1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc/cms/cmsOopClosures.hpp"
  29 #include "gc/cms/gSpaceCounters.hpp"
  30 #include "gc/cms/yieldingWorkgroup.hpp"
  31 #include "gc/shared/cardGeneration.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcStats.hpp"
  34 #include "gc/shared/gcWhen.hpp"
  35 #include "gc/shared/generationCounters.hpp"
  36 #include "gc/shared/space.hpp"
  37 #include "gc/shared/taskqueue.hpp"
  38 #include "memory/freeBlockDictionary.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/virtualspace.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "services/memoryService.hpp"
  43 #include "utilities/bitMap.hpp"
  44 #include "utilities/stack.hpp"
  45 
  46 // ConcurrentMarkSweepGeneration is in support of a concurrent
  47 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  48 // style. We assume, for now, that this generation is always the
  49 // seniormost generation and for simplicity
  50 // in the first implementation, that this generation is a single compactible
  51 // space. Neither of these restrictions appears essential, and will be
  52 // relaxed in the future when more time is available to implement the
  53 // greater generality (and there's a need for it).
  54 //
  55 // Concurrent mode failures are currently handled by
  56 // means of a sliding mark-compact.
  57 
  58 class AdaptiveSizePolicy;
  59 class CMSCollector;
  60 class CMSConcMarkingTask;
  61 class CMSGCAdaptivePolicyCounters;
  62 class CMSTracer;
  63 class ConcurrentGCTimer;
  64 class ConcurrentMarkSweepGeneration;
  65 class ConcurrentMarkSweepPolicy;
  66 class ConcurrentMarkSweepThread;
  67 class CompactibleFreeListSpace;
  68 class FreeChunk;
  69 class ParNewGeneration;
  70 class PromotionInfo;
  71 class ScanMarkedObjectsAgainCarefullyClosure;
  72 class TenuredGeneration;
  73 class SerialOldTracer;
  74 
  75 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  76 // as well as for the mod union table (in each case only a subset of the
  77 // methods are used). This is essentially a wrapper around the BitMap class,
  78 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  79 // we have _shifter == 0. and for the mod union table we have
  80 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  81 // XXX 64-bit issues in BitMap?
  82 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  83   friend class VMStructs;
  84 
  85   HeapWord* _bmStartWord;   // base address of range covered by map
  86   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  87   const int _shifter;       // shifts to convert HeapWord to bit position
  88   VirtualSpace _virtual_space; // underlying the bit map
  89   BitMap    _bm;            // the bit map itself
  90 
  91   // If true, allocate the backing bit map so that it covers the YG in
  92   // addition to the OG and the PG. This is used to share the
  93   // underlying bit map (RAM) between the concurrent collector and the
  94   // parallel full GC under CMSParallelFullGC if
  95   // ShareCMSMarkBitMapWithParallelFullGC is true.
  96   bool      _allocate_for_entire_heap;
  97  public:
  98   Mutex* const _lock;       // mutex protecting _bm;
  99 
 100  public:
 101   // constructor
 102   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name,
 103             bool allocate_for_entire_heap = false);
 104 
 105   MemRegion vspace_mr() {
 106     assert(_virtual_space.reserved_size() == _virtual_space.committed_size(),
 107            "Must be fully committed by initialize().");
 108     return MemRegion((HeapWord*)_virtual_space.low_boundary(),
 109                      (HeapWord*)_virtual_space.high_boundary());
 110   }
 111 
 112   // allocates the actual storage for the map
 113   bool allocate(MemRegion mr);
 114   // field getter
 115   Mutex* lock() const { return _lock; }
 116   // locking verifier convenience function
 117   void assert_locked() const PRODUCT_RETURN;
 118 
 119   // inquiries
 120   HeapWord* startWord()   const { return _bmStartWord; }
 121   size_t    sizeInWords() const { return _bmWordSize;  }
 122   size_t    sizeInBits()  const { return _bm.size();   }
 123   // the following is one past the last word in space
 124   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 125 
 126   // reading marks
 127   bool isMarked(HeapWord* addr) const;
 128   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 129   bool isUnmarked(HeapWord* addr) const;
 130   bool isAllClear() const;
 131 
 132   // writing marks
 133   void mark(HeapWord* addr);
 134   // For marking by parallel GC threads;
 135   // returns true if we did, false if another thread did
 136   bool par_mark(HeapWord* addr);
 137 
 138   void mark_range(MemRegion mr);
 139   void par_mark_range(MemRegion mr);
 140   void mark_large_range(MemRegion mr);
 141   void par_mark_large_range(MemRegion mr);
 142   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 143   void clear_range(MemRegion mr);
 144   void par_clear_range(MemRegion mr);
 145   void clear_large_range(MemRegion mr);
 146   void par_clear_large_range(MemRegion mr);
 147   void clear_all();
 148   void clear_all_incrementally();  // Not yet implemented!!
 149 
 150   NOT_PRODUCT(
 151     // checks the memory region for validity
 152     void region_invariant(MemRegion mr);
 153   )
 154 
 155   // iteration
 156   void iterate(BitMapClosure* cl) {
 157     _bm.iterate(cl);
 158   }
 159   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 160   void dirty_range_iterate_clear(MemRegionClosure* cl);
 161   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 162 
 163   // auxiliary support for iteration
 164   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 165   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 166                                             HeapWord* end_addr) const;
 167   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 168   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 169                                               HeapWord* end_addr) const;
 170   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 171   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 172                                            HeapWord* end_addr);
 173 
 174   // conversion utilities
 175   HeapWord* offsetToHeapWord(size_t offset) const;
 176   size_t    heapWordToOffset(HeapWord* addr) const;
 177   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 178 
 179   void print_on_error(outputStream* st, const char* prefix) const;
 180 
 181   // debugging
 182   // is this address range covered by the bit-map?
 183   NOT_PRODUCT(
 184     bool covers(MemRegion mr) const;
 185     bool covers(HeapWord* start, size_t size = 0) const;
 186   )
 187   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 188 };
 189 
 190 // Represents a marking stack used by the CMS collector.
 191 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 192 class CMSMarkStack: public CHeapObj<mtGC>  {
 193   friend class CMSCollector;   // To get at expansion stats further below.
 194 
 195   VirtualSpace _virtual_space;  // Space for the stack
 196   oop*   _base;      // Bottom of stack
 197   size_t _index;     // One more than last occupied index
 198   size_t _capacity;  // Max #elements
 199   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 200   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 201 
 202  protected:
 203   size_t _hit_limit;      // We hit max stack size limit
 204   size_t _failed_double;  // We failed expansion before hitting limit
 205 
 206  public:
 207   CMSMarkStack():
 208     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true,
 209               Monitor::_safepoint_check_never),
 210     _hit_limit(0),
 211     _failed_double(0) {}
 212 
 213   bool allocate(size_t size);
 214 
 215   size_t capacity() const { return _capacity; }
 216 
 217   oop pop() {
 218     if (!isEmpty()) {
 219       return _base[--_index] ;
 220     }
 221     return NULL;
 222   }
 223 
 224   bool push(oop ptr) {
 225     if (isFull()) {
 226       return false;
 227     } else {
 228       _base[_index++] = ptr;
 229       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 230       return true;
 231     }
 232   }
 233 
 234   bool isEmpty() const { return _index == 0; }
 235   bool isFull()  const {
 236     assert(_index <= _capacity, "buffer overflow");
 237     return _index == _capacity;
 238   }
 239 
 240   size_t length() { return _index; }
 241 
 242   // "Parallel versions" of some of the above
 243   oop par_pop() {
 244     // lock and pop
 245     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 246     return pop();
 247   }
 248 
 249   bool par_push(oop ptr) {
 250     // lock and push
 251     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 252     return push(ptr);
 253   }
 254 
 255   // Forcibly reset the stack, losing all of its contents.
 256   void reset() {
 257     _index = 0;
 258   }
 259 
 260   // Expand the stack, typically in response to an overflow condition.
 261   void expand();
 262 
 263   // Compute the least valued stack element.
 264   oop least_value(HeapWord* low) {
 265      oop least = (oop)low;
 266      for (size_t i = 0; i < _index; i++) {
 267        least = MIN2(least, _base[i]);
 268      }
 269      return least;
 270   }
 271 
 272   // Exposed here to allow stack expansion in || case.
 273   Mutex* par_lock() { return &_par_lock; }
 274 };
 275 
 276 class CardTableRS;
 277 class CMSParGCThreadState;
 278 
 279 class ModUnionClosure: public MemRegionClosure {
 280  protected:
 281   CMSBitMap* _t;
 282  public:
 283   ModUnionClosure(CMSBitMap* t): _t(t) { }
 284   void do_MemRegion(MemRegion mr);
 285 };
 286 
 287 class ModUnionClosurePar: public ModUnionClosure {
 288  public:
 289   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 290   void do_MemRegion(MemRegion mr);
 291 };
 292 
 293 // Survivor Chunk Array in support of parallelization of
 294 // Survivor Space rescan.
 295 class ChunkArray: public CHeapObj<mtGC> {
 296   size_t _index;
 297   size_t _capacity;
 298   size_t _overflows;
 299   HeapWord** _array;   // storage for array
 300 
 301  public:
 302   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 303   ChunkArray(HeapWord** a, size_t c):
 304     _index(0), _capacity(c), _overflows(0), _array(a) {}
 305 
 306   HeapWord** array() { return _array; }
 307   void set_array(HeapWord** a) { _array = a; }
 308 
 309   size_t capacity() { return _capacity; }
 310   void set_capacity(size_t c) { _capacity = c; }
 311 
 312   size_t end() {
 313     assert(_index <= capacity(),
 314            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 315                    _index, _capacity));
 316     return _index;
 317   }  // exclusive
 318 
 319   HeapWord* nth(size_t n) {
 320     assert(n < end(), "Out of bounds access");
 321     return _array[n];
 322   }
 323 
 324   void reset() {
 325     _index = 0;
 326     if (_overflows > 0 && PrintCMSStatistics > 1) {
 327       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 328               _capacity, _overflows);
 329     }
 330     _overflows = 0;
 331   }
 332 
 333   void record_sample(HeapWord* p, size_t sz) {
 334     // For now we do not do anything with the size
 335     if (_index < _capacity) {
 336       _array[_index++] = p;
 337     } else {
 338       ++_overflows;
 339       assert(_index == _capacity,
 340              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 341                      "): out of bounds at overflow#" SIZE_FORMAT,
 342                      _index, _capacity, _overflows));
 343     }
 344   }
 345 };
 346 
 347 //
 348 // Timing, allocation and promotion statistics for gc scheduling and incremental
 349 // mode pacing.  Most statistics are exponential averages.
 350 //
 351 class CMSStats VALUE_OBJ_CLASS_SPEC {
 352  private:
 353   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 354 
 355   // The following are exponential averages with factor alpha:
 356   //   avg = (100 - alpha) * avg + alpha * cur_sample
 357   //
 358   //   The durations measure:  end_time[n] - start_time[n]
 359   //   The periods measure:    start_time[n] - start_time[n-1]
 360   //
 361   // The cms period and duration include only concurrent collections; time spent
 362   // in foreground cms collections due to System.gc() or because of a failure to
 363   // keep up are not included.
 364   //
 365   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 366   // real value, but is used only after the first period.  A value of 100 is
 367   // used for the first sample so it gets the entire weight.
 368   unsigned int _saved_alpha; // 0-100
 369   unsigned int _gc0_alpha;
 370   unsigned int _cms_alpha;
 371 
 372   double _gc0_duration;
 373   double _gc0_period;
 374   size_t _gc0_promoted;         // bytes promoted per gc0
 375   double _cms_duration;
 376   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 377   double _cms_period;
 378   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 379 
 380   // Timers.
 381   elapsedTimer _cms_timer;
 382   TimeStamp    _gc0_begin_time;
 383   TimeStamp    _cms_begin_time;
 384   TimeStamp    _cms_end_time;
 385 
 386   // Snapshots of the amount used in the CMS generation.
 387   size_t _cms_used_at_gc0_begin;
 388   size_t _cms_used_at_gc0_end;
 389   size_t _cms_used_at_cms_begin;
 390 
 391   // Used to prevent the duty cycle from being reduced in the middle of a cms
 392   // cycle.
 393   bool _allow_duty_cycle_reduction;
 394 
 395   enum {
 396     _GC0_VALID = 0x1,
 397     _CMS_VALID = 0x2,
 398     _ALL_VALID = _GC0_VALID | _CMS_VALID
 399   };
 400 
 401   unsigned int _valid_bits;
 402 
 403  protected:
 404   // In support of adjusting of cms trigger ratios based on history
 405   // of concurrent mode failure.
 406   double cms_free_adjustment_factor(size_t free) const;
 407   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 408 
 409  public:
 410   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 411            unsigned int alpha = CMSExpAvgFactor);
 412 
 413   // Whether or not the statistics contain valid data; higher level statistics
 414   // cannot be called until this returns true (they require at least one young
 415   // gen and one cms cycle to have completed).
 416   bool valid() const;
 417 
 418   // Record statistics.
 419   void record_gc0_begin();
 420   void record_gc0_end(size_t cms_gen_bytes_used);
 421   void record_cms_begin();
 422   void record_cms_end();
 423 
 424   // Allow management of the cms timer, which must be stopped/started around
 425   // yield points.
 426   elapsedTimer& cms_timer()     { return _cms_timer; }
 427   void start_cms_timer()        { _cms_timer.start(); }
 428   void stop_cms_timer()         { _cms_timer.stop(); }
 429 
 430   // Basic statistics; units are seconds or bytes.
 431   double gc0_period() const     { return _gc0_period; }
 432   double gc0_duration() const   { return _gc0_duration; }
 433   size_t gc0_promoted() const   { return _gc0_promoted; }
 434   double cms_period() const          { return _cms_period; }
 435   double cms_duration() const        { return _cms_duration; }
 436   size_t cms_allocated() const       { return _cms_allocated; }
 437 
 438   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 439 
 440   // Seconds since the last background cms cycle began or ended.
 441   double cms_time_since_begin() const;
 442   double cms_time_since_end() const;
 443 
 444   // Higher level statistics--caller must check that valid() returns true before
 445   // calling.
 446 
 447   // Returns bytes promoted per second of wall clock time.
 448   double promotion_rate() const;
 449 
 450   // Returns bytes directly allocated per second of wall clock time.
 451   double cms_allocation_rate() const;
 452 
 453   // Rate at which space in the cms generation is being consumed (sum of the
 454   // above two).
 455   double cms_consumption_rate() const;
 456 
 457   // Returns an estimate of the number of seconds until the cms generation will
 458   // fill up, assuming no collection work is done.
 459   double time_until_cms_gen_full() const;
 460 
 461   // Returns an estimate of the number of seconds remaining until
 462   // the cms generation collection should start.
 463   double time_until_cms_start() const;
 464 
 465   // End of higher level statistics.
 466 
 467   // Debugging.
 468   void print_on(outputStream* st) const PRODUCT_RETURN;
 469   void print() const { print_on(gclog_or_tty); }
 470 };
 471 
 472 // A closure related to weak references processing which
 473 // we embed in the CMSCollector, since we need to pass
 474 // it to the reference processor for secondary filtering
 475 // of references based on reachability of referent;
 476 // see role of _is_alive_non_header closure in the
 477 // ReferenceProcessor class.
 478 // For objects in the CMS generation, this closure checks
 479 // if the object is "live" (reachable). Used in weak
 480 // reference processing.
 481 class CMSIsAliveClosure: public BoolObjectClosure {
 482   const MemRegion  _span;
 483   const CMSBitMap* _bit_map;
 484 
 485   friend class CMSCollector;
 486  public:
 487   CMSIsAliveClosure(MemRegion span,
 488                     CMSBitMap* bit_map):
 489     _span(span),
 490     _bit_map(bit_map) {
 491     assert(!span.is_empty(), "Empty span could spell trouble");
 492   }
 493 
 494   bool do_object_b(oop obj);
 495 };
 496 
 497 
 498 // Implements AbstractRefProcTaskExecutor for CMS.
 499 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 500 public:
 501 
 502   CMSRefProcTaskExecutor(CMSCollector& collector)
 503     : _collector(collector)
 504   { }
 505 
 506   // Executes a task using worker threads.
 507   virtual void execute(ProcessTask& task);
 508   virtual void execute(EnqueueTask& task);
 509 private:
 510   CMSCollector& _collector;
 511 };
 512 
 513 
 514 class CMSCollector: public CHeapObj<mtGC> {
 515   friend class VMStructs;
 516   friend class ConcurrentMarkSweepThread;
 517   friend class ConcurrentMarkSweepGeneration;
 518   friend class CompactibleFreeListSpace;
 519   friend class CMSParMarkTask;
 520   friend class CMSParInitialMarkTask;
 521   friend class CMSParRemarkTask;
 522   friend class CMSConcMarkingTask;
 523   friend class CMSRefProcTaskProxy;
 524   friend class CMSRefProcTaskExecutor;
 525   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 526   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 527   friend class PushOrMarkClosure;             // to access _restart_addr
 528   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 529   friend class MarkFromRootsClosure;          //  -- ditto --
 530                                               // ... and for clearing cards
 531   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 532                                               // ... and for clearing cards
 533   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 534   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 535   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 536   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 537   friend class PushAndMarkClosure;            //  -- ditto --
 538   friend class Par_PushAndMarkClosure;        //  -- ditto --
 539   friend class CMSKeepAliveClosure;           //  -- ditto --
 540   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 541   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 542   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 543   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 544   friend class VM_CMS_Operation;
 545   friend class VM_CMS_Initial_Mark;
 546   friend class VM_CMS_Final_Remark;
 547   friend class TraceCMSMemoryManagerStats;
 548 
 549  private:
 550   jlong _time_of_last_gc;
 551   void update_time_of_last_gc(jlong now) {
 552     _time_of_last_gc = now;
 553   }
 554 
 555   OopTaskQueueSet* _task_queues;
 556 
 557   // Overflow list of grey objects, threaded through mark-word
 558   // Manipulated with CAS in the parallel/multi-threaded case.
 559   oop _overflow_list;
 560   // The following array-pair keeps track of mark words
 561   // displaced for accommodating overflow list above.
 562   // This code will likely be revisited under RFE#4922830.
 563   Stack<oop, mtGC>     _preserved_oop_stack;
 564   Stack<markOop, mtGC> _preserved_mark_stack;
 565 
 566   int*             _hash_seed;
 567 
 568   // In support of multi-threaded concurrent phases
 569   YieldingFlexibleWorkGang* _conc_workers;
 570 
 571   // Performance Counters
 572   CollectorCounters* _gc_counters;
 573 
 574   // Initialization Errors
 575   bool _completed_initialization;
 576 
 577   // In support of ExplicitGCInvokesConcurrent
 578   static bool _full_gc_requested;
 579   static GCCause::Cause _full_gc_cause;
 580   unsigned int _collection_count_start;
 581 
 582   // Should we unload classes this concurrent cycle?
 583   bool _should_unload_classes;
 584   unsigned int  _concurrent_cycles_since_last_unload;
 585   unsigned int concurrent_cycles_since_last_unload() const {
 586     return _concurrent_cycles_since_last_unload;
 587   }
 588   // Did we (allow) unload classes in the previous concurrent cycle?
 589   bool unloaded_classes_last_cycle() const {
 590     return concurrent_cycles_since_last_unload() == 0;
 591   }
 592   // Root scanning options for perm gen
 593   int _roots_scanning_options;
 594   int roots_scanning_options() const      { return _roots_scanning_options; }
 595   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 596   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 597 
 598   // Verification support
 599   CMSBitMap     _verification_mark_bm;
 600   void verify_after_remark_work_1();
 601   void verify_after_remark_work_2();
 602 
 603   // True if any verification flag is on.
 604   bool _verifying;
 605   bool verifying() const { return _verifying; }
 606   void set_verifying(bool v) { _verifying = v; }
 607 
 608   // Collector policy
 609   ConcurrentMarkSweepPolicy* _collector_policy;
 610   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 611 
 612   void set_did_compact(bool v);
 613 
 614   // XXX Move these to CMSStats ??? FIX ME !!!
 615   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 616   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 617   // Padded decaying average estimates of the above
 618   AdaptivePaddedAverage _inter_sweep_estimate;
 619   AdaptivePaddedAverage _intra_sweep_estimate;
 620 
 621   CMSTracer* _gc_tracer_cm;
 622   ConcurrentGCTimer* _gc_timer_cm;
 623 
 624   bool _cms_start_registered;
 625 
 626   GCHeapSummary _last_heap_summary;
 627   MetaspaceSummary _last_metaspace_summary;
 628 
 629   void register_gc_start(GCCause::Cause cause);
 630   void register_gc_end();
 631   void save_heap_summary();
 632   void report_heap_summary(GCWhen::Type when);
 633 
 634  protected:
 635   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 636   MemRegion                      _span;    // Span covering above two
 637   CardTableRS*                   _ct;      // Card table
 638 
 639   // CMS marking support structures
 640   CMSBitMap     _markBitMap;
 641   CMSBitMap     _modUnionTable;
 642   CMSMarkStack  _markStack;
 643 
 644   HeapWord*     _restart_addr; // In support of marking stack overflow
 645   void          lower_restart_addr(HeapWord* low);
 646 
 647   // Counters in support of marking stack / work queue overflow handling:
 648   // a non-zero value indicates certain types of overflow events during
 649   // the current CMS cycle and could lead to stack resizing efforts at
 650   // an opportune future time.
 651   size_t        _ser_pmc_preclean_ovflw;
 652   size_t        _ser_pmc_remark_ovflw;
 653   size_t        _par_pmc_remark_ovflw;
 654   size_t        _ser_kac_preclean_ovflw;
 655   size_t        _ser_kac_ovflw;
 656   size_t        _par_kac_ovflw;
 657   NOT_PRODUCT(ssize_t _num_par_pushes;)
 658 
 659   // ("Weak") Reference processing support.
 660   ReferenceProcessor*            _ref_processor;
 661   CMSIsAliveClosure              _is_alive_closure;
 662   // Keep this textually after _markBitMap and _span; c'tor dependency.
 663 
 664   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 665   ModUnionClosurePar _modUnionClosurePar;
 666 
 667   // CMS abstract state machine
 668   // initial_state: Idling
 669   // next_state(Idling)            = {Marking}
 670   // next_state(Marking)           = {Precleaning, Sweeping}
 671   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 672   // next_state(AbortablePreclean) = {FinalMarking}
 673   // next_state(FinalMarking)      = {Sweeping}
 674   // next_state(Sweeping)          = {Resizing}
 675   // next_state(Resizing)          = {Resetting}
 676   // next_state(Resetting)         = {Idling}
 677   // The numeric values below are chosen so that:
 678   // . _collectorState <= Idling ==  post-sweep && pre-mark
 679   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 680   //                                            precleaning || abortablePrecleanb
 681  public:
 682   enum CollectorState {
 683     Resizing            = 0,
 684     Resetting           = 1,
 685     Idling              = 2,
 686     InitialMarking      = 3,
 687     Marking             = 4,
 688     Precleaning         = 5,
 689     AbortablePreclean   = 6,
 690     FinalMarking        = 7,
 691     Sweeping            = 8
 692   };
 693  protected:
 694   static CollectorState _collectorState;
 695 
 696   // State related to prologue/epilogue invocation for my generations
 697   bool _between_prologue_and_epilogue;
 698 
 699   // Signaling/State related to coordination between fore- and background GC
 700   // Note: When the baton has been passed from background GC to foreground GC,
 701   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 702   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 703                                  // wants to go active
 704   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 705                                  // yet passed the baton to the foreground GC
 706 
 707   // Support for CMSScheduleRemark (abortable preclean)
 708   bool _abort_preclean;
 709   bool _start_sampling;
 710 
 711   int    _numYields;
 712   size_t _numDirtyCards;
 713   size_t _sweep_count;
 714 
 715   // Occupancy used for bootstrapping stats
 716   double _bootstrap_occupancy;
 717 
 718   // Timer
 719   elapsedTimer _timer;
 720 
 721   // Timing, allocation and promotion statistics, used for scheduling.
 722   CMSStats      _stats;
 723 
 724   enum CMS_op_type {
 725     CMS_op_checkpointRootsInitial,
 726     CMS_op_checkpointRootsFinal
 727   };
 728 
 729   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 730   bool stop_world_and_do(CMS_op_type op);
 731 
 732   OopTaskQueueSet* task_queues() { return _task_queues; }
 733   int*             hash_seed(int i) { return &_hash_seed[i]; }
 734   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 735 
 736   // Support for parallelizing Eden rescan in CMS remark phase
 737   void sample_eden(); // ... sample Eden space top
 738 
 739  private:
 740   // Support for parallelizing young gen rescan in CMS remark phase
 741   ParNewGeneration* _young_gen;  // the younger gen
 742 
 743   HeapWord** _top_addr;    // ... Top of Eden
 744   HeapWord** _end_addr;    // ... End of Eden
 745   Mutex*     _eden_chunk_lock;
 746   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 747   size_t     _eden_chunk_index; // ... top (exclusive) of array
 748   size_t     _eden_chunk_capacity;  // ... max entries in array
 749 
 750   // Support for parallelizing survivor space rescan
 751   HeapWord** _survivor_chunk_array;
 752   size_t     _survivor_chunk_index;
 753   size_t     _survivor_chunk_capacity;
 754   size_t*    _cursor;
 755   ChunkArray* _survivor_plab_array;
 756 
 757   // A bounded minimum size of PLABs, should not return too small values since
 758   // this will affect the size of the data structures used for parallel young gen rescan
 759   size_t plab_sample_minimum_size();
 760 
 761   // Support for marking stack overflow handling
 762   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 763   bool par_take_from_overflow_list(size_t num,
 764                                    OopTaskQueue* to_work_q,
 765                                    int no_of_gc_threads);
 766   void push_on_overflow_list(oop p);
 767   void par_push_on_overflow_list(oop p);
 768   // The following is, obviously, not, in general, "MT-stable"
 769   bool overflow_list_is_empty() const;
 770 
 771   void preserve_mark_if_necessary(oop p);
 772   void par_preserve_mark_if_necessary(oop p);
 773   void preserve_mark_work(oop p, markOop m);
 774   void restore_preserved_marks_if_any();
 775   NOT_PRODUCT(bool no_preserved_marks() const;)
 776   // In support of testing overflow code
 777   NOT_PRODUCT(int _overflow_counter;)
 778   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 779   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 780 
 781   // CMS work methods
 782   void checkpointRootsInitialWork(); // Initial checkpoint work
 783 
 784   // A return value of false indicates failure due to stack overflow
 785   bool markFromRootsWork();  // Concurrent marking work
 786 
 787  public:   // FIX ME!!! only for testing
 788   bool do_marking_st();      // Single-threaded marking
 789   bool do_marking_mt();      // Multi-threaded  marking
 790 
 791  private:
 792 
 793   // Concurrent precleaning work
 794   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 795                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 796   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 797                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 798   // Does precleaning work, returning a quantity indicative of
 799   // the amount of "useful work" done.
 800   size_t preclean_work(bool clean_refs, bool clean_survivors);
 801   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 802   void abortable_preclean(); // Preclean while looking for possible abort
 803   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 804   // Helper function for above; merge-sorts the per-thread plab samples
 805   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 806   // Resets (i.e. clears) the per-thread plab sample vectors
 807   void reset_survivor_plab_arrays();
 808 
 809   // Final (second) checkpoint work
 810   void checkpointRootsFinalWork();
 811   // Work routine for parallel version of remark
 812   void do_remark_parallel();
 813   // Work routine for non-parallel version of remark
 814   void do_remark_non_parallel();
 815   // Reference processing work routine (during second checkpoint)
 816   void refProcessingWork();
 817 
 818   // Concurrent sweeping work
 819   void sweepWork(ConcurrentMarkSweepGeneration* gen);
 820 
 821   // (Concurrent) resetting of support data structures
 822   void reset(bool concurrent);
 823 
 824   // Clear _expansion_cause fields of constituent generations
 825   void clear_expansion_cause();
 826 
 827   // An auxiliary method used to record the ends of
 828   // used regions of each generation to limit the extent of sweep
 829   void save_sweep_limits();
 830 
 831   // A work method used by the foreground collector to do
 832   // a mark-sweep-compact.
 833   void do_compaction_work(bool clear_all_soft_refs);
 834 
 835   // Work methods for reporting concurrent mode interruption or failure
 836   bool is_external_interruption();
 837   void report_concurrent_mode_interruption();
 838 
 839   // If the background GC is active, acquire control from the background
 840   // GC and do the collection.
 841   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 842 
 843   // For synchronizing passing of control from background to foreground
 844   // GC.  waitForForegroundGC() is called by the background
 845   // collector.  It if had to wait for a foreground collection,
 846   // it returns true and the background collection should assume
 847   // that the collection was finished by the foreground
 848   // collector.
 849   bool waitForForegroundGC();
 850 
 851   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 852   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 853   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 854 
 855   void setup_cms_unloading_and_verification_state();
 856  public:
 857   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 858                CardTableRS*                   ct,
 859                ConcurrentMarkSweepPolicy*     cp);
 860   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 861 
 862   ReferenceProcessor* ref_processor() { return _ref_processor; }
 863   void ref_processor_init();
 864 
 865   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 866   static CollectorState abstract_state() { return _collectorState;  }
 867 
 868   bool should_abort_preclean() const; // Whether preclean should be aborted.
 869   size_t get_eden_used() const;
 870   size_t get_eden_capacity() const;
 871 
 872   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 873 
 874   // Locking checks
 875   NOT_PRODUCT(static bool have_cms_token();)
 876 
 877   bool shouldConcurrentCollect();
 878 
 879   void collect(bool   full,
 880                bool   clear_all_soft_refs,
 881                size_t size,
 882                bool   tlab);
 883   void collect_in_background(GCCause::Cause cause);
 884 
 885   // In support of ExplicitGCInvokesConcurrent
 886   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 887   // Should we unload classes in a particular concurrent cycle?
 888   bool should_unload_classes() const {
 889     return _should_unload_classes;
 890   }
 891   void update_should_unload_classes();
 892 
 893   void direct_allocated(HeapWord* start, size_t size);
 894 
 895   // Object is dead if not marked and current phase is sweeping.
 896   bool is_dead_obj(oop obj) const;
 897 
 898   // After a promotion (of "start"), do any necessary marking.
 899   // If "par", then it's being done by a parallel GC thread.
 900   // The last two args indicate if we need precise marking
 901   // and if so the size of the object so it can be dirtied
 902   // in its entirety.
 903   void promoted(bool par, HeapWord* start,
 904                 bool is_obj_array, size_t obj_size);
 905 
 906   void getFreelistLocks() const;
 907   void releaseFreelistLocks() const;
 908   bool haveFreelistLocks() const;
 909 
 910   // Adjust size of underlying generation
 911   void compute_new_size();
 912 
 913   // GC prologue and epilogue
 914   void gc_prologue(bool full);
 915   void gc_epilogue(bool full);
 916 
 917   jlong time_of_last_gc(jlong now) {
 918     if (_collectorState <= Idling) {
 919       // gc not in progress
 920       return _time_of_last_gc;
 921     } else {
 922       // collection in progress
 923       return now;
 924     }
 925   }
 926 
 927   // Support for parallel remark of survivor space
 928   void* get_data_recorder(int thr_num);
 929   void sample_eden_chunk();
 930 
 931   CMSBitMap* markBitMap()  { return &_markBitMap; }
 932   void directAllocated(HeapWord* start, size_t size);
 933 
 934   // Main CMS steps and related support
 935   void checkpointRootsInitial();
 936   bool markFromRoots();  // a return value of false indicates failure
 937                          // due to stack overflow
 938   void preclean();
 939   void checkpointRootsFinal();
 940   void sweep();
 941 
 942   // Check that the currently executing thread is the expected
 943   // one (foreground collector or background collector).
 944   static void check_correct_thread_executing() PRODUCT_RETURN;
 945 
 946   bool is_cms_reachable(HeapWord* addr);
 947 
 948   // Performance Counter Support
 949   CollectorCounters* counters()    { return _gc_counters; }
 950 
 951   // Timer stuff
 952   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 953   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 954   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 955   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 956 
 957   int  yields()          { return _numYields; }
 958   void resetYields()     { _numYields = 0;    }
 959   void incrementYields() { _numYields++;      }
 960   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 961   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 962   size_t  numDirtyCards()                 { return _numDirtyCards; }
 963 
 964   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 965   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 966   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 967   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 968   size_t sweep_count() const             { return _sweep_count; }
 969   void   increment_sweep_count()         { _sweep_count++; }
 970 
 971   // Timers/stats for gc scheduling and incremental mode pacing.
 972   CMSStats& stats() { return _stats; }
 973 
 974   // Adaptive size policy
 975   AdaptiveSizePolicy* size_policy();
 976 
 977   static void print_on_error(outputStream* st);
 978 
 979   // Debugging
 980   void verify();
 981   bool verify_after_remark(bool silent = VerifySilently);
 982   void verify_ok_to_terminate() const PRODUCT_RETURN;
 983   void verify_work_stacks_empty() const PRODUCT_RETURN;
 984   void verify_overflow_empty() const PRODUCT_RETURN;
 985 
 986   // Convenience methods in support of debugging
 987   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 988   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 989 
 990   // Accessors
 991   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 992   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 993 
 994   // Initialization errors
 995   bool completed_initialization() { return _completed_initialization; }
 996 
 997   void print_eden_and_survivor_chunk_arrays();
 998 };
 999 
1000 class CMSExpansionCause : public AllStatic  {
1001  public:
1002   enum Cause {
1003     _no_expansion,
1004     _satisfy_free_ratio,
1005     _satisfy_promotion,
1006     _satisfy_allocation,
1007     _allocate_par_lab,
1008     _allocate_par_spooling_space,
1009     _adaptive_size_policy
1010   };
1011   // Return a string describing the cause of the expansion.
1012   static const char* to_string(CMSExpansionCause::Cause cause);
1013 };
1014 
1015 class ConcurrentMarkSweepGeneration: public CardGeneration {
1016   friend class VMStructs;
1017   friend class ConcurrentMarkSweepThread;
1018   friend class ConcurrentMarkSweep;
1019   friend class CMSCollector;
1020  protected:
1021   static CMSCollector*       _collector; // the collector that collects us
1022   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1023 
1024   // Performance Counters
1025   GenerationCounters*      _gen_counters;
1026   GSpaceCounters*          _space_counters;
1027 
1028   // Words directly allocated, used by CMSStats.
1029   size_t _direct_allocated_words;
1030 
1031   // Non-product stat counters
1032   NOT_PRODUCT(
1033     size_t _numObjectsPromoted;
1034     size_t _numWordsPromoted;
1035     size_t _numObjectsAllocated;
1036     size_t _numWordsAllocated;
1037   )
1038 
1039   // Used for sizing decisions
1040   bool _incremental_collection_failed;
1041   bool incremental_collection_failed() {
1042     return _incremental_collection_failed;
1043   }
1044   void set_incremental_collection_failed() {
1045     _incremental_collection_failed = true;
1046   }
1047   void clear_incremental_collection_failed() {
1048     _incremental_collection_failed = false;
1049   }
1050 
1051   // accessors
1052   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1053   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1054 
1055   // Accessing spaces
1056   CompactibleSpace* space() const { return (CompactibleSpace*)_cmsSpace; }
1057 
1058  private:
1059   // For parallel young-gen GC support.
1060   CMSParGCThreadState** _par_gc_thread_states;
1061 
1062   // Reason generation was expanded
1063   CMSExpansionCause::Cause _expansion_cause;
1064 
1065   // In support of MinChunkSize being larger than min object size
1066   const double _dilatation_factor;
1067 
1068   // True if a compacting collection was done.
1069   bool _did_compact;
1070   bool did_compact() { return _did_compact; }
1071 
1072   // Fraction of current occupancy at which to start a CMS collection which
1073   // will collect this generation (at least).
1074   double _initiating_occupancy;
1075 
1076  protected:
1077   // Shrink generation by specified size (returns false if unable to shrink)
1078   void shrink_free_list_by(size_t bytes);
1079 
1080   // Update statistics for GC
1081   virtual void update_gc_stats(Generation* current_generation, bool full);
1082 
1083   // Maximum available space in the generation (including uncommitted)
1084   // space.
1085   size_t max_available() const;
1086 
1087   // getter and initializer for _initiating_occupancy field.
1088   double initiating_occupancy() const { return _initiating_occupancy; }
1089   void   init_initiating_occupancy(intx io, uintx tr);
1090 
1091   void expand_for_gc_cause(size_t bytes, size_t expand_bytes, CMSExpansionCause::Cause cause);
1092 
1093   void assert_correct_size_change_locking();
1094 
1095  public:
1096   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1097                                 CardTableRS* ct,
1098                                 bool use_adaptive_freelists,
1099                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1100 
1101   // Accessors
1102   static CMSCollector* collector() { return _collector; }
1103   static void set_collector(CMSCollector* collector) {
1104     assert(_collector == NULL, "already set");
1105     _collector = collector;
1106   }
1107   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1108 
1109   Mutex* freelistLock() const;
1110 
1111   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1112 
1113   void set_did_compact(bool v) { _did_compact = v; }
1114 
1115   bool refs_discovery_is_atomic() const { return false; }
1116   bool refs_discovery_is_mt()     const {
1117     // Note: CMS does MT-discovery during the parallel-remark
1118     // phases. Use ReferenceProcessorMTMutator to make refs
1119     // discovery MT-safe during such phases or other parallel
1120     // discovery phases in the future. This may all go away
1121     // if/when we decide that refs discovery is sufficiently
1122     // rare that the cost of the CAS's involved is in the
1123     // noise. That's a measurement that should be done, and
1124     // the code simplified if that turns out to be the case.
1125     return ConcGCThreads > 1;
1126   }
1127 
1128   // Override
1129   virtual void ref_processor_init();
1130 
1131   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1132 
1133   // Space enquiries
1134   double occupancy() const { return ((double)used())/((double)capacity()); }
1135   size_t contiguous_available() const;
1136   size_t unsafe_max_alloc_nogc() const;
1137 
1138   // over-rides
1139   MemRegion used_region_at_save_marks() const;
1140 
1141   // Does a "full" (forced) collection invoked on this generation collect
1142   // all younger generations as well? Note that the second conjunct is a
1143   // hack to allow the collection of the younger gen first if the flag is
1144   // set.
1145   virtual bool full_collects_younger_generations() const {
1146     return !ScavengeBeforeFullGC;
1147   }
1148 
1149   // Adjust quantities in the generation affected by
1150   // the compaction.
1151   void reset_after_compaction();
1152 
1153   // Allocation support
1154   HeapWord* allocate(size_t size, bool tlab);
1155   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1156   oop       promote(oop obj, size_t obj_size);
1157   HeapWord* par_allocate(size_t size, bool tlab) {
1158     return allocate(size, tlab);
1159   }
1160 
1161 
1162   // Used by CMSStats to track direct allocation.  The value is sampled and
1163   // reset after each young gen collection.
1164   size_t direct_allocated_words() const { return _direct_allocated_words; }
1165   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1166 
1167   // Overrides for parallel promotion.
1168   virtual oop par_promote(int thread_num,
1169                           oop obj, markOop m, size_t word_sz);
1170   virtual void par_promote_alloc_done(int thread_num);
1171   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1172 
1173   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1174 
1175   // Inform this (non-young) generation that a promotion failure was
1176   // encountered during a collection of a younger generation that
1177   // promotes into this generation.
1178   virtual void promotion_failure_occurred();
1179 
1180   bool should_collect(bool full, size_t size, bool tlab);
1181   virtual bool should_concurrent_collect() const;
1182   virtual bool is_too_full() const;
1183   void collect(bool   full,
1184                bool   clear_all_soft_refs,
1185                size_t size,
1186                bool   tlab);
1187 
1188   HeapWord* expand_and_allocate(size_t word_size,
1189                                 bool tlab,
1190                                 bool parallel = false);
1191 
1192   // GC prologue and epilogue
1193   void gc_prologue(bool full);
1194   void gc_prologue_work(bool full, bool registerClosure,
1195                         ModUnionClosure* modUnionClosure);
1196   void gc_epilogue(bool full);
1197   void gc_epilogue_work(bool full);
1198 
1199   // Time since last GC of this generation
1200   jlong time_of_last_gc(jlong now) {
1201     return collector()->time_of_last_gc(now);
1202   }
1203   void update_time_of_last_gc(jlong now) {
1204     collector()-> update_time_of_last_gc(now);
1205   }
1206 
1207   // Allocation failure
1208   void shrink(size_t bytes);
1209   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1210   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1211 
1212   // Iteration support and related enquiries
1213   void save_marks();
1214   bool no_allocs_since_save_marks();
1215 
1216   // Iteration support specific to CMS generations
1217   void save_sweep_limit();
1218 
1219   // More iteration support
1220   virtual void oop_iterate(ExtendedOopClosure* cl);
1221   virtual void safe_object_iterate(ObjectClosure* cl);
1222   virtual void object_iterate(ObjectClosure* cl);
1223 
1224   // Need to declare the full complement of closures, whether we'll
1225   // override them or not, or get message from the compiler:
1226   //   oop_since_save_marks_iterate_nv hides virtual function...
1227   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1228     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1229   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1230 
1231   // Smart allocation  XXX -- move to CFLSpace?
1232   void setNearLargestChunk();
1233   bool isNearLargestChunk(HeapWord* addr);
1234 
1235   // Get the chunk at the end of the space.  Delegates to
1236   // the space.
1237   FreeChunk* find_chunk_at_end();
1238 
1239   void post_compact();
1240 
1241   // Debugging
1242   void prepare_for_verify();
1243   void verify();
1244   void print_statistics()               PRODUCT_RETURN;
1245 
1246   // Performance Counters support
1247   virtual void update_counters();
1248   virtual void update_counters(size_t used);
1249   void initialize_performance_counters();
1250   CollectorCounters* counters()  { return collector()->counters(); }
1251 
1252   // Support for parallel remark of survivor space
1253   void* get_data_recorder(int thr_num) {
1254     //Delegate to collector
1255     return collector()->get_data_recorder(thr_num);
1256   }
1257   void sample_eden_chunk() {
1258     //Delegate to collector
1259     return collector()->sample_eden_chunk();
1260   }
1261 
1262   // Printing
1263   const char* name() const;
1264   virtual const char* short_name() const { return "CMS"; }
1265   void        print() const;
1266   void printOccupancy(const char* s);
1267 
1268   // Resize the generation after a compacting GC.  The
1269   // generation can be treated as a contiguous space
1270   // after the compaction.
1271   virtual void compute_new_size();
1272   // Resize the generation after a non-compacting
1273   // collection.
1274   void compute_new_size_free_list();
1275 };
1276 
1277 //
1278 // Closures of various sorts used by CMS to accomplish its work
1279 //
1280 
1281 // This closure is used to do concurrent marking from the roots
1282 // following the first checkpoint.
1283 class MarkFromRootsClosure: public BitMapClosure {
1284   CMSCollector*  _collector;
1285   MemRegion      _span;
1286   CMSBitMap*     _bitMap;
1287   CMSBitMap*     _mut;
1288   CMSMarkStack*  _markStack;
1289   bool           _yield;
1290   int            _skipBits;
1291   HeapWord*      _finger;
1292   HeapWord*      _threshold;
1293   DEBUG_ONLY(bool _verifying;)
1294 
1295  public:
1296   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1297                        CMSBitMap* bitMap,
1298                        CMSMarkStack*  markStack,
1299                        bool should_yield, bool verifying = false);
1300   bool do_bit(size_t offset);
1301   void reset(HeapWord* addr);
1302   inline void do_yield_check();
1303 
1304  private:
1305   void scanOopsInOop(HeapWord* ptr);
1306   void do_yield_work();
1307 };
1308 
1309 // This closure is used to do concurrent multi-threaded
1310 // marking from the roots following the first checkpoint.
1311 // XXX This should really be a subclass of The serial version
1312 // above, but i have not had the time to refactor things cleanly.
1313 class Par_MarkFromRootsClosure: public BitMapClosure {
1314   CMSCollector*  _collector;
1315   MemRegion      _whole_span;
1316   MemRegion      _span;
1317   CMSBitMap*     _bit_map;
1318   CMSBitMap*     _mut;
1319   OopTaskQueue*  _work_queue;
1320   CMSMarkStack*  _overflow_stack;
1321   int            _skip_bits;
1322   HeapWord*      _finger;
1323   HeapWord*      _threshold;
1324   CMSConcMarkingTask* _task;
1325  public:
1326   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1327                        MemRegion span,
1328                        CMSBitMap* bit_map,
1329                        OopTaskQueue* work_queue,
1330                        CMSMarkStack*  overflow_stack);
1331   bool do_bit(size_t offset);
1332   inline void do_yield_check();
1333 
1334  private:
1335   void scan_oops_in_oop(HeapWord* ptr);
1336   void do_yield_work();
1337   bool get_work_from_overflow_stack();
1338 };
1339 
1340 // The following closures are used to do certain kinds of verification of
1341 // CMS marking.
1342 class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
1343   CMSCollector*    _collector;
1344   MemRegion        _span;
1345   CMSBitMap*       _verification_bm;
1346   CMSBitMap*       _cms_bm;
1347   CMSMarkStack*    _mark_stack;
1348  protected:
1349   void do_oop(oop p);
1350   template <class T> inline void do_oop_work(T *p) {
1351     oop obj = oopDesc::load_decode_heap_oop(p);
1352     do_oop(obj);
1353   }
1354  public:
1355   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1356                            MemRegion span,
1357                            CMSBitMap* verification_bm,
1358                            CMSBitMap* cms_bm,
1359                            CMSMarkStack*  mark_stack);
1360   void do_oop(oop* p);
1361   void do_oop(narrowOop* p);
1362 
1363   // Deal with a stack overflow condition
1364   void handle_stack_overflow(HeapWord* lost);
1365 };
1366 
1367 class MarkFromRootsVerifyClosure: public BitMapClosure {
1368   CMSCollector*  _collector;
1369   MemRegion      _span;
1370   CMSBitMap*     _verification_bm;
1371   CMSBitMap*     _cms_bm;
1372   CMSMarkStack*  _mark_stack;
1373   HeapWord*      _finger;
1374   PushAndMarkVerifyClosure _pam_verify_closure;
1375  public:
1376   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1377                              CMSBitMap* verification_bm,
1378                              CMSBitMap* cms_bm,
1379                              CMSMarkStack*  mark_stack);
1380   bool do_bit(size_t offset);
1381   void reset(HeapWord* addr);
1382 };
1383 
1384 
1385 // This closure is used to check that a certain set of bits is
1386 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1387 class FalseBitMapClosure: public BitMapClosure {
1388  public:
1389   bool do_bit(size_t offset) {
1390     guarantee(false, "Should not have a 1 bit");
1391     return true;
1392   }
1393 };
1394 
1395 // A version of ObjectClosure with "memory" (see _previous_address below)
1396 class UpwardsObjectClosure: public BoolObjectClosure {
1397   HeapWord* _previous_address;
1398  public:
1399   UpwardsObjectClosure() : _previous_address(NULL) { }
1400   void set_previous(HeapWord* addr) { _previous_address = addr; }
1401   HeapWord* previous()              { return _previous_address; }
1402   // A return value of "true" can be used by the caller to decide
1403   // if this object's end should *NOT* be recorded in
1404   // _previous_address above.
1405   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1406 };
1407 
1408 // This closure is used during the second checkpointing phase
1409 // to rescan the marked objects on the dirty cards in the mod
1410 // union table and the card table proper. It's invoked via
1411 // MarkFromDirtyCardsClosure below. It uses either
1412 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1413 // declared in genOopClosures.hpp to accomplish some of its work.
1414 // In the parallel case the bitMap is shared, so access to
1415 // it needs to be suitably synchronized for updates by embedded
1416 // closures that update it; however, this closure itself only
1417 // reads the bit_map and because it is idempotent, is immune to
1418 // reading stale values.
1419 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1420   #ifdef ASSERT
1421     CMSCollector*          _collector;
1422     MemRegion              _span;
1423     union {
1424       CMSMarkStack*        _mark_stack;
1425       OopTaskQueue*        _work_queue;
1426     };
1427   #endif // ASSERT
1428   bool                       _parallel;
1429   CMSBitMap*                 _bit_map;
1430   union {
1431     MarkRefsIntoAndScanClosure*     _scan_closure;
1432     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1433   };
1434 
1435  public:
1436   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1437                                 MemRegion span,
1438                                 ReferenceProcessor* rp,
1439                                 CMSBitMap* bit_map,
1440                                 CMSMarkStack*  mark_stack,
1441                                 MarkRefsIntoAndScanClosure* cl):
1442     #ifdef ASSERT
1443       _collector(collector),
1444       _span(span),
1445       _mark_stack(mark_stack),
1446     #endif // ASSERT
1447     _parallel(false),
1448     _bit_map(bit_map),
1449     _scan_closure(cl) { }
1450 
1451   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1452                                 MemRegion span,
1453                                 ReferenceProcessor* rp,
1454                                 CMSBitMap* bit_map,
1455                                 OopTaskQueue* work_queue,
1456                                 Par_MarkRefsIntoAndScanClosure* cl):
1457     #ifdef ASSERT
1458       _collector(collector),
1459       _span(span),
1460       _work_queue(work_queue),
1461     #endif // ASSERT
1462     _parallel(true),
1463     _bit_map(bit_map),
1464     _par_scan_closure(cl) { }
1465 
1466   bool do_object_b(oop obj) {
1467     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1468     return false;
1469   }
1470   bool do_object_bm(oop p, MemRegion mr);
1471 };
1472 
1473 // This closure is used during the second checkpointing phase
1474 // to rescan the marked objects on the dirty cards in the mod
1475 // union table and the card table proper. It invokes
1476 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1477 // In the parallel case, the bit map is shared and requires
1478 // synchronized access.
1479 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1480   CompactibleFreeListSpace*      _space;
1481   ScanMarkedObjectsAgainClosure  _scan_cl;
1482   size_t                         _num_dirty_cards;
1483 
1484  public:
1485   MarkFromDirtyCardsClosure(CMSCollector* collector,
1486                             MemRegion span,
1487                             CompactibleFreeListSpace* space,
1488                             CMSBitMap* bit_map,
1489                             CMSMarkStack* mark_stack,
1490                             MarkRefsIntoAndScanClosure* cl):
1491     _space(space),
1492     _num_dirty_cards(0),
1493     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1494                  mark_stack, cl) { }
1495 
1496   MarkFromDirtyCardsClosure(CMSCollector* collector,
1497                             MemRegion span,
1498                             CompactibleFreeListSpace* space,
1499                             CMSBitMap* bit_map,
1500                             OopTaskQueue* work_queue,
1501                             Par_MarkRefsIntoAndScanClosure* cl):
1502     _space(space),
1503     _num_dirty_cards(0),
1504     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1505              work_queue, cl) { }
1506 
1507   void do_MemRegion(MemRegion mr);
1508   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1509   size_t num_dirty_cards() { return _num_dirty_cards; }
1510 };
1511 
1512 // This closure is used in the non-product build to check
1513 // that there are no MemRegions with a certain property.
1514 class FalseMemRegionClosure: public MemRegionClosure {
1515   void do_MemRegion(MemRegion mr) {
1516     guarantee(!mr.is_empty(), "Shouldn't be empty");
1517     guarantee(false, "Should never be here");
1518   }
1519 };
1520 
1521 // This closure is used during the precleaning phase
1522 // to "carefully" rescan marked objects on dirty cards.
1523 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1524 // to accomplish some of its work.
1525 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1526   CMSCollector*                  _collector;
1527   MemRegion                      _span;
1528   bool                           _yield;
1529   Mutex*                         _freelistLock;
1530   CMSBitMap*                     _bitMap;
1531   CMSMarkStack*                  _markStack;
1532   MarkRefsIntoAndScanClosure*    _scanningClosure;
1533 
1534  public:
1535   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1536                                          MemRegion     span,
1537                                          CMSBitMap* bitMap,
1538                                          CMSMarkStack*  markStack,
1539                                          MarkRefsIntoAndScanClosure* cl,
1540                                          bool should_yield):
1541     _collector(collector),
1542     _span(span),
1543     _yield(should_yield),
1544     _bitMap(bitMap),
1545     _markStack(markStack),
1546     _scanningClosure(cl) {
1547   }
1548 
1549   void do_object(oop p) {
1550     guarantee(false, "call do_object_careful instead");
1551   }
1552 
1553   size_t      do_object_careful(oop p) {
1554     guarantee(false, "Unexpected caller");
1555     return 0;
1556   }
1557 
1558   size_t      do_object_careful_m(oop p, MemRegion mr);
1559 
1560   void setFreelistLock(Mutex* m) {
1561     _freelistLock = m;
1562     _scanningClosure->set_freelistLock(m);
1563   }
1564 
1565  private:
1566   inline bool do_yield_check();
1567 
1568   void do_yield_work();
1569 };
1570 
1571 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1572   CMSCollector*                  _collector;
1573   MemRegion                      _span;
1574   bool                           _yield;
1575   CMSBitMap*                     _bit_map;
1576   CMSMarkStack*                  _mark_stack;
1577   PushAndMarkClosure*            _scanning_closure;
1578   unsigned int                   _before_count;
1579 
1580  public:
1581   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1582                                MemRegion     span,
1583                                CMSBitMap*    bit_map,
1584                                CMSMarkStack* mark_stack,
1585                                PushAndMarkClosure* cl,
1586                                unsigned int  before_count,
1587                                bool          should_yield):
1588     _collector(collector),
1589     _span(span),
1590     _yield(should_yield),
1591     _bit_map(bit_map),
1592     _mark_stack(mark_stack),
1593     _scanning_closure(cl),
1594     _before_count(before_count)
1595   { }
1596 
1597   void do_object(oop p) {
1598     guarantee(false, "call do_object_careful instead");
1599   }
1600 
1601   size_t      do_object_careful(oop p);
1602 
1603   size_t      do_object_careful_m(oop p, MemRegion mr) {
1604     guarantee(false, "Unexpected caller");
1605     return 0;
1606   }
1607 
1608  private:
1609   inline void do_yield_check();
1610   void do_yield_work();
1611 };
1612 
1613 // This closure is used to accomplish the sweeping work
1614 // after the second checkpoint but before the concurrent reset
1615 // phase.
1616 //
1617 // Terminology
1618 //   left hand chunk (LHC) - block of one or more chunks currently being
1619 //     coalesced.  The LHC is available for coalescing with a new chunk.
1620 //   right hand chunk (RHC) - block that is currently being swept that is
1621 //     free or garbage that can be coalesced with the LHC.
1622 // _inFreeRange is true if there is currently a LHC
1623 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1624 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1625 // _freeFinger is the address of the current LHC
1626 class SweepClosure: public BlkClosureCareful {
1627   CMSCollector*                  _collector;  // collector doing the work
1628   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1629   CompactibleFreeListSpace*      _sp;   // Space being swept
1630   HeapWord*                      _limit;// the address at or above which the sweep should stop
1631                                         // because we do not expect newly garbage blocks
1632                                         // eligible for sweeping past that address.
1633   Mutex*                         _freelistLock; // Free list lock (in space)
1634   CMSBitMap*                     _bitMap;       // Marking bit map (in
1635                                                 // generation)
1636   bool                           _inFreeRange;  // Indicates if we are in the
1637                                                 // midst of a free run
1638   bool                           _freeRangeInFreeLists;
1639                                         // Often, we have just found
1640                                         // a free chunk and started
1641                                         // a new free range; we do not
1642                                         // eagerly remove this chunk from
1643                                         // the free lists unless there is
1644                                         // a possibility of coalescing.
1645                                         // When true, this flag indicates
1646                                         // that the _freeFinger below
1647                                         // points to a potentially free chunk
1648                                         // that may still be in the free lists
1649   bool                           _lastFreeRangeCoalesced;
1650                                         // free range contains chunks
1651                                         // coalesced
1652   bool                           _yield;
1653                                         // Whether sweeping should be
1654                                         // done with yields. For instance
1655                                         // when done by the foreground
1656                                         // collector we shouldn't yield.
1657   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1658                                                 // pointer to the "left hand
1659                                                 // chunk"
1660   size_t                         _freeRangeSize;
1661                                         // When _inFreeRange is set, this
1662                                         // indicates the accumulated size
1663                                         // of the "left hand chunk"
1664   NOT_PRODUCT(
1665     size_t                       _numObjectsFreed;
1666     size_t                       _numWordsFreed;
1667     size_t                       _numObjectsLive;
1668     size_t                       _numWordsLive;
1669     size_t                       _numObjectsAlreadyFree;
1670     size_t                       _numWordsAlreadyFree;
1671     FreeChunk*                   _last_fc;
1672   )
1673  private:
1674   // Code that is common to a free chunk or garbage when
1675   // encountered during sweeping.
1676   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1677   // Process a free chunk during sweeping.
1678   void do_already_free_chunk(FreeChunk *fc);
1679   // Work method called when processing an already free or a
1680   // freshly garbage chunk to do a lookahead and possibly a
1681   // preemptive flush if crossing over _limit.
1682   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1683   // Process a garbage chunk during sweeping.
1684   size_t do_garbage_chunk(FreeChunk *fc);
1685   // Process a live chunk during sweeping.
1686   size_t do_live_chunk(FreeChunk* fc);
1687 
1688   // Accessors.
1689   HeapWord* freeFinger() const          { return _freeFinger; }
1690   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1691   bool inFreeRange()    const           { return _inFreeRange; }
1692   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1693   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1694   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1695   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1696   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1697 
1698   // Initialize a free range.
1699   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1700   // Return this chunk to the free lists.
1701   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1702 
1703   // Check if we should yield and do so when necessary.
1704   inline void do_yield_check(HeapWord* addr);
1705 
1706   // Yield
1707   void do_yield_work(HeapWord* addr);
1708 
1709   // Debugging/Printing
1710   void print_free_block_coalesced(FreeChunk* fc) const;
1711 
1712  public:
1713   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1714                CMSBitMap* bitMap, bool should_yield);
1715   ~SweepClosure() PRODUCT_RETURN;
1716 
1717   size_t       do_blk_careful(HeapWord* addr);
1718   void         print() const { print_on(tty); }
1719   void         print_on(outputStream *st) const;
1720 };
1721 
1722 // Closures related to weak references processing
1723 
1724 // During CMS' weak reference processing, this is a
1725 // work-routine/closure used to complete transitive
1726 // marking of objects as live after a certain point
1727 // in which an initial set has been completely accumulated.
1728 // This closure is currently used both during the final
1729 // remark stop-world phase, as well as during the concurrent
1730 // precleaning of the discovered reference lists.
1731 class CMSDrainMarkingStackClosure: public VoidClosure {
1732   CMSCollector*        _collector;
1733   MemRegion            _span;
1734   CMSMarkStack*        _mark_stack;
1735   CMSBitMap*           _bit_map;
1736   CMSKeepAliveClosure* _keep_alive;
1737   bool                 _concurrent_precleaning;
1738  public:
1739   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1740                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1741                       CMSKeepAliveClosure* keep_alive,
1742                       bool cpc):
1743     _collector(collector),
1744     _span(span),
1745     _bit_map(bit_map),
1746     _mark_stack(mark_stack),
1747     _keep_alive(keep_alive),
1748     _concurrent_precleaning(cpc) {
1749     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1750            "Mismatch");
1751   }
1752 
1753   void do_void();
1754 };
1755 
1756 // A parallel version of CMSDrainMarkingStackClosure above.
1757 class CMSParDrainMarkingStackClosure: public VoidClosure {
1758   CMSCollector*           _collector;
1759   MemRegion               _span;
1760   OopTaskQueue*           _work_queue;
1761   CMSBitMap*              _bit_map;
1762   CMSInnerParMarkAndPushClosure _mark_and_push;
1763 
1764  public:
1765   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1766                                  MemRegion span, CMSBitMap* bit_map,
1767                                  OopTaskQueue* work_queue):
1768     _collector(collector),
1769     _span(span),
1770     _bit_map(bit_map),
1771     _work_queue(work_queue),
1772     _mark_and_push(collector, span, bit_map, work_queue) { }
1773 
1774  public:
1775   void trim_queue(uint max);
1776   void do_void();
1777 };
1778 
1779 // Allow yielding or short-circuiting of reference list
1780 // precleaning work.
1781 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1782   CMSCollector* _collector;
1783   void do_yield_work();
1784  public:
1785   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1786     _collector(collector) {}
1787   virtual bool should_return();
1788 };
1789 
1790 
1791 // Convenience class that locks free list locks for given CMS collector
1792 class FreelistLocker: public StackObj {
1793  private:
1794   CMSCollector* _collector;
1795  public:
1796   FreelistLocker(CMSCollector* collector):
1797     _collector(collector) {
1798     _collector->getFreelistLocks();
1799   }
1800 
1801   ~FreelistLocker() {
1802     _collector->releaseFreelistLocks();
1803   }
1804 };
1805 
1806 // Mark all dead objects in a given space.
1807 class MarkDeadObjectsClosure: public BlkClosure {
1808   const CMSCollector*             _collector;
1809   const CompactibleFreeListSpace* _sp;
1810   CMSBitMap*                      _live_bit_map;
1811   CMSBitMap*                      _dead_bit_map;
1812 public:
1813   MarkDeadObjectsClosure(const CMSCollector* collector,
1814                          const CompactibleFreeListSpace* sp,
1815                          CMSBitMap *live_bit_map,
1816                          CMSBitMap *dead_bit_map) :
1817     _collector(collector),
1818     _sp(sp),
1819     _live_bit_map(live_bit_map),
1820     _dead_bit_map(dead_bit_map) {}
1821   size_t do_blk(HeapWord* addr);
1822 };
1823 
1824 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1825 
1826  public:
1827   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1828 };
1829 
1830 
1831 #endif // SHARE_VM_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP