a method’s result; it prevents any call to the method
from returning normally. An impossible instance field is not simply
omitted from an object layout; it prevents the object as a whole from
ever being instantiated. (Alternatively, such an impossible field can be
treated similarly to a failed resolution of a type restriction, which
would fail a class loading operation in the case of an invariant
restriction, or a specialization operation in the case of a parametric
restriction; this is TBD.)

Other upcalls
Although specialization creation (of non-default specializations) is the
main focus of bootstrap calls, there are other kinds of upcalls which
are performed in the usual course of executing parametric code. Here
is a list; further details are presented elsewhere in context:

• Constant derivation: A parametric CONSTANT_Dynamic
constant can be used to compute and cache useful values
which are dependent on a validated linkage parameter. The
bootstrap method for such a constant may refer directly to a
SpecializationAnchor object, or (less directly) to a
type species, or a specialized field or method type, or a
derived type or species (such as List<T> or T[] from T or
vice versa). All of these operations can be assembled from
appropriate bootstrap methods, plus calls to the
SpecializationAnchor API.

• Virtual dispatch: When a virtual call selects a method other
than its statically resolved method (i.e., an override), and that
overriding method is parametric, linkage parameter
revalidation must be performed. In this case, the JVM gives
the language runtime wide latitude for invoking the
overridden method. It performs an upcall to the
SpecializationAnchor object which is statically
present on the call, and permanently records the result of the
upcall as a virtual call connector, in association with the
constant pool structure which was used to make the virtual
call. All future virtual calls (to parametric overrides, from
that particular call site) are handled by this connector, by
means of upcalls that originate from the JVM but are
implemented in the code of the virtual call connector.

• Virtual fields: A field reference instruction might access (read
or update) a field, but the containing instance specialization
might not be identical with the specialization required by the
field. This can occur, for example, if the field reference is
specialized to particular container species, but the container
itself is the default species for the container class. On the
other hand, the field reference might be “raw” (thus
validating to the default specialization of the class) yet the
instance is specialized to some non-default specialization. In
all such cases, the JVM could give the language runtime
wide latitude for performing the field access. It might
perform an upcall to the SpecializationAnchor object
which is statically present on the field reference, and
permanently records the result of the upcall as a virtual field
connector, in association with the constant pool structure
which was used to make the field access. All future field
accesses (that do not exactly match the intended anchor) are
handled by this connector, by means of upcalls that originate
from the JVM but are implemented in the code of the virtual
field connector.

• Type testing: A parametric instanceof instruction (or any
equivalent type test) could be implemented by an upcall on
the species object’s isAssignableFrom method, except
in cases of exact match. This would allow the language
runtime to implement appropriate subtyping rules, such as
those which make the default specialization for a
KIND_Class anchor appear to be a supertype of all other
specializations. It may (for some languages) also allow
species to have more complicated subtyping rules. For now,
it seems best to build a couple of really obvious rules, directy
inside the JVM, and see how far that takes us.

• Array creation: The JVM is capable of creating an array for
any plain class or interface, without special assistance. Its
abilities to create arrays of specialized types are probably
more limited, although certainly flat arrays of types like
InlineOptional<InlineByte> are highly desirable.
In any case, the ability to create specialized array types is
decoupled from the bytecode design by funnelling the
creation of specialized arrays through an upcall to the
associated species object.

These upcalls will be bypassed (short-circuited through JVM logic)
for cases which the JVM already knows are “hardwired”. For
example, type tests of a species against its “raw” default species or its
super-species are hardwired this way.

It may be that not all of these upcalls will be needed. Further
experimentation will guide us.

Bi-variant specialization linkage

A bi-variant method M in C is one where C is parametric over some R,
and M is also parametric over some other Q of kind
PARAM_MethodAndClass. A call site for such a method can refer
to a constant which is comprised of all of these elements:

• The “raw” reference to C, a CONSTANT_Class constant.
• Optionally, a parametric reference to C, a

CONSTANT_SpecializationLinkage
• wrapping the “raw” reference to C, and also proposing some
• linkage parameter value V. Call this the “scope wrapper” if

it’s present.
• The “raw” name and type of M, encoded in a

CONSTANT_NameAndType constant.
• A CONSTANT_Methodref (or

CONSTANT_InterfaceMethodref) which refers to
both the reference to C (whether parametric or not) and the
name and type of “M”.

• Optionally, a “top level” parametric reference to M, a
CONSTANT_SpecializationLinkage wrapping the
previous reference to M (whether “raw” or not), and also
proposing some linkage parameter value W. Call this the
“member wrapper” if it is present.

It is thus possible that a parametric reference can propose two linkage
parameters, one to be validated on the anchor R on the containing type
C and the other to be validated on the “inner” anchor Q for M.

A simpler reference might propose just one of the two proposed
anchors, using either the scope wrapper or the member wrapper. The
simplest possible reference omits both wrappers; this would be a
completely “raw” (but still legitimate) reference to M.

If the reference to C contains a scope wrapper, V is validated (for
R) during the parametric resolution of C, without reference to M. The
resulting SpecializationAnchor value is V1.

If there is no scope wrapper (the reference to C is “raw”), then the
default specialization (for R) is obtained as V1 as part of the resolution
of the reference to C, again without reference to M.

If the reference to M has no member wrapper, then the previously
validated value V1 is proposed as the linkage parameter for M. If M
were simply parametric (over R again), this would be exactly correct.
But since M (in this scenario) is bi-variant, the proposed value V1 fails
to validate for Q.

Instead, as a special case, the JVM automatically derives from V1
(validated for R), an inner default for Q. This is a default
specialization for Q within the outer specialization V1.

This inner default was already created when C was prepared, as the
regular default for Q, in the case where V1 is the default for R. But
even if V1 is not the default specialization, the JVM must prepare and
record an inner default for Q which is specialized within V1. This
preparation must occur at most once, lest there appear to be multiple
“raw” PARAM_MethodAndClass method specializations within
some type specialization.

An implementation can eagerly prepare all possible inner defaults
for an anchor of kind PARAM_Class when the outer
SpecializationAnchor is prepared. Alternatively, it can
prepare them lazily as needed. In any case, the metadata for a
specialization of kind PARAM_Class should reserve space to link to
each default (“raw”) specialization of kind
PARAM_MethodAndClass that might be built within it.

Because the JVM can automatically derive an inner default for V1,
then there is no need for a second bootstrap method call. The inner
default for Q (within any V1) is by definition valid for Q.

Finally, the reference to M can have a member wrapper which
proposes a second linkage parameter W, to be applied in the presence
of V1. In this case, it may be that W is already a valid
SpecializationAnchor for Q, in which case V1 can be ignored
and the resolution is complete.

(We could mandate an error check to detect if V1 is not the
enclosing specialization when W is valid for Q. This seems not worth
the effort, as it would detect only minor irregularities in the shape of
the class file, which do not entail dangerous type errors.)

Otherwise, the inner default for Q within V1 is obtained (as in the
earlier case of a missing member wrapper), and supplied, along with
the unvalidated W, to the bootstrap method for Q. Although V1 is not
directly passed to the bootstrap method, it may be readily obtained,
since it is the outer specialization for Q, and the inner default is
passed as the argument B0 to the bootstrap method.

Volume III: Parametric Bytecode Instructions
(JVMS-6.5)

Review: “Nominal” bytecodes and symbolic
references

Some bytecode instructions can refer symbolically to API points.
These instructions, sometimes called “nominal” bytecodes, contain
the index (in their associated constant pool) of a symbolic reference to
an API point, a class, interface, method, or field (depending on the
particular bytecode). These instructions are:

http://docs.oracle.com/javase/specs/jvms/se15/html/jvms-6.html#jvms-6.5

• ldc and ldc_w may resolve a symbolic reference to a class
or interface (via a CONSTANT_Class) or a symbolic
reference to a field, method, or constructor (via a
CONSTANT_MethodHandle)

• The getfield, putfield, withfield, getstatic,
and putstatic bytecodes (which may collectively be
called access bytecodes) resolve a symbolic reference to a
field, via a CONSTANT_Fieldref.

• The invokestatic, invokevirtual,
invokeinterface, and invokespecial bytecodes
(which may collectively be called invocation bytecodes)
resolve a symbolic reference to a method via a
CONSTANT_Methodref or
CONSTANT_InterfaceMethodref constant.

• The new, instanceof, checkcast, anewarray,
multianewarray, and defaultvalue bytecodes
(which may collectively be called type-using bytecodes)
resolve a symbolic reference to a class or interface via a
CONSTANT_Class constant.

The first execution of a nominal bytecode instructions of any kind
generally entails resolution of its symbolic reference. The resolution is
stored permanently in an associated constant pool state for the
symbolic reference constant, and used for all executions of the
instruction.

If two or more bytecodes share a single constant pool entry, they
also share the associated resolution state. This sharing does not hold
true for the non-nominal invokedynamic instruction.

Thus, nominal bytecodes resolve API point references (as defined
above) to API points (also defined above). Since API point references
can be parametric, it follows that nominal bytecodes may also be
parametric. The behavior of such bytecodes is modified by the extra
information in the specialization determined during resolution of a
parametric API point reference.

All nominal bytecodes can be parametric

The bytecode instructions of a method may refer to a parametric
constant A over some anchor R only if the method itself is parametric
over R.

Therefore, if a method is not parametric at all, its bytecodes can
only use invariant constants. Recall that all
CONSTANT_SpecializationAnchor constants are parametric,
but a CONSTANT_SpecializationLinkage constant may be
either parametric or invariant, as determined by its specific
dependencies.

In the context of bytecode execution of a method which is
parametric over some anchor R, this anchor is bound to
SpecializationAnchor object indirectly requested by a linkage
parameter supplied by the caller. This contextual specialization is
permanent for the duration of the stack frame. If the method is
parametric over two anchors (bi-variant), both anchors are
contextually bound; in fact the inner anchor uniquely determines the
specialization of the outer anchor.

Wherever some R is bound, if R depends on some other anchor Q,
Q is bound also. That can only happen if R and Q are of kinds
PARAM_MethodAndClass and PARAM_Class respectively. In

the future, if additional nesting modes are made available in class
files, additional dependencies between anchors may become possible,
and more complex simultaneous specializations may appear,
reflecting multiple levels of scoping or nesting defined by one
constant pool.

The following bytecode instructions potentially interact with
parametric constants:

• The ldc bytecode (as well as ldc_w) may refer to a
parametric constant of tag CONSTANT_Class,
CONSTANT_MethodHandle, CONSTANT_Dynamic,
CONSTANT_SpecializationAnchor, or
CONSTANT_SpecializationLinkage (the last two
are new tags, for a new kind of loadable constant).

• The ldc2_w bytecode may (as type-appropriate) may refer
to a parametric constant of tag CONSTANT_Dynamic.

• The getfield bytecode (as well as the other access
bytecodes putfield, withfield, getstatic, and
putstatic) may refer to a parametric constant of the new
tag CONSTANT_SpecializationLinkage, as well as a
plain (or perhaps parametric) CONSTANT_Fieldref
constant.

• The invokestatic bytecode (as well as the other
invocation bytecodes) may refer to a parametric constant of
tag CONSTANT_SpecializationLinkage, as well as a
plain (or perhaps parametric) CONSTANT_Methodref or
CONSTANT_InterfaceMethodref constant.

• The new bytecode (as well as instanceof, checkcast,
anewarray, multianewarray, and defaultvalue)
may refer to a parametric constant of tag
CONSTANT_SpecializationLinkage, as well as a
plain CONSTANT_Class constant.

In all cases, the resolution of the referenced parametric constant
depends on the contextual specialization anchor, which in turn
determines the preparation of the resolution state of each constant that
depends on it.

Note that both old and new tags can be parametric. Conversely, a
constant with new tag CONSTANT_SpecializationLinkage
may be invariant, if it depends only on invariant component constants.
A constant with new tag CONSTANT_SpecializationAnchor is
always parametric; indeed such constants are the source of
parametricity in all other constants. Any bytecode that uses a
CONSTANT_SpecializationLinkage constant validates a
proposed linkage parameter for the indicated API point, and uses the
resulting specialization anchor as part of its execution, as described
below. This is true whether that
CONSTANT_SpecializationLinkage constant is itself
parametric (e.g., List<T>.get for some local type T) or invariant
(e.g., List<InlineInt>.get). Any invocation bytecode that uses
a CONSTANT_SpecializationLinkage constant (whether
parametric or invariant) to invoke a parametric callee method
influences the selection of that callee’s specialization anchor.

Method Invocation

The bytecode instructions invokestatic, invokespecial,
invokevirtual, invokeinterface, and invokedynamic
are collectively called “invocation instructions”. All of them encode

their stack effects by means of a descriptor string which contains
descriptor types for arguments and return values. All but the last are
so-called “nominal instructions”, which incorporate a symbolic
reference to a method (or constructor) as the target of the invocation.

The execution of any invocation bytecode presupposes correctly
typed arguments already pushed on the stack. It pops these values (if
any) and passes them to a receiving method. The receiving method, if
it does not terminate with an exception, will return any result value (as
required by the descriptor), and the invocation bytecode will finish
with that result value (if any) pushed on the stack.

These stack effects are strongly typed according to the JVM’s
descriptor type system, as enforced by the verifier. Note that all such
verified types are invariant; they are not affected at all by
parametricity. Thus, although a parametric method may logically work
with arguments or return values of parametrically defined types, it
will physically use an invariant supertype (typically a type parameter
bound), as encoded in a descriptor string, to describe the stack effects
of the method. The verifier, which is plenty complex already, is
mercifully ignorant of parametric effects.

Execution of a nominal invocation bytecode starts by resolving the
symbolic reference to determine a specific method (or constructor) to
execute. The resolution of the API point is unaffected by the presence
of parametricity. In particular, a symbolic reference is always
invariant, a hard-coded name and type, and located in a named class.

For simplicity, we are not extending symbolic resolution to locate
methods in variant types such as species. The parametricity
mechanism is cleanly separated from the complexities of the JVM’s
class and interface type hierarchies and their members. It may be
natural to allow type species some activity where today we only allow
classes and interfaces; this is TBD for now. We are certainly not
allowing variance in method signatures; this would greatly explode
the complexity of every part of the JVM that needs to understand type
descriptors and signatures.

If the operand of a nominal invocation bytecode is a
CONSTANT_SpecializationLinkage constant, the symbolic
reference and the associated linkage parameter are resolved, in that
order. During resolution, if the method is parametric, the linkage
parameter is validated and the resulting specialization anchor is
permanently recorded with the resolved symbolic reference. This
anchor is then passed, along with the arguments, to the callee method,
for every invocation.

Some nominal invocation instructions perform “virtual method
invocation”, which incorporates an extra method selection step to
replace the resolved method (from the symbolic reference) by an
overriding method. The overriding method has the same name and
type descriptor, and is always concrete, but maybe be defined by a
different class or interface, and (crucially) may be parametric. (If it is
parametric, it will be so in a different class file from the class file of
the overridden method.) The rules for this are complex and are
described elsewhere.

The opposite of virtual method invocation is “direct method
invocation”. Each invocation instruction performs virtual or direct
invocation, based on its kind and result of resolution:

• invokeinterface invocation is virtual.

• invokevirtual invocation is virtual unless the resolved
method is final, in which case it is direct.

• invokestatic, invokespecial, and
invokedynamic are direct.

(Note that method handle invocation is direct, since the signature
polymorphic invocation methods are final. The method handle may
internally perform additional method invocation of one or more target
methods. Since invokedynamic performs a method handle
invocation, it is also direct.)

When a parametric method is invoked directly, the relevant
specialization anchor is passed directly to the callee, and becomes
available to execution in that callee’s stack frame, if the callee is in
fact a method with a bytecode attribute (neither abstract nor
native).

The processing of specialization anchors during abstract and/or
virtual method invocation will be discussed in its own place later on.

Parametric Method Execution

Every parametric constant is resolved from a constant pool state that
is associated with the validation of its associated (inner-most)
specialization anchor. Thus, if a method is not parametric, its bytecode
instructions must not resolve any parametric constants. If a method is
parametric over some constant R, it may not resolve any parametric
constant which is not also parametric over R. In both cases, a method
bytecode attempting to resolve an inappropriately parametric constant
will complete abnormally with a subclass of LinkageError
(TBD).

(Inappropriately variant constant references could also be checked
earlier, in the verifier. This does not seems to confer any performance
benefit on the JVM, and the verifier is already complicated enough, so
we won’t burden the verifier with this chore. Compilers can catch
their own bugs without the JVM’s help on this. Because it works on
“raw” JVM type descriptors, the verifier is blissfully oblivious to the
effects of specializations.)

Every stack frame (§2.6) in the Java virtual machine contains an
associated reference to the run-time constant pool (§2.5.5) of the class
of the current method. (This is true in all versions of the JVM.) If the
method is parametric over some specialization anchor R, this
reference to the constant pool contains two component references, one
to (the resolution states of) the invariant constants, and one to (the
resolution states of) those constants which are parametric over R.

The resolution state of the latter constants is tracked distinctly for
distinct specializations of R. Thus, the second component reference, to
the parametric constant states, may vary from invocation to invocation
of the method. This reference, however, is constant in any particular
stack frame, and across any call chain that starts with some invariant
CONSTANT_SpecializationLinkage that selects R, and
continues to use the same specialization R for callees.

The first time a parametric constant C is resolved, its specialization
anchor R (co-parametric with C) is consulted. The anchor R contains
(along with other data) a set of resolution states for all R-variant
constants, including C. As with an invariant constant, C is resolved in
terms of its own structure and the constants it depends on. Since C is
R-variant, its resolution can query the value of R or other R-variant
constants, and so C’s resolution makes use of R’s associated resolution
states and other data (such as a validated linkage parameter value).
When C is resolved, the result of the resolution (whether normal or
erroneous) is recorded in the same associated resolution states within
R. Further resolutions of C relative to R produce the same result.

Later on, if the same method is called with a specialization anchor
R2 which (though derived from the same class file constant) is
different from the previous R, C’s resolution state will be unaffected
from any of the outcomes described in the previous paragraph, since
the resolution states of R and R2 are unrelated.

It is the responsibility of the bootstrap method of R to decide when
and whether to create fresh specialization anchors for R-variant
constants, or whether to find and reuse pre-existing specializations,
with their pre-existing resolution states.

It is legitimate to return fresh specializations every time from the
bootstrap method; in that case, if the caller of the R-variant method
records their anchors in a
CONSTANT_SpecializationLinkage state, then
specializations are reused in the R-variant method only for calls from
the same caller. This can enable a level of customization for a whole
static call tree, independent of JIT inlining decisions.

Note that a method can be parametric over any kind of anchor,
even the PARAM_Class kind. Although it seems odd to give a class
anchor to a method, it is the most natural and efficient thing to do, in
the common case where a class has just one specialization anchor
(representing one group of type variables) shared everywhere. In
particular, the constructor of a class (which for a primitive class is
really a static factory) should be co-specialized with the class, so that
specializations can be computed at call sites and then used
(unchanged) by the new instruction (or defaultvalue instruction)
which creates instances to be initialized by the constructor, and/or
which creates instances within a factory method.

Note also that if a method does not make use of a class anchor,
either in its type restrictions or in its body, it should be declared
invariant in its class file, even if the source-level type parameters
were in scope. If the method is overridden by another method which
uses another anchor (as declared in a subtype), the linkage parameter
may be loaded from the instance, if only reflective use is needed.

The anchor kinds besides PARAM_Class are expected to be
useful for driving type information in complex parametric algorithms
such as Arrays.sort, where there is no object instance to act as a
direct “witness” to types or other contextual information. Even if there
were only PARAM_Class anchors, the JVM would be required to
treat them (for some API points) identically to non-PARAM_Class
anchors, starting with parametric constructors and factory methods.
Given the need to plumb such pathways, supporting algorithms like
Arrays.sort is simply a matter of decoupling the JVM’s
legitimate need to associate specialization with instances
(PARAM_Class) from its equally legitimate need to associate
specialization with methods, including situations where there is no
class specialization in sight.

The third anchor kind arises from this factoring by an observation
that such split specialization scopes arise, sometimes, in source code,
and can be supported by a modest incremental JVM effort.

Class specialization anchors are heavyweight compared with non-
class anchors, because they record object layouts and other schema
information. Non-class anchors amount to small heap objects that
carry around type tokens and associated resolution states (as needed),
and perhaps point to an enclosing class specialization.

Instance Creation

The new and defaultvalue instructions are called “instance
creation instructions”.

The new bytecode creates a new object instance, in a blank state,
to be completed by a direct call to a constructor (<init> method).
Its operand is a CONSTANT_Class constant which directs which
class to create. The verifier ensures that each execution must be
coupled (along every non-exceptional path) with exactly one
invocation of a constructor of the same class.

A defaultvalue instruction does the same, except for an
primitive class. It typically executes inside of a static factory for the
class. The details of the two instructions are different, but the operand
processing is the same, when the class is parametric.

The operand of a new or defaultvalue bytecode may also be a
CONSTANT_SpecializationLinkage constant which wraps a
CONSTANT_Class constant. Such a bytecode is called a “parametric
instance creation instruction”.

Much as with method invocation, when the JVM executes a
parametric instance creation instruction, it first computes a class
specialization and then applies it to the creation of the instance of the
resolved class.

The kind of the specialization anchor must be PARAM_Class, and
it determines the size and layout of the instance created, if the
instances class (or any super class) contains any parametric fields.

If, conversely, an instance creation instruction is executed on a
plain CONSTANT_Class constant, and the resolved class is
parametric, then the default specialization (for that class) is implicitly
used.

Due to layout customization, a highly optimized JVM might assign
different sizes to different species of the same class. The sizing
information in such a JVM is presumably stored on the validated
SpecializationAnchor object of the PARAM_Class-kinded
anchor.

If a supertype S (class or interface) of a class C is parametric, then
the reference to S in the class file for C could have been either a “raw”
CONSTANT_Class or else a wrapped
CONSTANT_SpecializationLinkage. In either case, when C
is loaded the reference to S is resolved and assigned its own
specialization. When the instance of C is created, any fields defined
by S are accordingly specialized, and may in fact participate in layout
customization. This can happen even if C is not parametric.

The JVM ensures, as a global invariant, that every validated
PARAM_Class anchor, for a concrete class, contains all required
information about the size and layout of parametric fields declared in
that class and all its super classes. This information is recorded by the
JVM in association with every SpecializationAnchor object
for an anchor of kind PARAM_Class, and specifically for each
parametric non-static field in the class and in each of its parametric
supers. See discussion about “f-tables” below.

For the new instruction, as with other possibly-parametric
instructions, the verifier ignores the
CONSTANT_SpecializationLinkage wrapper as if only the
wrapped CONSTANT_Class constant were present.

The new instance, in turn, is permanently associated with the
specialization anchor object. Note that the new instruction may be
executed many times, but the resolution step (which computes and
records the anchor) happens just once, before the first instance is
created.

These rules ensure that the new object immediately “knows” which
species it belongs to, just as all objects “know” which class they are
in. This opens the door for JVM implementations to aggressively
customize the layout of the new object for its particular species.

It is also a consequence of these rules that all instances created
from the same CONSTANT_SpecializationLinkage constant
state will share a common species. For a generic factory method, this
means that every distinct species of C created by the method is
logically associated with (at least) one
CONSTANT_SpecializationLinkage constant state. The
actual bookkeeping for this state is organized so that each
monomorphic caller of the factory remembers the associated linkage
state, and the factory method can use common code (and/or
customized code) to perform the instance creations. These linkage
states are designed so as to allow lightweight implementations in the
JVM, while still supporting significant optimizations when desired.

Parametric field types (i.e., sizes and layouts) are determined by
the bootstrap method call that originally produced the validated
species of C that is applicable to a particular new or
defaultvalue bytecode execution. See the section below on
specialized types.

The Java language encourages constructors to perform a series of
putfield (or withfield) instructions on each fresh object
instance. This is especially true for blank final instance variables.
Fresh instance creation, constructor invocation, and field access can
all be parametric operations, both individually and in larger
cooperative patterns, defined by a translation strategy.

Note that a specialized parametric field will incorporate a runtime
check (as if by checkcast) that can enforce a specialized type
restriction on the stored value. This is true even if (for some reason)
the constructor is unspecialized, or is invoked with the default “raw”
specialization and passes that specialization to its putfield or
withfield instructions.

As with non-parametric new instructions, the blank new instance
created by a parametric new instruction will be unusable until a
corresponding call to the constructor has completed. But the verifier
does not track specializations at all, and so has no role in aligning the
specialization of the new bytecode and the subsequent
invokespecial of a constructor. (A similar point can be made
about a defaultvalue bytecode and subsequent withfield
operations.) Thus it is possible that the constructor invocation after
parametric new instruction will use a different specialization, or none
at all. (A new instruction for a non-parametric class might also be
followed by a parametric constructor invocation, useless as this would
seem.) The JVM makes not attempt to validate the overall consistency
of specializations in such code shapes, leaving them to translation
strategies to define and enforce, on top of the dynamic effects of
individual bytecodes.

The rules for checking and using specializations are defined by the
JVM on the basis of single instruction executions, not on the basis of
larger bytecode patterns which the verifier might enforce. This choice
is made because the verifier is a relatively poor way to ensure general
well-formedness of bytecodes; it should only be used in those rare
circumstances where there is some proven need to improve interpreter
performance.

Array creation

The array creation instructions are anewarray and
multianewarray. They both accept CONSTANT_Class

operands, and can also accept species operands, in the form of
CONSTANT_SpecializationLinkage operands which wrap
CONSTANT_Class operands.

As has always been the case, the operand of the array creation
instruction is first resolved, and may resolve to a species or (in the
case of multianewarray) into an array of species type. The
appropriate array type is determined and instantiated. If a species
supports reified array types, that is determined by the runtime support.

The resolution of CONSTANT_SpecializationLinkage
constants in the presence of array type descriptors has been glossed
over so far, but is simple to specify: First the element type of the array
is resolved, and then, if it is parametric, the proposed linkage constant
is resolved and validated. (This is just as if the array type descriptor
had not been present, but instead the plain element type name were
the subject of the CONSTANT_Class constant.) Once a species is
determined, an upcall to the species reflector object determines an
array type that will contain it (as a Class object). The array creation
instruction then makes use of that array type to build the required
array. Note that because the verifier does not track species, only a cast
to the “raw” array type is needed to maintain correct types in the
bytecode.

Field Access

The bytecode instructions getfield, putfield, withfield,
getstatic, and putstatic are collectively called “field access
instructions”. As with invocation instructions, they encode a symbolic
reference to a class member (a field not a method). They also accept
CONSTANT_SpecializationLinkage constants which wrap
their symbolic reference.

The JVM keeps careful track of the layout of each specialized
class. When accessing parametric fields within that layout, it
concentrates on implementing one particular fast path, the path that
occurs when the field access instruction uses exactly the same
specialization as the object instance’s class C.

The JVM ensures that if two instances have the same species, then
their layouts are completely compatible; in particular the type
restrictions are the same. Normally, if two instances have the same
species, their class specialization anchors are identical, but in some
cases this may not be the case. Though it is possible to create two
class specialization anchors with a common species, it is impossible
for the two specializations to differ in their layouts. (The factory
methods for specialization anchors ensure this.)

In particular, the object instance’s species (C with a class
specialization anchor R) is examined to see if the object was created
with the identical species as is being proposed by the field access
instruction (after resolution). If the match is exact, then the JVM can
confidently access internal layout and type information and load the
specialized field.

• For getfield, the specialized value is loaded and then (if
necessary) cast to the unspecialized type in the field’s
symbolic reference.

• For putfield, the unspecialized value is popped from the
stack, and then cast (if necessary) to the specialized type and
copied into the identity object.

• For withfield, the unspecialized value is popped from the
stack, and then cast (if necessary) to the specialized type and
incorporated into a new version of the primitive object.

If the field is in a superclass S of the instance class C, the JVM checks
for the fast path by matching the species of the field reference
constant (which can “see” S despite mentioning only C) to the
corresponding supertype species declared by C (assuming C’s anchor
R, if relevant).

Since the superclass is parametric, the symbolic reference in C to
its super S must either be an invariant constant (either a
CONSTANT_SpecializationLinkage or a “raw”
CONSTANT_Class) or a parametric
CONSTANT_SpecializationLinkage constant depending on
C’s anchor R. In either case, the instance type C (accompanied by a
species object from R if C is parametric) must always determine an
associated “push up” spcies for the super S. This latter species is the
subject of the fast path check when the field is inherited.

There is also a slow path which is used when the layouts do not
match. This is used to implement raw access, and perhaps other type
relations between specializations. Other than support for raw access, it
is TBD.

Type checking

The bytecode instructions instanceof and checkcast are called
“type checking instructions”. Both of them refer to constant pool
entries which represent the types being checked. Both of them accept
CONSTANT_SpecializationLinkage as well as
CONSTANT_Class constants.

When their operand is a class specialization, they operate on the
species associated with that specialization.

The constant is resolved in either case. The following cases apply:

• The constant resolves to an array type, with either a
parametric or non-parametric component type. In that case,
the array type is directly checked, as resolved. (If the
specialization did not “refine” the actual array type, arrays of
different specializations might be confused. This issue is
TBD.)

• The constant resolves to a non-parametric class or interface,
The behavior is unchanged from previous versions of the
JVM. (One difference: The symbolic reference is resolved
even if the stacked operand is null.)

• The constant resolves to a parametric class or interface (with
the default specialization or some other specialization). In
that case, the instruction first checks the class or interface as
if no specialization were present, and then checks the species
against the corresponding species recorded in the object
instance. (See discussion of “s-tables” below.) As a special
case, if the corresponding object species is a “raw” default
specialization, the check succeeds, because “raw” objects are
welcome everywhere.

In the last case, there is a fast path and slow path. If the species linked
into the type check instruction is identical to the species recorded in
the instance, the check succeeds.

Otherwise, the slow path is taken. It is possible to design an upcall
to the species object recorded in the constant pool for the resolved
operand, allowing a certain amount of user programmability.

As a special rule, if a checkcast instruction refers to a
CONSTANT_SpecializationLinkage constant instead of as

CONSTANT_Class constant, the constant is resolved even if the
stacked operand is null.

This allows the enhanced checkcast logic for primitive objects
to reject null references. Recall that even if a primitive class is
invariant, it is legitimate to refer to it via a
CONSTANT_SpecializationLinkage constant; the proposed
linkage parameter is simply ignored.

Somewhat uncomfortably, the constant pool does not distinguish
between a parametric type Foo<?> and the “raw” instance of that
type Foo<raw>. In fact, it uses Foo<raw> (with the built-in default
specialization) as the meaning of all “raw” Foo symbolic references.
This ambiguity causes some pain with type checking instructions,
because if Foo is shorthand for Foo<raw>, you can only ask one of
the following two questions: (a) Is an object X an instance of any
species of class Foo? Or, (b) is an object X an instance of the default
specialization (the “raw” one, not any more specialized one) of class
Foo? For now we suggest papering over this distinction by asking the
species object for Foo<raw> to serve double duty as Foo<?>, by
recognizing, even if only via a slow path, all specializations of Foo,
and not just the instances which pass the fast path. This means that
some other idiom must be used to classify instances of the “raw”
specialization, such as (hypothetically) x instanceof Foo &&
x.getSpecies().isDefault().

The relations between API points and structures which refer to
them (both old and new) are summarized in Diagram 4.4-F(a).

Volume IV: Virtual Dispatch and Calling
Sequences
Apart from specialization, virtual method invocation is a relatively
simple enhancement of simple direct invocation. Direct invocation is
a simple relation from a caller to a statically resolved callee,
embodied (usually) as a jump to a known function address. The caller
and callee might agree exactly on the type declaring the method being
invoked. Or, if the callee is declared by a supertype of the type
mentioned by the caller, the lookup can be performed negotiated once,
when the symbolic reference in the caller is statically resolved. For
example, MyNode::hashCode() might resolve statically to
Object::hashCode() if MyNode does not override the method
from Object.

With virtual method invocation, the caller and callee can disagree
about the receiver type, and the disagreement can be different for each
execution of the call site. This is because the callee has two aspects:
static and dynamic. The static identity of the callee depends on the
symbolic reference at the call site, and is determined the same way as
for a non-virtual call. For example, a call to
MyAbstractNode::hashCode() might resolve statically to
Object::hashCode() if MyAbstractNode does not override
the method from Object, but if MyConcreteNode is a subtype of
both, and it overrides hashCode, then a call site might statically
resolve to Object::hashCode() while will choose a range of
methods, including MyConcreteNode::hashCode (and
MyConcreteNode2::hashCode, etc.).

The dynamic receiver type determines the dynamic callee method,
by an extra process called called method selection. The effect of
method selection is as if the call site were temporarily rewritten to
mention the exact type of the receiver (for just this one call), and
resolved from that very specific type, instead of the more general type
mentioned statically by the caller. A call with a dynamic receiver thus
breaks down, functionally, into two non-virtual direct calls.

Here are the steps to execute a single virutal call that requires
method selection:

1a. Determine the caller’s symbolic reference, including a receiver
type R1a and a name and method descriptor.

1b. Using inheritance, determine a method declaration M1 in some
R1b (a super of R1a) which exactly matches the name and descriptor.
Record information about M1, once per constant pool entry in the
caller, as the static callee. (This is the last step, if M1 has no
overrides.)

2a. Determine the receiver’s dynamic type R2a, which must be R1a
or a subtype. (With interfaces there may be an extra cast to R1a.)
Recall information about M1 from step 1a.

2b. Using inheritance, determine a method declaration M2 in some
R2b (a super of R2a) which exactly matches the name and descriptor
of M1. Invoke M2 immediately.

Thus, when method selection is present, there are (for each
dynamic call) four relevant receiver types, and up to two distinct
methods. Luckily, the interactions between these moving parts can be
partitioned.

For example, if the caller specifies the descriptor
MyNumeric::compareTo(Object), if MyNumeric (R1a) does
not declare compareTo, then the static callee might resolve to the
same method (M1) in java.lang.Comparable (R1b).

Meanwhile, method selection on an instance of MyInt32 (R2a)
could select an inherited method
MyAbstractInt::compareTo(Object) (M2, in R2b =
MyAbstractInt).

In simple cases of method selection, we can add a small extra
wrinkle to the basic action of jumping to a known function address:
We look up a function pointer for M2 in a known location relative to
the dynamic receiver type R2a, and jump there. The famous “v-table”
supplies this knokwn location for single-inheritance cases, and the
computation of M1 amounts to identifying a v-table offset, if the v-
tables are set up with care (and they are). This simplicity begins to
disappear when the dynamic type of the receiver is complex enough
that the “known location” requires a search of several possible
locations; this is (often) true in the case of multiple inheritance.

Specialization adds yet more complexity to the four receiver types
and the relations between the methods M1 and M2. Because of the
structure of the parametric class file, there is no support for optional
methods, and so the method selection process finds M2 just the same
with specializations as without. (That is the good news.) However, if
the selected method M2 is parametric, an appropriate specialization
anchor must be computed for that selected method, and (in general)
the class file for R2b (which declares M2) is independent of the class
files for R1a, R1b, and R2a. Yet an anchor must be computed to feed
to M2.

The amended calling process looks like this:

1a. Determine the caller’s symbolic reference…

1b. Using inheritance, determine a method declaration M1 in some
R1b…

1c. If a CONSTANT_SpecializationLinkage constant is
present, resolve a proposed linkage value L1. (This step 1c. can be
done either before or after step 1b. A translation strategy has typically
arranged the L1 is appropriate to an API point in R1a.)

1d. If M1 is parametric, compute a specialization for it by
validating L1 against M1’s anchor constant, to produce a
specialization anchor A1. (This may need a bootstrap method call in
R1b.) Record A1 permanently in the constant pool of the caller,
alongside the identity of M1 itself. (This is the last step, if M1 has no
overrides.)

2a. Determine the receiver’s dynamic type R2a…

2b. Using inheritance, determine a method declaration M2 in some
R2b…

2c. If R2b is parametric, recover the specialization anchor A2
associated with R2b when the receiver (of type R2a) was created.
(Thus, a virtual call may need to use specialization information
associated with any super-type of the dynamic type of the receiver.
See discussion of “s-tables” below.)

2d. If M2 is parametric, compute its specialization anchor by
jointly validating A1 (the anchor for M1) and A2 (the specialization
for R2b). The validated result A3 (for M2) may be cached, or it may
be recomputed on every virtual call. If A2 (for R2b) is already valid
for M2 it can be used as-is. (This will be true if M2 and R2b are co-
parametric.)

The joint validation step described above takes a specialization A1
for M1, which might in general be a method specialization, and an
independently determined class specialization A2 for a super R2b of

https://docs.oracle.com/javase/specs/jvms/se15/html/jvms-5.html#jvms-5.4.6

the receiver R2a. In general, the required result A3 might itself be
another method specialization, which is “inner” to A2 (i.e., A2 is sub-
parametric to A3). If A1 was also “inner” to some specialization A0 of
the static callee R1b, then the joint validation must apply language-
specific rules to determine the value of A3 such that the following
ratio-like relation holds: A0 is sub-parametric to A1 just as A2 is sub-
parametric to A3.

Luckily, none of this needs to be encoded in the JVM specification.

Note that the class specialization for the dynamic receiver (A2) can
be inconsistent with the static specialization anchor for the virtual call
to M1 (A1), due to heap pollution or similar effects outside the
purview of the JVM. A bootstrap method in step 2d can enforce any
language-level policy required concerning the various corner cases.

Parametric abstract methods

Although it would seem that abstract methods are mere
placeholders, an abstract API (such as an interface) has a strong effect
on specializations simply by declaring its abstract methods to be
parametric. By declaring its dependency on an anchor, an abstract
method forces a client’s link resolution (against the abstract API, not
any concrete implementation) to compute a specialization when using
that API. That specialization is then made available to assist in
specializing the eventual implementing method, if the latter method is
also parametric.

The mapping of the specialization from superclass to subclass is
probably language-specific, and in any case is (currently) the object of
a runtime-supplied virtual call connector object. This object is created
the first time a call site is executed (on a parametric abstract
method), by means of an upcall (TBD). After this, every time a
parametric method is selected, the JVM refers to the virtual call
connector to supply a specialization anchor object for that method.

The virtual call connector may, at the language runtime’s option,
return the corresponding default specialization, extract an unvalidated
“key” value from the abstract method’s specialization anchor and
revalidated that, or perform some other “pull down” mapping for the
override method. It may (at the language runtime’s option) cache the
specialization anchor object, keying on the receiver class, its species,
or some other value derived from the receiver. The cache may be kept
local (a good thing since specialization information in the supertype is
likely to be 1-1 with specialization information in the override), or it
may be backed by some global table. The JVM stays out of the
engineering details.

Parametric concrete non-final methods

The case of a parametric concrete method is essentially the same as
for an abstract method, with the only difference being that the
concrete method might be selected during a method call, if it there is
no override (in the receiver class). The JVM has a fast path which,
after the selection check, simply treates such a call as if it were a
regular direct call.

If there is an override, the concrete method body is ignored, and
the JVM’s logic is the same as in the case of an abstract
parametric method.

Thus, each invocation constant for a parametric method M has
several possible components of state after resolution and invocation:

• The location of M’s declaration.
• A specialization anchor object for M.

• The identity of M (as a metadata pointer and/or v-table
offset).

• A call connector for this call site (if a parametric override of
M is called).

The need for call connectors can be reduced in by various
expedients, and perhaps implementation of them can be deferred, by
careful arrangement of translation strategy, at least early in
prototyping. For example, perhaps types can be made parametric but
methods can be invariant. This precludes customized calling
sequences, but may be good for a start. If a supertype is parametric
and its methods are parametric also, perhaps the overriding methods
in subtypes can be made invariant. The hitch there is customized
calling sequences may not be readily available if something prevents
us from “copying them down” from the supertype. Also, if an
overriding method happens to need access to a reified type, it will
have to make a call to a synthetic API point defined (as a concrete
parametric method) in the supertype.

Volume V: Specialized Class Layouts
Specialized class layouts are driven by the anchor_index items in
Parametric attributes of parametric fields. This can be done
automatically by the JVM in most cases, perhaps all.

If it is necessary for the runtime to give advice and consent on
parametric field layouts, the natural place to do this is inside the
bootstrap method upcall for a PARAM_Class anchor, before the call
returns a fresh SpecializationAnchor object. Any special rules
not encoded in anchor_index items can be injected into the
creation of that object. In any case, this can be done reflectively, and
so does not impose new requirements on the basic structure of class
files, or the semantics of constants or bytecode instructions.

In a cooperating JVM implementation, a field type which is
marked as void could be given a zero-byte presence in an affected
class layout, as if it were an empty primitive class. Either tactic seems
to lead to an efficient way to allocate a boolean-like flag field
which is physically present in the layout of
InlineOptional<InlineLong> but disappears in the layout of
InlineOptional<Object>.

(More TBW, but see comments scattered throughout.)

Volume VI: Implementation Considerations
As a whole, this design attempts to push doubtful matters of language
design and runtime implementation upward to the language runtime,
via bootstrap methods and other upcalls.

When an upcall yields information to the JVM, there is a reliable
specification of how and where that information is preserved. The
presence or absence of optimization (at the JVM level) is no excuse
for indeterminate behavior.

The splitting or lumping of type information into runtime species is
a language decision. Once the JVM decides on a specialization,
though, it treats it seriously and prepares constant pool states for
resolving and recording constant pool entries and API points that are
co-parametric with that specialization’s anchor. The language
translation strategy may take steps to minimize the number of such
entries, but they are also probably inexpensive, on the order of one or
two heap variables (machine words) per parametric constant pool
entry.

Callers and callees perform handshakes to agree on specializations
at every API point usage. If a specialization “splits out” a locally

relevant species, it will be recorded at the call site, and its callees can
develop their own dependent constants and recursive call sites, based
on that recorded specialization and its resolution states. The result is
that an invariant call to generic code creates a static tree of resolution
states (prepared constant pool entries inside of specializations) which
mirrors the dynamic shape of the generic code, including all of its
generic subroutine calls, into and out of multiple class file artifacts.

For example, if Arrays.sort were made parametric, then
similar static call trees (of sort and its helper methods) could be
rooted at different user call sites, each call site specifying a different
specialization: One for arrays of Point, another for Color, etc.,
where the array elements are primitive classes that are useful to
specialize over, even customize over. Because specializations are
associated with the resolution states of call sites, the call sites for
sorting Point arrays will be kept distinct from those which sort
Color arrays. In fact, the technique may help to refactor together the
hand-maintained code which currently handles arrays of built-in
primitives: Common code can (perhaps) handle not only (hypothetical
primitive types) Color and Point, but also int, long, float,
etc.

After a given generic call returns, if the call site is executed again,
the static tree of resolution states is immediately available. If a
method involved in this call tree becomes hot, the JVM can obtain
good information on which constants might be useful to inline into
customized code.

Data structures

Constant pool indexing
Resolution states
When an API point reference constant is resolved, the resulting state
in the constant pool of the caller always includes a metadata reference
to the resolved class, interface, field, or method.

In addition, the resolved API point is parametric, and if the API
point reference specifies a linkage parameter that requests something
other than a “raw” default specialization, then additional state
information must be recorded in the caller to allow correct use of that
API point.

These are the additional resolution states required to manage
specialization:

• For a CONSTANT_SpecializationAnchor constant, a
SpecializationAnchor object that reifies each of its
specializations.

• For a CONSTANT_SpecializationLinkage constant
(i.e., an API point reference), the validated
SpecializationAnchor object obtained as part of the
resolution of that constant’s API point.

• For a CONSTANT_SpecializationLinkage constant
which wraps a CONSTANT_Class, the validated
SpecializationAnchor object must also supply
species metadata for the specialized class or interface.

• For a CONSTANT_SpecializationLinkage constant
which wraps a non-type API point reference (a
CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref constant), the the
validated SpecializationAnchor object must also
supply type restriction information for the specialized field or
method.

• If used without a
CONSTANT_SpecializationLinkage wrapper, a non-
type API point reference may yet have its
CONSTANT_Class API point reference wrapped a
CONSTANT_SpecializationLinkage, and if the API
point is co-parametric with its enclosing class or interface,
the linkage state in the client must record a
SpecializationAnchor object for the field or method,
as well as any relevant type restriction.

An example constant pool, showing constants necessary for a
hypothetical client of some interface species List<Point> to
invoke a specialized method, along with a summary of their resolution
states, is sketched in Diagram 4.4-H(a).

In this example, the resolution state for the
CONSTANT_InterfaceMethodref for List<Point>.get
has a SpecializationAnchor plus a type restriction for the get
method (presumably requiring it to return a Point instead of a
regular Object). The species reference List<Point> also stores a
SpecializationAnchor, as well as a species descriptor for
List<Point>. The SpecializationAnchor value is the same
for both constants, assuming List and its get method are co-
parametric. Note also that this class file has only invariant constants,
although it will link to parametric API points in the class file for
List.

An example constant pool and class file structure for a hypothetical
interface List which matches the client in the previous example is
sketched in Diagram 4.4-H(b).

An example constant pool and class file structure for a hypothetical
implementor ArrayList which matches the previous two examples
is sketched in Diagram 4.4-H(c).

Here is another example constant pool, for a hypothetical subclass
MyList of java.util.Vector that makes access to the inherited
elementData field (hypothetically specialized), in sketched in
Diagram 4.4-H(d).

Discarding the linear structure of constant pools, we can create a
textual sketch of the same relations, as follows:

Diagram 4.4-H(a). Example constant pool:
client of List<Point>

invokeinterface #M56
#M56 = IMethodref[#T57.get(int)Object]
#M56.State = get:(int)Point in List<Point>
#T67 = Linkage[Class[List], Class[Point]]
#T67.State = species List<Point>

Diagram 4.4-H(b). Example parametric interface
interface List<T> { ...get... }

ClassFile {
 this = j/u/List
 interface = Linkage[Collection<#P83.T>]
 Parametric = #P83
 (self species reference, if any:
Linkage[List<#P83.T>])
 method_info {
 name/type = get/"(I)Ljava/lang/Object;"
 TypeRestriction = {#P83.T}
 Parametric = #P83
 Code = none (ACC_ABSTRACT)
 }
 #P83 = Anchor[BSM = make List species &
anchor]
 #P83.T = ConDy[extract T from #P83]
}

Diagram 4.4-H(c). Example parametric
implementation
class ArrayList<T> implements List<T>
{ ...get... }

ClassFile {
 this = j/u/ArrayList
 interface = Linkage[Class[j/u/List], #P42.T]

 Parametric = #P42
 (self species reference, if any: #T21)
 #T21 = Linkage[Class[ArrayList], #P42.T]
 method_info {
 name/type = get/"(I)Ljava/lang/Object;"
 TypeRestriction = {#P42.T}
 Parametric = #P42
 Code = {
 ...
 getfield #FR56 //
ArrayList<T>.elements:Object[]
 ...
 }
 }
 field_info {
 name = elements
 type = "[Ljava/lang/Object;"
 TypeRestriction = {ConDy[#P42.T[]]}
 Parametric = #P42
 }
 #FR56 = Fieldref[#T21, #NAT57]
 #NAT57 = NameAndType[elements, "[Ljava/lang/
Object;"]
 #P42 = Anchor[BSM = make ArrayList species &
anchor]
 #P42.T = ConDy[extract T from #P42]
}

Diagram 4.4-H(d). Example parametric subclass
class MyVector<T> extends ju.Vector<T>
{ ...get... }
class Vector<T> { ... protected T[]
elementData; ... }

ClassFile {
 this = MyVector
 super = #T20 //Vector<T>
 Parametric = #P51
 (self species reference, if any: #T19)
 #T19 = Linkage[Class[MyVector], #P51.T]
 #T20 = Linkage[Class[java/util/Vector],
#P51.T]
 method_info {
 name/type = get/"(I)Ljava/lang/Object;"
 TypeRestriction = {#P51.T}
 Parametric = #P51
 Code = {
 ...
 getfield #FR66 //
Vector<T>.elementData:Object[]
 iload_1
 aaload
 ...
 }
 }
 #FR66 = Fieldref[#T20, #NAT67]
 #NAT67 = NameAndType[elementData, "[Ljava/
lang/Object;"]
 #P51 = Anchor[BSM = make MyVector species &
anchor]
 #P51.T = ConDy[extract T from #P51]
}
Compact resolution states
A reasonable implementation strategy for recording resolution states
is to store them in the Java heap, using plain Object[] arrays to
store SpecializationAnchor objects, species (as mirrors), and
type restriction information. Race-free update requires that each
resolution state be patched in as a single word. Also, the initial null

value in the array must represent an unset state, and there must also be
provision for recording resolution errors. One way to meet these
requirements would be a two-component ResolutionResult
record which stores either a value or an error. For the normal case of a
resolution value which is neither null, nor an error, or a particular
ResolutionResult record, the value can be stored directly in the
state array, without the overhead of a ResolutionResult record.

record ResolutionResult(Object value, Error
error) {
 public ResolutionResult {
 if (value != null && error != null) {
 throw new
IllegalArgumentException("cannot have both
value and error");
 }
 if (value == null && error == null) {
 throw new IllegalArgumentException("must
have either value or error");
 }
 // Note: The all-null state is reserved for
unresolved constants.
 }
 public boolean hasError() { return error !=
null; }
 public Object decode() throws Error {
 if (hasError()) throw error;
 return value;
 }
 public static Object decode(Object result)
throws Error {
 assert(result != null); // caller
responsibility
 if (result instanceof ResolutionResult)
 return
((ResolutionResult)result).decode();
 return result;
 }
 public static Object encode(Object result) {
 return new ResolutionResult(result,
null).encode();
 }
 public static Object encodeError(Error error)
{
 return new ResolutionResult(null, error);
 }
 private boolean valueIsEnough() {
 // determine if the value itself is fully
informative (usual case)
 return error == null && value != null && !
(value instanceof ResolutionResult);
 }
 public Object encode() {
 if (!valueIsEnough()) return this;
 return value;
 }
}

Fast paths

Certain “fast paths” are directly executed by the JVM, without further
reference to upcalls. The general rule is that a call site (or access site),
as represented by a resolved constant pool entry, will execute at “full
speed” after (at most) a check that a caller’s idea of a specialization is
identical with a callee’s (or container’s) idea.

Graceful degradation on mismatch is also possible. (It is required,
to support various roles of “raw” types with default specializations as

legacy types and/or “wild” types.) The notions of virtual call
connectors and virtual field connectors appear to supply a “fast
enough” slow path, while allowing unpolluted code to speculate that
such slow paths are, usually, irrelevant.

It might be possible to hardwire the default specializations even
more into the JVM, so that every use point (over a non-default
specialization) is bimorphic, allowing both default and (a single) non-
default specialization. Maybe, maybe not. The number “two” is
suspiciously close to the number “many” in software system design,
and while “fast” and “slow” often coexist, “slow” tends to develop
multiple purposes and aspects. Thus we propose the “connectors” as a
way of implementing raw types as a language policy, rather than as a
hardwired JVM behavior. If the only use of connectors is to
implement raw types (unlikely but possible) the extra effort
maintaining JDK code will still be balanced by the blissful ignorance
of the JVM code, of the rules for raw types, even after paying for the
plumbing of the connector APIs.

Fast revalidation
If a parametric API point M in some class C is linked with a proposed
value which may already be a validated SpecializationAnchor
for that API point, it is a matter of a few machine instructions to check
for a fast path:

• If the value is in fact refers to a
SpecializationAnchor.

• If the SpecializationAnchor is in fact for an anchor
declared in C.

• If the SpecializationAnchor is associated with the
correct anchor constant in C.

In that case, the linkage can be performed without invoking a
bootstrap method. This is a common fast path when a class is linking
to its own API points. It may also be a common fast path if translation
strategies elect to expose SpecializationAnchor objects across
classes.

A further fast test can detect if the anchor is for a default
specialization, in which case no type restrictions will be present, and
the call site may use legacy “raw” semantics.

Fast access to parametric constants
When a parametric constant A is resolved during method execution,
there must be a specialization anchor R present, for the present
method call, which contains a resolution state for A.

The interpreter must perform the steps such as the following:

• Determine which anchor constant N is co-parametric with A.
• Check whether the constant pool entry for R is N; if so, use

R.
• If not, then constant pool entry for the outer specialization to

R must be N. In that case, replace R by its outer
specialization anchor.

• Find the table of resolution states in R.
• Determine the index I of A in that table. (This should be a

statically assigned indexm, determined at class load time.)
• Inspect item I in R’s resolution state table.
• If item I is unresolved,, perform resolution logic and record

the result.
• Then, if item I has a resolved value, use that value.
• Otherwise, item I has a recorded exception, so throw that

exception.
When a constant pool is first parsed, a table can be built that classifies
each constant, producing the following information:

• Which anchor is this constant co-parametric with (else 0)?

• What is the index of this constant in a compact numbering of
it and its co-parametric constants?

These two values can help the interpreter quicklyl find split resolution
states.

This compact numbering is similar to the compact numbering
performed today for method and field references in HotSpot, in the
so-called “constant pool cache”. It may be the techniques can be
unified, so that the CP cache is really just a compact array of a certain
population of CP constants, just as specialization state tables are a
compact array of a different population of CP constants.

The resolved value of a CONSTANT_Methodref can be
specialized, if its class link is specialized (i.e., is a C_Linkage). The
metadata pointer (or index) can be stored in an invariant side table
(the “constant pool cache”) but the specialization data for the class
must be passed to the method call. This may need to be accessed from
a split constant pool entry, not for the CONSTANT_Methodref, but
rather for the CONSTANT_SpecializationLinkage that it
refers to. A flag in the CP cache can give the interpreter a heads-up, to
go hunting for this information.

Fast access to parametric fields: f-tables
When a class C is first loaded, the JVM must keep track of all its non-
static fields, so it can compute a data layout for the class. Fields
contributed by supers must also be tracked. It is useful to think of the
JVM as making a table of all these fields, and to observe that each
field has a unique position in this table. Even better, if a field F is
inherited from a super S of C, the position of F can be contrived to be
the same in the table for C as it is in the table for S.

If a non-static field is specialized with a type restriction which
changes its layout (e.g., an inline primitive) or other access behavior
(e.g., a cast), then this information must be tracked as well, and it
differs in different specialization anchors. This information can also
be thought of as being stored in a table with the same layout as the
previous field table, except that it contains entries only for the
parametric fields. This table may be called the “f-table”, by analogy
with the well-known “v-table” which selects virtual methods; this f-
table selects fields with virtualized semantics.

While the layout of an f-table may be settled statically when a class
is loaded, its contents must be computed separately within every
specialization of C. This implies that every specialization anchor
links, somehow, to an f-table that provides the specialized field access
behaviors.

What’s in an f-table entry? Well, there might be any number of
things, depending on engineering decisions:

• metadata about the original field (or maybe that’s in a central
table)

• the offset of the field in the specialized layout
• the specialized type restriction (if any) that applies to the

field
• a format token describing the field’s format (as determined

by the JVM)
• an optimized bit of code for reading the field
• an optimized bit of code for writing the field
• an optimized bit of code or data to process the field in the

GC
When the JVM needs to read a specialized field, it takes these actions:

• compute (at resolution time) the f-table index I
• also compute (at resolution time) the expected species (raw

or not)
• if the expected species is not raw, check-cast the instance

• find an f-table that matches the instance, and load item I
• use the item’s offset to address the field
• use the item’s format token (or reading code) to load the field

It is probably desirable that all invariant fields be located at fixed
locations, reportable in the static field layout table created when C is
loaded. That way the normal fixed-offset access methods can be used
for these simple fields. It follows, then, that all specializable fields
should come at the end of the instance layout (or maybe in available
padding holes). This is true even if a parametric field is inherited from
a super, and the sub-class contains invariant fields.

Fast parametric type checks: s-tables
When a class or interface C is loaded, the JVM must keep track of all
the supers (super classes and interfaces) of C. Initially, these are
resolved in unspecialized form, just as if no specialization were
present. It is useful to think of the JVM as making a table of all these
supers, and to observe that each super has a unique position in this
table.

If a class or interface has specialized supers, those specializations
are computed when the class or interface is prepared. (This must be
after loading.) If a species has specialized supers, those specializations
are computed when the species is prepared.

When a specialized super S of a class, interface, or species C is
computed, the specialization anchor computed for S (during
resolution) is recorded in a table of specialized supers for C, which
may be called the “s-table”. It is useful to think of the s-table as
having the same layout and contents as the previously mentioned table
of raw supers, except that each raw super is replaced in the s-table by
its corresponding specialization anchor. An implementation can surely
contrive to avoid allocating space for the non-anchor contents by
appropriate numbering tricks.

When an object is queried (via instanceof or a type restriction)
whether it is some raw type, the raw type table can be consulted, just
as in the non-parametric case. When the query is against a species S,
then the s-table can be consulted at the appropriate position
(determined by the head type of the species S), and S compared
against the species defined by the anchor R in the s-table.

One might think that the s-table entries should be species, instead
of specialization anchors. That is reasonable, but note that the table of
anchors is still needed for other purposes. Notably, when a class or
species C is asked to resolve a member which is inherited from some
super-species S, the resolution logic must be ready to apply the correct
specialization anchor to the member of S, if it is co-parametric with its
declaring class S. Which anchor is that? It is simply the anchor that
was first computed when the link from C to the super S was resolved
when C was prepared. That may be identical with the anchor species
for S, or it may also include some private parametric data that is not
reflected in the species per se.

When method selection is performed during virtual method
invocation, s-tables can also be used to derive the correct
specialization anchor for teh selected method. Alternatively, a v-table
structure could be enhanced to hold not only method metadata
references, but also the anchor corresponding to each such metadata
reference.

These table structures can be engineered in many different ways.
The layouts of the tables can be carefully tuned relative to a hashing
or indexing scheme, or organized randomly and searched by linear
search, or a combination of the two. The new requirement for
specialization of supers is that such tables need to hold specialization
anchors, as well as regular “raw” classes and interfaces.

It may be fruitful to adapt v-table layouts to hold s-table contents
as well. In any case, a selectable method might hold an index or other
key to retrieve its corresponding anchor from the v-table it was
selected from, or else a nearby but distinct s-table.

Sample bootstrap API

package java.lang;

public sealed
interface Species
 permits Species.Impl
{
 /** The head type of this species.
 * This is also the "raw" default layout and
behavior of this species.
 */
 Class<?> head();

 /** An object which the language
 * runtime deems to be the validated
representation
 * of a linkage parameter that could produce
this species.
 * Typically a list or tuple of reflected
type arguments.
 * Always returns {@code null} for default
specializations.
 * Specialized fields should depend only on
this value.
 */
 Object parameters();

 /** Whether this object is a default "raw"
specialization,
 * automatically created by the JVM.
 */
 boolean isDefault();

 /** A specialization anchor which defines
this species.
 * Note that a species can be refined by
multiple
 * specializations, so species can be one-
to-many
 * relative to specializations.
 */
 SpecializationAnchor specialization();
}
package java.lang.invoke;

public sealed
interface SpecializationAnchor
 permits SpecializationAnchor.Impl
{
 /** Whether this object is a default
specialization,
 * automatically created by the JVM.
 */
 boolean isDefault();

 /** An object which the language
 * runtime deems to be the representation of
a validated
 * parameter bundle that matches this
specialization.
 * Typically a list or tuple of reflected
type arguments.

 * Always returns {@code null} for default
specializations.
 * Specialized fields should depend only on
this value.
 */
 Object parameters();

 /** An object which the language
 * runtime deems to be internal data to
track, and
 * not a component of the species or type
parameters.
 * It might be reflective annotations or
private behaviors.
 * Specialized fields should not depend on
this value,
 * because their type restrictions are
resolved when
 * a species is created.
 */
 Object privateParameter();

 /** The corresponding default specialization
anchor
 * for this anchor, which is a very special
"raw"
 * specialization.
 * If this anchor is already the default of
its kind,
 * returns {@code this} object.
 */
 SpecializationAnchor defaultSpecialization();

 /** The class whose class file created the
 * {@code CONSTANT_SpecializationAnchor}
constant
 * that created this specialization anchor.
 */
 Class<?> declaringClass();

 /** A value which uniquely distinguishes
 * {@code CONSTANT_SpecializationAnchor}
constant
 * pool entry that created this
specialization anchor,
 * within its class file.
 * An adequate implementation would return
the
 * index of the anchor constant in its
constant pool.
 */
 long specializationAnchorID();

 /** The enclosing specialization anchor, if
any,
 * else {@code null}. Only anchors of
 * kind {@code PARAM_MethodAndClass} can
have
 * enclosing specialization anchors.
 * An enclosing specialization is always of
kind
 * {@code PARAM_Class} and is sub-parametric
 * to the {@code PARAM_MethodAndClass}
anchor.
 */
 SpecializationAnchor
enclosingSpecialization();

 /** The class specialization which this
anchor exports
 * else {@code null} if it specializes
methods only.
 * Only anchors of kinds {@code PARAM_Class}
 * and {@code PARAM_MethodAndClass} can
return
 * non-null.
 */
 Species species();

 /** Reflection of parametric information.
 * The lookup object is checked against the
declaring
 * class to unlock access to this
information.
 * The format of these lists is TBD.
 */
 List<Object> parametricSuperList(Lookup
lookup);
 List<Object> parametricFieldList(Lookup
lookup);
 List<Object> parametricMethodList(Lookup
lookup);
}

public sealed
interface SpecializationAnchorBuilder
 permits SpecializationAnchorBuilder.Impl
{
 /** A pointer to the anchor being built, in a
mutable
 * larval form. The JVM cannot use it until
the
 * builder builds the adult form.
 */
 SpecializationAnchor larva();

 /** Initialize the validated parameter bundle
of the
 * anchor. This must be done exactly once,
 * and before the larva is promoted to
adult.
 * The value must not be null.
 * The value is immediately observable in
the
 * larval anchor object.
 */
 void setupParameters(Object obj);

 /** Initialize the private parameter of the
 * anchor. This may be done at most once,
 * and before the larva is promoted to
adult.
 * The value must not be null.
 * The value is immediately observable in
the
 * larval anchor object.
 */
 void setupPrivateParameter(Object obj);

 /** Associate this new specialization with a
pre-existing
 * species from a previous specialization.
 * The anchor of the pre-existing species
must match
 * this specialization anchor (both class
and anchor ID).

 * This creates a one-to-many relation
between a single
 * species and multiple specializations.
 * The anchor must be of kind {@code
PARAM_Class},
 * and must not already have a species set.
 * The set species is immediately observable
in the
 * larval anchor object.
 * <p>
 * If this method is not called,
 * the JVM will create a fresh species
automatically,
 * when the larva is promoted to adult, or
 * when the larva is queried for its
species,
 * whichever comes first.
 * After that, any call to setupSpecies is
invalid.
 */
 void setupSpecies(Species species);

 /** Build the adult form of the anchor.
 * At this point any required species
 * is built unless it has already been set.
 * A validated parameter bundle must already
be set.
 * A private parameter may or may not be
set,
 * and if not set will be reported as null.
 */
 SpecializationAnchor build();

 /** Start building a new specialization
anchor,
 * starting with a pre-existing one as a
template.
 * The template must be a default
specialization
 * anchor.
 * The lookup must be a private-access
lookup for
 * the class declaring the specialization.
 */
 static SpecializationAnchorBuilder
 start(Lookup lookup, SpecializationAnchor
template);
}
(More TBW, but see comments scattered throughout.)

Appendix: Translation Tricks and Strategems

Optional fields

Sometimes specialized types need optional fields. For example, a
numeric type which supports NaN might need an extra boolean field if
its underlying type doesn’t already have a NaN encoding.

If a field is type-restricted to a zero-bit primitive type then it
(presumably) occupies no space in its container. Loading this field
produces a constant value (the only value of that zero-bit type).
Storing a value into such a field must first cast to the zero-bit type,
which requires that the value being stored is just another copy of the
singleton value that populates the type. Anything other value stored (a
null or a different species) will elicit an exception.

Such a field can be viewed as an optional field which has been
discarded (for a particular species of the container).

In addition, we may define some sentinel empty type which has no
values at all, not even a default. Such a paradoxical type, if assigned
as a type restriction on a field, would ensure that any access to the
field must elicit an exception. This would be a stronger version of an
optional field, one unwilling even to produce the default singleton
value of some zero-bit type.

Such a field would be regarded (by the user and the JVM) as
somehow present but “poisoned”; if you touch it you throw an
exception.

Optional methods

If a method can be type-restricted so radically that it cannot be
invoked, then the result is as if the species has omitted that method.
This is sometimes useful, as when a box type supports comparison,
but only if its contained type supports comparison first. (Or, a sum
method makes sense only on a species of stream over things you can
add.)

The tricks which allow us to simulate optional fields can be
adjusted to simulate optional methods (and constructors). An empty
type can be assigned to more or more argument types of the method,
ensuring that it cannot be called. Or, an empty type can be assigned to
the return value, ensuring that it cannot return.

Better yet, a simple sentinel value (such as void) could be
accepted by the JVM as a type restriction of any method (regardless
of argument or return arity), and the JVM would simply refuse to link
such calls. Such a method would be regarded (by the user and the
JVM) as present but “poisoned”.

The ad hoc type restrictions computed by a species on its fields
and/or methods could then be used to drive optionality of fields or
methods.

Optional super types

Supers are harder to treat as optional with corresponding tricks. This
is a topic to investigate further. The problem appears to be that a super
S of a class C must be minimally present on all species of C, so that
name lookup rules are not disturbed by parametric effects.

A partial solution would be to treat all methods of some optional
interface as optional, in the sense outlined just above. But this appears
to be invasive, because the optional interface might quite innocently
wish to have invariant methods; these would not be subject to type
restrictions (unless we make new restriction mechanisms besides
specialization).

Another possible solution would be to allow some sort of “empty”
specialization for an optional super that effectively nullifies all
inheritance from that super. (Reflective or “raw” accesses would still
reach the super, of course, but perhaps type restrictions would
dynamically block all calls to methods on the super.)

A more promising solution is to allow an ad hoc type restriction of
the super type to some sentinel (void again?) for a specialized super
(not the default one), and somehow break field and method
inheritance for such a specialization, so that methods and fields
resolved by inheritance from the blocked super are themselves
“poisoned” by the same mechanism as for piecemeal optional
methods.

Optionality of object identity

In Valhalla, the association of object identity with types is flexible. A
type that is a primitive class has no instances with object identity. All
instances of a type that is an identity class have object identity. In
between those extremes, some types (Object, interfaces, perhaps
some abstract classes) allow a mix of subtypes, identity classes,
primitive classes, or both.

Specialization can extend this flexibility to the level of the species
type hierarchy, as follows. First, the class as a whole is defined as an
abstract which allows both identity and primitive classes. (This would
follow rules yet to be finalized, but perhaps the class as a whole is
merely an interface, endowed with static factory methods.) Second,
the class is made parametric, with a bootstrap method that selects a
“type kind” (primitive, identity, or abstract) based on the proposed
linkage parameter value. Third, the JVM supplies a species
construction factory that allows the “type kind” to be determined in a
way that is decoupled from the “type kind” of the variant class.

This might not work, or might require special pleading, if the “type
kind” of a type is rigorously defined in terms of the class file supers,
and not (also) on some special flag bit (e.g., ACC_PRIMITIVE). It
seems not impossible that a species factory could start with a variant
interface and come up with either kind of concrete implementation.

If all this were possible, then the class java.lang.Integer
could be retrofitted to support both old-school identity instances and
new primitive instances, by manipulating its parametric variance.

Appendix: False Starts and Roads Not Taken
In some interesting cases the JVM is already able to recognize, today,
that a dynamic value or type is actually a static constant. If this
happens, the JIT can “fold” it into optimized code. After subsequent
devirtualizations and inlinings, the resulting code can avoid lots of
virtual dispatch and boxing, and boil down hot loops to their essential
operations.

Here are some of those cases:

• inlined call chain: A caller uses an ldc or static final
to send a static (or statically typed) value X as a dynamic
argument down a call chain. If the whole call chain is inlined
into a single JIT compilation task, then constant propagation
turns the dynamic value into a static value, or at least gives it
a static type. Precondition: Inlining the callee into the caller.

• type speculation: A caller chooses a static type T and passes
an object A of that type under a dull type (like Object). The
callee guesses that A is of type T, and after verifying that is
the case, can use T as a static type. Precondition: The callee
should be able to guess all relevant types T from all callers;
the practical maximum number is 2 or 3 distinct types.

• cast to type: A caller chooses a static type T and passes an
object A of that type under a dull type (like Object). If the
callee can be induced to treat the value T.class as a
constant, then it can compute T.class.cast(A) (or the
equivalent instanceof instruction) and can then access all
of the T-features of A. Precondition: Positioning the dynamic
type T as a static value in the callee.

• trusted final: A caller stores a static constant X into a holder
object Y, using a trusted final field. If Y can be treated as a

static value, so can X. Precondition: Positioning the holder
object Y as a static value in the callee.

• customized method handle: A method handle M0; is bound to
an argument value X, yielding a new method handle M1. If
M1; is subsequently recompiled, then X becomes a static
value within the compilation of M1. Precondition: Calling the
hot path through M1.

• the constant pool: A caller decides some global static value is
needed, and arranges to store it in a constant pool. The value
can be something built in or an arbitrary value (using
invokedynamic or CONSTANT_Dynamic).
Precondition: The number of cached values must be fixed at
class load time, and caller and callee must somehow share
access to a constant pool holding the values.

Note that these cases all depend on specialized preconditions. Some
are under control of the programmer, while others depend on JVM
heuristics.

One simple example where none of the above tactics help is a B-
tree library where all the arrays are of a common length (say, 64) but
the JVM is forced to check at every array reference that the array
length is, once again, 64. The value 64 is surely declared prominently
somewhere as a static constant, and yet by the time it is stored in the
header of an array, it has become indistinguishable from a dynamic
value. Yes, we could add an optimization for array-length profiling
and speculation; maybe we will someday, but there are many similar
problems of the same sort. Covering them all seems to be an unending
game of whack-a-mole. What’s needed is help from the user to keep
static values and types static, even in places where, today, they
“decay” into dynamic values and types after parameter passing.

The root difficulty with passing a static value or type as a dynamic
parameter is that its static character is obscured. Callers and callees
are often decoupled and processed by different JIT tasks, especially
when a callee is a reusable algorithm. After decoupling, a constant in
a caller becomes difficult to recover as a constant in a callee, even by
speculative or heroic optimizations.

The new parametric constants proposed here overcome that root
difficulty exactly when inlining fails: A static decision about a linkage
parameter is bound into a caller, and becomes available in the callee,
even when the callee fails to be inlined. The specialization decision is
recorded in the caller, and is perhaps shared among multiple callers, as
with class layouts. The JVM is then given the option to customize
multiple versions of the callee, based on the behavior (especially the
“hotness”) of the various callers.

Non-proposals

What about templates in the static compiler?
C++ has a code customization mechanism called templates. They
allow a wide variety of arguments, including types, primitive values,
and functions. Within the context of a template, the template
arguments are reliably treated as constants. The arguments to a
template are thus true static type (and value and function) parameters.
There is a big downside: C++ templates are resolved and fully
compiled before the program executes. This workflow does not fit
well into Java’s paradigm of dynamic class loading and lazy linking
and initialization. In addition, any mechanism that eagerly generates
many customized versions of the same bytecode will tend to load
down the class loader and JIT. A better fit would be a mechanism
which would allow expansion during the JVM’s dynamic link phases,
or even later, when the JIT optimizes hot code paths.

What about more and better inlining?
It is quite true that many programs can exhibit optimized behavior
equivalent to customization of data and code, given enough rounds of
the following optimizations in the JIT:

• inline a callee into a caller
• propagate constants from the caller to the inlined callee
• deduce types of data shared by caller and callee
• customize the inlined caller code using the value types and

constants
• lift shared data structures out of the heap
• customize those data structures to the value types and

constants actually used
• when information is missing, try profiling and speculating

This is a very powerful toolkit of techniques which collectively make
Java competitive with languages that are statically compiled and
linked. We can and will ask the JIT to work harder on specialized
generics, but there are three limitations to the above toolkit which are
exacerbated by specialization:

1. Inlining is not reliable. Deep call chains must include out of
line calls. Also, generic code, because of its greater
reusability, may be factored into relatively deeper call chains.

2. Heap structures can only be transformed after the JIT runs.
Data created during JVM warmup cannot assume JIT
optimizations, and yet must support full speed processing, if
it survives.

3. Speculation becomes less accurate as types and values
become more differentiated due to type specialization, and/or
profiles become more polluted due to sharing of well-
factored generic code.

Explicit specialization signals, captured at the JVM level, at link
resolution time, between caller and callee, provide the framework the
JVM needs to produce customized data structures up front, and
customized code as hot spots develop, even where inlining fails (as it
sometimes must).

Weren’t you implementing specialization via bytecode spinning?
Earlier prototypes of Valhalla specialization used bytecode spinning,
so that each specialization of a class or interface had its own class file,
with bytecodes (and other information) customized to the required
types. Class loaders could be “hooked” to spin specialized versions of
a type on demand.

This was a good way to experiment with (some) language designs
and flesh out requirements, but it didn’t hang together well enough to
continue with. Here is a partial list of reasons the approach didn’t pan
out:

• Subclassing (with overrides) and specialization are
independent dimensions of type variation, so implementing
them using the same mechanism causes conflicts.

• Wildcard and raw types don’t have a natural relation to other
specializations of the same type, when overrides are use to
model the interconnections.

• Specialization at class load time commits the JVM to a
separate copy of specialized code for each specialization. In
essence, there is no separate, later choice to customize
specializations based on profile feedback (as may be done in
the Parametric VM). The JIT has to separately compile and
optimize load-time specializations whether or not the extra
work is profitable.

• However much (or little) the trick works for specialized
types, spinning instances of specialized methods seems to
require lifting each generic method into its own class, which
is a large overhead.

• Specialized fields must be wrapped in access methods, and
each specialized data structure must be represented as a new
class. Such classes “leak” into the user model as classes that
the user didn’t intend to create.

• Generation of specialized bytecodes from a pre-existing
template is a complicated business. One corner case gives a
flavor of the kind of problem that arises: If a type variable is
replaced by long, suddenly the stack effects of affected
internal variables must be expanded to stack slot pairs, with
relevant bytecode changes. In general, there is little
assurance that specialized bytecodes can be generated from
some intermediate form, short of recompiling the source
code for each specialization.

What about dependent types in the VM?
Dependent types are a theoretical language concept which could
address the problem of code and data customization. If the JVM type
system were upgraded so that the static types of methods could
depend on dynamic values (or types) then users could choose to route
static specialization information through a shim of dependent types.
And the JVM would surely do the right thing. There are two
problems: Such type systems are poorly understood, and their
connections to the existing optimization tactics of the JVM are even
less understood. In any case, this would be a large change to the JVM
type system.

What about extending the language of type descriptors?
One light version of dependent types, in the JVM, would be a way of
introducing descriptors (of fields, arguments, and returns) which
include “holes” filled by resolved type information, differently at
different points in the program. This could be specified and
engineered, at the cost of reinventing the JVM’s symbolic resolution
mechanisms and type systems, to extend the syntax and semantics of
descriptors and class names, to take account of such “holes”. But it is
much easier to plumb such dependencies through a separate channel
(as in this proposal), which leaves descriptors untouched. The
dependencies are similar, but the paths by which they are introduced
are through a cleanly factored side channel, not a complexification of
the JVM’s type and descriptor system. One benefit of such a factoring
is that, in the setting of such a side channel, language-level semantics
can be more readily defined by reference library code invoked by a
bootstrap method, not descriptor processing logic hardwired into the
JVM.

In the end, it seems likely that whatever might be done with
enhanced descriptors could also be represented with parametric side
channels (assuming they are “just as constant” as the descriptors being
represented). The side channel approach is simpler and cleaner to
engineer in the JVM.

In some very narrow cases, enhanced type descriptors might
possibly assist in organizing method overloads, such as
m(List<InlineDouble>) versus m(List<InlineInt>).
The JVM could possibly assist with this by allowing the parameter
tokens (<InlineDouble> and <InlineInt>) be stored in a
side-channel associated with the symbolic reference, perhaps a name
mangling or some other place. For this to work, the JVM would not be
required to interpret those extra descriptor tokens. Alternatively, those
extra tokens could be used to derive implicit type restrictions to apply
to the affected methods. All of this is doable, but none of it has very
compelling use cases. What is interesting, though, is it seems possible

to layer traditional (CLR-style) parametric type descriptor syntaxes on
top of this parametric VM design, as sugar that expands into the
lower-level primitives of this proposal.

What about type tokens in this?
On paper, the problem of representing type variables of all kinds can
be reduced to representing species information in ad hoc object fields,
secretly injected by javac or by the JVM.

This is option 1(a) or 1(b) as discussed in section 4.2 of Kennedy
and Syme’s CLR generics paper. This may also be a good way to
prototype the plumbing of specialization information. However,
adding even one extra word to every specialized object would be a
noticeable overhead, especially for small objects. Inevitably, it turns
out to be preferable to access specialization information via the pre-
existing runtime type pointer at the head of every Java object. This is
the route taken by us and by CLR.

Noticing that all API points (not just generic classes) benefit from
parametricity, we could try to pass type tokens through the bytecodes
which manage method and even field access, as well as class creation.
Pushing on this goal, we find that constant pool slots already carry
resolved symbolic references, and thus are an ideal place to store
whatever additional data works like type tokens. Turning to the
problem of managing that data at the definition site of parametric API
points, we find that we need constant pool structures to work with
specialization anchors, which become the source of type tokens, if
those are used. The constant pool structures are the primitives, and the
type tokens are translation artifacts that can be plumbed as needed.

Method specialization information could also be encoded using
invisible synthetic helper instances, created on each call. Also, each
generic method might be relocated, from the class it is declared in, to
a synthetic inner helper class (perhaps one per generic method).
Normal nested class links would allow the method to access the real
this as well as the synthetic helper. Such an approach is disruptive
to translation strategy, creating many synthetic classes “under the
hoods”, which the JVM has to untangle in order to optimize. The
helper instances would look like regular objects to the JVM, and so
would not provide clearly marked points for the JVM to invest
customization effort, compared to a purpose-built specialization
framework in the classfile. These simulation overheads would not be
present in a corner case, but rather would appear wherever a factory
method serves to create generic instances: Clearly, a factory method is
not able to refer to type variable bindings encoded in an instance,
since its job is to create the instance. The simulation in such a case
requires the caller to first build a helper object to contain the type
variable bindings, and then immediately copy those bindings into the
real, user-visible object.

Given that the JVM must have special data paths to manage
customizable layouts of objects created by the new instruction inside
the factory method, it is a no-brainer to ditch the helper object and
plumb those special data paths (with the help of a split constant pool)
all the way out through the factory method and to its callers. The use
case of factory methods is one reason the emphasis in the present
design is on uniform specialization of all API points, not a type-only
specialization mechanism.

(Extending uniform specialization to fields as well as types and
methods provides an apt way to represent and process variant fields in
customizable layouts, and simpler options for extensions in the future,
such as species statics.)

https://www.microsoft.com/en-us/research/wp-content/uploads/2001/01/designandimplementationofgenerics.png

