1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next minor collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock",
 458               CMSParallelFullGC && ShareCMSMarkBitMapWithParallelFullGC),
 459   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 460                  -1 /* lock-free */, "No_lock" /* dummy */),
 461   _modUnionClosurePar(&_modUnionTable),
 462   // Adjust my span to cover old (cms) gen
 463   _span(cmsGen->reserved()),
 464   // Construct the is_alive_closure with _span & markBitMap
 465   _is_alive_closure(_span, &_markBitMap),
 466   _restart_addr(NULL),
 467   _overflow_list(NULL),
 468   _stats(cmsGen),
 469   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 470                              //verify that this lock should be acquired with safepoint check.
 471                              Monitor::_safepoint_check_sometimes)),
 472   _eden_chunk_array(NULL),     // may be set in ctor body
 473   _eden_chunk_capacity(0),     // -- ditto --
 474   _eden_chunk_index(0),        // -- ditto --
 475   _survivor_plab_array(NULL),  // -- ditto --
 476   _survivor_chunk_array(NULL), // -- ditto --
 477   _survivor_chunk_capacity(0), // -- ditto --
 478   _survivor_chunk_index(0),    // -- ditto --
 479   _ser_pmc_preclean_ovflw(0),
 480   _ser_kac_preclean_ovflw(0),
 481   _ser_pmc_remark_ovflw(0),
 482   _par_pmc_remark_ovflw(0),
 483   _ser_kac_ovflw(0),
 484   _par_kac_ovflw(0),
 485 #ifndef PRODUCT
 486   _num_par_pushes(0),
 487 #endif
 488   _collection_count_start(0),
 489   _verifying(false),
 490   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 491   _completed_initialization(false),
 492   _collector_policy(cp),
 493   _should_unload_classes(CMSClassUnloadingEnabled),
 494   _concurrent_cycles_since_last_unload(0),
 495   _roots_scanning_options(GenCollectedHeap::SO_None),
 496   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 498   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 499   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 500   _cms_start_registered(false)
 501 {
 502   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 503     ExplicitGCInvokesConcurrent = true;
 504   }
 505   // Now expand the span and allocate the collection support structures
 506   // (MUT, marking bit map etc.) to cover both generations subject to
 507   // collection.
 508 
 509   // For use by dirty card to oop closures.
 510   _cmsGen->cmsSpace()->set_collector(this);
 511 
 512   // Allocate MUT and marking bit map
 513   {
 514     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 515     if (!_markBitMap.allocate(_span)) {
 516       warning("Failed to allocate CMS Bit Map");
 517       return;
 518     }
 519     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 520   }
 521   {
 522     _modUnionTable.allocate(_span);
 523     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 524   }
 525 
 526   if (!_markStack.allocate(MarkStackSize)) {
 527     warning("Failed to allocate CMS Marking Stack");
 528     return;
 529   }
 530 
 531   // Support for multi-threaded concurrent phases
 532   if (CMSConcurrentMTEnabled) {
 533     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 534       // just for now
 535       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 536     }
 537     if (ConcGCThreads > 1) {
 538       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 539                                  ConcGCThreads, true);
 540       if (_conc_workers == NULL) {
 541         warning("GC/CMS: _conc_workers allocation failure: "
 542               "forcing -CMSConcurrentMTEnabled");
 543         CMSConcurrentMTEnabled = false;
 544       } else {
 545         _conc_workers->initialize_workers();
 546       }
 547     } else {
 548       CMSConcurrentMTEnabled = false;
 549     }
 550   }
 551   if (!CMSConcurrentMTEnabled) {
 552     ConcGCThreads = 0;
 553   } else {
 554     // Turn off CMSCleanOnEnter optimization temporarily for
 555     // the MT case where it's not fixed yet; see 6178663.
 556     CMSCleanOnEnter = false;
 557   }
 558   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 559          "Inconsistency");
 560 
 561   // Parallel task queues; these are shared for the
 562   // concurrent and stop-world phases of CMS, but
 563   // are not shared with parallel scavenge (ParNew).
 564   {
 565     uint i;
 566     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 567 
 568     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 569          || ParallelRefProcEnabled)
 570         && num_queues > 0) {
 571       _task_queues = new OopTaskQueueSet(num_queues);
 572       if (_task_queues == NULL) {
 573         warning("task_queues allocation failure.");
 574         return;
 575       }
 576       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 577       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 578       for (i = 0; i < num_queues; i++) {
 579         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 580         if (q == NULL) {
 581           warning("work_queue allocation failure.");
 582           return;
 583         }
 584         _task_queues->register_queue(i, q);
 585       }
 586       for (i = 0; i < num_queues; i++) {
 587         _task_queues->queue(i)->initialize();
 588         _hash_seed[i] = 17;  // copied from ParNew
 589       }
 590     }
 591   }
 592 
 593   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 594 
 595   // Clip CMSBootstrapOccupancy between 0 and 100.
 596   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 597 
 598   // Now tell CMS generations the identity of their collector
 599   ConcurrentMarkSweepGeneration::set_collector(this);
 600 
 601   // Create & start a CMS thread for this CMS collector
 602   _cmsThread = ConcurrentMarkSweepThread::start(this);
 603   assert(cmsThread() != NULL, "CMS Thread should have been created");
 604   assert(cmsThread()->collector() == this,
 605          "CMS Thread should refer to this gen");
 606   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 607 
 608   // Support for parallelizing young gen rescan
 609   GenCollectedHeap* gch = GenCollectedHeap::heap();
 610   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 611   _young_gen = (ParNewGeneration*)gch->young_gen();
 612   if (gch->supports_inline_contig_alloc()) {
 613     _top_addr = gch->top_addr();
 614     _end_addr = gch->end_addr();
 615     assert(_young_gen != NULL, "no _young_gen");
 616     _eden_chunk_index = 0;
 617     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 618     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 619   }
 620 
 621   // Support for parallelizing survivor space rescan
 622   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 623     const size_t max_plab_samples =
 624       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 625 
 626     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 627     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 628     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 629     _survivor_chunk_capacity = 2*max_plab_samples;
 630     for (uint i = 0; i < ParallelGCThreads; i++) {
 631       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 632       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 633       assert(cur->end() == 0, "Should be 0");
 634       assert(cur->array() == vec, "Should be vec");
 635       assert(cur->capacity() == max_plab_samples, "Error");
 636     }
 637   }
 638 
 639   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 640   _gc_counters = new CollectorCounters("CMS", 1);
 641   _completed_initialization = true;
 642   _inter_sweep_timer.start();  // start of time
 643 }
 644 
 645 size_t CMSCollector::plab_sample_minimum_size() {
 646   // The default value of MinTLABSize is 2k, but there is
 647   // no way to get the default value if the flag has been overridden.
 648   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 649 }
 650 
 651 const char* ConcurrentMarkSweepGeneration::name() const {
 652   return "concurrent mark-sweep generation";
 653 }
 654 void ConcurrentMarkSweepGeneration::update_counters() {
 655   if (UsePerfData) {
 656     _space_counters->update_all();
 657     _gen_counters->update_all();
 658   }
 659 }
 660 
 661 // this is an optimized version of update_counters(). it takes the
 662 // used value as a parameter rather than computing it.
 663 //
 664 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 665   if (UsePerfData) {
 666     _space_counters->update_used(used);
 667     _space_counters->update_capacity();
 668     _gen_counters->update_all();
 669   }
 670 }
 671 
 672 void ConcurrentMarkSweepGeneration::print() const {
 673   Generation::print();
 674   cmsSpace()->print();
 675 }
 676 
 677 #ifndef PRODUCT
 678 void ConcurrentMarkSweepGeneration::print_statistics() {
 679   cmsSpace()->printFLCensus(0);
 680 }
 681 #endif
 682 
 683 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 684   GenCollectedHeap* gch = GenCollectedHeap::heap();
 685   if (PrintGCDetails) {
 686     // I didn't want to change the logging when removing the level concept,
 687     // but I guess this logging could say "old" or something instead of "1".
 688     assert(gch->is_old_gen(this),
 689            "The CMS generation should be the old generation");
 690     uint level = 1;
 691     if (Verbose) {
 692       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 693         level, short_name(), s, used(), capacity());
 694     } else {
 695       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 696         level, short_name(), s, used() / K, capacity() / K);
 697     }
 698   }
 699   if (Verbose) {
 700     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 701               gch->used(), gch->capacity());
 702   } else {
 703     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 704               gch->used() / K, gch->capacity() / K);
 705   }
 706 }
 707 
 708 size_t
 709 ConcurrentMarkSweepGeneration::contiguous_available() const {
 710   // dld proposes an improvement in precision here. If the committed
 711   // part of the space ends in a free block we should add that to
 712   // uncommitted size in the calculation below. Will make this
 713   // change later, staying with the approximation below for the
 714   // time being. -- ysr.
 715   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 716 }
 717 
 718 size_t
 719 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 720   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 721 }
 722 
 723 size_t ConcurrentMarkSweepGeneration::max_available() const {
 724   return free() + _virtual_space.uncommitted_size();
 725 }
 726 
 727 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 728   size_t available = max_available();
 729   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 730   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 731   if (Verbose && PrintGCDetails) {
 732     gclog_or_tty->print_cr(
 733       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 734       "max_promo(" SIZE_FORMAT ")",
 735       res? "":" not", available, res? ">=":"<",
 736       av_promo, max_promotion_in_bytes);
 737   }
 738   return res;
 739 }
 740 
 741 // At a promotion failure dump information on block layout in heap
 742 // (cms old generation).
 743 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 744   if (CMSDumpAtPromotionFailure) {
 745     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 746   }
 747 }
 748 
 749 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 750   // Clear the promotion information.  These pointers can be adjusted
 751   // along with all the other pointers into the heap but
 752   // compaction is expected to be a rare event with
 753   // a heap using cms so don't do it without seeing the need.
 754   for (uint i = 0; i < ParallelGCThreads; i++) {
 755     _par_gc_thread_states[i]->promo.reset();
 756   }
 757 }
 758 
 759 void ConcurrentMarkSweepGeneration::compute_new_size() {
 760   assert_locked_or_safepoint(Heap_lock);
 761 
 762   // If incremental collection failed, we just want to expand
 763   // to the limit.
 764   if (incremental_collection_failed()) {
 765     clear_incremental_collection_failed();
 766     grow_to_reserved();
 767     return;
 768   }
 769 
 770   // The heap has been compacted but not reset yet.
 771   // Any metric such as free() or used() will be incorrect.
 772 
 773   CardGeneration::compute_new_size();
 774 
 775   // Reset again after a possible resizing
 776   if (did_compact()) {
 777     cmsSpace()->reset_after_compaction();
 778   }
 779 }
 780 
 781 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 782   assert_locked_or_safepoint(Heap_lock);
 783 
 784   // If incremental collection failed, we just want to expand
 785   // to the limit.
 786   if (incremental_collection_failed()) {
 787     clear_incremental_collection_failed();
 788     grow_to_reserved();
 789     return;
 790   }
 791 
 792   double free_percentage = ((double) free()) / capacity();
 793   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 794   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 795 
 796   // compute expansion delta needed for reaching desired free percentage
 797   if (free_percentage < desired_free_percentage) {
 798     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 799     assert(desired_capacity >= capacity(), "invalid expansion size");
 800     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 801     if (PrintGCDetails && Verbose) {
 802       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 803       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 804       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 805       gclog_or_tty->print_cr("  Desired free fraction %f",
 806               desired_free_percentage);
 807       gclog_or_tty->print_cr("  Maximum free fraction %f",
 808               maximum_free_percentage);
 809       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity()/1000);
 810       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT,
 811               desired_capacity/1000);
 812       GenCollectedHeap* gch = GenCollectedHeap::heap();
 813       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 814       size_t young_size = gch->young_gen()->capacity();
 815       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 816       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT,
 817               unsafe_max_alloc_nogc()/1000);
 818       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT,
 819               contiguous_available()/1000);
 820       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)",
 821               expand_bytes);
 822     }
 823     // safe if expansion fails
 824     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 825     if (PrintGCDetails && Verbose) {
 826       gclog_or_tty->print_cr("  Expanded free fraction %f",
 827         ((double) free()) / capacity());
 828     }
 829   } else {
 830     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 831     assert(desired_capacity <= capacity(), "invalid expansion size");
 832     size_t shrink_bytes = capacity() - desired_capacity;
 833     // Don't shrink unless the delta is greater than the minimum shrink we want
 834     if (shrink_bytes >= MinHeapDeltaBytes) {
 835       shrink_free_list_by(shrink_bytes);
 836     }
 837   }
 838 }
 839 
 840 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 841   return cmsSpace()->freelistLock();
 842 }
 843 
 844 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 845                                                   bool   tlab) {
 846   CMSSynchronousYieldRequest yr;
 847   MutexLockerEx x(freelistLock(),
 848                   Mutex::_no_safepoint_check_flag);
 849   return have_lock_and_allocate(size, tlab);
 850 }
 851 
 852 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 853                                                   bool   tlab /* ignored */) {
 854   assert_lock_strong(freelistLock());
 855   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 856   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 857   // Allocate the object live (grey) if the background collector has
 858   // started marking. This is necessary because the marker may
 859   // have passed this address and consequently this object will
 860   // not otherwise be greyed and would be incorrectly swept up.
 861   // Note that if this object contains references, the writing
 862   // of those references will dirty the card containing this object
 863   // allowing the object to be blackened (and its references scanned)
 864   // either during a preclean phase or at the final checkpoint.
 865   if (res != NULL) {
 866     // We may block here with an uninitialized object with
 867     // its mark-bit or P-bits not yet set. Such objects need
 868     // to be safely navigable by block_start().
 869     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 870     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 871     collector()->direct_allocated(res, adjustedSize);
 872     _direct_allocated_words += adjustedSize;
 873     // allocation counters
 874     NOT_PRODUCT(
 875       _numObjectsAllocated++;
 876       _numWordsAllocated += (int)adjustedSize;
 877     )
 878   }
 879   return res;
 880 }
 881 
 882 // In the case of direct allocation by mutators in a generation that
 883 // is being concurrently collected, the object must be allocated
 884 // live (grey) if the background collector has started marking.
 885 // This is necessary because the marker may
 886 // have passed this address and consequently this object will
 887 // not otherwise be greyed and would be incorrectly swept up.
 888 // Note that if this object contains references, the writing
 889 // of those references will dirty the card containing this object
 890 // allowing the object to be blackened (and its references scanned)
 891 // either during a preclean phase or at the final checkpoint.
 892 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 893   assert(_markBitMap.covers(start, size), "Out of bounds");
 894   if (_collectorState >= Marking) {
 895     MutexLockerEx y(_markBitMap.lock(),
 896                     Mutex::_no_safepoint_check_flag);
 897     // [see comments preceding SweepClosure::do_blk() below for details]
 898     //
 899     // Can the P-bits be deleted now?  JJJ
 900     //
 901     // 1. need to mark the object as live so it isn't collected
 902     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 903     // 3. need to mark the end of the object so marking, precleaning or sweeping
 904     //    can skip over uninitialized or unparsable objects. An allocated
 905     //    object is considered uninitialized for our purposes as long as
 906     //    its klass word is NULL.  All old gen objects are parsable
 907     //    as soon as they are initialized.)
 908     _markBitMap.mark(start);          // object is live
 909     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 910     _markBitMap.mark(start + size - 1);
 911                                       // mark end of object
 912   }
 913   // check that oop looks uninitialized
 914   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 915 }
 916 
 917 void CMSCollector::promoted(bool par, HeapWord* start,
 918                             bool is_obj_array, size_t obj_size) {
 919   assert(_markBitMap.covers(start), "Out of bounds");
 920   // See comment in direct_allocated() about when objects should
 921   // be allocated live.
 922   if (_collectorState >= Marking) {
 923     // we already hold the marking bit map lock, taken in
 924     // the prologue
 925     if (par) {
 926       _markBitMap.par_mark(start);
 927     } else {
 928       _markBitMap.mark(start);
 929     }
 930     // We don't need to mark the object as uninitialized (as
 931     // in direct_allocated above) because this is being done with the
 932     // world stopped and the object will be initialized by the
 933     // time the marking, precleaning or sweeping get to look at it.
 934     // But see the code for copying objects into the CMS generation,
 935     // where we need to ensure that concurrent readers of the
 936     // block offset table are able to safely navigate a block that
 937     // is in flux from being free to being allocated (and in
 938     // transition while being copied into) and subsequently
 939     // becoming a bona-fide object when the copy/promotion is complete.
 940     assert(SafepointSynchronize::is_at_safepoint(),
 941            "expect promotion only at safepoints");
 942 
 943     if (_collectorState < Sweeping) {
 944       // Mark the appropriate cards in the modUnionTable, so that
 945       // this object gets scanned before the sweep. If this is
 946       // not done, CMS generation references in the object might
 947       // not get marked.
 948       // For the case of arrays, which are otherwise precisely
 949       // marked, we need to dirty the entire array, not just its head.
 950       if (is_obj_array) {
 951         // The [par_]mark_range() method expects mr.end() below to
 952         // be aligned to the granularity of a bit's representation
 953         // in the heap. In the case of the MUT below, that's a
 954         // card size.
 955         MemRegion mr(start,
 956                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 957                         CardTableModRefBS::card_size /* bytes */));
 958         if (par) {
 959           _modUnionTable.par_mark_range(mr);
 960         } else {
 961           _modUnionTable.mark_range(mr);
 962         }
 963       } else {  // not an obj array; we can just mark the head
 964         if (par) {
 965           _modUnionTable.par_mark(start);
 966         } else {
 967           _modUnionTable.mark(start);
 968         }
 969       }
 970     }
 971   }
 972 }
 973 
 974 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 975   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 976   // allocate, copy and if necessary update promoinfo --
 977   // delegate to underlying space.
 978   assert_lock_strong(freelistLock());
 979 
 980 #ifndef PRODUCT
 981   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 982     return NULL;
 983   }
 984 #endif  // #ifndef PRODUCT
 985 
 986   oop res = _cmsSpace->promote(obj, obj_size);
 987   if (res == NULL) {
 988     // expand and retry
 989     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 990     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 991     // Since this is the old generation, we don't try to promote
 992     // into a more senior generation.
 993     res = _cmsSpace->promote(obj, obj_size);
 994   }
 995   if (res != NULL) {
 996     // See comment in allocate() about when objects should
 997     // be allocated live.
 998     assert(obj->is_oop(), "Will dereference klass pointer below");
 999     collector()->promoted(false,           // Not parallel
1000                           (HeapWord*)res, obj->is_objArray(), obj_size);
1001     // promotion counters
1002     NOT_PRODUCT(
1003       _numObjectsPromoted++;
1004       _numWordsPromoted +=
1005         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1006     )
1007   }
1008   return res;
1009 }
1010 
1011 
1012 // IMPORTANT: Notes on object size recognition in CMS.
1013 // ---------------------------------------------------
1014 // A block of storage in the CMS generation is always in
1015 // one of three states. A free block (FREE), an allocated
1016 // object (OBJECT) whose size() method reports the correct size,
1017 // and an intermediate state (TRANSIENT) in which its size cannot
1018 // be accurately determined.
1019 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1020 // -----------------------------------------------------
1021 // FREE:      klass_word & 1 == 1; mark_word holds block size
1022 //
1023 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1024 //            obj->size() computes correct size
1025 //
1026 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1027 //
1028 // STATE IDENTIFICATION: (64 bit+COOPS)
1029 // ------------------------------------
1030 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1031 //
1032 // OBJECT:    klass_word installed; klass_word != 0;
1033 //            obj->size() computes correct size
1034 //
1035 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1036 //
1037 //
1038 // STATE TRANSITION DIAGRAM
1039 //
1040 //        mut / parnew                     mut  /  parnew
1041 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1042 //  ^                                                                   |
1043 //  |------------------------ DEAD <------------------------------------|
1044 //         sweep                            mut
1045 //
1046 // While a block is in TRANSIENT state its size cannot be determined
1047 // so readers will either need to come back later or stall until
1048 // the size can be determined. Note that for the case of direct
1049 // allocation, P-bits, when available, may be used to determine the
1050 // size of an object that may not yet have been initialized.
1051 
1052 // Things to support parallel young-gen collection.
1053 oop
1054 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1055                                            oop old, markOop m,
1056                                            size_t word_sz) {
1057 #ifndef PRODUCT
1058   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1059     return NULL;
1060   }
1061 #endif  // #ifndef PRODUCT
1062 
1063   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1064   PromotionInfo* promoInfo = &ps->promo;
1065   // if we are tracking promotions, then first ensure space for
1066   // promotion (including spooling space for saving header if necessary).
1067   // then allocate and copy, then track promoted info if needed.
1068   // When tracking (see PromotionInfo::track()), the mark word may
1069   // be displaced and in this case restoration of the mark word
1070   // occurs in the (oop_since_save_marks_)iterate phase.
1071   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1072     // Out of space for allocating spooling buffers;
1073     // try expanding and allocating spooling buffers.
1074     if (!expand_and_ensure_spooling_space(promoInfo)) {
1075       return NULL;
1076     }
1077   }
1078   assert(promoInfo->has_spooling_space(), "Control point invariant");
1079   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1080   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1081   if (obj_ptr == NULL) {
1082      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1083      if (obj_ptr == NULL) {
1084        return NULL;
1085      }
1086   }
1087   oop obj = oop(obj_ptr);
1088   OrderAccess::storestore();
1089   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1090   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1091   // IMPORTANT: See note on object initialization for CMS above.
1092   // Otherwise, copy the object.  Here we must be careful to insert the
1093   // klass pointer last, since this marks the block as an allocated object.
1094   // Except with compressed oops it's the mark word.
1095   HeapWord* old_ptr = (HeapWord*)old;
1096   // Restore the mark word copied above.
1097   obj->set_mark(m);
1098   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1099   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1100   OrderAccess::storestore();
1101 
1102   if (UseCompressedClassPointers) {
1103     // Copy gap missed by (aligned) header size calculation below
1104     obj->set_klass_gap(old->klass_gap());
1105   }
1106   if (word_sz > (size_t)oopDesc::header_size()) {
1107     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1108                                  obj_ptr + oopDesc::header_size(),
1109                                  word_sz - oopDesc::header_size());
1110   }
1111 
1112   // Now we can track the promoted object, if necessary.  We take care
1113   // to delay the transition from uninitialized to full object
1114   // (i.e., insertion of klass pointer) until after, so that it
1115   // atomically becomes a promoted object.
1116   if (promoInfo->tracking()) {
1117     promoInfo->track((PromotedObject*)obj, old->klass());
1118   }
1119   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1120   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1121   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1122 
1123   // Finally, install the klass pointer (this should be volatile).
1124   OrderAccess::storestore();
1125   obj->set_klass(old->klass());
1126   // We should now be able to calculate the right size for this object
1127   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1128 
1129   collector()->promoted(true,          // parallel
1130                         obj_ptr, old->is_objArray(), word_sz);
1131 
1132   NOT_PRODUCT(
1133     Atomic::inc_ptr(&_numObjectsPromoted);
1134     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1135   )
1136 
1137   return obj;
1138 }
1139 
1140 void
1141 ConcurrentMarkSweepGeneration::
1142 par_promote_alloc_done(int thread_num) {
1143   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1144   ps->lab.retire(thread_num);
1145 }
1146 
1147 void
1148 ConcurrentMarkSweepGeneration::
1149 par_oop_since_save_marks_iterate_done(int thread_num) {
1150   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1151   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1152   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1153 }
1154 
1155 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1156                                                    size_t size,
1157                                                    bool   tlab)
1158 {
1159   // We allow a STW collection only if a full
1160   // collection was requested.
1161   return full || should_allocate(size, tlab); // FIX ME !!!
1162   // This and promotion failure handling are connected at the
1163   // hip and should be fixed by untying them.
1164 }
1165 
1166 bool CMSCollector::shouldConcurrentCollect() {
1167   if (_full_gc_requested) {
1168     if (Verbose && PrintGCDetails) {
1169       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1170                              " gc request (or gc_locker)");
1171     }
1172     return true;
1173   }
1174 
1175   FreelistLocker x(this);
1176   // ------------------------------------------------------------------
1177   // Print out lots of information which affects the initiation of
1178   // a collection.
1179   if (PrintCMSInitiationStatistics && stats().valid()) {
1180     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1181     gclog_or_tty->stamp();
1182     gclog_or_tty->cr();
1183     stats().print_on(gclog_or_tty);
1184     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1185       stats().time_until_cms_gen_full());
1186     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1187     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1188                            _cmsGen->contiguous_available());
1189     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1190     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1191     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1192     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1193     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1194     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1195     gclog_or_tty->print_cr("metadata initialized %d",
1196       MetaspaceGC::should_concurrent_collect());
1197   }
1198   // ------------------------------------------------------------------
1199 
1200   // If the estimated time to complete a cms collection (cms_duration())
1201   // is less than the estimated time remaining until the cms generation
1202   // is full, start a collection.
1203   if (!UseCMSInitiatingOccupancyOnly) {
1204     if (stats().valid()) {
1205       if (stats().time_until_cms_start() == 0.0) {
1206         return true;
1207       }
1208     } else {
1209       // We want to conservatively collect somewhat early in order
1210       // to try and "bootstrap" our CMS/promotion statistics;
1211       // this branch will not fire after the first successful CMS
1212       // collection because the stats should then be valid.
1213       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1214         if (Verbose && PrintGCDetails) {
1215           gclog_or_tty->print_cr(
1216             " CMSCollector: collect for bootstrapping statistics:"
1217             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1218             _bootstrap_occupancy);
1219         }
1220         return true;
1221       }
1222     }
1223   }
1224 
1225   // Otherwise, we start a collection cycle if
1226   // old gen want a collection cycle started. Each may use
1227   // an appropriate criterion for making this decision.
1228   // XXX We need to make sure that the gen expansion
1229   // criterion dovetails well with this. XXX NEED TO FIX THIS
1230   if (_cmsGen->should_concurrent_collect()) {
1231     if (Verbose && PrintGCDetails) {
1232       gclog_or_tty->print_cr("CMS old gen initiated");
1233     }
1234     return true;
1235   }
1236 
1237   // We start a collection if we believe an incremental collection may fail;
1238   // this is not likely to be productive in practice because it's probably too
1239   // late anyway.
1240   GenCollectedHeap* gch = GenCollectedHeap::heap();
1241   assert(gch->collector_policy()->is_generation_policy(),
1242          "You may want to check the correctness of the following");
1243   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1244     if (Verbose && PrintGCDetails) {
1245       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1246     }
1247     return true;
1248   }
1249 
1250   if (MetaspaceGC::should_concurrent_collect()) {
1251     if (Verbose && PrintGCDetails) {
1252       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1253     }
1254     return true;
1255   }
1256 
1257   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1258   if (CMSTriggerInterval >= 0) {
1259     if (CMSTriggerInterval == 0) {
1260       // Trigger always
1261       return true;
1262     }
1263 
1264     // Check the CMS time since begin (we do not check the stats validity
1265     // as we want to be able to trigger the first CMS cycle as well)
1266     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1267       if (Verbose && PrintGCDetails) {
1268         if (stats().valid()) {
1269           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1270                                  stats().cms_time_since_begin());
1271         } else {
1272           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1273         }
1274       }
1275       return true;
1276     }
1277   }
1278 
1279   return false;
1280 }
1281 
1282 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1283 
1284 // Clear _expansion_cause fields of constituent generations
1285 void CMSCollector::clear_expansion_cause() {
1286   _cmsGen->clear_expansion_cause();
1287 }
1288 
1289 // We should be conservative in starting a collection cycle.  To
1290 // start too eagerly runs the risk of collecting too often in the
1291 // extreme.  To collect too rarely falls back on full collections,
1292 // which works, even if not optimum in terms of concurrent work.
1293 // As a work around for too eagerly collecting, use the flag
1294 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1295 // giving the user an easily understandable way of controlling the
1296 // collections.
1297 // We want to start a new collection cycle if any of the following
1298 // conditions hold:
1299 // . our current occupancy exceeds the configured initiating occupancy
1300 //   for this generation, or
1301 // . we recently needed to expand this space and have not, since that
1302 //   expansion, done a collection of this generation, or
1303 // . the underlying space believes that it may be a good idea to initiate
1304 //   a concurrent collection (this may be based on criteria such as the
1305 //   following: the space uses linear allocation and linear allocation is
1306 //   going to fail, or there is believed to be excessive fragmentation in
1307 //   the generation, etc... or ...
1308 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1309 //   the case of the old generation; see CR 6543076):
1310 //   we may be approaching a point at which allocation requests may fail because
1311 //   we will be out of sufficient free space given allocation rate estimates.]
1312 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1313 
1314   assert_lock_strong(freelistLock());
1315   if (occupancy() > initiating_occupancy()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1318         short_name(), occupancy(), initiating_occupancy());
1319     }
1320     return true;
1321   }
1322   if (UseCMSInitiatingOccupancyOnly) {
1323     return false;
1324   }
1325   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1326     if (PrintGCDetails && Verbose) {
1327       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1328         short_name());
1329     }
1330     return true;
1331   }
1332   if (_cmsSpace->should_concurrent_collect()) {
1333     if (PrintGCDetails && Verbose) {
1334       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1335         short_name());
1336     }
1337     return true;
1338   }
1339   return false;
1340 }
1341 
1342 void ConcurrentMarkSweepGeneration::collect(bool   full,
1343                                             bool   clear_all_soft_refs,
1344                                             size_t size,
1345                                             bool   tlab)
1346 {
1347   collector()->collect(full, clear_all_soft_refs, size, tlab);
1348 }
1349 
1350 void CMSCollector::collect(bool   full,
1351                            bool   clear_all_soft_refs,
1352                            size_t size,
1353                            bool   tlab)
1354 {
1355   // The following "if" branch is present for defensive reasons.
1356   // In the current uses of this interface, it can be replaced with:
1357   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1358   // But I am not placing that assert here to allow future
1359   // generality in invoking this interface.
1360   if (GC_locker::is_active()) {
1361     // A consistency test for GC_locker
1362     assert(GC_locker::needs_gc(), "Should have been set already");
1363     // Skip this foreground collection, instead
1364     // expanding the heap if necessary.
1365     // Need the free list locks for the call to free() in compute_new_size()
1366     compute_new_size();
1367     return;
1368   }
1369   acquire_control_and_collect(full, clear_all_soft_refs);
1370 }
1371 
1372 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1373   GenCollectedHeap* gch = GenCollectedHeap::heap();
1374   unsigned int gc_count = gch->total_full_collections();
1375   if (gc_count == full_gc_count) {
1376     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1377     _full_gc_requested = true;
1378     _full_gc_cause = cause;
1379     CGC_lock->notify();   // nudge CMS thread
1380   } else {
1381     assert(gc_count > full_gc_count, "Error: causal loop");
1382   }
1383 }
1384 
1385 bool CMSCollector::is_external_interruption() {
1386   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1387   return GCCause::is_user_requested_gc(cause) ||
1388          GCCause::is_serviceability_requested_gc(cause);
1389 }
1390 
1391 void CMSCollector::report_concurrent_mode_interruption() {
1392   if (is_external_interruption()) {
1393     if (PrintGCDetails) {
1394       gclog_or_tty->print(" (concurrent mode interrupted)");
1395     }
1396   } else {
1397     if (PrintGCDetails) {
1398       gclog_or_tty->print(" (concurrent mode failure)");
1399     }
1400     _gc_tracer_cm->report_concurrent_mode_failure();
1401   }
1402 }
1403 
1404 
1405 // The foreground and background collectors need to coordinate in order
1406 // to make sure that they do not mutually interfere with CMS collections.
1407 // When a background collection is active,
1408 // the foreground collector may need to take over (preempt) and
1409 // synchronously complete an ongoing collection. Depending on the
1410 // frequency of the background collections and the heap usage
1411 // of the application, this preemption can be seldom or frequent.
1412 // There are only certain
1413 // points in the background collection that the "collection-baton"
1414 // can be passed to the foreground collector.
1415 //
1416 // The foreground collector will wait for the baton before
1417 // starting any part of the collection.  The foreground collector
1418 // will only wait at one location.
1419 //
1420 // The background collector will yield the baton before starting a new
1421 // phase of the collection (e.g., before initial marking, marking from roots,
1422 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1423 // of the loop which switches the phases. The background collector does some
1424 // of the phases (initial mark, final re-mark) with the world stopped.
1425 // Because of locking involved in stopping the world,
1426 // the foreground collector should not block waiting for the background
1427 // collector when it is doing a stop-the-world phase.  The background
1428 // collector will yield the baton at an additional point just before
1429 // it enters a stop-the-world phase.  Once the world is stopped, the
1430 // background collector checks the phase of the collection.  If the
1431 // phase has not changed, it proceeds with the collection.  If the
1432 // phase has changed, it skips that phase of the collection.  See
1433 // the comments on the use of the Heap_lock in collect_in_background().
1434 //
1435 // Variable used in baton passing.
1436 //   _foregroundGCIsActive - Set to true by the foreground collector when
1437 //      it wants the baton.  The foreground clears it when it has finished
1438 //      the collection.
1439 //   _foregroundGCShouldWait - Set to true by the background collector
1440 //        when it is running.  The foreground collector waits while
1441 //      _foregroundGCShouldWait is true.
1442 //  CGC_lock - monitor used to protect access to the above variables
1443 //      and to notify the foreground and background collectors.
1444 //  _collectorState - current state of the CMS collection.
1445 //
1446 // The foreground collector
1447 //   acquires the CGC_lock
1448 //   sets _foregroundGCIsActive
1449 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1450 //     various locks acquired in preparation for the collection
1451 //     are released so as not to block the background collector
1452 //     that is in the midst of a collection
1453 //   proceeds with the collection
1454 //   clears _foregroundGCIsActive
1455 //   returns
1456 //
1457 // The background collector in a loop iterating on the phases of the
1458 //      collection
1459 //   acquires the CGC_lock
1460 //   sets _foregroundGCShouldWait
1461 //   if _foregroundGCIsActive is set
1462 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1463 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1464 //     and exits the loop.
1465 //   otherwise
1466 //     proceed with that phase of the collection
1467 //     if the phase is a stop-the-world phase,
1468 //       yield the baton once more just before enqueueing
1469 //       the stop-world CMS operation (executed by the VM thread).
1470 //   returns after all phases of the collection are done
1471 //
1472 
1473 void CMSCollector::acquire_control_and_collect(bool full,
1474         bool clear_all_soft_refs) {
1475   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1476   assert(!Thread::current()->is_ConcurrentGC_thread(),
1477          "shouldn't try to acquire control from self!");
1478 
1479   // Start the protocol for acquiring control of the
1480   // collection from the background collector (aka CMS thread).
1481   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1482          "VM thread should have CMS token");
1483   // Remember the possibly interrupted state of an ongoing
1484   // concurrent collection
1485   CollectorState first_state = _collectorState;
1486 
1487   // Signal to a possibly ongoing concurrent collection that
1488   // we want to do a foreground collection.
1489   _foregroundGCIsActive = true;
1490 
1491   // release locks and wait for a notify from the background collector
1492   // releasing the locks in only necessary for phases which
1493   // do yields to improve the granularity of the collection.
1494   assert_lock_strong(bitMapLock());
1495   // We need to lock the Free list lock for the space that we are
1496   // currently collecting.
1497   assert(haveFreelistLocks(), "Must be holding free list locks");
1498   bitMapLock()->unlock();
1499   releaseFreelistLocks();
1500   {
1501     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1502     if (_foregroundGCShouldWait) {
1503       // We are going to be waiting for action for the CMS thread;
1504       // it had better not be gone (for instance at shutdown)!
1505       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1506              "CMS thread must be running");
1507       // Wait here until the background collector gives us the go-ahead
1508       ConcurrentMarkSweepThread::clear_CMS_flag(
1509         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1510       // Get a possibly blocked CMS thread going:
1511       //   Note that we set _foregroundGCIsActive true above,
1512       //   without protection of the CGC_lock.
1513       CGC_lock->notify();
1514       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1515              "Possible deadlock");
1516       while (_foregroundGCShouldWait) {
1517         // wait for notification
1518         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1519         // Possibility of delay/starvation here, since CMS token does
1520         // not know to give priority to VM thread? Actually, i think
1521         // there wouldn't be any delay/starvation, but the proof of
1522         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1523       }
1524       ConcurrentMarkSweepThread::set_CMS_flag(
1525         ConcurrentMarkSweepThread::CMS_vm_has_token);
1526     }
1527   }
1528   // The CMS_token is already held.  Get back the other locks.
1529   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1530          "VM thread should have CMS token");
1531   getFreelistLocks();
1532   bitMapLock()->lock_without_safepoint_check();
1533   if (TraceCMSState) {
1534     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1535       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1536     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1537   }
1538 
1539   // Inform cms gen if this was due to partial collection failing.
1540   // The CMS gen may use this fact to determine its expansion policy.
1541   GenCollectedHeap* gch = GenCollectedHeap::heap();
1542   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1543     assert(!_cmsGen->incremental_collection_failed(),
1544            "Should have been noticed, reacted to and cleared");
1545     _cmsGen->set_incremental_collection_failed();
1546   }
1547 
1548   if (first_state > Idling) {
1549     report_concurrent_mode_interruption();
1550   }
1551 
1552   set_did_compact(true);
1553 
1554   // If the collection is being acquired from the background
1555   // collector, there may be references on the discovered
1556   // references lists.  Abandon those references, since some
1557   // of them may have become unreachable after concurrent
1558   // discovery; the STW compacting collector will redo discovery
1559   // more precisely, without being subject to floating garbage.
1560   // Leaving otherwise unreachable references in the discovered
1561   // lists would require special handling.
1562   ref_processor()->disable_discovery();
1563   ref_processor()->abandon_partial_discovery();
1564   ref_processor()->verify_no_references_recorded();
1565 
1566   if (first_state > Idling) {
1567     save_heap_summary();
1568   }
1569 
1570   do_compaction_work(clear_all_soft_refs);
1571 
1572   // Has the GC time limit been exceeded?
1573   size_t max_eden_size = _young_gen->max_capacity() -
1574                          _young_gen->to()->capacity() -
1575                          _young_gen->from()->capacity();
1576   GCCause::Cause gc_cause = gch->gc_cause();
1577   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1578                                          _young_gen->eden()->used(),
1579                                          _cmsGen->max_capacity(),
1580                                          max_eden_size,
1581                                          full,
1582                                          gc_cause,
1583                                          gch->collector_policy());
1584 
1585   // Reset the expansion cause, now that we just completed
1586   // a collection cycle.
1587   clear_expansion_cause();
1588   _foregroundGCIsActive = false;
1589   return;
1590 }
1591 
1592 // Resize the tenured generation
1593 // after obtaining the free list locks for the
1594 // two generations.
1595 void CMSCollector::compute_new_size() {
1596   assert_locked_or_safepoint(Heap_lock);
1597   FreelistLocker z(this);
1598   MetaspaceGC::compute_new_size();
1599   _cmsGen->compute_new_size_free_list();
1600 }
1601 
1602 // A work method used by the foreground collector to do
1603 // a mark-sweep-compact.
1604 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1605   GenCollectedHeap* gch = GenCollectedHeap::heap();
1606 
1607   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1608   gc_timer->register_gc_start();
1609 
1610   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1611   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1612 
1613   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1614 
1615   // Temporarily widen the span of the weak reference processing to
1616   // the entire heap.
1617   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1618   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1619   // Temporarily, clear the "is_alive_non_header" field of the
1620   // reference processor.
1621   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1622   // Temporarily make reference _processing_ single threaded or MT as
1623   // per CMSParallelFullGC
1624   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), CMSParallelFullGC);
1625   // Temporarily make refs discovery atomic
1626   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1627   // Temporarily make reference _discovery_ single threaded or MT as
1628   // per CMSParallelFullGC
1629   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), CMSParallelFullGC);
1630 
1631   ref_processor()->set_enqueuing_is_done(false);
1632   ref_processor()->enable_discovery();
1633   ref_processor()->setup_policy(clear_all_soft_refs);
1634   // If an asynchronous collection finishes, the _modUnionTable is
1635   // all clear.  If we are assuming the collection from an asynchronous
1636   // collection, clear the _modUnionTable.
1637   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1638     "_modUnionTable should be clear if the baton was not passed");
1639   _modUnionTable.clear_all();
1640   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1641     "mod union for klasses should be clear if the baton was passed");
1642   _ct->klass_rem_set()->clear_mod_union();
1643 
1644   // We must adjust the allocation statistics being maintained
1645   // in the free list space. We do so by reading and clearing
1646   // the sweep timer and updating the block flux rate estimates below.
1647   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1648   if (_inter_sweep_timer.is_active()) {
1649     _inter_sweep_timer.stop();
1650     // Note that we do not use this sample to update the _inter_sweep_estimate.
1651     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1652                                             _inter_sweep_estimate.padded_average(),
1653                                             _intra_sweep_estimate.padded_average());
1654   }
1655 
1656   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1657   #ifdef ASSERT
1658     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1659     size_t free_size = cms_space->free();
1660     assert(free_size ==
1661            pointer_delta(cms_space->end(), cms_space->compaction_top())
1662            * HeapWordSize,
1663       "All the free space should be compacted into one chunk at top");
1664     assert(cms_space->dictionary()->total_chunk_size(
1665                                       debug_only(cms_space->freelistLock())) == 0 ||
1666            cms_space->totalSizeInIndexedFreeLists() == 0,
1667       "All the free space should be in a single chunk");
1668     size_t num = cms_space->totalCount();
1669     assert((free_size == 0 && num == 0) ||
1670            (free_size > 0  && (num == 1 || num == 2)),
1671          "There should be at most 2 free chunks after compaction");
1672   #endif // ASSERT
1673   _collectorState = Resetting;
1674   assert(_restart_addr == NULL,
1675          "Should have been NULL'd before baton was passed");
1676   reset(false /* == !concurrent */);
1677   _cmsGen->reset_after_compaction();
1678   _concurrent_cycles_since_last_unload = 0;
1679 
1680   // Clear any data recorded in the PLAB chunk arrays.
1681   if (_survivor_plab_array != NULL) {
1682     reset_survivor_plab_arrays();
1683   }
1684 
1685   // Adjust the per-size allocation stats for the next epoch.
1686   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1687   // Restart the "inter sweep timer" for the next epoch.
1688   _inter_sweep_timer.reset();
1689   _inter_sweep_timer.start();
1690 
1691   gc_timer->register_gc_end();
1692 
1693   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1694 
1695   // For a mark-sweep-compact, compute_new_size() will be called
1696   // in the heap's do_collection() method.
1697 }
1698 
1699 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1700   ContiguousSpace* eden_space = _young_gen->eden();
1701   ContiguousSpace* from_space = _young_gen->from();
1702   ContiguousSpace* to_space   = _young_gen->to();
1703   // Eden
1704   if (_eden_chunk_array != NULL) {
1705     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1706                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1707                            p2i(eden_space->end()), eden_space->capacity());
1708     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1709                            "_eden_chunk_capacity=" SIZE_FORMAT,
1710                            _eden_chunk_index, _eden_chunk_capacity);
1711     for (size_t i = 0; i < _eden_chunk_index; i++) {
1712       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1713                              i, p2i(_eden_chunk_array[i]));
1714     }
1715   }
1716   // Survivor
1717   if (_survivor_chunk_array != NULL) {
1718     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1719                            p2i(from_space->bottom()), p2i(from_space->top()),
1720                            p2i(from_space->end()), from_space->capacity());
1721     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1722                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1723                            _survivor_chunk_index, _survivor_chunk_capacity);
1724     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1725       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1726                              i, p2i(_survivor_chunk_array[i]));
1727     }
1728   }
1729 }
1730 
1731 void CMSCollector::getFreelistLocks() const {
1732   // Get locks for all free lists in all generations that this
1733   // collector is responsible for
1734   _cmsGen->freelistLock()->lock_without_safepoint_check();
1735 }
1736 
1737 void CMSCollector::releaseFreelistLocks() const {
1738   // Release locks for all free lists in all generations that this
1739   // collector is responsible for
1740   _cmsGen->freelistLock()->unlock();
1741 }
1742 
1743 bool CMSCollector::haveFreelistLocks() const {
1744   // Check locks for all free lists in all generations that this
1745   // collector is responsible for
1746   assert_lock_strong(_cmsGen->freelistLock());
1747   PRODUCT_ONLY(ShouldNotReachHere());
1748   return true;
1749 }
1750 
1751 // A utility class that is used by the CMS collector to
1752 // temporarily "release" the foreground collector from its
1753 // usual obligation to wait for the background collector to
1754 // complete an ongoing phase before proceeding.
1755 class ReleaseForegroundGC: public StackObj {
1756  private:
1757   CMSCollector* _c;
1758  public:
1759   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1760     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1761     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1762     // allow a potentially blocked foreground collector to proceed
1763     _c->_foregroundGCShouldWait = false;
1764     if (_c->_foregroundGCIsActive) {
1765       CGC_lock->notify();
1766     }
1767     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1768            "Possible deadlock");
1769   }
1770 
1771   ~ReleaseForegroundGC() {
1772     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1773     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1774     _c->_foregroundGCShouldWait = true;
1775   }
1776 };
1777 
1778 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1779   assert(Thread::current()->is_ConcurrentGC_thread(),
1780     "A CMS asynchronous collection is only allowed on a CMS thread.");
1781 
1782   GenCollectedHeap* gch = GenCollectedHeap::heap();
1783   {
1784     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1785     MutexLockerEx hl(Heap_lock, safepoint_check);
1786     FreelistLocker fll(this);
1787     MutexLockerEx x(CGC_lock, safepoint_check);
1788     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1789       // The foreground collector is active or we're
1790       // not using asynchronous collections.  Skip this
1791       // background collection.
1792       assert(!_foregroundGCShouldWait, "Should be clear");
1793       return;
1794     } else {
1795       assert(_collectorState == Idling, "Should be idling before start.");
1796       _collectorState = InitialMarking;
1797       register_gc_start(cause);
1798       // Reset the expansion cause, now that we are about to begin
1799       // a new cycle.
1800       clear_expansion_cause();
1801 
1802       // Clear the MetaspaceGC flag since a concurrent collection
1803       // is starting but also clear it after the collection.
1804       MetaspaceGC::set_should_concurrent_collect(false);
1805     }
1806     // Decide if we want to enable class unloading as part of the
1807     // ensuing concurrent GC cycle.
1808     update_should_unload_classes();
1809     _full_gc_requested = false;           // acks all outstanding full gc requests
1810     _full_gc_cause = GCCause::_no_gc;
1811     // Signal that we are about to start a collection
1812     gch->increment_total_full_collections();  // ... starting a collection cycle
1813     _collection_count_start = gch->total_full_collections();
1814   }
1815 
1816   // Used for PrintGC
1817   size_t prev_used;
1818   if (PrintGC && Verbose) {
1819     prev_used = _cmsGen->used();
1820   }
1821 
1822   // The change of the collection state is normally done at this level;
1823   // the exceptions are phases that are executed while the world is
1824   // stopped.  For those phases the change of state is done while the
1825   // world is stopped.  For baton passing purposes this allows the
1826   // background collector to finish the phase and change state atomically.
1827   // The foreground collector cannot wait on a phase that is done
1828   // while the world is stopped because the foreground collector already
1829   // has the world stopped and would deadlock.
1830   while (_collectorState != Idling) {
1831     if (TraceCMSState) {
1832       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1833         p2i(Thread::current()), _collectorState);
1834     }
1835     // The foreground collector
1836     //   holds the Heap_lock throughout its collection.
1837     //   holds the CMS token (but not the lock)
1838     //     except while it is waiting for the background collector to yield.
1839     //
1840     // The foreground collector should be blocked (not for long)
1841     //   if the background collector is about to start a phase
1842     //   executed with world stopped.  If the background
1843     //   collector has already started such a phase, the
1844     //   foreground collector is blocked waiting for the
1845     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1846     //   are executed in the VM thread.
1847     //
1848     // The locking order is
1849     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1850     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1851     //   CMS token  (claimed in
1852     //                stop_world_and_do() -->
1853     //                  safepoint_synchronize() -->
1854     //                    CMSThread::synchronize())
1855 
1856     {
1857       // Check if the FG collector wants us to yield.
1858       CMSTokenSync x(true); // is cms thread
1859       if (waitForForegroundGC()) {
1860         // We yielded to a foreground GC, nothing more to be
1861         // done this round.
1862         assert(_foregroundGCShouldWait == false, "We set it to false in "
1863                "waitForForegroundGC()");
1864         if (TraceCMSState) {
1865           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1866             " exiting collection CMS state %d",
1867             p2i(Thread::current()), _collectorState);
1868         }
1869         return;
1870       } else {
1871         // The background collector can run but check to see if the
1872         // foreground collector has done a collection while the
1873         // background collector was waiting to get the CGC_lock
1874         // above.  If yes, break so that _foregroundGCShouldWait
1875         // is cleared before returning.
1876         if (_collectorState == Idling) {
1877           break;
1878         }
1879       }
1880     }
1881 
1882     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1883       "should be waiting");
1884 
1885     switch (_collectorState) {
1886       case InitialMarking:
1887         {
1888           ReleaseForegroundGC x(this);
1889           stats().record_cms_begin();
1890           VM_CMS_Initial_Mark initial_mark_op(this);
1891           VMThread::execute(&initial_mark_op);
1892         }
1893         // The collector state may be any legal state at this point
1894         // since the background collector may have yielded to the
1895         // foreground collector.
1896         break;
1897       case Marking:
1898         // initial marking in checkpointRootsInitialWork has been completed
1899         if (markFromRoots()) { // we were successful
1900           assert(_collectorState == Precleaning, "Collector state should "
1901             "have changed");
1902         } else {
1903           assert(_foregroundGCIsActive, "Internal state inconsistency");
1904         }
1905         break;
1906       case Precleaning:
1907         // marking from roots in markFromRoots has been completed
1908         preclean();
1909         assert(_collectorState == AbortablePreclean ||
1910                _collectorState == FinalMarking,
1911                "Collector state should have changed");
1912         break;
1913       case AbortablePreclean:
1914         abortable_preclean();
1915         assert(_collectorState == FinalMarking, "Collector state should "
1916           "have changed");
1917         break;
1918       case FinalMarking:
1919         {
1920           ReleaseForegroundGC x(this);
1921 
1922           VM_CMS_Final_Remark final_remark_op(this);
1923           VMThread::execute(&final_remark_op);
1924         }
1925         assert(_foregroundGCShouldWait, "block post-condition");
1926         break;
1927       case Sweeping:
1928         // final marking in checkpointRootsFinal has been completed
1929         sweep();
1930         assert(_collectorState == Resizing, "Collector state change "
1931           "to Resizing must be done under the free_list_lock");
1932 
1933       case Resizing: {
1934         // Sweeping has been completed...
1935         // At this point the background collection has completed.
1936         // Don't move the call to compute_new_size() down
1937         // into code that might be executed if the background
1938         // collection was preempted.
1939         {
1940           ReleaseForegroundGC x(this);   // unblock FG collection
1941           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1942           CMSTokenSync        z(true);   // not strictly needed.
1943           if (_collectorState == Resizing) {
1944             compute_new_size();
1945             save_heap_summary();
1946             _collectorState = Resetting;
1947           } else {
1948             assert(_collectorState == Idling, "The state should only change"
1949                    " because the foreground collector has finished the collection");
1950           }
1951         }
1952         break;
1953       }
1954       case Resetting:
1955         // CMS heap resizing has been completed
1956         reset(true);
1957         assert(_collectorState == Idling, "Collector state should "
1958           "have changed");
1959 
1960         MetaspaceGC::set_should_concurrent_collect(false);
1961 
1962         stats().record_cms_end();
1963         // Don't move the concurrent_phases_end() and compute_new_size()
1964         // calls to here because a preempted background collection
1965         // has it's state set to "Resetting".
1966         break;
1967       case Idling:
1968       default:
1969         ShouldNotReachHere();
1970         break;
1971     }
1972     if (TraceCMSState) {
1973       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1974         p2i(Thread::current()), _collectorState);
1975     }
1976     assert(_foregroundGCShouldWait, "block post-condition");
1977   }
1978 
1979   // Should this be in gc_epilogue?
1980   collector_policy()->counters()->update_counters();
1981 
1982   {
1983     // Clear _foregroundGCShouldWait and, in the event that the
1984     // foreground collector is waiting, notify it, before
1985     // returning.
1986     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1987     _foregroundGCShouldWait = false;
1988     if (_foregroundGCIsActive) {
1989       CGC_lock->notify();
1990     }
1991     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1992            "Possible deadlock");
1993   }
1994   if (TraceCMSState) {
1995     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1996       " exiting collection CMS state %d",
1997       p2i(Thread::current()), _collectorState);
1998   }
1999   if (PrintGC && Verbose) {
2000     _cmsGen->print_heap_change(prev_used);
2001   }
2002 }
2003 
2004 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2005   _cms_start_registered = true;
2006   _gc_timer_cm->register_gc_start();
2007   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2008 }
2009 
2010 void CMSCollector::register_gc_end() {
2011   if (_cms_start_registered) {
2012     report_heap_summary(GCWhen::AfterGC);
2013 
2014     _gc_timer_cm->register_gc_end();
2015     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2016     _cms_start_registered = false;
2017   }
2018 }
2019 
2020 void CMSCollector::save_heap_summary() {
2021   GenCollectedHeap* gch = GenCollectedHeap::heap();
2022   _last_heap_summary = gch->create_heap_summary();
2023   _last_metaspace_summary = gch->create_metaspace_summary();
2024 }
2025 
2026 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2027   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2028   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2029 }
2030 
2031 bool CMSCollector::waitForForegroundGC() {
2032   bool res = false;
2033   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2034          "CMS thread should have CMS token");
2035   // Block the foreground collector until the
2036   // background collectors decides whether to
2037   // yield.
2038   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2039   _foregroundGCShouldWait = true;
2040   if (_foregroundGCIsActive) {
2041     // The background collector yields to the
2042     // foreground collector and returns a value
2043     // indicating that it has yielded.  The foreground
2044     // collector can proceed.
2045     res = true;
2046     _foregroundGCShouldWait = false;
2047     ConcurrentMarkSweepThread::clear_CMS_flag(
2048       ConcurrentMarkSweepThread::CMS_cms_has_token);
2049     ConcurrentMarkSweepThread::set_CMS_flag(
2050       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2051     // Get a possibly blocked foreground thread going
2052     CGC_lock->notify();
2053     if (TraceCMSState) {
2054       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2055         p2i(Thread::current()), _collectorState);
2056     }
2057     while (_foregroundGCIsActive) {
2058       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2059     }
2060     ConcurrentMarkSweepThread::set_CMS_flag(
2061       ConcurrentMarkSweepThread::CMS_cms_has_token);
2062     ConcurrentMarkSweepThread::clear_CMS_flag(
2063       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2064   }
2065   if (TraceCMSState) {
2066     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2067       p2i(Thread::current()), _collectorState);
2068   }
2069   return res;
2070 }
2071 
2072 // Because of the need to lock the free lists and other structures in
2073 // the collector, common to all the generations that the collector is
2074 // collecting, we need the gc_prologues of individual CMS generations
2075 // delegate to their collector. It may have been simpler had the
2076 // current infrastructure allowed one to call a prologue on a
2077 // collector. In the absence of that we have the generation's
2078 // prologue delegate to the collector, which delegates back
2079 // some "local" work to a worker method in the individual generations
2080 // that it's responsible for collecting, while itself doing any
2081 // work common to all generations it's responsible for. A similar
2082 // comment applies to the  gc_epilogue()'s.
2083 // The role of the variable _between_prologue_and_epilogue is to
2084 // enforce the invocation protocol.
2085 void CMSCollector::gc_prologue(bool full) {
2086   // Call gc_prologue_work() for the CMSGen
2087   // we are responsible for.
2088 
2089   // The following locking discipline assumes that we are only called
2090   // when the world is stopped.
2091   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2092 
2093   // The CMSCollector prologue must call the gc_prologues for the
2094   // "generations" that it's responsible
2095   // for.
2096 
2097   assert(   Thread::current()->is_VM_thread()
2098          || (   CMSScavengeBeforeRemark
2099              && Thread::current()->is_ConcurrentGC_thread()),
2100          "Incorrect thread type for prologue execution");
2101 
2102   if (_between_prologue_and_epilogue) {
2103     // We have already been invoked; this is a gc_prologue delegation
2104     // from yet another CMS generation that we are responsible for, just
2105     // ignore it since all relevant work has already been done.
2106     return;
2107   }
2108 
2109   // set a bit saying prologue has been called; cleared in epilogue
2110   _between_prologue_and_epilogue = true;
2111   // Claim locks for common data structures, then call gc_prologue_work()
2112   // for each CMSGen.
2113 
2114   getFreelistLocks();   // gets free list locks on constituent spaces
2115   bitMapLock()->lock_without_safepoint_check();
2116 
2117   // Should call gc_prologue_work() for all cms gens we are responsible for
2118   bool duringMarking =    _collectorState >= Marking
2119                          && _collectorState < Sweeping;
2120 
2121   // The young collections clear the modified oops state, which tells if
2122   // there are any modified oops in the class. The remark phase also needs
2123   // that information. Tell the young collection to save the union of all
2124   // modified klasses.
2125   if (duringMarking) {
2126     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2127   }
2128 
2129   bool registerClosure = duringMarking;
2130 
2131   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2132 
2133   if (!full) {
2134     stats().record_gc0_begin();
2135   }
2136 }
2137 
2138 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2139 
2140   _capacity_at_prologue = capacity();
2141   _used_at_prologue = used();
2142 
2143   // Delegate to CMScollector which knows how to coordinate between
2144   // this and any other CMS generations that it is responsible for
2145   // collecting.
2146   collector()->gc_prologue(full);
2147 }
2148 
2149 // This is a "private" interface for use by this generation's CMSCollector.
2150 // Not to be called directly by any other entity (for instance,
2151 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2152 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2153   bool registerClosure, ModUnionClosure* modUnionClosure) {
2154   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2155   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2156     "Should be NULL");
2157   if (registerClosure) {
2158     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2159   }
2160   cmsSpace()->gc_prologue();
2161   // Clear stat counters
2162   NOT_PRODUCT(
2163     assert(_numObjectsPromoted == 0, "check");
2164     assert(_numWordsPromoted   == 0, "check");
2165     if (Verbose && PrintGC) {
2166       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2167                           SIZE_FORMAT " bytes concurrently",
2168       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2169     }
2170     _numObjectsAllocated = 0;
2171     _numWordsAllocated   = 0;
2172   )
2173 }
2174 
2175 void CMSCollector::gc_epilogue(bool full) {
2176   // The following locking discipline assumes that we are only called
2177   // when the world is stopped.
2178   assert(SafepointSynchronize::is_at_safepoint(),
2179          "world is stopped assumption");
2180 
2181   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2182   // if linear allocation blocks need to be appropriately marked to allow the
2183   // the blocks to be parsable. We also check here whether we need to nudge the
2184   // CMS collector thread to start a new cycle (if it's not already active).
2185   assert(   Thread::current()->is_VM_thread()
2186          || (   CMSScavengeBeforeRemark
2187              && Thread::current()->is_ConcurrentGC_thread()),
2188          "Incorrect thread type for epilogue execution");
2189 
2190   if (!_between_prologue_and_epilogue) {
2191     // We have already been invoked; this is a gc_epilogue delegation
2192     // from yet another CMS generation that we are responsible for, just
2193     // ignore it since all relevant work has already been done.
2194     return;
2195   }
2196   assert(haveFreelistLocks(), "must have freelist locks");
2197   assert_lock_strong(bitMapLock());
2198 
2199   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2200 
2201   _cmsGen->gc_epilogue_work(full);
2202 
2203   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2204     // in case sampling was not already enabled, enable it
2205     _start_sampling = true;
2206   }
2207   // reset _eden_chunk_array so sampling starts afresh
2208   _eden_chunk_index = 0;
2209 
2210   size_t cms_used   = _cmsGen->cmsSpace()->used();
2211 
2212   // update performance counters - this uses a special version of
2213   // update_counters() that allows the utilization to be passed as a
2214   // parameter, avoiding multiple calls to used().
2215   //
2216   _cmsGen->update_counters(cms_used);
2217 
2218   bitMapLock()->unlock();
2219   releaseFreelistLocks();
2220 
2221   if (!CleanChunkPoolAsync) {
2222     Chunk::clean_chunk_pool();
2223   }
2224 
2225   set_did_compact(false);
2226   _between_prologue_and_epilogue = false;  // ready for next cycle
2227 }
2228 
2229 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2230   collector()->gc_epilogue(full);
2231 
2232   // Also reset promotion tracking in par gc thread states.
2233   for (uint i = 0; i < ParallelGCThreads; i++) {
2234     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2235   }
2236 }
2237 
2238 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2239   assert(!incremental_collection_failed(), "Should have been cleared");
2240   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2241   cmsSpace()->gc_epilogue();
2242     // Print stat counters
2243   NOT_PRODUCT(
2244     assert(_numObjectsAllocated == 0, "check");
2245     assert(_numWordsAllocated == 0, "check");
2246     if (Verbose && PrintGC) {
2247       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2248                           SIZE_FORMAT " bytes",
2249                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2250     }
2251     _numObjectsPromoted = 0;
2252     _numWordsPromoted   = 0;
2253   )
2254 
2255   if (PrintGC && Verbose) {
2256     // Call down the chain in contiguous_available needs the freelistLock
2257     // so print this out before releasing the freeListLock.
2258     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2259                         contiguous_available());
2260   }
2261 }
2262 
2263 #ifndef PRODUCT
2264 bool CMSCollector::have_cms_token() {
2265   Thread* thr = Thread::current();
2266   if (thr->is_VM_thread()) {
2267     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2268   } else if (thr->is_ConcurrentGC_thread()) {
2269     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2270   } else if (thr->is_GC_task_thread()) {
2271     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2272            ParGCRareEvent_lock->owned_by_self();
2273   }
2274   return false;
2275 }
2276 #endif
2277 
2278 // Check reachability of the given heap address in CMS generation,
2279 // treating all other generations as roots.
2280 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2281   // We could "guarantee" below, rather than assert, but I'll
2282   // leave these as "asserts" so that an adventurous debugger
2283   // could try this in the product build provided some subset of
2284   // the conditions were met, provided they were interested in the
2285   // results and knew that the computation below wouldn't interfere
2286   // with other concurrent computations mutating the structures
2287   // being read or written.
2288   assert(SafepointSynchronize::is_at_safepoint(),
2289          "Else mutations in object graph will make answer suspect");
2290   assert(have_cms_token(), "Should hold cms token");
2291   assert(haveFreelistLocks(), "must hold free list locks");
2292   assert_lock_strong(bitMapLock());
2293 
2294   // Clear the marking bit map array before starting, but, just
2295   // for kicks, first report if the given address is already marked
2296   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2297                 _markBitMap.isMarked(addr) ? "" : " not");
2298 
2299   if (verify_after_remark()) {
2300     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2301     bool result = verification_mark_bm()->isMarked(addr);
2302     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2303                            result ? "IS" : "is NOT");
2304     return result;
2305   } else {
2306     gclog_or_tty->print_cr("Could not compute result");
2307     return false;
2308   }
2309 }
2310 
2311 
2312 void
2313 CMSCollector::print_on_error(outputStream* st) {
2314   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2315   if (collector != NULL) {
2316     CMSBitMap* bitmap = &collector->_markBitMap;
2317     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2318     bitmap->print_on_error(st, " Bits: ");
2319 
2320     st->cr();
2321 
2322     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2323     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2324     mut_bitmap->print_on_error(st, " Bits: ");
2325   }
2326 }
2327 
2328 ////////////////////////////////////////////////////////
2329 // CMS Verification Support
2330 ////////////////////////////////////////////////////////
2331 // Following the remark phase, the following invariant
2332 // should hold -- each object in the CMS heap which is
2333 // marked in markBitMap() should be marked in the verification_mark_bm().
2334 
2335 class VerifyMarkedClosure: public BitMapClosure {
2336   CMSBitMap* _marks;
2337   bool       _failed;
2338 
2339  public:
2340   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2341 
2342   bool do_bit(size_t offset) {
2343     HeapWord* addr = _marks->offsetToHeapWord(offset);
2344     if (!_marks->isMarked(addr)) {
2345       oop(addr)->print_on(gclog_or_tty);
2346       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2347       _failed = true;
2348     }
2349     return true;
2350   }
2351 
2352   bool failed() { return _failed; }
2353 };
2354 
2355 bool CMSCollector::verify_after_remark(bool silent) {
2356   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2357   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2358   static bool init = false;
2359 
2360   assert(SafepointSynchronize::is_at_safepoint(),
2361          "Else mutations in object graph will make answer suspect");
2362   assert(have_cms_token(),
2363          "Else there may be mutual interference in use of "
2364          " verification data structures");
2365   assert(_collectorState > Marking && _collectorState <= Sweeping,
2366          "Else marking info checked here may be obsolete");
2367   assert(haveFreelistLocks(), "must hold free list locks");
2368   assert_lock_strong(bitMapLock());
2369 
2370 
2371   // Allocate marking bit map if not already allocated
2372   if (!init) { // first time
2373     if (!verification_mark_bm()->allocate(_span)) {
2374       return false;
2375     }
2376     init = true;
2377   }
2378 
2379   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2380 
2381   // Turn off refs discovery -- so we will be tracing through refs.
2382   // This is as intended, because by this time
2383   // GC must already have cleared any refs that need to be cleared,
2384   // and traced those that need to be marked; moreover,
2385   // the marking done here is not going to interfere in any
2386   // way with the marking information used by GC.
2387   NoRefDiscovery no_discovery(ref_processor());
2388 
2389   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2390 
2391   // Clear any marks from a previous round
2392   verification_mark_bm()->clear_all();
2393   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2394   verify_work_stacks_empty();
2395 
2396   GenCollectedHeap* gch = GenCollectedHeap::heap();
2397   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2398   // Update the saved marks which may affect the root scans.
2399   gch->save_marks();
2400 
2401   if (CMSRemarkVerifyVariant == 1) {
2402     // In this first variant of verification, we complete
2403     // all marking, then check if the new marks-vector is
2404     // a subset of the CMS marks-vector.
2405     verify_after_remark_work_1();
2406   } else if (CMSRemarkVerifyVariant == 2) {
2407     // In this second variant of verification, we flag an error
2408     // (i.e. an object reachable in the new marks-vector not reachable
2409     // in the CMS marks-vector) immediately, also indicating the
2410     // identify of an object (A) that references the unmarked object (B) --
2411     // presumably, a mutation to A failed to be picked up by preclean/remark?
2412     verify_after_remark_work_2();
2413   } else {
2414     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2415             CMSRemarkVerifyVariant);
2416   }
2417   if (!silent) gclog_or_tty->print(" done] ");
2418   return true;
2419 }
2420 
2421 void CMSCollector::verify_after_remark_work_1() {
2422   ResourceMark rm;
2423   HandleMark  hm;
2424   GenCollectedHeap* gch = GenCollectedHeap::heap();
2425 
2426   // Get a clear set of claim bits for the roots processing to work with.
2427   ClassLoaderDataGraph::clear_claimed_marks();
2428 
2429   // Mark from roots one level into CMS
2430   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2431   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2432 
2433   {
2434     StrongRootsScope srs(1);
2435 
2436     gch->gen_process_roots(&srs,
2437                            GenCollectedHeap::OldGen,
2438                            true,   // younger gens are roots
2439                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2440                            should_unload_classes(),
2441                            &notOlder,
2442                            NULL,
2443                            NULL);
2444   }
2445 
2446   // Now mark from the roots
2447   MarkFromRootsClosure markFromRootsClosure(this, _span,
2448     verification_mark_bm(), verification_mark_stack(),
2449     false /* don't yield */, true /* verifying */);
2450   assert(_restart_addr == NULL, "Expected pre-condition");
2451   verification_mark_bm()->iterate(&markFromRootsClosure);
2452   while (_restart_addr != NULL) {
2453     // Deal with stack overflow: by restarting at the indicated
2454     // address.
2455     HeapWord* ra = _restart_addr;
2456     markFromRootsClosure.reset(ra);
2457     _restart_addr = NULL;
2458     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2459   }
2460   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2461   verify_work_stacks_empty();
2462 
2463   // Marking completed -- now verify that each bit marked in
2464   // verification_mark_bm() is also marked in markBitMap(); flag all
2465   // errors by printing corresponding objects.
2466   VerifyMarkedClosure vcl(markBitMap());
2467   verification_mark_bm()->iterate(&vcl);
2468   if (vcl.failed()) {
2469     gclog_or_tty->print("Verification failed");
2470     gch->print_on(gclog_or_tty);
2471     fatal("CMS: failed marking verification after remark");
2472   }
2473 }
2474 
2475 class VerifyKlassOopsKlassClosure : public KlassClosure {
2476   class VerifyKlassOopsClosure : public OopClosure {
2477     CMSBitMap* _bitmap;
2478    public:
2479     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2480     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2481     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2482   } _oop_closure;
2483  public:
2484   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2485   void do_klass(Klass* k) {
2486     k->oops_do(&_oop_closure);
2487   }
2488 };
2489 
2490 void CMSCollector::verify_after_remark_work_2() {
2491   ResourceMark rm;
2492   HandleMark  hm;
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494 
2495   // Get a clear set of claim bits for the roots processing to work with.
2496   ClassLoaderDataGraph::clear_claimed_marks();
2497 
2498   // Mark from roots one level into CMS
2499   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2500                                      markBitMap());
2501   CLDToOopClosure cld_closure(&notOlder, true);
2502 
2503   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2504 
2505   {
2506     StrongRootsScope srs(1);
2507 
2508     gch->gen_process_roots(&srs,
2509                            GenCollectedHeap::OldGen,
2510                            true,   // younger gens are roots
2511                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2512                            should_unload_classes(),
2513                            &notOlder,
2514                            NULL,
2515                            &cld_closure);
2516   }
2517 
2518   // Now mark from the roots
2519   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2520     verification_mark_bm(), markBitMap(), verification_mark_stack());
2521   assert(_restart_addr == NULL, "Expected pre-condition");
2522   verification_mark_bm()->iterate(&markFromRootsClosure);
2523   while (_restart_addr != NULL) {
2524     // Deal with stack overflow: by restarting at the indicated
2525     // address.
2526     HeapWord* ra = _restart_addr;
2527     markFromRootsClosure.reset(ra);
2528     _restart_addr = NULL;
2529     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2530   }
2531   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2532   verify_work_stacks_empty();
2533 
2534   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2535   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2536 
2537   // Marking completed -- now verify that each bit marked in
2538   // verification_mark_bm() is also marked in markBitMap(); flag all
2539   // errors by printing corresponding objects.
2540   VerifyMarkedClosure vcl(markBitMap());
2541   verification_mark_bm()->iterate(&vcl);
2542   assert(!vcl.failed(), "Else verification above should not have succeeded");
2543 }
2544 
2545 void ConcurrentMarkSweepGeneration::save_marks() {
2546   // delegate to CMS space
2547   cmsSpace()->save_marks();
2548   for (uint i = 0; i < ParallelGCThreads; i++) {
2549     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2550   }
2551 }
2552 
2553 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2554   return cmsSpace()->no_allocs_since_save_marks();
2555 }
2556 
2557 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2558                                                                 \
2559 void ConcurrentMarkSweepGeneration::                            \
2560 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2561   cl->set_generation(this);                                     \
2562   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2563   cl->reset_generation();                                       \
2564   save_marks();                                                 \
2565 }
2566 
2567 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2568 
2569 void
2570 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2571   if (freelistLock()->owned_by_self()) {
2572     Generation::oop_iterate(cl);
2573   } else {
2574     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2575     Generation::oop_iterate(cl);
2576   }
2577 }
2578 
2579 void
2580 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2581   if (freelistLock()->owned_by_self()) {
2582     Generation::object_iterate(cl);
2583   } else {
2584     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2585     Generation::object_iterate(cl);
2586   }
2587 }
2588 
2589 void
2590 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2591   if (freelistLock()->owned_by_self()) {
2592     Generation::safe_object_iterate(cl);
2593   } else {
2594     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2595     Generation::safe_object_iterate(cl);
2596   }
2597 }
2598 
2599 void
2600 ConcurrentMarkSweepGeneration::post_compact() {
2601 }
2602 
2603 void
2604 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2605   // Fix the linear allocation blocks to look like free blocks.
2606 
2607   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2608   // are not called when the heap is verified during universe initialization and
2609   // at vm shutdown.
2610   if (freelistLock()->owned_by_self()) {
2611     cmsSpace()->prepare_for_verify();
2612   } else {
2613     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2614     cmsSpace()->prepare_for_verify();
2615   }
2616 }
2617 
2618 void
2619 ConcurrentMarkSweepGeneration::verify() {
2620   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2621   // are not called when the heap is verified during universe initialization and
2622   // at vm shutdown.
2623   if (freelistLock()->owned_by_self()) {
2624     cmsSpace()->verify();
2625   } else {
2626     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2627     cmsSpace()->verify();
2628   }
2629 }
2630 
2631 void CMSCollector::verify() {
2632   _cmsGen->verify();
2633 }
2634 
2635 #ifndef PRODUCT
2636 bool CMSCollector::overflow_list_is_empty() const {
2637   assert(_num_par_pushes >= 0, "Inconsistency");
2638   if (_overflow_list == NULL) {
2639     assert(_num_par_pushes == 0, "Inconsistency");
2640   }
2641   return _overflow_list == NULL;
2642 }
2643 
2644 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2645 // merely consolidate assertion checks that appear to occur together frequently.
2646 void CMSCollector::verify_work_stacks_empty() const {
2647   assert(_markStack.isEmpty(), "Marking stack should be empty");
2648   assert(overflow_list_is_empty(), "Overflow list should be empty");
2649 }
2650 
2651 void CMSCollector::verify_overflow_empty() const {
2652   assert(overflow_list_is_empty(), "Overflow list should be empty");
2653   assert(no_preserved_marks(), "No preserved marks");
2654 }
2655 #endif // PRODUCT
2656 
2657 // Decide if we want to enable class unloading as part of the
2658 // ensuing concurrent GC cycle. We will collect and
2659 // unload classes if it's the case that:
2660 // (1) an explicit gc request has been made and the flag
2661 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2662 // (2) (a) class unloading is enabled at the command line, and
2663 //     (b) old gen is getting really full
2664 // NOTE: Provided there is no change in the state of the heap between
2665 // calls to this method, it should have idempotent results. Moreover,
2666 // its results should be monotonically increasing (i.e. going from 0 to 1,
2667 // but not 1 to 0) between successive calls between which the heap was
2668 // not collected. For the implementation below, it must thus rely on
2669 // the property that concurrent_cycles_since_last_unload()
2670 // will not decrease unless a collection cycle happened and that
2671 // _cmsGen->is_too_full() are
2672 // themselves also monotonic in that sense. See check_monotonicity()
2673 // below.
2674 void CMSCollector::update_should_unload_classes() {
2675   _should_unload_classes = false;
2676   // Condition 1 above
2677   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2678     _should_unload_classes = true;
2679   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2680     // Disjuncts 2.b.(i,ii,iii) above
2681     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2682                               CMSClassUnloadingMaxInterval)
2683                            || _cmsGen->is_too_full();
2684   }
2685 }
2686 
2687 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2688   bool res = should_concurrent_collect();
2689   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2690   return res;
2691 }
2692 
2693 void CMSCollector::setup_cms_unloading_and_verification_state() {
2694   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2695                              || VerifyBeforeExit;
2696   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2697 
2698   // We set the proper root for this CMS cycle here.
2699   if (should_unload_classes()) {   // Should unload classes this cycle
2700     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2701     set_verifying(should_verify);    // Set verification state for this cycle
2702     return;                            // Nothing else needs to be done at this time
2703   }
2704 
2705   // Not unloading classes this cycle
2706   assert(!should_unload_classes(), "Inconsistency!");
2707 
2708   // If we are not unloading classes then add SO_AllCodeCache to root
2709   // scanning options.
2710   add_root_scanning_option(rso);
2711 
2712   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2713     set_verifying(true);
2714   } else if (verifying() && !should_verify) {
2715     // We were verifying, but some verification flags got disabled.
2716     set_verifying(false);
2717     // Exclude symbols, strings and code cache elements from root scanning to
2718     // reduce IM and RM pauses.
2719     remove_root_scanning_option(rso);
2720   }
2721 }
2722 
2723 
2724 #ifndef PRODUCT
2725 HeapWord* CMSCollector::block_start(const void* p) const {
2726   const HeapWord* addr = (HeapWord*)p;
2727   if (_span.contains(p)) {
2728     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2729       return _cmsGen->cmsSpace()->block_start(p);
2730     }
2731   }
2732   return NULL;
2733 }
2734 #endif
2735 
2736 HeapWord*
2737 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2738                                                    bool   tlab,
2739                                                    bool   parallel) {
2740   CMSSynchronousYieldRequest yr;
2741   assert(!tlab, "Can't deal with TLAB allocation");
2742   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2743   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2744   if (GCExpandToAllocateDelayMillis > 0) {
2745     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2746   }
2747   return have_lock_and_allocate(word_size, tlab);
2748 }
2749 
2750 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2751     size_t bytes,
2752     size_t expand_bytes,
2753     CMSExpansionCause::Cause cause)
2754 {
2755 
2756   bool success = expand(bytes, expand_bytes);
2757 
2758   // remember why we expanded; this information is used
2759   // by shouldConcurrentCollect() when making decisions on whether to start
2760   // a new CMS cycle.
2761   if (success) {
2762     set_expansion_cause(cause);
2763     if (PrintGCDetails && Verbose) {
2764       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2765         CMSExpansionCause::to_string(cause));
2766     }
2767   }
2768 }
2769 
2770 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2771   HeapWord* res = NULL;
2772   MutexLocker x(ParGCRareEvent_lock);
2773   while (true) {
2774     // Expansion by some other thread might make alloc OK now:
2775     res = ps->lab.alloc(word_sz);
2776     if (res != NULL) return res;
2777     // If there's not enough expansion space available, give up.
2778     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2779       return NULL;
2780     }
2781     // Otherwise, we try expansion.
2782     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2783     // Now go around the loop and try alloc again;
2784     // A competing par_promote might beat us to the expansion space,
2785     // so we may go around the loop again if promotion fails again.
2786     if (GCExpandToAllocateDelayMillis > 0) {
2787       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2788     }
2789   }
2790 }
2791 
2792 
2793 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2794   PromotionInfo* promo) {
2795   MutexLocker x(ParGCRareEvent_lock);
2796   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2797   while (true) {
2798     // Expansion by some other thread might make alloc OK now:
2799     if (promo->ensure_spooling_space()) {
2800       assert(promo->has_spooling_space(),
2801              "Post-condition of successful ensure_spooling_space()");
2802       return true;
2803     }
2804     // If there's not enough expansion space available, give up.
2805     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2806       return false;
2807     }
2808     // Otherwise, we try expansion.
2809     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2810     // Now go around the loop and try alloc again;
2811     // A competing allocation might beat us to the expansion space,
2812     // so we may go around the loop again if allocation fails again.
2813     if (GCExpandToAllocateDelayMillis > 0) {
2814       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2815     }
2816   }
2817 }
2818 
2819 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2820   // Only shrink if a compaction was done so that all the free space
2821   // in the generation is in a contiguous block at the end.
2822   if (did_compact()) {
2823     CardGeneration::shrink(bytes);
2824   }
2825 }
2826 
2827 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2828   assert_locked_or_safepoint(Heap_lock);
2829 }
2830 
2831 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2832   assert_locked_or_safepoint(Heap_lock);
2833   assert_lock_strong(freelistLock());
2834   if (PrintGCDetails && Verbose) {
2835     warning("Shrinking of CMS not yet implemented");
2836   }
2837   return;
2838 }
2839 
2840 
2841 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2842 // phases.
2843 class CMSPhaseAccounting: public StackObj {
2844  public:
2845   CMSPhaseAccounting(CMSCollector *collector,
2846                      const char *phase,
2847                      const GCId gc_id,
2848                      bool print_cr = true);
2849   ~CMSPhaseAccounting();
2850 
2851  private:
2852   CMSCollector *_collector;
2853   const char *_phase;
2854   elapsedTimer _wallclock;
2855   bool _print_cr;
2856   const GCId _gc_id;
2857 
2858  public:
2859   // Not MT-safe; so do not pass around these StackObj's
2860   // where they may be accessed by other threads.
2861   jlong wallclock_millis() {
2862     assert(_wallclock.is_active(), "Wall clock should not stop");
2863     _wallclock.stop();  // to record time
2864     jlong ret = _wallclock.milliseconds();
2865     _wallclock.start(); // restart
2866     return ret;
2867   }
2868 };
2869 
2870 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2871                                        const char *phase,
2872                                        const GCId gc_id,
2873                                        bool print_cr) :
2874   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2875 
2876   if (PrintCMSStatistics != 0) {
2877     _collector->resetYields();
2878   }
2879   if (PrintGCDetails) {
2880     gclog_or_tty->gclog_stamp(_gc_id);
2881     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2882       _collector->cmsGen()->short_name(), _phase);
2883   }
2884   _collector->resetTimer();
2885   _wallclock.start();
2886   _collector->startTimer();
2887 }
2888 
2889 CMSPhaseAccounting::~CMSPhaseAccounting() {
2890   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2891   _collector->stopTimer();
2892   _wallclock.stop();
2893   if (PrintGCDetails) {
2894     gclog_or_tty->gclog_stamp(_gc_id);
2895     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2896                  _collector->cmsGen()->short_name(),
2897                  _phase, _collector->timerValue(), _wallclock.seconds());
2898     if (_print_cr) {
2899       gclog_or_tty->cr();
2900     }
2901     if (PrintCMSStatistics != 0) {
2902       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2903                     _collector->yields());
2904     }
2905   }
2906 }
2907 
2908 // CMS work
2909 
2910 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2911 class CMSParMarkTask : public AbstractGangTask {
2912  protected:
2913   CMSCollector*     _collector;
2914   uint              _n_workers;
2915   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2916       AbstractGangTask(name),
2917       _collector(collector),
2918       _n_workers(n_workers) {}
2919   // Work method in support of parallel rescan ... of young gen spaces
2920   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2921                              ContiguousSpace* space,
2922                              HeapWord** chunk_array, size_t chunk_top);
2923   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2924 };
2925 
2926 // Parallel initial mark task
2927 class CMSParInitialMarkTask: public CMSParMarkTask {
2928   StrongRootsScope* _strong_roots_scope;
2929  public:
2930   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2931       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2932       _strong_roots_scope(strong_roots_scope) {}
2933   void work(uint worker_id);
2934 };
2935 
2936 // Checkpoint the roots into this generation from outside
2937 // this generation. [Note this initial checkpoint need only
2938 // be approximate -- we'll do a catch up phase subsequently.]
2939 void CMSCollector::checkpointRootsInitial() {
2940   assert(_collectorState == InitialMarking, "Wrong collector state");
2941   check_correct_thread_executing();
2942   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2943 
2944   save_heap_summary();
2945   report_heap_summary(GCWhen::BeforeGC);
2946 
2947   ReferenceProcessor* rp = ref_processor();
2948   assert(_restart_addr == NULL, "Control point invariant");
2949   {
2950     // acquire locks for subsequent manipulations
2951     MutexLockerEx x(bitMapLock(),
2952                     Mutex::_no_safepoint_check_flag);
2953     checkpointRootsInitialWork();
2954     // enable ("weak") refs discovery
2955     rp->enable_discovery();
2956     _collectorState = Marking;
2957   }
2958 }
2959 
2960 void CMSCollector::checkpointRootsInitialWork() {
2961   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2962   assert(_collectorState == InitialMarking, "just checking");
2963 
2964   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2965   // precede our marking with a collection of all
2966   // younger generations to keep floating garbage to a minimum.
2967   // XXX: we won't do this for now -- it's an optimization to be done later.
2968 
2969   // already have locks
2970   assert_lock_strong(bitMapLock());
2971   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2972 
2973   // Setup the verification and class unloading state for this
2974   // CMS collection cycle.
2975   setup_cms_unloading_and_verification_state();
2976 
2977   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2978     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2979 
2980   // Reset all the PLAB chunk arrays if necessary.
2981   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2982     reset_survivor_plab_arrays();
2983   }
2984 
2985   ResourceMark rm;
2986   HandleMark  hm;
2987 
2988   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2989   GenCollectedHeap* gch = GenCollectedHeap::heap();
2990 
2991   verify_work_stacks_empty();
2992   verify_overflow_empty();
2993 
2994   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2995   // Update the saved marks which may affect the root scans.
2996   gch->save_marks();
2997 
2998   // weak reference processing has not started yet.
2999   ref_processor()->set_enqueuing_is_done(false);
3000 
3001   // Need to remember all newly created CLDs,
3002   // so that we can guarantee that the remark finds them.
3003   ClassLoaderDataGraph::remember_new_clds(true);
3004 
3005   // Whenever a CLD is found, it will be claimed before proceeding to mark
3006   // the klasses. The claimed marks need to be cleared before marking starts.
3007   ClassLoaderDataGraph::clear_claimed_marks();
3008 
3009   if (CMSPrintEdenSurvivorChunks) {
3010     print_eden_and_survivor_chunk_arrays();
3011   }
3012 
3013   {
3014     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3015     if (CMSParallelInitialMarkEnabled) {
3016       // The parallel version.
3017       FlexibleWorkGang* workers = gch->workers();
3018       assert(workers != NULL, "Need parallel worker threads.");
3019       uint n_workers = workers->active_workers();
3020 
3021       StrongRootsScope srs(n_workers);
3022 
3023       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3024       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3025       if (n_workers > 1) {
3026         workers->run_task(&tsk);
3027       } else {
3028         tsk.work(0);
3029       }
3030     } else {
3031       // The serial version.
3032       CLDToOopClosure cld_closure(&notOlder, true);
3033       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3034 
3035       StrongRootsScope srs(1);
3036 
3037       gch->gen_process_roots(&srs,
3038                              GenCollectedHeap::OldGen,
3039                              true,   // younger gens are roots
3040                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3041                              should_unload_classes(),
3042                              &notOlder,
3043                              NULL,
3044                              &cld_closure);
3045     }
3046   }
3047 
3048   // Clear mod-union table; it will be dirtied in the prologue of
3049   // CMS generation per each younger generation collection.
3050 
3051   assert(_modUnionTable.isAllClear(),
3052        "Was cleared in most recent final checkpoint phase"
3053        " or no bits are set in the gc_prologue before the start of the next "
3054        "subsequent marking phase.");
3055 
3056   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3057 
3058   // Save the end of the used_region of the constituent generations
3059   // to be used to limit the extent of sweep in each generation.
3060   save_sweep_limits();
3061   verify_overflow_empty();
3062 }
3063 
3064 bool CMSCollector::markFromRoots() {
3065   // we might be tempted to assert that:
3066   // assert(!SafepointSynchronize::is_at_safepoint(),
3067   //        "inconsistent argument?");
3068   // However that wouldn't be right, because it's possible that
3069   // a safepoint is indeed in progress as a younger generation
3070   // stop-the-world GC happens even as we mark in this generation.
3071   assert(_collectorState == Marking, "inconsistent state?");
3072   check_correct_thread_executing();
3073   verify_overflow_empty();
3074 
3075   // Weak ref discovery note: We may be discovering weak
3076   // refs in this generation concurrent (but interleaved) with
3077   // weak ref discovery by a younger generation collector.
3078 
3079   CMSTokenSyncWithLocks ts(true, bitMapLock());
3080   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3081   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3082   bool res = markFromRootsWork();
3083   if (res) {
3084     _collectorState = Precleaning;
3085   } else { // We failed and a foreground collection wants to take over
3086     assert(_foregroundGCIsActive, "internal state inconsistency");
3087     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3088     if (PrintGCDetails) {
3089       gclog_or_tty->print_cr("bailing out to foreground collection");
3090     }
3091   }
3092   verify_overflow_empty();
3093   return res;
3094 }
3095 
3096 bool CMSCollector::markFromRootsWork() {
3097   // iterate over marked bits in bit map, doing a full scan and mark
3098   // from these roots using the following algorithm:
3099   // . if oop is to the right of the current scan pointer,
3100   //   mark corresponding bit (we'll process it later)
3101   // . else (oop is to left of current scan pointer)
3102   //   push oop on marking stack
3103   // . drain the marking stack
3104 
3105   // Note that when we do a marking step we need to hold the
3106   // bit map lock -- recall that direct allocation (by mutators)
3107   // and promotion (by younger generation collectors) is also
3108   // marking the bit map. [the so-called allocate live policy.]
3109   // Because the implementation of bit map marking is not
3110   // robust wrt simultaneous marking of bits in the same word,
3111   // we need to make sure that there is no such interference
3112   // between concurrent such updates.
3113 
3114   // already have locks
3115   assert_lock_strong(bitMapLock());
3116 
3117   verify_work_stacks_empty();
3118   verify_overflow_empty();
3119   bool result = false;
3120   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3121     result = do_marking_mt();
3122   } else {
3123     result = do_marking_st();
3124   }
3125   return result;
3126 }
3127 
3128 // Forward decl
3129 class CMSConcMarkingTask;
3130 
3131 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3132   CMSCollector*       _collector;
3133   CMSConcMarkingTask* _task;
3134  public:
3135   virtual void yield();
3136 
3137   // "n_threads" is the number of threads to be terminated.
3138   // "queue_set" is a set of work queues of other threads.
3139   // "collector" is the CMS collector associated with this task terminator.
3140   // "yield" indicates whether we need the gang as a whole to yield.
3141   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3142     ParallelTaskTerminator(n_threads, queue_set),
3143     _collector(collector) { }
3144 
3145   void set_task(CMSConcMarkingTask* task) {
3146     _task = task;
3147   }
3148 };
3149 
3150 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3151   CMSConcMarkingTask* _task;
3152  public:
3153   bool should_exit_termination();
3154   void set_task(CMSConcMarkingTask* task) {
3155     _task = task;
3156   }
3157 };
3158 
3159 // MT Concurrent Marking Task
3160 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3161   CMSCollector* _collector;
3162   uint          _n_workers;       // requested/desired # workers
3163   bool          _result;
3164   CompactibleFreeListSpace*  _cms_space;
3165   char          _pad_front[64];   // padding to ...
3166   HeapWord*     _global_finger;   // ... avoid sharing cache line
3167   char          _pad_back[64];
3168   HeapWord*     _restart_addr;
3169 
3170   //  Exposed here for yielding support
3171   Mutex* const _bit_map_lock;
3172 
3173   // The per thread work queues, available here for stealing
3174   OopTaskQueueSet*  _task_queues;
3175 
3176   // Termination (and yielding) support
3177   CMSConcMarkingTerminator _term;
3178   CMSConcMarkingTerminatorTerminator _term_term;
3179 
3180  public:
3181   CMSConcMarkingTask(CMSCollector* collector,
3182                  CompactibleFreeListSpace* cms_space,
3183                  YieldingFlexibleWorkGang* workers,
3184                  OopTaskQueueSet* task_queues):
3185     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3186     _collector(collector),
3187     _cms_space(cms_space),
3188     _n_workers(0), _result(true),
3189     _task_queues(task_queues),
3190     _term(_n_workers, task_queues, _collector),
3191     _bit_map_lock(collector->bitMapLock())
3192   {
3193     _requested_size = _n_workers;
3194     _term.set_task(this);
3195     _term_term.set_task(this);
3196     _restart_addr = _global_finger = _cms_space->bottom();
3197   }
3198 
3199 
3200   OopTaskQueueSet* task_queues()  { return _task_queues; }
3201 
3202   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3203 
3204   HeapWord** global_finger_addr() { return &_global_finger; }
3205 
3206   CMSConcMarkingTerminator* terminator() { return &_term; }
3207 
3208   virtual void set_for_termination(uint active_workers) {
3209     terminator()->reset_for_reuse(active_workers);
3210   }
3211 
3212   void work(uint worker_id);
3213   bool should_yield() {
3214     return    ConcurrentMarkSweepThread::should_yield()
3215            && !_collector->foregroundGCIsActive();
3216   }
3217 
3218   virtual void coordinator_yield();  // stuff done by coordinator
3219   bool result() { return _result; }
3220 
3221   void reset(HeapWord* ra) {
3222     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3223     _restart_addr = _global_finger = ra;
3224     _term.reset_for_reuse();
3225   }
3226 
3227   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3228                                            OopTaskQueue* work_q);
3229 
3230  private:
3231   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3232   void do_work_steal(int i);
3233   void bump_global_finger(HeapWord* f);
3234 };
3235 
3236 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3237   assert(_task != NULL, "Error");
3238   return _task->yielding();
3239   // Note that we do not need the disjunct || _task->should_yield() above
3240   // because we want terminating threads to yield only if the task
3241   // is already in the midst of yielding, which happens only after at least one
3242   // thread has yielded.
3243 }
3244 
3245 void CMSConcMarkingTerminator::yield() {
3246   if (_task->should_yield()) {
3247     _task->yield();
3248   } else {
3249     ParallelTaskTerminator::yield();
3250   }
3251 }
3252 
3253 ////////////////////////////////////////////////////////////////
3254 // Concurrent Marking Algorithm Sketch
3255 ////////////////////////////////////////////////////////////////
3256 // Until all tasks exhausted (both spaces):
3257 // -- claim next available chunk
3258 // -- bump global finger via CAS
3259 // -- find first object that starts in this chunk
3260 //    and start scanning bitmap from that position
3261 // -- scan marked objects for oops
3262 // -- CAS-mark target, and if successful:
3263 //    . if target oop is above global finger (volatile read)
3264 //      nothing to do
3265 //    . if target oop is in chunk and above local finger
3266 //        then nothing to do
3267 //    . else push on work-queue
3268 // -- Deal with possible overflow issues:
3269 //    . local work-queue overflow causes stuff to be pushed on
3270 //      global (common) overflow queue
3271 //    . always first empty local work queue
3272 //    . then get a batch of oops from global work queue if any
3273 //    . then do work stealing
3274 // -- When all tasks claimed (both spaces)
3275 //    and local work queue empty,
3276 //    then in a loop do:
3277 //    . check global overflow stack; steal a batch of oops and trace
3278 //    . try to steal from other threads oif GOS is empty
3279 //    . if neither is available, offer termination
3280 // -- Terminate and return result
3281 //
3282 void CMSConcMarkingTask::work(uint worker_id) {
3283   elapsedTimer _timer;
3284   ResourceMark rm;
3285   HandleMark hm;
3286 
3287   DEBUG_ONLY(_collector->verify_overflow_empty();)
3288 
3289   // Before we begin work, our work queue should be empty
3290   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3291   // Scan the bitmap covering _cms_space, tracing through grey objects.
3292   _timer.start();
3293   do_scan_and_mark(worker_id, _cms_space);
3294   _timer.stop();
3295   if (PrintCMSStatistics != 0) {
3296     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3297       worker_id, _timer.seconds());
3298       // XXX: need xxx/xxx type of notation, two timers
3299   }
3300 
3301   // ... do work stealing
3302   _timer.reset();
3303   _timer.start();
3304   do_work_steal(worker_id);
3305   _timer.stop();
3306   if (PrintCMSStatistics != 0) {
3307     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3308       worker_id, _timer.seconds());
3309       // XXX: need xxx/xxx type of notation, two timers
3310   }
3311   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3312   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3313   // Note that under the current task protocol, the
3314   // following assertion is true even of the spaces
3315   // expanded since the completion of the concurrent
3316   // marking. XXX This will likely change under a strict
3317   // ABORT semantics.
3318   // After perm removal the comparison was changed to
3319   // greater than or equal to from strictly greater than.
3320   // Before perm removal the highest address sweep would
3321   // have been at the end of perm gen but now is at the
3322   // end of the tenured gen.
3323   assert(_global_finger >=  _cms_space->end(),
3324          "All tasks have been completed");
3325   DEBUG_ONLY(_collector->verify_overflow_empty();)
3326 }
3327 
3328 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3329   HeapWord* read = _global_finger;
3330   HeapWord* cur  = read;
3331   while (f > read) {
3332     cur = read;
3333     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3334     if (cur == read) {
3335       // our cas succeeded
3336       assert(_global_finger >= f, "protocol consistency");
3337       break;
3338     }
3339   }
3340 }
3341 
3342 // This is really inefficient, and should be redone by
3343 // using (not yet available) block-read and -write interfaces to the
3344 // stack and the work_queue. XXX FIX ME !!!
3345 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3346                                                       OopTaskQueue* work_q) {
3347   // Fast lock-free check
3348   if (ovflw_stk->length() == 0) {
3349     return false;
3350   }
3351   assert(work_q->size() == 0, "Shouldn't steal");
3352   MutexLockerEx ml(ovflw_stk->par_lock(),
3353                    Mutex::_no_safepoint_check_flag);
3354   // Grab up to 1/4 the size of the work queue
3355   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3356                     (size_t)ParGCDesiredObjsFromOverflowList);
3357   num = MIN2(num, ovflw_stk->length());
3358   for (int i = (int) num; i > 0; i--) {
3359     oop cur = ovflw_stk->pop();
3360     assert(cur != NULL, "Counted wrong?");
3361     work_q->push(cur);
3362   }
3363   return num > 0;
3364 }
3365 
3366 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3367   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3368   int n_tasks = pst->n_tasks();
3369   // We allow that there may be no tasks to do here because
3370   // we are restarting after a stack overflow.
3371   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3372   uint nth_task = 0;
3373 
3374   HeapWord* aligned_start = sp->bottom();
3375   if (sp->used_region().contains(_restart_addr)) {
3376     // Align down to a card boundary for the start of 0th task
3377     // for this space.
3378     aligned_start =
3379       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3380                                  CardTableModRefBS::card_size);
3381   }
3382 
3383   size_t chunk_size = sp->marking_task_size();
3384   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3385     // Having claimed the nth task in this space,
3386     // compute the chunk that it corresponds to:
3387     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3388                                aligned_start + (nth_task+1)*chunk_size);
3389     // Try and bump the global finger via a CAS;
3390     // note that we need to do the global finger bump
3391     // _before_ taking the intersection below, because
3392     // the task corresponding to that region will be
3393     // deemed done even if the used_region() expands
3394     // because of allocation -- as it almost certainly will
3395     // during start-up while the threads yield in the
3396     // closure below.
3397     HeapWord* finger = span.end();
3398     bump_global_finger(finger);   // atomically
3399     // There are null tasks here corresponding to chunks
3400     // beyond the "top" address of the space.
3401     span = span.intersection(sp->used_region());
3402     if (!span.is_empty()) {  // Non-null task
3403       HeapWord* prev_obj;
3404       assert(!span.contains(_restart_addr) || nth_task == 0,
3405              "Inconsistency");
3406       if (nth_task == 0) {
3407         // For the 0th task, we'll not need to compute a block_start.
3408         if (span.contains(_restart_addr)) {
3409           // In the case of a restart because of stack overflow,
3410           // we might additionally skip a chunk prefix.
3411           prev_obj = _restart_addr;
3412         } else {
3413           prev_obj = span.start();
3414         }
3415       } else {
3416         // We want to skip the first object because
3417         // the protocol is to scan any object in its entirety
3418         // that _starts_ in this span; a fortiori, any
3419         // object starting in an earlier span is scanned
3420         // as part of an earlier claimed task.
3421         // Below we use the "careful" version of block_start
3422         // so we do not try to navigate uninitialized objects.
3423         prev_obj = sp->block_start_careful(span.start());
3424         // Below we use a variant of block_size that uses the
3425         // Printezis bits to avoid waiting for allocated
3426         // objects to become initialized/parsable.
3427         while (prev_obj < span.start()) {
3428           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3429           if (sz > 0) {
3430             prev_obj += sz;
3431           } else {
3432             // In this case we may end up doing a bit of redundant
3433             // scanning, but that appears unavoidable, short of
3434             // locking the free list locks; see bug 6324141.
3435             break;
3436           }
3437         }
3438       }
3439       if (prev_obj < span.end()) {
3440         MemRegion my_span = MemRegion(prev_obj, span.end());
3441         // Do the marking work within a non-empty span --
3442         // the last argument to the constructor indicates whether the
3443         // iteration should be incremental with periodic yields.
3444         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3445                                     &_collector->_markBitMap,
3446                                     work_queue(i),
3447                                     &_collector->_markStack);
3448         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3449       } // else nothing to do for this task
3450     }   // else nothing to do for this task
3451   }
3452   // We'd be tempted to assert here that since there are no
3453   // more tasks left to claim in this space, the global_finger
3454   // must exceed space->top() and a fortiori space->end(). However,
3455   // that would not quite be correct because the bumping of
3456   // global_finger occurs strictly after the claiming of a task,
3457   // so by the time we reach here the global finger may not yet
3458   // have been bumped up by the thread that claimed the last
3459   // task.
3460   pst->all_tasks_completed();
3461 }
3462 
3463 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3464  private:
3465   CMSCollector* _collector;
3466   CMSConcMarkingTask* _task;
3467   MemRegion     _span;
3468   CMSBitMap*    _bit_map;
3469   CMSMarkStack* _overflow_stack;
3470   OopTaskQueue* _work_queue;
3471  protected:
3472   DO_OOP_WORK_DEFN
3473  public:
3474   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3475                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3476     MetadataAwareOopClosure(collector->ref_processor()),
3477     _collector(collector),
3478     _task(task),
3479     _span(collector->_span),
3480     _work_queue(work_queue),
3481     _bit_map(bit_map),
3482     _overflow_stack(overflow_stack)
3483   { }
3484   virtual void do_oop(oop* p);
3485   virtual void do_oop(narrowOop* p);
3486 
3487   void trim_queue(size_t max);
3488   void handle_stack_overflow(HeapWord* lost);
3489   void do_yield_check() {
3490     if (_task->should_yield()) {
3491       _task->yield();
3492     }
3493   }
3494 };
3495 
3496 // Grey object scanning during work stealing phase --
3497 // the salient assumption here is that any references
3498 // that are in these stolen objects being scanned must
3499 // already have been initialized (else they would not have
3500 // been published), so we do not need to check for
3501 // uninitialized objects before pushing here.
3502 void Par_ConcMarkingClosure::do_oop(oop obj) {
3503   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3504   HeapWord* addr = (HeapWord*)obj;
3505   // Check if oop points into the CMS generation
3506   // and is not marked
3507   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3508     // a white object ...
3509     // If we manage to "claim" the object, by being the
3510     // first thread to mark it, then we push it on our
3511     // marking stack
3512     if (_bit_map->par_mark(addr)) {     // ... now grey
3513       // push on work queue (grey set)
3514       bool simulate_overflow = false;
3515       NOT_PRODUCT(
3516         if (CMSMarkStackOverflowALot &&
3517             _collector->simulate_overflow()) {
3518           // simulate a stack overflow
3519           simulate_overflow = true;
3520         }
3521       )
3522       if (simulate_overflow ||
3523           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3524         // stack overflow
3525         if (PrintCMSStatistics != 0) {
3526           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3527                                  SIZE_FORMAT, _overflow_stack->capacity());
3528         }
3529         // We cannot assert that the overflow stack is full because
3530         // it may have been emptied since.
3531         assert(simulate_overflow ||
3532                _work_queue->size() == _work_queue->max_elems(),
3533               "Else push should have succeeded");
3534         handle_stack_overflow(addr);
3535       }
3536     } // Else, some other thread got there first
3537     do_yield_check();
3538   }
3539 }
3540 
3541 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3542 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3543 
3544 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3545   while (_work_queue->size() > max) {
3546     oop new_oop;
3547     if (_work_queue->pop_local(new_oop)) {
3548       assert(new_oop->is_oop(), "Should be an oop");
3549       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3550       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3551       new_oop->oop_iterate(this);  // do_oop() above
3552       do_yield_check();
3553     }
3554   }
3555 }
3556 
3557 // Upon stack overflow, we discard (part of) the stack,
3558 // remembering the least address amongst those discarded
3559 // in CMSCollector's _restart_address.
3560 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3561   // We need to do this under a mutex to prevent other
3562   // workers from interfering with the work done below.
3563   MutexLockerEx ml(_overflow_stack->par_lock(),
3564                    Mutex::_no_safepoint_check_flag);
3565   // Remember the least grey address discarded
3566   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3567   _collector->lower_restart_addr(ra);
3568   _overflow_stack->reset();  // discard stack contents
3569   _overflow_stack->expand(); // expand the stack if possible
3570 }
3571 
3572 
3573 void CMSConcMarkingTask::do_work_steal(int i) {
3574   OopTaskQueue* work_q = work_queue(i);
3575   oop obj_to_scan;
3576   CMSBitMap* bm = &(_collector->_markBitMap);
3577   CMSMarkStack* ovflw = &(_collector->_markStack);
3578   int* seed = _collector->hash_seed(i);
3579   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3580   while (true) {
3581     cl.trim_queue(0);
3582     assert(work_q->size() == 0, "Should have been emptied above");
3583     if (get_work_from_overflow_stack(ovflw, work_q)) {
3584       // Can't assert below because the work obtained from the
3585       // overflow stack may already have been stolen from us.
3586       // assert(work_q->size() > 0, "Work from overflow stack");
3587       continue;
3588     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3589       assert(obj_to_scan->is_oop(), "Should be an oop");
3590       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3591       obj_to_scan->oop_iterate(&cl);
3592     } else if (terminator()->offer_termination(&_term_term)) {
3593       assert(work_q->size() == 0, "Impossible!");
3594       break;
3595     } else if (yielding() || should_yield()) {
3596       yield();
3597     }
3598   }
3599 }
3600 
3601 // This is run by the CMS (coordinator) thread.
3602 void CMSConcMarkingTask::coordinator_yield() {
3603   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3604          "CMS thread should hold CMS token");
3605   // First give up the locks, then yield, then re-lock
3606   // We should probably use a constructor/destructor idiom to
3607   // do this unlock/lock or modify the MutexUnlocker class to
3608   // serve our purpose. XXX
3609   assert_lock_strong(_bit_map_lock);
3610   _bit_map_lock->unlock();
3611   ConcurrentMarkSweepThread::desynchronize(true);
3612   _collector->stopTimer();
3613   if (PrintCMSStatistics != 0) {
3614     _collector->incrementYields();
3615   }
3616 
3617   // It is possible for whichever thread initiated the yield request
3618   // not to get a chance to wake up and take the bitmap lock between
3619   // this thread releasing it and reacquiring it. So, while the
3620   // should_yield() flag is on, let's sleep for a bit to give the
3621   // other thread a chance to wake up. The limit imposed on the number
3622   // of iterations is defensive, to avoid any unforseen circumstances
3623   // putting us into an infinite loop. Since it's always been this
3624   // (coordinator_yield()) method that was observed to cause the
3625   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3626   // which is by default non-zero. For the other seven methods that
3627   // also perform the yield operation, as are using a different
3628   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3629   // can enable the sleeping for those methods too, if necessary.
3630   // See 6442774.
3631   //
3632   // We really need to reconsider the synchronization between the GC
3633   // thread and the yield-requesting threads in the future and we
3634   // should really use wait/notify, which is the recommended
3635   // way of doing this type of interaction. Additionally, we should
3636   // consolidate the eight methods that do the yield operation and they
3637   // are almost identical into one for better maintainability and
3638   // readability. See 6445193.
3639   //
3640   // Tony 2006.06.29
3641   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3642                    ConcurrentMarkSweepThread::should_yield() &&
3643                    !CMSCollector::foregroundGCIsActive(); ++i) {
3644     os::sleep(Thread::current(), 1, false);
3645   }
3646 
3647   ConcurrentMarkSweepThread::synchronize(true);
3648   _bit_map_lock->lock_without_safepoint_check();
3649   _collector->startTimer();
3650 }
3651 
3652 bool CMSCollector::do_marking_mt() {
3653   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3654   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3655                                                                   conc_workers()->active_workers(),
3656                                                                   Threads::number_of_non_daemon_threads());
3657   conc_workers()->set_active_workers(num_workers);
3658 
3659   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3660 
3661   CMSConcMarkingTask tsk(this,
3662                          cms_space,
3663                          conc_workers(),
3664                          task_queues());
3665 
3666   // Since the actual number of workers we get may be different
3667   // from the number we requested above, do we need to do anything different
3668   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3669   // class?? XXX
3670   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3671 
3672   // Refs discovery is already non-atomic.
3673   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3674   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3675   conc_workers()->start_task(&tsk);
3676   while (tsk.yielded()) {
3677     tsk.coordinator_yield();
3678     conc_workers()->continue_task(&tsk);
3679   }
3680   // If the task was aborted, _restart_addr will be non-NULL
3681   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3682   while (_restart_addr != NULL) {
3683     // XXX For now we do not make use of ABORTED state and have not
3684     // yet implemented the right abort semantics (even in the original
3685     // single-threaded CMS case). That needs some more investigation
3686     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3687     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3688     // If _restart_addr is non-NULL, a marking stack overflow
3689     // occurred; we need to do a fresh marking iteration from the
3690     // indicated restart address.
3691     if (_foregroundGCIsActive) {
3692       // We may be running into repeated stack overflows, having
3693       // reached the limit of the stack size, while making very
3694       // slow forward progress. It may be best to bail out and
3695       // let the foreground collector do its job.
3696       // Clear _restart_addr, so that foreground GC
3697       // works from scratch. This avoids the headache of
3698       // a "rescan" which would otherwise be needed because
3699       // of the dirty mod union table & card table.
3700       _restart_addr = NULL;
3701       return false;
3702     }
3703     // Adjust the task to restart from _restart_addr
3704     tsk.reset(_restart_addr);
3705     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3706                   _restart_addr);
3707     _restart_addr = NULL;
3708     // Get the workers going again
3709     conc_workers()->start_task(&tsk);
3710     while (tsk.yielded()) {
3711       tsk.coordinator_yield();
3712       conc_workers()->continue_task(&tsk);
3713     }
3714   }
3715   assert(tsk.completed(), "Inconsistency");
3716   assert(tsk.result() == true, "Inconsistency");
3717   return true;
3718 }
3719 
3720 bool CMSCollector::do_marking_st() {
3721   ResourceMark rm;
3722   HandleMark   hm;
3723 
3724   // Temporarily make refs discovery single threaded (non-MT)
3725   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3726   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3727     &_markStack, CMSYield);
3728   // the last argument to iterate indicates whether the iteration
3729   // should be incremental with periodic yields.
3730   _markBitMap.iterate(&markFromRootsClosure);
3731   // If _restart_addr is non-NULL, a marking stack overflow
3732   // occurred; we need to do a fresh iteration from the
3733   // indicated restart address.
3734   while (_restart_addr != NULL) {
3735     if (_foregroundGCIsActive) {
3736       // We may be running into repeated stack overflows, having
3737       // reached the limit of the stack size, while making very
3738       // slow forward progress. It may be best to bail out and
3739       // let the foreground collector do its job.
3740       // Clear _restart_addr, so that foreground GC
3741       // works from scratch. This avoids the headache of
3742       // a "rescan" which would otherwise be needed because
3743       // of the dirty mod union table & card table.
3744       _restart_addr = NULL;
3745       return false;  // indicating failure to complete marking
3746     }
3747     // Deal with stack overflow:
3748     // we restart marking from _restart_addr
3749     HeapWord* ra = _restart_addr;
3750     markFromRootsClosure.reset(ra);
3751     _restart_addr = NULL;
3752     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3753   }
3754   return true;
3755 }
3756 
3757 void CMSCollector::preclean() {
3758   check_correct_thread_executing();
3759   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3760   verify_work_stacks_empty();
3761   verify_overflow_empty();
3762   _abort_preclean = false;
3763   if (CMSPrecleaningEnabled) {
3764     if (!CMSEdenChunksRecordAlways) {
3765       _eden_chunk_index = 0;
3766     }
3767     size_t used = get_eden_used();
3768     size_t capacity = get_eden_capacity();
3769     // Don't start sampling unless we will get sufficiently
3770     // many samples.
3771     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3772                 * CMSScheduleRemarkEdenPenetration)) {
3773       _start_sampling = true;
3774     } else {
3775       _start_sampling = false;
3776     }
3777     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3778     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3779     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3780   }
3781   CMSTokenSync x(true); // is cms thread
3782   if (CMSPrecleaningEnabled) {
3783     sample_eden();
3784     _collectorState = AbortablePreclean;
3785   } else {
3786     _collectorState = FinalMarking;
3787   }
3788   verify_work_stacks_empty();
3789   verify_overflow_empty();
3790 }
3791 
3792 // Try and schedule the remark such that young gen
3793 // occupancy is CMSScheduleRemarkEdenPenetration %.
3794 void CMSCollector::abortable_preclean() {
3795   check_correct_thread_executing();
3796   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3797   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3798 
3799   // If Eden's current occupancy is below this threshold,
3800   // immediately schedule the remark; else preclean
3801   // past the next scavenge in an effort to
3802   // schedule the pause as described above. By choosing
3803   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3804   // we will never do an actual abortable preclean cycle.
3805   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3806     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3807     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3808     // We need more smarts in the abortable preclean
3809     // loop below to deal with cases where allocation
3810     // in young gen is very very slow, and our precleaning
3811     // is running a losing race against a horde of
3812     // mutators intent on flooding us with CMS updates
3813     // (dirty cards).
3814     // One, admittedly dumb, strategy is to give up
3815     // after a certain number of abortable precleaning loops
3816     // or after a certain maximum time. We want to make
3817     // this smarter in the next iteration.
3818     // XXX FIX ME!!! YSR
3819     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3820     while (!(should_abort_preclean() ||
3821              ConcurrentMarkSweepThread::should_terminate())) {
3822       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3823       cumworkdone += workdone;
3824       loops++;
3825       // Voluntarily terminate abortable preclean phase if we have
3826       // been at it for too long.
3827       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3828           loops >= CMSMaxAbortablePrecleanLoops) {
3829         if (PrintGCDetails) {
3830           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3831         }
3832         break;
3833       }
3834       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3835         if (PrintGCDetails) {
3836           gclog_or_tty->print(" CMS: abort preclean due to time ");
3837         }
3838         break;
3839       }
3840       // If we are doing little work each iteration, we should
3841       // take a short break.
3842       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3843         // Sleep for some time, waiting for work to accumulate
3844         stopTimer();
3845         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3846         startTimer();
3847         waited++;
3848       }
3849     }
3850     if (PrintCMSStatistics > 0) {
3851       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3852                           loops, waited, cumworkdone);
3853     }
3854   }
3855   CMSTokenSync x(true); // is cms thread
3856   if (_collectorState != Idling) {
3857     assert(_collectorState == AbortablePreclean,
3858            "Spontaneous state transition?");
3859     _collectorState = FinalMarking;
3860   } // Else, a foreground collection completed this CMS cycle.
3861   return;
3862 }
3863 
3864 // Respond to an Eden sampling opportunity
3865 void CMSCollector::sample_eden() {
3866   // Make sure a young gc cannot sneak in between our
3867   // reading and recording of a sample.
3868   assert(Thread::current()->is_ConcurrentGC_thread(),
3869          "Only the cms thread may collect Eden samples");
3870   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3871          "Should collect samples while holding CMS token");
3872   if (!_start_sampling) {
3873     return;
3874   }
3875   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3876   // is populated by the young generation.
3877   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3878     if (_eden_chunk_index < _eden_chunk_capacity) {
3879       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3880       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3881              "Unexpected state of Eden");
3882       // We'd like to check that what we just sampled is an oop-start address;
3883       // however, we cannot do that here since the object may not yet have been
3884       // initialized. So we'll instead do the check when we _use_ this sample
3885       // later.
3886       if (_eden_chunk_index == 0 ||
3887           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3888                          _eden_chunk_array[_eden_chunk_index-1])
3889            >= CMSSamplingGrain)) {
3890         _eden_chunk_index++;  // commit sample
3891       }
3892     }
3893   }
3894   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3895     size_t used = get_eden_used();
3896     size_t capacity = get_eden_capacity();
3897     assert(used <= capacity, "Unexpected state of Eden");
3898     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3899       _abort_preclean = true;
3900     }
3901   }
3902 }
3903 
3904 
3905 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3906   assert(_collectorState == Precleaning ||
3907          _collectorState == AbortablePreclean, "incorrect state");
3908   ResourceMark rm;
3909   HandleMark   hm;
3910 
3911   // Precleaning is currently not MT but the reference processor
3912   // may be set for MT.  Disable it temporarily here.
3913   ReferenceProcessor* rp = ref_processor();
3914   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3915 
3916   // Do one pass of scrubbing the discovered reference lists
3917   // to remove any reference objects with strongly-reachable
3918   // referents.
3919   if (clean_refs) {
3920     CMSPrecleanRefsYieldClosure yield_cl(this);
3921     assert(rp->span().equals(_span), "Spans should be equal");
3922     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3923                                    &_markStack, true /* preclean */);
3924     CMSDrainMarkingStackClosure complete_trace(this,
3925                                    _span, &_markBitMap, &_markStack,
3926                                    &keep_alive, true /* preclean */);
3927 
3928     // We don't want this step to interfere with a young
3929     // collection because we don't want to take CPU
3930     // or memory bandwidth away from the young GC threads
3931     // (which may be as many as there are CPUs).
3932     // Note that we don't need to protect ourselves from
3933     // interference with mutators because they can't
3934     // manipulate the discovered reference lists nor affect
3935     // the computed reachability of the referents, the
3936     // only properties manipulated by the precleaning
3937     // of these reference lists.
3938     stopTimer();
3939     CMSTokenSyncWithLocks x(true /* is cms thread */,
3940                             bitMapLock());
3941     startTimer();
3942     sample_eden();
3943 
3944     // The following will yield to allow foreground
3945     // collection to proceed promptly. XXX YSR:
3946     // The code in this method may need further
3947     // tweaking for better performance and some restructuring
3948     // for cleaner interfaces.
3949     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3950     rp->preclean_discovered_references(
3951           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3952           gc_timer, _gc_tracer_cm->gc_id());
3953   }
3954 
3955   if (clean_survivor) {  // preclean the active survivor space(s)
3956     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3957                              &_markBitMap, &_modUnionTable,
3958                              &_markStack, true /* precleaning phase */);
3959     stopTimer();
3960     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3961                              bitMapLock());
3962     startTimer();
3963     unsigned int before_count =
3964       GenCollectedHeap::heap()->total_collections();
3965     SurvivorSpacePrecleanClosure
3966       sss_cl(this, _span, &_markBitMap, &_markStack,
3967              &pam_cl, before_count, CMSYield);
3968     _young_gen->from()->object_iterate_careful(&sss_cl);
3969     _young_gen->to()->object_iterate_careful(&sss_cl);
3970   }
3971   MarkRefsIntoAndScanClosure
3972     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3973              &_markStack, this, CMSYield,
3974              true /* precleaning phase */);
3975   // CAUTION: The following closure has persistent state that may need to
3976   // be reset upon a decrease in the sequence of addresses it
3977   // processes.
3978   ScanMarkedObjectsAgainCarefullyClosure
3979     smoac_cl(this, _span,
3980       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3981 
3982   // Preclean dirty cards in ModUnionTable and CardTable using
3983   // appropriate convergence criterion;
3984   // repeat CMSPrecleanIter times unless we find that
3985   // we are losing.
3986   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3987   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3988          "Bad convergence multiplier");
3989   assert(CMSPrecleanThreshold >= 100,
3990          "Unreasonably low CMSPrecleanThreshold");
3991 
3992   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3993   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3994        numIter < CMSPrecleanIter;
3995        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3996     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3997     if (Verbose && PrintGCDetails) {
3998       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3999     }
4000     // Either there are very few dirty cards, so re-mark
4001     // pause will be small anyway, or our pre-cleaning isn't
4002     // that much faster than the rate at which cards are being
4003     // dirtied, so we might as well stop and re-mark since
4004     // precleaning won't improve our re-mark time by much.
4005     if (curNumCards <= CMSPrecleanThreshold ||
4006         (numIter > 0 &&
4007          (curNumCards * CMSPrecleanDenominator >
4008          lastNumCards * CMSPrecleanNumerator))) {
4009       numIter++;
4010       cumNumCards += curNumCards;
4011       break;
4012     }
4013   }
4014 
4015   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4016 
4017   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4018   cumNumCards += curNumCards;
4019   if (PrintGCDetails && PrintCMSStatistics != 0) {
4020     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4021                   curNumCards, cumNumCards, numIter);
4022   }
4023   return cumNumCards;   // as a measure of useful work done
4024 }
4025 
4026 // PRECLEANING NOTES:
4027 // Precleaning involves:
4028 // . reading the bits of the modUnionTable and clearing the set bits.
4029 // . For the cards corresponding to the set bits, we scan the
4030 //   objects on those cards. This means we need the free_list_lock
4031 //   so that we can safely iterate over the CMS space when scanning
4032 //   for oops.
4033 // . When we scan the objects, we'll be both reading and setting
4034 //   marks in the marking bit map, so we'll need the marking bit map.
4035 // . For protecting _collector_state transitions, we take the CGC_lock.
4036 //   Note that any races in the reading of of card table entries by the
4037 //   CMS thread on the one hand and the clearing of those entries by the
4038 //   VM thread or the setting of those entries by the mutator threads on the
4039 //   other are quite benign. However, for efficiency it makes sense to keep
4040 //   the VM thread from racing with the CMS thread while the latter is
4041 //   dirty card info to the modUnionTable. We therefore also use the
4042 //   CGC_lock to protect the reading of the card table and the mod union
4043 //   table by the CM thread.
4044 // . We run concurrently with mutator updates, so scanning
4045 //   needs to be done carefully  -- we should not try to scan
4046 //   potentially uninitialized objects.
4047 //
4048 // Locking strategy: While holding the CGC_lock, we scan over and
4049 // reset a maximal dirty range of the mod union / card tables, then lock
4050 // the free_list_lock and bitmap lock to do a full marking, then
4051 // release these locks; and repeat the cycle. This allows for a
4052 // certain amount of fairness in the sharing of these locks between
4053 // the CMS collector on the one hand, and the VM thread and the
4054 // mutators on the other.
4055 
4056 // NOTE: preclean_mod_union_table() and preclean_card_table()
4057 // further below are largely identical; if you need to modify
4058 // one of these methods, please check the other method too.
4059 
4060 size_t CMSCollector::preclean_mod_union_table(
4061   ConcurrentMarkSweepGeneration* gen,
4062   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4063   verify_work_stacks_empty();
4064   verify_overflow_empty();
4065 
4066   // strategy: starting with the first card, accumulate contiguous
4067   // ranges of dirty cards; clear these cards, then scan the region
4068   // covered by these cards.
4069 
4070   // Since all of the MUT is committed ahead, we can just use
4071   // that, in case the generations expand while we are precleaning.
4072   // It might also be fine to just use the committed part of the
4073   // generation, but we might potentially miss cards when the
4074   // generation is rapidly expanding while we are in the midst
4075   // of precleaning.
4076   HeapWord* startAddr = gen->reserved().start();
4077   HeapWord* endAddr   = gen->reserved().end();
4078 
4079   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4080 
4081   size_t numDirtyCards, cumNumDirtyCards;
4082   HeapWord *nextAddr, *lastAddr;
4083   for (cumNumDirtyCards = numDirtyCards = 0,
4084        nextAddr = lastAddr = startAddr;
4085        nextAddr < endAddr;
4086        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4087 
4088     ResourceMark rm;
4089     HandleMark   hm;
4090 
4091     MemRegion dirtyRegion;
4092     {
4093       stopTimer();
4094       // Potential yield point
4095       CMSTokenSync ts(true);
4096       startTimer();
4097       sample_eden();
4098       // Get dirty region starting at nextOffset (inclusive),
4099       // simultaneously clearing it.
4100       dirtyRegion =
4101         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4102       assert(dirtyRegion.start() >= nextAddr,
4103              "returned region inconsistent?");
4104     }
4105     // Remember where the next search should begin.
4106     // The returned region (if non-empty) is a right open interval,
4107     // so lastOffset is obtained from the right end of that
4108     // interval.
4109     lastAddr = dirtyRegion.end();
4110     // Should do something more transparent and less hacky XXX
4111     numDirtyCards =
4112       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4113 
4114     // We'll scan the cards in the dirty region (with periodic
4115     // yields for foreground GC as needed).
4116     if (!dirtyRegion.is_empty()) {
4117       assert(numDirtyCards > 0, "consistency check");
4118       HeapWord* stop_point = NULL;
4119       stopTimer();
4120       // Potential yield point
4121       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4122                                bitMapLock());
4123       startTimer();
4124       {
4125         verify_work_stacks_empty();
4126         verify_overflow_empty();
4127         sample_eden();
4128         stop_point =
4129           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4130       }
4131       if (stop_point != NULL) {
4132         // The careful iteration stopped early either because it found an
4133         // uninitialized object, or because we were in the midst of an
4134         // "abortable preclean", which should now be aborted. Redirty
4135         // the bits corresponding to the partially-scanned or unscanned
4136         // cards. We'll either restart at the next block boundary or
4137         // abort the preclean.
4138         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4139                "Should only be AbortablePreclean.");
4140         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4141         if (should_abort_preclean()) {
4142           break; // out of preclean loop
4143         } else {
4144           // Compute the next address at which preclean should pick up;
4145           // might need bitMapLock in order to read P-bits.
4146           lastAddr = next_card_start_after_block(stop_point);
4147         }
4148       }
4149     } else {
4150       assert(lastAddr == endAddr, "consistency check");
4151       assert(numDirtyCards == 0, "consistency check");
4152       break;
4153     }
4154   }
4155   verify_work_stacks_empty();
4156   verify_overflow_empty();
4157   return cumNumDirtyCards;
4158 }
4159 
4160 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4161 // below are largely identical; if you need to modify
4162 // one of these methods, please check the other method too.
4163 
4164 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4165   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4166   // strategy: it's similar to precleamModUnionTable above, in that
4167   // we accumulate contiguous ranges of dirty cards, mark these cards
4168   // precleaned, then scan the region covered by these cards.
4169   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4170   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4171 
4172   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4173 
4174   size_t numDirtyCards, cumNumDirtyCards;
4175   HeapWord *lastAddr, *nextAddr;
4176 
4177   for (cumNumDirtyCards = numDirtyCards = 0,
4178        nextAddr = lastAddr = startAddr;
4179        nextAddr < endAddr;
4180        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4181 
4182     ResourceMark rm;
4183     HandleMark   hm;
4184 
4185     MemRegion dirtyRegion;
4186     {
4187       // See comments in "Precleaning notes" above on why we
4188       // do this locking. XXX Could the locking overheads be
4189       // too high when dirty cards are sparse? [I don't think so.]
4190       stopTimer();
4191       CMSTokenSync x(true); // is cms thread
4192       startTimer();
4193       sample_eden();
4194       // Get and clear dirty region from card table
4195       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4196                                     MemRegion(nextAddr, endAddr),
4197                                     true,
4198                                     CardTableModRefBS::precleaned_card_val());
4199 
4200       assert(dirtyRegion.start() >= nextAddr,
4201              "returned region inconsistent?");
4202     }
4203     lastAddr = dirtyRegion.end();
4204     numDirtyCards =
4205       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4206 
4207     if (!dirtyRegion.is_empty()) {
4208       stopTimer();
4209       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4210       startTimer();
4211       sample_eden();
4212       verify_work_stacks_empty();
4213       verify_overflow_empty();
4214       HeapWord* stop_point =
4215         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4216       if (stop_point != NULL) {
4217         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4218                "Should only be AbortablePreclean.");
4219         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4220         if (should_abort_preclean()) {
4221           break; // out of preclean loop
4222         } else {
4223           // Compute the next address at which preclean should pick up.
4224           lastAddr = next_card_start_after_block(stop_point);
4225         }
4226       }
4227     } else {
4228       break;
4229     }
4230   }
4231   verify_work_stacks_empty();
4232   verify_overflow_empty();
4233   return cumNumDirtyCards;
4234 }
4235 
4236 class PrecleanKlassClosure : public KlassClosure {
4237   KlassToOopClosure _cm_klass_closure;
4238  public:
4239   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4240   void do_klass(Klass* k) {
4241     if (k->has_accumulated_modified_oops()) {
4242       k->clear_accumulated_modified_oops();
4243 
4244       _cm_klass_closure.do_klass(k);
4245     }
4246   }
4247 };
4248 
4249 // The freelist lock is needed to prevent asserts, is it really needed?
4250 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4251 
4252   cl->set_freelistLock(freelistLock);
4253 
4254   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4255 
4256   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4257   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4258   PrecleanKlassClosure preclean_klass_closure(cl);
4259   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4260 
4261   verify_work_stacks_empty();
4262   verify_overflow_empty();
4263 }
4264 
4265 void CMSCollector::checkpointRootsFinal() {
4266   assert(_collectorState == FinalMarking, "incorrect state transition?");
4267   check_correct_thread_executing();
4268   // world is stopped at this checkpoint
4269   assert(SafepointSynchronize::is_at_safepoint(),
4270          "world should be stopped");
4271   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4272 
4273   verify_work_stacks_empty();
4274   verify_overflow_empty();
4275 
4276   if (PrintGCDetails) {
4277     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4278                         _young_gen->used() / K,
4279                         _young_gen->capacity() / K);
4280   }
4281   {
4282     if (CMSScavengeBeforeRemark) {
4283       GenCollectedHeap* gch = GenCollectedHeap::heap();
4284       // Temporarily set flag to false, GCH->do_collection will
4285       // expect it to be false and set to true
4286       FlagSetting fl(gch->_is_gc_active, false);
4287       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4288         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4289       gch->do_collection(true,                      // full (i.e. force, see below)
4290                          false,                     // !clear_all_soft_refs
4291                          0,                         // size
4292                          false,                     // is_tlab
4293                          GenCollectedHeap::YoungGen // type
4294         );
4295     }
4296     FreelistLocker x(this);
4297     MutexLockerEx y(bitMapLock(),
4298                     Mutex::_no_safepoint_check_flag);
4299     checkpointRootsFinalWork();
4300   }
4301   verify_work_stacks_empty();
4302   verify_overflow_empty();
4303 }
4304 
4305 void CMSCollector::checkpointRootsFinalWork() {
4306   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4307 
4308   assert(haveFreelistLocks(), "must have free list locks");
4309   assert_lock_strong(bitMapLock());
4310 
4311   ResourceMark rm;
4312   HandleMark   hm;
4313 
4314   GenCollectedHeap* gch = GenCollectedHeap::heap();
4315 
4316   if (should_unload_classes()) {
4317     CodeCache::gc_prologue();
4318   }
4319   assert(haveFreelistLocks(), "must have free list locks");
4320   assert_lock_strong(bitMapLock());
4321 
4322   // We might assume that we need not fill TLAB's when
4323   // CMSScavengeBeforeRemark is set, because we may have just done
4324   // a scavenge which would have filled all TLAB's -- and besides
4325   // Eden would be empty. This however may not always be the case --
4326   // for instance although we asked for a scavenge, it may not have
4327   // happened because of a JNI critical section. We probably need
4328   // a policy for deciding whether we can in that case wait until
4329   // the critical section releases and then do the remark following
4330   // the scavenge, and skip it here. In the absence of that policy,
4331   // or of an indication of whether the scavenge did indeed occur,
4332   // we cannot rely on TLAB's having been filled and must do
4333   // so here just in case a scavenge did not happen.
4334   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4335   // Update the saved marks which may affect the root scans.
4336   gch->save_marks();
4337 
4338   if (CMSPrintEdenSurvivorChunks) {
4339     print_eden_and_survivor_chunk_arrays();
4340   }
4341 
4342   {
4343     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4344 
4345     // Note on the role of the mod union table:
4346     // Since the marker in "markFromRoots" marks concurrently with
4347     // mutators, it is possible for some reachable objects not to have been
4348     // scanned. For instance, an only reference to an object A was
4349     // placed in object B after the marker scanned B. Unless B is rescanned,
4350     // A would be collected. Such updates to references in marked objects
4351     // are detected via the mod union table which is the set of all cards
4352     // dirtied since the first checkpoint in this GC cycle and prior to
4353     // the most recent young generation GC, minus those cleaned up by the
4354     // concurrent precleaning.
4355     if (CMSParallelRemarkEnabled) {
4356       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4357       do_remark_parallel();
4358     } else {
4359       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4360                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4361       do_remark_non_parallel();
4362     }
4363   }
4364   verify_work_stacks_empty();
4365   verify_overflow_empty();
4366 
4367   {
4368     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4369     refProcessingWork();
4370   }
4371   verify_work_stacks_empty();
4372   verify_overflow_empty();
4373 
4374   if (should_unload_classes()) {
4375     CodeCache::gc_epilogue();
4376   }
4377   JvmtiExport::gc_epilogue();
4378 
4379   // If we encountered any (marking stack / work queue) overflow
4380   // events during the current CMS cycle, take appropriate
4381   // remedial measures, where possible, so as to try and avoid
4382   // recurrence of that condition.
4383   assert(_markStack.isEmpty(), "No grey objects");
4384   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4385                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4386   if (ser_ovflw > 0) {
4387     if (PrintCMSStatistics != 0) {
4388       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4389         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4390         ", kac_preclean=" SIZE_FORMAT ")",
4391         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4392         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4393     }
4394     _markStack.expand();
4395     _ser_pmc_remark_ovflw = 0;
4396     _ser_pmc_preclean_ovflw = 0;
4397     _ser_kac_preclean_ovflw = 0;
4398     _ser_kac_ovflw = 0;
4399   }
4400   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4401     if (PrintCMSStatistics != 0) {
4402       gclog_or_tty->print_cr("Work queue overflow (benign) "
4403         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4404         _par_pmc_remark_ovflw, _par_kac_ovflw);
4405     }
4406     _par_pmc_remark_ovflw = 0;
4407     _par_kac_ovflw = 0;
4408   }
4409   if (PrintCMSStatistics != 0) {
4410      if (_markStack._hit_limit > 0) {
4411        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4412                               _markStack._hit_limit);
4413      }
4414      if (_markStack._failed_double > 0) {
4415        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4416                               " current capacity " SIZE_FORMAT,
4417                               _markStack._failed_double,
4418                               _markStack.capacity());
4419      }
4420   }
4421   _markStack._hit_limit = 0;
4422   _markStack._failed_double = 0;
4423 
4424   if ((VerifyAfterGC || VerifyDuringGC) &&
4425       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4426     verify_after_remark();
4427   }
4428 
4429   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4430 
4431   // Change under the freelistLocks.
4432   _collectorState = Sweeping;
4433   // Call isAllClear() under bitMapLock
4434   assert(_modUnionTable.isAllClear(),
4435       "Should be clear by end of the final marking");
4436   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4437       "Should be clear by end of the final marking");
4438 }
4439 
4440 void CMSParInitialMarkTask::work(uint worker_id) {
4441   elapsedTimer _timer;
4442   ResourceMark rm;
4443   HandleMark   hm;
4444 
4445   // ---------- scan from roots --------------
4446   _timer.start();
4447   GenCollectedHeap* gch = GenCollectedHeap::heap();
4448   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4449 
4450   // ---------- young gen roots --------------
4451   {
4452     work_on_young_gen_roots(worker_id, &par_mri_cl);
4453     _timer.stop();
4454     if (PrintCMSStatistics != 0) {
4455       gclog_or_tty->print_cr(
4456         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4457         worker_id, _timer.seconds());
4458     }
4459   }
4460 
4461   // ---------- remaining roots --------------
4462   _timer.reset();
4463   _timer.start();
4464 
4465   CLDToOopClosure cld_closure(&par_mri_cl, true);
4466 
4467   gch->gen_process_roots(_strong_roots_scope,
4468                          GenCollectedHeap::OldGen,
4469                          false,     // yg was scanned above
4470                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4471                          _collector->should_unload_classes(),
4472                          &par_mri_cl,
4473                          NULL,
4474                          &cld_closure);
4475   assert(_collector->should_unload_classes()
4476          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4477          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4478   _timer.stop();
4479   if (PrintCMSStatistics != 0) {
4480     gclog_or_tty->print_cr(
4481       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4482       worker_id, _timer.seconds());
4483   }
4484 }
4485 
4486 // Parallel remark task
4487 class CMSParRemarkTask: public CMSParMarkTask {
4488   CompactibleFreeListSpace* _cms_space;
4489 
4490   // The per-thread work queues, available here for stealing.
4491   OopTaskQueueSet*       _task_queues;
4492   ParallelTaskTerminator _term;
4493   StrongRootsScope*      _strong_roots_scope;
4494 
4495  public:
4496   // A value of 0 passed to n_workers will cause the number of
4497   // workers to be taken from the active workers in the work gang.
4498   CMSParRemarkTask(CMSCollector* collector,
4499                    CompactibleFreeListSpace* cms_space,
4500                    uint n_workers, FlexibleWorkGang* workers,
4501                    OopTaskQueueSet* task_queues,
4502                    StrongRootsScope* strong_roots_scope):
4503     CMSParMarkTask("Rescan roots and grey objects in parallel",
4504                    collector, n_workers),
4505     _cms_space(cms_space),
4506     _task_queues(task_queues),
4507     _term(n_workers, task_queues),
4508     _strong_roots_scope(strong_roots_scope) { }
4509 
4510   OopTaskQueueSet* task_queues() { return _task_queues; }
4511 
4512   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4513 
4514   ParallelTaskTerminator* terminator() { return &_term; }
4515   uint n_workers() { return _n_workers; }
4516 
4517   void work(uint worker_id);
4518 
4519  private:
4520   // ... of  dirty cards in old space
4521   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4522                                   Par_MarkRefsIntoAndScanClosure* cl);
4523 
4524   // ... work stealing for the above
4525   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4526 };
4527 
4528 class RemarkKlassClosure : public KlassClosure {
4529   KlassToOopClosure _cm_klass_closure;
4530  public:
4531   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4532   void do_klass(Klass* k) {
4533     // Check if we have modified any oops in the Klass during the concurrent marking.
4534     if (k->has_accumulated_modified_oops()) {
4535       k->clear_accumulated_modified_oops();
4536 
4537       // We could have transfered the current modified marks to the accumulated marks,
4538       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4539     } else if (k->has_modified_oops()) {
4540       // Don't clear anything, this info is needed by the next young collection.
4541     } else {
4542       // No modified oops in the Klass.
4543       return;
4544     }
4545 
4546     // The klass has modified fields, need to scan the klass.
4547     _cm_klass_closure.do_klass(k);
4548   }
4549 };
4550 
4551 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4552   ParNewGeneration* young_gen = _collector->_young_gen;
4553   ContiguousSpace* eden_space = young_gen->eden();
4554   ContiguousSpace* from_space = young_gen->from();
4555   ContiguousSpace* to_space   = young_gen->to();
4556 
4557   HeapWord** eca = _collector->_eden_chunk_array;
4558   size_t     ect = _collector->_eden_chunk_index;
4559   HeapWord** sca = _collector->_survivor_chunk_array;
4560   size_t     sct = _collector->_survivor_chunk_index;
4561 
4562   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4563   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4564 
4565   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4566   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4567   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4568 }
4569 
4570 // work_queue(i) is passed to the closure
4571 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4572 // also is passed to do_dirty_card_rescan_tasks() and to
4573 // do_work_steal() to select the i-th task_queue.
4574 
4575 void CMSParRemarkTask::work(uint worker_id) {
4576   elapsedTimer _timer;
4577   ResourceMark rm;
4578   HandleMark   hm;
4579 
4580   // ---------- rescan from roots --------------
4581   _timer.start();
4582   GenCollectedHeap* gch = GenCollectedHeap::heap();
4583   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4584     _collector->_span, _collector->ref_processor(),
4585     &(_collector->_markBitMap),
4586     work_queue(worker_id));
4587 
4588   // Rescan young gen roots first since these are likely
4589   // coarsely partitioned and may, on that account, constitute
4590   // the critical path; thus, it's best to start off that
4591   // work first.
4592   // ---------- young gen roots --------------
4593   {
4594     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4595     _timer.stop();
4596     if (PrintCMSStatistics != 0) {
4597       gclog_or_tty->print_cr(
4598         "Finished young gen rescan work in %dth thread: %3.3f sec",
4599         worker_id, _timer.seconds());
4600     }
4601   }
4602 
4603   // ---------- remaining roots --------------
4604   _timer.reset();
4605   _timer.start();
4606   gch->gen_process_roots(_strong_roots_scope,
4607                          GenCollectedHeap::OldGen,
4608                          false,     // yg was scanned above
4609                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4610                          _collector->should_unload_classes(),
4611                          &par_mrias_cl,
4612                          NULL,
4613                          NULL);     // The dirty klasses will be handled below
4614 
4615   assert(_collector->should_unload_classes()
4616          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4617          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4618   _timer.stop();
4619   if (PrintCMSStatistics != 0) {
4620     gclog_or_tty->print_cr(
4621       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4622       worker_id, _timer.seconds());
4623   }
4624 
4625   // ---------- unhandled CLD scanning ----------
4626   if (worker_id == 0) { // Single threaded at the moment.
4627     _timer.reset();
4628     _timer.start();
4629 
4630     // Scan all new class loader data objects and new dependencies that were
4631     // introduced during concurrent marking.
4632     ResourceMark rm;
4633     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4634     for (int i = 0; i < array->length(); i++) {
4635       par_mrias_cl.do_class_loader_data(array->at(i));
4636     }
4637 
4638     // We don't need to keep track of new CLDs anymore.
4639     ClassLoaderDataGraph::remember_new_clds(false);
4640 
4641     _timer.stop();
4642     if (PrintCMSStatistics != 0) {
4643       gclog_or_tty->print_cr(
4644           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4645           worker_id, _timer.seconds());
4646     }
4647   }
4648 
4649   // ---------- dirty klass scanning ----------
4650   if (worker_id == 0) { // Single threaded at the moment.
4651     _timer.reset();
4652     _timer.start();
4653 
4654     // Scan all classes that was dirtied during the concurrent marking phase.
4655     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4656     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4657 
4658     _timer.stop();
4659     if (PrintCMSStatistics != 0) {
4660       gclog_or_tty->print_cr(
4661           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4662           worker_id, _timer.seconds());
4663     }
4664   }
4665 
4666   // We might have added oops to ClassLoaderData::_handles during the
4667   // concurrent marking phase. These oops point to newly allocated objects
4668   // that are guaranteed to be kept alive. Either by the direct allocation
4669   // code, or when the young collector processes the roots. Hence,
4670   // we don't have to revisit the _handles block during the remark phase.
4671 
4672   // ---------- rescan dirty cards ------------
4673   _timer.reset();
4674   _timer.start();
4675 
4676   // Do the rescan tasks for each of the two spaces
4677   // (cms_space) in turn.
4678   // "worker_id" is passed to select the task_queue for "worker_id"
4679   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4680   _timer.stop();
4681   if (PrintCMSStatistics != 0) {
4682     gclog_or_tty->print_cr(
4683       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4684       worker_id, _timer.seconds());
4685   }
4686 
4687   // ---------- steal work from other threads ...
4688   // ---------- ... and drain overflow list.
4689   _timer.reset();
4690   _timer.start();
4691   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4692   _timer.stop();
4693   if (PrintCMSStatistics != 0) {
4694     gclog_or_tty->print_cr(
4695       "Finished work stealing in %dth thread: %3.3f sec",
4696       worker_id, _timer.seconds());
4697   }
4698 }
4699 
4700 // Note that parameter "i" is not used.
4701 void
4702 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4703   OopsInGenClosure* cl, ContiguousSpace* space,
4704   HeapWord** chunk_array, size_t chunk_top) {
4705   // Until all tasks completed:
4706   // . claim an unclaimed task
4707   // . compute region boundaries corresponding to task claimed
4708   //   using chunk_array
4709   // . par_oop_iterate(cl) over that region
4710 
4711   ResourceMark rm;
4712   HandleMark   hm;
4713 
4714   SequentialSubTasksDone* pst = space->par_seq_tasks();
4715 
4716   uint nth_task = 0;
4717   uint n_tasks  = pst->n_tasks();
4718 
4719   if (n_tasks > 0) {
4720     assert(pst->valid(), "Uninitialized use?");
4721     HeapWord *start, *end;
4722     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4723       // We claimed task # nth_task; compute its boundaries.
4724       if (chunk_top == 0) {  // no samples were taken
4725         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4726         start = space->bottom();
4727         end   = space->top();
4728       } else if (nth_task == 0) {
4729         start = space->bottom();
4730         end   = chunk_array[nth_task];
4731       } else if (nth_task < (uint)chunk_top) {
4732         assert(nth_task >= 1, "Control point invariant");
4733         start = chunk_array[nth_task - 1];
4734         end   = chunk_array[nth_task];
4735       } else {
4736         assert(nth_task == (uint)chunk_top, "Control point invariant");
4737         start = chunk_array[chunk_top - 1];
4738         end   = space->top();
4739       }
4740       MemRegion mr(start, end);
4741       // Verify that mr is in space
4742       assert(mr.is_empty() || space->used_region().contains(mr),
4743              "Should be in space");
4744       // Verify that "start" is an object boundary
4745       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4746              "Should be an oop");
4747       space->par_oop_iterate(mr, cl);
4748     }
4749     pst->all_tasks_completed();
4750   }
4751 }
4752 
4753 void
4754 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4755   CompactibleFreeListSpace* sp, int i,
4756   Par_MarkRefsIntoAndScanClosure* cl) {
4757   // Until all tasks completed:
4758   // . claim an unclaimed task
4759   // . compute region boundaries corresponding to task claimed
4760   // . transfer dirty bits ct->mut for that region
4761   // . apply rescanclosure to dirty mut bits for that region
4762 
4763   ResourceMark rm;
4764   HandleMark   hm;
4765 
4766   OopTaskQueue* work_q = work_queue(i);
4767   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4768   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4769   // CAUTION: This closure has state that persists across calls to
4770   // the work method dirty_range_iterate_clear() in that it has
4771   // embedded in it a (subtype of) UpwardsObjectClosure. The
4772   // use of that state in the embedded UpwardsObjectClosure instance
4773   // assumes that the cards are always iterated (even if in parallel
4774   // by several threads) in monotonically increasing order per each
4775   // thread. This is true of the implementation below which picks
4776   // card ranges (chunks) in monotonically increasing order globally
4777   // and, a-fortiori, in monotonically increasing order per thread
4778   // (the latter order being a subsequence of the former).
4779   // If the work code below is ever reorganized into a more chaotic
4780   // work-partitioning form than the current "sequential tasks"
4781   // paradigm, the use of that persistent state will have to be
4782   // revisited and modified appropriately. See also related
4783   // bug 4756801 work on which should examine this code to make
4784   // sure that the changes there do not run counter to the
4785   // assumptions made here and necessary for correctness and
4786   // efficiency. Note also that this code might yield inefficient
4787   // behavior in the case of very large objects that span one or
4788   // more work chunks. Such objects would potentially be scanned
4789   // several times redundantly. Work on 4756801 should try and
4790   // address that performance anomaly if at all possible. XXX
4791   MemRegion  full_span  = _collector->_span;
4792   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4793   MarkFromDirtyCardsClosure
4794     greyRescanClosure(_collector, full_span, // entire span of interest
4795                       sp, bm, work_q, cl);
4796 
4797   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4798   assert(pst->valid(), "Uninitialized use?");
4799   uint nth_task = 0;
4800   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4801   MemRegion span = sp->used_region();
4802   HeapWord* start_addr = span.start();
4803   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4804                                            alignment);
4805   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4806   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4807          start_addr, "Check alignment");
4808   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4809          chunk_size, "Check alignment");
4810 
4811   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4812     // Having claimed the nth_task, compute corresponding mem-region,
4813     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4814     // The alignment restriction ensures that we do not need any
4815     // synchronization with other gang-workers while setting or
4816     // clearing bits in thus chunk of the MUT.
4817     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4818                                     start_addr + (nth_task+1)*chunk_size);
4819     // The last chunk's end might be way beyond end of the
4820     // used region. In that case pull back appropriately.
4821     if (this_span.end() > end_addr) {
4822       this_span.set_end(end_addr);
4823       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4824     }
4825     // Iterate over the dirty cards covering this chunk, marking them
4826     // precleaned, and setting the corresponding bits in the mod union
4827     // table. Since we have been careful to partition at Card and MUT-word
4828     // boundaries no synchronization is needed between parallel threads.
4829     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4830                                                  &modUnionClosure);
4831 
4832     // Having transferred these marks into the modUnionTable,
4833     // rescan the marked objects on the dirty cards in the modUnionTable.
4834     // Even if this is at a synchronous collection, the initial marking
4835     // may have been done during an asynchronous collection so there
4836     // may be dirty bits in the mod-union table.
4837     _collector->_modUnionTable.dirty_range_iterate_clear(
4838                   this_span, &greyRescanClosure);
4839     _collector->_modUnionTable.verifyNoOneBitsInRange(
4840                                  this_span.start(),
4841                                  this_span.end());
4842   }
4843   pst->all_tasks_completed();  // declare that i am done
4844 }
4845 
4846 // . see if we can share work_queues with ParNew? XXX
4847 void
4848 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4849                                 int* seed) {
4850   OopTaskQueue* work_q = work_queue(i);
4851   NOT_PRODUCT(int num_steals = 0;)
4852   oop obj_to_scan;
4853   CMSBitMap* bm = &(_collector->_markBitMap);
4854 
4855   while (true) {
4856     // Completely finish any left over work from (an) earlier round(s)
4857     cl->trim_queue(0);
4858     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4859                                          (size_t)ParGCDesiredObjsFromOverflowList);
4860     // Now check if there's any work in the overflow list
4861     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4862     // only affects the number of attempts made to get work from the
4863     // overflow list and does not affect the number of workers.  Just
4864     // pass ParallelGCThreads so this behavior is unchanged.
4865     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4866                                                 work_q,
4867                                                 ParallelGCThreads)) {
4868       // found something in global overflow list;
4869       // not yet ready to go stealing work from others.
4870       // We'd like to assert(work_q->size() != 0, ...)
4871       // because we just took work from the overflow list,
4872       // but of course we can't since all of that could have
4873       // been already stolen from us.
4874       // "He giveth and He taketh away."
4875       continue;
4876     }
4877     // Verify that we have no work before we resort to stealing
4878     assert(work_q->size() == 0, "Have work, shouldn't steal");
4879     // Try to steal from other queues that have work
4880     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4881       NOT_PRODUCT(num_steals++;)
4882       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4883       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4884       // Do scanning work
4885       obj_to_scan->oop_iterate(cl);
4886       // Loop around, finish this work, and try to steal some more
4887     } else if (terminator()->offer_termination()) {
4888         break;  // nirvana from the infinite cycle
4889     }
4890   }
4891   NOT_PRODUCT(
4892     if (PrintCMSStatistics != 0) {
4893       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4894     }
4895   )
4896   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4897          "Else our work is not yet done");
4898 }
4899 
4900 // Record object boundaries in _eden_chunk_array by sampling the eden
4901 // top in the slow-path eden object allocation code path and record
4902 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4903 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4904 // sampling in sample_eden() that activates during the part of the
4905 // preclean phase.
4906 void CMSCollector::sample_eden_chunk() {
4907   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4908     if (_eden_chunk_lock->try_lock()) {
4909       // Record a sample. This is the critical section. The contents
4910       // of the _eden_chunk_array have to be non-decreasing in the
4911       // address order.
4912       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4913       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4914              "Unexpected state of Eden");
4915       if (_eden_chunk_index == 0 ||
4916           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4917            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4918                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4919         _eden_chunk_index++;  // commit sample
4920       }
4921       _eden_chunk_lock->unlock();
4922     }
4923   }
4924 }
4925 
4926 // Return a thread-local PLAB recording array, as appropriate.
4927 void* CMSCollector::get_data_recorder(int thr_num) {
4928   if (_survivor_plab_array != NULL &&
4929       (CMSPLABRecordAlways ||
4930        (_collectorState > Marking && _collectorState < FinalMarking))) {
4931     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4932     ChunkArray* ca = &_survivor_plab_array[thr_num];
4933     ca->reset();   // clear it so that fresh data is recorded
4934     return (void*) ca;
4935   } else {
4936     return NULL;
4937   }
4938 }
4939 
4940 // Reset all the thread-local PLAB recording arrays
4941 void CMSCollector::reset_survivor_plab_arrays() {
4942   for (uint i = 0; i < ParallelGCThreads; i++) {
4943     _survivor_plab_array[i].reset();
4944   }
4945 }
4946 
4947 // Merge the per-thread plab arrays into the global survivor chunk
4948 // array which will provide the partitioning of the survivor space
4949 // for CMS initial scan and rescan.
4950 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4951                                               int no_of_gc_threads) {
4952   assert(_survivor_plab_array  != NULL, "Error");
4953   assert(_survivor_chunk_array != NULL, "Error");
4954   assert(_collectorState == FinalMarking ||
4955          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4956   for (int j = 0; j < no_of_gc_threads; j++) {
4957     _cursor[j] = 0;
4958   }
4959   HeapWord* top = surv->top();
4960   size_t i;
4961   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4962     HeapWord* min_val = top;          // Higher than any PLAB address
4963     uint      min_tid = 0;            // position of min_val this round
4964     for (int j = 0; j < no_of_gc_threads; j++) {
4965       ChunkArray* cur_sca = &_survivor_plab_array[j];
4966       if (_cursor[j] == cur_sca->end()) {
4967         continue;
4968       }
4969       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4970       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4971       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4972       if (cur_val < min_val) {
4973         min_tid = j;
4974         min_val = cur_val;
4975       } else {
4976         assert(cur_val < top, "All recorded addresses should be less");
4977       }
4978     }
4979     // At this point min_val and min_tid are respectively
4980     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4981     // and the thread (j) that witnesses that address.
4982     // We record this address in the _survivor_chunk_array[i]
4983     // and increment _cursor[min_tid] prior to the next round i.
4984     if (min_val == top) {
4985       break;
4986     }
4987     _survivor_chunk_array[i] = min_val;
4988     _cursor[min_tid]++;
4989   }
4990   // We are all done; record the size of the _survivor_chunk_array
4991   _survivor_chunk_index = i; // exclusive: [0, i)
4992   if (PrintCMSStatistics > 0) {
4993     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4994   }
4995   // Verify that we used up all the recorded entries
4996   #ifdef ASSERT
4997     size_t total = 0;
4998     for (int j = 0; j < no_of_gc_threads; j++) {
4999       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5000       total += _cursor[j];
5001     }
5002     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5003     // Check that the merged array is in sorted order
5004     if (total > 0) {
5005       for (size_t i = 0; i < total - 1; i++) {
5006         if (PrintCMSStatistics > 0) {
5007           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5008                               i, p2i(_survivor_chunk_array[i]));
5009         }
5010         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5011                "Not sorted");
5012       }
5013     }
5014   #endif // ASSERT
5015 }
5016 
5017 // Set up the space's par_seq_tasks structure for work claiming
5018 // for parallel initial scan and rescan of young gen.
5019 // See ParRescanTask where this is currently used.
5020 void
5021 CMSCollector::
5022 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5023   assert(n_threads > 0, "Unexpected n_threads argument");
5024 
5025   // Eden space
5026   if (!_young_gen->eden()->is_empty()) {
5027     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5028     assert(!pst->valid(), "Clobbering existing data?");
5029     // Each valid entry in [0, _eden_chunk_index) represents a task.
5030     size_t n_tasks = _eden_chunk_index + 1;
5031     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5032     // Sets the condition for completion of the subtask (how many threads
5033     // need to finish in order to be done).
5034     pst->set_n_threads(n_threads);
5035     pst->set_n_tasks((int)n_tasks);
5036   }
5037 
5038   // Merge the survivor plab arrays into _survivor_chunk_array
5039   if (_survivor_plab_array != NULL) {
5040     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5041   } else {
5042     assert(_survivor_chunk_index == 0, "Error");
5043   }
5044 
5045   // To space
5046   {
5047     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5048     assert(!pst->valid(), "Clobbering existing data?");
5049     // Sets the condition for completion of the subtask (how many threads
5050     // need to finish in order to be done).
5051     pst->set_n_threads(n_threads);
5052     pst->set_n_tasks(1);
5053     assert(pst->valid(), "Error");
5054   }
5055 
5056   // From space
5057   {
5058     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5059     assert(!pst->valid(), "Clobbering existing data?");
5060     size_t n_tasks = _survivor_chunk_index + 1;
5061     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5062     // Sets the condition for completion of the subtask (how many threads
5063     // need to finish in order to be done).
5064     pst->set_n_threads(n_threads);
5065     pst->set_n_tasks((int)n_tasks);
5066     assert(pst->valid(), "Error");
5067   }
5068 }
5069 
5070 // Parallel version of remark
5071 void CMSCollector::do_remark_parallel() {
5072   GenCollectedHeap* gch = GenCollectedHeap::heap();
5073   FlexibleWorkGang* workers = gch->workers();
5074   assert(workers != NULL, "Need parallel worker threads.");
5075   // Choose to use the number of GC workers most recently set
5076   // into "active_workers".
5077   uint n_workers = workers->active_workers();
5078 
5079   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5080 
5081   StrongRootsScope srs(n_workers);
5082 
5083   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5084 
5085   // We won't be iterating over the cards in the card table updating
5086   // the younger_gen cards, so we shouldn't call the following else
5087   // the verification code as well as subsequent younger_refs_iterate
5088   // code would get confused. XXX
5089   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5090 
5091   // The young gen rescan work will not be done as part of
5092   // process_roots (which currently doesn't know how to
5093   // parallelize such a scan), but rather will be broken up into
5094   // a set of parallel tasks (via the sampling that the [abortable]
5095   // preclean phase did of eden, plus the [two] tasks of
5096   // scanning the [two] survivor spaces. Further fine-grain
5097   // parallelization of the scanning of the survivor spaces
5098   // themselves, and of precleaning of the younger gen itself
5099   // is deferred to the future.
5100   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5101 
5102   // The dirty card rescan work is broken up into a "sequence"
5103   // of parallel tasks (per constituent space) that are dynamically
5104   // claimed by the parallel threads.
5105   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5106 
5107   // It turns out that even when we're using 1 thread, doing the work in a
5108   // separate thread causes wide variance in run times.  We can't help this
5109   // in the multi-threaded case, but we special-case n=1 here to get
5110   // repeatable measurements of the 1-thread overhead of the parallel code.
5111   if (n_workers > 1) {
5112     // Make refs discovery MT-safe, if it isn't already: it may not
5113     // necessarily be so, since it's possible that we are doing
5114     // ST marking.
5115     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5116     workers->run_task(&tsk);
5117   } else {
5118     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5119     tsk.work(0);
5120   }
5121 
5122   // restore, single-threaded for now, any preserved marks
5123   // as a result of work_q overflow
5124   restore_preserved_marks_if_any();
5125 }
5126 
5127 // Non-parallel version of remark
5128 void CMSCollector::do_remark_non_parallel() {
5129   ResourceMark rm;
5130   HandleMark   hm;
5131   GenCollectedHeap* gch = GenCollectedHeap::heap();
5132   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5133 
5134   MarkRefsIntoAndScanClosure
5135     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5136              &_markStack, this,
5137              false /* should_yield */, false /* not precleaning */);
5138   MarkFromDirtyCardsClosure
5139     markFromDirtyCardsClosure(this, _span,
5140                               NULL,  // space is set further below
5141                               &_markBitMap, &_markStack, &mrias_cl);
5142   {
5143     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5144     // Iterate over the dirty cards, setting the corresponding bits in the
5145     // mod union table.
5146     {
5147       ModUnionClosure modUnionClosure(&_modUnionTable);
5148       _ct->ct_bs()->dirty_card_iterate(
5149                       _cmsGen->used_region(),
5150                       &modUnionClosure);
5151     }
5152     // Having transferred these marks into the modUnionTable, we just need
5153     // to rescan the marked objects on the dirty cards in the modUnionTable.
5154     // The initial marking may have been done during an asynchronous
5155     // collection so there may be dirty bits in the mod-union table.
5156     const int alignment =
5157       CardTableModRefBS::card_size * BitsPerWord;
5158     {
5159       // ... First handle dirty cards in CMS gen
5160       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5161       MemRegion ur = _cmsGen->used_region();
5162       HeapWord* lb = ur.start();
5163       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5164       MemRegion cms_span(lb, ub);
5165       _modUnionTable.dirty_range_iterate_clear(cms_span,
5166                                                &markFromDirtyCardsClosure);
5167       verify_work_stacks_empty();
5168       if (PrintCMSStatistics != 0) {
5169         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5170           markFromDirtyCardsClosure.num_dirty_cards());
5171       }
5172     }
5173   }
5174   if (VerifyDuringGC &&
5175       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5176     HandleMark hm;  // Discard invalid handles created during verification
5177     Universe::verify();
5178   }
5179   {
5180     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5181 
5182     verify_work_stacks_empty();
5183 
5184     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5185     StrongRootsScope srs(1);
5186 
5187     gch->gen_process_roots(&srs,
5188                            GenCollectedHeap::OldGen,
5189                            true,  // younger gens as roots
5190                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5191                            should_unload_classes(),
5192                            &mrias_cl,
5193                            NULL,
5194                            NULL); // The dirty klasses will be handled below
5195 
5196     assert(should_unload_classes()
5197            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5198            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5199   }
5200 
5201   {
5202     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5203 
5204     verify_work_stacks_empty();
5205 
5206     // Scan all class loader data objects that might have been introduced
5207     // during concurrent marking.
5208     ResourceMark rm;
5209     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5210     for (int i = 0; i < array->length(); i++) {
5211       mrias_cl.do_class_loader_data(array->at(i));
5212     }
5213 
5214     // We don't need to keep track of new CLDs anymore.
5215     ClassLoaderDataGraph::remember_new_clds(false);
5216 
5217     verify_work_stacks_empty();
5218   }
5219 
5220   {
5221     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5222 
5223     verify_work_stacks_empty();
5224 
5225     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5226     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5227 
5228     verify_work_stacks_empty();
5229   }
5230 
5231   // We might have added oops to ClassLoaderData::_handles during the
5232   // concurrent marking phase. These oops point to newly allocated objects
5233   // that are guaranteed to be kept alive. Either by the direct allocation
5234   // code, or when the young collector processes the roots. Hence,
5235   // we don't have to revisit the _handles block during the remark phase.
5236 
5237   verify_work_stacks_empty();
5238   // Restore evacuated mark words, if any, used for overflow list links
5239   if (!CMSOverflowEarlyRestoration) {
5240     restore_preserved_marks_if_any();
5241   }
5242   verify_overflow_empty();
5243 }
5244 
5245 ////////////////////////////////////////////////////////
5246 // Parallel Reference Processing Task Proxy Class
5247 ////////////////////////////////////////////////////////
5248 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5249   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5250   CMSCollector*          _collector;
5251   CMSBitMap*             _mark_bit_map;
5252   const MemRegion        _span;
5253   ProcessTask&           _task;
5254 
5255 public:
5256   CMSRefProcTaskProxy(ProcessTask&     task,
5257                       CMSCollector*    collector,
5258                       const MemRegion& span,
5259                       CMSBitMap*       mark_bit_map,
5260                       AbstractWorkGang* workers,
5261                       OopTaskQueueSet* task_queues):
5262     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5263       task_queues,
5264       workers->active_workers()),
5265     _task(task),
5266     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5267   {
5268     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5269            "Inconsistency in _span");
5270   }
5271 
5272   OopTaskQueueSet* task_queues() { return queues(); }
5273 
5274   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5275 
5276   void do_work_steal(int i,
5277                      CMSParDrainMarkingStackClosure* drain,
5278                      CMSParKeepAliveClosure* keep_alive,
5279                      int* seed);
5280 
5281   virtual void work(uint worker_id);
5282 };
5283 
5284 void CMSRefProcTaskProxy::work(uint worker_id) {
5285   ResourceMark rm;
5286   HandleMark hm;
5287   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5288   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5289                                         _mark_bit_map,
5290                                         work_queue(worker_id));
5291   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5292                                                  _mark_bit_map,
5293                                                  work_queue(worker_id));
5294   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5295   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5296   if (_task.marks_oops_alive()) {
5297     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5298                   _collector->hash_seed(worker_id));
5299   }
5300   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5301   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5302 }
5303 
5304 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5305   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5306   EnqueueTask& _task;
5307 
5308 public:
5309   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5310     : AbstractGangTask("Enqueue reference objects in parallel"),
5311       _task(task)
5312   { }
5313 
5314   virtual void work(uint worker_id)
5315   {
5316     _task.work(worker_id);
5317   }
5318 };
5319 
5320 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5321   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5322    _span(span),
5323    _bit_map(bit_map),
5324    _work_queue(work_queue),
5325    _mark_and_push(collector, span, bit_map, work_queue),
5326    _low_water_mark(MIN2((work_queue->max_elems()/4),
5327                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5328 { }
5329 
5330 // . see if we can share work_queues with ParNew? XXX
5331 void CMSRefProcTaskProxy::do_work_steal(int i,
5332   CMSParDrainMarkingStackClosure* drain,
5333   CMSParKeepAliveClosure* keep_alive,
5334   int* seed) {
5335   OopTaskQueue* work_q = work_queue(i);
5336   NOT_PRODUCT(int num_steals = 0;)
5337   oop obj_to_scan;
5338 
5339   while (true) {
5340     // Completely finish any left over work from (an) earlier round(s)
5341     drain->trim_queue(0);
5342     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5343                                          (size_t)ParGCDesiredObjsFromOverflowList);
5344     // Now check if there's any work in the overflow list
5345     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5346     // only affects the number of attempts made to get work from the
5347     // overflow list and does not affect the number of workers.  Just
5348     // pass ParallelGCThreads so this behavior is unchanged.
5349     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5350                                                 work_q,
5351                                                 ParallelGCThreads)) {
5352       // Found something in global overflow list;
5353       // not yet ready to go stealing work from others.
5354       // We'd like to assert(work_q->size() != 0, ...)
5355       // because we just took work from the overflow list,
5356       // but of course we can't, since all of that might have
5357       // been already stolen from us.
5358       continue;
5359     }
5360     // Verify that we have no work before we resort to stealing
5361     assert(work_q->size() == 0, "Have work, shouldn't steal");
5362     // Try to steal from other queues that have work
5363     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5364       NOT_PRODUCT(num_steals++;)
5365       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5366       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5367       // Do scanning work
5368       obj_to_scan->oop_iterate(keep_alive);
5369       // Loop around, finish this work, and try to steal some more
5370     } else if (terminator()->offer_termination()) {
5371       break;  // nirvana from the infinite cycle
5372     }
5373   }
5374   NOT_PRODUCT(
5375     if (PrintCMSStatistics != 0) {
5376       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5377     }
5378   )
5379 }
5380 
5381 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5382 {
5383   GenCollectedHeap* gch = GenCollectedHeap::heap();
5384   FlexibleWorkGang* workers = gch->workers();
5385   assert(workers != NULL, "Need parallel worker threads.");
5386   CMSRefProcTaskProxy rp_task(task, &_collector,
5387                               _collector.ref_processor()->span(),
5388                               _collector.markBitMap(),
5389                               workers, _collector.task_queues());
5390   workers->run_task(&rp_task);
5391 }
5392 
5393 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5394 {
5395 
5396   GenCollectedHeap* gch = GenCollectedHeap::heap();
5397   FlexibleWorkGang* workers = gch->workers();
5398   assert(workers != NULL, "Need parallel worker threads.");
5399   CMSRefEnqueueTaskProxy enq_task(task);
5400   workers->run_task(&enq_task);
5401 }
5402 
5403 void CMSCollector::refProcessingWork() {
5404   ResourceMark rm;
5405   HandleMark   hm;
5406 
5407   ReferenceProcessor* rp = ref_processor();
5408   assert(rp->span().equals(_span), "Spans should be equal");
5409   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5410   // Process weak references.
5411   rp->setup_policy(false);
5412   verify_work_stacks_empty();
5413 
5414   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5415                                           &_markStack, false /* !preclean */);
5416   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5417                                 _span, &_markBitMap, &_markStack,
5418                                 &cmsKeepAliveClosure, false /* !preclean */);
5419   {
5420     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5421 
5422     ReferenceProcessorStats stats;
5423     if (rp->processing_is_mt()) {
5424       // Set the degree of MT here.  If the discovery is done MT, there
5425       // may have been a different number of threads doing the discovery
5426       // and a different number of discovered lists may have Ref objects.
5427       // That is OK as long as the Reference lists are balanced (see
5428       // balance_all_queues() and balance_queues()).
5429       GenCollectedHeap* gch = GenCollectedHeap::heap();
5430       uint active_workers = ParallelGCThreads;
5431       FlexibleWorkGang* workers = gch->workers();
5432       if (workers != NULL) {
5433         active_workers = workers->active_workers();
5434         // The expectation is that active_workers will have already
5435         // been set to a reasonable value.  If it has not been set,
5436         // investigate.
5437         assert(active_workers > 0, "Should have been set during scavenge");
5438       }
5439       rp->set_active_mt_degree(active_workers);
5440       CMSRefProcTaskExecutor task_executor(*this);
5441       stats = rp->process_discovered_references(&_is_alive_closure,
5442                                         &cmsKeepAliveClosure,
5443                                         &cmsDrainMarkingStackClosure,
5444                                         &task_executor,
5445                                         _gc_timer_cm,
5446                                         _gc_tracer_cm->gc_id());
5447     } else {
5448       stats = rp->process_discovered_references(&_is_alive_closure,
5449                                         &cmsKeepAliveClosure,
5450                                         &cmsDrainMarkingStackClosure,
5451                                         NULL,
5452                                         _gc_timer_cm,
5453                                         _gc_tracer_cm->gc_id());
5454     }
5455     _gc_tracer_cm->report_gc_reference_stats(stats);
5456 
5457   }
5458 
5459   // This is the point where the entire marking should have completed.
5460   verify_work_stacks_empty();
5461 
5462   if (should_unload_classes()) {
5463     {
5464       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5465 
5466       // Unload classes and purge the SystemDictionary.
5467       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5468 
5469       // Unload nmethods.
5470       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5471 
5472       // Prune dead klasses from subklass/sibling/implementor lists.
5473       Klass::clean_weak_klass_links(&_is_alive_closure);
5474     }
5475 
5476     {
5477       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5478       // Clean up unreferenced symbols in symbol table.
5479       SymbolTable::unlink();
5480     }
5481 
5482     {
5483       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5484       // Delete entries for dead interned strings.
5485       StringTable::unlink(&_is_alive_closure);
5486     }
5487   }
5488 
5489 
5490   // Restore any preserved marks as a result of mark stack or
5491   // work queue overflow
5492   restore_preserved_marks_if_any();  // done single-threaded for now
5493 
5494   rp->set_enqueuing_is_done(true);
5495   if (rp->processing_is_mt()) {
5496     rp->balance_all_queues();
5497     CMSRefProcTaskExecutor task_executor(*this);
5498     rp->enqueue_discovered_references(&task_executor);
5499   } else {
5500     rp->enqueue_discovered_references(NULL);
5501   }
5502   rp->verify_no_references_recorded();
5503   assert(!rp->discovery_enabled(), "should have been disabled");
5504 }
5505 
5506 #ifndef PRODUCT
5507 void CMSCollector::check_correct_thread_executing() {
5508   Thread* t = Thread::current();
5509   // Only the VM thread or the CMS thread should be here.
5510   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5511          "Unexpected thread type");
5512   // If this is the vm thread, the foreground process
5513   // should not be waiting.  Note that _foregroundGCIsActive is
5514   // true while the foreground collector is waiting.
5515   if (_foregroundGCShouldWait) {
5516     // We cannot be the VM thread
5517     assert(t->is_ConcurrentGC_thread(),
5518            "Should be CMS thread");
5519   } else {
5520     // We can be the CMS thread only if we are in a stop-world
5521     // phase of CMS collection.
5522     if (t->is_ConcurrentGC_thread()) {
5523       assert(_collectorState == InitialMarking ||
5524              _collectorState == FinalMarking,
5525              "Should be a stop-world phase");
5526       // The CMS thread should be holding the CMS_token.
5527       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5528              "Potential interference with concurrently "
5529              "executing VM thread");
5530     }
5531   }
5532 }
5533 #endif
5534 
5535 void CMSCollector::sweep() {
5536   assert(_collectorState == Sweeping, "just checking");
5537   check_correct_thread_executing();
5538   verify_work_stacks_empty();
5539   verify_overflow_empty();
5540   increment_sweep_count();
5541   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5542 
5543   _inter_sweep_timer.stop();
5544   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5545 
5546   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5547   _intra_sweep_timer.reset();
5548   _intra_sweep_timer.start();
5549   {
5550     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5551     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5552     // First sweep the old gen
5553     {
5554       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5555                                bitMapLock());
5556       sweepWork(_cmsGen);
5557     }
5558 
5559     // Update Universe::_heap_*_at_gc figures.
5560     // We need all the free list locks to make the abstract state
5561     // transition from Sweeping to Resetting. See detailed note
5562     // further below.
5563     {
5564       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5565       // Update heap occupancy information which is used as
5566       // input to soft ref clearing policy at the next gc.
5567       Universe::update_heap_info_at_gc();
5568       _collectorState = Resizing;
5569     }
5570   }
5571   verify_work_stacks_empty();
5572   verify_overflow_empty();
5573 
5574   if (should_unload_classes()) {
5575     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5576     // requires that the virtual spaces are stable and not deleted.
5577     ClassLoaderDataGraph::set_should_purge(true);
5578   }
5579 
5580   _intra_sweep_timer.stop();
5581   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5582 
5583   _inter_sweep_timer.reset();
5584   _inter_sweep_timer.start();
5585 
5586   // We need to use a monotonically non-decreasing time in ms
5587   // or we will see time-warp warnings and os::javaTimeMillis()
5588   // does not guarantee monotonicity.
5589   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5590   update_time_of_last_gc(now);
5591 
5592   // NOTE on abstract state transitions:
5593   // Mutators allocate-live and/or mark the mod-union table dirty
5594   // based on the state of the collection.  The former is done in
5595   // the interval [Marking, Sweeping] and the latter in the interval
5596   // [Marking, Sweeping).  Thus the transitions into the Marking state
5597   // and out of the Sweeping state must be synchronously visible
5598   // globally to the mutators.
5599   // The transition into the Marking state happens with the world
5600   // stopped so the mutators will globally see it.  Sweeping is
5601   // done asynchronously by the background collector so the transition
5602   // from the Sweeping state to the Resizing state must be done
5603   // under the freelistLock (as is the check for whether to
5604   // allocate-live and whether to dirty the mod-union table).
5605   assert(_collectorState == Resizing, "Change of collector state to"
5606     " Resizing must be done under the freelistLocks (plural)");
5607 
5608   // Now that sweeping has been completed, we clear
5609   // the incremental_collection_failed flag,
5610   // thus inviting a younger gen collection to promote into
5611   // this generation. If such a promotion may still fail,
5612   // the flag will be set again when a young collection is
5613   // attempted.
5614   GenCollectedHeap* gch = GenCollectedHeap::heap();
5615   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5616   gch->update_full_collections_completed(_collection_count_start);
5617 }
5618 
5619 // FIX ME!!! Looks like this belongs in CFLSpace, with
5620 // CMSGen merely delegating to it.
5621 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5622   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5623   HeapWord*  minAddr        = _cmsSpace->bottom();
5624   HeapWord*  largestAddr    =
5625     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5626   if (largestAddr == NULL) {
5627     // The dictionary appears to be empty.  In this case
5628     // try to coalesce at the end of the heap.
5629     largestAddr = _cmsSpace->end();
5630   }
5631   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5632   size_t nearLargestOffset =
5633     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5634   if (PrintFLSStatistics != 0) {
5635     gclog_or_tty->print_cr(
5636       "CMS: Large Block: " PTR_FORMAT ";"
5637       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5638       p2i(largestAddr),
5639       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5640   }
5641   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5642 }
5643 
5644 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5645   return addr >= _cmsSpace->nearLargestChunk();
5646 }
5647 
5648 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5649   return _cmsSpace->find_chunk_at_end();
5650 }
5651 
5652 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5653                                                     bool full) {
5654   // If the young generation has been collected, gather any statistics
5655   // that are of interest at this point.
5656   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5657   if (!full && current_is_young) {
5658     // Gather statistics on the young generation collection.
5659     collector()->stats().record_gc0_end(used());
5660   }
5661 }
5662 
5663 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5664   // We iterate over the space(s) underlying this generation,
5665   // checking the mark bit map to see if the bits corresponding
5666   // to specific blocks are marked or not. Blocks that are
5667   // marked are live and are not swept up. All remaining blocks
5668   // are swept up, with coalescing on-the-fly as we sweep up
5669   // contiguous free and/or garbage blocks:
5670   // We need to ensure that the sweeper synchronizes with allocators
5671   // and stop-the-world collectors. In particular, the following
5672   // locks are used:
5673   // . CMS token: if this is held, a stop the world collection cannot occur
5674   // . freelistLock: if this is held no allocation can occur from this
5675   //                 generation by another thread
5676   // . bitMapLock: if this is held, no other thread can access or update
5677   //
5678 
5679   // Note that we need to hold the freelistLock if we use
5680   // block iterate below; else the iterator might go awry if
5681   // a mutator (or promotion) causes block contents to change
5682   // (for instance if the allocator divvies up a block).
5683   // If we hold the free list lock, for all practical purposes
5684   // young generation GC's can't occur (they'll usually need to
5685   // promote), so we might as well prevent all young generation
5686   // GC's while we do a sweeping step. For the same reason, we might
5687   // as well take the bit map lock for the entire duration
5688 
5689   // check that we hold the requisite locks
5690   assert(have_cms_token(), "Should hold cms token");
5691   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5692   assert_lock_strong(gen->freelistLock());
5693   assert_lock_strong(bitMapLock());
5694 
5695   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5696   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5697   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5698                                       _inter_sweep_estimate.padded_average(),
5699                                       _intra_sweep_estimate.padded_average());
5700   gen->setNearLargestChunk();
5701 
5702   {
5703     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5704     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5705     // We need to free-up/coalesce garbage/blocks from a
5706     // co-terminal free run. This is done in the SweepClosure
5707     // destructor; so, do not remove this scope, else the
5708     // end-of-sweep-census below will be off by a little bit.
5709   }
5710   gen->cmsSpace()->sweep_completed();
5711   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5712   if (should_unload_classes()) {                // unloaded classes this cycle,
5713     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5714   } else {                                      // did not unload classes,
5715     _concurrent_cycles_since_last_unload++;     // ... increment count
5716   }
5717 }
5718 
5719 // Reset CMS data structures (for now just the marking bit map)
5720 // preparatory for the next cycle.
5721 void CMSCollector::reset(bool concurrent) {
5722   if (concurrent) {
5723     CMSTokenSyncWithLocks ts(true, bitMapLock());
5724 
5725     // If the state is not "Resetting", the foreground  thread
5726     // has done a collection and the resetting.
5727     if (_collectorState != Resetting) {
5728       assert(_collectorState == Idling, "The state should only change"
5729         " because the foreground collector has finished the collection");
5730       return;
5731     }
5732 
5733     // Clear the mark bitmap (no grey objects to start with)
5734     // for the next cycle.
5735     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5736     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5737 
5738     HeapWord* curAddr = _markBitMap.startWord();
5739     while (curAddr < _markBitMap.endWord()) {
5740       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5741       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5742       _markBitMap.clear_large_range(chunk);
5743       if (ConcurrentMarkSweepThread::should_yield() &&
5744           !foregroundGCIsActive() &&
5745           CMSYield) {
5746         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5747                "CMS thread should hold CMS token");
5748         assert_lock_strong(bitMapLock());
5749         bitMapLock()->unlock();
5750         ConcurrentMarkSweepThread::desynchronize(true);
5751         stopTimer();
5752         if (PrintCMSStatistics != 0) {
5753           incrementYields();
5754         }
5755 
5756         // See the comment in coordinator_yield()
5757         for (unsigned i = 0; i < CMSYieldSleepCount &&
5758                          ConcurrentMarkSweepThread::should_yield() &&
5759                          !CMSCollector::foregroundGCIsActive(); ++i) {
5760           os::sleep(Thread::current(), 1, false);
5761         }
5762 
5763         ConcurrentMarkSweepThread::synchronize(true);
5764         bitMapLock()->lock_without_safepoint_check();
5765         startTimer();
5766       }
5767       curAddr = chunk.end();
5768     }
5769     // A successful mostly concurrent collection has been done.
5770     // Because only the full (i.e., concurrent mode failure) collections
5771     // are being measured for gc overhead limits, clean the "near" flag
5772     // and count.
5773     size_policy()->reset_gc_overhead_limit_count();
5774     _collectorState = Idling;
5775   } else {
5776     // already have the lock
5777     assert(_collectorState == Resetting, "just checking");
5778     assert_lock_strong(bitMapLock());
5779     _markBitMap.clear_all();
5780     _collectorState = Idling;
5781   }
5782 
5783   register_gc_end();
5784 }
5785 
5786 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5787   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5788   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5789   TraceCollectorStats tcs(counters());
5790 
5791   switch (op) {
5792     case CMS_op_checkpointRootsInitial: {
5793       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5794       checkpointRootsInitial();
5795       if (PrintGC) {
5796         _cmsGen->printOccupancy("initial-mark");
5797       }
5798       break;
5799     }
5800     case CMS_op_checkpointRootsFinal: {
5801       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5802       checkpointRootsFinal();
5803       if (PrintGC) {
5804         _cmsGen->printOccupancy("remark");
5805       }
5806       break;
5807     }
5808     default:
5809       fatal("No such CMS_op");
5810   }
5811 }
5812 
5813 #ifndef PRODUCT
5814 size_t const CMSCollector::skip_header_HeapWords() {
5815   return FreeChunk::header_size();
5816 }
5817 
5818 // Try and collect here conditions that should hold when
5819 // CMS thread is exiting. The idea is that the foreground GC
5820 // thread should not be blocked if it wants to terminate
5821 // the CMS thread and yet continue to run the VM for a while
5822 // after that.
5823 void CMSCollector::verify_ok_to_terminate() const {
5824   assert(Thread::current()->is_ConcurrentGC_thread(),
5825          "should be called by CMS thread");
5826   assert(!_foregroundGCShouldWait, "should be false");
5827   // We could check here that all the various low-level locks
5828   // are not held by the CMS thread, but that is overkill; see
5829   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5830   // is checked.
5831 }
5832 #endif
5833 
5834 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5835    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5836           "missing Printezis mark?");
5837   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5838   size_t size = pointer_delta(nextOneAddr + 1, addr);
5839   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5840          "alignment problem");
5841   assert(size >= 3, "Necessary for Printezis marks to work");
5842   return size;
5843 }
5844 
5845 // A variant of the above (block_size_using_printezis_bits()) except
5846 // that we return 0 if the P-bits are not yet set.
5847 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5848   if (_markBitMap.isMarked(addr + 1)) {
5849     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5850     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5851     size_t size = pointer_delta(nextOneAddr + 1, addr);
5852     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5853            "alignment problem");
5854     assert(size >= 3, "Necessary for Printezis marks to work");
5855     return size;
5856   }
5857   return 0;
5858 }
5859 
5860 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5861   size_t sz = 0;
5862   oop p = (oop)addr;
5863   if (p->klass_or_null() != NULL) {
5864     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5865   } else {
5866     sz = block_size_using_printezis_bits(addr);
5867   }
5868   assert(sz > 0, "size must be nonzero");
5869   HeapWord* next_block = addr + sz;
5870   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5871                                              CardTableModRefBS::card_size);
5872   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5873          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5874          "must be different cards");
5875   return next_card;
5876 }
5877 
5878 
5879 // CMS Bit Map Wrapper /////////////////////////////////////////
5880 
5881 // Construct a CMS bit map infrastructure, but don't create the
5882 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5883 // further below.
5884 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name,
5885                      bool allocate_for_entire_heap):
5886   _bm(),
5887   _shifter(shifter),
5888   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5889                                     Monitor::_safepoint_check_sometimes) : NULL),
5890   _allocate_for_entire_heap(allocate_for_entire_heap)
5891 {
5892   _bmStartWord = 0;
5893   _bmWordSize  = 0;
5894 }
5895 
5896 bool CMSBitMap::allocate(MemRegion mr) {
5897   _bmStartWord = mr.start();
5898   _bmWordSize  = mr.word_size();
5899   size_t reserved_size;
5900   MemRegion heap_mr = GenCollectedHeap::heap()->reserved_region();
5901   size_t heapWordSize = heap_mr.word_size();
5902   if (!_allocate_for_entire_heap) {
5903     reserved_size = ReservedSpace::allocation_align_size_up(
5904         (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1);
5905   } else {
5906     // Allocate a bit map memory large enough to cover the entire heap
5907     // (as opposed to the OG and PG only.)
5908     assert(CMSParallelFullGC && ShareCMSMarkBitMapWithParallelFullGC,
5909            "Otherwise this code must not reachable.");
5910     assert(_shifter == 0, "Valid only for the mark bit map, not the mod union table.");
5911     assert(heap_mr.contains(mr),
5912            "The give MR (OG and PG) must be part of the heap");
5913     reserved_size = ReservedSpace::allocation_align_size_up(
5914         (heapWordSize >> (_shifter + LogBitsPerByte)) + 1);
5915   }
5916   ReservedSpace brs(reserved_size);
5917   if (!brs.is_reserved()) {
5918     warning("CMS bit map allocation failure");
5919     return false;
5920   }
5921   // For now we'll just commit all of the bit map up front.
5922   // Later on we'll try to be more parsimonious with swap.
5923   if (!_virtual_space.initialize(brs, brs.size())) {
5924     warning("CMS bit map backing store failure");
5925     return false;
5926   }
5927   assert(_virtual_space.committed_size() == brs.size(),
5928          "didn't reserve backing store for all of CMS bit map?");
5929   if (!_allocate_for_entire_heap) {
5930     _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5931     assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5932            _bmWordSize, "inconsistency in bit map sizing");
5933   } else {
5934     // First, verify that there is no alignment issue between the
5935     // heap, the generation boundaries, and the bit map because each
5936     // word in the bit map covers BitsPerWord heap words.
5937     assert(CMSParallelFullGC && ShareCMSMarkBitMapWithParallelFullGC,
5938            "Otherwise this code must not reachable.");
5939     assert(_shifter == 0, "Valid only for the mark bit map, not the mod union table.");
5940     assert((((intptr_t) heap_mr.start()) % BitsPerWord) == 0,
5941            "Assume the heap base is aligned by BitsPerWord");
5942     assert((((intptr_t) _bmStartWord) % BitsPerWord) == 0,
5943            "Assume the yg-og boundary is aligned by BitsPerWord");
5944     assert(heapWordSize % BitsPerByte == 0,
5945            "heap_mr.word_size() should be aligned by BitsPerByte");
5946     assert(_bmWordSize % BitsPerByte == 0,
5947            "_bmWordSize should be aligned by BitsPerByte");
5948     // Second, let _bm point to the OG and PG portion of the allocated
5949     // memory.
5950     size_t payload_size = (_bmWordSize >> (_shifter + LogBitsPerByte));
5951     size_t total_size = (heapWordSize >> (_shifter + LogBitsPerByte));
5952     size_t non_payload_size = total_size - payload_size;
5953     _bm.set_map((BitMap::bm_word_t*)(_virtual_space.low() + non_payload_size));
5954     assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5955            heapWordSize, "inconsistency in bit map sizing");
5956   }
5957   _bm.set_size(_bmWordSize >> _shifter);
5958 
5959   // bm.clear(); // can we rely on getting zero'd memory? verify below
5960   assert(isAllClear(),
5961          "Expected zero'd memory from ReservedSpace constructor");
5962 #ifdef ASSERT
5963   if (CMSParallelFullGC && ShareCMSMarkBitMapWithParallelFullGC) {
5964     // The above isAllClear() checks only for the portion visible to
5965     // _bm (OG and PG). Check that the entire backing memory including
5966     // the YG portion is all zero.
5967     char* brs_base = brs.base();
5968     size_t brs_size = brs.size();
5969     for (size_t p = 0; p < brs_size; p++) {
5970       char* a = brs_base + p;
5971       assert(*a == 0, "The backing memory of the CMSBitMap must be all zero at init.");
5972     }
5973   }
5974 #endif
5975   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5976          "consistency check");
5977   return true;
5978 }
5979 
5980 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5981   HeapWord *next_addr, *end_addr, *last_addr;
5982   assert_locked();
5983   assert(covers(mr), "out-of-range error");
5984   // XXX assert that start and end are appropriately aligned
5985   for (next_addr = mr.start(), end_addr = mr.end();
5986        next_addr < end_addr; next_addr = last_addr) {
5987     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5988     last_addr = dirty_region.end();
5989     if (!dirty_region.is_empty()) {
5990       cl->do_MemRegion(dirty_region);
5991     } else {
5992       assert(last_addr == end_addr, "program logic");
5993       return;
5994     }
5995   }
5996 }
5997 
5998 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5999   _bm.print_on_error(st, prefix);
6000 }
6001 
6002 #ifndef PRODUCT
6003 void CMSBitMap::assert_locked() const {
6004   CMSLockVerifier::assert_locked(lock());
6005 }
6006 
6007 bool CMSBitMap::covers(MemRegion mr) const {
6008   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6009   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6010          "size inconsistency");
6011   return (mr.start() >= _bmStartWord) &&
6012          (mr.end()   <= endWord());
6013 }
6014 
6015 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6016     return (start >= _bmStartWord && (start + size) <= endWord());
6017 }
6018 
6019 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6020   // verify that there are no 1 bits in the interval [left, right)
6021   FalseBitMapClosure falseBitMapClosure;
6022   iterate(&falseBitMapClosure, left, right);
6023 }
6024 
6025 void CMSBitMap::region_invariant(MemRegion mr)
6026 {
6027   assert_locked();
6028   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6029   assert(!mr.is_empty(), "unexpected empty region");
6030   assert(covers(mr), "mr should be covered by bit map");
6031   // convert address range into offset range
6032   size_t start_ofs = heapWordToOffset(mr.start());
6033   // Make sure that end() is appropriately aligned
6034   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6035                         (1 << (_shifter+LogHeapWordSize))),
6036          "Misaligned mr.end()");
6037   size_t end_ofs   = heapWordToOffset(mr.end());
6038   assert(end_ofs > start_ofs, "Should mark at least one bit");
6039 }
6040 
6041 #endif
6042 
6043 bool CMSMarkStack::allocate(size_t size) {
6044   // allocate a stack of the requisite depth
6045   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6046                    size * sizeof(oop)));
6047   if (!rs.is_reserved()) {
6048     warning("CMSMarkStack allocation failure");
6049     return false;
6050   }
6051   if (!_virtual_space.initialize(rs, rs.size())) {
6052     warning("CMSMarkStack backing store failure");
6053     return false;
6054   }
6055   assert(_virtual_space.committed_size() == rs.size(),
6056          "didn't reserve backing store for all of CMS stack?");
6057   _base = (oop*)(_virtual_space.low());
6058   _index = 0;
6059   _capacity = size;
6060   NOT_PRODUCT(_max_depth = 0);
6061   return true;
6062 }
6063 
6064 // XXX FIX ME !!! In the MT case we come in here holding a
6065 // leaf lock. For printing we need to take a further lock
6066 // which has lower rank. We need to recalibrate the two
6067 // lock-ranks involved in order to be able to print the
6068 // messages below. (Or defer the printing to the caller.
6069 // For now we take the expedient path of just disabling the
6070 // messages for the problematic case.)
6071 void CMSMarkStack::expand() {
6072   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6073   if (_capacity == MarkStackSizeMax) {
6074     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6075       // We print a warning message only once per CMS cycle.
6076       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6077     }
6078     return;
6079   }
6080   // Double capacity if possible
6081   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6082   // Do not give up existing stack until we have managed to
6083   // get the double capacity that we desired.
6084   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6085                    new_capacity * sizeof(oop)));
6086   if (rs.is_reserved()) {
6087     // Release the backing store associated with old stack
6088     _virtual_space.release();
6089     // Reinitialize virtual space for new stack
6090     if (!_virtual_space.initialize(rs, rs.size())) {
6091       fatal("Not enough swap for expanded marking stack");
6092     }
6093     _base = (oop*)(_virtual_space.low());
6094     _index = 0;
6095     _capacity = new_capacity;
6096   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6097     // Failed to double capacity, continue;
6098     // we print a detail message only once per CMS cycle.
6099     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6100             SIZE_FORMAT "K",
6101             _capacity / K, new_capacity / K);
6102   }
6103 }
6104 
6105 
6106 // Closures
6107 // XXX: there seems to be a lot of code  duplication here;
6108 // should refactor and consolidate common code.
6109 
6110 // This closure is used to mark refs into the CMS generation in
6111 // the CMS bit map. Called at the first checkpoint. This closure
6112 // assumes that we do not need to re-mark dirty cards; if the CMS
6113 // generation on which this is used is not an oldest
6114 // generation then this will lose younger_gen cards!
6115 
6116 MarkRefsIntoClosure::MarkRefsIntoClosure(
6117   MemRegion span, CMSBitMap* bitMap):
6118     _span(span),
6119     _bitMap(bitMap)
6120 {
6121     assert(_ref_processor == NULL, "deliberately left NULL");
6122     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6123 }
6124 
6125 void MarkRefsIntoClosure::do_oop(oop obj) {
6126   // if p points into _span, then mark corresponding bit in _markBitMap
6127   assert(obj->is_oop(), "expected an oop");
6128   HeapWord* addr = (HeapWord*)obj;
6129   if (_span.contains(addr)) {
6130     // this should be made more efficient
6131     _bitMap->mark(addr);
6132   }
6133 }
6134 
6135 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6136 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6137 
6138 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6139   MemRegion span, CMSBitMap* bitMap):
6140     _span(span),
6141     _bitMap(bitMap)
6142 {
6143     assert(_ref_processor == NULL, "deliberately left NULL");
6144     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6145 }
6146 
6147 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6148   // if p points into _span, then mark corresponding bit in _markBitMap
6149   assert(obj->is_oop(), "expected an oop");
6150   HeapWord* addr = (HeapWord*)obj;
6151   if (_span.contains(addr)) {
6152     // this should be made more efficient
6153     _bitMap->par_mark(addr);
6154   }
6155 }
6156 
6157 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6158 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6159 
6160 // A variant of the above, used for CMS marking verification.
6161 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6162   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6163     _span(span),
6164     _verification_bm(verification_bm),
6165     _cms_bm(cms_bm)
6166 {
6167     assert(_ref_processor == NULL, "deliberately left NULL");
6168     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6169 }
6170 
6171 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6172   // if p points into _span, then mark corresponding bit in _markBitMap
6173   assert(obj->is_oop(), "expected an oop");
6174   HeapWord* addr = (HeapWord*)obj;
6175   if (_span.contains(addr)) {
6176     _verification_bm->mark(addr);
6177     if (!_cms_bm->isMarked(addr)) {
6178       oop(addr)->print();
6179       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6180       fatal("... aborting");
6181     }
6182   }
6183 }
6184 
6185 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6186 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6187 
6188 //////////////////////////////////////////////////
6189 // MarkRefsIntoAndScanClosure
6190 //////////////////////////////////////////////////
6191 
6192 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6193                                                        ReferenceProcessor* rp,
6194                                                        CMSBitMap* bit_map,
6195                                                        CMSBitMap* mod_union_table,
6196                                                        CMSMarkStack*  mark_stack,
6197                                                        CMSCollector* collector,
6198                                                        bool should_yield,
6199                                                        bool concurrent_precleaning):
6200   _collector(collector),
6201   _span(span),
6202   _bit_map(bit_map),
6203   _mark_stack(mark_stack),
6204   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6205                       mark_stack, concurrent_precleaning),
6206   _yield(should_yield),
6207   _concurrent_precleaning(concurrent_precleaning),
6208   _freelistLock(NULL)
6209 {
6210   _ref_processor = rp;
6211   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6212 }
6213 
6214 // This closure is used to mark refs into the CMS generation at the
6215 // second (final) checkpoint, and to scan and transitively follow
6216 // the unmarked oops. It is also used during the concurrent precleaning
6217 // phase while scanning objects on dirty cards in the CMS generation.
6218 // The marks are made in the marking bit map and the marking stack is
6219 // used for keeping the (newly) grey objects during the scan.
6220 // The parallel version (Par_...) appears further below.
6221 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6222   if (obj != NULL) {
6223     assert(obj->is_oop(), "expected an oop");
6224     HeapWord* addr = (HeapWord*)obj;
6225     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6226     assert(_collector->overflow_list_is_empty(),
6227            "overflow list should be empty");
6228     if (_span.contains(addr) &&
6229         !_bit_map->isMarked(addr)) {
6230       // mark bit map (object is now grey)
6231       _bit_map->mark(addr);
6232       // push on marking stack (stack should be empty), and drain the
6233       // stack by applying this closure to the oops in the oops popped
6234       // from the stack (i.e. blacken the grey objects)
6235       bool res = _mark_stack->push(obj);
6236       assert(res, "Should have space to push on empty stack");
6237       do {
6238         oop new_oop = _mark_stack->pop();
6239         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6240         assert(_bit_map->isMarked((HeapWord*)new_oop),
6241                "only grey objects on this stack");
6242         // iterate over the oops in this oop, marking and pushing
6243         // the ones in CMS heap (i.e. in _span).
6244         new_oop->oop_iterate(&_pushAndMarkClosure);
6245         // check if it's time to yield
6246         do_yield_check();
6247       } while (!_mark_stack->isEmpty() ||
6248                (!_concurrent_precleaning && take_from_overflow_list()));
6249         // if marking stack is empty, and we are not doing this
6250         // during precleaning, then check the overflow list
6251     }
6252     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6253     assert(_collector->overflow_list_is_empty(),
6254            "overflow list was drained above");
6255     // We could restore evacuated mark words, if any, used for
6256     // overflow list links here because the overflow list is
6257     // provably empty here. That would reduce the maximum
6258     // size requirements for preserved_{oop,mark}_stack.
6259     // But we'll just postpone it until we are all done
6260     // so we can just stream through.
6261     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6262       _collector->restore_preserved_marks_if_any();
6263       assert(_collector->no_preserved_marks(), "No preserved marks");
6264     }
6265     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6266            "All preserved marks should have been restored above");
6267   }
6268 }
6269 
6270 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6271 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6272 
6273 void MarkRefsIntoAndScanClosure::do_yield_work() {
6274   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6275          "CMS thread should hold CMS token");
6276   assert_lock_strong(_freelistLock);
6277   assert_lock_strong(_bit_map->lock());
6278   // relinquish the free_list_lock and bitMaplock()
6279   _bit_map->lock()->unlock();
6280   _freelistLock->unlock();
6281   ConcurrentMarkSweepThread::desynchronize(true);
6282   _collector->stopTimer();
6283   if (PrintCMSStatistics != 0) {
6284     _collector->incrementYields();
6285   }
6286 
6287   // See the comment in coordinator_yield()
6288   for (unsigned i = 0;
6289        i < CMSYieldSleepCount &&
6290        ConcurrentMarkSweepThread::should_yield() &&
6291        !CMSCollector::foregroundGCIsActive();
6292        ++i) {
6293     os::sleep(Thread::current(), 1, false);
6294   }
6295 
6296   ConcurrentMarkSweepThread::synchronize(true);
6297   _freelistLock->lock_without_safepoint_check();
6298   _bit_map->lock()->lock_without_safepoint_check();
6299   _collector->startTimer();
6300 }
6301 
6302 ///////////////////////////////////////////////////////////
6303 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6304 //                                 MarkRefsIntoAndScanClosure
6305 ///////////////////////////////////////////////////////////
6306 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6307   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6308   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6309   _span(span),
6310   _bit_map(bit_map),
6311   _work_queue(work_queue),
6312   _low_water_mark(MIN2((work_queue->max_elems()/4),
6313                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6314   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6315 {
6316   _ref_processor = rp;
6317   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6318 }
6319 
6320 // This closure is used to mark refs into the CMS generation at the
6321 // second (final) checkpoint, and to scan and transitively follow
6322 // the unmarked oops. The marks are made in the marking bit map and
6323 // the work_queue is used for keeping the (newly) grey objects during
6324 // the scan phase whence they are also available for stealing by parallel
6325 // threads. Since the marking bit map is shared, updates are
6326 // synchronized (via CAS).
6327 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6328   if (obj != NULL) {
6329     // Ignore mark word because this could be an already marked oop
6330     // that may be chained at the end of the overflow list.
6331     assert(obj->is_oop(true), "expected an oop");
6332     HeapWord* addr = (HeapWord*)obj;
6333     if (_span.contains(addr) &&
6334         !_bit_map->isMarked(addr)) {
6335       // mark bit map (object will become grey):
6336       // It is possible for several threads to be
6337       // trying to "claim" this object concurrently;
6338       // the unique thread that succeeds in marking the
6339       // object first will do the subsequent push on
6340       // to the work queue (or overflow list).
6341       if (_bit_map->par_mark(addr)) {
6342         // push on work_queue (which may not be empty), and trim the
6343         // queue to an appropriate length by applying this closure to
6344         // the oops in the oops popped from the stack (i.e. blacken the
6345         // grey objects)
6346         bool res = _work_queue->push(obj);
6347         assert(res, "Low water mark should be less than capacity?");
6348         trim_queue(_low_water_mark);
6349       } // Else, another thread claimed the object
6350     }
6351   }
6352 }
6353 
6354 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6355 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6356 
6357 // This closure is used to rescan the marked objects on the dirty cards
6358 // in the mod union table and the card table proper.
6359 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6360   oop p, MemRegion mr) {
6361 
6362   size_t size = 0;
6363   HeapWord* addr = (HeapWord*)p;
6364   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6365   assert(_span.contains(addr), "we are scanning the CMS generation");
6366   // check if it's time to yield
6367   if (do_yield_check()) {
6368     // We yielded for some foreground stop-world work,
6369     // and we have been asked to abort this ongoing preclean cycle.
6370     return 0;
6371   }
6372   if (_bitMap->isMarked(addr)) {
6373     // it's marked; is it potentially uninitialized?
6374     if (p->klass_or_null() != NULL) {
6375         // an initialized object; ignore mark word in verification below
6376         // since we are running concurrent with mutators
6377         assert(p->is_oop(true), "should be an oop");
6378         if (p->is_objArray()) {
6379           // objArrays are precisely marked; restrict scanning
6380           // to dirty cards only.
6381           size = CompactibleFreeListSpace::adjustObjectSize(
6382                    p->oop_iterate(_scanningClosure, mr));
6383         } else {
6384           // A non-array may have been imprecisely marked; we need
6385           // to scan object in its entirety.
6386           size = CompactibleFreeListSpace::adjustObjectSize(
6387                    p->oop_iterate(_scanningClosure));
6388         }
6389         #ifdef ASSERT
6390           size_t direct_size =
6391             CompactibleFreeListSpace::adjustObjectSize(p->size());
6392           assert(size == direct_size, "Inconsistency in size");
6393           assert(size >= 3, "Necessary for Printezis marks to work");
6394           if (!_bitMap->isMarked(addr+1)) {
6395             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6396           } else {
6397             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6398             assert(_bitMap->isMarked(addr+size-1),
6399                    "inconsistent Printezis mark");
6400           }
6401         #endif // ASSERT
6402     } else {
6403       // An uninitialized object.
6404       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6405       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6406       size = pointer_delta(nextOneAddr + 1, addr);
6407       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6408              "alignment problem");
6409       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6410       // will dirty the card when the klass pointer is installed in the
6411       // object (signaling the completion of initialization).
6412     }
6413   } else {
6414     // Either a not yet marked object or an uninitialized object
6415     if (p->klass_or_null() == NULL) {
6416       // An uninitialized object, skip to the next card, since
6417       // we may not be able to read its P-bits yet.
6418       assert(size == 0, "Initial value");
6419     } else {
6420       // An object not (yet) reached by marking: we merely need to
6421       // compute its size so as to go look at the next block.
6422       assert(p->is_oop(true), "should be an oop");
6423       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6424     }
6425   }
6426   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6427   return size;
6428 }
6429 
6430 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6431   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6432          "CMS thread should hold CMS token");
6433   assert_lock_strong(_freelistLock);
6434   assert_lock_strong(_bitMap->lock());
6435   // relinquish the free_list_lock and bitMaplock()
6436   _bitMap->lock()->unlock();
6437   _freelistLock->unlock();
6438   ConcurrentMarkSweepThread::desynchronize(true);
6439   _collector->stopTimer();
6440   if (PrintCMSStatistics != 0) {
6441     _collector->incrementYields();
6442   }
6443 
6444   // See the comment in coordinator_yield()
6445   for (unsigned i = 0; i < CMSYieldSleepCount &&
6446                    ConcurrentMarkSweepThread::should_yield() &&
6447                    !CMSCollector::foregroundGCIsActive(); ++i) {
6448     os::sleep(Thread::current(), 1, false);
6449   }
6450 
6451   ConcurrentMarkSweepThread::synchronize(true);
6452   _freelistLock->lock_without_safepoint_check();
6453   _bitMap->lock()->lock_without_safepoint_check();
6454   _collector->startTimer();
6455 }
6456 
6457 
6458 //////////////////////////////////////////////////////////////////
6459 // SurvivorSpacePrecleanClosure
6460 //////////////////////////////////////////////////////////////////
6461 // This (single-threaded) closure is used to preclean the oops in
6462 // the survivor spaces.
6463 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6464 
6465   HeapWord* addr = (HeapWord*)p;
6466   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6467   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6468   assert(p->klass_or_null() != NULL, "object should be initialized");
6469   // an initialized object; ignore mark word in verification below
6470   // since we are running concurrent with mutators
6471   assert(p->is_oop(true), "should be an oop");
6472   // Note that we do not yield while we iterate over
6473   // the interior oops of p, pushing the relevant ones
6474   // on our marking stack.
6475   size_t size = p->oop_iterate(_scanning_closure);
6476   do_yield_check();
6477   // Observe that below, we do not abandon the preclean
6478   // phase as soon as we should; rather we empty the
6479   // marking stack before returning. This is to satisfy
6480   // some existing assertions. In general, it may be a
6481   // good idea to abort immediately and complete the marking
6482   // from the grey objects at a later time.
6483   while (!_mark_stack->isEmpty()) {
6484     oop new_oop = _mark_stack->pop();
6485     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6486     assert(_bit_map->isMarked((HeapWord*)new_oop),
6487            "only grey objects on this stack");
6488     // iterate over the oops in this oop, marking and pushing
6489     // the ones in CMS heap (i.e. in _span).
6490     new_oop->oop_iterate(_scanning_closure);
6491     // check if it's time to yield
6492     do_yield_check();
6493   }
6494   unsigned int after_count =
6495     GenCollectedHeap::heap()->total_collections();
6496   bool abort = (_before_count != after_count) ||
6497                _collector->should_abort_preclean();
6498   return abort ? 0 : size;
6499 }
6500 
6501 void SurvivorSpacePrecleanClosure::do_yield_work() {
6502   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6503          "CMS thread should hold CMS token");
6504   assert_lock_strong(_bit_map->lock());
6505   // Relinquish the bit map lock
6506   _bit_map->lock()->unlock();
6507   ConcurrentMarkSweepThread::desynchronize(true);
6508   _collector->stopTimer();
6509   if (PrintCMSStatistics != 0) {
6510     _collector->incrementYields();
6511   }
6512 
6513   // See the comment in coordinator_yield()
6514   for (unsigned i = 0; i < CMSYieldSleepCount &&
6515                        ConcurrentMarkSweepThread::should_yield() &&
6516                        !CMSCollector::foregroundGCIsActive(); ++i) {
6517     os::sleep(Thread::current(), 1, false);
6518   }
6519 
6520   ConcurrentMarkSweepThread::synchronize(true);
6521   _bit_map->lock()->lock_without_safepoint_check();
6522   _collector->startTimer();
6523 }
6524 
6525 // This closure is used to rescan the marked objects on the dirty cards
6526 // in the mod union table and the card table proper. In the parallel
6527 // case, although the bitMap is shared, we do a single read so the
6528 // isMarked() query is "safe".
6529 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6530   // Ignore mark word because we are running concurrent with mutators
6531   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6532   HeapWord* addr = (HeapWord*)p;
6533   assert(_span.contains(addr), "we are scanning the CMS generation");
6534   bool is_obj_array = false;
6535   #ifdef ASSERT
6536     if (!_parallel) {
6537       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6538       assert(_collector->overflow_list_is_empty(),
6539              "overflow list should be empty");
6540 
6541     }
6542   #endif // ASSERT
6543   if (_bit_map->isMarked(addr)) {
6544     // Obj arrays are precisely marked, non-arrays are not;
6545     // so we scan objArrays precisely and non-arrays in their
6546     // entirety.
6547     if (p->is_objArray()) {
6548       is_obj_array = true;
6549       if (_parallel) {
6550         p->oop_iterate(_par_scan_closure, mr);
6551       } else {
6552         p->oop_iterate(_scan_closure, mr);
6553       }
6554     } else {
6555       if (_parallel) {
6556         p->oop_iterate(_par_scan_closure);
6557       } else {
6558         p->oop_iterate(_scan_closure);
6559       }
6560     }
6561   }
6562   #ifdef ASSERT
6563     if (!_parallel) {
6564       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6565       assert(_collector->overflow_list_is_empty(),
6566              "overflow list should be empty");
6567 
6568     }
6569   #endif // ASSERT
6570   return is_obj_array;
6571 }
6572 
6573 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6574                         MemRegion span,
6575                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6576                         bool should_yield, bool verifying):
6577   _collector(collector),
6578   _span(span),
6579   _bitMap(bitMap),
6580   _mut(&collector->_modUnionTable),
6581   _markStack(markStack),
6582   _yield(should_yield),
6583   _skipBits(0)
6584 {
6585   assert(_markStack->isEmpty(), "stack should be empty");
6586   _finger = _bitMap->startWord();
6587   _threshold = _finger;
6588   assert(_collector->_restart_addr == NULL, "Sanity check");
6589   assert(_span.contains(_finger), "Out of bounds _finger?");
6590   DEBUG_ONLY(_verifying = verifying;)
6591 }
6592 
6593 void MarkFromRootsClosure::reset(HeapWord* addr) {
6594   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6595   assert(_span.contains(addr), "Out of bounds _finger?");
6596   _finger = addr;
6597   _threshold = (HeapWord*)round_to(
6598                  (intptr_t)_finger, CardTableModRefBS::card_size);
6599 }
6600 
6601 // Should revisit to see if this should be restructured for
6602 // greater efficiency.
6603 bool MarkFromRootsClosure::do_bit(size_t offset) {
6604   if (_skipBits > 0) {
6605     _skipBits--;
6606     return true;
6607   }
6608   // convert offset into a HeapWord*
6609   HeapWord* addr = _bitMap->startWord() + offset;
6610   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6611          "address out of range");
6612   assert(_bitMap->isMarked(addr), "tautology");
6613   if (_bitMap->isMarked(addr+1)) {
6614     // this is an allocated but not yet initialized object
6615     assert(_skipBits == 0, "tautology");
6616     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6617     oop p = oop(addr);
6618     if (p->klass_or_null() == NULL) {
6619       DEBUG_ONLY(if (!_verifying) {)
6620         // We re-dirty the cards on which this object lies and increase
6621         // the _threshold so that we'll come back to scan this object
6622         // during the preclean or remark phase. (CMSCleanOnEnter)
6623         if (CMSCleanOnEnter) {
6624           size_t sz = _collector->block_size_using_printezis_bits(addr);
6625           HeapWord* end_card_addr   = (HeapWord*)round_to(
6626                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6627           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6628           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6629           // Bump _threshold to end_card_addr; note that
6630           // _threshold cannot possibly exceed end_card_addr, anyhow.
6631           // This prevents future clearing of the card as the scan proceeds
6632           // to the right.
6633           assert(_threshold <= end_card_addr,
6634                  "Because we are just scanning into this object");
6635           if (_threshold < end_card_addr) {
6636             _threshold = end_card_addr;
6637           }
6638           if (p->klass_or_null() != NULL) {
6639             // Redirty the range of cards...
6640             _mut->mark_range(redirty_range);
6641           } // ...else the setting of klass will dirty the card anyway.
6642         }
6643       DEBUG_ONLY(})
6644       return true;
6645     }
6646   }
6647   scanOopsInOop(addr);
6648   return true;
6649 }
6650 
6651 // We take a break if we've been at this for a while,
6652 // so as to avoid monopolizing the locks involved.
6653 void MarkFromRootsClosure::do_yield_work() {
6654   // First give up the locks, then yield, then re-lock
6655   // We should probably use a constructor/destructor idiom to
6656   // do this unlock/lock or modify the MutexUnlocker class to
6657   // serve our purpose. XXX
6658   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6659          "CMS thread should hold CMS token");
6660   assert_lock_strong(_bitMap->lock());
6661   _bitMap->lock()->unlock();
6662   ConcurrentMarkSweepThread::desynchronize(true);
6663   _collector->stopTimer();
6664   if (PrintCMSStatistics != 0) {
6665     _collector->incrementYields();
6666   }
6667 
6668   // See the comment in coordinator_yield()
6669   for (unsigned i = 0; i < CMSYieldSleepCount &&
6670                        ConcurrentMarkSweepThread::should_yield() &&
6671                        !CMSCollector::foregroundGCIsActive(); ++i) {
6672     os::sleep(Thread::current(), 1, false);
6673   }
6674 
6675   ConcurrentMarkSweepThread::synchronize(true);
6676   _bitMap->lock()->lock_without_safepoint_check();
6677   _collector->startTimer();
6678 }
6679 
6680 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6681   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6682   assert(_markStack->isEmpty(),
6683          "should drain stack to limit stack usage");
6684   // convert ptr to an oop preparatory to scanning
6685   oop obj = oop(ptr);
6686   // Ignore mark word in verification below, since we
6687   // may be running concurrent with mutators.
6688   assert(obj->is_oop(true), "should be an oop");
6689   assert(_finger <= ptr, "_finger runneth ahead");
6690   // advance the finger to right end of this object
6691   _finger = ptr + obj->size();
6692   assert(_finger > ptr, "we just incremented it above");
6693   // On large heaps, it may take us some time to get through
6694   // the marking phase. During
6695   // this time it's possible that a lot of mutations have
6696   // accumulated in the card table and the mod union table --
6697   // these mutation records are redundant until we have
6698   // actually traced into the corresponding card.
6699   // Here, we check whether advancing the finger would make
6700   // us cross into a new card, and if so clear corresponding
6701   // cards in the MUT (preclean them in the card-table in the
6702   // future).
6703 
6704   DEBUG_ONLY(if (!_verifying) {)
6705     // The clean-on-enter optimization is disabled by default,
6706     // until we fix 6178663.
6707     if (CMSCleanOnEnter && (_finger > _threshold)) {
6708       // [_threshold, _finger) represents the interval
6709       // of cards to be cleared  in MUT (or precleaned in card table).
6710       // The set of cards to be cleared is all those that overlap
6711       // with the interval [_threshold, _finger); note that
6712       // _threshold is always kept card-aligned but _finger isn't
6713       // always card-aligned.
6714       HeapWord* old_threshold = _threshold;
6715       assert(old_threshold == (HeapWord*)round_to(
6716               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6717              "_threshold should always be card-aligned");
6718       _threshold = (HeapWord*)round_to(
6719                      (intptr_t)_finger, CardTableModRefBS::card_size);
6720       MemRegion mr(old_threshold, _threshold);
6721       assert(!mr.is_empty(), "Control point invariant");
6722       assert(_span.contains(mr), "Should clear within span");
6723       _mut->clear_range(mr);
6724     }
6725   DEBUG_ONLY(})
6726   // Note: the finger doesn't advance while we drain
6727   // the stack below.
6728   PushOrMarkClosure pushOrMarkClosure(_collector,
6729                                       _span, _bitMap, _markStack,
6730                                       _finger, this);
6731   bool res = _markStack->push(obj);
6732   assert(res, "Empty non-zero size stack should have space for single push");
6733   while (!_markStack->isEmpty()) {
6734     oop new_oop = _markStack->pop();
6735     // Skip verifying header mark word below because we are
6736     // running concurrent with mutators.
6737     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6738     // now scan this oop's oops
6739     new_oop->oop_iterate(&pushOrMarkClosure);
6740     do_yield_check();
6741   }
6742   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6743 }
6744 
6745 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6746                        CMSCollector* collector, MemRegion span,
6747                        CMSBitMap* bit_map,
6748                        OopTaskQueue* work_queue,
6749                        CMSMarkStack*  overflow_stack):
6750   _collector(collector),
6751   _whole_span(collector->_span),
6752   _span(span),
6753   _bit_map(bit_map),
6754   _mut(&collector->_modUnionTable),
6755   _work_queue(work_queue),
6756   _overflow_stack(overflow_stack),
6757   _skip_bits(0),
6758   _task(task)
6759 {
6760   assert(_work_queue->size() == 0, "work_queue should be empty");
6761   _finger = span.start();
6762   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6763   assert(_span.contains(_finger), "Out of bounds _finger?");
6764 }
6765 
6766 // Should revisit to see if this should be restructured for
6767 // greater efficiency.
6768 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6769   if (_skip_bits > 0) {
6770     _skip_bits--;
6771     return true;
6772   }
6773   // convert offset into a HeapWord*
6774   HeapWord* addr = _bit_map->startWord() + offset;
6775   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6776          "address out of range");
6777   assert(_bit_map->isMarked(addr), "tautology");
6778   if (_bit_map->isMarked(addr+1)) {
6779     // this is an allocated object that might not yet be initialized
6780     assert(_skip_bits == 0, "tautology");
6781     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6782     oop p = oop(addr);
6783     if (p->klass_or_null() == NULL) {
6784       // in the case of Clean-on-Enter optimization, redirty card
6785       // and avoid clearing card by increasing  the threshold.
6786       return true;
6787     }
6788   }
6789   scan_oops_in_oop(addr);
6790   return true;
6791 }
6792 
6793 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6794   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6795   // Should we assert that our work queue is empty or
6796   // below some drain limit?
6797   assert(_work_queue->size() == 0,
6798          "should drain stack to limit stack usage");
6799   // convert ptr to an oop preparatory to scanning
6800   oop obj = oop(ptr);
6801   // Ignore mark word in verification below, since we
6802   // may be running concurrent with mutators.
6803   assert(obj->is_oop(true), "should be an oop");
6804   assert(_finger <= ptr, "_finger runneth ahead");
6805   // advance the finger to right end of this object
6806   _finger = ptr + obj->size();
6807   assert(_finger > ptr, "we just incremented it above");
6808   // On large heaps, it may take us some time to get through
6809   // the marking phase. During
6810   // this time it's possible that a lot of mutations have
6811   // accumulated in the card table and the mod union table --
6812   // these mutation records are redundant until we have
6813   // actually traced into the corresponding card.
6814   // Here, we check whether advancing the finger would make
6815   // us cross into a new card, and if so clear corresponding
6816   // cards in the MUT (preclean them in the card-table in the
6817   // future).
6818 
6819   // The clean-on-enter optimization is disabled by default,
6820   // until we fix 6178663.
6821   if (CMSCleanOnEnter && (_finger > _threshold)) {
6822     // [_threshold, _finger) represents the interval
6823     // of cards to be cleared  in MUT (or precleaned in card table).
6824     // The set of cards to be cleared is all those that overlap
6825     // with the interval [_threshold, _finger); note that
6826     // _threshold is always kept card-aligned but _finger isn't
6827     // always card-aligned.
6828     HeapWord* old_threshold = _threshold;
6829     assert(old_threshold == (HeapWord*)round_to(
6830             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6831            "_threshold should always be card-aligned");
6832     _threshold = (HeapWord*)round_to(
6833                    (intptr_t)_finger, CardTableModRefBS::card_size);
6834     MemRegion mr(old_threshold, _threshold);
6835     assert(!mr.is_empty(), "Control point invariant");
6836     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6837     _mut->clear_range(mr);
6838   }
6839 
6840   // Note: the local finger doesn't advance while we drain
6841   // the stack below, but the global finger sure can and will.
6842   HeapWord** gfa = _task->global_finger_addr();
6843   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6844                                       _span, _bit_map,
6845                                       _work_queue,
6846                                       _overflow_stack,
6847                                       _finger,
6848                                       gfa, this);
6849   bool res = _work_queue->push(obj);   // overflow could occur here
6850   assert(res, "Will hold once we use workqueues");
6851   while (true) {
6852     oop new_oop;
6853     if (!_work_queue->pop_local(new_oop)) {
6854       // We emptied our work_queue; check if there's stuff that can
6855       // be gotten from the overflow stack.
6856       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6857             _overflow_stack, _work_queue)) {
6858         do_yield_check();
6859         continue;
6860       } else {  // done
6861         break;
6862       }
6863     }
6864     // Skip verifying header mark word below because we are
6865     // running concurrent with mutators.
6866     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6867     // now scan this oop's oops
6868     new_oop->oop_iterate(&pushOrMarkClosure);
6869     do_yield_check();
6870   }
6871   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6872 }
6873 
6874 // Yield in response to a request from VM Thread or
6875 // from mutators.
6876 void Par_MarkFromRootsClosure::do_yield_work() {
6877   assert(_task != NULL, "sanity");
6878   _task->yield();
6879 }
6880 
6881 // A variant of the above used for verifying CMS marking work.
6882 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6883                         MemRegion span,
6884                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6885                         CMSMarkStack*  mark_stack):
6886   _collector(collector),
6887   _span(span),
6888   _verification_bm(verification_bm),
6889   _cms_bm(cms_bm),
6890   _mark_stack(mark_stack),
6891   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6892                       mark_stack)
6893 {
6894   assert(_mark_stack->isEmpty(), "stack should be empty");
6895   _finger = _verification_bm->startWord();
6896   assert(_collector->_restart_addr == NULL, "Sanity check");
6897   assert(_span.contains(_finger), "Out of bounds _finger?");
6898 }
6899 
6900 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6901   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6902   assert(_span.contains(addr), "Out of bounds _finger?");
6903   _finger = addr;
6904 }
6905 
6906 // Should revisit to see if this should be restructured for
6907 // greater efficiency.
6908 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6909   // convert offset into a HeapWord*
6910   HeapWord* addr = _verification_bm->startWord() + offset;
6911   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6912          "address out of range");
6913   assert(_verification_bm->isMarked(addr), "tautology");
6914   assert(_cms_bm->isMarked(addr), "tautology");
6915 
6916   assert(_mark_stack->isEmpty(),
6917          "should drain stack to limit stack usage");
6918   // convert addr to an oop preparatory to scanning
6919   oop obj = oop(addr);
6920   assert(obj->is_oop(), "should be an oop");
6921   assert(_finger <= addr, "_finger runneth ahead");
6922   // advance the finger to right end of this object
6923   _finger = addr + obj->size();
6924   assert(_finger > addr, "we just incremented it above");
6925   // Note: the finger doesn't advance while we drain
6926   // the stack below.
6927   bool res = _mark_stack->push(obj);
6928   assert(res, "Empty non-zero size stack should have space for single push");
6929   while (!_mark_stack->isEmpty()) {
6930     oop new_oop = _mark_stack->pop();
6931     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6932     // now scan this oop's oops
6933     new_oop->oop_iterate(&_pam_verify_closure);
6934   }
6935   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6936   return true;
6937 }
6938 
6939 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6940   CMSCollector* collector, MemRegion span,
6941   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6942   CMSMarkStack*  mark_stack):
6943   MetadataAwareOopClosure(collector->ref_processor()),
6944   _collector(collector),
6945   _span(span),
6946   _verification_bm(verification_bm),
6947   _cms_bm(cms_bm),
6948   _mark_stack(mark_stack)
6949 { }
6950 
6951 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6952 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6953 
6954 // Upon stack overflow, we discard (part of) the stack,
6955 // remembering the least address amongst those discarded
6956 // in CMSCollector's _restart_address.
6957 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6958   // Remember the least grey address discarded
6959   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6960   _collector->lower_restart_addr(ra);
6961   _mark_stack->reset();  // discard stack contents
6962   _mark_stack->expand(); // expand the stack if possible
6963 }
6964 
6965 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6966   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6967   HeapWord* addr = (HeapWord*)obj;
6968   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6969     // Oop lies in _span and isn't yet grey or black
6970     _verification_bm->mark(addr);            // now grey
6971     if (!_cms_bm->isMarked(addr)) {
6972       oop(addr)->print();
6973       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6974                              p2i(addr));
6975       fatal("... aborting");
6976     }
6977 
6978     if (!_mark_stack->push(obj)) { // stack overflow
6979       if (PrintCMSStatistics != 0) {
6980         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6981                                SIZE_FORMAT, _mark_stack->capacity());
6982       }
6983       assert(_mark_stack->isFull(), "Else push should have succeeded");
6984       handle_stack_overflow(addr);
6985     }
6986     // anything including and to the right of _finger
6987     // will be scanned as we iterate over the remainder of the
6988     // bit map
6989   }
6990 }
6991 
6992 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6993                      MemRegion span,
6994                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6995                      HeapWord* finger, MarkFromRootsClosure* parent) :
6996   MetadataAwareOopClosure(collector->ref_processor()),
6997   _collector(collector),
6998   _span(span),
6999   _bitMap(bitMap),
7000   _markStack(markStack),
7001   _finger(finger),
7002   _parent(parent)
7003 { }
7004 
7005 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7006                      MemRegion span,
7007                      CMSBitMap* bit_map,
7008                      OopTaskQueue* work_queue,
7009                      CMSMarkStack*  overflow_stack,
7010                      HeapWord* finger,
7011                      HeapWord** global_finger_addr,
7012                      Par_MarkFromRootsClosure* parent) :
7013   MetadataAwareOopClosure(collector->ref_processor()),
7014   _collector(collector),
7015   _whole_span(collector->_span),
7016   _span(span),
7017   _bit_map(bit_map),
7018   _work_queue(work_queue),
7019   _overflow_stack(overflow_stack),
7020   _finger(finger),
7021   _global_finger_addr(global_finger_addr),
7022   _parent(parent)
7023 { }
7024 
7025 // Assumes thread-safe access by callers, who are
7026 // responsible for mutual exclusion.
7027 void CMSCollector::lower_restart_addr(HeapWord* low) {
7028   assert(_span.contains(low), "Out of bounds addr");
7029   if (_restart_addr == NULL) {
7030     _restart_addr = low;
7031   } else {
7032     _restart_addr = MIN2(_restart_addr, low);
7033   }
7034 }
7035 
7036 // Upon stack overflow, we discard (part of) the stack,
7037 // remembering the least address amongst those discarded
7038 // in CMSCollector's _restart_address.
7039 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7040   // Remember the least grey address discarded
7041   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7042   _collector->lower_restart_addr(ra);
7043   _markStack->reset();  // discard stack contents
7044   _markStack->expand(); // expand the stack if possible
7045 }
7046 
7047 // Upon stack overflow, we discard (part of) the stack,
7048 // remembering the least address amongst those discarded
7049 // in CMSCollector's _restart_address.
7050 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7051   // We need to do this under a mutex to prevent other
7052   // workers from interfering with the work done below.
7053   MutexLockerEx ml(_overflow_stack->par_lock(),
7054                    Mutex::_no_safepoint_check_flag);
7055   // Remember the least grey address discarded
7056   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7057   _collector->lower_restart_addr(ra);
7058   _overflow_stack->reset();  // discard stack contents
7059   _overflow_stack->expand(); // expand the stack if possible
7060 }
7061 
7062 void PushOrMarkClosure::do_oop(oop obj) {
7063   // Ignore mark word because we are running concurrent with mutators.
7064   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7065   HeapWord* addr = (HeapWord*)obj;
7066   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7067     // Oop lies in _span and isn't yet grey or black
7068     _bitMap->mark(addr);            // now grey
7069     if (addr < _finger) {
7070       // the bit map iteration has already either passed, or
7071       // sampled, this bit in the bit map; we'll need to
7072       // use the marking stack to scan this oop's oops.
7073       bool simulate_overflow = false;
7074       NOT_PRODUCT(
7075         if (CMSMarkStackOverflowALot &&
7076             _collector->simulate_overflow()) {
7077           // simulate a stack overflow
7078           simulate_overflow = true;
7079         }
7080       )
7081       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7082         if (PrintCMSStatistics != 0) {
7083           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7084                                  SIZE_FORMAT, _markStack->capacity());
7085         }
7086         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7087         handle_stack_overflow(addr);
7088       }
7089     }
7090     // anything including and to the right of _finger
7091     // will be scanned as we iterate over the remainder of the
7092     // bit map
7093     do_yield_check();
7094   }
7095 }
7096 
7097 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7098 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7099 
7100 void Par_PushOrMarkClosure::do_oop(oop obj) {
7101   // Ignore mark word because we are running concurrent with mutators.
7102   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7103   HeapWord* addr = (HeapWord*)obj;
7104   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7105     // Oop lies in _span and isn't yet grey or black
7106     // We read the global_finger (volatile read) strictly after marking oop
7107     bool res = _bit_map->par_mark(addr);    // now grey
7108     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7109     // Should we push this marked oop on our stack?
7110     // -- if someone else marked it, nothing to do
7111     // -- if target oop is above global finger nothing to do
7112     // -- if target oop is in chunk and above local finger
7113     //      then nothing to do
7114     // -- else push on work queue
7115     if (   !res       // someone else marked it, they will deal with it
7116         || (addr >= *gfa)  // will be scanned in a later task
7117         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7118       return;
7119     }
7120     // the bit map iteration has already either passed, or
7121     // sampled, this bit in the bit map; we'll need to
7122     // use the marking stack to scan this oop's oops.
7123     bool simulate_overflow = false;
7124     NOT_PRODUCT(
7125       if (CMSMarkStackOverflowALot &&
7126           _collector->simulate_overflow()) {
7127         // simulate a stack overflow
7128         simulate_overflow = true;
7129       }
7130     )
7131     if (simulate_overflow ||
7132         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7133       // stack overflow
7134       if (PrintCMSStatistics != 0) {
7135         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7136                                SIZE_FORMAT, _overflow_stack->capacity());
7137       }
7138       // We cannot assert that the overflow stack is full because
7139       // it may have been emptied since.
7140       assert(simulate_overflow ||
7141              _work_queue->size() == _work_queue->max_elems(),
7142             "Else push should have succeeded");
7143       handle_stack_overflow(addr);
7144     }
7145     do_yield_check();
7146   }
7147 }
7148 
7149 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7150 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7151 
7152 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7153                                        MemRegion span,
7154                                        ReferenceProcessor* rp,
7155                                        CMSBitMap* bit_map,
7156                                        CMSBitMap* mod_union_table,
7157                                        CMSMarkStack*  mark_stack,
7158                                        bool           concurrent_precleaning):
7159   MetadataAwareOopClosure(rp),
7160   _collector(collector),
7161   _span(span),
7162   _bit_map(bit_map),
7163   _mod_union_table(mod_union_table),
7164   _mark_stack(mark_stack),
7165   _concurrent_precleaning(concurrent_precleaning)
7166 {
7167   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7168 }
7169 
7170 // Grey object rescan during pre-cleaning and second checkpoint phases --
7171 // the non-parallel version (the parallel version appears further below.)
7172 void PushAndMarkClosure::do_oop(oop obj) {
7173   // Ignore mark word verification. If during concurrent precleaning,
7174   // the object monitor may be locked. If during the checkpoint
7175   // phases, the object may already have been reached by a  different
7176   // path and may be at the end of the global overflow list (so
7177   // the mark word may be NULL).
7178   assert(obj->is_oop_or_null(true /* ignore mark word */),
7179          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7180   HeapWord* addr = (HeapWord*)obj;
7181   // Check if oop points into the CMS generation
7182   // and is not marked
7183   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7184     // a white object ...
7185     _bit_map->mark(addr);         // ... now grey
7186     // push on the marking stack (grey set)
7187     bool simulate_overflow = false;
7188     NOT_PRODUCT(
7189       if (CMSMarkStackOverflowALot &&
7190           _collector->simulate_overflow()) {
7191         // simulate a stack overflow
7192         simulate_overflow = true;
7193       }
7194     )
7195     if (simulate_overflow || !_mark_stack->push(obj)) {
7196       if (_concurrent_precleaning) {
7197          // During precleaning we can just dirty the appropriate card(s)
7198          // in the mod union table, thus ensuring that the object remains
7199          // in the grey set  and continue. In the case of object arrays
7200          // we need to dirty all of the cards that the object spans,
7201          // since the rescan of object arrays will be limited to the
7202          // dirty cards.
7203          // Note that no one can be interfering with us in this action
7204          // of dirtying the mod union table, so no locking or atomics
7205          // are required.
7206          if (obj->is_objArray()) {
7207            size_t sz = obj->size();
7208            HeapWord* end_card_addr = (HeapWord*)round_to(
7209                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7210            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7211            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7212            _mod_union_table->mark_range(redirty_range);
7213          } else {
7214            _mod_union_table->mark(addr);
7215          }
7216          _collector->_ser_pmc_preclean_ovflw++;
7217       } else {
7218          // During the remark phase, we need to remember this oop
7219          // in the overflow list.
7220          _collector->push_on_overflow_list(obj);
7221          _collector->_ser_pmc_remark_ovflw++;
7222       }
7223     }
7224   }
7225 }
7226 
7227 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7228                                                MemRegion span,
7229                                                ReferenceProcessor* rp,
7230                                                CMSBitMap* bit_map,
7231                                                OopTaskQueue* work_queue):
7232   MetadataAwareOopClosure(rp),
7233   _collector(collector),
7234   _span(span),
7235   _bit_map(bit_map),
7236   _work_queue(work_queue)
7237 {
7238   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7239 }
7240 
7241 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7242 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7243 
7244 // Grey object rescan during second checkpoint phase --
7245 // the parallel version.
7246 void Par_PushAndMarkClosure::do_oop(oop obj) {
7247   // In the assert below, we ignore the mark word because
7248   // this oop may point to an already visited object that is
7249   // on the overflow stack (in which case the mark word has
7250   // been hijacked for chaining into the overflow stack --
7251   // if this is the last object in the overflow stack then
7252   // its mark word will be NULL). Because this object may
7253   // have been subsequently popped off the global overflow
7254   // stack, and the mark word possibly restored to the prototypical
7255   // value, by the time we get to examined this failing assert in
7256   // the debugger, is_oop_or_null(false) may subsequently start
7257   // to hold.
7258   assert(obj->is_oop_or_null(true),
7259          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7260   HeapWord* addr = (HeapWord*)obj;
7261   // Check if oop points into the CMS generation
7262   // and is not marked
7263   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7264     // a white object ...
7265     // If we manage to "claim" the object, by being the
7266     // first thread to mark it, then we push it on our
7267     // marking stack
7268     if (_bit_map->par_mark(addr)) {     // ... now grey
7269       // push on work queue (grey set)
7270       bool simulate_overflow = false;
7271       NOT_PRODUCT(
7272         if (CMSMarkStackOverflowALot &&
7273             _collector->par_simulate_overflow()) {
7274           // simulate a stack overflow
7275           simulate_overflow = true;
7276         }
7277       )
7278       if (simulate_overflow || !_work_queue->push(obj)) {
7279         _collector->par_push_on_overflow_list(obj);
7280         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7281       }
7282     } // Else, some other thread got there first
7283   }
7284 }
7285 
7286 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7287 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7288 
7289 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7290   Mutex* bml = _collector->bitMapLock();
7291   assert_lock_strong(bml);
7292   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7293          "CMS thread should hold CMS token");
7294 
7295   bml->unlock();
7296   ConcurrentMarkSweepThread::desynchronize(true);
7297 
7298   _collector->stopTimer();
7299   if (PrintCMSStatistics != 0) {
7300     _collector->incrementYields();
7301   }
7302 
7303   // See the comment in coordinator_yield()
7304   for (unsigned i = 0; i < CMSYieldSleepCount &&
7305                        ConcurrentMarkSweepThread::should_yield() &&
7306                        !CMSCollector::foregroundGCIsActive(); ++i) {
7307     os::sleep(Thread::current(), 1, false);
7308   }
7309 
7310   ConcurrentMarkSweepThread::synchronize(true);
7311   bml->lock();
7312 
7313   _collector->startTimer();
7314 }
7315 
7316 bool CMSPrecleanRefsYieldClosure::should_return() {
7317   if (ConcurrentMarkSweepThread::should_yield()) {
7318     do_yield_work();
7319   }
7320   return _collector->foregroundGCIsActive();
7321 }
7322 
7323 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7324   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7325          "mr should be aligned to start at a card boundary");
7326   // We'd like to assert:
7327   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7328   //        "mr should be a range of cards");
7329   // However, that would be too strong in one case -- the last
7330   // partition ends at _unallocated_block which, in general, can be
7331   // an arbitrary boundary, not necessarily card aligned.
7332   if (PrintCMSStatistics != 0) {
7333     _num_dirty_cards +=
7334          mr.word_size()/CardTableModRefBS::card_size_in_words;
7335   }
7336   _space->object_iterate_mem(mr, &_scan_cl);
7337 }
7338 
7339 SweepClosure::SweepClosure(CMSCollector* collector,
7340                            ConcurrentMarkSweepGeneration* g,
7341                            CMSBitMap* bitMap, bool should_yield) :
7342   _collector(collector),
7343   _g(g),
7344   _sp(g->cmsSpace()),
7345   _limit(_sp->sweep_limit()),
7346   _freelistLock(_sp->freelistLock()),
7347   _bitMap(bitMap),
7348   _yield(should_yield),
7349   _inFreeRange(false),           // No free range at beginning of sweep
7350   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7351   _lastFreeRangeCoalesced(false),
7352   _freeFinger(g->used_region().start())
7353 {
7354   NOT_PRODUCT(
7355     _numObjectsFreed = 0;
7356     _numWordsFreed   = 0;
7357     _numObjectsLive = 0;
7358     _numWordsLive = 0;
7359     _numObjectsAlreadyFree = 0;
7360     _numWordsAlreadyFree = 0;
7361     _last_fc = NULL;
7362 
7363     _sp->initializeIndexedFreeListArrayReturnedBytes();
7364     _sp->dictionary()->initialize_dict_returned_bytes();
7365   )
7366   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7367          "sweep _limit out of bounds");
7368   if (CMSTraceSweeper) {
7369     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7370                         p2i(_limit));
7371   }
7372 }
7373 
7374 void SweepClosure::print_on(outputStream* st) const {
7375   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7376                 p2i(_sp->bottom()), p2i(_sp->end()));
7377   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7378   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7379   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7380   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7381                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7382 }
7383 
7384 #ifndef PRODUCT
7385 // Assertion checking only:  no useful work in product mode --
7386 // however, if any of the flags below become product flags,
7387 // you may need to review this code to see if it needs to be
7388 // enabled in product mode.
7389 SweepClosure::~SweepClosure() {
7390   assert_lock_strong(_freelistLock);
7391   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7392          "sweep _limit out of bounds");
7393   if (inFreeRange()) {
7394     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7395     print();
7396     ShouldNotReachHere();
7397   }
7398   if (Verbose && PrintGC) {
7399     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7400                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7401     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7402                            SIZE_FORMAT " bytes  "
7403       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7404       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7405       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7406     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7407                         * sizeof(HeapWord);
7408     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7409 
7410     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7411       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7412       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7413       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7414       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7415       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7416         indexListReturnedBytes);
7417       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7418         dict_returned_bytes);
7419     }
7420   }
7421   if (CMSTraceSweeper) {
7422     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7423                            p2i(_limit));
7424   }
7425 }
7426 #endif  // PRODUCT
7427 
7428 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7429     bool freeRangeInFreeLists) {
7430   if (CMSTraceSweeper) {
7431     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7432                p2i(freeFinger), freeRangeInFreeLists);
7433   }
7434   assert(!inFreeRange(), "Trampling existing free range");
7435   set_inFreeRange(true);
7436   set_lastFreeRangeCoalesced(false);
7437 
7438   set_freeFinger(freeFinger);
7439   set_freeRangeInFreeLists(freeRangeInFreeLists);
7440   if (CMSTestInFreeList) {
7441     if (freeRangeInFreeLists) {
7442       FreeChunk* fc = (FreeChunk*) freeFinger;
7443       assert(fc->is_free(), "A chunk on the free list should be free.");
7444       assert(fc->size() > 0, "Free range should have a size");
7445       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7446     }
7447   }
7448 }
7449 
7450 // Note that the sweeper runs concurrently with mutators. Thus,
7451 // it is possible for direct allocation in this generation to happen
7452 // in the middle of the sweep. Note that the sweeper also coalesces
7453 // contiguous free blocks. Thus, unless the sweeper and the allocator
7454 // synchronize appropriately freshly allocated blocks may get swept up.
7455 // This is accomplished by the sweeper locking the free lists while
7456 // it is sweeping. Thus blocks that are determined to be free are
7457 // indeed free. There is however one additional complication:
7458 // blocks that have been allocated since the final checkpoint and
7459 // mark, will not have been marked and so would be treated as
7460 // unreachable and swept up. To prevent this, the allocator marks
7461 // the bit map when allocating during the sweep phase. This leads,
7462 // however, to a further complication -- objects may have been allocated
7463 // but not yet initialized -- in the sense that the header isn't yet
7464 // installed. The sweeper can not then determine the size of the block
7465 // in order to skip over it. To deal with this case, we use a technique
7466 // (due to Printezis) to encode such uninitialized block sizes in the
7467 // bit map. Since the bit map uses a bit per every HeapWord, but the
7468 // CMS generation has a minimum object size of 3 HeapWords, it follows
7469 // that "normal marks" won't be adjacent in the bit map (there will
7470 // always be at least two 0 bits between successive 1 bits). We make use
7471 // of these "unused" bits to represent uninitialized blocks -- the bit
7472 // corresponding to the start of the uninitialized object and the next
7473 // bit are both set. Finally, a 1 bit marks the end of the object that
7474 // started with the two consecutive 1 bits to indicate its potentially
7475 // uninitialized state.
7476 
7477 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7478   FreeChunk* fc = (FreeChunk*)addr;
7479   size_t res;
7480 
7481   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7482   // than "addr == _limit" because although _limit was a block boundary when
7483   // we started the sweep, it may no longer be one because heap expansion
7484   // may have caused us to coalesce the block ending at the address _limit
7485   // with a newly expanded chunk (this happens when _limit was set to the
7486   // previous _end of the space), so we may have stepped past _limit:
7487   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7488   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7489     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7490            "sweep _limit out of bounds");
7491     assert(addr < _sp->end(), "addr out of bounds");
7492     // Flush any free range we might be holding as a single
7493     // coalesced chunk to the appropriate free list.
7494     if (inFreeRange()) {
7495       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7496              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())));
7497       flush_cur_free_chunk(freeFinger(),
7498                            pointer_delta(addr, freeFinger()));
7499       if (CMSTraceSweeper) {
7500         gclog_or_tty->print("Sweep: last chunk: ");
7501         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7502                    "[coalesced:%d]\n",
7503                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7504                    lastFreeRangeCoalesced() ? 1 : 0);
7505       }
7506     }
7507 
7508     // help the iterator loop finish
7509     return pointer_delta(_sp->end(), addr);
7510   }
7511 
7512   assert(addr < _limit, "sweep invariant");
7513   // check if we should yield
7514   do_yield_check(addr);
7515   if (fc->is_free()) {
7516     // Chunk that is already free
7517     res = fc->size();
7518     do_already_free_chunk(fc);
7519     debug_only(_sp->verifyFreeLists());
7520     // If we flush the chunk at hand in lookahead_and_flush()
7521     // and it's coalesced with a preceding chunk, then the
7522     // process of "mangling" the payload of the coalesced block
7523     // will cause erasure of the size information from the
7524     // (erstwhile) header of all the coalesced blocks but the
7525     // first, so the first disjunct in the assert will not hold
7526     // in that specific case (in which case the second disjunct
7527     // will hold).
7528     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7529            "Otherwise the size info doesn't change at this step");
7530     NOT_PRODUCT(
7531       _numObjectsAlreadyFree++;
7532       _numWordsAlreadyFree += res;
7533     )
7534     NOT_PRODUCT(_last_fc = fc;)
7535   } else if (!_bitMap->isMarked(addr)) {
7536     // Chunk is fresh garbage
7537     res = do_garbage_chunk(fc);
7538     debug_only(_sp->verifyFreeLists());
7539     NOT_PRODUCT(
7540       _numObjectsFreed++;
7541       _numWordsFreed += res;
7542     )
7543   } else {
7544     // Chunk that is alive.
7545     res = do_live_chunk(fc);
7546     debug_only(_sp->verifyFreeLists());
7547     NOT_PRODUCT(
7548         _numObjectsLive++;
7549         _numWordsLive += res;
7550     )
7551   }
7552   return res;
7553 }
7554 
7555 // For the smart allocation, record following
7556 //  split deaths - a free chunk is removed from its free list because
7557 //      it is being split into two or more chunks.
7558 //  split birth - a free chunk is being added to its free list because
7559 //      a larger free chunk has been split and resulted in this free chunk.
7560 //  coal death - a free chunk is being removed from its free list because
7561 //      it is being coalesced into a large free chunk.
7562 //  coal birth - a free chunk is being added to its free list because
7563 //      it was created when two or more free chunks where coalesced into
7564 //      this free chunk.
7565 //
7566 // These statistics are used to determine the desired number of free
7567 // chunks of a given size.  The desired number is chosen to be relative
7568 // to the end of a CMS sweep.  The desired number at the end of a sweep
7569 // is the
7570 //      count-at-end-of-previous-sweep (an amount that was enough)
7571 //              - count-at-beginning-of-current-sweep  (the excess)
7572 //              + split-births  (gains in this size during interval)
7573 //              - split-deaths  (demands on this size during interval)
7574 // where the interval is from the end of one sweep to the end of the
7575 // next.
7576 //
7577 // When sweeping the sweeper maintains an accumulated chunk which is
7578 // the chunk that is made up of chunks that have been coalesced.  That
7579 // will be termed the left-hand chunk.  A new chunk of garbage that
7580 // is being considered for coalescing will be referred to as the
7581 // right-hand chunk.
7582 //
7583 // When making a decision on whether to coalesce a right-hand chunk with
7584 // the current left-hand chunk, the current count vs. the desired count
7585 // of the left-hand chunk is considered.  Also if the right-hand chunk
7586 // is near the large chunk at the end of the heap (see
7587 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7588 // left-hand chunk is coalesced.
7589 //
7590 // When making a decision about whether to split a chunk, the desired count
7591 // vs. the current count of the candidate to be split is also considered.
7592 // If the candidate is underpopulated (currently fewer chunks than desired)
7593 // a chunk of an overpopulated (currently more chunks than desired) size may
7594 // be chosen.  The "hint" associated with a free list, if non-null, points
7595 // to a free list which may be overpopulated.
7596 //
7597 
7598 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7599   const size_t size = fc->size();
7600   // Chunks that cannot be coalesced are not in the
7601   // free lists.
7602   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7603     assert(_sp->verify_chunk_in_free_list(fc),
7604       "free chunk should be in free lists");
7605   }
7606   // a chunk that is already free, should not have been
7607   // marked in the bit map
7608   HeapWord* const addr = (HeapWord*) fc;
7609   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7610   // Verify that the bit map has no bits marked between
7611   // addr and purported end of this block.
7612   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7613 
7614   // Some chunks cannot be coalesced under any circumstances.
7615   // See the definition of cantCoalesce().
7616   if (!fc->cantCoalesce()) {
7617     // This chunk can potentially be coalesced.
7618     if (_sp->adaptive_freelists()) {
7619       // All the work is done in
7620       do_post_free_or_garbage_chunk(fc, size);
7621     } else {  // Not adaptive free lists
7622       // this is a free chunk that can potentially be coalesced by the sweeper;
7623       if (!inFreeRange()) {
7624         // if the next chunk is a free block that can't be coalesced
7625         // it doesn't make sense to remove this chunk from the free lists
7626         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7627         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7628         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7629             nextChunk->is_free()               &&     // ... which is free...
7630             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7631           // nothing to do
7632         } else {
7633           // Potentially the start of a new free range:
7634           // Don't eagerly remove it from the free lists.
7635           // No need to remove it if it will just be put
7636           // back again.  (Also from a pragmatic point of view
7637           // if it is a free block in a region that is beyond
7638           // any allocated blocks, an assertion will fail)
7639           // Remember the start of a free run.
7640           initialize_free_range(addr, true);
7641           // end - can coalesce with next chunk
7642         }
7643       } else {
7644         // the midst of a free range, we are coalescing
7645         print_free_block_coalesced(fc);
7646         if (CMSTraceSweeper) {
7647           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7648         }
7649         // remove it from the free lists
7650         _sp->removeFreeChunkFromFreeLists(fc);
7651         set_lastFreeRangeCoalesced(true);
7652         // If the chunk is being coalesced and the current free range is
7653         // in the free lists, remove the current free range so that it
7654         // will be returned to the free lists in its entirety - all
7655         // the coalesced pieces included.
7656         if (freeRangeInFreeLists()) {
7657           FreeChunk* ffc = (FreeChunk*) freeFinger();
7658           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7659             "Size of free range is inconsistent with chunk size.");
7660           if (CMSTestInFreeList) {
7661             assert(_sp->verify_chunk_in_free_list(ffc),
7662               "free range is not in free lists");
7663           }
7664           _sp->removeFreeChunkFromFreeLists(ffc);
7665           set_freeRangeInFreeLists(false);
7666         }
7667       }
7668     }
7669     // Note that if the chunk is not coalescable (the else arm
7670     // below), we unconditionally flush, without needing to do
7671     // a "lookahead," as we do below.
7672     if (inFreeRange()) lookahead_and_flush(fc, size);
7673   } else {
7674     // Code path common to both original and adaptive free lists.
7675 
7676     // cant coalesce with previous block; this should be treated
7677     // as the end of a free run if any
7678     if (inFreeRange()) {
7679       // we kicked some butt; time to pick up the garbage
7680       assert(freeFinger() < addr, "freeFinger points too high");
7681       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7682     }
7683     // else, nothing to do, just continue
7684   }
7685 }
7686 
7687 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7688   // This is a chunk of garbage.  It is not in any free list.
7689   // Add it to a free list or let it possibly be coalesced into
7690   // a larger chunk.
7691   HeapWord* const addr = (HeapWord*) fc;
7692   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7693 
7694   if (_sp->adaptive_freelists()) {
7695     // Verify that the bit map has no bits marked between
7696     // addr and purported end of just dead object.
7697     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7698 
7699     do_post_free_or_garbage_chunk(fc, size);
7700   } else {
7701     if (!inFreeRange()) {
7702       // start of a new free range
7703       assert(size > 0, "A free range should have a size");
7704       initialize_free_range(addr, false);
7705     } else {
7706       // this will be swept up when we hit the end of the
7707       // free range
7708       if (CMSTraceSweeper) {
7709         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7710       }
7711       // If the chunk is being coalesced and the current free range is
7712       // in the free lists, remove the current free range so that it
7713       // will be returned to the free lists in its entirety - all
7714       // the coalesced pieces included.
7715       if (freeRangeInFreeLists()) {
7716         FreeChunk* ffc = (FreeChunk*)freeFinger();
7717         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7718           "Size of free range is inconsistent with chunk size.");
7719         if (CMSTestInFreeList) {
7720           assert(_sp->verify_chunk_in_free_list(ffc),
7721             "free range is not in free lists");
7722         }
7723         _sp->removeFreeChunkFromFreeLists(ffc);
7724         set_freeRangeInFreeLists(false);
7725       }
7726       set_lastFreeRangeCoalesced(true);
7727     }
7728     // this will be swept up when we hit the end of the free range
7729 
7730     // Verify that the bit map has no bits marked between
7731     // addr and purported end of just dead object.
7732     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7733   }
7734   assert(_limit >= addr + size,
7735          "A freshly garbage chunk can't possibly straddle over _limit");
7736   if (inFreeRange()) lookahead_and_flush(fc, size);
7737   return size;
7738 }
7739 
7740 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7741   HeapWord* addr = (HeapWord*) fc;
7742   // The sweeper has just found a live object. Return any accumulated
7743   // left hand chunk to the free lists.
7744   if (inFreeRange()) {
7745     assert(freeFinger() < addr, "freeFinger points too high");
7746     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7747   }
7748 
7749   // This object is live: we'd normally expect this to be
7750   // an oop, and like to assert the following:
7751   // assert(oop(addr)->is_oop(), "live block should be an oop");
7752   // However, as we commented above, this may be an object whose
7753   // header hasn't yet been initialized.
7754   size_t size;
7755   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7756   if (_bitMap->isMarked(addr + 1)) {
7757     // Determine the size from the bit map, rather than trying to
7758     // compute it from the object header.
7759     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7760     size = pointer_delta(nextOneAddr + 1, addr);
7761     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7762            "alignment problem");
7763 
7764 #ifdef ASSERT
7765       if (oop(addr)->klass_or_null() != NULL) {
7766         // Ignore mark word because we are running concurrent with mutators
7767         assert(oop(addr)->is_oop(true), "live block should be an oop");
7768         assert(size ==
7769                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7770                "P-mark and computed size do not agree");
7771       }
7772 #endif
7773 
7774   } else {
7775     // This should be an initialized object that's alive.
7776     assert(oop(addr)->klass_or_null() != NULL,
7777            "Should be an initialized object");
7778     // Ignore mark word because we are running concurrent with mutators
7779     assert(oop(addr)->is_oop(true), "live block should be an oop");
7780     // Verify that the bit map has no bits marked between
7781     // addr and purported end of this block.
7782     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7783     assert(size >= 3, "Necessary for Printezis marks to work");
7784     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7785     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7786   }
7787   return size;
7788 }
7789 
7790 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7791                                                  size_t chunkSize) {
7792   // do_post_free_or_garbage_chunk() should only be called in the case
7793   // of the adaptive free list allocator.
7794   const bool fcInFreeLists = fc->is_free();
7795   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7796   assert((HeapWord*)fc <= _limit, "sweep invariant");
7797   if (CMSTestInFreeList && fcInFreeLists) {
7798     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7799   }
7800 
7801   if (CMSTraceSweeper) {
7802     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7803   }
7804 
7805   HeapWord* const fc_addr = (HeapWord*) fc;
7806 
7807   bool coalesce;
7808   const size_t left  = pointer_delta(fc_addr, freeFinger());
7809   const size_t right = chunkSize;
7810   switch (FLSCoalescePolicy) {
7811     // numeric value forms a coalition aggressiveness metric
7812     case 0:  { // never coalesce
7813       coalesce = false;
7814       break;
7815     }
7816     case 1: { // coalesce if left & right chunks on overpopulated lists
7817       coalesce = _sp->coalOverPopulated(left) &&
7818                  _sp->coalOverPopulated(right);
7819       break;
7820     }
7821     case 2: { // coalesce if left chunk on overpopulated list (default)
7822       coalesce = _sp->coalOverPopulated(left);
7823       break;
7824     }
7825     case 3: { // coalesce if left OR right chunk on overpopulated list
7826       coalesce = _sp->coalOverPopulated(left) ||
7827                  _sp->coalOverPopulated(right);
7828       break;
7829     }
7830     case 4: { // always coalesce
7831       coalesce = true;
7832       break;
7833     }
7834     default:
7835      ShouldNotReachHere();
7836   }
7837 
7838   // Should the current free range be coalesced?
7839   // If the chunk is in a free range and either we decided to coalesce above
7840   // or the chunk is near the large block at the end of the heap
7841   // (isNearLargestChunk() returns true), then coalesce this chunk.
7842   const bool doCoalesce = inFreeRange()
7843                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7844   if (doCoalesce) {
7845     // Coalesce the current free range on the left with the new
7846     // chunk on the right.  If either is on a free list,
7847     // it must be removed from the list and stashed in the closure.
7848     if (freeRangeInFreeLists()) {
7849       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7850       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7851         "Size of free range is inconsistent with chunk size.");
7852       if (CMSTestInFreeList) {
7853         assert(_sp->verify_chunk_in_free_list(ffc),
7854           "Chunk is not in free lists");
7855       }
7856       _sp->coalDeath(ffc->size());
7857       _sp->removeFreeChunkFromFreeLists(ffc);
7858       set_freeRangeInFreeLists(false);
7859     }
7860     if (fcInFreeLists) {
7861       _sp->coalDeath(chunkSize);
7862       assert(fc->size() == chunkSize,
7863         "The chunk has the wrong size or is not in the free lists");
7864       _sp->removeFreeChunkFromFreeLists(fc);
7865     }
7866     set_lastFreeRangeCoalesced(true);
7867     print_free_block_coalesced(fc);
7868   } else {  // not in a free range and/or should not coalesce
7869     // Return the current free range and start a new one.
7870     if (inFreeRange()) {
7871       // In a free range but cannot coalesce with the right hand chunk.
7872       // Put the current free range into the free lists.
7873       flush_cur_free_chunk(freeFinger(),
7874                            pointer_delta(fc_addr, freeFinger()));
7875     }
7876     // Set up for new free range.  Pass along whether the right hand
7877     // chunk is in the free lists.
7878     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7879   }
7880 }
7881 
7882 // Lookahead flush:
7883 // If we are tracking a free range, and this is the last chunk that
7884 // we'll look at because its end crosses past _limit, we'll preemptively
7885 // flush it along with any free range we may be holding on to. Note that
7886 // this can be the case only for an already free or freshly garbage
7887 // chunk. If this block is an object, it can never straddle
7888 // over _limit. The "straddling" occurs when _limit is set at
7889 // the previous end of the space when this cycle started, and
7890 // a subsequent heap expansion caused the previously co-terminal
7891 // free block to be coalesced with the newly expanded portion,
7892 // thus rendering _limit a non-block-boundary making it dangerous
7893 // for the sweeper to step over and examine.
7894 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7895   assert(inFreeRange(), "Should only be called if currently in a free range.");
7896   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7897   assert(_sp->used_region().contains(eob - 1),
7898          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7899                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7900                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7901                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7902   if (eob >= _limit) {
7903     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7904     if (CMSTraceSweeper) {
7905       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7906                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7907                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7908                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7909     }
7910     // Return the storage we are tracking back into the free lists.
7911     if (CMSTraceSweeper) {
7912       gclog_or_tty->print_cr("Flushing ... ");
7913     }
7914     assert(freeFinger() < eob, "Error");
7915     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7916   }
7917 }
7918 
7919 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7920   assert(inFreeRange(), "Should only be called if currently in a free range.");
7921   assert(size > 0,
7922     "A zero sized chunk cannot be added to the free lists.");
7923   if (!freeRangeInFreeLists()) {
7924     if (CMSTestInFreeList) {
7925       FreeChunk* fc = (FreeChunk*) chunk;
7926       fc->set_size(size);
7927       assert(!_sp->verify_chunk_in_free_list(fc),
7928         "chunk should not be in free lists yet");
7929     }
7930     if (CMSTraceSweeper) {
7931       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7932                     p2i(chunk), size);
7933     }
7934     // A new free range is going to be starting.  The current
7935     // free range has not been added to the free lists yet or
7936     // was removed so add it back.
7937     // If the current free range was coalesced, then the death
7938     // of the free range was recorded.  Record a birth now.
7939     if (lastFreeRangeCoalesced()) {
7940       _sp->coalBirth(size);
7941     }
7942     _sp->addChunkAndRepairOffsetTable(chunk, size,
7943             lastFreeRangeCoalesced());
7944   } else if (CMSTraceSweeper) {
7945     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7946   }
7947   set_inFreeRange(false);
7948   set_freeRangeInFreeLists(false);
7949 }
7950 
7951 // We take a break if we've been at this for a while,
7952 // so as to avoid monopolizing the locks involved.
7953 void SweepClosure::do_yield_work(HeapWord* addr) {
7954   // Return current free chunk being used for coalescing (if any)
7955   // to the appropriate freelist.  After yielding, the next
7956   // free block encountered will start a coalescing range of
7957   // free blocks.  If the next free block is adjacent to the
7958   // chunk just flushed, they will need to wait for the next
7959   // sweep to be coalesced.
7960   if (inFreeRange()) {
7961     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7962   }
7963 
7964   // First give up the locks, then yield, then re-lock.
7965   // We should probably use a constructor/destructor idiom to
7966   // do this unlock/lock or modify the MutexUnlocker class to
7967   // serve our purpose. XXX
7968   assert_lock_strong(_bitMap->lock());
7969   assert_lock_strong(_freelistLock);
7970   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7971          "CMS thread should hold CMS token");
7972   _bitMap->lock()->unlock();
7973   _freelistLock->unlock();
7974   ConcurrentMarkSweepThread::desynchronize(true);
7975   _collector->stopTimer();
7976   if (PrintCMSStatistics != 0) {
7977     _collector->incrementYields();
7978   }
7979 
7980   // See the comment in coordinator_yield()
7981   for (unsigned i = 0; i < CMSYieldSleepCount &&
7982                        ConcurrentMarkSweepThread::should_yield() &&
7983                        !CMSCollector::foregroundGCIsActive(); ++i) {
7984     os::sleep(Thread::current(), 1, false);
7985   }
7986 
7987   ConcurrentMarkSweepThread::synchronize(true);
7988   _freelistLock->lock();
7989   _bitMap->lock()->lock_without_safepoint_check();
7990   _collector->startTimer();
7991 }
7992 
7993 #ifndef PRODUCT
7994 // This is actually very useful in a product build if it can
7995 // be called from the debugger.  Compile it into the product
7996 // as needed.
7997 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7998   return debug_cms_space->verify_chunk_in_free_list(fc);
7999 }
8000 #endif
8001 
8002 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8003   if (CMSTraceSweeper) {
8004     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8005                            p2i(fc), fc->size());
8006   }
8007 }
8008 
8009 // CMSIsAliveClosure
8010 bool CMSIsAliveClosure::do_object_b(oop obj) {
8011   HeapWord* addr = (HeapWord*)obj;
8012   return addr != NULL &&
8013          (!_span.contains(addr) || _bit_map->isMarked(addr));
8014 }
8015 
8016 
8017 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8018                       MemRegion span,
8019                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8020                       bool cpc):
8021   _collector(collector),
8022   _span(span),
8023   _bit_map(bit_map),
8024   _mark_stack(mark_stack),
8025   _concurrent_precleaning(cpc) {
8026   assert(!_span.is_empty(), "Empty span could spell trouble");
8027 }
8028 
8029 
8030 // CMSKeepAliveClosure: the serial version
8031 void CMSKeepAliveClosure::do_oop(oop obj) {
8032   HeapWord* addr = (HeapWord*)obj;
8033   if (_span.contains(addr) &&
8034       !_bit_map->isMarked(addr)) {
8035     _bit_map->mark(addr);
8036     bool simulate_overflow = false;
8037     NOT_PRODUCT(
8038       if (CMSMarkStackOverflowALot &&
8039           _collector->simulate_overflow()) {
8040         // simulate a stack overflow
8041         simulate_overflow = true;
8042       }
8043     )
8044     if (simulate_overflow || !_mark_stack->push(obj)) {
8045       if (_concurrent_precleaning) {
8046         // We dirty the overflown object and let the remark
8047         // phase deal with it.
8048         assert(_collector->overflow_list_is_empty(), "Error");
8049         // In the case of object arrays, we need to dirty all of
8050         // the cards that the object spans. No locking or atomics
8051         // are needed since no one else can be mutating the mod union
8052         // table.
8053         if (obj->is_objArray()) {
8054           size_t sz = obj->size();
8055           HeapWord* end_card_addr =
8056             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8057           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8058           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8059           _collector->_modUnionTable.mark_range(redirty_range);
8060         } else {
8061           _collector->_modUnionTable.mark(addr);
8062         }
8063         _collector->_ser_kac_preclean_ovflw++;
8064       } else {
8065         _collector->push_on_overflow_list(obj);
8066         _collector->_ser_kac_ovflw++;
8067       }
8068     }
8069   }
8070 }
8071 
8072 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8073 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8074 
8075 // CMSParKeepAliveClosure: a parallel version of the above.
8076 // The work queues are private to each closure (thread),
8077 // but (may be) available for stealing by other threads.
8078 void CMSParKeepAliveClosure::do_oop(oop obj) {
8079   HeapWord* addr = (HeapWord*)obj;
8080   if (_span.contains(addr) &&
8081       !_bit_map->isMarked(addr)) {
8082     // In general, during recursive tracing, several threads
8083     // may be concurrently getting here; the first one to
8084     // "tag" it, claims it.
8085     if (_bit_map->par_mark(addr)) {
8086       bool res = _work_queue->push(obj);
8087       assert(res, "Low water mark should be much less than capacity");
8088       // Do a recursive trim in the hope that this will keep
8089       // stack usage lower, but leave some oops for potential stealers
8090       trim_queue(_low_water_mark);
8091     } // Else, another thread got there first
8092   }
8093 }
8094 
8095 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8096 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8097 
8098 void CMSParKeepAliveClosure::trim_queue(uint max) {
8099   while (_work_queue->size() > max) {
8100     oop new_oop;
8101     if (_work_queue->pop_local(new_oop)) {
8102       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8103       assert(_bit_map->isMarked((HeapWord*)new_oop),
8104              "no white objects on this stack!");
8105       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8106       // iterate over the oops in this oop, marking and pushing
8107       // the ones in CMS heap (i.e. in _span).
8108       new_oop->oop_iterate(&_mark_and_push);
8109     }
8110   }
8111 }
8112 
8113 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8114                                 CMSCollector* collector,
8115                                 MemRegion span, CMSBitMap* bit_map,
8116                                 OopTaskQueue* work_queue):
8117   _collector(collector),
8118   _span(span),
8119   _bit_map(bit_map),
8120   _work_queue(work_queue) { }
8121 
8122 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8123   HeapWord* addr = (HeapWord*)obj;
8124   if (_span.contains(addr) &&
8125       !_bit_map->isMarked(addr)) {
8126     if (_bit_map->par_mark(addr)) {
8127       bool simulate_overflow = false;
8128       NOT_PRODUCT(
8129         if (CMSMarkStackOverflowALot &&
8130             _collector->par_simulate_overflow()) {
8131           // simulate a stack overflow
8132           simulate_overflow = true;
8133         }
8134       )
8135       if (simulate_overflow || !_work_queue->push(obj)) {
8136         _collector->par_push_on_overflow_list(obj);
8137         _collector->_par_kac_ovflw++;
8138       }
8139     } // Else another thread got there already
8140   }
8141 }
8142 
8143 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8144 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8145 
8146 //////////////////////////////////////////////////////////////////
8147 //  CMSExpansionCause                /////////////////////////////
8148 //////////////////////////////////////////////////////////////////
8149 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8150   switch (cause) {
8151     case _no_expansion:
8152       return "No expansion";
8153     case _satisfy_free_ratio:
8154       return "Free ratio";
8155     case _satisfy_promotion:
8156       return "Satisfy promotion";
8157     case _satisfy_allocation:
8158       return "allocation";
8159     case _allocate_par_lab:
8160       return "Par LAB";
8161     case _allocate_par_spooling_space:
8162       return "Par Spooling Space";
8163     case _adaptive_size_policy:
8164       return "Ergonomics";
8165     default:
8166       return "unknown";
8167   }
8168 }
8169 
8170 void CMSDrainMarkingStackClosure::do_void() {
8171   // the max number to take from overflow list at a time
8172   const size_t num = _mark_stack->capacity()/4;
8173   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8174          "Overflow list should be NULL during concurrent phases");
8175   while (!_mark_stack->isEmpty() ||
8176          // if stack is empty, check the overflow list
8177          _collector->take_from_overflow_list(num, _mark_stack)) {
8178     oop obj = _mark_stack->pop();
8179     HeapWord* addr = (HeapWord*)obj;
8180     assert(_span.contains(addr), "Should be within span");
8181     assert(_bit_map->isMarked(addr), "Should be marked");
8182     assert(obj->is_oop(), "Should be an oop");
8183     obj->oop_iterate(_keep_alive);
8184   }
8185 }
8186 
8187 void CMSParDrainMarkingStackClosure::do_void() {
8188   // drain queue
8189   trim_queue(0);
8190 }
8191 
8192 // Trim our work_queue so its length is below max at return
8193 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8194   while (_work_queue->size() > max) {
8195     oop new_oop;
8196     if (_work_queue->pop_local(new_oop)) {
8197       assert(new_oop->is_oop(), "Expected an oop");
8198       assert(_bit_map->isMarked((HeapWord*)new_oop),
8199              "no white objects on this stack!");
8200       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8201       // iterate over the oops in this oop, marking and pushing
8202       // the ones in CMS heap (i.e. in _span).
8203       new_oop->oop_iterate(&_mark_and_push);
8204     }
8205   }
8206 }
8207 
8208 ////////////////////////////////////////////////////////////////////
8209 // Support for Marking Stack Overflow list handling and related code
8210 ////////////////////////////////////////////////////////////////////
8211 // Much of the following code is similar in shape and spirit to the
8212 // code used in ParNewGC. We should try and share that code
8213 // as much as possible in the future.
8214 
8215 #ifndef PRODUCT
8216 // Debugging support for CMSStackOverflowALot
8217 
8218 // It's OK to call this multi-threaded;  the worst thing
8219 // that can happen is that we'll get a bunch of closely
8220 // spaced simulated overflows, but that's OK, in fact
8221 // probably good as it would exercise the overflow code
8222 // under contention.
8223 bool CMSCollector::simulate_overflow() {
8224   if (_overflow_counter-- <= 0) { // just being defensive
8225     _overflow_counter = CMSMarkStackOverflowInterval;
8226     return true;
8227   } else {
8228     return false;
8229   }
8230 }
8231 
8232 bool CMSCollector::par_simulate_overflow() {
8233   return simulate_overflow();
8234 }
8235 #endif
8236 
8237 // Single-threaded
8238 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8239   assert(stack->isEmpty(), "Expected precondition");
8240   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8241   size_t i = num;
8242   oop  cur = _overflow_list;
8243   const markOop proto = markOopDesc::prototype();
8244   NOT_PRODUCT(ssize_t n = 0;)
8245   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8246     next = oop(cur->mark());
8247     cur->set_mark(proto);   // until proven otherwise
8248     assert(cur->is_oop(), "Should be an oop");
8249     bool res = stack->push(cur);
8250     assert(res, "Bit off more than can chew?");
8251     NOT_PRODUCT(n++;)
8252   }
8253   _overflow_list = cur;
8254 #ifndef PRODUCT
8255   assert(_num_par_pushes >= n, "Too many pops?");
8256   _num_par_pushes -=n;
8257 #endif
8258   return !stack->isEmpty();
8259 }
8260 
8261 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8262 // (MT-safe) Get a prefix of at most "num" from the list.
8263 // The overflow list is chained through the mark word of
8264 // each object in the list. We fetch the entire list,
8265 // break off a prefix of the right size and return the
8266 // remainder. If other threads try to take objects from
8267 // the overflow list at that time, they will wait for
8268 // some time to see if data becomes available. If (and
8269 // only if) another thread places one or more object(s)
8270 // on the global list before we have returned the suffix
8271 // to the global list, we will walk down our local list
8272 // to find its end and append the global list to
8273 // our suffix before returning it. This suffix walk can
8274 // prove to be expensive (quadratic in the amount of traffic)
8275 // when there are many objects in the overflow list and
8276 // there is much producer-consumer contention on the list.
8277 // *NOTE*: The overflow list manipulation code here and
8278 // in ParNewGeneration:: are very similar in shape,
8279 // except that in the ParNew case we use the old (from/eden)
8280 // copy of the object to thread the list via its klass word.
8281 // Because of the common code, if you make any changes in
8282 // the code below, please check the ParNew version to see if
8283 // similar changes might be needed.
8284 // CR 6797058 has been filed to consolidate the common code.
8285 bool CMSCollector::par_take_from_overflow_list(size_t num,
8286                                                OopTaskQueue* work_q,
8287                                                int no_of_gc_threads) {
8288   assert(work_q->size() == 0, "First empty local work queue");
8289   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8290   if (_overflow_list == NULL) {
8291     return false;
8292   }
8293   // Grab the entire list; we'll put back a suffix
8294   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8295   Thread* tid = Thread::current();
8296   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8297   // set to ParallelGCThreads.
8298   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8299   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8300   // If the list is busy, we spin for a short while,
8301   // sleeping between attempts to get the list.
8302   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8303     os::sleep(tid, sleep_time_millis, false);
8304     if (_overflow_list == NULL) {
8305       // Nothing left to take
8306       return false;
8307     } else if (_overflow_list != BUSY) {
8308       // Try and grab the prefix
8309       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8310     }
8311   }
8312   // If the list was found to be empty, or we spun long
8313   // enough, we give up and return empty-handed. If we leave
8314   // the list in the BUSY state below, it must be the case that
8315   // some other thread holds the overflow list and will set it
8316   // to a non-BUSY state in the future.
8317   if (prefix == NULL || prefix == BUSY) {
8318      // Nothing to take or waited long enough
8319      if (prefix == NULL) {
8320        // Write back the NULL in case we overwrote it with BUSY above
8321        // and it is still the same value.
8322        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8323      }
8324      return false;
8325   }
8326   assert(prefix != NULL && prefix != BUSY, "Error");
8327   size_t i = num;
8328   oop cur = prefix;
8329   // Walk down the first "num" objects, unless we reach the end.
8330   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8331   if (cur->mark() == NULL) {
8332     // We have "num" or fewer elements in the list, so there
8333     // is nothing to return to the global list.
8334     // Write back the NULL in lieu of the BUSY we wrote
8335     // above, if it is still the same value.
8336     if (_overflow_list == BUSY) {
8337       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8338     }
8339   } else {
8340     // Chop off the suffix and return it to the global list.
8341     assert(cur->mark() != BUSY, "Error");
8342     oop suffix_head = cur->mark(); // suffix will be put back on global list
8343     cur->set_mark(NULL);           // break off suffix
8344     // It's possible that the list is still in the empty(busy) state
8345     // we left it in a short while ago; in that case we may be
8346     // able to place back the suffix without incurring the cost
8347     // of a walk down the list.
8348     oop observed_overflow_list = _overflow_list;
8349     oop cur_overflow_list = observed_overflow_list;
8350     bool attached = false;
8351     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8352       observed_overflow_list =
8353         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8354       if (cur_overflow_list == observed_overflow_list) {
8355         attached = true;
8356         break;
8357       } else cur_overflow_list = observed_overflow_list;
8358     }
8359     if (!attached) {
8360       // Too bad, someone else sneaked in (at least) an element; we'll need
8361       // to do a splice. Find tail of suffix so we can prepend suffix to global
8362       // list.
8363       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8364       oop suffix_tail = cur;
8365       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8366              "Tautology");
8367       observed_overflow_list = _overflow_list;
8368       do {
8369         cur_overflow_list = observed_overflow_list;
8370         if (cur_overflow_list != BUSY) {
8371           // Do the splice ...
8372           suffix_tail->set_mark(markOop(cur_overflow_list));
8373         } else { // cur_overflow_list == BUSY
8374           suffix_tail->set_mark(NULL);
8375         }
8376         // ... and try to place spliced list back on overflow_list ...
8377         observed_overflow_list =
8378           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8379       } while (cur_overflow_list != observed_overflow_list);
8380       // ... until we have succeeded in doing so.
8381     }
8382   }
8383 
8384   // Push the prefix elements on work_q
8385   assert(prefix != NULL, "control point invariant");
8386   const markOop proto = markOopDesc::prototype();
8387   oop next;
8388   NOT_PRODUCT(ssize_t n = 0;)
8389   for (cur = prefix; cur != NULL; cur = next) {
8390     next = oop(cur->mark());
8391     cur->set_mark(proto);   // until proven otherwise
8392     assert(cur->is_oop(), "Should be an oop");
8393     bool res = work_q->push(cur);
8394     assert(res, "Bit off more than we can chew?");
8395     NOT_PRODUCT(n++;)
8396   }
8397 #ifndef PRODUCT
8398   assert(_num_par_pushes >= n, "Too many pops?");
8399   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8400 #endif
8401   return true;
8402 }
8403 
8404 // Single-threaded
8405 void CMSCollector::push_on_overflow_list(oop p) {
8406   NOT_PRODUCT(_num_par_pushes++;)
8407   assert(p->is_oop(), "Not an oop");
8408   preserve_mark_if_necessary(p);
8409   p->set_mark((markOop)_overflow_list);
8410   _overflow_list = p;
8411 }
8412 
8413 // Multi-threaded; use CAS to prepend to overflow list
8414 void CMSCollector::par_push_on_overflow_list(oop p) {
8415   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8416   assert(p->is_oop(), "Not an oop");
8417   par_preserve_mark_if_necessary(p);
8418   oop observed_overflow_list = _overflow_list;
8419   oop cur_overflow_list;
8420   do {
8421     cur_overflow_list = observed_overflow_list;
8422     if (cur_overflow_list != BUSY) {
8423       p->set_mark(markOop(cur_overflow_list));
8424     } else {
8425       p->set_mark(NULL);
8426     }
8427     observed_overflow_list =
8428       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8429   } while (cur_overflow_list != observed_overflow_list);
8430 }
8431 #undef BUSY
8432 
8433 // Single threaded
8434 // General Note on GrowableArray: pushes may silently fail
8435 // because we are (temporarily) out of C-heap for expanding
8436 // the stack. The problem is quite ubiquitous and affects
8437 // a lot of code in the JVM. The prudent thing for GrowableArray
8438 // to do (for now) is to exit with an error. However, that may
8439 // be too draconian in some cases because the caller may be
8440 // able to recover without much harm. For such cases, we
8441 // should probably introduce a "soft_push" method which returns
8442 // an indication of success or failure with the assumption that
8443 // the caller may be able to recover from a failure; code in
8444 // the VM can then be changed, incrementally, to deal with such
8445 // failures where possible, thus, incrementally hardening the VM
8446 // in such low resource situations.
8447 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8448   _preserved_oop_stack.push(p);
8449   _preserved_mark_stack.push(m);
8450   assert(m == p->mark(), "Mark word changed");
8451   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8452          "bijection");
8453 }
8454 
8455 // Single threaded
8456 void CMSCollector::preserve_mark_if_necessary(oop p) {
8457   markOop m = p->mark();
8458   if (m->must_be_preserved(p)) {
8459     preserve_mark_work(p, m);
8460   }
8461 }
8462 
8463 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8464   markOop m = p->mark();
8465   if (m->must_be_preserved(p)) {
8466     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8467     // Even though we read the mark word without holding
8468     // the lock, we are assured that it will not change
8469     // because we "own" this oop, so no other thread can
8470     // be trying to push it on the overflow list; see
8471     // the assertion in preserve_mark_work() that checks
8472     // that m == p->mark().
8473     preserve_mark_work(p, m);
8474   }
8475 }
8476 
8477 // We should be able to do this multi-threaded,
8478 // a chunk of stack being a task (this is
8479 // correct because each oop only ever appears
8480 // once in the overflow list. However, it's
8481 // not very easy to completely overlap this with
8482 // other operations, so will generally not be done
8483 // until all work's been completed. Because we
8484 // expect the preserved oop stack (set) to be small,
8485 // it's probably fine to do this single-threaded.
8486 // We can explore cleverer concurrent/overlapped/parallel
8487 // processing of preserved marks if we feel the
8488 // need for this in the future. Stack overflow should
8489 // be so rare in practice and, when it happens, its
8490 // effect on performance so great that this will
8491 // likely just be in the noise anyway.
8492 void CMSCollector::restore_preserved_marks_if_any() {
8493   assert(SafepointSynchronize::is_at_safepoint(),
8494          "world should be stopped");
8495   assert(Thread::current()->is_ConcurrentGC_thread() ||
8496          Thread::current()->is_VM_thread(),
8497          "should be single-threaded");
8498   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8499          "bijection");
8500 
8501   while (!_preserved_oop_stack.is_empty()) {
8502     oop p = _preserved_oop_stack.pop();
8503     assert(p->is_oop(), "Should be an oop");
8504     assert(_span.contains(p), "oop should be in _span");
8505     assert(p->mark() == markOopDesc::prototype(),
8506            "Set when taken from overflow list");
8507     markOop m = _preserved_mark_stack.pop();
8508     p->set_mark(m);
8509   }
8510   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8511          "stacks were cleared above");
8512 }
8513 
8514 #ifndef PRODUCT
8515 bool CMSCollector::no_preserved_marks() const {
8516   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8517 }
8518 #endif
8519 
8520 // Transfer some number of overflown objects to usual marking
8521 // stack. Return true if some objects were transferred.
8522 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8523   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8524                     (size_t)ParGCDesiredObjsFromOverflowList);
8525 
8526   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8527   assert(_collector->overflow_list_is_empty() || res,
8528          "If list is not empty, we should have taken something");
8529   assert(!res || !_mark_stack->isEmpty(),
8530          "If we took something, it should now be on our stack");
8531   return res;
8532 }
8533 
8534 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8535   size_t res = _sp->block_size_no_stall(addr, _collector);
8536   if (_sp->block_is_obj(addr)) {
8537     if (_live_bit_map->isMarked(addr)) {
8538       // It can't have been dead in a previous cycle
8539       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8540     } else {
8541       _dead_bit_map->mark(addr);      // mark the dead object
8542     }
8543   }
8544   // Could be 0, if the block size could not be computed without stalling.
8545   return res;
8546 }
8547 
8548 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8549 
8550   switch (phase) {
8551     case CMSCollector::InitialMarking:
8552       initialize(true  /* fullGC */ ,
8553                  cause /* cause of the GC */,
8554                  true  /* recordGCBeginTime */,
8555                  true  /* recordPreGCUsage */,
8556                  false /* recordPeakUsage */,
8557                  false /* recordPostGCusage */,
8558                  true  /* recordAccumulatedGCTime */,
8559                  false /* recordGCEndTime */,
8560                  false /* countCollection */  );
8561       break;
8562 
8563     case CMSCollector::FinalMarking:
8564       initialize(true  /* fullGC */ ,
8565                  cause /* cause of the GC */,
8566                  false /* recordGCBeginTime */,
8567                  false /* recordPreGCUsage */,
8568                  false /* recordPeakUsage */,
8569                  false /* recordPostGCusage */,
8570                  true  /* recordAccumulatedGCTime */,
8571                  false /* recordGCEndTime */,
8572                  false /* countCollection */  );
8573       break;
8574 
8575     case CMSCollector::Sweeping:
8576       initialize(true  /* fullGC */ ,
8577                  cause /* cause of the GC */,
8578                  false /* recordGCBeginTime */,
8579                  false /* recordPreGCUsage */,
8580                  true  /* recordPeakUsage */,
8581                  true  /* recordPostGCusage */,
8582                  false /* recordAccumulatedGCTime */,
8583                  true  /* recordGCEndTime */,
8584                  true  /* countCollection */  );
8585       break;
8586 
8587     default:
8588       ShouldNotReachHere();
8589   }
8590 }